Merge v5.8-rc1 into drm-misc-fixes
[linux-2.6-microblaze.git] / kernel / kexec_file.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
30
31 static int kexec_calculate_store_digests(struct kimage *image);
32
33 /*
34  * Currently this is the only default function that is exported as some
35  * architectures need it to do additional handlings.
36  * In the future, other default functions may be exported too if required.
37  */
38 int kexec_image_probe_default(struct kimage *image, void *buf,
39                               unsigned long buf_len)
40 {
41         const struct kexec_file_ops * const *fops;
42         int ret = -ENOEXEC;
43
44         for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45                 ret = (*fops)->probe(buf, buf_len);
46                 if (!ret) {
47                         image->fops = *fops;
48                         return ret;
49                 }
50         }
51
52         return ret;
53 }
54
55 /* Architectures can provide this probe function */
56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57                                          unsigned long buf_len)
58 {
59         return kexec_image_probe_default(image, buf, buf_len);
60 }
61
62 static void *kexec_image_load_default(struct kimage *image)
63 {
64         if (!image->fops || !image->fops->load)
65                 return ERR_PTR(-ENOEXEC);
66
67         return image->fops->load(image, image->kernel_buf,
68                                  image->kernel_buf_len, image->initrd_buf,
69                                  image->initrd_buf_len, image->cmdline_buf,
70                                  image->cmdline_buf_len);
71 }
72
73 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74 {
75         return kexec_image_load_default(image);
76 }
77
78 int kexec_image_post_load_cleanup_default(struct kimage *image)
79 {
80         if (!image->fops || !image->fops->cleanup)
81                 return 0;
82
83         return image->fops->cleanup(image->image_loader_data);
84 }
85
86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87 {
88         return kexec_image_post_load_cleanup_default(image);
89 }
90
91 #ifdef CONFIG_KEXEC_SIG
92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93                                           unsigned long buf_len)
94 {
95         if (!image->fops || !image->fops->verify_sig) {
96                 pr_debug("kernel loader does not support signature verification.\n");
97                 return -EKEYREJECTED;
98         }
99
100         return image->fops->verify_sig(buf, buf_len);
101 }
102
103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104                                         unsigned long buf_len)
105 {
106         return kexec_image_verify_sig_default(image, buf, buf_len);
107 }
108 #endif
109
110 /*
111  * arch_kexec_apply_relocations_add - apply relocations of type RELA
112  * @pi:         Purgatory to be relocated.
113  * @section:    Section relocations applying to.
114  * @relsec:     Section containing RELAs.
115  * @symtab:     Corresponding symtab.
116  *
117  * Return: 0 on success, negative errno on error.
118  */
119 int __weak
120 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121                                  const Elf_Shdr *relsec, const Elf_Shdr *symtab)
122 {
123         pr_err("RELA relocation unsupported.\n");
124         return -ENOEXEC;
125 }
126
127 /*
128  * arch_kexec_apply_relocations - apply relocations of type REL
129  * @pi:         Purgatory to be relocated.
130  * @section:    Section relocations applying to.
131  * @relsec:     Section containing RELs.
132  * @symtab:     Corresponding symtab.
133  *
134  * Return: 0 on success, negative errno on error.
135  */
136 int __weak
137 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138                              const Elf_Shdr *relsec, const Elf_Shdr *symtab)
139 {
140         pr_err("REL relocation unsupported.\n");
141         return -ENOEXEC;
142 }
143
144 /*
145  * Free up memory used by kernel, initrd, and command line. This is temporary
146  * memory allocation which is not needed any more after these buffers have
147  * been loaded into separate segments and have been copied elsewhere.
148  */
149 void kimage_file_post_load_cleanup(struct kimage *image)
150 {
151         struct purgatory_info *pi = &image->purgatory_info;
152
153         vfree(image->kernel_buf);
154         image->kernel_buf = NULL;
155
156         vfree(image->initrd_buf);
157         image->initrd_buf = NULL;
158
159         kfree(image->cmdline_buf);
160         image->cmdline_buf = NULL;
161
162         vfree(pi->purgatory_buf);
163         pi->purgatory_buf = NULL;
164
165         vfree(pi->sechdrs);
166         pi->sechdrs = NULL;
167
168         /* See if architecture has anything to cleanup post load */
169         arch_kimage_file_post_load_cleanup(image);
170
171         /*
172          * Above call should have called into bootloader to free up
173          * any data stored in kimage->image_loader_data. It should
174          * be ok now to free it up.
175          */
176         kfree(image->image_loader_data);
177         image->image_loader_data = NULL;
178 }
179
180 #ifdef CONFIG_KEXEC_SIG
181 static int
182 kimage_validate_signature(struct kimage *image)
183 {
184         const char *reason;
185         int ret;
186
187         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
188                                            image->kernel_buf_len);
189         switch (ret) {
190         case 0:
191                 break;
192
193                 /* Certain verification errors are non-fatal if we're not
194                  * checking errors, provided we aren't mandating that there
195                  * must be a valid signature.
196                  */
197         case -ENODATA:
198                 reason = "kexec of unsigned image";
199                 goto decide;
200         case -ENOPKG:
201                 reason = "kexec of image with unsupported crypto";
202                 goto decide;
203         case -ENOKEY:
204                 reason = "kexec of image with unavailable key";
205         decide:
206                 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
207                         pr_notice("%s rejected\n", reason);
208                         return ret;
209                 }
210
211                 /* If IMA is guaranteed to appraise a signature on the kexec
212                  * image, permit it even if the kernel is otherwise locked
213                  * down.
214                  */
215                 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
216                     security_locked_down(LOCKDOWN_KEXEC))
217                         return -EPERM;
218
219                 return 0;
220
221                 /* All other errors are fatal, including nomem, unparseable
222                  * signatures and signature check failures - even if signatures
223                  * aren't required.
224                  */
225         default:
226                 pr_notice("kernel signature verification failed (%d).\n", ret);
227         }
228
229         return ret;
230 }
231 #endif
232
233 /*
234  * In file mode list of segments is prepared by kernel. Copy relevant
235  * data from user space, do error checking, prepare segment list
236  */
237 static int
238 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
239                              const char __user *cmdline_ptr,
240                              unsigned long cmdline_len, unsigned flags)
241 {
242         int ret;
243         void *ldata;
244         loff_t size;
245
246         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
247                                        &size, INT_MAX, READING_KEXEC_IMAGE);
248         if (ret)
249                 return ret;
250         image->kernel_buf_len = size;
251
252         /* Call arch image probe handlers */
253         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
254                                             image->kernel_buf_len);
255         if (ret)
256                 goto out;
257
258 #ifdef CONFIG_KEXEC_SIG
259         ret = kimage_validate_signature(image);
260
261         if (ret)
262                 goto out;
263 #endif
264         /* It is possible that there no initramfs is being loaded */
265         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
266                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
267                                                &size, INT_MAX,
268                                                READING_KEXEC_INITRAMFS);
269                 if (ret)
270                         goto out;
271                 image->initrd_buf_len = size;
272         }
273
274         if (cmdline_len) {
275                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
276                 if (IS_ERR(image->cmdline_buf)) {
277                         ret = PTR_ERR(image->cmdline_buf);
278                         image->cmdline_buf = NULL;
279                         goto out;
280                 }
281
282                 image->cmdline_buf_len = cmdline_len;
283
284                 /* command line should be a string with last byte null */
285                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
286                         ret = -EINVAL;
287                         goto out;
288                 }
289
290                 ima_kexec_cmdline(image->cmdline_buf,
291                                   image->cmdline_buf_len - 1);
292         }
293
294         /* IMA needs to pass the measurement list to the next kernel. */
295         ima_add_kexec_buffer(image);
296
297         /* Call arch image load handlers */
298         ldata = arch_kexec_kernel_image_load(image);
299
300         if (IS_ERR(ldata)) {
301                 ret = PTR_ERR(ldata);
302                 goto out;
303         }
304
305         image->image_loader_data = ldata;
306 out:
307         /* In case of error, free up all allocated memory in this function */
308         if (ret)
309                 kimage_file_post_load_cleanup(image);
310         return ret;
311 }
312
313 static int
314 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
315                        int initrd_fd, const char __user *cmdline_ptr,
316                        unsigned long cmdline_len, unsigned long flags)
317 {
318         int ret;
319         struct kimage *image;
320         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
321
322         image = do_kimage_alloc_init();
323         if (!image)
324                 return -ENOMEM;
325
326         image->file_mode = 1;
327
328         if (kexec_on_panic) {
329                 /* Enable special crash kernel control page alloc policy. */
330                 image->control_page = crashk_res.start;
331                 image->type = KEXEC_TYPE_CRASH;
332         }
333
334         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
335                                            cmdline_ptr, cmdline_len, flags);
336         if (ret)
337                 goto out_free_image;
338
339         ret = sanity_check_segment_list(image);
340         if (ret)
341                 goto out_free_post_load_bufs;
342
343         ret = -ENOMEM;
344         image->control_code_page = kimage_alloc_control_pages(image,
345                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
346         if (!image->control_code_page) {
347                 pr_err("Could not allocate control_code_buffer\n");
348                 goto out_free_post_load_bufs;
349         }
350
351         if (!kexec_on_panic) {
352                 image->swap_page = kimage_alloc_control_pages(image, 0);
353                 if (!image->swap_page) {
354                         pr_err("Could not allocate swap buffer\n");
355                         goto out_free_control_pages;
356                 }
357         }
358
359         *rimage = image;
360         return 0;
361 out_free_control_pages:
362         kimage_free_page_list(&image->control_pages);
363 out_free_post_load_bufs:
364         kimage_file_post_load_cleanup(image);
365 out_free_image:
366         kfree(image);
367         return ret;
368 }
369
370 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
371                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
372                 unsigned long, flags)
373 {
374         int ret = 0, i;
375         struct kimage **dest_image, *image;
376
377         /* We only trust the superuser with rebooting the system. */
378         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
379                 return -EPERM;
380
381         /* Make sure we have a legal set of flags */
382         if (flags != (flags & KEXEC_FILE_FLAGS))
383                 return -EINVAL;
384
385         image = NULL;
386
387         if (!mutex_trylock(&kexec_mutex))
388                 return -EBUSY;
389
390         dest_image = &kexec_image;
391         if (flags & KEXEC_FILE_ON_CRASH) {
392                 dest_image = &kexec_crash_image;
393                 if (kexec_crash_image)
394                         arch_kexec_unprotect_crashkres();
395         }
396
397         if (flags & KEXEC_FILE_UNLOAD)
398                 goto exchange;
399
400         /*
401          * In case of crash, new kernel gets loaded in reserved region. It is
402          * same memory where old crash kernel might be loaded. Free any
403          * current crash dump kernel before we corrupt it.
404          */
405         if (flags & KEXEC_FILE_ON_CRASH)
406                 kimage_free(xchg(&kexec_crash_image, NULL));
407
408         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
409                                      cmdline_len, flags);
410         if (ret)
411                 goto out;
412
413         ret = machine_kexec_prepare(image);
414         if (ret)
415                 goto out;
416
417         /*
418          * Some architecture(like S390) may touch the crash memory before
419          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
420          */
421         ret = kimage_crash_copy_vmcoreinfo(image);
422         if (ret)
423                 goto out;
424
425         ret = kexec_calculate_store_digests(image);
426         if (ret)
427                 goto out;
428
429         for (i = 0; i < image->nr_segments; i++) {
430                 struct kexec_segment *ksegment;
431
432                 ksegment = &image->segment[i];
433                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
434                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
435                          ksegment->memsz);
436
437                 ret = kimage_load_segment(image, &image->segment[i]);
438                 if (ret)
439                         goto out;
440         }
441
442         kimage_terminate(image);
443
444         ret = machine_kexec_post_load(image);
445         if (ret)
446                 goto out;
447
448         /*
449          * Free up any temporary buffers allocated which are not needed
450          * after image has been loaded
451          */
452         kimage_file_post_load_cleanup(image);
453 exchange:
454         image = xchg(dest_image, image);
455 out:
456         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
457                 arch_kexec_protect_crashkres();
458
459         mutex_unlock(&kexec_mutex);
460         kimage_free(image);
461         return ret;
462 }
463
464 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
465                                     struct kexec_buf *kbuf)
466 {
467         struct kimage *image = kbuf->image;
468         unsigned long temp_start, temp_end;
469
470         temp_end = min(end, kbuf->buf_max);
471         temp_start = temp_end - kbuf->memsz;
472
473         do {
474                 /* align down start */
475                 temp_start = temp_start & (~(kbuf->buf_align - 1));
476
477                 if (temp_start < start || temp_start < kbuf->buf_min)
478                         return 0;
479
480                 temp_end = temp_start + kbuf->memsz - 1;
481
482                 /*
483                  * Make sure this does not conflict with any of existing
484                  * segments
485                  */
486                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
487                         temp_start = temp_start - PAGE_SIZE;
488                         continue;
489                 }
490
491                 /* We found a suitable memory range */
492                 break;
493         } while (1);
494
495         /* If we are here, we found a suitable memory range */
496         kbuf->mem = temp_start;
497
498         /* Success, stop navigating through remaining System RAM ranges */
499         return 1;
500 }
501
502 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
503                                      struct kexec_buf *kbuf)
504 {
505         struct kimage *image = kbuf->image;
506         unsigned long temp_start, temp_end;
507
508         temp_start = max(start, kbuf->buf_min);
509
510         do {
511                 temp_start = ALIGN(temp_start, kbuf->buf_align);
512                 temp_end = temp_start + kbuf->memsz - 1;
513
514                 if (temp_end > end || temp_end > kbuf->buf_max)
515                         return 0;
516                 /*
517                  * Make sure this does not conflict with any of existing
518                  * segments
519                  */
520                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
521                         temp_start = temp_start + PAGE_SIZE;
522                         continue;
523                 }
524
525                 /* We found a suitable memory range */
526                 break;
527         } while (1);
528
529         /* If we are here, we found a suitable memory range */
530         kbuf->mem = temp_start;
531
532         /* Success, stop navigating through remaining System RAM ranges */
533         return 1;
534 }
535
536 static int locate_mem_hole_callback(struct resource *res, void *arg)
537 {
538         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
539         u64 start = res->start, end = res->end;
540         unsigned long sz = end - start + 1;
541
542         /* Returning 0 will take to next memory range */
543
544         /* Don't use memory that will be detected and handled by a driver. */
545         if (res->flags & IORESOURCE_MEM_DRIVER_MANAGED)
546                 return 0;
547
548         if (sz < kbuf->memsz)
549                 return 0;
550
551         if (end < kbuf->buf_min || start > kbuf->buf_max)
552                 return 0;
553
554         /*
555          * Allocate memory top down with-in ram range. Otherwise bottom up
556          * allocation.
557          */
558         if (kbuf->top_down)
559                 return locate_mem_hole_top_down(start, end, kbuf);
560         return locate_mem_hole_bottom_up(start, end, kbuf);
561 }
562
563 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
564 static int kexec_walk_memblock(struct kexec_buf *kbuf,
565                                int (*func)(struct resource *, void *))
566 {
567         int ret = 0;
568         u64 i;
569         phys_addr_t mstart, mend;
570         struct resource res = { };
571
572         if (kbuf->image->type == KEXEC_TYPE_CRASH)
573                 return func(&crashk_res, kbuf);
574
575         if (kbuf->top_down) {
576                 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
577                                                 &mstart, &mend, NULL) {
578                         /*
579                          * In memblock, end points to the first byte after the
580                          * range while in kexec, end points to the last byte
581                          * in the range.
582                          */
583                         res.start = mstart;
584                         res.end = mend - 1;
585                         ret = func(&res, kbuf);
586                         if (ret)
587                                 break;
588                 }
589         } else {
590                 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
591                                         &mstart, &mend, NULL) {
592                         /*
593                          * In memblock, end points to the first byte after the
594                          * range while in kexec, end points to the last byte
595                          * in the range.
596                          */
597                         res.start = mstart;
598                         res.end = mend - 1;
599                         ret = func(&res, kbuf);
600                         if (ret)
601                                 break;
602                 }
603         }
604
605         return ret;
606 }
607 #else
608 static int kexec_walk_memblock(struct kexec_buf *kbuf,
609                                int (*func)(struct resource *, void *))
610 {
611         return 0;
612 }
613 #endif
614
615 /**
616  * kexec_walk_resources - call func(data) on free memory regions
617  * @kbuf:       Context info for the search. Also passed to @func.
618  * @func:       Function to call for each memory region.
619  *
620  * Return: The memory walk will stop when func returns a non-zero value
621  * and that value will be returned. If all free regions are visited without
622  * func returning non-zero, then zero will be returned.
623  */
624 static int kexec_walk_resources(struct kexec_buf *kbuf,
625                                 int (*func)(struct resource *, void *))
626 {
627         if (kbuf->image->type == KEXEC_TYPE_CRASH)
628                 return walk_iomem_res_desc(crashk_res.desc,
629                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
630                                            crashk_res.start, crashk_res.end,
631                                            kbuf, func);
632         else
633                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
634 }
635
636 /**
637  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
638  * @kbuf:       Parameters for the memory search.
639  *
640  * On success, kbuf->mem will have the start address of the memory region found.
641  *
642  * Return: 0 on success, negative errno on error.
643  */
644 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
645 {
646         int ret;
647
648         /* Arch knows where to place */
649         if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
650                 return 0;
651
652         if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
653                 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
654         else
655                 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
656
657         return ret == 1 ? 0 : -EADDRNOTAVAIL;
658 }
659
660 /**
661  * kexec_add_buffer - place a buffer in a kexec segment
662  * @kbuf:       Buffer contents and memory parameters.
663  *
664  * This function assumes that kexec_mutex is held.
665  * On successful return, @kbuf->mem will have the physical address of
666  * the buffer in memory.
667  *
668  * Return: 0 on success, negative errno on error.
669  */
670 int kexec_add_buffer(struct kexec_buf *kbuf)
671 {
672
673         struct kexec_segment *ksegment;
674         int ret;
675
676         /* Currently adding segment this way is allowed only in file mode */
677         if (!kbuf->image->file_mode)
678                 return -EINVAL;
679
680         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
681                 return -EINVAL;
682
683         /*
684          * Make sure we are not trying to add buffer after allocating
685          * control pages. All segments need to be placed first before
686          * any control pages are allocated. As control page allocation
687          * logic goes through list of segments to make sure there are
688          * no destination overlaps.
689          */
690         if (!list_empty(&kbuf->image->control_pages)) {
691                 WARN_ON(1);
692                 return -EINVAL;
693         }
694
695         /* Ensure minimum alignment needed for segments. */
696         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
697         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
698
699         /* Walk the RAM ranges and allocate a suitable range for the buffer */
700         ret = kexec_locate_mem_hole(kbuf);
701         if (ret)
702                 return ret;
703
704         /* Found a suitable memory range */
705         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
706         ksegment->kbuf = kbuf->buffer;
707         ksegment->bufsz = kbuf->bufsz;
708         ksegment->mem = kbuf->mem;
709         ksegment->memsz = kbuf->memsz;
710         kbuf->image->nr_segments++;
711         return 0;
712 }
713
714 /* Calculate and store the digest of segments */
715 static int kexec_calculate_store_digests(struct kimage *image)
716 {
717         struct crypto_shash *tfm;
718         struct shash_desc *desc;
719         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
720         size_t desc_size, nullsz;
721         char *digest;
722         void *zero_buf;
723         struct kexec_sha_region *sha_regions;
724         struct purgatory_info *pi = &image->purgatory_info;
725
726         if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
727                 return 0;
728
729         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
730         zero_buf_sz = PAGE_SIZE;
731
732         tfm = crypto_alloc_shash("sha256", 0, 0);
733         if (IS_ERR(tfm)) {
734                 ret = PTR_ERR(tfm);
735                 goto out;
736         }
737
738         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
739         desc = kzalloc(desc_size, GFP_KERNEL);
740         if (!desc) {
741                 ret = -ENOMEM;
742                 goto out_free_tfm;
743         }
744
745         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
746         sha_regions = vzalloc(sha_region_sz);
747         if (!sha_regions)
748                 goto out_free_desc;
749
750         desc->tfm   = tfm;
751
752         ret = crypto_shash_init(desc);
753         if (ret < 0)
754                 goto out_free_sha_regions;
755
756         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
757         if (!digest) {
758                 ret = -ENOMEM;
759                 goto out_free_sha_regions;
760         }
761
762         for (j = i = 0; i < image->nr_segments; i++) {
763                 struct kexec_segment *ksegment;
764
765                 ksegment = &image->segment[i];
766                 /*
767                  * Skip purgatory as it will be modified once we put digest
768                  * info in purgatory.
769                  */
770                 if (ksegment->kbuf == pi->purgatory_buf)
771                         continue;
772
773                 ret = crypto_shash_update(desc, ksegment->kbuf,
774                                           ksegment->bufsz);
775                 if (ret)
776                         break;
777
778                 /*
779                  * Assume rest of the buffer is filled with zero and
780                  * update digest accordingly.
781                  */
782                 nullsz = ksegment->memsz - ksegment->bufsz;
783                 while (nullsz) {
784                         unsigned long bytes = nullsz;
785
786                         if (bytes > zero_buf_sz)
787                                 bytes = zero_buf_sz;
788                         ret = crypto_shash_update(desc, zero_buf, bytes);
789                         if (ret)
790                                 break;
791                         nullsz -= bytes;
792                 }
793
794                 if (ret)
795                         break;
796
797                 sha_regions[j].start = ksegment->mem;
798                 sha_regions[j].len = ksegment->memsz;
799                 j++;
800         }
801
802         if (!ret) {
803                 ret = crypto_shash_final(desc, digest);
804                 if (ret)
805                         goto out_free_digest;
806                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
807                                                      sha_regions, sha_region_sz, 0);
808                 if (ret)
809                         goto out_free_digest;
810
811                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
812                                                      digest, SHA256_DIGEST_SIZE, 0);
813                 if (ret)
814                         goto out_free_digest;
815         }
816
817 out_free_digest:
818         kfree(digest);
819 out_free_sha_regions:
820         vfree(sha_regions);
821 out_free_desc:
822         kfree(desc);
823 out_free_tfm:
824         kfree(tfm);
825 out:
826         return ret;
827 }
828
829 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
830 /*
831  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
832  * @pi:         Purgatory to be loaded.
833  * @kbuf:       Buffer to setup.
834  *
835  * Allocates the memory needed for the buffer. Caller is responsible to free
836  * the memory after use.
837  *
838  * Return: 0 on success, negative errno on error.
839  */
840 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
841                                       struct kexec_buf *kbuf)
842 {
843         const Elf_Shdr *sechdrs;
844         unsigned long bss_align;
845         unsigned long bss_sz;
846         unsigned long align;
847         int i, ret;
848
849         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
850         kbuf->buf_align = bss_align = 1;
851         kbuf->bufsz = bss_sz = 0;
852
853         for (i = 0; i < pi->ehdr->e_shnum; i++) {
854                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
855                         continue;
856
857                 align = sechdrs[i].sh_addralign;
858                 if (sechdrs[i].sh_type != SHT_NOBITS) {
859                         if (kbuf->buf_align < align)
860                                 kbuf->buf_align = align;
861                         kbuf->bufsz = ALIGN(kbuf->bufsz, align);
862                         kbuf->bufsz += sechdrs[i].sh_size;
863                 } else {
864                         if (bss_align < align)
865                                 bss_align = align;
866                         bss_sz = ALIGN(bss_sz, align);
867                         bss_sz += sechdrs[i].sh_size;
868                 }
869         }
870         kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
871         kbuf->memsz = kbuf->bufsz + bss_sz;
872         if (kbuf->buf_align < bss_align)
873                 kbuf->buf_align = bss_align;
874
875         kbuf->buffer = vzalloc(kbuf->bufsz);
876         if (!kbuf->buffer)
877                 return -ENOMEM;
878         pi->purgatory_buf = kbuf->buffer;
879
880         ret = kexec_add_buffer(kbuf);
881         if (ret)
882                 goto out;
883
884         return 0;
885 out:
886         vfree(pi->purgatory_buf);
887         pi->purgatory_buf = NULL;
888         return ret;
889 }
890
891 /*
892  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
893  * @pi:         Purgatory to be loaded.
894  * @kbuf:       Buffer prepared to store purgatory.
895  *
896  * Allocates the memory needed for the buffer. Caller is responsible to free
897  * the memory after use.
898  *
899  * Return: 0 on success, negative errno on error.
900  */
901 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
902                                          struct kexec_buf *kbuf)
903 {
904         unsigned long bss_addr;
905         unsigned long offset;
906         Elf_Shdr *sechdrs;
907         int i;
908
909         /*
910          * The section headers in kexec_purgatory are read-only. In order to
911          * have them modifiable make a temporary copy.
912          */
913         sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
914         if (!sechdrs)
915                 return -ENOMEM;
916         memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
917                pi->ehdr->e_shnum * sizeof(Elf_Shdr));
918         pi->sechdrs = sechdrs;
919
920         offset = 0;
921         bss_addr = kbuf->mem + kbuf->bufsz;
922         kbuf->image->start = pi->ehdr->e_entry;
923
924         for (i = 0; i < pi->ehdr->e_shnum; i++) {
925                 unsigned long align;
926                 void *src, *dst;
927
928                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
929                         continue;
930
931                 align = sechdrs[i].sh_addralign;
932                 if (sechdrs[i].sh_type == SHT_NOBITS) {
933                         bss_addr = ALIGN(bss_addr, align);
934                         sechdrs[i].sh_addr = bss_addr;
935                         bss_addr += sechdrs[i].sh_size;
936                         continue;
937                 }
938
939                 offset = ALIGN(offset, align);
940                 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
941                     pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
942                     pi->ehdr->e_entry < (sechdrs[i].sh_addr
943                                          + sechdrs[i].sh_size)) {
944                         kbuf->image->start -= sechdrs[i].sh_addr;
945                         kbuf->image->start += kbuf->mem + offset;
946                 }
947
948                 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
949                 dst = pi->purgatory_buf + offset;
950                 memcpy(dst, src, sechdrs[i].sh_size);
951
952                 sechdrs[i].sh_addr = kbuf->mem + offset;
953                 sechdrs[i].sh_offset = offset;
954                 offset += sechdrs[i].sh_size;
955         }
956
957         return 0;
958 }
959
960 static int kexec_apply_relocations(struct kimage *image)
961 {
962         int i, ret;
963         struct purgatory_info *pi = &image->purgatory_info;
964         const Elf_Shdr *sechdrs;
965
966         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
967
968         for (i = 0; i < pi->ehdr->e_shnum; i++) {
969                 const Elf_Shdr *relsec;
970                 const Elf_Shdr *symtab;
971                 Elf_Shdr *section;
972
973                 relsec = sechdrs + i;
974
975                 if (relsec->sh_type != SHT_RELA &&
976                     relsec->sh_type != SHT_REL)
977                         continue;
978
979                 /*
980                  * For section of type SHT_RELA/SHT_REL,
981                  * ->sh_link contains section header index of associated
982                  * symbol table. And ->sh_info contains section header
983                  * index of section to which relocations apply.
984                  */
985                 if (relsec->sh_info >= pi->ehdr->e_shnum ||
986                     relsec->sh_link >= pi->ehdr->e_shnum)
987                         return -ENOEXEC;
988
989                 section = pi->sechdrs + relsec->sh_info;
990                 symtab = sechdrs + relsec->sh_link;
991
992                 if (!(section->sh_flags & SHF_ALLOC))
993                         continue;
994
995                 /*
996                  * symtab->sh_link contain section header index of associated
997                  * string table.
998                  */
999                 if (symtab->sh_link >= pi->ehdr->e_shnum)
1000                         /* Invalid section number? */
1001                         continue;
1002
1003                 /*
1004                  * Respective architecture needs to provide support for applying
1005                  * relocations of type SHT_RELA/SHT_REL.
1006                  */
1007                 if (relsec->sh_type == SHT_RELA)
1008                         ret = arch_kexec_apply_relocations_add(pi, section,
1009                                                                relsec, symtab);
1010                 else if (relsec->sh_type == SHT_REL)
1011                         ret = arch_kexec_apply_relocations(pi, section,
1012                                                            relsec, symtab);
1013                 if (ret)
1014                         return ret;
1015         }
1016
1017         return 0;
1018 }
1019
1020 /*
1021  * kexec_load_purgatory - Load and relocate the purgatory object.
1022  * @image:      Image to add the purgatory to.
1023  * @kbuf:       Memory parameters to use.
1024  *
1025  * Allocates the memory needed for image->purgatory_info.sechdrs and
1026  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1027  * to free the memory after use.
1028  *
1029  * Return: 0 on success, negative errno on error.
1030  */
1031 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1032 {
1033         struct purgatory_info *pi = &image->purgatory_info;
1034         int ret;
1035
1036         if (kexec_purgatory_size <= 0)
1037                 return -EINVAL;
1038
1039         pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1040
1041         ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1042         if (ret)
1043                 return ret;
1044
1045         ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1046         if (ret)
1047                 goto out_free_kbuf;
1048
1049         ret = kexec_apply_relocations(image);
1050         if (ret)
1051                 goto out;
1052
1053         return 0;
1054 out:
1055         vfree(pi->sechdrs);
1056         pi->sechdrs = NULL;
1057 out_free_kbuf:
1058         vfree(pi->purgatory_buf);
1059         pi->purgatory_buf = NULL;
1060         return ret;
1061 }
1062
1063 /*
1064  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1065  * @pi:         Purgatory to search in.
1066  * @name:       Name of the symbol.
1067  *
1068  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1069  */
1070 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1071                                                   const char *name)
1072 {
1073         const Elf_Shdr *sechdrs;
1074         const Elf_Ehdr *ehdr;
1075         const Elf_Sym *syms;
1076         const char *strtab;
1077         int i, k;
1078
1079         if (!pi->ehdr)
1080                 return NULL;
1081
1082         ehdr = pi->ehdr;
1083         sechdrs = (void *)ehdr + ehdr->e_shoff;
1084
1085         for (i = 0; i < ehdr->e_shnum; i++) {
1086                 if (sechdrs[i].sh_type != SHT_SYMTAB)
1087                         continue;
1088
1089                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1090                         /* Invalid strtab section number */
1091                         continue;
1092                 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1093                 syms = (void *)ehdr + sechdrs[i].sh_offset;
1094
1095                 /* Go through symbols for a match */
1096                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1097                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1098                                 continue;
1099
1100                         if (strcmp(strtab + syms[k].st_name, name) != 0)
1101                                 continue;
1102
1103                         if (syms[k].st_shndx == SHN_UNDEF ||
1104                             syms[k].st_shndx >= ehdr->e_shnum) {
1105                                 pr_debug("Symbol: %s has bad section index %d.\n",
1106                                                 name, syms[k].st_shndx);
1107                                 return NULL;
1108                         }
1109
1110                         /* Found the symbol we are looking for */
1111                         return &syms[k];
1112                 }
1113         }
1114
1115         return NULL;
1116 }
1117
1118 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1119 {
1120         struct purgatory_info *pi = &image->purgatory_info;
1121         const Elf_Sym *sym;
1122         Elf_Shdr *sechdr;
1123
1124         sym = kexec_purgatory_find_symbol(pi, name);
1125         if (!sym)
1126                 return ERR_PTR(-EINVAL);
1127
1128         sechdr = &pi->sechdrs[sym->st_shndx];
1129
1130         /*
1131          * Returns the address where symbol will finally be loaded after
1132          * kexec_load_segment()
1133          */
1134         return (void *)(sechdr->sh_addr + sym->st_value);
1135 }
1136
1137 /*
1138  * Get or set value of a symbol. If "get_value" is true, symbol value is
1139  * returned in buf otherwise symbol value is set based on value in buf.
1140  */
1141 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1142                                    void *buf, unsigned int size, bool get_value)
1143 {
1144         struct purgatory_info *pi = &image->purgatory_info;
1145         const Elf_Sym *sym;
1146         Elf_Shdr *sec;
1147         char *sym_buf;
1148
1149         sym = kexec_purgatory_find_symbol(pi, name);
1150         if (!sym)
1151                 return -EINVAL;
1152
1153         if (sym->st_size != size) {
1154                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1155                        name, (unsigned long)sym->st_size, size);
1156                 return -EINVAL;
1157         }
1158
1159         sec = pi->sechdrs + sym->st_shndx;
1160
1161         if (sec->sh_type == SHT_NOBITS) {
1162                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1163                        get_value ? "get" : "set");
1164                 return -EINVAL;
1165         }
1166
1167         sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1168
1169         if (get_value)
1170                 memcpy((void *)buf, sym_buf, size);
1171         else
1172                 memcpy((void *)sym_buf, buf, size);
1173
1174         return 0;
1175 }
1176 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1177
1178 int crash_exclude_mem_range(struct crash_mem *mem,
1179                             unsigned long long mstart, unsigned long long mend)
1180 {
1181         int i, j;
1182         unsigned long long start, end;
1183         struct crash_mem_range temp_range = {0, 0};
1184
1185         for (i = 0; i < mem->nr_ranges; i++) {
1186                 start = mem->ranges[i].start;
1187                 end = mem->ranges[i].end;
1188
1189                 if (mstart > end || mend < start)
1190                         continue;
1191
1192                 /* Truncate any area outside of range */
1193                 if (mstart < start)
1194                         mstart = start;
1195                 if (mend > end)
1196                         mend = end;
1197
1198                 /* Found completely overlapping range */
1199                 if (mstart == start && mend == end) {
1200                         mem->ranges[i].start = 0;
1201                         mem->ranges[i].end = 0;
1202                         if (i < mem->nr_ranges - 1) {
1203                                 /* Shift rest of the ranges to left */
1204                                 for (j = i; j < mem->nr_ranges - 1; j++) {
1205                                         mem->ranges[j].start =
1206                                                 mem->ranges[j+1].start;
1207                                         mem->ranges[j].end =
1208                                                         mem->ranges[j+1].end;
1209                                 }
1210                         }
1211                         mem->nr_ranges--;
1212                         return 0;
1213                 }
1214
1215                 if (mstart > start && mend < end) {
1216                         /* Split original range */
1217                         mem->ranges[i].end = mstart - 1;
1218                         temp_range.start = mend + 1;
1219                         temp_range.end = end;
1220                 } else if (mstart != start)
1221                         mem->ranges[i].end = mstart - 1;
1222                 else
1223                         mem->ranges[i].start = mend + 1;
1224                 break;
1225         }
1226
1227         /* If a split happened, add the split to array */
1228         if (!temp_range.end)
1229                 return 0;
1230
1231         /* Split happened */
1232         if (i == mem->max_nr_ranges - 1)
1233                 return -ENOMEM;
1234
1235         /* Location where new range should go */
1236         j = i + 1;
1237         if (j < mem->nr_ranges) {
1238                 /* Move over all ranges one slot towards the end */
1239                 for (i = mem->nr_ranges - 1; i >= j; i--)
1240                         mem->ranges[i + 1] = mem->ranges[i];
1241         }
1242
1243         mem->ranges[j].start = temp_range.start;
1244         mem->ranges[j].end = temp_range.end;
1245         mem->nr_ranges++;
1246         return 0;
1247 }
1248
1249 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1250                           void **addr, unsigned long *sz)
1251 {
1252         Elf64_Ehdr *ehdr;
1253         Elf64_Phdr *phdr;
1254         unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1255         unsigned char *buf;
1256         unsigned int cpu, i;
1257         unsigned long long notes_addr;
1258         unsigned long mstart, mend;
1259
1260         /* extra phdr for vmcoreinfo elf note */
1261         nr_phdr = nr_cpus + 1;
1262         nr_phdr += mem->nr_ranges;
1263
1264         /*
1265          * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1266          * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1267          * I think this is required by tools like gdb. So same physical
1268          * memory will be mapped in two elf headers. One will contain kernel
1269          * text virtual addresses and other will have __va(physical) addresses.
1270          */
1271
1272         nr_phdr++;
1273         elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1274         elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1275
1276         buf = vzalloc(elf_sz);
1277         if (!buf)
1278                 return -ENOMEM;
1279
1280         ehdr = (Elf64_Ehdr *)buf;
1281         phdr = (Elf64_Phdr *)(ehdr + 1);
1282         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1283         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1284         ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1285         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1286         ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1287         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1288         ehdr->e_type = ET_CORE;
1289         ehdr->e_machine = ELF_ARCH;
1290         ehdr->e_version = EV_CURRENT;
1291         ehdr->e_phoff = sizeof(Elf64_Ehdr);
1292         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1293         ehdr->e_phentsize = sizeof(Elf64_Phdr);
1294
1295         /* Prepare one phdr of type PT_NOTE for each present cpu */
1296         for_each_present_cpu(cpu) {
1297                 phdr->p_type = PT_NOTE;
1298                 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1299                 phdr->p_offset = phdr->p_paddr = notes_addr;
1300                 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1301                 (ehdr->e_phnum)++;
1302                 phdr++;
1303         }
1304
1305         /* Prepare one PT_NOTE header for vmcoreinfo */
1306         phdr->p_type = PT_NOTE;
1307         phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1308         phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1309         (ehdr->e_phnum)++;
1310         phdr++;
1311
1312         /* Prepare PT_LOAD type program header for kernel text region */
1313         if (kernel_map) {
1314                 phdr->p_type = PT_LOAD;
1315                 phdr->p_flags = PF_R|PF_W|PF_X;
1316                 phdr->p_vaddr = (unsigned long) _text;
1317                 phdr->p_filesz = phdr->p_memsz = _end - _text;
1318                 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1319                 ehdr->e_phnum++;
1320                 phdr++;
1321         }
1322
1323         /* Go through all the ranges in mem->ranges[] and prepare phdr */
1324         for (i = 0; i < mem->nr_ranges; i++) {
1325                 mstart = mem->ranges[i].start;
1326                 mend = mem->ranges[i].end;
1327
1328                 phdr->p_type = PT_LOAD;
1329                 phdr->p_flags = PF_R|PF_W|PF_X;
1330                 phdr->p_offset  = mstart;
1331
1332                 phdr->p_paddr = mstart;
1333                 phdr->p_vaddr = (unsigned long) __va(mstart);
1334                 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1335                 phdr->p_align = 0;
1336                 ehdr->e_phnum++;
1337                 phdr++;
1338                 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1339                         phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1340                         ehdr->e_phnum, phdr->p_offset);
1341         }
1342
1343         *addr = buf;
1344         *sz = elf_sz;
1345         return 0;
1346 }