kprobes: Make arch_check_ftrace_location static
[linux-2.6-microblaze.git] / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Kernel Probes (KProbes)
4  *  kernel/kprobes.c
5  *
6  * Copyright (C) IBM Corporation, 2002, 2004
7  *
8  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
9  *              Probes initial implementation (includes suggestions from
10  *              Rusty Russell).
11  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
12  *              hlists and exceptions notifier as suggested by Andi Kleen.
13  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
14  *              interface to access function arguments.
15  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
16  *              exceptions notifier to be first on the priority list.
17  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
18  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
19  *              <prasanna@in.ibm.com> added function-return probes.
20  */
21 #include <linux/kprobes.h>
22 #include <linux/hash.h>
23 #include <linux/init.h>
24 #include <linux/slab.h>
25 #include <linux/stddef.h>
26 #include <linux/export.h>
27 #include <linux/moduleloader.h>
28 #include <linux/kallsyms.h>
29 #include <linux/freezer.h>
30 #include <linux/seq_file.h>
31 #include <linux/debugfs.h>
32 #include <linux/sysctl.h>
33 #include <linux/kdebug.h>
34 #include <linux/memory.h>
35 #include <linux/ftrace.h>
36 #include <linux/cpu.h>
37 #include <linux/jump_label.h>
38 #include <linux/static_call.h>
39 #include <linux/perf_event.h>
40
41 #include <asm/sections.h>
42 #include <asm/cacheflush.h>
43 #include <asm/errno.h>
44 #include <linux/uaccess.h>
45
46 #define KPROBE_HASH_BITS 6
47 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
48
49
50 static int kprobes_initialized;
51 /* kprobe_table can be accessed by
52  * - Normal hlist traversal and RCU add/del under kprobe_mutex is held.
53  * Or
54  * - RCU hlist traversal under disabling preempt (breakpoint handlers)
55  */
56 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
57
58 /* NOTE: change this value only with kprobe_mutex held */
59 static bool kprobes_all_disarmed;
60
61 /* This protects kprobe_table and optimizing_list */
62 static DEFINE_MUTEX(kprobe_mutex);
63 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
64
65 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
66                                         unsigned int __unused)
67 {
68         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
69 }
70
71 /* Blacklist -- list of struct kprobe_blacklist_entry */
72 static LIST_HEAD(kprobe_blacklist);
73
74 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
75 /*
76  * kprobe->ainsn.insn points to the copy of the instruction to be
77  * single-stepped. x86_64, POWER4 and above have no-exec support and
78  * stepping on the instruction on a vmalloced/kmalloced/data page
79  * is a recipe for disaster
80  */
81 struct kprobe_insn_page {
82         struct list_head list;
83         kprobe_opcode_t *insns;         /* Page of instruction slots */
84         struct kprobe_insn_cache *cache;
85         int nused;
86         int ngarbage;
87         char slot_used[];
88 };
89
90 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
91         (offsetof(struct kprobe_insn_page, slot_used) + \
92          (sizeof(char) * (slots)))
93
94 static int slots_per_page(struct kprobe_insn_cache *c)
95 {
96         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
97 }
98
99 enum kprobe_slot_state {
100         SLOT_CLEAN = 0,
101         SLOT_DIRTY = 1,
102         SLOT_USED = 2,
103 };
104
105 void __weak *alloc_insn_page(void)
106 {
107         return module_alloc(PAGE_SIZE);
108 }
109
110 static void free_insn_page(void *page)
111 {
112         module_memfree(page);
113 }
114
115 struct kprobe_insn_cache kprobe_insn_slots = {
116         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
117         .alloc = alloc_insn_page,
118         .free = free_insn_page,
119         .sym = KPROBE_INSN_PAGE_SYM,
120         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
121         .insn_size = MAX_INSN_SIZE,
122         .nr_garbage = 0,
123 };
124 static int collect_garbage_slots(struct kprobe_insn_cache *c);
125
126 /**
127  * __get_insn_slot() - Find a slot on an executable page for an instruction.
128  * We allocate an executable page if there's no room on existing ones.
129  */
130 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
131 {
132         struct kprobe_insn_page *kip;
133         kprobe_opcode_t *slot = NULL;
134
135         /* Since the slot array is not protected by rcu, we need a mutex */
136         mutex_lock(&c->mutex);
137  retry:
138         rcu_read_lock();
139         list_for_each_entry_rcu(kip, &c->pages, list) {
140                 if (kip->nused < slots_per_page(c)) {
141                         int i;
142                         for (i = 0; i < slots_per_page(c); i++) {
143                                 if (kip->slot_used[i] == SLOT_CLEAN) {
144                                         kip->slot_used[i] = SLOT_USED;
145                                         kip->nused++;
146                                         slot = kip->insns + (i * c->insn_size);
147                                         rcu_read_unlock();
148                                         goto out;
149                                 }
150                         }
151                         /* kip->nused is broken. Fix it. */
152                         kip->nused = slots_per_page(c);
153                         WARN_ON(1);
154                 }
155         }
156         rcu_read_unlock();
157
158         /* If there are any garbage slots, collect it and try again. */
159         if (c->nr_garbage && collect_garbage_slots(c) == 0)
160                 goto retry;
161
162         /* All out of space.  Need to allocate a new page. */
163         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
164         if (!kip)
165                 goto out;
166
167         /*
168          * Use module_alloc so this page is within +/- 2GB of where the
169          * kernel image and loaded module images reside. This is required
170          * so x86_64 can correctly handle the %rip-relative fixups.
171          */
172         kip->insns = c->alloc();
173         if (!kip->insns) {
174                 kfree(kip);
175                 goto out;
176         }
177         INIT_LIST_HEAD(&kip->list);
178         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
179         kip->slot_used[0] = SLOT_USED;
180         kip->nused = 1;
181         kip->ngarbage = 0;
182         kip->cache = c;
183         list_add_rcu(&kip->list, &c->pages);
184         slot = kip->insns;
185
186         /* Record the perf ksymbol register event after adding the page */
187         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL, (unsigned long)kip->insns,
188                            PAGE_SIZE, false, c->sym);
189 out:
190         mutex_unlock(&c->mutex);
191         return slot;
192 }
193
194 /* Return 1 if all garbages are collected, otherwise 0. */
195 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
196 {
197         kip->slot_used[idx] = SLOT_CLEAN;
198         kip->nused--;
199         if (kip->nused == 0) {
200                 /*
201                  * Page is no longer in use.  Free it unless
202                  * it's the last one.  We keep the last one
203                  * so as not to have to set it up again the
204                  * next time somebody inserts a probe.
205                  */
206                 if (!list_is_singular(&kip->list)) {
207                         /*
208                          * Record perf ksymbol unregister event before removing
209                          * the page.
210                          */
211                         perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_OOL,
212                                            (unsigned long)kip->insns, PAGE_SIZE, true,
213                                            kip->cache->sym);
214                         list_del_rcu(&kip->list);
215                         synchronize_rcu();
216                         kip->cache->free(kip->insns);
217                         kfree(kip);
218                 }
219                 return 1;
220         }
221         return 0;
222 }
223
224 static int collect_garbage_slots(struct kprobe_insn_cache *c)
225 {
226         struct kprobe_insn_page *kip, *next;
227
228         /* Ensure no-one is interrupted on the garbages */
229         synchronize_rcu();
230
231         list_for_each_entry_safe(kip, next, &c->pages, list) {
232                 int i;
233                 if (kip->ngarbage == 0)
234                         continue;
235                 kip->ngarbage = 0;      /* we will collect all garbages */
236                 for (i = 0; i < slots_per_page(c); i++) {
237                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
238                                 break;
239                 }
240         }
241         c->nr_garbage = 0;
242         return 0;
243 }
244
245 void __free_insn_slot(struct kprobe_insn_cache *c,
246                       kprobe_opcode_t *slot, int dirty)
247 {
248         struct kprobe_insn_page *kip;
249         long idx;
250
251         mutex_lock(&c->mutex);
252         rcu_read_lock();
253         list_for_each_entry_rcu(kip, &c->pages, list) {
254                 idx = ((long)slot - (long)kip->insns) /
255                         (c->insn_size * sizeof(kprobe_opcode_t));
256                 if (idx >= 0 && idx < slots_per_page(c))
257                         goto out;
258         }
259         /* Could not find this slot. */
260         WARN_ON(1);
261         kip = NULL;
262 out:
263         rcu_read_unlock();
264         /* Mark and sweep: this may sleep */
265         if (kip) {
266                 /* Check double free */
267                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
268                 if (dirty) {
269                         kip->slot_used[idx] = SLOT_DIRTY;
270                         kip->ngarbage++;
271                         if (++c->nr_garbage > slots_per_page(c))
272                                 collect_garbage_slots(c);
273                 } else {
274                         collect_one_slot(kip, idx);
275                 }
276         }
277         mutex_unlock(&c->mutex);
278 }
279
280 /*
281  * Check given address is on the page of kprobe instruction slots.
282  * This will be used for checking whether the address on a stack
283  * is on a text area or not.
284  */
285 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
286 {
287         struct kprobe_insn_page *kip;
288         bool ret = false;
289
290         rcu_read_lock();
291         list_for_each_entry_rcu(kip, &c->pages, list) {
292                 if (addr >= (unsigned long)kip->insns &&
293                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
294                         ret = true;
295                         break;
296                 }
297         }
298         rcu_read_unlock();
299
300         return ret;
301 }
302
303 int kprobe_cache_get_kallsym(struct kprobe_insn_cache *c, unsigned int *symnum,
304                              unsigned long *value, char *type, char *sym)
305 {
306         struct kprobe_insn_page *kip;
307         int ret = -ERANGE;
308
309         rcu_read_lock();
310         list_for_each_entry_rcu(kip, &c->pages, list) {
311                 if ((*symnum)--)
312                         continue;
313                 strlcpy(sym, c->sym, KSYM_NAME_LEN);
314                 *type = 't';
315                 *value = (unsigned long)kip->insns;
316                 ret = 0;
317                 break;
318         }
319         rcu_read_unlock();
320
321         return ret;
322 }
323
324 #ifdef CONFIG_OPTPROBES
325 void __weak *alloc_optinsn_page(void)
326 {
327         return alloc_insn_page();
328 }
329
330 void __weak free_optinsn_page(void *page)
331 {
332         free_insn_page(page);
333 }
334
335 /* For optimized_kprobe buffer */
336 struct kprobe_insn_cache kprobe_optinsn_slots = {
337         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
338         .alloc = alloc_optinsn_page,
339         .free = free_optinsn_page,
340         .sym = KPROBE_OPTINSN_PAGE_SYM,
341         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
342         /* .insn_size is initialized later */
343         .nr_garbage = 0,
344 };
345 #endif
346 #endif
347
348 /* We have preemption disabled.. so it is safe to use __ versions */
349 static inline void set_kprobe_instance(struct kprobe *kp)
350 {
351         __this_cpu_write(kprobe_instance, kp);
352 }
353
354 static inline void reset_kprobe_instance(void)
355 {
356         __this_cpu_write(kprobe_instance, NULL);
357 }
358
359 /*
360  * This routine is called either:
361  *      - under the kprobe_mutex - during kprobe_[un]register()
362  *                              OR
363  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
364  */
365 struct kprobe *get_kprobe(void *addr)
366 {
367         struct hlist_head *head;
368         struct kprobe *p;
369
370         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
371         hlist_for_each_entry_rcu(p, head, hlist,
372                                  lockdep_is_held(&kprobe_mutex)) {
373                 if (p->addr == addr)
374                         return p;
375         }
376
377         return NULL;
378 }
379 NOKPROBE_SYMBOL(get_kprobe);
380
381 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
382
383 /* Return true if the kprobe is an aggregator */
384 static inline int kprobe_aggrprobe(struct kprobe *p)
385 {
386         return p->pre_handler == aggr_pre_handler;
387 }
388
389 /* Return true(!0) if the kprobe is unused */
390 static inline int kprobe_unused(struct kprobe *p)
391 {
392         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
393                list_empty(&p->list);
394 }
395
396 /*
397  * Keep all fields in the kprobe consistent
398  */
399 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
400 {
401         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
402         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
403 }
404
405 #ifdef CONFIG_OPTPROBES
406 /* NOTE: change this value only with kprobe_mutex held */
407 static bool kprobes_allow_optimization;
408
409 /*
410  * Call all pre_handler on the list, but ignores its return value.
411  * This must be called from arch-dep optimized caller.
412  */
413 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
414 {
415         struct kprobe *kp;
416
417         list_for_each_entry_rcu(kp, &p->list, list) {
418                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
419                         set_kprobe_instance(kp);
420                         kp->pre_handler(kp, regs);
421                 }
422                 reset_kprobe_instance();
423         }
424 }
425 NOKPROBE_SYMBOL(opt_pre_handler);
426
427 /* Free optimized instructions and optimized_kprobe */
428 static void free_aggr_kprobe(struct kprobe *p)
429 {
430         struct optimized_kprobe *op;
431
432         op = container_of(p, struct optimized_kprobe, kp);
433         arch_remove_optimized_kprobe(op);
434         arch_remove_kprobe(p);
435         kfree(op);
436 }
437
438 /* Return true(!0) if the kprobe is ready for optimization. */
439 static inline int kprobe_optready(struct kprobe *p)
440 {
441         struct optimized_kprobe *op;
442
443         if (kprobe_aggrprobe(p)) {
444                 op = container_of(p, struct optimized_kprobe, kp);
445                 return arch_prepared_optinsn(&op->optinsn);
446         }
447
448         return 0;
449 }
450
451 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
452 static inline int kprobe_disarmed(struct kprobe *p)
453 {
454         struct optimized_kprobe *op;
455
456         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
457         if (!kprobe_aggrprobe(p))
458                 return kprobe_disabled(p);
459
460         op = container_of(p, struct optimized_kprobe, kp);
461
462         return kprobe_disabled(p) && list_empty(&op->list);
463 }
464
465 /* Return true(!0) if the probe is queued on (un)optimizing lists */
466 static int kprobe_queued(struct kprobe *p)
467 {
468         struct optimized_kprobe *op;
469
470         if (kprobe_aggrprobe(p)) {
471                 op = container_of(p, struct optimized_kprobe, kp);
472                 if (!list_empty(&op->list))
473                         return 1;
474         }
475         return 0;
476 }
477
478 /*
479  * Return an optimized kprobe whose optimizing code replaces
480  * instructions including addr (exclude breakpoint).
481  */
482 static struct kprobe *get_optimized_kprobe(unsigned long addr)
483 {
484         int i;
485         struct kprobe *p = NULL;
486         struct optimized_kprobe *op;
487
488         /* Don't check i == 0, since that is a breakpoint case. */
489         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
490                 p = get_kprobe((void *)(addr - i));
491
492         if (p && kprobe_optready(p)) {
493                 op = container_of(p, struct optimized_kprobe, kp);
494                 if (arch_within_optimized_kprobe(op, addr))
495                         return p;
496         }
497
498         return NULL;
499 }
500
501 /* Optimization staging list, protected by kprobe_mutex */
502 static LIST_HEAD(optimizing_list);
503 static LIST_HEAD(unoptimizing_list);
504 static LIST_HEAD(freeing_list);
505
506 static void kprobe_optimizer(struct work_struct *work);
507 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
508 #define OPTIMIZE_DELAY 5
509
510 /*
511  * Optimize (replace a breakpoint with a jump) kprobes listed on
512  * optimizing_list.
513  */
514 static void do_optimize_kprobes(void)
515 {
516         lockdep_assert_held(&text_mutex);
517         /*
518          * The optimization/unoptimization refers online_cpus via
519          * stop_machine() and cpu-hotplug modifies online_cpus.
520          * And same time, text_mutex will be held in cpu-hotplug and here.
521          * This combination can cause a deadlock (cpu-hotplug try to lock
522          * text_mutex but stop_machine can not be done because online_cpus
523          * has been changed)
524          * To avoid this deadlock, caller must have locked cpu hotplug
525          * for preventing cpu-hotplug outside of text_mutex locking.
526          */
527         lockdep_assert_cpus_held();
528
529         /* Optimization never be done when disarmed */
530         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
531             list_empty(&optimizing_list))
532                 return;
533
534         arch_optimize_kprobes(&optimizing_list);
535 }
536
537 /*
538  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
539  * if need) kprobes listed on unoptimizing_list.
540  */
541 static void do_unoptimize_kprobes(void)
542 {
543         struct optimized_kprobe *op, *tmp;
544
545         lockdep_assert_held(&text_mutex);
546         /* See comment in do_optimize_kprobes() */
547         lockdep_assert_cpus_held();
548
549         /* Unoptimization must be done anytime */
550         if (list_empty(&unoptimizing_list))
551                 return;
552
553         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
554         /* Loop free_list for disarming */
555         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
556                 /* Switching from detour code to origin */
557                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
558                 /* Disarm probes if marked disabled */
559                 if (kprobe_disabled(&op->kp))
560                         arch_disarm_kprobe(&op->kp);
561                 if (kprobe_unused(&op->kp)) {
562                         /*
563                          * Remove unused probes from hash list. After waiting
564                          * for synchronization, these probes are reclaimed.
565                          * (reclaiming is done by do_free_cleaned_kprobes.)
566                          */
567                         hlist_del_rcu(&op->kp.hlist);
568                 } else
569                         list_del_init(&op->list);
570         }
571 }
572
573 /* Reclaim all kprobes on the free_list */
574 static void do_free_cleaned_kprobes(void)
575 {
576         struct optimized_kprobe *op, *tmp;
577
578         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
579                 list_del_init(&op->list);
580                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
581                         /*
582                          * This must not happen, but if there is a kprobe
583                          * still in use, keep it on kprobes hash list.
584                          */
585                         continue;
586                 }
587                 free_aggr_kprobe(&op->kp);
588         }
589 }
590
591 /* Start optimizer after OPTIMIZE_DELAY passed */
592 static void kick_kprobe_optimizer(void)
593 {
594         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
595 }
596
597 /* Kprobe jump optimizer */
598 static void kprobe_optimizer(struct work_struct *work)
599 {
600         mutex_lock(&kprobe_mutex);
601         cpus_read_lock();
602         mutex_lock(&text_mutex);
603
604         /*
605          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
606          * kprobes before waiting for quiesence period.
607          */
608         do_unoptimize_kprobes();
609
610         /*
611          * Step 2: Wait for quiesence period to ensure all potentially
612          * preempted tasks to have normally scheduled. Because optprobe
613          * may modify multiple instructions, there is a chance that Nth
614          * instruction is preempted. In that case, such tasks can return
615          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
616          * Note that on non-preemptive kernel, this is transparently converted
617          * to synchronoze_sched() to wait for all interrupts to have completed.
618          */
619         synchronize_rcu_tasks();
620
621         /* Step 3: Optimize kprobes after quiesence period */
622         do_optimize_kprobes();
623
624         /* Step 4: Free cleaned kprobes after quiesence period */
625         do_free_cleaned_kprobes();
626
627         mutex_unlock(&text_mutex);
628         cpus_read_unlock();
629
630         /* Step 5: Kick optimizer again if needed */
631         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
632                 kick_kprobe_optimizer();
633
634         mutex_unlock(&kprobe_mutex);
635 }
636
637 /* Wait for completing optimization and unoptimization */
638 void wait_for_kprobe_optimizer(void)
639 {
640         mutex_lock(&kprobe_mutex);
641
642         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
643                 mutex_unlock(&kprobe_mutex);
644
645                 /* this will also make optimizing_work execute immmediately */
646                 flush_delayed_work(&optimizing_work);
647                 /* @optimizing_work might not have been queued yet, relax */
648                 cpu_relax();
649
650                 mutex_lock(&kprobe_mutex);
651         }
652
653         mutex_unlock(&kprobe_mutex);
654 }
655
656 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
657 {
658         struct optimized_kprobe *_op;
659
660         list_for_each_entry(_op, &unoptimizing_list, list) {
661                 if (op == _op)
662                         return true;
663         }
664
665         return false;
666 }
667
668 /* Optimize kprobe if p is ready to be optimized */
669 static void optimize_kprobe(struct kprobe *p)
670 {
671         struct optimized_kprobe *op;
672
673         /* Check if the kprobe is disabled or not ready for optimization. */
674         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
675             (kprobe_disabled(p) || kprobes_all_disarmed))
676                 return;
677
678         /* kprobes with post_handler can not be optimized */
679         if (p->post_handler)
680                 return;
681
682         op = container_of(p, struct optimized_kprobe, kp);
683
684         /* Check there is no other kprobes at the optimized instructions */
685         if (arch_check_optimized_kprobe(op) < 0)
686                 return;
687
688         /* Check if it is already optimized. */
689         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
690                 if (optprobe_queued_unopt(op)) {
691                         /* This is under unoptimizing. Just dequeue the probe */
692                         list_del_init(&op->list);
693                 }
694                 return;
695         }
696         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
697
698         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
699         if (WARN_ON_ONCE(!list_empty(&op->list)))
700                 return;
701
702         list_add(&op->list, &optimizing_list);
703         kick_kprobe_optimizer();
704 }
705
706 /* Short cut to direct unoptimizing */
707 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
708 {
709         lockdep_assert_cpus_held();
710         arch_unoptimize_kprobe(op);
711         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
712 }
713
714 /* Unoptimize a kprobe if p is optimized */
715 static void unoptimize_kprobe(struct kprobe *p, bool force)
716 {
717         struct optimized_kprobe *op;
718
719         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
720                 return; /* This is not an optprobe nor optimized */
721
722         op = container_of(p, struct optimized_kprobe, kp);
723         if (!kprobe_optimized(p))
724                 return;
725
726         if (!list_empty(&op->list)) {
727                 if (optprobe_queued_unopt(op)) {
728                         /* Queued in unoptimizing queue */
729                         if (force) {
730                                 /*
731                                  * Forcibly unoptimize the kprobe here, and queue it
732                                  * in the freeing list for release afterwards.
733                                  */
734                                 force_unoptimize_kprobe(op);
735                                 list_move(&op->list, &freeing_list);
736                         }
737                 } else {
738                         /* Dequeue from the optimizing queue */
739                         list_del_init(&op->list);
740                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
741                 }
742                 return;
743         }
744
745         /* Optimized kprobe case */
746         if (force) {
747                 /* Forcibly update the code: this is a special case */
748                 force_unoptimize_kprobe(op);
749         } else {
750                 list_add(&op->list, &unoptimizing_list);
751                 kick_kprobe_optimizer();
752         }
753 }
754
755 /* Cancel unoptimizing for reusing */
756 static int reuse_unused_kprobe(struct kprobe *ap)
757 {
758         struct optimized_kprobe *op;
759
760         /*
761          * Unused kprobe MUST be on the way of delayed unoptimizing (means
762          * there is still a relative jump) and disabled.
763          */
764         op = container_of(ap, struct optimized_kprobe, kp);
765         WARN_ON_ONCE(list_empty(&op->list));
766         /* Enable the probe again */
767         ap->flags &= ~KPROBE_FLAG_DISABLED;
768         /* Optimize it again (remove from op->list) */
769         if (!kprobe_optready(ap))
770                 return -EINVAL;
771
772         optimize_kprobe(ap);
773         return 0;
774 }
775
776 /* Remove optimized instructions */
777 static void kill_optimized_kprobe(struct kprobe *p)
778 {
779         struct optimized_kprobe *op;
780
781         op = container_of(p, struct optimized_kprobe, kp);
782         if (!list_empty(&op->list))
783                 /* Dequeue from the (un)optimization queue */
784                 list_del_init(&op->list);
785         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
786
787         if (kprobe_unused(p)) {
788                 /* Enqueue if it is unused */
789                 list_add(&op->list, &freeing_list);
790                 /*
791                  * Remove unused probes from the hash list. After waiting
792                  * for synchronization, this probe is reclaimed.
793                  * (reclaiming is done by do_free_cleaned_kprobes().)
794                  */
795                 hlist_del_rcu(&op->kp.hlist);
796         }
797
798         /* Don't touch the code, because it is already freed. */
799         arch_remove_optimized_kprobe(op);
800 }
801
802 static inline
803 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
804 {
805         if (!kprobe_ftrace(p))
806                 arch_prepare_optimized_kprobe(op, p);
807 }
808
809 /* Try to prepare optimized instructions */
810 static void prepare_optimized_kprobe(struct kprobe *p)
811 {
812         struct optimized_kprobe *op;
813
814         op = container_of(p, struct optimized_kprobe, kp);
815         __prepare_optimized_kprobe(op, p);
816 }
817
818 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
819 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
820 {
821         struct optimized_kprobe *op;
822
823         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
824         if (!op)
825                 return NULL;
826
827         INIT_LIST_HEAD(&op->list);
828         op->kp.addr = p->addr;
829         __prepare_optimized_kprobe(op, p);
830
831         return &op->kp;
832 }
833
834 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
835
836 /*
837  * Prepare an optimized_kprobe and optimize it
838  * NOTE: p must be a normal registered kprobe
839  */
840 static void try_to_optimize_kprobe(struct kprobe *p)
841 {
842         struct kprobe *ap;
843         struct optimized_kprobe *op;
844
845         /* Impossible to optimize ftrace-based kprobe */
846         if (kprobe_ftrace(p))
847                 return;
848
849         /* For preparing optimization, jump_label_text_reserved() is called */
850         cpus_read_lock();
851         jump_label_lock();
852         mutex_lock(&text_mutex);
853
854         ap = alloc_aggr_kprobe(p);
855         if (!ap)
856                 goto out;
857
858         op = container_of(ap, struct optimized_kprobe, kp);
859         if (!arch_prepared_optinsn(&op->optinsn)) {
860                 /* If failed to setup optimizing, fallback to kprobe */
861                 arch_remove_optimized_kprobe(op);
862                 kfree(op);
863                 goto out;
864         }
865
866         init_aggr_kprobe(ap, p);
867         optimize_kprobe(ap);    /* This just kicks optimizer thread */
868
869 out:
870         mutex_unlock(&text_mutex);
871         jump_label_unlock();
872         cpus_read_unlock();
873 }
874
875 static void optimize_all_kprobes(void)
876 {
877         struct hlist_head *head;
878         struct kprobe *p;
879         unsigned int i;
880
881         mutex_lock(&kprobe_mutex);
882         /* If optimization is already allowed, just return */
883         if (kprobes_allow_optimization)
884                 goto out;
885
886         cpus_read_lock();
887         kprobes_allow_optimization = true;
888         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
889                 head = &kprobe_table[i];
890                 hlist_for_each_entry(p, head, hlist)
891                         if (!kprobe_disabled(p))
892                                 optimize_kprobe(p);
893         }
894         cpus_read_unlock();
895         printk(KERN_INFO "Kprobes globally optimized\n");
896 out:
897         mutex_unlock(&kprobe_mutex);
898 }
899
900 #ifdef CONFIG_SYSCTL
901 static void unoptimize_all_kprobes(void)
902 {
903         struct hlist_head *head;
904         struct kprobe *p;
905         unsigned int i;
906
907         mutex_lock(&kprobe_mutex);
908         /* If optimization is already prohibited, just return */
909         if (!kprobes_allow_optimization) {
910                 mutex_unlock(&kprobe_mutex);
911                 return;
912         }
913
914         cpus_read_lock();
915         kprobes_allow_optimization = false;
916         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
917                 head = &kprobe_table[i];
918                 hlist_for_each_entry(p, head, hlist) {
919                         if (!kprobe_disabled(p))
920                                 unoptimize_kprobe(p, false);
921                 }
922         }
923         cpus_read_unlock();
924         mutex_unlock(&kprobe_mutex);
925
926         /* Wait for unoptimizing completion */
927         wait_for_kprobe_optimizer();
928         printk(KERN_INFO "Kprobes globally unoptimized\n");
929 }
930
931 static DEFINE_MUTEX(kprobe_sysctl_mutex);
932 int sysctl_kprobes_optimization;
933 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
934                                       void *buffer, size_t *length,
935                                       loff_t *ppos)
936 {
937         int ret;
938
939         mutex_lock(&kprobe_sysctl_mutex);
940         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
941         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
942
943         if (sysctl_kprobes_optimization)
944                 optimize_all_kprobes();
945         else
946                 unoptimize_all_kprobes();
947         mutex_unlock(&kprobe_sysctl_mutex);
948
949         return ret;
950 }
951 #endif /* CONFIG_SYSCTL */
952
953 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
954 static void __arm_kprobe(struct kprobe *p)
955 {
956         struct kprobe *_p;
957
958         /* Check collision with other optimized kprobes */
959         _p = get_optimized_kprobe((unsigned long)p->addr);
960         if (unlikely(_p))
961                 /* Fallback to unoptimized kprobe */
962                 unoptimize_kprobe(_p, true);
963
964         arch_arm_kprobe(p);
965         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
966 }
967
968 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
969 static void __disarm_kprobe(struct kprobe *p, bool reopt)
970 {
971         struct kprobe *_p;
972
973         /* Try to unoptimize */
974         unoptimize_kprobe(p, kprobes_all_disarmed);
975
976         if (!kprobe_queued(p)) {
977                 arch_disarm_kprobe(p);
978                 /* If another kprobe was blocked, optimize it. */
979                 _p = get_optimized_kprobe((unsigned long)p->addr);
980                 if (unlikely(_p) && reopt)
981                         optimize_kprobe(_p);
982         }
983         /* TODO: reoptimize others after unoptimized this probe */
984 }
985
986 #else /* !CONFIG_OPTPROBES */
987
988 #define optimize_kprobe(p)                      do {} while (0)
989 #define unoptimize_kprobe(p, f)                 do {} while (0)
990 #define kill_optimized_kprobe(p)                do {} while (0)
991 #define prepare_optimized_kprobe(p)             do {} while (0)
992 #define try_to_optimize_kprobe(p)               do {} while (0)
993 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
994 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
995 #define kprobe_disarmed(p)                      kprobe_disabled(p)
996 #define wait_for_kprobe_optimizer()             do {} while (0)
997
998 static int reuse_unused_kprobe(struct kprobe *ap)
999 {
1000         /*
1001          * If the optimized kprobe is NOT supported, the aggr kprobe is
1002          * released at the same time that the last aggregated kprobe is
1003          * unregistered.
1004          * Thus there should be no chance to reuse unused kprobe.
1005          */
1006         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
1007         return -EINVAL;
1008 }
1009
1010 static void free_aggr_kprobe(struct kprobe *p)
1011 {
1012         arch_remove_kprobe(p);
1013         kfree(p);
1014 }
1015
1016 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
1017 {
1018         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
1019 }
1020 #endif /* CONFIG_OPTPROBES */
1021
1022 #ifdef CONFIG_KPROBES_ON_FTRACE
1023 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1024         .func = kprobe_ftrace_handler,
1025         .flags = FTRACE_OPS_FL_SAVE_REGS,
1026 };
1027
1028 static struct ftrace_ops kprobe_ipmodify_ops __read_mostly = {
1029         .func = kprobe_ftrace_handler,
1030         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1031 };
1032
1033 static int kprobe_ipmodify_enabled;
1034 static int kprobe_ftrace_enabled;
1035
1036 /* Caller must lock kprobe_mutex */
1037 static int __arm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1038                                int *cnt)
1039 {
1040         int ret = 0;
1041
1042         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 0, 0);
1043         if (ret) {
1044                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1045                          p->addr, ret);
1046                 return ret;
1047         }
1048
1049         if (*cnt == 0) {
1050                 ret = register_ftrace_function(ops);
1051                 if (ret) {
1052                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1053                         goto err_ftrace;
1054                 }
1055         }
1056
1057         (*cnt)++;
1058         return ret;
1059
1060 err_ftrace:
1061         /*
1062          * At this point, sinec ops is not registered, we should be sefe from
1063          * registering empty filter.
1064          */
1065         ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1066         return ret;
1067 }
1068
1069 static int arm_kprobe_ftrace(struct kprobe *p)
1070 {
1071         bool ipmodify = (p->post_handler != NULL);
1072
1073         return __arm_kprobe_ftrace(p,
1074                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1075                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1076 }
1077
1078 /* Caller must lock kprobe_mutex */
1079 static int __disarm_kprobe_ftrace(struct kprobe *p, struct ftrace_ops *ops,
1080                                   int *cnt)
1081 {
1082         int ret = 0;
1083
1084         if (*cnt == 1) {
1085                 ret = unregister_ftrace_function(ops);
1086                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1087                         return ret;
1088         }
1089
1090         (*cnt)--;
1091
1092         ret = ftrace_set_filter_ip(ops, (unsigned long)p->addr, 1, 0);
1093         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1094                   p->addr, ret);
1095         return ret;
1096 }
1097
1098 static int disarm_kprobe_ftrace(struct kprobe *p)
1099 {
1100         bool ipmodify = (p->post_handler != NULL);
1101
1102         return __disarm_kprobe_ftrace(p,
1103                 ipmodify ? &kprobe_ipmodify_ops : &kprobe_ftrace_ops,
1104                 ipmodify ? &kprobe_ipmodify_enabled : &kprobe_ftrace_enabled);
1105 }
1106 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1107 static inline int arm_kprobe_ftrace(struct kprobe *p)
1108 {
1109         return -ENODEV;
1110 }
1111
1112 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1113 {
1114         return -ENODEV;
1115 }
1116 #endif
1117
1118 static int prepare_kprobe(struct kprobe *p)
1119 {
1120         /* Must ensure p->addr is really on ftrace */
1121         if (kprobe_ftrace(p))
1122                 return arch_prepare_kprobe_ftrace(p);
1123
1124         return arch_prepare_kprobe(p);
1125 }
1126
1127 /* Arm a kprobe with text_mutex */
1128 static int arm_kprobe(struct kprobe *kp)
1129 {
1130         if (unlikely(kprobe_ftrace(kp)))
1131                 return arm_kprobe_ftrace(kp);
1132
1133         cpus_read_lock();
1134         mutex_lock(&text_mutex);
1135         __arm_kprobe(kp);
1136         mutex_unlock(&text_mutex);
1137         cpus_read_unlock();
1138
1139         return 0;
1140 }
1141
1142 /* Disarm a kprobe with text_mutex */
1143 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1144 {
1145         if (unlikely(kprobe_ftrace(kp)))
1146                 return disarm_kprobe_ftrace(kp);
1147
1148         cpus_read_lock();
1149         mutex_lock(&text_mutex);
1150         __disarm_kprobe(kp, reopt);
1151         mutex_unlock(&text_mutex);
1152         cpus_read_unlock();
1153
1154         return 0;
1155 }
1156
1157 /*
1158  * Aggregate handlers for multiple kprobes support - these handlers
1159  * take care of invoking the individual kprobe handlers on p->list
1160  */
1161 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1162 {
1163         struct kprobe *kp;
1164
1165         list_for_each_entry_rcu(kp, &p->list, list) {
1166                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1167                         set_kprobe_instance(kp);
1168                         if (kp->pre_handler(kp, regs))
1169                                 return 1;
1170                 }
1171                 reset_kprobe_instance();
1172         }
1173         return 0;
1174 }
1175 NOKPROBE_SYMBOL(aggr_pre_handler);
1176
1177 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1178                               unsigned long flags)
1179 {
1180         struct kprobe *kp;
1181
1182         list_for_each_entry_rcu(kp, &p->list, list) {
1183                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1184                         set_kprobe_instance(kp);
1185                         kp->post_handler(kp, regs, flags);
1186                         reset_kprobe_instance();
1187                 }
1188         }
1189 }
1190 NOKPROBE_SYMBOL(aggr_post_handler);
1191
1192 /* Walks the list and increments nmissed count for multiprobe case */
1193 void kprobes_inc_nmissed_count(struct kprobe *p)
1194 {
1195         struct kprobe *kp;
1196         if (!kprobe_aggrprobe(p)) {
1197                 p->nmissed++;
1198         } else {
1199                 list_for_each_entry_rcu(kp, &p->list, list)
1200                         kp->nmissed++;
1201         }
1202         return;
1203 }
1204 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1205
1206 static void free_rp_inst_rcu(struct rcu_head *head)
1207 {
1208         struct kretprobe_instance *ri = container_of(head, struct kretprobe_instance, rcu);
1209
1210         if (refcount_dec_and_test(&ri->rph->ref))
1211                 kfree(ri->rph);
1212         kfree(ri);
1213 }
1214 NOKPROBE_SYMBOL(free_rp_inst_rcu);
1215
1216 static void recycle_rp_inst(struct kretprobe_instance *ri)
1217 {
1218         struct kretprobe *rp = get_kretprobe(ri);
1219
1220         if (likely(rp)) {
1221                 freelist_add(&ri->freelist, &rp->freelist);
1222         } else
1223                 call_rcu(&ri->rcu, free_rp_inst_rcu);
1224 }
1225 NOKPROBE_SYMBOL(recycle_rp_inst);
1226
1227 static struct kprobe kprobe_busy = {
1228         .addr = (void *) get_kprobe,
1229 };
1230
1231 void kprobe_busy_begin(void)
1232 {
1233         struct kprobe_ctlblk *kcb;
1234
1235         preempt_disable();
1236         __this_cpu_write(current_kprobe, &kprobe_busy);
1237         kcb = get_kprobe_ctlblk();
1238         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1239 }
1240
1241 void kprobe_busy_end(void)
1242 {
1243         __this_cpu_write(current_kprobe, NULL);
1244         preempt_enable();
1245 }
1246
1247 /*
1248  * This function is called from finish_task_switch when task tk becomes dead,
1249  * so that we can recycle any function-return probe instances associated
1250  * with this task. These left over instances represent probed functions
1251  * that have been called but will never return.
1252  */
1253 void kprobe_flush_task(struct task_struct *tk)
1254 {
1255         struct kretprobe_instance *ri;
1256         struct llist_node *node;
1257
1258         /* Early boot, not yet initialized. */
1259         if (unlikely(!kprobes_initialized))
1260                 return;
1261
1262         kprobe_busy_begin();
1263
1264         node = __llist_del_all(&tk->kretprobe_instances);
1265         while (node) {
1266                 ri = container_of(node, struct kretprobe_instance, llist);
1267                 node = node->next;
1268
1269                 recycle_rp_inst(ri);
1270         }
1271
1272         kprobe_busy_end();
1273 }
1274 NOKPROBE_SYMBOL(kprobe_flush_task);
1275
1276 static inline void free_rp_inst(struct kretprobe *rp)
1277 {
1278         struct kretprobe_instance *ri;
1279         struct freelist_node *node;
1280         int count = 0;
1281
1282         node = rp->freelist.head;
1283         while (node) {
1284                 ri = container_of(node, struct kretprobe_instance, freelist);
1285                 node = node->next;
1286
1287                 kfree(ri);
1288                 count++;
1289         }
1290
1291         if (refcount_sub_and_test(count, &rp->rph->ref)) {
1292                 kfree(rp->rph);
1293                 rp->rph = NULL;
1294         }
1295 }
1296
1297 /* Add the new probe to ap->list */
1298 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1299 {
1300         if (p->post_handler)
1301                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1302
1303         list_add_rcu(&p->list, &ap->list);
1304         if (p->post_handler && !ap->post_handler)
1305                 ap->post_handler = aggr_post_handler;
1306
1307         return 0;
1308 }
1309
1310 /*
1311  * Fill in the required fields of the "manager kprobe". Replace the
1312  * earlier kprobe in the hlist with the manager kprobe
1313  */
1314 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1315 {
1316         /* Copy p's insn slot to ap */
1317         copy_kprobe(p, ap);
1318         flush_insn_slot(ap);
1319         ap->addr = p->addr;
1320         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1321         ap->pre_handler = aggr_pre_handler;
1322         /* We don't care the kprobe which has gone. */
1323         if (p->post_handler && !kprobe_gone(p))
1324                 ap->post_handler = aggr_post_handler;
1325
1326         INIT_LIST_HEAD(&ap->list);
1327         INIT_HLIST_NODE(&ap->hlist);
1328
1329         list_add_rcu(&p->list, &ap->list);
1330         hlist_replace_rcu(&p->hlist, &ap->hlist);
1331 }
1332
1333 /*
1334  * This is the second or subsequent kprobe at the address - handle
1335  * the intricacies
1336  */
1337 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1338 {
1339         int ret = 0;
1340         struct kprobe *ap = orig_p;
1341
1342         cpus_read_lock();
1343
1344         /* For preparing optimization, jump_label_text_reserved() is called */
1345         jump_label_lock();
1346         mutex_lock(&text_mutex);
1347
1348         if (!kprobe_aggrprobe(orig_p)) {
1349                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1350                 ap = alloc_aggr_kprobe(orig_p);
1351                 if (!ap) {
1352                         ret = -ENOMEM;
1353                         goto out;
1354                 }
1355                 init_aggr_kprobe(ap, orig_p);
1356         } else if (kprobe_unused(ap)) {
1357                 /* This probe is going to die. Rescue it */
1358                 ret = reuse_unused_kprobe(ap);
1359                 if (ret)
1360                         goto out;
1361         }
1362
1363         if (kprobe_gone(ap)) {
1364                 /*
1365                  * Attempting to insert new probe at the same location that
1366                  * had a probe in the module vaddr area which already
1367                  * freed. So, the instruction slot has already been
1368                  * released. We need a new slot for the new probe.
1369                  */
1370                 ret = arch_prepare_kprobe(ap);
1371                 if (ret)
1372                         /*
1373                          * Even if fail to allocate new slot, don't need to
1374                          * free aggr_probe. It will be used next time, or
1375                          * freed by unregister_kprobe.
1376                          */
1377                         goto out;
1378
1379                 /* Prepare optimized instructions if possible. */
1380                 prepare_optimized_kprobe(ap);
1381
1382                 /*
1383                  * Clear gone flag to prevent allocating new slot again, and
1384                  * set disabled flag because it is not armed yet.
1385                  */
1386                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1387                             | KPROBE_FLAG_DISABLED;
1388         }
1389
1390         /* Copy ap's insn slot to p */
1391         copy_kprobe(ap, p);
1392         ret = add_new_kprobe(ap, p);
1393
1394 out:
1395         mutex_unlock(&text_mutex);
1396         jump_label_unlock();
1397         cpus_read_unlock();
1398
1399         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1400                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1401                 if (!kprobes_all_disarmed) {
1402                         /* Arm the breakpoint again. */
1403                         ret = arm_kprobe(ap);
1404                         if (ret) {
1405                                 ap->flags |= KPROBE_FLAG_DISABLED;
1406                                 list_del_rcu(&p->list);
1407                                 synchronize_rcu();
1408                         }
1409                 }
1410         }
1411         return ret;
1412 }
1413
1414 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1415 {
1416         /* The __kprobes marked functions and entry code must not be probed */
1417         return addr >= (unsigned long)__kprobes_text_start &&
1418                addr < (unsigned long)__kprobes_text_end;
1419 }
1420
1421 static bool __within_kprobe_blacklist(unsigned long addr)
1422 {
1423         struct kprobe_blacklist_entry *ent;
1424
1425         if (arch_within_kprobe_blacklist(addr))
1426                 return true;
1427         /*
1428          * If there exists a kprobe_blacklist, verify and
1429          * fail any probe registration in the prohibited area
1430          */
1431         list_for_each_entry(ent, &kprobe_blacklist, list) {
1432                 if (addr >= ent->start_addr && addr < ent->end_addr)
1433                         return true;
1434         }
1435         return false;
1436 }
1437
1438 bool within_kprobe_blacklist(unsigned long addr)
1439 {
1440         char symname[KSYM_NAME_LEN], *p;
1441
1442         if (__within_kprobe_blacklist(addr))
1443                 return true;
1444
1445         /* Check if the address is on a suffixed-symbol */
1446         if (!lookup_symbol_name(addr, symname)) {
1447                 p = strchr(symname, '.');
1448                 if (!p)
1449                         return false;
1450                 *p = '\0';
1451                 addr = (unsigned long)kprobe_lookup_name(symname, 0);
1452                 if (addr)
1453                         return __within_kprobe_blacklist(addr);
1454         }
1455         return false;
1456 }
1457
1458 /*
1459  * If we have a symbol_name argument, look it up and add the offset field
1460  * to it. This way, we can specify a relative address to a symbol.
1461  * This returns encoded errors if it fails to look up symbol or invalid
1462  * combination of parameters.
1463  */
1464 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1465                         const char *symbol_name, unsigned int offset)
1466 {
1467         if ((symbol_name && addr) || (!symbol_name && !addr))
1468                 goto invalid;
1469
1470         if (symbol_name) {
1471                 addr = kprobe_lookup_name(symbol_name, offset);
1472                 if (!addr)
1473                         return ERR_PTR(-ENOENT);
1474         }
1475
1476         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1477         if (addr)
1478                 return addr;
1479
1480 invalid:
1481         return ERR_PTR(-EINVAL);
1482 }
1483
1484 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1485 {
1486         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1487 }
1488
1489 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1490 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1491 {
1492         struct kprobe *ap, *list_p;
1493
1494         lockdep_assert_held(&kprobe_mutex);
1495
1496         ap = get_kprobe(p->addr);
1497         if (unlikely(!ap))
1498                 return NULL;
1499
1500         if (p != ap) {
1501                 list_for_each_entry(list_p, &ap->list, list)
1502                         if (list_p == p)
1503                         /* kprobe p is a valid probe */
1504                                 goto valid;
1505                 return NULL;
1506         }
1507 valid:
1508         return ap;
1509 }
1510
1511 /*
1512  * Warn and return error if the kprobe is being re-registered since
1513  * there must be a software bug.
1514  */
1515 static inline int warn_kprobe_rereg(struct kprobe *p)
1516 {
1517         int ret = 0;
1518
1519         mutex_lock(&kprobe_mutex);
1520         if (WARN_ON_ONCE(__get_valid_kprobe(p)))
1521                 ret = -EINVAL;
1522         mutex_unlock(&kprobe_mutex);
1523
1524         return ret;
1525 }
1526
1527 static int check_ftrace_location(struct kprobe *p)
1528 {
1529         unsigned long ftrace_addr;
1530
1531         ftrace_addr = ftrace_location((unsigned long)p->addr);
1532         if (ftrace_addr) {
1533 #ifdef CONFIG_KPROBES_ON_FTRACE
1534                 /* Given address is not on the instruction boundary */
1535                 if ((unsigned long)p->addr != ftrace_addr)
1536                         return -EILSEQ;
1537                 p->flags |= KPROBE_FLAG_FTRACE;
1538 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1539                 return -EINVAL;
1540 #endif
1541         }
1542         return 0;
1543 }
1544
1545 static int check_kprobe_address_safe(struct kprobe *p,
1546                                      struct module **probed_mod)
1547 {
1548         int ret;
1549
1550         ret = check_ftrace_location(p);
1551         if (ret)
1552                 return ret;
1553         jump_label_lock();
1554         preempt_disable();
1555
1556         /* Ensure it is not in reserved area nor out of text */
1557         if (!kernel_text_address((unsigned long) p->addr) ||
1558             within_kprobe_blacklist((unsigned long) p->addr) ||
1559             jump_label_text_reserved(p->addr, p->addr) ||
1560             static_call_text_reserved(p->addr, p->addr) ||
1561             find_bug((unsigned long)p->addr)) {
1562                 ret = -EINVAL;
1563                 goto out;
1564         }
1565
1566         /* Check if are we probing a module */
1567         *probed_mod = __module_text_address((unsigned long) p->addr);
1568         if (*probed_mod) {
1569                 /*
1570                  * We must hold a refcount of the probed module while updating
1571                  * its code to prohibit unexpected unloading.
1572                  */
1573                 if (unlikely(!try_module_get(*probed_mod))) {
1574                         ret = -ENOENT;
1575                         goto out;
1576                 }
1577
1578                 /*
1579                  * If the module freed .init.text, we couldn't insert
1580                  * kprobes in there.
1581                  */
1582                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1583                     (*probed_mod)->state != MODULE_STATE_COMING) {
1584                         module_put(*probed_mod);
1585                         *probed_mod = NULL;
1586                         ret = -ENOENT;
1587                 }
1588         }
1589 out:
1590         preempt_enable();
1591         jump_label_unlock();
1592
1593         return ret;
1594 }
1595
1596 int register_kprobe(struct kprobe *p)
1597 {
1598         int ret;
1599         struct kprobe *old_p;
1600         struct module *probed_mod;
1601         kprobe_opcode_t *addr;
1602
1603         /* Adjust probe address from symbol */
1604         addr = kprobe_addr(p);
1605         if (IS_ERR(addr))
1606                 return PTR_ERR(addr);
1607         p->addr = addr;
1608
1609         ret = warn_kprobe_rereg(p);
1610         if (ret)
1611                 return ret;
1612
1613         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1614         p->flags &= KPROBE_FLAG_DISABLED;
1615         p->nmissed = 0;
1616         INIT_LIST_HEAD(&p->list);
1617
1618         ret = check_kprobe_address_safe(p, &probed_mod);
1619         if (ret)
1620                 return ret;
1621
1622         mutex_lock(&kprobe_mutex);
1623
1624         old_p = get_kprobe(p->addr);
1625         if (old_p) {
1626                 /* Since this may unoptimize old_p, locking text_mutex. */
1627                 ret = register_aggr_kprobe(old_p, p);
1628                 goto out;
1629         }
1630
1631         cpus_read_lock();
1632         /* Prevent text modification */
1633         mutex_lock(&text_mutex);
1634         ret = prepare_kprobe(p);
1635         mutex_unlock(&text_mutex);
1636         cpus_read_unlock();
1637         if (ret)
1638                 goto out;
1639
1640         INIT_HLIST_NODE(&p->hlist);
1641         hlist_add_head_rcu(&p->hlist,
1642                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1643
1644         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1645                 ret = arm_kprobe(p);
1646                 if (ret) {
1647                         hlist_del_rcu(&p->hlist);
1648                         synchronize_rcu();
1649                         goto out;
1650                 }
1651         }
1652
1653         /* Try to optimize kprobe */
1654         try_to_optimize_kprobe(p);
1655 out:
1656         mutex_unlock(&kprobe_mutex);
1657
1658         if (probed_mod)
1659                 module_put(probed_mod);
1660
1661         return ret;
1662 }
1663 EXPORT_SYMBOL_GPL(register_kprobe);
1664
1665 /* Check if all probes on the aggrprobe are disabled */
1666 static int aggr_kprobe_disabled(struct kprobe *ap)
1667 {
1668         struct kprobe *kp;
1669
1670         lockdep_assert_held(&kprobe_mutex);
1671
1672         list_for_each_entry(kp, &ap->list, list)
1673                 if (!kprobe_disabled(kp))
1674                         /*
1675                          * There is an active probe on the list.
1676                          * We can't disable this ap.
1677                          */
1678                         return 0;
1679
1680         return 1;
1681 }
1682
1683 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1684 static struct kprobe *__disable_kprobe(struct kprobe *p)
1685 {
1686         struct kprobe *orig_p;
1687         int ret;
1688
1689         /* Get an original kprobe for return */
1690         orig_p = __get_valid_kprobe(p);
1691         if (unlikely(orig_p == NULL))
1692                 return ERR_PTR(-EINVAL);
1693
1694         if (!kprobe_disabled(p)) {
1695                 /* Disable probe if it is a child probe */
1696                 if (p != orig_p)
1697                         p->flags |= KPROBE_FLAG_DISABLED;
1698
1699                 /* Try to disarm and disable this/parent probe */
1700                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1701                         /*
1702                          * If kprobes_all_disarmed is set, orig_p
1703                          * should have already been disarmed, so
1704                          * skip unneed disarming process.
1705                          */
1706                         if (!kprobes_all_disarmed) {
1707                                 ret = disarm_kprobe(orig_p, true);
1708                                 if (ret) {
1709                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1710                                         return ERR_PTR(ret);
1711                                 }
1712                         }
1713                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1714                 }
1715         }
1716
1717         return orig_p;
1718 }
1719
1720 /*
1721  * Unregister a kprobe without a scheduler synchronization.
1722  */
1723 static int __unregister_kprobe_top(struct kprobe *p)
1724 {
1725         struct kprobe *ap, *list_p;
1726
1727         /* Disable kprobe. This will disarm it if needed. */
1728         ap = __disable_kprobe(p);
1729         if (IS_ERR(ap))
1730                 return PTR_ERR(ap);
1731
1732         if (ap == p)
1733                 /*
1734                  * This probe is an independent(and non-optimized) kprobe
1735                  * (not an aggrprobe). Remove from the hash list.
1736                  */
1737                 goto disarmed;
1738
1739         /* Following process expects this probe is an aggrprobe */
1740         WARN_ON(!kprobe_aggrprobe(ap));
1741
1742         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1743                 /*
1744                  * !disarmed could be happen if the probe is under delayed
1745                  * unoptimizing.
1746                  */
1747                 goto disarmed;
1748         else {
1749                 /* If disabling probe has special handlers, update aggrprobe */
1750                 if (p->post_handler && !kprobe_gone(p)) {
1751                         list_for_each_entry(list_p, &ap->list, list) {
1752                                 if ((list_p != p) && (list_p->post_handler))
1753                                         goto noclean;
1754                         }
1755                         ap->post_handler = NULL;
1756                 }
1757 noclean:
1758                 /*
1759                  * Remove from the aggrprobe: this path will do nothing in
1760                  * __unregister_kprobe_bottom().
1761                  */
1762                 list_del_rcu(&p->list);
1763                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1764                         /*
1765                          * Try to optimize this probe again, because post
1766                          * handler may have been changed.
1767                          */
1768                         optimize_kprobe(ap);
1769         }
1770         return 0;
1771
1772 disarmed:
1773         hlist_del_rcu(&ap->hlist);
1774         return 0;
1775 }
1776
1777 static void __unregister_kprobe_bottom(struct kprobe *p)
1778 {
1779         struct kprobe *ap;
1780
1781         if (list_empty(&p->list))
1782                 /* This is an independent kprobe */
1783                 arch_remove_kprobe(p);
1784         else if (list_is_singular(&p->list)) {
1785                 /* This is the last child of an aggrprobe */
1786                 ap = list_entry(p->list.next, struct kprobe, list);
1787                 list_del(&p->list);
1788                 free_aggr_kprobe(ap);
1789         }
1790         /* Otherwise, do nothing. */
1791 }
1792
1793 int register_kprobes(struct kprobe **kps, int num)
1794 {
1795         int i, ret = 0;
1796
1797         if (num <= 0)
1798                 return -EINVAL;
1799         for (i = 0; i < num; i++) {
1800                 ret = register_kprobe(kps[i]);
1801                 if (ret < 0) {
1802                         if (i > 0)
1803                                 unregister_kprobes(kps, i);
1804                         break;
1805                 }
1806         }
1807         return ret;
1808 }
1809 EXPORT_SYMBOL_GPL(register_kprobes);
1810
1811 void unregister_kprobe(struct kprobe *p)
1812 {
1813         unregister_kprobes(&p, 1);
1814 }
1815 EXPORT_SYMBOL_GPL(unregister_kprobe);
1816
1817 void unregister_kprobes(struct kprobe **kps, int num)
1818 {
1819         int i;
1820
1821         if (num <= 0)
1822                 return;
1823         mutex_lock(&kprobe_mutex);
1824         for (i = 0; i < num; i++)
1825                 if (__unregister_kprobe_top(kps[i]) < 0)
1826                         kps[i]->addr = NULL;
1827         mutex_unlock(&kprobe_mutex);
1828
1829         synchronize_rcu();
1830         for (i = 0; i < num; i++)
1831                 if (kps[i]->addr)
1832                         __unregister_kprobe_bottom(kps[i]);
1833 }
1834 EXPORT_SYMBOL_GPL(unregister_kprobes);
1835
1836 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1837                                         unsigned long val, void *data)
1838 {
1839         return NOTIFY_DONE;
1840 }
1841 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1842
1843 static struct notifier_block kprobe_exceptions_nb = {
1844         .notifier_call = kprobe_exceptions_notify,
1845         .priority = 0x7fffffff /* we need to be notified first */
1846 };
1847
1848 unsigned long __weak arch_deref_entry_point(void *entry)
1849 {
1850         return (unsigned long)entry;
1851 }
1852
1853 #ifdef CONFIG_KRETPROBES
1854
1855 unsigned long __kretprobe_trampoline_handler(struct pt_regs *regs,
1856                                              void *trampoline_address,
1857                                              void *frame_pointer)
1858 {
1859         kprobe_opcode_t *correct_ret_addr = NULL;
1860         struct kretprobe_instance *ri = NULL;
1861         struct llist_node *first, *node;
1862         struct kretprobe *rp;
1863
1864         /* Find all nodes for this frame. */
1865         first = node = current->kretprobe_instances.first;
1866         while (node) {
1867                 ri = container_of(node, struct kretprobe_instance, llist);
1868
1869                 BUG_ON(ri->fp != frame_pointer);
1870
1871                 if (ri->ret_addr != trampoline_address) {
1872                         correct_ret_addr = ri->ret_addr;
1873                         /*
1874                          * This is the real return address. Any other
1875                          * instances associated with this task are for
1876                          * other calls deeper on the call stack
1877                          */
1878                         goto found;
1879                 }
1880
1881                 node = node->next;
1882         }
1883         pr_err("Oops! Kretprobe fails to find correct return address.\n");
1884         BUG_ON(1);
1885
1886 found:
1887         /* Unlink all nodes for this frame. */
1888         current->kretprobe_instances.first = node->next;
1889         node->next = NULL;
1890
1891         /* Run them..  */
1892         while (first) {
1893                 ri = container_of(first, struct kretprobe_instance, llist);
1894                 first = first->next;
1895
1896                 rp = get_kretprobe(ri);
1897                 if (rp && rp->handler) {
1898                         struct kprobe *prev = kprobe_running();
1899
1900                         __this_cpu_write(current_kprobe, &rp->kp);
1901                         ri->ret_addr = correct_ret_addr;
1902                         rp->handler(ri, regs);
1903                         __this_cpu_write(current_kprobe, prev);
1904                 }
1905
1906                 recycle_rp_inst(ri);
1907         }
1908
1909         return (unsigned long)correct_ret_addr;
1910 }
1911 NOKPROBE_SYMBOL(__kretprobe_trampoline_handler)
1912
1913 /*
1914  * This kprobe pre_handler is registered with every kretprobe. When probe
1915  * hits it will set up the return probe.
1916  */
1917 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1918 {
1919         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1920         struct kretprobe_instance *ri;
1921         struct freelist_node *fn;
1922
1923         fn = freelist_try_get(&rp->freelist);
1924         if (!fn) {
1925                 rp->nmissed++;
1926                 return 0;
1927         }
1928
1929         ri = container_of(fn, struct kretprobe_instance, freelist);
1930
1931         if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1932                 freelist_add(&ri->freelist, &rp->freelist);
1933                 return 0;
1934         }
1935
1936         arch_prepare_kretprobe(ri, regs);
1937
1938         __llist_add(&ri->llist, &current->kretprobe_instances);
1939
1940         return 0;
1941 }
1942 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1943
1944 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1945 {
1946         return !offset;
1947 }
1948
1949 /**
1950  * kprobe_on_func_entry() -- check whether given address is function entry
1951  * @addr: Target address
1952  * @sym:  Target symbol name
1953  * @offset: The offset from the symbol or the address
1954  *
1955  * This checks whether the given @addr+@offset or @sym+@offset is on the
1956  * function entry address or not.
1957  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1958  * And also it returns -ENOENT if it fails the symbol or address lookup.
1959  * Caller must pass @addr or @sym (either one must be NULL), or this
1960  * returns -EINVAL.
1961  */
1962 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1963 {
1964         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1965
1966         if (IS_ERR(kp_addr))
1967                 return PTR_ERR(kp_addr);
1968
1969         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1970                 return -ENOENT;
1971
1972         if (!arch_kprobe_on_func_entry(offset))
1973                 return -EINVAL;
1974
1975         return 0;
1976 }
1977
1978 int register_kretprobe(struct kretprobe *rp)
1979 {
1980         int ret;
1981         struct kretprobe_instance *inst;
1982         int i;
1983         void *addr;
1984
1985         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1986         if (ret)
1987                 return ret;
1988
1989         /* If only rp->kp.addr is specified, check reregistering kprobes */
1990         if (rp->kp.addr && warn_kprobe_rereg(&rp->kp))
1991                 return -EINVAL;
1992
1993         if (kretprobe_blacklist_size) {
1994                 addr = kprobe_addr(&rp->kp);
1995                 if (IS_ERR(addr))
1996                         return PTR_ERR(addr);
1997
1998                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1999                         if (kretprobe_blacklist[i].addr == addr)
2000                                 return -EINVAL;
2001                 }
2002         }
2003
2004         rp->kp.pre_handler = pre_handler_kretprobe;
2005         rp->kp.post_handler = NULL;
2006
2007         /* Pre-allocate memory for max kretprobe instances */
2008         if (rp->maxactive <= 0) {
2009 #ifdef CONFIG_PREEMPTION
2010                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2011 #else
2012                 rp->maxactive = num_possible_cpus();
2013 #endif
2014         }
2015         rp->freelist.head = NULL;
2016         rp->rph = kzalloc(sizeof(struct kretprobe_holder), GFP_KERNEL);
2017         if (!rp->rph)
2018                 return -ENOMEM;
2019
2020         rp->rph->rp = rp;
2021         for (i = 0; i < rp->maxactive; i++) {
2022                 inst = kzalloc(sizeof(struct kretprobe_instance) +
2023                                rp->data_size, GFP_KERNEL);
2024                 if (inst == NULL) {
2025                         refcount_set(&rp->rph->ref, i);
2026                         free_rp_inst(rp);
2027                         return -ENOMEM;
2028                 }
2029                 inst->rph = rp->rph;
2030                 freelist_add(&inst->freelist, &rp->freelist);
2031         }
2032         refcount_set(&rp->rph->ref, i);
2033
2034         rp->nmissed = 0;
2035         /* Establish function entry probe point */
2036         ret = register_kprobe(&rp->kp);
2037         if (ret != 0)
2038                 free_rp_inst(rp);
2039         return ret;
2040 }
2041 EXPORT_SYMBOL_GPL(register_kretprobe);
2042
2043 int register_kretprobes(struct kretprobe **rps, int num)
2044 {
2045         int ret = 0, i;
2046
2047         if (num <= 0)
2048                 return -EINVAL;
2049         for (i = 0; i < num; i++) {
2050                 ret = register_kretprobe(rps[i]);
2051                 if (ret < 0) {
2052                         if (i > 0)
2053                                 unregister_kretprobes(rps, i);
2054                         break;
2055                 }
2056         }
2057         return ret;
2058 }
2059 EXPORT_SYMBOL_GPL(register_kretprobes);
2060
2061 void unregister_kretprobe(struct kretprobe *rp)
2062 {
2063         unregister_kretprobes(&rp, 1);
2064 }
2065 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2066
2067 void unregister_kretprobes(struct kretprobe **rps, int num)
2068 {
2069         int i;
2070
2071         if (num <= 0)
2072                 return;
2073         mutex_lock(&kprobe_mutex);
2074         for (i = 0; i < num; i++) {
2075                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2076                         rps[i]->kp.addr = NULL;
2077                 rps[i]->rph->rp = NULL;
2078         }
2079         mutex_unlock(&kprobe_mutex);
2080
2081         synchronize_rcu();
2082         for (i = 0; i < num; i++) {
2083                 if (rps[i]->kp.addr) {
2084                         __unregister_kprobe_bottom(&rps[i]->kp);
2085                         free_rp_inst(rps[i]);
2086                 }
2087         }
2088 }
2089 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2090
2091 #else /* CONFIG_KRETPROBES */
2092 int register_kretprobe(struct kretprobe *rp)
2093 {
2094         return -ENOSYS;
2095 }
2096 EXPORT_SYMBOL_GPL(register_kretprobe);
2097
2098 int register_kretprobes(struct kretprobe **rps, int num)
2099 {
2100         return -ENOSYS;
2101 }
2102 EXPORT_SYMBOL_GPL(register_kretprobes);
2103
2104 void unregister_kretprobe(struct kretprobe *rp)
2105 {
2106 }
2107 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2108
2109 void unregister_kretprobes(struct kretprobe **rps, int num)
2110 {
2111 }
2112 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2113
2114 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2115 {
2116         return 0;
2117 }
2118 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2119
2120 #endif /* CONFIG_KRETPROBES */
2121
2122 /* Set the kprobe gone and remove its instruction buffer. */
2123 static void kill_kprobe(struct kprobe *p)
2124 {
2125         struct kprobe *kp;
2126
2127         lockdep_assert_held(&kprobe_mutex);
2128
2129         p->flags |= KPROBE_FLAG_GONE;
2130         if (kprobe_aggrprobe(p)) {
2131                 /*
2132                  * If this is an aggr_kprobe, we have to list all the
2133                  * chained probes and mark them GONE.
2134                  */
2135                 list_for_each_entry(kp, &p->list, list)
2136                         kp->flags |= KPROBE_FLAG_GONE;
2137                 p->post_handler = NULL;
2138                 kill_optimized_kprobe(p);
2139         }
2140         /*
2141          * Here, we can remove insn_slot safely, because no thread calls
2142          * the original probed function (which will be freed soon) any more.
2143          */
2144         arch_remove_kprobe(p);
2145
2146         /*
2147          * The module is going away. We should disarm the kprobe which
2148          * is using ftrace, because ftrace framework is still available at
2149          * MODULE_STATE_GOING notification.
2150          */
2151         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2152                 disarm_kprobe_ftrace(p);
2153 }
2154
2155 /* Disable one kprobe */
2156 int disable_kprobe(struct kprobe *kp)
2157 {
2158         int ret = 0;
2159         struct kprobe *p;
2160
2161         mutex_lock(&kprobe_mutex);
2162
2163         /* Disable this kprobe */
2164         p = __disable_kprobe(kp);
2165         if (IS_ERR(p))
2166                 ret = PTR_ERR(p);
2167
2168         mutex_unlock(&kprobe_mutex);
2169         return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(disable_kprobe);
2172
2173 /* Enable one kprobe */
2174 int enable_kprobe(struct kprobe *kp)
2175 {
2176         int ret = 0;
2177         struct kprobe *p;
2178
2179         mutex_lock(&kprobe_mutex);
2180
2181         /* Check whether specified probe is valid. */
2182         p = __get_valid_kprobe(kp);
2183         if (unlikely(p == NULL)) {
2184                 ret = -EINVAL;
2185                 goto out;
2186         }
2187
2188         if (kprobe_gone(kp)) {
2189                 /* This kprobe has gone, we couldn't enable it. */
2190                 ret = -EINVAL;
2191                 goto out;
2192         }
2193
2194         if (p != kp)
2195                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2196
2197         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2198                 p->flags &= ~KPROBE_FLAG_DISABLED;
2199                 ret = arm_kprobe(p);
2200                 if (ret)
2201                         p->flags |= KPROBE_FLAG_DISABLED;
2202         }
2203 out:
2204         mutex_unlock(&kprobe_mutex);
2205         return ret;
2206 }
2207 EXPORT_SYMBOL_GPL(enable_kprobe);
2208
2209 /* Caller must NOT call this in usual path. This is only for critical case */
2210 void dump_kprobe(struct kprobe *kp)
2211 {
2212         pr_err("Dumping kprobe:\n");
2213         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2214                kp->symbol_name, kp->offset, kp->addr);
2215 }
2216 NOKPROBE_SYMBOL(dump_kprobe);
2217
2218 int kprobe_add_ksym_blacklist(unsigned long entry)
2219 {
2220         struct kprobe_blacklist_entry *ent;
2221         unsigned long offset = 0, size = 0;
2222
2223         if (!kernel_text_address(entry) ||
2224             !kallsyms_lookup_size_offset(entry, &size, &offset))
2225                 return -EINVAL;
2226
2227         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2228         if (!ent)
2229                 return -ENOMEM;
2230         ent->start_addr = entry;
2231         ent->end_addr = entry + size;
2232         INIT_LIST_HEAD(&ent->list);
2233         list_add_tail(&ent->list, &kprobe_blacklist);
2234
2235         return (int)size;
2236 }
2237
2238 /* Add all symbols in given area into kprobe blacklist */
2239 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2240 {
2241         unsigned long entry;
2242         int ret = 0;
2243
2244         for (entry = start; entry < end; entry += ret) {
2245                 ret = kprobe_add_ksym_blacklist(entry);
2246                 if (ret < 0)
2247                         return ret;
2248                 if (ret == 0)   /* In case of alias symbol */
2249                         ret = 1;
2250         }
2251         return 0;
2252 }
2253
2254 /* Remove all symbols in given area from kprobe blacklist */
2255 static void kprobe_remove_area_blacklist(unsigned long start, unsigned long end)
2256 {
2257         struct kprobe_blacklist_entry *ent, *n;
2258
2259         list_for_each_entry_safe(ent, n, &kprobe_blacklist, list) {
2260                 if (ent->start_addr < start || ent->start_addr >= end)
2261                         continue;
2262                 list_del(&ent->list);
2263                 kfree(ent);
2264         }
2265 }
2266
2267 static void kprobe_remove_ksym_blacklist(unsigned long entry)
2268 {
2269         kprobe_remove_area_blacklist(entry, entry + 1);
2270 }
2271
2272 int __weak arch_kprobe_get_kallsym(unsigned int *symnum, unsigned long *value,
2273                                    char *type, char *sym)
2274 {
2275         return -ERANGE;
2276 }
2277
2278 int kprobe_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
2279                        char *sym)
2280 {
2281 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
2282         if (!kprobe_cache_get_kallsym(&kprobe_insn_slots, &symnum, value, type, sym))
2283                 return 0;
2284 #ifdef CONFIG_OPTPROBES
2285         if (!kprobe_cache_get_kallsym(&kprobe_optinsn_slots, &symnum, value, type, sym))
2286                 return 0;
2287 #endif
2288 #endif
2289         if (!arch_kprobe_get_kallsym(&symnum, value, type, sym))
2290                 return 0;
2291         return -ERANGE;
2292 }
2293
2294 int __init __weak arch_populate_kprobe_blacklist(void)
2295 {
2296         return 0;
2297 }
2298
2299 /*
2300  * Lookup and populate the kprobe_blacklist.
2301  *
2302  * Unlike the kretprobe blacklist, we'll need to determine
2303  * the range of addresses that belong to the said functions,
2304  * since a kprobe need not necessarily be at the beginning
2305  * of a function.
2306  */
2307 static int __init populate_kprobe_blacklist(unsigned long *start,
2308                                              unsigned long *end)
2309 {
2310         unsigned long entry;
2311         unsigned long *iter;
2312         int ret;
2313
2314         for (iter = start; iter < end; iter++) {
2315                 entry = arch_deref_entry_point((void *)*iter);
2316                 ret = kprobe_add_ksym_blacklist(entry);
2317                 if (ret == -EINVAL)
2318                         continue;
2319                 if (ret < 0)
2320                         return ret;
2321         }
2322
2323         /* Symbols in __kprobes_text are blacklisted */
2324         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2325                                         (unsigned long)__kprobes_text_end);
2326         if (ret)
2327                 return ret;
2328
2329         /* Symbols in noinstr section are blacklisted */
2330         ret = kprobe_add_area_blacklist((unsigned long)__noinstr_text_start,
2331                                         (unsigned long)__noinstr_text_end);
2332
2333         return ret ? : arch_populate_kprobe_blacklist();
2334 }
2335
2336 static void add_module_kprobe_blacklist(struct module *mod)
2337 {
2338         unsigned long start, end;
2339         int i;
2340
2341         if (mod->kprobe_blacklist) {
2342                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2343                         kprobe_add_ksym_blacklist(mod->kprobe_blacklist[i]);
2344         }
2345
2346         start = (unsigned long)mod->kprobes_text_start;
2347         if (start) {
2348                 end = start + mod->kprobes_text_size;
2349                 kprobe_add_area_blacklist(start, end);
2350         }
2351
2352         start = (unsigned long)mod->noinstr_text_start;
2353         if (start) {
2354                 end = start + mod->noinstr_text_size;
2355                 kprobe_add_area_blacklist(start, end);
2356         }
2357 }
2358
2359 static void remove_module_kprobe_blacklist(struct module *mod)
2360 {
2361         unsigned long start, end;
2362         int i;
2363
2364         if (mod->kprobe_blacklist) {
2365                 for (i = 0; i < mod->num_kprobe_blacklist; i++)
2366                         kprobe_remove_ksym_blacklist(mod->kprobe_blacklist[i]);
2367         }
2368
2369         start = (unsigned long)mod->kprobes_text_start;
2370         if (start) {
2371                 end = start + mod->kprobes_text_size;
2372                 kprobe_remove_area_blacklist(start, end);
2373         }
2374
2375         start = (unsigned long)mod->noinstr_text_start;
2376         if (start) {
2377                 end = start + mod->noinstr_text_size;
2378                 kprobe_remove_area_blacklist(start, end);
2379         }
2380 }
2381
2382 /* Module notifier call back, checking kprobes on the module */
2383 static int kprobes_module_callback(struct notifier_block *nb,
2384                                    unsigned long val, void *data)
2385 {
2386         struct module *mod = data;
2387         struct hlist_head *head;
2388         struct kprobe *p;
2389         unsigned int i;
2390         int checkcore = (val == MODULE_STATE_GOING);
2391
2392         if (val == MODULE_STATE_COMING) {
2393                 mutex_lock(&kprobe_mutex);
2394                 add_module_kprobe_blacklist(mod);
2395                 mutex_unlock(&kprobe_mutex);
2396         }
2397         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2398                 return NOTIFY_DONE;
2399
2400         /*
2401          * When MODULE_STATE_GOING was notified, both of module .text and
2402          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2403          * notified, only .init.text section would be freed. We need to
2404          * disable kprobes which have been inserted in the sections.
2405          */
2406         mutex_lock(&kprobe_mutex);
2407         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2408                 head = &kprobe_table[i];
2409                 hlist_for_each_entry(p, head, hlist)
2410                         if (within_module_init((unsigned long)p->addr, mod) ||
2411                             (checkcore &&
2412                              within_module_core((unsigned long)p->addr, mod))) {
2413                                 /*
2414                                  * The vaddr this probe is installed will soon
2415                                  * be vfreed buy not synced to disk. Hence,
2416                                  * disarming the breakpoint isn't needed.
2417                                  *
2418                                  * Note, this will also move any optimized probes
2419                                  * that are pending to be removed from their
2420                                  * corresponding lists to the freeing_list and
2421                                  * will not be touched by the delayed
2422                                  * kprobe_optimizer work handler.
2423                                  */
2424                                 kill_kprobe(p);
2425                         }
2426         }
2427         if (val == MODULE_STATE_GOING)
2428                 remove_module_kprobe_blacklist(mod);
2429         mutex_unlock(&kprobe_mutex);
2430         return NOTIFY_DONE;
2431 }
2432
2433 static struct notifier_block kprobe_module_nb = {
2434         .notifier_call = kprobes_module_callback,
2435         .priority = 0
2436 };
2437
2438 /* Markers of _kprobe_blacklist section */
2439 extern unsigned long __start_kprobe_blacklist[];
2440 extern unsigned long __stop_kprobe_blacklist[];
2441
2442 void kprobe_free_init_mem(void)
2443 {
2444         void *start = (void *)(&__init_begin);
2445         void *end = (void *)(&__init_end);
2446         struct hlist_head *head;
2447         struct kprobe *p;
2448         int i;
2449
2450         mutex_lock(&kprobe_mutex);
2451
2452         /* Kill all kprobes on initmem */
2453         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2454                 head = &kprobe_table[i];
2455                 hlist_for_each_entry(p, head, hlist) {
2456                         if (start <= (void *)p->addr && (void *)p->addr < end)
2457                                 kill_kprobe(p);
2458                 }
2459         }
2460
2461         mutex_unlock(&kprobe_mutex);
2462 }
2463
2464 static int __init init_kprobes(void)
2465 {
2466         int i, err = 0;
2467
2468         /* FIXME allocate the probe table, currently defined statically */
2469         /* initialize all list heads */
2470         for (i = 0; i < KPROBE_TABLE_SIZE; i++)
2471                 INIT_HLIST_HEAD(&kprobe_table[i]);
2472
2473         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2474                                         __stop_kprobe_blacklist);
2475         if (err) {
2476                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2477                 pr_err("Please take care of using kprobes.\n");
2478         }
2479
2480         if (kretprobe_blacklist_size) {
2481                 /* lookup the function address from its name */
2482                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2483                         kretprobe_blacklist[i].addr =
2484                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2485                         if (!kretprobe_blacklist[i].addr)
2486                                 printk("kretprobe: lookup failed: %s\n",
2487                                        kretprobe_blacklist[i].name);
2488                 }
2489         }
2490
2491         /* By default, kprobes are armed */
2492         kprobes_all_disarmed = false;
2493
2494 #if defined(CONFIG_OPTPROBES) && defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2495         /* Init kprobe_optinsn_slots for allocation */
2496         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2497 #endif
2498
2499         err = arch_init_kprobes();
2500         if (!err)
2501                 err = register_die_notifier(&kprobe_exceptions_nb);
2502         if (!err)
2503                 err = register_module_notifier(&kprobe_module_nb);
2504
2505         kprobes_initialized = (err == 0);
2506
2507         if (!err)
2508                 init_test_probes();
2509         return err;
2510 }
2511 early_initcall(init_kprobes);
2512
2513 #if defined(CONFIG_OPTPROBES)
2514 static int __init init_optprobes(void)
2515 {
2516         /*
2517          * Enable kprobe optimization - this kicks the optimizer which
2518          * depends on synchronize_rcu_tasks() and ksoftirqd, that is
2519          * not spawned in early initcall. So delay the optimization.
2520          */
2521         optimize_all_kprobes();
2522
2523         return 0;
2524 }
2525 subsys_initcall(init_optprobes);
2526 #endif
2527
2528 #ifdef CONFIG_DEBUG_FS
2529 static void report_probe(struct seq_file *pi, struct kprobe *p,
2530                 const char *sym, int offset, char *modname, struct kprobe *pp)
2531 {
2532         char *kprobe_type;
2533         void *addr = p->addr;
2534
2535         if (p->pre_handler == pre_handler_kretprobe)
2536                 kprobe_type = "r";
2537         else
2538                 kprobe_type = "k";
2539
2540         if (!kallsyms_show_value(pi->file->f_cred))
2541                 addr = NULL;
2542
2543         if (sym)
2544                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2545                         addr, kprobe_type, sym, offset,
2546                         (modname ? modname : " "));
2547         else    /* try to use %pS */
2548                 seq_printf(pi, "%px  %s  %pS ",
2549                         addr, kprobe_type, p->addr);
2550
2551         if (!pp)
2552                 pp = p;
2553         seq_printf(pi, "%s%s%s%s\n",
2554                 (kprobe_gone(p) ? "[GONE]" : ""),
2555                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2556                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2557                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2558 }
2559
2560 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2561 {
2562         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2563 }
2564
2565 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2566 {
2567         (*pos)++;
2568         if (*pos >= KPROBE_TABLE_SIZE)
2569                 return NULL;
2570         return pos;
2571 }
2572
2573 static void kprobe_seq_stop(struct seq_file *f, void *v)
2574 {
2575         /* Nothing to do */
2576 }
2577
2578 static int show_kprobe_addr(struct seq_file *pi, void *v)
2579 {
2580         struct hlist_head *head;
2581         struct kprobe *p, *kp;
2582         const char *sym = NULL;
2583         unsigned int i = *(loff_t *) v;
2584         unsigned long offset = 0;
2585         char *modname, namebuf[KSYM_NAME_LEN];
2586
2587         head = &kprobe_table[i];
2588         preempt_disable();
2589         hlist_for_each_entry_rcu(p, head, hlist) {
2590                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2591                                         &offset, &modname, namebuf);
2592                 if (kprobe_aggrprobe(p)) {
2593                         list_for_each_entry_rcu(kp, &p->list, list)
2594                                 report_probe(pi, kp, sym, offset, modname, p);
2595                 } else
2596                         report_probe(pi, p, sym, offset, modname, NULL);
2597         }
2598         preempt_enable();
2599         return 0;
2600 }
2601
2602 static const struct seq_operations kprobes_sops = {
2603         .start = kprobe_seq_start,
2604         .next  = kprobe_seq_next,
2605         .stop  = kprobe_seq_stop,
2606         .show  = show_kprobe_addr
2607 };
2608
2609 DEFINE_SEQ_ATTRIBUTE(kprobes);
2610
2611 /* kprobes/blacklist -- shows which functions can not be probed */
2612 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2613 {
2614         mutex_lock(&kprobe_mutex);
2615         return seq_list_start(&kprobe_blacklist, *pos);
2616 }
2617
2618 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2619 {
2620         return seq_list_next(v, &kprobe_blacklist, pos);
2621 }
2622
2623 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2624 {
2625         struct kprobe_blacklist_entry *ent =
2626                 list_entry(v, struct kprobe_blacklist_entry, list);
2627
2628         /*
2629          * If /proc/kallsyms is not showing kernel address, we won't
2630          * show them here either.
2631          */
2632         if (!kallsyms_show_value(m->file->f_cred))
2633                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2634                            (void *)ent->start_addr);
2635         else
2636                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2637                            (void *)ent->end_addr, (void *)ent->start_addr);
2638         return 0;
2639 }
2640
2641 static void kprobe_blacklist_seq_stop(struct seq_file *f, void *v)
2642 {
2643         mutex_unlock(&kprobe_mutex);
2644 }
2645
2646 static const struct seq_operations kprobe_blacklist_sops = {
2647         .start = kprobe_blacklist_seq_start,
2648         .next  = kprobe_blacklist_seq_next,
2649         .stop  = kprobe_blacklist_seq_stop,
2650         .show  = kprobe_blacklist_seq_show,
2651 };
2652 DEFINE_SEQ_ATTRIBUTE(kprobe_blacklist);
2653
2654 static int arm_all_kprobes(void)
2655 {
2656         struct hlist_head *head;
2657         struct kprobe *p;
2658         unsigned int i, total = 0, errors = 0;
2659         int err, ret = 0;
2660
2661         mutex_lock(&kprobe_mutex);
2662
2663         /* If kprobes are armed, just return */
2664         if (!kprobes_all_disarmed)
2665                 goto already_enabled;
2666
2667         /*
2668          * optimize_kprobe() called by arm_kprobe() checks
2669          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2670          * arm_kprobe.
2671          */
2672         kprobes_all_disarmed = false;
2673         /* Arming kprobes doesn't optimize kprobe itself */
2674         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2675                 head = &kprobe_table[i];
2676                 /* Arm all kprobes on a best-effort basis */
2677                 hlist_for_each_entry(p, head, hlist) {
2678                         if (!kprobe_disabled(p)) {
2679                                 err = arm_kprobe(p);
2680                                 if (err)  {
2681                                         errors++;
2682                                         ret = err;
2683                                 }
2684                                 total++;
2685                         }
2686                 }
2687         }
2688
2689         if (errors)
2690                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2691                         errors, total);
2692         else
2693                 pr_info("Kprobes globally enabled\n");
2694
2695 already_enabled:
2696         mutex_unlock(&kprobe_mutex);
2697         return ret;
2698 }
2699
2700 static int disarm_all_kprobes(void)
2701 {
2702         struct hlist_head *head;
2703         struct kprobe *p;
2704         unsigned int i, total = 0, errors = 0;
2705         int err, ret = 0;
2706
2707         mutex_lock(&kprobe_mutex);
2708
2709         /* If kprobes are already disarmed, just return */
2710         if (kprobes_all_disarmed) {
2711                 mutex_unlock(&kprobe_mutex);
2712                 return 0;
2713         }
2714
2715         kprobes_all_disarmed = true;
2716
2717         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2718                 head = &kprobe_table[i];
2719                 /* Disarm all kprobes on a best-effort basis */
2720                 hlist_for_each_entry(p, head, hlist) {
2721                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2722                                 err = disarm_kprobe(p, false);
2723                                 if (err) {
2724                                         errors++;
2725                                         ret = err;
2726                                 }
2727                                 total++;
2728                         }
2729                 }
2730         }
2731
2732         if (errors)
2733                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2734                         errors, total);
2735         else
2736                 pr_info("Kprobes globally disabled\n");
2737
2738         mutex_unlock(&kprobe_mutex);
2739
2740         /* Wait for disarming all kprobes by optimizer */
2741         wait_for_kprobe_optimizer();
2742
2743         return ret;
2744 }
2745
2746 /*
2747  * XXX: The debugfs bool file interface doesn't allow for callbacks
2748  * when the bool state is switched. We can reuse that facility when
2749  * available
2750  */
2751 static ssize_t read_enabled_file_bool(struct file *file,
2752                char __user *user_buf, size_t count, loff_t *ppos)
2753 {
2754         char buf[3];
2755
2756         if (!kprobes_all_disarmed)
2757                 buf[0] = '1';
2758         else
2759                 buf[0] = '0';
2760         buf[1] = '\n';
2761         buf[2] = 0x00;
2762         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2763 }
2764
2765 static ssize_t write_enabled_file_bool(struct file *file,
2766                const char __user *user_buf, size_t count, loff_t *ppos)
2767 {
2768         bool enable;
2769         int ret;
2770
2771         ret = kstrtobool_from_user(user_buf, count, &enable);
2772         if (ret)
2773                 return ret;
2774
2775         ret = enable ? arm_all_kprobes() : disarm_all_kprobes();
2776         if (ret)
2777                 return ret;
2778
2779         return count;
2780 }
2781
2782 static const struct file_operations fops_kp = {
2783         .read =         read_enabled_file_bool,
2784         .write =        write_enabled_file_bool,
2785         .llseek =       default_llseek,
2786 };
2787
2788 static int __init debugfs_kprobe_init(void)
2789 {
2790         struct dentry *dir;
2791
2792         dir = debugfs_create_dir("kprobes", NULL);
2793
2794         debugfs_create_file("list", 0400, dir, NULL, &kprobes_fops);
2795
2796         debugfs_create_file("enabled", 0600, dir, NULL, &fops_kp);
2797
2798         debugfs_create_file("blacklist", 0400, dir, NULL,
2799                             &kprobe_blacklist_fops);
2800
2801         return 0;
2802 }
2803
2804 late_initcall(debugfs_kprobe_init);
2805 #endif /* CONFIG_DEBUG_FS */