powerpc/32: Interchange r1 and r11 in SYSCALL_ENTRY on booke
[linux-2.6-microblaze.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/perf_event.h>
39
40 #include <asm/sections.h>
41 #include <asm/cacheflush.h>
42 #include <asm/errno.h>
43 #include <linux/uaccess.h>
44
45 #define KPROBE_HASH_BITS 6
46 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
47
48
49 static int kprobes_initialized;
50 /* kprobe_table can be accessed by
51  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
52  * Or
53  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
54  */
55 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
56
57 /* NOTE: change this value only with kprobe_mutex held */
58 static bool kprobes_all_disarmed;
59
60 /* This protects kprobe_table and optimizing_list */
61 static DEFINE_MUTEX(kprobe_mutex);
62 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
63
64 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
65                                         unsigned int __unused)
66 {
67         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
68 }
69
70 /* Blacklist -- list of struct kprobe_blacklist_entry */
71 static LIST_HEAD(kprobe_blacklist);
72
73 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
74 /*
75  * kprobe->ainsn.insn points to the copy of the instruction to be
76  * single-stepped. x86_64, POWER4 and above have no-exec support and
77  * stepping on the instruction on a vmalloced/kmalloced/data page
78  * is a recipe for disaster
79  */
80 struct kprobe_insn_page {
81         struct list_head list;
82         kprobe_opcode_t *insns;         /* Page of instruction slots */
83         struct kprobe_insn_cache *cache;
84         int nused;
85         int ngarbage;
86         char slot_used[];
87 };
88
89 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
90         (offsetof(struct kprobe_insn_page, slot_used) + \
91          (sizeof(char) * (slots)))
92
93 static int slots_per_page(struct kprobe_insn_cache *c)
94 {
95         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
96 }
97
98 enum kprobe_slot_state {
99         SLOT_CLEAN = 0,
100         SLOT_DIRTY = 1,
101         SLOT_USED = 2,
102 };
103
104 void __weak *alloc_insn_page(void)
105 {
106         return module_alloc(PAGE_SIZE);
107 }
108
109 void __weak free_insn_page(void *page)
110 {
111         module_memfree(page);
112 }
113
114 struct kprobe_insn_cache kprobe_insn_slots = {
115         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
116         .alloc = alloc_insn_page,
117         .free = free_insn_page,
118         .sym = KPROBE_INSN_PAGE_SYM,
119         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
120         .insn_size = MAX_INSN_SIZE,
121         .nr_garbage = 0,
122 };
123 static int collect_garbage_slots(struct kprobe_insn_cache *c);
124
125 /**
126  * __get_insn_slot() - Find a slot on an executable page for an instruction.
127  * We allocate an executable page if there's no room on existing ones.
128  */
129 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
130 {
131         struct kprobe_insn_page *kip;
132         kprobe_opcode_t *slot = NULL;
133
134         /* Since the slot array is not protected by rcu, we need a mutex */
135         mutex_lock(&c->mutex);
136  retry:
137         rcu_read_lock();
138         list_for_each_entry_rcu(kip, &c->pages, list) {
139                 if (kip->nused < slots_per_page(c)) {
140                         int i;
141                         for (i = 0; i < slots_per_page(c); i++) {
142                                 if (kip->slot_used[i] == SLOT_CLEAN) {
143                                         kip->slot_used[i] = SLOT_USED;
144                                         kip->nused++;
145                                         slot = kip->insns + (i * c->insn_size);
146                                         rcu_read_unlock();
147                                         goto out;
148                                 }
149                         }
150                         /* kip->nused is broken. Fix it. */
151                         kip->nused = slots_per_page(c);
152                         WARN_ON(1);
153                 }
154         }
155         rcu_read_unlock();
156
157         /* If there are any garbage slots, collect it and try again. */
158         if (c->nr_garbage && collect_garbage_slots(c) == 0)
159                 goto retry;
160
161         /* All out of space.  Need to allocate a new page. */
162         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
163         if (!kip)
164                 goto out;
165
166         /*
167          * Use module_alloc so this page is within +/- 2GB of where the
168          * kernel image and loaded module images reside. This is required
169          * so x86_64 can correctly handle the %rip-relative fixups.
170          */
171         kip->insns = c->alloc();
172         if (!kip->insns) {
173                 kfree(kip);
174                 goto out;
175         }
176         INIT_LIST_HEAD(&kip->list);
177         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
178         kip->slot_used[0] = SLOT_USED;
179         kip->nused = 1;
180         kip->ngarbage = 0;
181         kip->cache = c;
182         list_add_rcu(&kip->list, &c->pages);
183         slot = kip->insns;
184
185         /* Record the perf ksymbol register event after adding the page */
186         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
187                            PAGE_SIZE, false, c->sym);
188 out:
189         mutex_unlock(&c->mutex);
190         return slot;
191 }
192
193 /* Return 1 if all garbages are collected, otherwise 0. */
194 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
195 {
196         kip->slot_used[idx] = SLOT_CLEAN;
197         kip->nused--;
198         if (kip->nused == 0) {
199                 /*
200                  * Page is no longer in use.  Free it unless
201                  * it's the last one.  We keep the last one
202                  * so as not to have to set it up again the
203                  * next time somebody inserts a probe.
204                  */
205                 if (!list_is_singular(&kip->list)) {
206                         /*
207                          * Record perf ksymbol unregister event before removing
208                          * the page.
209                          */
210                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
211                                            (unsigned long)kip->insns, PAGE_SIZE, true,
212                                            kip->cache->sym);
213                         list_del_rcu(&kip->list);
214                         synchronize_rcu();
215                         kip->cache->free(kip->insns);
216                         kfree(kip);
217                 }
218                 return 1;
219         }
220         return 0;
221 }
222
223 static int collect_garbage_slots(struct kprobe_insn_cache *c)
224 {
225         struct kprobe_insn_page *kip, *next;
226
227         /* Ensure no-one is interrupted on the garbages */
228         synchronize_rcu();
229
230         list_for_each_entry_safe(kip, next, &c->pages, list) {
231                 int i;
232                 if (kip->ngarbage == 0)
233                         continue;
234                 kip->ngarbage = 0;      /* we will collect all garbages */
235                 for (i = 0; i < slots_per_page(c); i++) {
236                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
237                                 break;
238                 }
239         }
240         c->nr_garbage = 0;
241         return 0;
242 }
243
244 void __free_insn_slot(struct kprobe_insn_cache *c,
245                       kprobe_opcode_t *slot, int dirty)
246 {
247         struct kprobe_insn_page *kip;
248         long idx;
249
250         mutex_lock(&c->mutex);
251         rcu_read_lock();
252         list_for_each_entry_rcu(kip, &c->pages, list) {
253                 idx = ((long)slot - (long)kip->insns) /
254                         (c->insn_size * sizeof(kprobe_opcode_t));
255                 if (idx >= 0 && idx < slots_per_page(c))
256                         goto out;
257         }
258         /* Could not find this slot. */
259         WARN_ON(1);
260         kip = NULL;
261 out:
262         rcu_read_unlock();
263         /* Mark and sweep: this may sleep */
264         if (kip) {
265                 /* Check double free */
266                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
267                 if (dirty) {
268                         kip->slot_used[idx] = SLOT_DIRTY;
269                         kip->ngarbage++;
270                         if (++c->nr_garbage > slots_per_page(c))
271                                 collect_garbage_slots(c);
272                 } else {
273                         collect_one_slot(kip, idx);
274                 }
275         }
276         mutex_unlock(&c->mutex);
277 }
278
279 /*
280  * Check given address is on the page of kprobe instruction slots.
281  * This will be used for checking whether the address on a stack
282  * is on a text area or not.
283  */
284 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
285 {
286         struct kprobe_insn_page *kip;
287         bool ret = false;
288
289         rcu_read_lock();
290         list_for_each_entry_rcu(kip, &c->pages, list) {
291                 if (addr >= (unsigned long)kip->insns &&
292                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
293                         ret = true;
294                         break;
295                 }
296         }
297         rcu_read_unlock();
298
299         return ret;
300 }
301
302 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
303                              unsigned long *value, char *type, char *sym)
304 {
305         struct kprobe_insn_page *kip;
306         int ret = -ERANGE;
307
308         rcu_read_lock();
309         list_for_each_entry_rcu(kip, &c->pages, list) {
310                 if ((*symnum)--)
311                         continue;
312                 strlcpy(sym, c->sym, KSYM_NAME_LEN);
313                 *type = 't';
314                 *value = (unsigned long)kip->insns;
315                 ret = 0;
316                 break;
317         }
318         rcu_read_unlock();
319
320         return ret;
321 }
322
323 #ifdef CONFIG_OPTPROBES
324 void __weak *alloc_optinsn_page(void)
325 {
326         return alloc_insn_page();
327 }
328
329 void __weak free_optinsn_page(void *page)
330 {
331         free_insn_page(page);
332 }
333
334 /* For optimized_kprobe buffer */
335 struct kprobe_insn_cache kprobe_optinsn_slots = {
336         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
337         .alloc = alloc_optinsn_page,
338         .free = free_optinsn_page,
339         .sym = KPROBE_OPTINSN_PAGE_SYM,
340         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
341         /* .insn_size is initialized later */
342         .nr_garbage = 0,
343 };
344 #endif
345 #endif
346
347 /* We have preemption disabled.. so it is safe to use __ versions */
348 static inline void set_kprobe_instance(struct kprobe *kp)
349 {
350         __this_cpu_write(kprobe_instance, kp);
351 }
352
353 static inline void reset_kprobe_instance(void)
354 {
355         __this_cpu_write(kprobe_instance, NULL);
356 }
357
358 /*
359  * This routine is called either:
360  *      - under the kprobe_mutex - during kprobe_[un]register()
361  *                              OR
362  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
363  */
364 struct kprobe *get_kprobe(void *addr)
365 {
366         struct hlist_head *head;
367         struct kprobe *p;
368
369         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
370         hlist_for_each_entry_rcu(p, head, hlist,
371                                  lockdep_is_held(&kprobe_mutex)) {
372                 if (p->addr == addr)
373                         return p;
374         }
375
376         return NULL;
377 }
378 NOKPROBE_SYMBOL(get_kprobe);
379
380 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
381
382 /* Return true if the kprobe is an aggregator */
383 static inline int kprobe_aggrprobe(struct kprobe *p)
384 {
385         return p->pre_handler == aggr_pre_handler;
386 }
387
388 /* Return true(!0) if the kprobe is unused */
389 static inline int kprobe_unused(struct kprobe *p)
390 {
391         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
392                list_empty(&p->list);
393 }
394
395 /*
396  * Keep all fields in the kprobe consistent
397  */
398 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
399 {
400         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
401         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
402 }
403
404 #ifdef CONFIG_OPTPROBES
405 /* NOTE: change this value only with kprobe_mutex held */
406 static bool kprobes_allow_optimization;
407
408 /*
409  * Call all pre_handler on the list, but ignores its return value.
410  * This must be called from arch-dep optimized caller.
411  */
412 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
413 {
414         struct kprobe *kp;
415
416         list_for_each_entry_rcu(kp, &p->list, list) {
417                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
418                         set_kprobe_instance(kp);
419                         kp->pre_handler(kp, regs);
420                 }
421                 reset_kprobe_instance();
422         }
423 }
424 NOKPROBE_SYMBOL(opt_pre_handler);
425
426 /* Free optimized instructions and optimized_kprobe */
427 static void free_aggr_kprobe(struct kprobe *p)
428 {
429         struct optimized_kprobe *op;
430
431         op = container_of(p, struct optimized_kprobe, kp);
432         arch_remove_optimized_kprobe(op);
433         arch_remove_kprobe(p);
434         kfree(op);
435 }
436
437 /* Return true(!0) if the kprobe is ready for optimization. */
438 static inline int kprobe_optready(struct kprobe *p)
439 {
440         struct optimized_kprobe *op;
441
442         if (kprobe_aggrprobe(p)) {
443                 op = container_of(p, struct optimized_kprobe, kp);
444                 return arch_prepared_optinsn(&op->optinsn);
445         }
446
447         return 0;
448 }
449
450 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
451 static inline int kprobe_disarmed(struct kprobe *p)
452 {
453         struct optimized_kprobe *op;
454
455         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
456         if (!kprobe_aggrprobe(p))
457                 return kprobe_disabled(p);
458
459         op = container_of(p, struct optimized_kprobe, kp);
460
461         return kprobe_disabled(p) && list_empty(&op->list);
462 }
463
464 /* Return true(!0) if the probe is queued on (un)optimizing lists */
465 static int kprobe_queued(struct kprobe *p)
466 {
467         struct optimized_kprobe *op;
468
469         if (kprobe_aggrprobe(p)) {
470                 op = container_of(p, struct optimized_kprobe, kp);
471                 if (!list_empty(&op->list))
472                         return 1;
473         }
474         return 0;
475 }
476
477 /*
478  * Return an optimized kprobe whose optimizing code replaces
479  * instructions including addr (exclude breakpoint).
480  */
481 static struct kprobe *get_optimized_kprobe(unsigned long addr)
482 {
483         int i;
484         struct kprobe *p = NULL;
485         struct optimized_kprobe *op;
486
487         /* Don't check i == 0, since that is a breakpoint case. */
488         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
489                 p = get_kprobe((void *)(addr - i));
490
491         if (p && kprobe_optready(p)) {
492                 op = container_of(p, struct optimized_kprobe, kp);
493                 if (arch_within_optimized_kprobe(op, addr))
494                         return p;
495         }
496
497         return NULL;
498 }
499
500 /* Optimization staging list, protected by kprobe_mutex */
501 static LIST_HEAD(optimizing_list);
502 static LIST_HEAD(unoptimizing_list);
503 static LIST_HEAD(freeing_list);
504
505 static void kprobe_optimizer(struct work_struct *work);
506 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
507 #define OPTIMIZE_DELAY 5
508
509 /*
510  * Optimize (replace a breakpoint with a jump) kprobes listed on
511  * optimizing_list.
512  */
513 static void do_optimize_kprobes(void)
514 {
515         lockdep_assert_held(&text_mutex);
516         /*
517          * The optimization/unoptimization refers online_cpus via
518          * stop_machine() and cpu-hotplug modifies online_cpus.
519          * And same time, text_mutex will be held in cpu-hotplug and here.
520          * This combination can cause a deadlock (cpu-hotplug try to lock
521          * text_mutex but stop_machine can not be done because online_cpus
522          * has been changed)
523          * To avoid this deadlock, caller must have locked cpu hotplug
524          * for preventing cpu-hotplug outside of text_mutex locking.
525          */
526         lockdep_assert_cpus_held();
527
528         /* Optimization never be done when disarmed */
529         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
530             list_empty(&optimizing_list))
531                 return;
532
533         arch_optimize_kprobes(&optimizing_list);
534 }
535
536 /*
537  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
538  * if need) kprobes listed on unoptimizing_list.
539  */
540 static void do_unoptimize_kprobes(void)
541 {
542         struct optimized_kprobe *op, *tmp;
543
544         lockdep_assert_held(&text_mutex);
545         /* See comment in do_optimize_kprobes() */
546         lockdep_assert_cpus_held();
547
548         /* Unoptimization must be done anytime */
549         if (list_empty(&unoptimizing_list))
550                 return;
551
552         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
553         /* Loop free_list for disarming */
554         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
555                 /* Switching from detour code to origin */
556                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
557                 /* Disarm probes if marked disabled */
558                 if (kprobe_disabled(&op->kp))
559                         arch_disarm_kprobe(&op->kp);
560                 if (kprobe_unused(&op->kp)) {
561                         /*
562                          * Remove unused probes from hash list. After waiting
563                          * for synchronization, these probes are reclaimed.
564                          * (reclaiming is done by do_free_cleaned_kprobes.)
565                          */
566                         hlist_del_rcu(&op->kp.hlist);
567                 } else
568                         list_del_init(&op->list);
569         }
570 }
571
572 /* Reclaim all kprobes on the free_list */
573 static void do_free_cleaned_kprobes(void)
574 {
575         struct optimized_kprobe *op, *tmp;
576
577         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
578                 list_del_init(&op->list);
579                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
580                         /*
581                          * This must not happen, but if there is a kprobe
582                          * still in use, keep it on kprobes hash list.
583                          */
584                         continue;
585                 }
586                 free_aggr_kprobe(&op->kp);
587         }
588 }
589
590 /* Start optimizer after OPTIMIZE_DELAY passed */
591 static void kick_kprobe_optimizer(void)
592 {
593         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
594 }
595
596 /* Kprobe jump optimizer */
597 static void kprobe_optimizer(struct work_struct *work)
598 {
599         mutex_lock(&kprobe_mutex);
600         cpus_read_lock();
601         mutex_lock(&text_mutex);
602
603         /*
604          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
605          * kprobes before waiting for quiesence period.
606          */
607         do_unoptimize_kprobes();
608
609         /*
610          * Step 2: Wait for quiesence period to ensure all potentially
611          * preempted tasks to have normally scheduled. Because optprobe
612          * may modify multiple instructions, there is a chance that Nth
613          * instruction is preempted. In that case, such tasks can return
614          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
615          * Note that on non-preemptive kernel, this is transparently converted
616          * to synchronoze_sched() to wait for all interrupts to have completed.
617          */
618         synchronize_rcu_tasks();
619
620         /* Step 3: Optimize kprobes after quiesence period */
621         do_optimize_kprobes();
622
623         /* Step 4: Free cleaned kprobes after quiesence period */
624         do_free_cleaned_kprobes();
625
626         mutex_unlock(&text_mutex);
627         cpus_read_unlock();
628
629         /* Step 5: Kick optimizer again if needed */
630         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
631                 kick_kprobe_optimizer();
632
633         mutex_unlock(&kprobe_mutex);
634 }
635
636 /* Wait for completing optimization and unoptimization */
637 void wait_for_kprobe_optimizer(void)
638 {
639         mutex_lock(&kprobe_mutex);
640
641         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
642                 mutex_unlock(&kprobe_mutex);
643
644                 /* this will also make optimizing_work execute immmediately */
645                 flush_delayed_work(&optimizing_work);
646                 /* @optimizing_work might not have been queued yet, relax */
647                 cpu_relax();
648
649                 mutex_lock(&kprobe_mutex);
650         }
651
652         mutex_unlock(&kprobe_mutex);
653 }
654
655 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
656 {
657         struct optimized_kprobe *_op;
658
659         list_for_each_entry(_op, &unoptimizing_list, list) {
660                 if (op == _op)
661                         return true;
662         }
663
664         return false;
665 }
666
667 /* Optimize kprobe if p is ready to be optimized */
668 static void optimize_kprobe(struct kprobe *p)
669 {
670         struct optimized_kprobe *op;
671
672         /* Check if the kprobe is disabled or not ready for optimization. */
673         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
674             (kprobe_disabled(p) || kprobes_all_disarmed))
675                 return;
676
677         /* kprobes with post_handler can not be optimized */
678         if (p->post_handler)
679                 return;
680
681         op = container_of(p, struct optimized_kprobe, kp);
682
683         /* Check there is no other kprobes at the optimized instructions */
684         if (arch_check_optimized_kprobe(op) < 0)
685                 return;
686
687         /* Check if it is already optimized. */
688         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
689                 if (optprobe_queued_unopt(op)) {
690                         /* This is under unoptimizing. Just dequeue the probe */
691                         list_del_init(&op->list);
692                 }
693                 return;
694         }
695         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
696
697         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
698         if (WARN_ON_ONCE(!list_empty(&op->list)))
699                 return;
700
701         list_add(&op->list, &optimizing_list);
702         kick_kprobe_optimizer();
703 }
704
705 /* Short cut to direct unoptimizing */
706 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
707 {
708         lockdep_assert_cpus_held();
709         arch_unoptimize_kprobe(op);
710         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
711 }
712
713 /* Unoptimize a kprobe if p is optimized */
714 static void unoptimize_kprobe(struct kprobe *p, bool force)
715 {
716         struct optimized_kprobe *op;
717
718         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
719                 return; /* This is not an optprobe nor optimized */
720
721         op = container_of(p, struct optimized_kprobe, kp);
722         if (!kprobe_optimized(p))
723                 return;
724
725         if (!list_empty(&op->list)) {
726                 if (optprobe_queued_unopt(op)) {
727                         /* Queued in unoptimizing queue */
728                         if (force) {
729                                 /*
730                                  * Forcibly unoptimize the kprobe here, and queue it
731                                  * in the freeing list for release afterwards.
732                                  */
733                                 force_unoptimize_kprobe(op);
734                                 list_move(&op->list, &freeing_list);
735                         }
736                 } else {
737                         /* Dequeue from the optimizing queue */
738                         list_del_init(&op->list);
739                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
740                 }
741                 return;
742         }
743
744         /* Optimized kprobe case */
745         if (force) {
746                 /* Forcibly update the code: this is a special case */
747                 force_unoptimize_kprobe(op);
748         } else {
749                 list_add(&op->list, &unoptimizing_list);
750                 kick_kprobe_optimizer();
751         }
752 }
753
754 /* Cancel unoptimizing for reusing */
755 static int reuse_unused_kprobe(struct kprobe *ap)
756 {
757         struct optimized_kprobe *op;
758
759         /*
760          * Unused kprobe MUST be on the way of delayed unoptimizing (means
761          * there is still a relative jump) and disabled.
762          */
763         op = container_of(ap, struct optimized_kprobe, kp);
764         WARN_ON_ONCE(list_empty(&op->list));
765         /* Enable the probe again */
766         ap->flags &= ~KPROBE_FLAG_DISABLED;
767         /* Optimize it again (remove from op->list) */
768         if (!kprobe_optready(ap))
769                 return -EINVAL;
770
771         optimize_kprobe(ap);
772         return 0;
773 }
774
775 /* Remove optimized instructions */
776 static void kill_optimized_kprobe(struct kprobe *p)
777 {
778         struct optimized_kprobe *op;
779
780         op = container_of(p, struct optimized_kprobe, kp);
781         if (!list_empty(&op->list))
782                 /* Dequeue from the (un)optimization queue */
783                 list_del_init(&op->list);
784         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
785
786         if (kprobe_unused(p)) {
787                 /* Enqueue if it is unused */
788                 list_add(&op->list, &freeing_list);
789                 /*
790                  * Remove unused probes from the hash list. After waiting
791                  * for synchronization, this probe is reclaimed.
792                  * (reclaiming is done by do_free_cleaned_kprobes().)
793                  */
794                 hlist_del_rcu(&op->kp.hlist);
795         }
796
797         /* Don't touch the code, because it is already freed. */
798         arch_remove_optimized_kprobe(op);
799 }
800
801 static inline
802 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
803 {
804         if (!kprobe_ftrace(p))
805                 arch_prepare_optimized_kprobe(op, p);
806 }
807
808 /* Try to prepare optimized instructions */
809 static void prepare_optimized_kprobe(struct kprobe *p)
810 {
811         struct optimized_kprobe *op;
812
813         op = container_of(p, struct optimized_kprobe, kp);
814         __prepare_optimized_kprobe(op, p);
815 }
816
817 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
818 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
819 {
820         struct optimized_kprobe *op;
821
822         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
823         if (!op)
824                 return NULL;
825
826         INIT_LIST_HEAD(&op->list);
827         op->kp.addr = p->addr;
828         __prepare_optimized_kprobe(op, p);
829
830         return &op->kp;
831 }
832
833 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
834
835 /*
836  * Prepare an optimized_kprobe and optimize it
837  * NOTE: p must be a normal registered kprobe
838  */
839 static void try_to_optimize_kprobe(struct kprobe *p)
840 {
841         struct kprobe *ap;
842         struct optimized_kprobe *op;
843
844         /* Impossible to optimize ftrace-based kprobe */
845         if (kprobe_ftrace(p))
846                 return;
847
848         /* For preparing optimization, jump_label_text_reserved() is called */
849         cpus_read_lock();
850         jump_label_lock();
851         mutex_lock(&text_mutex);
852
853         ap = alloc_aggr_kprobe(p);
854         if (!ap)
855                 goto out;
856
857         op = container_of(ap, struct optimized_kprobe, kp);
858         if (!arch_prepared_optinsn(&op->optinsn)) {
859                 /* If failed to setup optimizing, fallback to kprobe */
860                 arch_remove_optimized_kprobe(op);
861                 kfree(op);
862                 goto out;
863         }
864
865         init_aggr_kprobe(ap, p);
866         optimize_kprobe(ap);    /* This just kicks optimizer thread */
867
868 out:
869         mutex_unlock(&text_mutex);
870         jump_label_unlock();
871         cpus_read_unlock();
872 }
873
874 static void optimize_all_kprobes(void)
875 {
876         struct hlist_head *head;
877         struct kprobe *p;
878         unsigned int i;
879
880         mutex_lock(&kprobe_mutex);
881         /* If optimization is already allowed, just return */
882         if (kprobes_allow_optimization)
883                 goto out;
884
885         cpus_read_lock();
886         kprobes_allow_optimization = true;
887         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
888                 head = &kprobe_table[i];
889                 hlist_for_each_entry(p, head, hlist)
890                         if (!kprobe_disabled(p))
891                                 optimize_kprobe(p);
892         }
893         cpus_read_unlock();
894         printk(KERN_INFO "Kprobes globally optimized\n");
895 out:
896         mutex_unlock(&kprobe_mutex);
897 }
898
899 #ifdef CONFIG_SYSCTL
900 static void unoptimize_all_kprobes(void)
901 {
902         struct hlist_head *head;
903         struct kprobe *p;
904         unsigned int i;
905
906         mutex_lock(&kprobe_mutex);
907         /* If optimization is already prohibited, just return */
908         if (!kprobes_allow_optimization) {
909                 mutex_unlock(&kprobe_mutex);
910                 return;
911         }
912
913         cpus_read_lock();
914         kprobes_allow_optimization = false;
915         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
916                 head = &kprobe_table[i];
917                 hlist_for_each_entry(p, head, hlist) {
918                         if (!kprobe_disabled(p))
919                                 unoptimize_kprobe(p, false);
920                 }
921         }
922         cpus_read_unlock();
923         mutex_unlock(&kprobe_mutex);
924
925         /* Wait for unoptimizing completion */
926         wait_for_kprobe_optimizer();
927         printk(KERN_INFO "Kprobes globally unoptimized\n");
928 }
929
930 static DEFINE_MUTEX(kprobe_sysctl_mutex);
931 int sysctl_kprobes_optimization;
932 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
933                                       void *buffer, size_t *length,
934                                       loff_t *ppos)
935 {
936         int ret;
937
938         mutex_lock(&kprobe_sysctl_mutex);
939         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
940         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
941
942         if (sysctl_kprobes_optimization)
943                 optimize_all_kprobes();
944         else
945                 unoptimize_all_kprobes();
946         mutex_unlock(&kprobe_sysctl_mutex);
947
948         return ret;
949 }
950 #endif /* CONFIG_SYSCTL */
951
952 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
953 static void __arm_kprobe(struct kprobe *p)
954 {
955         struct kprobe *_p;
956
957         /* Check collision with other optimized kprobes */
958         _p = get_optimized_kprobe((unsigned long)p->addr);
959         if (unlikely(_p))
960                 /* Fallback to unoptimized kprobe */
961                 unoptimize_kprobe(_p, true);
962
963         arch_arm_kprobe(p);
964         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
965 }
966
967 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
968 static void __disarm_kprobe(struct kprobe *p, bool reopt)
969 {
970         struct kprobe *_p;
971
972         /* Try to unoptimize */
973         unoptimize_kprobe(p, kprobes_all_disarmed);
974
975         if (!kprobe_queued(p)) {
976                 arch_disarm_kprobe(p);
977                 /* If another kprobe was blocked, optimize it. */
978                 _p = get_optimized_kprobe((unsigned long)p->addr);
979                 if (unlikely(_p) && reopt)
980                         optimize_kprobe(_p);
981         }
982         /* TODO: reoptimize others after unoptimized this probe */
983 }
984
985 #else /* !CONFIG_OPTPROBES */
986
987 #define optimize_kprobe(p)                      do {} while (0)
988 #define unoptimize_kprobe(p, f)                 do {} while (0)
989 #define kill_optimized_kprobe(p)                do {} while (0)
990 #define prepare_optimized_kprobe(p)             do {} while (0)
991 #define try_to_optimize_kprobe(p)               do {} while (0)
992 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
993 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
994 #define kprobe_disarmed(p)                      kprobe_disabled(p)
995 #define wait_for_kprobe_optimizer()             do {} while (0)
996
997 static int reuse_unused_kprobe(struct kprobe *ap)
998 {
999         /*
1000          * If the optimized kprobe is NOT supported, the aggr kprobe is
1001          * released at the same time that the last aggregated kprobe is
1002          * unregistered.
1003          * Thus there should be no chance to reuse unused kprobe.
1004          */
1005         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1006         return -EINVAL;
1007 }
1008
1009 static void free_aggr_kprobe(struct kprobe *p)
1010 {
1011         arch_remove_kprobe(p);
1012         kfree(p);
1013 }
1014
1015 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1016 {
1017         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1018 }
1019 #endif /* CONFIG_OPTPROBES */
1020
1021 #ifdef CONFIG_KPROBES_ON_FTRACE
1022 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1023         .func = kprobe_ftrace_handler,
1024         .flags = FTRACE_OPS_FL_SAVE_REGS,
1025 };
1026
1027 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1028         .func = kprobe_ftrace_handler,
1029         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1030 };
1031
1032 static int kprobe_ipmodify_enabled;
1033 static int kprobe_ftrace_enabled;
1034
1035 /* Must ensure p->addr is really on ftrace */
1036 static int prepare_kprobe(struct kprobe *p)
1037 {
1038         if (!kprobe_ftrace(p))
1039                 return arch_prepare_kprobe(p);
1040
1041         return arch_prepare_kprobe_ftrace(p);
1042 }
1043
1044 /* Caller must lock kprobe_mutex */
1045 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1046                                int *cnt)
1047 {
1048         int ret = 0;
1049
1050         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1051         if (ret) {
1052                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1053                          p->addr, ret);
1054                 return ret;
1055         }
1056
1057         if (*cnt == 0) {
1058                 ret = register_ftrace_function(ops);
1059                 if (ret) {
1060                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1061                         goto err_ftrace;
1062                 }
1063         }
1064
1065         (*cnt)++;
1066         return ret;
1067
1068 err_ftrace:
1069         /*
1070          * At this point, sinec ops is not registered, we should be sefe from
1071          * registering empty filter.
1072          */
1073         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1074         return ret;
1075 }
1076
1077 static int arm_kprobe_ftrace(struct kprobe *p)
1078 {
1079         bool ipmodify = (p->post_handler != NULL);
1080
1081         return __arm_kprobe_ftrace(p,
1082                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1083                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1084 }
1085
1086 /* Caller must lock kprobe_mutex */
1087 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1088                                   int *cnt)
1089 {
1090         int ret = 0;
1091
1092         if (*cnt == 1) {
1093                 ret = unregister_ftrace_function(ops);
1094                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1095                         return ret;
1096         }
1097
1098         (*cnt)--;
1099
1100         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1101         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1102                   p->addr, ret);
1103         return ret;
1104 }
1105
1106 static int disarm_kprobe_ftrace(struct kprobe *p)
1107 {
1108         bool ipmodify = (p->post_handler != NULL);
1109
1110         return __disarm_kprobe_ftrace(p,
1111                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1112                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1113 }
1114 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1115 static inline int prepare_kprobe(struct kprobe *p)
1116 {
1117         return arch_prepare_kprobe(p);
1118 }
1119
1120 static inline int arm_kprobe_ftrace(struct kprobe *p)
1121 {
1122         return -ENODEV;
1123 }
1124
1125 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1126 {
1127         return -ENODEV;
1128 }
1129 #endif
1130
1131 /* Arm a kprobe with text_mutex */
1132 static int arm_kprobe(struct kprobe *kp)
1133 {
1134         if (unlikely(kprobe_ftrace(kp)))
1135                 return arm_kprobe_ftrace(kp);
1136
1137         cpus_read_lock();
1138         mutex_lock(&text_mutex);
1139         __arm_kprobe(kp);
1140         mutex_unlock(&text_mutex);
1141         cpus_read_unlock();
1142
1143         return 0;
1144 }
1145
1146 /* Disarm a kprobe with text_mutex */
1147 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1148 {
1149         if (unlikely(kprobe_ftrace(kp)))
1150                 return disarm_kprobe_ftrace(kp);
1151
1152         cpus_read_lock();
1153         mutex_lock(&text_mutex);
1154         __disarm_kprobe(kp, reopt);
1155         mutex_unlock(&text_mutex);
1156         cpus_read_unlock();
1157
1158         return 0;
1159 }
1160
1161 /*
1162  * Aggregate handlers for multiple kprobes support - these handlers
1163  * take care of invoking the individual kprobe handlers on p->list
1164  */
1165 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1166 {
1167         struct kprobe *kp;
1168
1169         list_for_each_entry_rcu(kp, &p->list, list) {
1170                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1171                         set_kprobe_instance(kp);
1172                         if (kp->pre_handler(kp, regs))
1173                                 return 1;
1174                 }
1175                 reset_kprobe_instance();
1176         }
1177         return 0;
1178 }
1179 NOKPROBE_SYMBOL(aggr_pre_handler);
1180
1181 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1182                               unsigned long flags)
1183 {
1184         struct kprobe *kp;
1185
1186         list_for_each_entry_rcu(kp, &p->list, list) {
1187                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1188                         set_kprobe_instance(kp);
1189                         kp->post_handler(kp, regs, flags);
1190                         reset_kprobe_instance();
1191                 }
1192         }
1193 }
1194 NOKPROBE_SYMBOL(aggr_post_handler);
1195
1196 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1197                               int trapnr)
1198 {
1199         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1200
1201         /*
1202          * if we faulted "during" the execution of a user specified
1203          * probe handler, invoke just that probe's fault handler
1204          */
1205         if (cur && cur->fault_handler) {
1206                 if (cur->fault_handler(cur, regs, trapnr))
1207                         return 1;
1208         }
1209         return 0;
1210 }
1211 NOKPROBE_SYMBOL(aggr_fault_handler);
1212
1213 /* Walks the list and increments nmissed count for multiprobe case */
1214 void kprobes_inc_nmissed_count(struct kprobe *p)
1215 {
1216         struct kprobe *kp;
1217         if (!kprobe_aggrprobe(p)) {
1218                 p->nmissed++;
1219         } else {
1220                 list_for_each_entry_rcu(kp, &p->list, list)
1221                         kp->nmissed++;
1222         }
1223         return;
1224 }
1225 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1226
1227 static void free_rp_inst_rcu(struct rcu_head *head)
1228 {
1229         struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1230
1231         if (refcount_dec_and_test(&ri->rph->ref))
1232                 kfree(ri->rph);
1233         kfree(ri);
1234 }
1235 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1236
1237 static void recycle_rp_inst(struct kretprobe_instance *ri)
1238 {
1239         struct kretprobe *rp = get_kretprobe(ri);
1240
1241         if (likely(rp)) {
1242                 freelist_add(&ri->freelist, &rp->freelist);
1243         } else
1244                 call_rcu(&ri->rcu, free_rp_inst_rcu);
1245 }
1246 NOKPROBE_SYMBOL(recycle_rp_inst);
1247
1248 static struct kprobe kprobe_busy = {
1249         .addr = (void *) get_kprobe,
1250 };
1251
1252 void kprobe_busy_begin(void)
1253 {
1254         struct kprobe_ctlblk *kcb;
1255
1256         preempt_disable();
1257         __this_cpu_write(current_kprobe, &kprobe_busy);
1258         kcb = get_kprobe_ctlblk();
1259         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1260 }
1261
1262 void kprobe_busy_end(void)
1263 {
1264         __this_cpu_write(current_kprobe, NULL);
1265         preempt_enable();
1266 }
1267
1268 /*
1269  * This function is called from finish_task_switch when task tk becomes dead,
1270  * so that we can recycle any function-return probe instances associated
1271  * with this task. These left over instances represent probed functions
1272  * that have been called but will never return.
1273  */
1274 void kprobe_flush_task(struct task_struct *tk)
1275 {
1276         struct kretprobe_instance *ri;
1277         struct llist_node *node;
1278
1279         /* Early boot, not yet initialized. */
1280         if (unlikely(!kprobes_initialized))
1281                 return;
1282
1283         kprobe_busy_begin();
1284
1285         node = __llist_del_all(&tk->kretprobe_instances);
1286         while (node) {
1287                 ri = container_of(node, struct kretprobe_instance, llist);
1288                 node = node->next;
1289
1290                 recycle_rp_inst(ri);
1291         }
1292
1293         kprobe_busy_end();
1294 }
1295 NOKPROBE_SYMBOL(kprobe_flush_task);
1296
1297 static inline void free_rp_inst(struct kretprobe *rp)
1298 {
1299         struct kretprobe_instance *ri;
1300         struct freelist_node *node;
1301         int count = 0;
1302
1303         node = rp->freelist.head;
1304         while (node) {
1305                 ri = container_of(node, struct kretprobe_instance, freelist);
1306                 node = node->next;
1307
1308                 kfree(ri);
1309                 count++;
1310         }
1311
1312         if (refcount_sub_and_test(count, &rp->rph->ref)) {
1313                 kfree(rp->rph);
1314                 rp->rph = NULL;
1315         }
1316 }
1317
1318 /* Add the new probe to ap->list */
1319 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1320 {
1321         if (p->post_handler)
1322                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1323
1324         list_add_rcu(&p->list, &ap->list);
1325         if (p->post_handler && !ap->post_handler)
1326                 ap->post_handler = aggr_post_handler;
1327
1328         return 0;
1329 }
1330
1331 /*
1332  * Fill in the required fields of the "manager kprobe". Replace the
1333  * earlier kprobe in the hlist with the manager kprobe
1334  */
1335 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1336 {
1337         /* Copy p's insn slot to ap */
1338         copy_kprobe(p, ap);
1339         flush_insn_slot(ap);
1340         ap->addr = p->addr;
1341         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1342         ap->pre_handler = aggr_pre_handler;
1343         ap->fault_handler = aggr_fault_handler;
1344         /* We don't care the kprobe which has gone. */
1345         if (p->post_handler && !kprobe_gone(p))
1346                 ap->post_handler = aggr_post_handler;
1347
1348         INIT_LIST_HEAD(&ap->list);
1349         INIT_HLIST_NODE(&ap->hlist);
1350
1351         list_add_rcu(&p->list, &ap->list);
1352         hlist_replace_rcu(&p->hlist, &ap->hlist);
1353 }
1354
1355 /*
1356  * This is the second or subsequent kprobe at the address - handle
1357  * the intricacies
1358  */
1359 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1360 {
1361         int ret = 0;
1362         struct kprobe *ap = orig_p;
1363
1364         cpus_read_lock();
1365
1366         /* For preparing optimization, jump_label_text_reserved() is called */
1367         jump_label_lock();
1368         mutex_lock(&text_mutex);
1369
1370         if (!kprobe_aggrprobe(orig_p)) {
1371                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1372                 ap = alloc_aggr_kprobe(orig_p);
1373                 if (!ap) {
1374                         ret = -ENOMEM;
1375                         goto out;
1376                 }
1377                 init_aggr_kprobe(ap, orig_p);
1378         } else if (kprobe_unused(ap)) {
1379                 /* This probe is going to die. Rescue it */
1380                 ret = reuse_unused_kprobe(ap);
1381                 if (ret)
1382                         goto out;
1383         }
1384
1385         if (kprobe_gone(ap)) {
1386                 /*
1387                  * Attempting to insert new probe at the same location that
1388                  * had a probe in the module vaddr area which already
1389                  * freed. So, the instruction slot has already been
1390                  * released. We need a new slot for the new probe.
1391                  */
1392                 ret = arch_prepare_kprobe(ap);
1393                 if (ret)
1394                         /*
1395                          * Even if fail to allocate new slot, don't need to
1396                          * free aggr_probe. It will be used next time, or
1397                          * freed by unregister_kprobe.
1398                          */
1399                         goto out;
1400
1401                 /* Prepare optimized instructions if possible. */
1402                 prepare_optimized_kprobe(ap);
1403
1404                 /*
1405                  * Clear gone flag to prevent allocating new slot again, and
1406                  * set disabled flag because it is not armed yet.
1407                  */
1408                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1409                             | KPROBE_FLAG_DISABLED;
1410         }
1411
1412         /* Copy ap's insn slot to p */
1413         copy_kprobe(ap, p);
1414         ret = add_new_kprobe(ap, p);
1415
1416 out:
1417         mutex_unlock(&text_mutex);
1418         jump_label_unlock();
1419         cpus_read_unlock();
1420
1421         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1422                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1423                 if (!kprobes_all_disarmed) {
1424                         /* Arm the breakpoint again. */
1425                         ret = arm_kprobe(ap);
1426                         if (ret) {
1427                                 ap->flags |= KPROBE_FLAG_DISABLED;
1428                                 list_del_rcu(&p->list);
1429                                 synchronize_rcu();
1430                         }
1431                 }
1432         }
1433         return ret;
1434 }
1435
1436 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1437 {
1438         /* The __kprobes marked functions and entry code must not be probed */
1439         return addr >= (unsigned long)__kprobes_text_start &&
1440                addr < (unsigned long)__kprobes_text_end;
1441 }
1442
1443 static bool __within_kprobe_blacklist(unsigned long addr)
1444 {
1445         struct kprobe_blacklist_entry *ent;
1446
1447         if (arch_within_kprobe_blacklist(addr))
1448                 return true;
1449         /*
1450          * If there exists a kprobe_blacklist, verify and
1451          * fail any probe registration in the prohibited area
1452          */
1453         list_for_each_entry(ent, &kprobe_blacklist, list) {
1454                 if (addr >= ent->start_addr && addr < ent->end_addr)
1455                         return true;
1456         }
1457         return false;
1458 }
1459
1460 bool within_kprobe_blacklist(unsigned long addr)
1461 {
1462         char symname[KSYM_NAME_LEN], *p;
1463
1464         if (__within_kprobe_blacklist(addr))
1465                 return true;
1466
1467         /* Check if the address is on a suffixed-symbol */
1468         if (!lookup_symbol_name(addr, symname)) {
1469                 p = strchr(symname, '.');
1470                 if (!p)
1471                         return false;
1472                 *p = '\0';
1473                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1474                 if (addr)
1475                         return __within_kprobe_blacklist(addr);
1476         }
1477         return false;
1478 }
1479
1480 /*
1481  * If we have a symbol_name argument, look it up and add the offset field
1482  * to it. This way, we can specify a relative address to a symbol.
1483  * This returns encoded errors if it fails to look up symbol or invalid
1484  * combination of parameters.
1485  */
1486 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1487                         const char *symbol_name, unsigned int offset)
1488 {
1489         if ((symbol_name && addr) || (!symbol_name && !addr))
1490                 goto invalid;
1491
1492         if (symbol_name) {
1493                 addr = kprobe_lookup_name(symbol_name, offset);
1494                 if (!addr)
1495                         return ERR_PTR(-ENOENT);
1496         }
1497
1498         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1499         if (addr)
1500                 return addr;
1501
1502 invalid:
1503         return ERR_PTR(-EINVAL);
1504 }
1505
1506 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1507 {
1508         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1509 }
1510
1511 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1512 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1513 {
1514         struct kprobe *ap, *list_p;
1515
1516         lockdep_assert_held(&kprobe_mutex);
1517
1518         ap = get_kprobe(p->addr);
1519         if (unlikely(!ap))
1520                 return NULL;
1521
1522         if (p != ap) {
1523                 list_for_each_entry(list_p, &ap->list, list)
1524                         if (list_p == p)
1525                         /* kprobe p is a valid probe */
1526                                 goto valid;
1527                 return NULL;
1528         }
1529 valid:
1530         return ap;
1531 }
1532
1533 /*
1534  * Warn and return error if the kprobe is being re-registered since
1535  * there must be a software bug.
1536  */
1537 static inline int warn_kprobe_rereg(struct kprobe *p)
1538 {
1539         int ret = 0;
1540
1541         mutex_lock(&kprobe_mutex);
1542         if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1543                 ret = -EINVAL;
1544         mutex_unlock(&kprobe_mutex);
1545
1546         return ret;
1547 }
1548
1549 int __weak arch_check_ftrace_location(struct kprobe *p)
1550 {
1551         unsigned long ftrace_addr;
1552
1553         ftrace_addr = ftrace_location((unsigned long)p->addr);
1554         if (ftrace_addr) {
1555 #ifdef CONFIG_KPROBES_ON_FTRACE
1556                 /* Given address is not on the instruction boundary */
1557                 if ((unsigned long)p->addr != ftrace_addr)
1558                         return -EILSEQ;
1559                 p->flags |= KPROBE_FLAG_FTRACE;
1560 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1561                 return -EINVAL;
1562 #endif
1563         }
1564         return 0;
1565 }
1566
1567 static int check_kprobe_address_safe(struct kprobe *p,
1568                                      struct module **probed_mod)
1569 {
1570         int ret;
1571
1572         ret = arch_check_ftrace_location(p);
1573         if (ret)
1574                 return ret;
1575         jump_label_lock();
1576         preempt_disable();
1577
1578         /* Ensure it is not in reserved area nor out of text */
1579         if (!kernel_text_address((unsigned long) p->addr) ||
1580             within_kprobe_blacklist((unsigned long) p->addr) ||
1581             jump_label_text_reserved(p->addr, p->addr) ||
1582             find_bug((unsigned long)p->addr)) {
1583                 ret = -EINVAL;
1584                 goto out;
1585         }
1586
1587         /* Check if are we probing a module */
1588         *probed_mod = __module_text_address((unsigned long) p->addr);
1589         if (*probed_mod) {
1590                 /*
1591                  * We must hold a refcount of the probed module while updating
1592                  * its code to prohibit unexpected unloading.
1593                  */
1594                 if (unlikely(!try_module_get(*probed_mod))) {
1595                         ret = -ENOENT;
1596                         goto out;
1597                 }
1598
1599                 /*
1600                  * If the module freed .init.text, we couldn't insert
1601                  * kprobes in there.
1602                  */
1603                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1604                     (*probed_mod)->state != MODULE_STATE_COMING) {
1605                         module_put(*probed_mod);
1606                         *probed_mod = NULL;
1607                         ret = -ENOENT;
1608                 }
1609         }
1610 out:
1611         preempt_enable();
1612         jump_label_unlock();
1613
1614         return ret;
1615 }
1616
1617 int register_kprobe(struct kprobe *p)
1618 {
1619         int ret;
1620         struct kprobe *old_p;
1621         struct module *probed_mod;
1622         kprobe_opcode_t *addr;
1623
1624         /* Adjust probe address from symbol */
1625         addr = kprobe_addr(p);
1626         if (IS_ERR(addr))
1627                 return PTR_ERR(addr);
1628         p->addr = addr;
1629
1630         ret = warn_kprobe_rereg(p);
1631         if (ret)
1632                 return ret;
1633
1634         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1635         p->flags &= KPROBE_FLAG_DISABLED;
1636         p->nmissed = 0;
1637         INIT_LIST_HEAD(&p->list);
1638
1639         ret = check_kprobe_address_safe(p, &probed_mod);
1640         if (ret)
1641                 return ret;
1642
1643         mutex_lock(&kprobe_mutex);
1644
1645         old_p = get_kprobe(p->addr);
1646         if (old_p) {
1647                 /* Since this may unoptimize old_p, locking text_mutex. */
1648                 ret = register_aggr_kprobe(old_p, p);
1649                 goto out;
1650         }
1651
1652         cpus_read_lock();
1653         /* Prevent text modification */
1654         mutex_lock(&text_mutex);
1655         ret = prepare_kprobe(p);
1656         mutex_unlock(&text_mutex);
1657         cpus_read_unlock();
1658         if (ret)
1659                 goto out;
1660
1661         INIT_HLIST_NODE(&p->hlist);
1662         hlist_add_head_rcu(&p->hlist,
1663                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1664
1665         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1666                 ret = arm_kprobe(p);
1667                 if (ret) {
1668                         hlist_del_rcu(&p->hlist);
1669                         synchronize_rcu();
1670                         goto out;
1671                 }
1672         }
1673
1674         /* Try to optimize kprobe */
1675         try_to_optimize_kprobe(p);
1676 out:
1677         mutex_unlock(&kprobe_mutex);
1678
1679         if (probed_mod)
1680                 module_put(probed_mod);
1681
1682         return ret;
1683 }
1684 EXPORT_SYMBOL_GPL(register_kprobe);
1685
1686 /* Check if all probes on the aggrprobe are disabled */
1687 static int aggr_kprobe_disabled(struct kprobe *ap)
1688 {
1689         struct kprobe *kp;
1690
1691         lockdep_assert_held(&kprobe_mutex);
1692
1693         list_for_each_entry(kp, &ap->list, list)
1694                 if (!kprobe_disabled(kp))
1695                         /*
1696                          * There is an active probe on the list.
1697                          * We can't disable this ap.
1698                          */
1699                         return 0;
1700
1701         return 1;
1702 }
1703
1704 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1705 static struct kprobe *__disable_kprobe(struct kprobe *p)
1706 {
1707         struct kprobe *orig_p;
1708         int ret;
1709
1710         /* Get an original kprobe for return */
1711         orig_p = __get_valid_kprobe(p);
1712         if (unlikely(orig_p == NULL))
1713                 return ERR_PTR(-EINVAL);
1714
1715         if (!kprobe_disabled(p)) {
1716                 /* Disable probe if it is a child probe */
1717                 if (p != orig_p)
1718                         p->flags |= KPROBE_FLAG_DISABLED;
1719
1720                 /* Try to disarm and disable this/parent probe */
1721                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1722                         /*
1723                          * If kprobes_all_disarmed is set, orig_p
1724                          * should have already been disarmed, so
1725                          * skip unneed disarming process.
1726                          */
1727                         if (!kprobes_all_disarmed) {
1728                                 ret = disarm_kprobe(orig_p, true);
1729                                 if (ret) {
1730                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1731                                         return ERR_PTR(ret);
1732                                 }
1733                         }
1734                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1735                 }
1736         }
1737
1738         return orig_p;
1739 }
1740
1741 /*
1742  * Unregister a kprobe without a scheduler synchronization.
1743  */
1744 static int __unregister_kprobe_top(struct kprobe *p)
1745 {
1746         struct kprobe *ap, *list_p;
1747
1748         /* Disable kprobe. This will disarm it if needed. */
1749         ap = __disable_kprobe(p);
1750         if (IS_ERR(ap))
1751                 return PTR_ERR(ap);
1752
1753         if (ap == p)
1754                 /*
1755                  * This probe is an independent(and non-optimized) kprobe
1756                  * (not an aggrprobe). Remove from the hash list.
1757                  */
1758                 goto disarmed;
1759
1760         /* Following process expects this probe is an aggrprobe */
1761         WARN_ON(!kprobe_aggrprobe(ap));
1762
1763         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1764                 /*
1765                  * !disarmed could be happen if the probe is under delayed
1766                  * unoptimizing.
1767                  */
1768                 goto disarmed;
1769         else {
1770                 /* If disabling probe has special handlers, update aggrprobe */
1771                 if (p->post_handler && !kprobe_gone(p)) {
1772                         list_for_each_entry(list_p, &ap->list, list) {
1773                                 if ((list_p != p) && (list_p->post_handler))
1774                                         goto noclean;
1775                         }
1776                         ap->post_handler = NULL;
1777                 }
1778 noclean:
1779                 /*
1780                  * Remove from the aggrprobe: this path will do nothing in
1781                  * __unregister_kprobe_bottom().
1782                  */
1783                 list_del_rcu(&p->list);
1784                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1785                         /*
1786                          * Try to optimize this probe again, because post
1787                          * handler may have been changed.
1788                          */
1789                         optimize_kprobe(ap);
1790         }
1791         return 0;
1792
1793 disarmed:
1794         hlist_del_rcu(&ap->hlist);
1795         return 0;
1796 }
1797
1798 static void __unregister_kprobe_bottom(struct kprobe *p)
1799 {
1800         struct kprobe *ap;
1801
1802         if (list_empty(&p->list))
1803                 /* This is an independent kprobe */
1804                 arch_remove_kprobe(p);
1805         else if (list_is_singular(&p->list)) {
1806                 /* This is the last child of an aggrprobe */
1807                 ap = list_entry(p->list.next, struct kprobe, list);
1808                 list_del(&p->list);
1809                 free_aggr_kprobe(ap);
1810         }
1811         /* Otherwise, do nothing. */
1812 }
1813
1814 int register_kprobes(struct kprobe **kps, int num)
1815 {
1816         int i, ret = 0;
1817
1818         if (num <= 0)
1819                 return -EINVAL;
1820         for (i = 0; i < num; i++) {
1821                 ret = register_kprobe(kps[i]);
1822                 if (ret < 0) {
1823                         if (i > 0)
1824                                 unregister_kprobes(kps, i);
1825                         break;
1826                 }
1827         }
1828         return ret;
1829 }
1830 EXPORT_SYMBOL_GPL(register_kprobes);
1831
1832 void unregister_kprobe(struct kprobe *p)
1833 {
1834         unregister_kprobes(&p, 1);
1835 }
1836 EXPORT_SYMBOL_GPL(unregister_kprobe);
1837
1838 void unregister_kprobes(struct kprobe **kps, int num)
1839 {
1840         int i;
1841
1842         if (num <= 0)
1843                 return;
1844         mutex_lock(&kprobe_mutex);
1845         for (i = 0; i < num; i++)
1846                 if (__unregister_kprobe_top(kps[i]) < 0)
1847                         kps[i]->addr = NULL;
1848         mutex_unlock(&kprobe_mutex);
1849
1850         synchronize_rcu();
1851         for (i = 0; i < num; i++)
1852                 if (kps[i]->addr)
1853                         __unregister_kprobe_bottom(kps[i]);
1854 }
1855 EXPORT_SYMBOL_GPL(unregister_kprobes);
1856
1857 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1858                                         unsigned long val, void *data)
1859 {
1860         return NOTIFY_DONE;
1861 }
1862 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1863
1864 static struct notifier_block kprobe_exceptions_nb = {
1865         .notifier_call = kprobe_exceptions_notify,
1866         .priority = 0x7fffffff /* we need to be notified first */
1867 };
1868
1869 unsigned long __weak arch_deref_entry_point(void *entry)
1870 {
1871         return (unsigned long)entry;
1872 }
1873
1874 #ifdef CONFIG_KRETPROBES
1875
1876 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1877                                              void *trampoline_address,
1878                                              void *frame_pointer)
1879 {
1880         kprobe_opcode_t *correct_ret_addr = NULL;
1881         struct kretprobe_instance *ri = NULL;
1882         struct llist_node *first, *node;
1883         struct kretprobe *rp;
1884
1885         /* Find all nodes for this frame. */
1886         first = node = current->kretprobe_instances.first;
1887         while (node) {
1888                 ri = container_of(node, struct kretprobe_instance, llist);
1889
1890                 BUG_ON(ri->fp != frame_pointer);
1891
1892                 if (ri->ret_addr != trampoline_address) {
1893                         correct_ret_addr = ri->ret_addr;
1894                         /*
1895                          * This is the real return address. Any other
1896                          * instances associated with this task are for
1897                          * other calls deeper on the call stack
1898                          */
1899                         goto found;
1900                 }
1901
1902                 node = node->next;
1903         }
1904         pr_err("Oops! Kretprobe fails to find correct return address.\n");
1905         BUG_ON(1);
1906
1907 found:
1908         /* Unlink all nodes for this frame. */
1909         current->kretprobe_instances.first = node->next;
1910         node->next = NULL;
1911
1912         /* Run them..  */
1913         while (first) {
1914                 ri = container_of(first, struct kretprobe_instance, llist);
1915                 first = first->next;
1916
1917                 rp = get_kretprobe(ri);
1918                 if (rp && rp->handler) {
1919                         struct kprobe *prev = kprobe_running();
1920
1921                         __this_cpu_write(current_kprobe, &rp->kp);
1922                         ri->ret_addr = correct_ret_addr;
1923                         rp->handler(ri, regs);
1924                         __this_cpu_write(current_kprobe, prev);
1925                 }
1926
1927                 recycle_rp_inst(ri);
1928         }
1929
1930         return (unsigned long)correct_ret_addr;
1931 }
1932 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1933
1934 /*
1935  * This kprobe pre_handler is registered with every kretprobe. When probe
1936  * hits it will set up the return probe.
1937  */
1938 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1939 {
1940         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1941         struct kretprobe_instance *ri;
1942         struct freelist_node *fn;
1943
1944         fn = freelist_try_get(&rp->freelist);
1945         if (!fn) {
1946                 rp->nmissed++;
1947                 return 0;
1948         }
1949
1950         ri = container_of(fn, struct kretprobe_instance, freelist);
1951
1952         if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1953                 freelist_add(&ri->freelist, &rp->freelist);
1954                 return 0;
1955         }
1956
1957         arch_prepare_kretprobe(ri, regs);
1958
1959         __llist_add(&ri->llist, &current->kretprobe_instances);
1960
1961         return 0;
1962 }
1963 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1964
1965 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1966 {
1967         return !offset;
1968 }
1969
1970 /**
1971  * kprobe_on_func_entry() -- check whether given address is function entry
1972  * @addr: Target address
1973  * @sym:  Target symbol name
1974  * @offset: The offset from the symbol or the address
1975  *
1976  * This checks whether the given @addr+@offset or @sym+@offset is on the
1977  * function entry address or not.
1978  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1979  * And also it returns -ENOENT if it fails the symbol or address lookup.
1980  * Caller must pass @addr or @sym (either one must be NULL), or this
1981  * returns -EINVAL.
1982  */
1983 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1984 {
1985         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1986
1987         if (IS_ERR(kp_addr))
1988                 return PTR_ERR(kp_addr);
1989
1990         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1991                 return -ENOENT;
1992
1993         if (!arch_kprobe_on_func_entry(offset))
1994                 return -EINVAL;
1995
1996         return 0;
1997 }
1998
1999 int register_kretprobe(struct kretprobe *rp)
2000 {
2001         int ret;
2002         struct kretprobe_instance *inst;
2003         int i;
2004         void *addr;
2005
2006         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
2007         if (ret)
2008                 return ret;
2009
2010         /* If only rp->kp.addr is specified, check reregistering kprobes */
2011         if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
2012                 return -EINVAL;
2013
2014         if (kretprobe_blacklist_size) {
2015                 addr = kprobe_addr(&rp->kp);
2016                 if (IS_ERR(addr))
2017                         return PTR_ERR(addr);
2018
2019                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2020                         if (kretprobe_blacklist[i].addr == addr)
2021                                 return -EINVAL;
2022                 }
2023         }
2024
2025         rp->kp.pre_handler = pre_handler_kretprobe;
2026         rp->kp.post_handler = NULL;
2027         rp->kp.fault_handler = NULL;
2028
2029         /* Pre-allocate memory for max kretprobe instances */
2030         if (rp->maxactive <= 0) {
2031 #ifdef CONFIG_PREEMPTION
2032                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2033 #else
2034                 rp->maxactive = num_possible_cpus();
2035 #endif
2036         }
2037         rp->freelist.head = NULL;
2038         rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2039         if (!rp->rph)
2040                 return -ENOMEM;
2041
2042         rp->rph->rp = rp;
2043         for (i = 0; i < rp->maxactive; i++) {
2044                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2045                                rp->data_size, GFP_KERNEL);
2046                 if (inst == NULL) {
2047                         refcount_set(&rp->rph->ref, i);
2048                         free_rp_inst(rp);
2049                         return -ENOMEM;
2050                 }
2051                 inst->rph = rp->rph;
2052                 freelist_add(&inst->freelist, &rp->freelist);
2053         }
2054         refcount_set(&rp->rph->ref, i);
2055
2056         rp->nmissed = 0;
2057         /* Establish function entry probe point */
2058         ret = register_kprobe(&rp->kp);
2059         if (ret != 0)
2060                 free_rp_inst(rp);
2061         return ret;
2062 }
2063 EXPORT_SYMBOL_GPL(register_kretprobe);
2064
2065 int register_kretprobes(struct kretprobe **rps, int num)
2066 {
2067         int ret = 0, i;
2068
2069         if (num <= 0)
2070                 return -EINVAL;
2071         for (i = 0; i < num; i++) {
2072                 ret = register_kretprobe(rps[i]);
2073                 if (ret < 0) {
2074                         if (i > 0)
2075                                 unregister_kretprobes(rps, i);
2076                         break;
2077                 }
2078         }
2079         return ret;
2080 }
2081 EXPORT_SYMBOL_GPL(register_kretprobes);
2082
2083 void unregister_kretprobe(struct kretprobe *rp)
2084 {
2085         unregister_kretprobes(&rp, 1);
2086 }
2087 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2088
2089 void unregister_kretprobes(struct kretprobe **rps, int num)
2090 {
2091         int i;
2092
2093         if (num <= 0)
2094                 return;
2095         mutex_lock(&kprobe_mutex);
2096         for (i = 0; i < num; i++) {
2097                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2098                         rps[i]->kp.addr = NULL;
2099                 rps[i]->rph->rp = NULL;
2100         }
2101         mutex_unlock(&kprobe_mutex);
2102
2103         synchronize_rcu();
2104         for (i = 0; i < num; i++) {
2105                 if (rps[i]->kp.addr) {
2106                         __unregister_kprobe_bottom(&rps[i]->kp);
2107                         free_rp_inst(rps[i]);
2108                 }
2109         }
2110 }
2111 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2112
2113 #else /* CONFIG_KRETPROBES */
2114 int register_kretprobe(struct kretprobe *rp)
2115 {
2116         return -ENOSYS;
2117 }
2118 EXPORT_SYMBOL_GPL(register_kretprobe);
2119
2120 int register_kretprobes(struct kretprobe **rps, int num)
2121 {
2122         return -ENOSYS;
2123 }
2124 EXPORT_SYMBOL_GPL(register_kretprobes);
2125
2126 void unregister_kretprobe(struct kretprobe *rp)
2127 {
2128 }
2129 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2130
2131 void unregister_kretprobes(struct kretprobe **rps, int num)
2132 {
2133 }
2134 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2135
2136 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2137 {
2138         return 0;
2139 }
2140 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2141
2142 #endif /* CONFIG_KRETPROBES */
2143
2144 /* Set the kprobe gone and remove its instruction buffer. */
2145 static void kill_kprobe(struct kprobe *p)
2146 {
2147         struct kprobe *kp;
2148
2149         lockdep_assert_held(&kprobe_mutex);
2150
2151         p->flags |= KPROBE_FLAG_GONE;
2152         if (kprobe_aggrprobe(p)) {
2153                 /*
2154                  * If this is an aggr_kprobe, we have to list all the
2155                  * chained probes and mark them GONE.
2156                  */
2157                 list_for_each_entry(kp, &p->list, list)
2158                         kp->flags |= KPROBE_FLAG_GONE;
2159                 p->post_handler = NULL;
2160                 kill_optimized_kprobe(p);
2161         }
2162         /*
2163          * Here, we can remove insn_slot safely, because no thread calls
2164          * the original probed function (which will be freed soon) any more.
2165          */
2166         arch_remove_kprobe(p);
2167
2168         /*
2169          * The module is going away. We should disarm the kprobe which
2170          * is using ftrace, because ftrace framework is still available at
2171          * MODULE_STATE_GOING notification.
2172          */
2173         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2174                 disarm_kprobe_ftrace(p);
2175 }
2176
2177 /* Disable one kprobe */
2178 int disable_kprobe(struct kprobe *kp)
2179 {
2180         int ret = 0;
2181         struct kprobe *p;
2182
2183         mutex_lock(&kprobe_mutex);
2184
2185         /* Disable this kprobe */
2186         p = __disable_kprobe(kp);
2187         if (IS_ERR(p))
2188                 ret = PTR_ERR(p);
2189
2190         mutex_unlock(&kprobe_mutex);
2191         return ret;
2192 }
2193 EXPORT_SYMBOL_GPL(disable_kprobe);
2194
2195 /* Enable one kprobe */
2196 int enable_kprobe(struct kprobe *kp)
2197 {
2198         int ret = 0;
2199         struct kprobe *p;
2200
2201         mutex_lock(&kprobe_mutex);
2202
2203         /* Check whether specified probe is valid. */
2204         p = __get_valid_kprobe(kp);
2205         if (unlikely(p == NULL)) {
2206                 ret = -EINVAL;
2207                 goto out;
2208         }
2209
2210         if (kprobe_gone(kp)) {
2211                 /* This kprobe has gone, we couldn't enable it. */
2212                 ret = -EINVAL;
2213                 goto out;
2214         }
2215
2216         if (p != kp)
2217                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2218
2219         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2220                 p->flags &= ~KPROBE_FLAG_DISABLED;
2221                 ret = arm_kprobe(p);
2222                 if (ret)
2223                         p->flags |= KPROBE_FLAG_DISABLED;
2224         }
2225 out:
2226         mutex_unlock(&kprobe_mutex);
2227         return ret;
2228 }
2229 EXPORT_SYMBOL_GPL(enable_kprobe);
2230
2231 /* Caller must NOT call this in usual path. This is only for critical case */
2232 void dump_kprobe(struct kprobe *kp)
2233 {
2234         pr_err("Dumping kprobe:\n");
2235         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2236                kp->symbol_name, kp->offset, kp->addr);
2237 }
2238 NOKPROBE_SYMBOL(dump_kprobe);
2239
2240 int kprobe_add_ksym_blacklist(unsigned long entry)
2241 {
2242         struct kprobe_blacklist_entry *ent;
2243         unsigned long offset = 0, size = 0;
2244
2245         if (!kernel_text_address(entry) ||
2246             !kallsyms_lookup_size_offset(entry, &size, &offset))
2247                 return -EINVAL;
2248
2249         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2250         if (!ent)
2251                 return -ENOMEM;
2252         ent->start_addr = entry;
2253         ent->end_addr = entry + size;
2254         INIT_LIST_HEAD(&ent->list);
2255         list_add_tail(&ent->list, &kprobe_blacklist);
2256
2257         return (int)size;
2258 }
2259
2260 /* Add all symbols in given area into kprobe blacklist */
2261 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2262 {
2263         unsigned long entry;
2264         int ret = 0;
2265
2266         for (entry = start; entry < end; entry += ret) {
2267                 ret = kprobe_add_ksym_blacklist(entry);
2268                 if (ret < 0)
2269                         return ret;
2270                 if (ret == 0)   /* In case of alias symbol */
2271                         ret = 1;
2272         }
2273         return 0;
2274 }
2275
2276 /* Remove all symbols in given area from kprobe blacklist */
2277 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2278 {
2279         struct kprobe_blacklist_entry *ent, *n;
2280
2281         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2282                 if (ent->start_addr < start || ent->start_addr >= end)
2283                         continue;
2284                 list_del(&ent->list);
2285                 kfree(ent);
2286         }
2287 }
2288
2289 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2290 {
2291         kprobe_remove_area_blacklist(entry, entry + 1);
2292 }
2293
2294 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2295                                    char *type, char *sym)
2296 {
2297         return -ERANGE;
2298 }
2299
2300 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2301                        char *sym)
2302 {
2303 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2304         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2305                 return 0;
2306 #ifdef CONFIG_OPTPROBES
2307         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2308                 return 0;
2309 #endif
2310 #endif
2311         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2312                 return 0;
2313         return -ERANGE;
2314 }
2315
2316 int __init __weak arch_populate_kprobe_blacklist(void)
2317 {
2318         return 0;
2319 }
2320
2321 /*
2322  * Lookup and populate the kprobe_blacklist.
2323  *
2324  * Unlike the kretprobe blacklist, we'll need to determine
2325  * the range of addresses that belong to the said functions,
2326  * since a kprobe need not necessarily be at the beginning
2327  * of a function.
2328  */
2329 static int __init populate_kprobe_blacklist(unsigned long *start,
2330                                              unsigned long *end)
2331 {
2332         unsigned long entry;
2333         unsigned long *iter;
2334         int ret;
2335
2336         for (iter = start; iter < end; iter++) {
2337                 entry = arch_deref_entry_point((void *)*iter);
2338                 ret = kprobe_add_ksym_blacklist(entry);
2339                 if (ret == -EINVAL)
2340                         continue;
2341                 if (ret < 0)
2342                         return ret;
2343         }
2344
2345         /* Symbols in __kprobes_text are blacklisted */
2346         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2347                                         (unsigned long)__kprobes_text_end);
2348         if (ret)
2349                 return ret;
2350
2351         /* Symbols in noinstr section are blacklisted */
2352         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2353                                         (unsigned long)__noinstr_text_end);
2354
2355         return ret ? : arch_populate_kprobe_blacklist();
2356 }
2357
2358 static void add_module_kprobe_blacklist(struct module *mod)
2359 {
2360         unsigned long start, end;
2361         int i;
2362
2363         if (mod->kprobe_blacklist) {
2364                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2365                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2366         }
2367
2368         start = (unsigned long)mod->kprobes_text_start;
2369         if (start) {
2370                 end = start + mod->kprobes_text_size;
2371                 kprobe_add_area_blacklist(start, end);
2372         }
2373
2374         start = (unsigned long)mod->noinstr_text_start;
2375         if (start) {
2376                 end = start + mod->noinstr_text_size;
2377                 kprobe_add_area_blacklist(start, end);
2378         }
2379 }
2380
2381 static void remove_module_kprobe_blacklist(struct module *mod)
2382 {
2383         unsigned long start, end;
2384         int i;
2385
2386         if (mod->kprobe_blacklist) {
2387                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2388                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2389         }
2390
2391         start = (unsigned long)mod->kprobes_text_start;
2392         if (start) {
2393                 end = start + mod->kprobes_text_size;
2394                 kprobe_remove_area_blacklist(start, end);
2395         }
2396
2397         start = (unsigned long)mod->noinstr_text_start;
2398         if (start) {
2399                 end = start + mod->noinstr_text_size;
2400                 kprobe_remove_area_blacklist(start, end);
2401         }
2402 }
2403
2404 /* Module notifier call back, checking kprobes on the module */
2405 static int kprobes_module_callback(struct notifier_block *nb,
2406                                    unsigned long val, void *data)
2407 {
2408         struct module *mod = data;
2409         struct hlist_head *head;
2410         struct kprobe *p;
2411         unsigned int i;
2412         int checkcore = (val == MODULE_STATE_GOING);
2413
2414         if (val == MODULE_STATE_COMING) {
2415                 mutex_lock(&kprobe_mutex);
2416                 add_module_kprobe_blacklist(mod);
2417                 mutex_unlock(&kprobe_mutex);
2418         }
2419         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2420                 return NOTIFY_DONE;
2421
2422         /*
2423          * When MODULE_STATE_GOING was notified, both of module .text and
2424          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2425          * notified, only .init.text section would be freed. We need to
2426          * disable kprobes which have been inserted in the sections.
2427          */
2428         mutex_lock(&kprobe_mutex);
2429         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2430                 head = &kprobe_table[i];
2431                 hlist_for_each_entry(p, head, hlist)
2432                         if (within_module_init((unsigned long)p->addr, mod) ||
2433                             (checkcore &&
2434                              within_module_core((unsigned long)p->addr, mod))) {
2435                                 /*
2436                                  * The vaddr this probe is installed will soon
2437                                  * be vfreed buy not synced to disk. Hence,
2438                                  * disarming the breakpoint isn't needed.
2439                                  *
2440                                  * Note, this will also move any optimized probes
2441                                  * that are pending to be removed from their
2442                                  * corresponding lists to the freeing_list and
2443                                  * will not be touched by the delayed
2444                                  * kprobe_optimizer work handler.
2445                                  */
2446                                 kill_kprobe(p);
2447                         }
2448         }
2449         if (val == MODULE_STATE_GOING)
2450                 remove_module_kprobe_blacklist(mod);
2451         mutex_unlock(&kprobe_mutex);
2452         return NOTIFY_DONE;
2453 }
2454
2455 static struct notifier_block kprobe_module_nb = {
2456         .notifier_call = kprobes_module_callback,
2457         .priority = 0
2458 };
2459
2460 /* Markers of _kprobe_blacklist section */
2461 extern unsigned long __start_kprobe_blacklist[];
2462 extern unsigned long __stop_kprobe_blacklist[];
2463
2464 void kprobe_free_init_mem(void)
2465 {
2466         void *start = (void *)(&__init_begin);
2467         void *end = (void *)(&__init_end);
2468         struct hlist_head *head;
2469         struct kprobe *p;
2470         int i;
2471
2472         mutex_lock(&kprobe_mutex);
2473
2474         /* Kill all kprobes on initmem */
2475         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2476                 head = &kprobe_table[i];
2477                 hlist_for_each_entry(p, head, hlist) {
2478                         if (start <= (void *)p->addr && (void *)p->addr < end)
2479                                 kill_kprobe(p);
2480                 }
2481         }
2482
2483         mutex_unlock(&kprobe_mutex);
2484 }
2485
2486 static int __init init_kprobes(void)
2487 {
2488         int i, err = 0;
2489
2490         /* FIXME allocate the probe table, currently defined statically */
2491         /* initialize all list heads */
2492         for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2493                 INIT_HLIST_HEAD(&kprobe_table[i]);
2494
2495         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2496                                         __stop_kprobe_blacklist);
2497         if (err) {
2498                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2499                 pr_err("Please take care of using kprobes.\n");
2500         }
2501
2502         if (kretprobe_blacklist_size) {
2503                 /* lookup the function address from its name */
2504                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2505                         kretprobe_blacklist[i].addr =
2506                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2507                         if (!kretprobe_blacklist[i].addr)
2508                                 printk("kretprobe: lookup failed: %s\n",
2509                                        kretprobe_blacklist[i].name);
2510                 }
2511         }
2512
2513         /* By default, kprobes are armed */
2514         kprobes_all_disarmed = false;
2515
2516 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2517         /* Init kprobe_optinsn_slots for allocation */
2518         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2519 #endif
2520
2521         err = arch_init_kprobes();
2522         if (!err)
2523                 err = register_die_notifier(&kprobe_exceptions_nb);
2524         if (!err)
2525                 err = register_module_notifier(&kprobe_module_nb);
2526
2527         kprobes_initialized = (err == 0);
2528
2529         if (!err)
2530                 init_test_probes();
2531         return err;
2532 }
2533 early_initcall(init_kprobes);
2534
2535 #if defined(CONFIG_OPTPROBES)
2536 static int __init init_optprobes(void)
2537 {
2538         /*
2539          * Enable kprobe optimization - this kicks the optimizer which
2540          * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2541          * not spawned in early initcall. So delay the optimization.
2542          */
2543         optimize_all_kprobes();
2544
2545         return 0;
2546 }
2547 subsys_initcall(init_optprobes);
2548 #endif
2549
2550 #ifdef CONFIG_DEBUG_FS
2551 static void report_probe(struct seq_file *pi, struct kprobe *p,
2552                 const char *sym, int offset, char *modname, struct kprobe *pp)
2553 {
2554         char *kprobe_type;
2555         void *addr = p->addr;
2556
2557         if (p->pre_handler == pre_handler_kretprobe)
2558                 kprobe_type = "r";
2559         else
2560                 kprobe_type = "k";
2561
2562         if (!kallsyms_show_value(pi->file->f_cred))
2563                 addr = NULL;
2564
2565         if (sym)
2566                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2567                         addr, kprobe_type, sym, offset,
2568                         (modname ? modname : " "));
2569         else    /* try to use %pS */
2570                 seq_printf(pi, "%px  %s  %pS ",
2571                         addr, kprobe_type, p->addr);
2572
2573         if (!pp)
2574                 pp = p;
2575         seq_printf(pi, "%s%s%s%s\n",
2576                 (kprobe_gone(p) ? "[GONE]" : ""),
2577                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2578                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2579                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2580 }
2581
2582 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2583 {
2584         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2585 }
2586
2587 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2588 {
2589         (*pos)++;
2590         if (*pos >= KPROBE_TABLE_SIZE)
2591                 return NULL;
2592         return pos;
2593 }
2594
2595 static void kprobe_seq_stop(struct seq_file *f, void *v)
2596 {
2597         /* Nothing to do */
2598 }
2599
2600 static int show_kprobe_addr(struct seq_file *pi, void *v)
2601 {
2602         struct hlist_head *head;
2603         struct kprobe *p, *kp;
2604         const char *sym = NULL;
2605         unsigned int i = *(loff_t *) v;
2606         unsigned long offset = 0;
2607         char *modname, namebuf[KSYM_NAME_LEN];
2608
2609         head = &kprobe_table[i];
2610         preempt_disable();
2611         hlist_for_each_entry_rcu(p, head, hlist) {
2612                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2613                                         &offset, &modname, namebuf);
2614                 if (kprobe_aggrprobe(p)) {
2615                         list_for_each_entry_rcu(kp, &p->list, list)
2616                                 report_probe(pi, kp, sym, offset, modname, p);
2617                 } else
2618                         report_probe(pi, p, sym, offset, modname, NULL);
2619         }
2620         preempt_enable();
2621         return 0;
2622 }
2623
2624 static const struct seq_operations kprobes_sops = {
2625         .start = kprobe_seq_start,
2626         .next  = kprobe_seq_next,
2627         .stop  = kprobe_seq_stop,
2628         .show  = show_kprobe_addr
2629 };
2630
2631 DEFINE_SEQ_ATTRIBUTE(kprobes);
2632
2633 /* kprobes/blacklist -- shows which functions can not be probed */
2634 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2635 {
2636         mutex_lock(&kprobe_mutex);
2637         return seq_list_start(&kprobe_blacklist, *pos);
2638 }
2639
2640 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2641 {
2642         return seq_list_next(v, &kprobe_blacklist, pos);
2643 }
2644
2645 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2646 {
2647         struct kprobe_blacklist_entry *ent =
2648                 list_entry(v, struct kprobe_blacklist_entry, list);
2649
2650         /*
2651          * If /proc/kallsyms is not showing kernel address, we won't
2652          * show them here either.
2653          */
2654         if (!kallsyms_show_value(m->file->f_cred))
2655                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2656                            (void *)ent->start_addr);
2657         else
2658                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2659                            (void *)ent->end_addr, (void *)ent->start_addr);
2660         return 0;
2661 }
2662
2663 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2664 {
2665         mutex_unlock(&kprobe_mutex);
2666 }
2667
2668 static const struct seq_operations kprobe_blacklist_sops = {
2669         .start = kprobe_blacklist_seq_start,
2670         .next  = kprobe_blacklist_seq_next,
2671         .stop  = kprobe_blacklist_seq_stop,
2672         .show  = kprobe_blacklist_seq_show,
2673 };
2674 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2675
2676 static int arm_all_kprobes(void)
2677 {
2678         struct hlist_head *head;
2679         struct kprobe *p;
2680         unsigned int i, total = 0, errors = 0;
2681         int err, ret = 0;
2682
2683         mutex_lock(&kprobe_mutex);
2684
2685         /* If kprobes are armed, just return */
2686         if (!kprobes_all_disarmed)
2687                 goto already_enabled;
2688
2689         /*
2690          * optimize_kprobe() called by arm_kprobe() checks
2691          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2692          * arm_kprobe.
2693          */
2694         kprobes_all_disarmed = false;
2695         /* Arming kprobes doesn't optimize kprobe itself */
2696         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2697                 head = &kprobe_table[i];
2698                 /* Arm all kprobes on a best-effort basis */
2699                 hlist_for_each_entry(p, head, hlist) {
2700                         if (!kprobe_disabled(p)) {
2701                                 err = arm_kprobe(p);
2702                                 if (err)  {
2703                                         errors++;
2704                                         ret = err;
2705                                 }
2706                                 total++;
2707                         }
2708                 }
2709         }
2710
2711         if (errors)
2712                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2713                         errors, total);
2714         else
2715                 pr_info("Kprobes globally enabled\n");
2716
2717 already_enabled:
2718         mutex_unlock(&kprobe_mutex);
2719         return ret;
2720 }
2721
2722 static int disarm_all_kprobes(void)
2723 {
2724         struct hlist_head *head;
2725         struct kprobe *p;
2726         unsigned int i, total = 0, errors = 0;
2727         int err, ret = 0;
2728
2729         mutex_lock(&kprobe_mutex);
2730
2731         /* If kprobes are already disarmed, just return */
2732         if (kprobes_all_disarmed) {
2733                 mutex_unlock(&kprobe_mutex);
2734                 return 0;
2735         }
2736
2737         kprobes_all_disarmed = true;
2738
2739         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2740                 head = &kprobe_table[i];
2741                 /* Disarm all kprobes on a best-effort basis */
2742                 hlist_for_each_entry(p, head, hlist) {
2743                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2744                                 err = disarm_kprobe(p, false);
2745                                 if (err) {
2746                                         errors++;
2747                                         ret = err;
2748                                 }
2749                                 total++;
2750                         }
2751                 }
2752         }
2753
2754         if (errors)
2755                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2756                         errors, total);
2757         else
2758                 pr_info("Kprobes globally disabled\n");
2759
2760         mutex_unlock(&kprobe_mutex);
2761
2762         /* Wait for disarming all kprobes by optimizer */
2763         wait_for_kprobe_optimizer();
2764
2765         return ret;
2766 }
2767
2768 /*
2769  * XXX: The debugfs bool file interface doesn't allow for callbacks
2770  * when the bool state is switched. We can reuse that facility when
2771  * available
2772  */
2773 static ssize_t read_enabled_file_bool(struct file *file,
2774                char __user *user_buf, size_t count, loff_t *ppos)
2775 {
2776         char buf[3];
2777
2778         if (!kprobes_all_disarmed)
2779                 buf[0] = '1';
2780         else
2781                 buf[0] = '0';
2782         buf[1] = '\n';
2783         buf[2] = 0x00;
2784         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2785 }
2786
2787 static ssize_t write_enabled_file_bool(struct file *file,
2788                const char __user *user_buf, size_t count, loff_t *ppos)
2789 {
2790         char buf[32];
2791         size_t buf_size;
2792         int ret = 0;
2793
2794         buf_size = min(count, (sizeof(buf)-1));
2795         if (copy_from_user(buf, user_buf, buf_size))
2796                 return -EFAULT;
2797
2798         buf[buf_size] = '\0';
2799         switch (buf[0]) {
2800         case 'y':
2801         case 'Y':
2802         case '1':
2803                 ret = arm_all_kprobes();
2804                 break;
2805         case 'n':
2806         case 'N':
2807         case '0':
2808                 ret = disarm_all_kprobes();
2809                 break;
2810         default:
2811                 return -EINVAL;
2812         }
2813
2814         if (ret)
2815                 return ret;
2816
2817         return count;
2818 }
2819
2820 static const struct file_operations fops_kp = {
2821         .read =         read_enabled_file_bool,
2822         .write =        write_enabled_file_bool,
2823         .llseek =       default_llseek,
2824 };
2825
2826 static int __init debugfs_kprobe_init(void)
2827 {
2828         struct dentry *dir;
2829         unsigned int value = 1;
2830
2831         dir = debugfs_create_dir("kprobes", NULL);
2832
2833         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2834
2835         debugfs_create_file("enabled", 0600, dir, &value, &fops_kp);
2836
2837         debugfs_create_file("blacklist", 0400, dir, NULL,
2838                             &kprobe_blacklist_fops);
2839
2840         return 0;
2841 }
2842
2843 late_initcall(debugfs_kprobe_init);
2844 #endif /* CONFIG_DEBUG_FS */