Merge tag 'powerpc-5.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux-2.6-microblaze.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kcsan: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/moduleparam.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22
23 #include "encoding.h"
24 #include "kcsan.h"
25 #include "permissive.h"
26
27 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
28 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
29 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
30 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
31 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
32
33 #ifdef MODULE_PARAM_PREFIX
34 #undef MODULE_PARAM_PREFIX
35 #endif
36 #define MODULE_PARAM_PREFIX "kcsan."
37 module_param_named(early_enable, kcsan_early_enable, bool, 0);
38 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
39 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
40 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
41 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
42
43 bool kcsan_enabled;
44
45 /* Per-CPU kcsan_ctx for interrupts */
46 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
47         .disable_count          = 0,
48         .atomic_next            = 0,
49         .atomic_nest_count      = 0,
50         .in_flat_atomic         = false,
51         .access_mask            = 0,
52         .scoped_accesses        = {LIST_POISON1, NULL},
53 };
54
55 /*
56  * Helper macros to index into adjacent slots, starting from address slot
57  * itself, followed by the right and left slots.
58  *
59  * The purpose is 2-fold:
60  *
61  *      1. if during insertion the address slot is already occupied, check if
62  *         any adjacent slots are free;
63  *      2. accesses that straddle a slot boundary due to size that exceeds a
64  *         slot's range may check adjacent slots if any watchpoint matches.
65  *
66  * Note that accesses with very large size may still miss a watchpoint; however,
67  * given this should be rare, this is a reasonable trade-off to make, since this
68  * will avoid:
69  *
70  *      1. excessive contention between watchpoint checks and setup;
71  *      2. larger number of simultaneous watchpoints without sacrificing
72  *         performance.
73  *
74  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
75  *
76  *   slot=0:  [ 1,  2,  0]
77  *   slot=9:  [10, 11,  9]
78  *   slot=63: [64, 65, 63]
79  */
80 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
81
82 /*
83  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
84  * slot (middle) is fine if we assume that races occur rarely. The set of
85  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
86  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
87  */
88 #define SLOT_IDX_FAST(slot, i) (slot + i)
89
90 /*
91  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
92  * able to safely update and access a watchpoint without introducing locking
93  * overhead, we encode each watchpoint as a single atomic long. The initial
94  * zero-initialized state matches INVALID_WATCHPOINT.
95  *
96  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
97  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
98  */
99 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
100
101 /*
102  * Instructions to skip watching counter, used in should_watch(). We use a
103  * per-CPU counter to avoid excessive contention.
104  */
105 static DEFINE_PER_CPU(long, kcsan_skip);
106
107 /* For kcsan_prandom_u32_max(). */
108 static DEFINE_PER_CPU(u32, kcsan_rand_state);
109
110 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
111                                                       size_t size,
112                                                       bool expect_write,
113                                                       long *encoded_watchpoint)
114 {
115         const int slot = watchpoint_slot(addr);
116         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
117         atomic_long_t *watchpoint;
118         unsigned long wp_addr_masked;
119         size_t wp_size;
120         bool is_write;
121         int i;
122
123         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
124
125         for (i = 0; i < NUM_SLOTS; ++i) {
126                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
127                 *encoded_watchpoint = atomic_long_read(watchpoint);
128                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
129                                        &wp_size, &is_write))
130                         continue;
131
132                 if (expect_write && !is_write)
133                         continue;
134
135                 /* Check if the watchpoint matches the access. */
136                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
137                         return watchpoint;
138         }
139
140         return NULL;
141 }
142
143 static inline atomic_long_t *
144 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
145 {
146         const int slot = watchpoint_slot(addr);
147         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
148         atomic_long_t *watchpoint;
149         int i;
150
151         /* Check slot index logic, ensuring we stay within array bounds. */
152         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
153         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
154         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
155         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
156
157         for (i = 0; i < NUM_SLOTS; ++i) {
158                 long expect_val = INVALID_WATCHPOINT;
159
160                 /* Try to acquire this slot. */
161                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
162                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
163                         return watchpoint;
164         }
165
166         return NULL;
167 }
168
169 /*
170  * Return true if watchpoint was successfully consumed, false otherwise.
171  *
172  * This may return false if:
173  *
174  *      1. another thread already consumed the watchpoint;
175  *      2. the thread that set up the watchpoint already removed it;
176  *      3. the watchpoint was removed and then re-used.
177  */
178 static __always_inline bool
179 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
180 {
181         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
182 }
183
184 /* Return true if watchpoint was not touched, false if already consumed. */
185 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
186 {
187         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
188 }
189
190 /* Remove the watchpoint -- its slot may be reused after. */
191 static inline void remove_watchpoint(atomic_long_t *watchpoint)
192 {
193         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
194 }
195
196 static __always_inline struct kcsan_ctx *get_ctx(void)
197 {
198         /*
199          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
200          * also result in calls that generate warnings in uaccess regions.
201          */
202         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
203 }
204
205 /* Check scoped accesses; never inline because this is a slow-path! */
206 static noinline void kcsan_check_scoped_accesses(void)
207 {
208         struct kcsan_ctx *ctx = get_ctx();
209         struct list_head *prev_save = ctx->scoped_accesses.prev;
210         struct kcsan_scoped_access *scoped_access;
211
212         ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
213         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
214                 __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
215         ctx->scoped_accesses.prev = prev_save;
216 }
217
218 /* Rules for generic atomic accesses. Called from fast-path. */
219 static __always_inline bool
220 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
221 {
222         if (type & KCSAN_ACCESS_ATOMIC)
223                 return true;
224
225         /*
226          * Unless explicitly declared atomic, never consider an assertion access
227          * as atomic. This allows using them also in atomic regions, such as
228          * seqlocks, without implicitly changing their semantics.
229          */
230         if (type & KCSAN_ACCESS_ASSERT)
231                 return false;
232
233         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
234             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
235             !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
236                 return true; /* Assume aligned writes up to word size are atomic. */
237
238         if (ctx->atomic_next > 0) {
239                 /*
240                  * Because we do not have separate contexts for nested
241                  * interrupts, in case atomic_next is set, we simply assume that
242                  * the outer interrupt set atomic_next. In the worst case, we
243                  * will conservatively consider operations as atomic. This is a
244                  * reasonable trade-off to make, since this case should be
245                  * extremely rare; however, even if extremely rare, it could
246                  * lead to false positives otherwise.
247                  */
248                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
249                         --ctx->atomic_next; /* in task, or outer interrupt */
250                 return true;
251         }
252
253         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
254 }
255
256 static __always_inline bool
257 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
258 {
259         /*
260          * Never set up watchpoints when memory operations are atomic.
261          *
262          * Need to check this first, before kcsan_skip check below: (1) atomics
263          * should not count towards skipped instructions, and (2) to actually
264          * decrement kcsan_atomic_next for consecutive instruction stream.
265          */
266         if (is_atomic(ptr, size, type, ctx))
267                 return false;
268
269         if (this_cpu_dec_return(kcsan_skip) >= 0)
270                 return false;
271
272         /*
273          * NOTE: If we get here, kcsan_skip must always be reset in slow path
274          * via reset_kcsan_skip() to avoid underflow.
275          */
276
277         /* this operation should be watched */
278         return true;
279 }
280
281 /*
282  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
283  * congruential generator, using constants from "Numerical Recipes".
284  */
285 static u32 kcsan_prandom_u32_max(u32 ep_ro)
286 {
287         u32 state = this_cpu_read(kcsan_rand_state);
288
289         state = 1664525 * state + 1013904223;
290         this_cpu_write(kcsan_rand_state, state);
291
292         return state % ep_ro;
293 }
294
295 static inline void reset_kcsan_skip(void)
296 {
297         long skip_count = kcsan_skip_watch -
298                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
299                                    kcsan_prandom_u32_max(kcsan_skip_watch) :
300                                    0);
301         this_cpu_write(kcsan_skip, skip_count);
302 }
303
304 static __always_inline bool kcsan_is_enabled(struct kcsan_ctx *ctx)
305 {
306         return READ_ONCE(kcsan_enabled) && !ctx->disable_count;
307 }
308
309 /* Introduce delay depending on context and configuration. */
310 static void delay_access(int type)
311 {
312         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
313         /* For certain access types, skew the random delay to be longer. */
314         unsigned int skew_delay_order =
315                 (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
316
317         delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
318                                kcsan_prandom_u32_max(delay >> skew_delay_order) :
319                                0;
320         udelay(delay);
321 }
322
323 void kcsan_save_irqtrace(struct task_struct *task)
324 {
325 #ifdef CONFIG_TRACE_IRQFLAGS
326         task->kcsan_save_irqtrace = task->irqtrace;
327 #endif
328 }
329
330 void kcsan_restore_irqtrace(struct task_struct *task)
331 {
332 #ifdef CONFIG_TRACE_IRQFLAGS
333         task->irqtrace = task->kcsan_save_irqtrace;
334 #endif
335 }
336
337 /*
338  * Pull everything together: check_access() below contains the performance
339  * critical operations; the fast-path (including check_access) functions should
340  * all be inlinable by the instrumentation functions.
341  *
342  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
343  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
344  * be filtered from the stacktrace, as well as give them unique names for the
345  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
346  * since they do not access any user memory, but instrumentation is still
347  * emitted in UACCESS regions.
348  */
349
350 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
351                                             size_t size,
352                                             int type,
353                                             atomic_long_t *watchpoint,
354                                             long encoded_watchpoint)
355 {
356         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
357         struct kcsan_ctx *ctx = get_ctx();
358         unsigned long flags;
359         bool consumed;
360
361         /*
362          * We know a watchpoint exists. Let's try to keep the race-window
363          * between here and finally consuming the watchpoint below as small as
364          * possible -- avoid unneccessarily complex code until consumed.
365          */
366
367         if (!kcsan_is_enabled(ctx))
368                 return;
369
370         /*
371          * The access_mask check relies on value-change comparison. To avoid
372          * reporting a race where e.g. the writer set up the watchpoint, but the
373          * reader has access_mask!=0, we have to ignore the found watchpoint.
374          */
375         if (ctx->access_mask)
376                 return;
377
378         /*
379          * If the other thread does not want to ignore the access, and there was
380          * a value change as a result of this thread's operation, we will still
381          * generate a report of unknown origin.
382          *
383          * Use CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN=n to filter.
384          */
385         if (!is_assert && kcsan_ignore_address(ptr))
386                 return;
387
388         /*
389          * Consuming the watchpoint must be guarded by kcsan_is_enabled() to
390          * avoid erroneously triggering reports if the context is disabled.
391          */
392         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
393
394         /* keep this after try_consume_watchpoint */
395         flags = user_access_save();
396
397         if (consumed) {
398                 kcsan_save_irqtrace(current);
399                 kcsan_report_set_info(ptr, size, type, watchpoint - watchpoints);
400                 kcsan_restore_irqtrace(current);
401         } else {
402                 /*
403                  * The other thread may not print any diagnostics, as it has
404                  * already removed the watchpoint, or another thread consumed
405                  * the watchpoint before this thread.
406                  */
407                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
408         }
409
410         if (is_assert)
411                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
412         else
413                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
414
415         user_access_restore(flags);
416 }
417
418 static noinline void
419 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
420 {
421         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
422         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
423         atomic_long_t *watchpoint;
424         u64 old, new, diff;
425         unsigned long access_mask;
426         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
427         unsigned long ua_flags = user_access_save();
428         struct kcsan_ctx *ctx = get_ctx();
429         unsigned long irq_flags = 0;
430
431         /*
432          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
433          * should_watch().
434          */
435         reset_kcsan_skip();
436
437         if (!kcsan_is_enabled(ctx))
438                 goto out;
439
440         /*
441          * Check to-ignore addresses after kcsan_is_enabled(), as we may access
442          * memory that is not yet initialized during early boot.
443          */
444         if (!is_assert && kcsan_ignore_address(ptr))
445                 goto out;
446
447         if (!check_encodable((unsigned long)ptr, size)) {
448                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
449                 goto out;
450         }
451
452         /*
453          * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
454          * runtime is entered for every memory access, and potentially useful
455          * information is lost if dirtied by KCSAN.
456          */
457         kcsan_save_irqtrace(current);
458         if (!kcsan_interrupt_watcher)
459                 local_irq_save(irq_flags);
460
461         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
462         if (watchpoint == NULL) {
463                 /*
464                  * Out of capacity: the size of 'watchpoints', and the frequency
465                  * with which should_watch() returns true should be tweaked so
466                  * that this case happens very rarely.
467                  */
468                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
469                 goto out_unlock;
470         }
471
472         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
473         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
474
475         /*
476          * Read the current value, to later check and infer a race if the data
477          * was modified via a non-instrumented access, e.g. from a device.
478          */
479         old = 0;
480         switch (size) {
481         case 1:
482                 old = READ_ONCE(*(const u8 *)ptr);
483                 break;
484         case 2:
485                 old = READ_ONCE(*(const u16 *)ptr);
486                 break;
487         case 4:
488                 old = READ_ONCE(*(const u32 *)ptr);
489                 break;
490         case 8:
491                 old = READ_ONCE(*(const u64 *)ptr);
492                 break;
493         default:
494                 break; /* ignore; we do not diff the values */
495         }
496
497         /*
498          * Delay this thread, to increase probability of observing a racy
499          * conflicting access.
500          */
501         delay_access(type);
502
503         /*
504          * Re-read value, and check if it is as expected; if not, we infer a
505          * racy access.
506          */
507         access_mask = ctx->access_mask;
508         new = 0;
509         switch (size) {
510         case 1:
511                 new = READ_ONCE(*(const u8 *)ptr);
512                 break;
513         case 2:
514                 new = READ_ONCE(*(const u16 *)ptr);
515                 break;
516         case 4:
517                 new = READ_ONCE(*(const u32 *)ptr);
518                 break;
519         case 8:
520                 new = READ_ONCE(*(const u64 *)ptr);
521                 break;
522         default:
523                 break; /* ignore; we do not diff the values */
524         }
525
526         diff = old ^ new;
527         if (access_mask)
528                 diff &= access_mask;
529
530         /*
531          * Check if we observed a value change.
532          *
533          * Also check if the data race should be ignored (the rules depend on
534          * non-zero diff); if it is to be ignored, the below rules for
535          * KCSAN_VALUE_CHANGE_MAYBE apply.
536          */
537         if (diff && !kcsan_ignore_data_race(size, type, old, new, diff))
538                 value_change = KCSAN_VALUE_CHANGE_TRUE;
539
540         /* Check if this access raced with another. */
541         if (!consume_watchpoint(watchpoint)) {
542                 /*
543                  * Depending on the access type, map a value_change of MAYBE to
544                  * TRUE (always report) or FALSE (never report).
545                  */
546                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
547                         if (access_mask != 0) {
548                                 /*
549                                  * For access with access_mask, we require a
550                                  * value-change, as it is likely that races on
551                                  * ~access_mask bits are expected.
552                                  */
553                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
554                         } else if (size > 8 || is_assert) {
555                                 /* Always assume a value-change. */
556                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
557                         }
558                 }
559
560                 /*
561                  * No need to increment 'data_races' counter, as the racing
562                  * thread already did.
563                  *
564                  * Count 'assert_failures' for each failed ASSERT access,
565                  * therefore both this thread and the racing thread may
566                  * increment this counter.
567                  */
568                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
569                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
570
571                 kcsan_report_known_origin(ptr, size, type, value_change,
572                                           watchpoint - watchpoints,
573                                           old, new, access_mask);
574         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
575                 /* Inferring a race, since the value should not have changed. */
576
577                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
578                 if (is_assert)
579                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
580
581                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
582                         kcsan_report_unknown_origin(ptr, size, type, old, new, access_mask);
583         }
584
585         /*
586          * Remove watchpoint; must be after reporting, since the slot may be
587          * reused after this point.
588          */
589         remove_watchpoint(watchpoint);
590         atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
591 out_unlock:
592         if (!kcsan_interrupt_watcher)
593                 local_irq_restore(irq_flags);
594         kcsan_restore_irqtrace(current);
595 out:
596         user_access_restore(ua_flags);
597 }
598
599 static __always_inline void check_access(const volatile void *ptr, size_t size,
600                                          int type)
601 {
602         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
603         atomic_long_t *watchpoint;
604         long encoded_watchpoint;
605
606         /*
607          * Do nothing for 0 sized check; this comparison will be optimized out
608          * for constant sized instrumentation (__tsan_{read,write}N).
609          */
610         if (unlikely(size == 0))
611                 return;
612
613         /*
614          * Avoid user_access_save in fast-path: find_watchpoint is safe without
615          * user_access_save, as the address that ptr points to is only used to
616          * check if a watchpoint exists; ptr is never dereferenced.
617          */
618         watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
619                                      &encoded_watchpoint);
620         /*
621          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
622          * slow-path, as long as no state changes that cause a race to be
623          * detected and reported have occurred until kcsan_is_enabled() is
624          * checked.
625          */
626
627         if (unlikely(watchpoint != NULL))
628                 kcsan_found_watchpoint(ptr, size, type, watchpoint,
629                                        encoded_watchpoint);
630         else {
631                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
632
633                 if (unlikely(should_watch(ptr, size, type, ctx)))
634                         kcsan_setup_watchpoint(ptr, size, type);
635                 else if (unlikely(ctx->scoped_accesses.prev))
636                         kcsan_check_scoped_accesses();
637         }
638 }
639
640 /* === Public interface ===================================================== */
641
642 void __init kcsan_init(void)
643 {
644         int cpu;
645
646         BUG_ON(!in_task());
647
648         for_each_possible_cpu(cpu)
649                 per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
650
651         /*
652          * We are in the init task, and no other tasks should be running;
653          * WRITE_ONCE without memory barrier is sufficient.
654          */
655         if (kcsan_early_enable) {
656                 pr_info("enabled early\n");
657                 WRITE_ONCE(kcsan_enabled, true);
658         }
659
660         if (IS_ENABLED(CONFIG_KCSAN_REPORT_VALUE_CHANGE_ONLY) ||
661             IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) ||
662             IS_ENABLED(CONFIG_KCSAN_PERMISSIVE) ||
663             IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {
664                 pr_warn("non-strict mode configured - use CONFIG_KCSAN_STRICT=y to see all data races\n");
665         } else {
666                 pr_info("strict mode configured\n");
667         }
668 }
669
670 /* === Exported interface =================================================== */
671
672 void kcsan_disable_current(void)
673 {
674         ++get_ctx()->disable_count;
675 }
676 EXPORT_SYMBOL(kcsan_disable_current);
677
678 void kcsan_enable_current(void)
679 {
680         if (get_ctx()->disable_count-- == 0) {
681                 /*
682                  * Warn if kcsan_enable_current() calls are unbalanced with
683                  * kcsan_disable_current() calls, which causes disable_count to
684                  * become negative and should not happen.
685                  */
686                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
687                 kcsan_disable_current(); /* disable to generate warning */
688                 WARN(1, "Unbalanced %s()", __func__);
689                 kcsan_enable_current();
690         }
691 }
692 EXPORT_SYMBOL(kcsan_enable_current);
693
694 void kcsan_enable_current_nowarn(void)
695 {
696         if (get_ctx()->disable_count-- == 0)
697                 kcsan_disable_current();
698 }
699 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
700
701 void kcsan_nestable_atomic_begin(void)
702 {
703         /*
704          * Do *not* check and warn if we are in a flat atomic region: nestable
705          * and flat atomic regions are independent from each other.
706          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
707          * comments.
708          */
709
710         ++get_ctx()->atomic_nest_count;
711 }
712 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
713
714 void kcsan_nestable_atomic_end(void)
715 {
716         if (get_ctx()->atomic_nest_count-- == 0) {
717                 /*
718                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
719                  * kcsan_nestable_atomic_begin() calls, which causes
720                  * atomic_nest_count to become negative and should not happen.
721                  */
722                 kcsan_nestable_atomic_begin(); /* restore to 0 */
723                 kcsan_disable_current(); /* disable to generate warning */
724                 WARN(1, "Unbalanced %s()", __func__);
725                 kcsan_enable_current();
726         }
727 }
728 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
729
730 void kcsan_flat_atomic_begin(void)
731 {
732         get_ctx()->in_flat_atomic = true;
733 }
734 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
735
736 void kcsan_flat_atomic_end(void)
737 {
738         get_ctx()->in_flat_atomic = false;
739 }
740 EXPORT_SYMBOL(kcsan_flat_atomic_end);
741
742 void kcsan_atomic_next(int n)
743 {
744         get_ctx()->atomic_next = n;
745 }
746 EXPORT_SYMBOL(kcsan_atomic_next);
747
748 void kcsan_set_access_mask(unsigned long mask)
749 {
750         get_ctx()->access_mask = mask;
751 }
752 EXPORT_SYMBOL(kcsan_set_access_mask);
753
754 struct kcsan_scoped_access *
755 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
756                           struct kcsan_scoped_access *sa)
757 {
758         struct kcsan_ctx *ctx = get_ctx();
759
760         __kcsan_check_access(ptr, size, type);
761
762         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
763
764         INIT_LIST_HEAD(&sa->list);
765         sa->ptr = ptr;
766         sa->size = size;
767         sa->type = type;
768
769         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
770                 INIT_LIST_HEAD(&ctx->scoped_accesses);
771         list_add(&sa->list, &ctx->scoped_accesses);
772
773         ctx->disable_count--;
774         return sa;
775 }
776 EXPORT_SYMBOL(kcsan_begin_scoped_access);
777
778 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
779 {
780         struct kcsan_ctx *ctx = get_ctx();
781
782         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
783                 return;
784
785         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
786
787         list_del(&sa->list);
788         if (list_empty(&ctx->scoped_accesses))
789                 /*
790                  * Ensure we do not enter kcsan_check_scoped_accesses()
791                  * slow-path if unnecessary, and avoids requiring list_empty()
792                  * in the fast-path (to avoid a READ_ONCE() and potential
793                  * uaccess warning).
794                  */
795                 ctx->scoped_accesses.prev = NULL;
796
797         ctx->disable_count--;
798
799         __kcsan_check_access(sa->ptr, sa->size, sa->type);
800 }
801 EXPORT_SYMBOL(kcsan_end_scoped_access);
802
803 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
804 {
805         check_access(ptr, size, type);
806 }
807 EXPORT_SYMBOL(__kcsan_check_access);
808
809 /*
810  * KCSAN uses the same instrumentation that is emitted by supported compilers
811  * for ThreadSanitizer (TSAN).
812  *
813  * When enabled, the compiler emits instrumentation calls (the functions
814  * prefixed with "__tsan" below) for all loads and stores that it generated;
815  * inline asm is not instrumented.
816  *
817  * Note that, not all supported compiler versions distinguish aligned/unaligned
818  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
819  * version to the generic version, which can handle both.
820  */
821
822 #define DEFINE_TSAN_READ_WRITE(size)                                           \
823         void __tsan_read##size(void *ptr);                                     \
824         void __tsan_read##size(void *ptr)                                      \
825         {                                                                      \
826                 check_access(ptr, size, 0);                                    \
827         }                                                                      \
828         EXPORT_SYMBOL(__tsan_read##size);                                      \
829         void __tsan_unaligned_read##size(void *ptr)                            \
830                 __alias(__tsan_read##size);                                    \
831         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
832         void __tsan_write##size(void *ptr);                                    \
833         void __tsan_write##size(void *ptr)                                     \
834         {                                                                      \
835                 check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
836         }                                                                      \
837         EXPORT_SYMBOL(__tsan_write##size);                                     \
838         void __tsan_unaligned_write##size(void *ptr)                           \
839                 __alias(__tsan_write##size);                                   \
840         EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
841         void __tsan_read_write##size(void *ptr);                               \
842         void __tsan_read_write##size(void *ptr)                                \
843         {                                                                      \
844                 check_access(ptr, size,                                        \
845                              KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE);      \
846         }                                                                      \
847         EXPORT_SYMBOL(__tsan_read_write##size);                                \
848         void __tsan_unaligned_read_write##size(void *ptr)                      \
849                 __alias(__tsan_read_write##size);                              \
850         EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
851
852 DEFINE_TSAN_READ_WRITE(1);
853 DEFINE_TSAN_READ_WRITE(2);
854 DEFINE_TSAN_READ_WRITE(4);
855 DEFINE_TSAN_READ_WRITE(8);
856 DEFINE_TSAN_READ_WRITE(16);
857
858 void __tsan_read_range(void *ptr, size_t size);
859 void __tsan_read_range(void *ptr, size_t size)
860 {
861         check_access(ptr, size, 0);
862 }
863 EXPORT_SYMBOL(__tsan_read_range);
864
865 void __tsan_write_range(void *ptr, size_t size);
866 void __tsan_write_range(void *ptr, size_t size)
867 {
868         check_access(ptr, size, KCSAN_ACCESS_WRITE);
869 }
870 EXPORT_SYMBOL(__tsan_write_range);
871
872 /*
873  * Use of explicit volatile is generally disallowed [1], however, volatile is
874  * still used in various concurrent context, whether in low-level
875  * synchronization primitives or for legacy reasons.
876  * [1] https://lwn.net/Articles/233479/
877  *
878  * We only consider volatile accesses atomic if they are aligned and would pass
879  * the size-check of compiletime_assert_rwonce_type().
880  */
881 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
882         void __tsan_volatile_read##size(void *ptr);                            \
883         void __tsan_volatile_read##size(void *ptr)                             \
884         {                                                                      \
885                 const bool is_atomic = size <= sizeof(long long) &&            \
886                                        IS_ALIGNED((unsigned long)ptr, size);   \
887                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
888                         return;                                                \
889                 check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
890         }                                                                      \
891         EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
892         void __tsan_unaligned_volatile_read##size(void *ptr)                   \
893                 __alias(__tsan_volatile_read##size);                           \
894         EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
895         void __tsan_volatile_write##size(void *ptr);                           \
896         void __tsan_volatile_write##size(void *ptr)                            \
897         {                                                                      \
898                 const bool is_atomic = size <= sizeof(long long) &&            \
899                                        IS_ALIGNED((unsigned long)ptr, size);   \
900                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
901                         return;                                                \
902                 check_access(ptr, size,                                        \
903                              KCSAN_ACCESS_WRITE |                              \
904                                      (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
905         }                                                                      \
906         EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
907         void __tsan_unaligned_volatile_write##size(void *ptr)                  \
908                 __alias(__tsan_volatile_write##size);                          \
909         EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
910
911 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
912 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
913 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
914 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
915 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
916
917 /*
918  * The below are not required by KCSAN, but can still be emitted by the
919  * compiler.
920  */
921 void __tsan_func_entry(void *call_pc);
922 void __tsan_func_entry(void *call_pc)
923 {
924 }
925 EXPORT_SYMBOL(__tsan_func_entry);
926 void __tsan_func_exit(void);
927 void __tsan_func_exit(void)
928 {
929 }
930 EXPORT_SYMBOL(__tsan_func_exit);
931 void __tsan_init(void);
932 void __tsan_init(void)
933 {
934 }
935 EXPORT_SYMBOL(__tsan_init);
936
937 /*
938  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
939  *
940  * Normal kernel code _should not_ be using them directly, but some
941  * architectures may implement some or all atomics using the compilers'
942  * builtins.
943  *
944  * Note: If an architecture decides to fully implement atomics using the
945  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
946  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
947  * atomic-instrumented) is no longer necessary.
948  *
949  * TSAN instrumentation replaces atomic accesses with calls to any of the below
950  * functions, whose job is to also execute the operation itself.
951  */
952
953 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
954         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
955         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
956         {                                                                                          \
957                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
958                         check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC);              \
959                 }                                                                                  \
960                 return __atomic_load_n(ptr, memorder);                                             \
961         }                                                                                          \
962         EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
963         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
964         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
965         {                                                                                          \
966                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
967                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
968                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC);                    \
969                 }                                                                                  \
970                 __atomic_store_n(ptr, v, memorder);                                                \
971         }                                                                                          \
972         EXPORT_SYMBOL(__tsan_atomic##bits##_store)
973
974 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
975         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
976         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
977         {                                                                                          \
978                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
979                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
980                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
981                                              KCSAN_ACCESS_ATOMIC);                                 \
982                 }                                                                                  \
983                 return __atomic_##op##suffix(ptr, v, memorder);                                    \
984         }                                                                                          \
985         EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
986
987 /*
988  * Note: CAS operations are always classified as write, even in case they
989  * fail. We cannot perform check_access() after a write, as it might lead to
990  * false positives, in cases such as:
991  *
992  *      T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
993  *
994  *      T1: if (__atomic_load_n(&p->flag, ...)) {
995  *              modify *p;
996  *              p->flag = 0;
997  *          }
998  *
999  * The only downside is that, if there are 3 threads, with one CAS that
1000  * succeeds, another CAS that fails, and an unmarked racing operation, we may
1001  * point at the wrong CAS as the source of the race. However, if we assume that
1002  * all CAS can succeed in some other execution, the data race is still valid.
1003  */
1004 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
1005         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1006                                                               u##bits val, int mo, int fail_mo);   \
1007         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
1008                                                               u##bits val, int mo, int fail_mo)    \
1009         {                                                                                          \
1010                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1011                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1012                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1013                                              KCSAN_ACCESS_ATOMIC);                                 \
1014                 }                                                                                  \
1015                 return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1016         }                                                                                          \
1017         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1018
1019 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1020         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1021                                                            int mo, int fail_mo);                   \
1022         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1023                                                            int mo, int fail_mo)                    \
1024         {                                                                                          \
1025                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1026                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1027                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1028                                              KCSAN_ACCESS_ATOMIC);                                 \
1029                 }                                                                                  \
1030                 __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1031                 return exp;                                                                        \
1032         }                                                                                          \
1033         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1034
1035 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1036         DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1037         DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1038         DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1039         DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1040         DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1041         DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1042         DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1043         DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1044         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1045         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1046         DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1047
1048 DEFINE_TSAN_ATOMIC_OPS(8);
1049 DEFINE_TSAN_ATOMIC_OPS(16);
1050 DEFINE_TSAN_ATOMIC_OPS(32);
1051 DEFINE_TSAN_ATOMIC_OPS(64);
1052
1053 void __tsan_atomic_thread_fence(int memorder);
1054 void __tsan_atomic_thread_fence(int memorder)
1055 {
1056         __atomic_thread_fence(memorder);
1057 }
1058 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1059
1060 void __tsan_atomic_signal_fence(int memorder);
1061 void __tsan_atomic_signal_fence(int memorder) { }
1062 EXPORT_SYMBOL(__tsan_atomic_signal_fence);