Merge drm/drm-next into drm-misc-next
[linux-2.6-microblaze.git] / kernel / kexec_file.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kexec: kexec_file_load system call
4  *
5  * Copyright (C) 2014 Red Hat Inc.
6  * Authors:
7  *      Vivek Goyal <vgoyal@redhat.com>
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/syscalls.h>
28 #include <linux/vmalloc.h>
29 #include "kexec_internal.h"
30
31 static int kexec_calculate_store_digests(struct kimage *image);
32
33 /*
34  * Currently this is the only default function that is exported as some
35  * architectures need it to do additional handlings.
36  * In the future, other default functions may be exported too if required.
37  */
38 int kexec_image_probe_default(struct kimage *image, void *buf,
39                               unsigned long buf_len)
40 {
41         const struct kexec_file_ops * const *fops;
42         int ret = -ENOEXEC;
43
44         for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
45                 ret = (*fops)->probe(buf, buf_len);
46                 if (!ret) {
47                         image->fops = *fops;
48                         return ret;
49                 }
50         }
51
52         return ret;
53 }
54
55 /* Architectures can provide this probe function */
56 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
57                                          unsigned long buf_len)
58 {
59         return kexec_image_probe_default(image, buf, buf_len);
60 }
61
62 static void *kexec_image_load_default(struct kimage *image)
63 {
64         if (!image->fops || !image->fops->load)
65                 return ERR_PTR(-ENOEXEC);
66
67         return image->fops->load(image, image->kernel_buf,
68                                  image->kernel_buf_len, image->initrd_buf,
69                                  image->initrd_buf_len, image->cmdline_buf,
70                                  image->cmdline_buf_len);
71 }
72
73 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
74 {
75         return kexec_image_load_default(image);
76 }
77
78 int kexec_image_post_load_cleanup_default(struct kimage *image)
79 {
80         if (!image->fops || !image->fops->cleanup)
81                 return 0;
82
83         return image->fops->cleanup(image->image_loader_data);
84 }
85
86 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
87 {
88         return kexec_image_post_load_cleanup_default(image);
89 }
90
91 #ifdef CONFIG_KEXEC_SIG
92 static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
93                                           unsigned long buf_len)
94 {
95         if (!image->fops || !image->fops->verify_sig) {
96                 pr_debug("kernel loader does not support signature verification.\n");
97                 return -EKEYREJECTED;
98         }
99
100         return image->fops->verify_sig(buf, buf_len);
101 }
102
103 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
104                                         unsigned long buf_len)
105 {
106         return kexec_image_verify_sig_default(image, buf, buf_len);
107 }
108 #endif
109
110 /*
111  * arch_kexec_apply_relocations_add - apply relocations of type RELA
112  * @pi:         Purgatory to be relocated.
113  * @section:    Section relocations applying to.
114  * @relsec:     Section containing RELAs.
115  * @symtab:     Corresponding symtab.
116  *
117  * Return: 0 on success, negative errno on error.
118  */
119 int __weak
120 arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
121                                  const Elf_Shdr *relsec, const Elf_Shdr *symtab)
122 {
123         pr_err("RELA relocation unsupported.\n");
124         return -ENOEXEC;
125 }
126
127 /*
128  * arch_kexec_apply_relocations - apply relocations of type REL
129  * @pi:         Purgatory to be relocated.
130  * @section:    Section relocations applying to.
131  * @relsec:     Section containing RELs.
132  * @symtab:     Corresponding symtab.
133  *
134  * Return: 0 on success, negative errno on error.
135  */
136 int __weak
137 arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
138                              const Elf_Shdr *relsec, const Elf_Shdr *symtab)
139 {
140         pr_err("REL relocation unsupported.\n");
141         return -ENOEXEC;
142 }
143
144 /*
145  * Free up memory used by kernel, initrd, and command line. This is temporary
146  * memory allocation which is not needed any more after these buffers have
147  * been loaded into separate segments and have been copied elsewhere.
148  */
149 void kimage_file_post_load_cleanup(struct kimage *image)
150 {
151         struct purgatory_info *pi = &image->purgatory_info;
152
153         vfree(image->kernel_buf);
154         image->kernel_buf = NULL;
155
156         vfree(image->initrd_buf);
157         image->initrd_buf = NULL;
158
159         kfree(image->cmdline_buf);
160         image->cmdline_buf = NULL;
161
162         vfree(pi->purgatory_buf);
163         pi->purgatory_buf = NULL;
164
165         vfree(pi->sechdrs);
166         pi->sechdrs = NULL;
167
168         /* See if architecture has anything to cleanup post load */
169         arch_kimage_file_post_load_cleanup(image);
170
171         /*
172          * Above call should have called into bootloader to free up
173          * any data stored in kimage->image_loader_data. It should
174          * be ok now to free it up.
175          */
176         kfree(image->image_loader_data);
177         image->image_loader_data = NULL;
178 }
179
180 #ifdef CONFIG_KEXEC_SIG
181 static int
182 kimage_validate_signature(struct kimage *image)
183 {
184         const char *reason;
185         int ret;
186
187         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
188                                            image->kernel_buf_len);
189         switch (ret) {
190         case 0:
191                 break;
192
193                 /* Certain verification errors are non-fatal if we're not
194                  * checking errors, provided we aren't mandating that there
195                  * must be a valid signature.
196                  */
197         case -ENODATA:
198                 reason = "kexec of unsigned image";
199                 goto decide;
200         case -ENOPKG:
201                 reason = "kexec of image with unsupported crypto";
202                 goto decide;
203         case -ENOKEY:
204                 reason = "kexec of image with unavailable key";
205         decide:
206                 if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
207                         pr_notice("%s rejected\n", reason);
208                         return ret;
209                 }
210
211                 /* If IMA is guaranteed to appraise a signature on the kexec
212                  * image, permit it even if the kernel is otherwise locked
213                  * down.
214                  */
215                 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
216                     security_locked_down(LOCKDOWN_KEXEC))
217                         return -EPERM;
218
219                 return 0;
220
221                 /* All other errors are fatal, including nomem, unparseable
222                  * signatures and signature check failures - even if signatures
223                  * aren't required.
224                  */
225         default:
226                 pr_notice("kernel signature verification failed (%d).\n", ret);
227         }
228
229         return ret;
230 }
231 #endif
232
233 /*
234  * In file mode list of segments is prepared by kernel. Copy relevant
235  * data from user space, do error checking, prepare segment list
236  */
237 static int
238 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
239                              const char __user *cmdline_ptr,
240                              unsigned long cmdline_len, unsigned flags)
241 {
242         int ret;
243         void *ldata;
244         loff_t size;
245
246         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
247                                        &size, INT_MAX, READING_KEXEC_IMAGE);
248         if (ret)
249                 return ret;
250         image->kernel_buf_len = size;
251
252         /* Call arch image probe handlers */
253         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
254                                             image->kernel_buf_len);
255         if (ret)
256                 goto out;
257
258 #ifdef CONFIG_KEXEC_SIG
259         ret = kimage_validate_signature(image);
260
261         if (ret)
262                 goto out;
263 #endif
264         /* It is possible that there no initramfs is being loaded */
265         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
266                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
267                                                &size, INT_MAX,
268                                                READING_KEXEC_INITRAMFS);
269                 if (ret)
270                         goto out;
271                 image->initrd_buf_len = size;
272         }
273
274         if (cmdline_len) {
275                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
276                 if (IS_ERR(image->cmdline_buf)) {
277                         ret = PTR_ERR(image->cmdline_buf);
278                         image->cmdline_buf = NULL;
279                         goto out;
280                 }
281
282                 image->cmdline_buf_len = cmdline_len;
283
284                 /* command line should be a string with last byte null */
285                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
286                         ret = -EINVAL;
287                         goto out;
288                 }
289
290                 ima_kexec_cmdline(image->cmdline_buf,
291                                   image->cmdline_buf_len - 1);
292         }
293
294         /* IMA needs to pass the measurement list to the next kernel. */
295         ima_add_kexec_buffer(image);
296
297         /* Call arch image load handlers */
298         ldata = arch_kexec_kernel_image_load(image);
299
300         if (IS_ERR(ldata)) {
301                 ret = PTR_ERR(ldata);
302                 goto out;
303         }
304
305         image->image_loader_data = ldata;
306 out:
307         /* In case of error, free up all allocated memory in this function */
308         if (ret)
309                 kimage_file_post_load_cleanup(image);
310         return ret;
311 }
312
313 static int
314 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
315                        int initrd_fd, const char __user *cmdline_ptr,
316                        unsigned long cmdline_len, unsigned long flags)
317 {
318         int ret;
319         struct kimage *image;
320         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
321
322         image = do_kimage_alloc_init();
323         if (!image)
324                 return -ENOMEM;
325
326         image->file_mode = 1;
327
328         if (kexec_on_panic) {
329                 /* Enable special crash kernel control page alloc policy. */
330                 image->control_page = crashk_res.start;
331                 image->type = KEXEC_TYPE_CRASH;
332         }
333
334         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
335                                            cmdline_ptr, cmdline_len, flags);
336         if (ret)
337                 goto out_free_image;
338
339         ret = sanity_check_segment_list(image);
340         if (ret)
341                 goto out_free_post_load_bufs;
342
343         ret = -ENOMEM;
344         image->control_code_page = kimage_alloc_control_pages(image,
345                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
346         if (!image->control_code_page) {
347                 pr_err("Could not allocate control_code_buffer\n");
348                 goto out_free_post_load_bufs;
349         }
350
351         if (!kexec_on_panic) {
352                 image->swap_page = kimage_alloc_control_pages(image, 0);
353                 if (!image->swap_page) {
354                         pr_err("Could not allocate swap buffer\n");
355                         goto out_free_control_pages;
356                 }
357         }
358
359         *rimage = image;
360         return 0;
361 out_free_control_pages:
362         kimage_free_page_list(&image->control_pages);
363 out_free_post_load_bufs:
364         kimage_file_post_load_cleanup(image);
365 out_free_image:
366         kfree(image);
367         return ret;
368 }
369
370 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
371                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
372                 unsigned long, flags)
373 {
374         int ret = 0, i;
375         struct kimage **dest_image, *image;
376
377         /* We only trust the superuser with rebooting the system. */
378         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
379                 return -EPERM;
380
381         /* Make sure we have a legal set of flags */
382         if (flags != (flags & KEXEC_FILE_FLAGS))
383                 return -EINVAL;
384
385         image = NULL;
386
387         if (!mutex_trylock(&kexec_mutex))
388                 return -EBUSY;
389
390         dest_image = &kexec_image;
391         if (flags & KEXEC_FILE_ON_CRASH) {
392                 dest_image = &kexec_crash_image;
393                 if (kexec_crash_image)
394                         arch_kexec_unprotect_crashkres();
395         }
396
397         if (flags & KEXEC_FILE_UNLOAD)
398                 goto exchange;
399
400         /*
401          * In case of crash, new kernel gets loaded in reserved region. It is
402          * same memory where old crash kernel might be loaded. Free any
403          * current crash dump kernel before we corrupt it.
404          */
405         if (flags & KEXEC_FILE_ON_CRASH)
406                 kimage_free(xchg(&kexec_crash_image, NULL));
407
408         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
409                                      cmdline_len, flags);
410         if (ret)
411                 goto out;
412
413         ret = machine_kexec_prepare(image);
414         if (ret)
415                 goto out;
416
417         /*
418          * Some architecture(like S390) may touch the crash memory before
419          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
420          */
421         ret = kimage_crash_copy_vmcoreinfo(image);
422         if (ret)
423                 goto out;
424
425         ret = kexec_calculate_store_digests(image);
426         if (ret)
427                 goto out;
428
429         for (i = 0; i < image->nr_segments; i++) {
430                 struct kexec_segment *ksegment;
431
432                 ksegment = &image->segment[i];
433                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
434                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
435                          ksegment->memsz);
436
437                 ret = kimage_load_segment(image, &image->segment[i]);
438                 if (ret)
439                         goto out;
440         }
441
442         kimage_terminate(image);
443
444         /*
445          * Free up any temporary buffers allocated which are not needed
446          * after image has been loaded
447          */
448         kimage_file_post_load_cleanup(image);
449 exchange:
450         image = xchg(dest_image, image);
451 out:
452         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
453                 arch_kexec_protect_crashkres();
454
455         mutex_unlock(&kexec_mutex);
456         kimage_free(image);
457         return ret;
458 }
459
460 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
461                                     struct kexec_buf *kbuf)
462 {
463         struct kimage *image = kbuf->image;
464         unsigned long temp_start, temp_end;
465
466         temp_end = min(end, kbuf->buf_max);
467         temp_start = temp_end - kbuf->memsz;
468
469         do {
470                 /* align down start */
471                 temp_start = temp_start & (~(kbuf->buf_align - 1));
472
473                 if (temp_start < start || temp_start < kbuf->buf_min)
474                         return 0;
475
476                 temp_end = temp_start + kbuf->memsz - 1;
477
478                 /*
479                  * Make sure this does not conflict with any of existing
480                  * segments
481                  */
482                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
483                         temp_start = temp_start - PAGE_SIZE;
484                         continue;
485                 }
486
487                 /* We found a suitable memory range */
488                 break;
489         } while (1);
490
491         /* If we are here, we found a suitable memory range */
492         kbuf->mem = temp_start;
493
494         /* Success, stop navigating through remaining System RAM ranges */
495         return 1;
496 }
497
498 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
499                                      struct kexec_buf *kbuf)
500 {
501         struct kimage *image = kbuf->image;
502         unsigned long temp_start, temp_end;
503
504         temp_start = max(start, kbuf->buf_min);
505
506         do {
507                 temp_start = ALIGN(temp_start, kbuf->buf_align);
508                 temp_end = temp_start + kbuf->memsz - 1;
509
510                 if (temp_end > end || temp_end > kbuf->buf_max)
511                         return 0;
512                 /*
513                  * Make sure this does not conflict with any of existing
514                  * segments
515                  */
516                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
517                         temp_start = temp_start + PAGE_SIZE;
518                         continue;
519                 }
520
521                 /* We found a suitable memory range */
522                 break;
523         } while (1);
524
525         /* If we are here, we found a suitable memory range */
526         kbuf->mem = temp_start;
527
528         /* Success, stop navigating through remaining System RAM ranges */
529         return 1;
530 }
531
532 static int locate_mem_hole_callback(struct resource *res, void *arg)
533 {
534         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
535         u64 start = res->start, end = res->end;
536         unsigned long sz = end - start + 1;
537
538         /* Returning 0 will take to next memory range */
539         if (sz < kbuf->memsz)
540                 return 0;
541
542         if (end < kbuf->buf_min || start > kbuf->buf_max)
543                 return 0;
544
545         /*
546          * Allocate memory top down with-in ram range. Otherwise bottom up
547          * allocation.
548          */
549         if (kbuf->top_down)
550                 return locate_mem_hole_top_down(start, end, kbuf);
551         return locate_mem_hole_bottom_up(start, end, kbuf);
552 }
553
554 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
555 static int kexec_walk_memblock(struct kexec_buf *kbuf,
556                                int (*func)(struct resource *, void *))
557 {
558         int ret = 0;
559         u64 i;
560         phys_addr_t mstart, mend;
561         struct resource res = { };
562
563         if (kbuf->image->type == KEXEC_TYPE_CRASH)
564                 return func(&crashk_res, kbuf);
565
566         if (kbuf->top_down) {
567                 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
568                                                 &mstart, &mend, NULL) {
569                         /*
570                          * In memblock, end points to the first byte after the
571                          * range while in kexec, end points to the last byte
572                          * in the range.
573                          */
574                         res.start = mstart;
575                         res.end = mend - 1;
576                         ret = func(&res, kbuf);
577                         if (ret)
578                                 break;
579                 }
580         } else {
581                 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
582                                         &mstart, &mend, NULL) {
583                         /*
584                          * In memblock, end points to the first byte after the
585                          * range while in kexec, end points to the last byte
586                          * in the range.
587                          */
588                         res.start = mstart;
589                         res.end = mend - 1;
590                         ret = func(&res, kbuf);
591                         if (ret)
592                                 break;
593                 }
594         }
595
596         return ret;
597 }
598 #else
599 static int kexec_walk_memblock(struct kexec_buf *kbuf,
600                                int (*func)(struct resource *, void *))
601 {
602         return 0;
603 }
604 #endif
605
606 /**
607  * kexec_walk_resources - call func(data) on free memory regions
608  * @kbuf:       Context info for the search. Also passed to @func.
609  * @func:       Function to call for each memory region.
610  *
611  * Return: The memory walk will stop when func returns a non-zero value
612  * and that value will be returned. If all free regions are visited without
613  * func returning non-zero, then zero will be returned.
614  */
615 static int kexec_walk_resources(struct kexec_buf *kbuf,
616                                 int (*func)(struct resource *, void *))
617 {
618         if (kbuf->image->type == KEXEC_TYPE_CRASH)
619                 return walk_iomem_res_desc(crashk_res.desc,
620                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
621                                            crashk_res.start, crashk_res.end,
622                                            kbuf, func);
623         else
624                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
625 }
626
627 /**
628  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
629  * @kbuf:       Parameters for the memory search.
630  *
631  * On success, kbuf->mem will have the start address of the memory region found.
632  *
633  * Return: 0 on success, negative errno on error.
634  */
635 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
636 {
637         int ret;
638
639         /* Arch knows where to place */
640         if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
641                 return 0;
642
643         if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
644                 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
645         else
646                 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
647
648         return ret == 1 ? 0 : -EADDRNOTAVAIL;
649 }
650
651 /**
652  * kexec_add_buffer - place a buffer in a kexec segment
653  * @kbuf:       Buffer contents and memory parameters.
654  *
655  * This function assumes that kexec_mutex is held.
656  * On successful return, @kbuf->mem will have the physical address of
657  * the buffer in memory.
658  *
659  * Return: 0 on success, negative errno on error.
660  */
661 int kexec_add_buffer(struct kexec_buf *kbuf)
662 {
663
664         struct kexec_segment *ksegment;
665         int ret;
666
667         /* Currently adding segment this way is allowed only in file mode */
668         if (!kbuf->image->file_mode)
669                 return -EINVAL;
670
671         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
672                 return -EINVAL;
673
674         /*
675          * Make sure we are not trying to add buffer after allocating
676          * control pages. All segments need to be placed first before
677          * any control pages are allocated. As control page allocation
678          * logic goes through list of segments to make sure there are
679          * no destination overlaps.
680          */
681         if (!list_empty(&kbuf->image->control_pages)) {
682                 WARN_ON(1);
683                 return -EINVAL;
684         }
685
686         /* Ensure minimum alignment needed for segments. */
687         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
688         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
689
690         /* Walk the RAM ranges and allocate a suitable range for the buffer */
691         ret = kexec_locate_mem_hole(kbuf);
692         if (ret)
693                 return ret;
694
695         /* Found a suitable memory range */
696         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
697         ksegment->kbuf = kbuf->buffer;
698         ksegment->bufsz = kbuf->bufsz;
699         ksegment->mem = kbuf->mem;
700         ksegment->memsz = kbuf->memsz;
701         kbuf->image->nr_segments++;
702         return 0;
703 }
704
705 /* Calculate and store the digest of segments */
706 static int kexec_calculate_store_digests(struct kimage *image)
707 {
708         struct crypto_shash *tfm;
709         struct shash_desc *desc;
710         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
711         size_t desc_size, nullsz;
712         char *digest;
713         void *zero_buf;
714         struct kexec_sha_region *sha_regions;
715         struct purgatory_info *pi = &image->purgatory_info;
716
717         if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
718                 return 0;
719
720         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
721         zero_buf_sz = PAGE_SIZE;
722
723         tfm = crypto_alloc_shash("sha256", 0, 0);
724         if (IS_ERR(tfm)) {
725                 ret = PTR_ERR(tfm);
726                 goto out;
727         }
728
729         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
730         desc = kzalloc(desc_size, GFP_KERNEL);
731         if (!desc) {
732                 ret = -ENOMEM;
733                 goto out_free_tfm;
734         }
735
736         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
737         sha_regions = vzalloc(sha_region_sz);
738         if (!sha_regions)
739                 goto out_free_desc;
740
741         desc->tfm   = tfm;
742
743         ret = crypto_shash_init(desc);
744         if (ret < 0)
745                 goto out_free_sha_regions;
746
747         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
748         if (!digest) {
749                 ret = -ENOMEM;
750                 goto out_free_sha_regions;
751         }
752
753         for (j = i = 0; i < image->nr_segments; i++) {
754                 struct kexec_segment *ksegment;
755
756                 ksegment = &image->segment[i];
757                 /*
758                  * Skip purgatory as it will be modified once we put digest
759                  * info in purgatory.
760                  */
761                 if (ksegment->kbuf == pi->purgatory_buf)
762                         continue;
763
764                 ret = crypto_shash_update(desc, ksegment->kbuf,
765                                           ksegment->bufsz);
766                 if (ret)
767                         break;
768
769                 /*
770                  * Assume rest of the buffer is filled with zero and
771                  * update digest accordingly.
772                  */
773                 nullsz = ksegment->memsz - ksegment->bufsz;
774                 while (nullsz) {
775                         unsigned long bytes = nullsz;
776
777                         if (bytes > zero_buf_sz)
778                                 bytes = zero_buf_sz;
779                         ret = crypto_shash_update(desc, zero_buf, bytes);
780                         if (ret)
781                                 break;
782                         nullsz -= bytes;
783                 }
784
785                 if (ret)
786                         break;
787
788                 sha_regions[j].start = ksegment->mem;
789                 sha_regions[j].len = ksegment->memsz;
790                 j++;
791         }
792
793         if (!ret) {
794                 ret = crypto_shash_final(desc, digest);
795                 if (ret)
796                         goto out_free_digest;
797                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
798                                                      sha_regions, sha_region_sz, 0);
799                 if (ret)
800                         goto out_free_digest;
801
802                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
803                                                      digest, SHA256_DIGEST_SIZE, 0);
804                 if (ret)
805                         goto out_free_digest;
806         }
807
808 out_free_digest:
809         kfree(digest);
810 out_free_sha_regions:
811         vfree(sha_regions);
812 out_free_desc:
813         kfree(desc);
814 out_free_tfm:
815         kfree(tfm);
816 out:
817         return ret;
818 }
819
820 #ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
821 /*
822  * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
823  * @pi:         Purgatory to be loaded.
824  * @kbuf:       Buffer to setup.
825  *
826  * Allocates the memory needed for the buffer. Caller is responsible to free
827  * the memory after use.
828  *
829  * Return: 0 on success, negative errno on error.
830  */
831 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
832                                       struct kexec_buf *kbuf)
833 {
834         const Elf_Shdr *sechdrs;
835         unsigned long bss_align;
836         unsigned long bss_sz;
837         unsigned long align;
838         int i, ret;
839
840         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
841         kbuf->buf_align = bss_align = 1;
842         kbuf->bufsz = bss_sz = 0;
843
844         for (i = 0; i < pi->ehdr->e_shnum; i++) {
845                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
846                         continue;
847
848                 align = sechdrs[i].sh_addralign;
849                 if (sechdrs[i].sh_type != SHT_NOBITS) {
850                         if (kbuf->buf_align < align)
851                                 kbuf->buf_align = align;
852                         kbuf->bufsz = ALIGN(kbuf->bufsz, align);
853                         kbuf->bufsz += sechdrs[i].sh_size;
854                 } else {
855                         if (bss_align < align)
856                                 bss_align = align;
857                         bss_sz = ALIGN(bss_sz, align);
858                         bss_sz += sechdrs[i].sh_size;
859                 }
860         }
861         kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
862         kbuf->memsz = kbuf->bufsz + bss_sz;
863         if (kbuf->buf_align < bss_align)
864                 kbuf->buf_align = bss_align;
865
866         kbuf->buffer = vzalloc(kbuf->bufsz);
867         if (!kbuf->buffer)
868                 return -ENOMEM;
869         pi->purgatory_buf = kbuf->buffer;
870
871         ret = kexec_add_buffer(kbuf);
872         if (ret)
873                 goto out;
874
875         return 0;
876 out:
877         vfree(pi->purgatory_buf);
878         pi->purgatory_buf = NULL;
879         return ret;
880 }
881
882 /*
883  * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
884  * @pi:         Purgatory to be loaded.
885  * @kbuf:       Buffer prepared to store purgatory.
886  *
887  * Allocates the memory needed for the buffer. Caller is responsible to free
888  * the memory after use.
889  *
890  * Return: 0 on success, negative errno on error.
891  */
892 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
893                                          struct kexec_buf *kbuf)
894 {
895         unsigned long bss_addr;
896         unsigned long offset;
897         Elf_Shdr *sechdrs;
898         int i;
899
900         /*
901          * The section headers in kexec_purgatory are read-only. In order to
902          * have them modifiable make a temporary copy.
903          */
904         sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
905         if (!sechdrs)
906                 return -ENOMEM;
907         memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
908                pi->ehdr->e_shnum * sizeof(Elf_Shdr));
909         pi->sechdrs = sechdrs;
910
911         offset = 0;
912         bss_addr = kbuf->mem + kbuf->bufsz;
913         kbuf->image->start = pi->ehdr->e_entry;
914
915         for (i = 0; i < pi->ehdr->e_shnum; i++) {
916                 unsigned long align;
917                 void *src, *dst;
918
919                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
920                         continue;
921
922                 align = sechdrs[i].sh_addralign;
923                 if (sechdrs[i].sh_type == SHT_NOBITS) {
924                         bss_addr = ALIGN(bss_addr, align);
925                         sechdrs[i].sh_addr = bss_addr;
926                         bss_addr += sechdrs[i].sh_size;
927                         continue;
928                 }
929
930                 offset = ALIGN(offset, align);
931                 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
932                     pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
933                     pi->ehdr->e_entry < (sechdrs[i].sh_addr
934                                          + sechdrs[i].sh_size)) {
935                         kbuf->image->start -= sechdrs[i].sh_addr;
936                         kbuf->image->start += kbuf->mem + offset;
937                 }
938
939                 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
940                 dst = pi->purgatory_buf + offset;
941                 memcpy(dst, src, sechdrs[i].sh_size);
942
943                 sechdrs[i].sh_addr = kbuf->mem + offset;
944                 sechdrs[i].sh_offset = offset;
945                 offset += sechdrs[i].sh_size;
946         }
947
948         return 0;
949 }
950
951 static int kexec_apply_relocations(struct kimage *image)
952 {
953         int i, ret;
954         struct purgatory_info *pi = &image->purgatory_info;
955         const Elf_Shdr *sechdrs;
956
957         sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
958
959         for (i = 0; i < pi->ehdr->e_shnum; i++) {
960                 const Elf_Shdr *relsec;
961                 const Elf_Shdr *symtab;
962                 Elf_Shdr *section;
963
964                 relsec = sechdrs + i;
965
966                 if (relsec->sh_type != SHT_RELA &&
967                     relsec->sh_type != SHT_REL)
968                         continue;
969
970                 /*
971                  * For section of type SHT_RELA/SHT_REL,
972                  * ->sh_link contains section header index of associated
973                  * symbol table. And ->sh_info contains section header
974                  * index of section to which relocations apply.
975                  */
976                 if (relsec->sh_info >= pi->ehdr->e_shnum ||
977                     relsec->sh_link >= pi->ehdr->e_shnum)
978                         return -ENOEXEC;
979
980                 section = pi->sechdrs + relsec->sh_info;
981                 symtab = sechdrs + relsec->sh_link;
982
983                 if (!(section->sh_flags & SHF_ALLOC))
984                         continue;
985
986                 /*
987                  * symtab->sh_link contain section header index of associated
988                  * string table.
989                  */
990                 if (symtab->sh_link >= pi->ehdr->e_shnum)
991                         /* Invalid section number? */
992                         continue;
993
994                 /*
995                  * Respective architecture needs to provide support for applying
996                  * relocations of type SHT_RELA/SHT_REL.
997                  */
998                 if (relsec->sh_type == SHT_RELA)
999                         ret = arch_kexec_apply_relocations_add(pi, section,
1000                                                                relsec, symtab);
1001                 else if (relsec->sh_type == SHT_REL)
1002                         ret = arch_kexec_apply_relocations(pi, section,
1003                                                            relsec, symtab);
1004                 if (ret)
1005                         return ret;
1006         }
1007
1008         return 0;
1009 }
1010
1011 /*
1012  * kexec_load_purgatory - Load and relocate the purgatory object.
1013  * @image:      Image to add the purgatory to.
1014  * @kbuf:       Memory parameters to use.
1015  *
1016  * Allocates the memory needed for image->purgatory_info.sechdrs and
1017  * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1018  * to free the memory after use.
1019  *
1020  * Return: 0 on success, negative errno on error.
1021  */
1022 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1023 {
1024         struct purgatory_info *pi = &image->purgatory_info;
1025         int ret;
1026
1027         if (kexec_purgatory_size <= 0)
1028                 return -EINVAL;
1029
1030         pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1031
1032         ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1033         if (ret)
1034                 return ret;
1035
1036         ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1037         if (ret)
1038                 goto out_free_kbuf;
1039
1040         ret = kexec_apply_relocations(image);
1041         if (ret)
1042                 goto out;
1043
1044         return 0;
1045 out:
1046         vfree(pi->sechdrs);
1047         pi->sechdrs = NULL;
1048 out_free_kbuf:
1049         vfree(pi->purgatory_buf);
1050         pi->purgatory_buf = NULL;
1051         return ret;
1052 }
1053
1054 /*
1055  * kexec_purgatory_find_symbol - find a symbol in the purgatory
1056  * @pi:         Purgatory to search in.
1057  * @name:       Name of the symbol.
1058  *
1059  * Return: pointer to symbol in read-only symtab on success, NULL on error.
1060  */
1061 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1062                                                   const char *name)
1063 {
1064         const Elf_Shdr *sechdrs;
1065         const Elf_Ehdr *ehdr;
1066         const Elf_Sym *syms;
1067         const char *strtab;
1068         int i, k;
1069
1070         if (!pi->ehdr)
1071                 return NULL;
1072
1073         ehdr = pi->ehdr;
1074         sechdrs = (void *)ehdr + ehdr->e_shoff;
1075
1076         for (i = 0; i < ehdr->e_shnum; i++) {
1077                 if (sechdrs[i].sh_type != SHT_SYMTAB)
1078                         continue;
1079
1080                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1081                         /* Invalid strtab section number */
1082                         continue;
1083                 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1084                 syms = (void *)ehdr + sechdrs[i].sh_offset;
1085
1086                 /* Go through symbols for a match */
1087                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1088                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1089                                 continue;
1090
1091                         if (strcmp(strtab + syms[k].st_name, name) != 0)
1092                                 continue;
1093
1094                         if (syms[k].st_shndx == SHN_UNDEF ||
1095                             syms[k].st_shndx >= ehdr->e_shnum) {
1096                                 pr_debug("Symbol: %s has bad section index %d.\n",
1097                                                 name, syms[k].st_shndx);
1098                                 return NULL;
1099                         }
1100
1101                         /* Found the symbol we are looking for */
1102                         return &syms[k];
1103                 }
1104         }
1105
1106         return NULL;
1107 }
1108
1109 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1110 {
1111         struct purgatory_info *pi = &image->purgatory_info;
1112         const Elf_Sym *sym;
1113         Elf_Shdr *sechdr;
1114
1115         sym = kexec_purgatory_find_symbol(pi, name);
1116         if (!sym)
1117                 return ERR_PTR(-EINVAL);
1118
1119         sechdr = &pi->sechdrs[sym->st_shndx];
1120
1121         /*
1122          * Returns the address where symbol will finally be loaded after
1123          * kexec_load_segment()
1124          */
1125         return (void *)(sechdr->sh_addr + sym->st_value);
1126 }
1127
1128 /*
1129  * Get or set value of a symbol. If "get_value" is true, symbol value is
1130  * returned in buf otherwise symbol value is set based on value in buf.
1131  */
1132 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1133                                    void *buf, unsigned int size, bool get_value)
1134 {
1135         struct purgatory_info *pi = &image->purgatory_info;
1136         const Elf_Sym *sym;
1137         Elf_Shdr *sec;
1138         char *sym_buf;
1139
1140         sym = kexec_purgatory_find_symbol(pi, name);
1141         if (!sym)
1142                 return -EINVAL;
1143
1144         if (sym->st_size != size) {
1145                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1146                        name, (unsigned long)sym->st_size, size);
1147                 return -EINVAL;
1148         }
1149
1150         sec = pi->sechdrs + sym->st_shndx;
1151
1152         if (sec->sh_type == SHT_NOBITS) {
1153                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1154                        get_value ? "get" : "set");
1155                 return -EINVAL;
1156         }
1157
1158         sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1159
1160         if (get_value)
1161                 memcpy((void *)buf, sym_buf, size);
1162         else
1163                 memcpy((void *)sym_buf, buf, size);
1164
1165         return 0;
1166 }
1167 #endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1168
1169 int crash_exclude_mem_range(struct crash_mem *mem,
1170                             unsigned long long mstart, unsigned long long mend)
1171 {
1172         int i, j;
1173         unsigned long long start, end;
1174         struct crash_mem_range temp_range = {0, 0};
1175
1176         for (i = 0; i < mem->nr_ranges; i++) {
1177                 start = mem->ranges[i].start;
1178                 end = mem->ranges[i].end;
1179
1180                 if (mstart > end || mend < start)
1181                         continue;
1182
1183                 /* Truncate any area outside of range */
1184                 if (mstart < start)
1185                         mstart = start;
1186                 if (mend > end)
1187                         mend = end;
1188
1189                 /* Found completely overlapping range */
1190                 if (mstart == start && mend == end) {
1191                         mem->ranges[i].start = 0;
1192                         mem->ranges[i].end = 0;
1193                         if (i < mem->nr_ranges - 1) {
1194                                 /* Shift rest of the ranges to left */
1195                                 for (j = i; j < mem->nr_ranges - 1; j++) {
1196                                         mem->ranges[j].start =
1197                                                 mem->ranges[j+1].start;
1198                                         mem->ranges[j].end =
1199                                                         mem->ranges[j+1].end;
1200                                 }
1201                         }
1202                         mem->nr_ranges--;
1203                         return 0;
1204                 }
1205
1206                 if (mstart > start && mend < end) {
1207                         /* Split original range */
1208                         mem->ranges[i].end = mstart - 1;
1209                         temp_range.start = mend + 1;
1210                         temp_range.end = end;
1211                 } else if (mstart != start)
1212                         mem->ranges[i].end = mstart - 1;
1213                 else
1214                         mem->ranges[i].start = mend + 1;
1215                 break;
1216         }
1217
1218         /* If a split happened, add the split to array */
1219         if (!temp_range.end)
1220                 return 0;
1221
1222         /* Split happened */
1223         if (i == mem->max_nr_ranges - 1)
1224                 return -ENOMEM;
1225
1226         /* Location where new range should go */
1227         j = i + 1;
1228         if (j < mem->nr_ranges) {
1229                 /* Move over all ranges one slot towards the end */
1230                 for (i = mem->nr_ranges - 1; i >= j; i--)
1231                         mem->ranges[i + 1] = mem->ranges[i];
1232         }
1233
1234         mem->ranges[j].start = temp_range.start;
1235         mem->ranges[j].end = temp_range.end;
1236         mem->nr_ranges++;
1237         return 0;
1238 }
1239
1240 int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1241                           void **addr, unsigned long *sz)
1242 {
1243         Elf64_Ehdr *ehdr;
1244         Elf64_Phdr *phdr;
1245         unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1246         unsigned char *buf;
1247         unsigned int cpu, i;
1248         unsigned long long notes_addr;
1249         unsigned long mstart, mend;
1250
1251         /* extra phdr for vmcoreinfo elf note */
1252         nr_phdr = nr_cpus + 1;
1253         nr_phdr += mem->nr_ranges;
1254
1255         /*
1256          * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1257          * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1258          * I think this is required by tools like gdb. So same physical
1259          * memory will be mapped in two elf headers. One will contain kernel
1260          * text virtual addresses and other will have __va(physical) addresses.
1261          */
1262
1263         nr_phdr++;
1264         elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1265         elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1266
1267         buf = vzalloc(elf_sz);
1268         if (!buf)
1269                 return -ENOMEM;
1270
1271         ehdr = (Elf64_Ehdr *)buf;
1272         phdr = (Elf64_Phdr *)(ehdr + 1);
1273         memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1274         ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1275         ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1276         ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1277         ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1278         memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1279         ehdr->e_type = ET_CORE;
1280         ehdr->e_machine = ELF_ARCH;
1281         ehdr->e_version = EV_CURRENT;
1282         ehdr->e_phoff = sizeof(Elf64_Ehdr);
1283         ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1284         ehdr->e_phentsize = sizeof(Elf64_Phdr);
1285
1286         /* Prepare one phdr of type PT_NOTE for each present cpu */
1287         for_each_present_cpu(cpu) {
1288                 phdr->p_type = PT_NOTE;
1289                 notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1290                 phdr->p_offset = phdr->p_paddr = notes_addr;
1291                 phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1292                 (ehdr->e_phnum)++;
1293                 phdr++;
1294         }
1295
1296         /* Prepare one PT_NOTE header for vmcoreinfo */
1297         phdr->p_type = PT_NOTE;
1298         phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1299         phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1300         (ehdr->e_phnum)++;
1301         phdr++;
1302
1303         /* Prepare PT_LOAD type program header for kernel text region */
1304         if (kernel_map) {
1305                 phdr->p_type = PT_LOAD;
1306                 phdr->p_flags = PF_R|PF_W|PF_X;
1307                 phdr->p_vaddr = (unsigned long) _text;
1308                 phdr->p_filesz = phdr->p_memsz = _end - _text;
1309                 phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1310                 ehdr->e_phnum++;
1311                 phdr++;
1312         }
1313
1314         /* Go through all the ranges in mem->ranges[] and prepare phdr */
1315         for (i = 0; i < mem->nr_ranges; i++) {
1316                 mstart = mem->ranges[i].start;
1317                 mend = mem->ranges[i].end;
1318
1319                 phdr->p_type = PT_LOAD;
1320                 phdr->p_flags = PF_R|PF_W|PF_X;
1321                 phdr->p_offset  = mstart;
1322
1323                 phdr->p_paddr = mstart;
1324                 phdr->p_vaddr = (unsigned long) __va(mstart);
1325                 phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1326                 phdr->p_align = 0;
1327                 ehdr->e_phnum++;
1328                 phdr++;
1329                 pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1330                         phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1331                         ehdr->e_phnum, phdr->p_offset);
1332         }
1333
1334         *addr = buf;
1335         *sz = elf_sz;
1336         return 0;
1337 }