a73a66cf79df643bb600b30ad1aafaaa6f3fb9d0
[linux-2.6-microblaze.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/atomic.h>
4 #include <linux/bug.h>
5 #include <linux/delay.h>
6 #include <linux/export.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/list.h>
10 #include <linux/moduleparam.h>
11 #include <linux/percpu.h>
12 #include <linux/preempt.h>
13 #include <linux/random.h>
14 #include <linux/sched.h>
15 #include <linux/uaccess.h>
16
17 #include "atomic.h"
18 #include "encoding.h"
19 #include "kcsan.h"
20
21 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
22 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
23 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
24 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
25 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
26
27 #ifdef MODULE_PARAM_PREFIX
28 #undef MODULE_PARAM_PREFIX
29 #endif
30 #define MODULE_PARAM_PREFIX "kcsan."
31 module_param_named(early_enable, kcsan_early_enable, bool, 0);
32 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
33 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
34 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
35 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
36
37 bool kcsan_enabled;
38
39 /* Per-CPU kcsan_ctx for interrupts */
40 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
41         .disable_count          = 0,
42         .atomic_next            = 0,
43         .atomic_nest_count      = 0,
44         .in_flat_atomic         = false,
45         .access_mask            = 0,
46         .scoped_accesses        = {LIST_POISON1, NULL},
47 };
48
49 /*
50  * Helper macros to index into adjacent slots, starting from address slot
51  * itself, followed by the right and left slots.
52  *
53  * The purpose is 2-fold:
54  *
55  *      1. if during insertion the address slot is already occupied, check if
56  *         any adjacent slots are free;
57  *      2. accesses that straddle a slot boundary due to size that exceeds a
58  *         slot's range may check adjacent slots if any watchpoint matches.
59  *
60  * Note that accesses with very large size may still miss a watchpoint; however,
61  * given this should be rare, this is a reasonable trade-off to make, since this
62  * will avoid:
63  *
64  *      1. excessive contention between watchpoint checks and setup;
65  *      2. larger number of simultaneous watchpoints without sacrificing
66  *         performance.
67  *
68  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
69  *
70  *   slot=0:  [ 1,  2,  0]
71  *   slot=9:  [10, 11,  9]
72  *   slot=63: [64, 65, 63]
73  */
74 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
75
76 /*
77  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
78  * slot (middle) is fine if we assume that races occur rarely. The set of
79  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
80  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
81  */
82 #define SLOT_IDX_FAST(slot, i) (slot + i)
83
84 /*
85  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
86  * able to safely update and access a watchpoint without introducing locking
87  * overhead, we encode each watchpoint as a single atomic long. The initial
88  * zero-initialized state matches INVALID_WATCHPOINT.
89  *
90  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
91  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
92  */
93 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
94
95 /*
96  * Instructions to skip watching counter, used in should_watch(). We use a
97  * per-CPU counter to avoid excessive contention.
98  */
99 static DEFINE_PER_CPU(long, kcsan_skip);
100
101 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
102                                                       size_t size,
103                                                       bool expect_write,
104                                                       long *encoded_watchpoint)
105 {
106         const int slot = watchpoint_slot(addr);
107         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
108         atomic_long_t *watchpoint;
109         unsigned long wp_addr_masked;
110         size_t wp_size;
111         bool is_write;
112         int i;
113
114         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
115
116         for (i = 0; i < NUM_SLOTS; ++i) {
117                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
118                 *encoded_watchpoint = atomic_long_read(watchpoint);
119                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
120                                        &wp_size, &is_write))
121                         continue;
122
123                 if (expect_write && !is_write)
124                         continue;
125
126                 /* Check if the watchpoint matches the access. */
127                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
128                         return watchpoint;
129         }
130
131         return NULL;
132 }
133
134 static inline atomic_long_t *
135 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
136 {
137         const int slot = watchpoint_slot(addr);
138         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
139         atomic_long_t *watchpoint;
140         int i;
141
142         /* Check slot index logic, ensuring we stay within array bounds. */
143         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
144         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
145         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
146         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
147
148         for (i = 0; i < NUM_SLOTS; ++i) {
149                 long expect_val = INVALID_WATCHPOINT;
150
151                 /* Try to acquire this slot. */
152                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
153                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
154                         return watchpoint;
155         }
156
157         return NULL;
158 }
159
160 /*
161  * Return true if watchpoint was successfully consumed, false otherwise.
162  *
163  * This may return false if:
164  *
165  *      1. another thread already consumed the watchpoint;
166  *      2. the thread that set up the watchpoint already removed it;
167  *      3. the watchpoint was removed and then re-used.
168  */
169 static __always_inline bool
170 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
171 {
172         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
173 }
174
175 /* Return true if watchpoint was not touched, false if already consumed. */
176 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
177 {
178         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
179 }
180
181 /* Remove the watchpoint -- its slot may be reused after. */
182 static inline void remove_watchpoint(atomic_long_t *watchpoint)
183 {
184         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
185 }
186
187 static __always_inline struct kcsan_ctx *get_ctx(void)
188 {
189         /*
190          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
191          * also result in calls that generate warnings in uaccess regions.
192          */
193         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
194 }
195
196 /* Check scoped accesses; never inline because this is a slow-path! */
197 static noinline void kcsan_check_scoped_accesses(void)
198 {
199         struct kcsan_ctx *ctx = get_ctx();
200         struct list_head *prev_save = ctx->scoped_accesses.prev;
201         struct kcsan_scoped_access *scoped_access;
202
203         ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
204         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
205                 __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
206         ctx->scoped_accesses.prev = prev_save;
207 }
208
209 /* Rules for generic atomic accesses. Called from fast-path. */
210 static __always_inline bool
211 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
212 {
213         if (type & KCSAN_ACCESS_ATOMIC)
214                 return true;
215
216         /*
217          * Unless explicitly declared atomic, never consider an assertion access
218          * as atomic. This allows using them also in atomic regions, such as
219          * seqlocks, without implicitly changing their semantics.
220          */
221         if (type & KCSAN_ACCESS_ASSERT)
222                 return false;
223
224         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
225             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
226             IS_ALIGNED((unsigned long)ptr, size))
227                 return true; /* Assume aligned writes up to word size are atomic. */
228
229         if (ctx->atomic_next > 0) {
230                 /*
231                  * Because we do not have separate contexts for nested
232                  * interrupts, in case atomic_next is set, we simply assume that
233                  * the outer interrupt set atomic_next. In the worst case, we
234                  * will conservatively consider operations as atomic. This is a
235                  * reasonable trade-off to make, since this case should be
236                  * extremely rare; however, even if extremely rare, it could
237                  * lead to false positives otherwise.
238                  */
239                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
240                         --ctx->atomic_next; /* in task, or outer interrupt */
241                 return true;
242         }
243
244         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
245 }
246
247 static __always_inline bool
248 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
249 {
250         /*
251          * Never set up watchpoints when memory operations are atomic.
252          *
253          * Need to check this first, before kcsan_skip check below: (1) atomics
254          * should not count towards skipped instructions, and (2) to actually
255          * decrement kcsan_atomic_next for consecutive instruction stream.
256          */
257         if (is_atomic(ptr, size, type, ctx))
258                 return false;
259
260         if (this_cpu_dec_return(kcsan_skip) >= 0)
261                 return false;
262
263         /*
264          * NOTE: If we get here, kcsan_skip must always be reset in slow path
265          * via reset_kcsan_skip() to avoid underflow.
266          */
267
268         /* this operation should be watched */
269         return true;
270 }
271
272 static inline void reset_kcsan_skip(void)
273 {
274         long skip_count = kcsan_skip_watch -
275                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
276                                    prandom_u32_max(kcsan_skip_watch) :
277                                    0);
278         this_cpu_write(kcsan_skip, skip_count);
279 }
280
281 static __always_inline bool kcsan_is_enabled(void)
282 {
283         return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
284 }
285
286 static inline unsigned int get_delay(void)
287 {
288         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
289         return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
290                                 prandom_u32_max(delay) :
291                                 0);
292 }
293
294 /*
295  * Pull everything together: check_access() below contains the performance
296  * critical operations; the fast-path (including check_access) functions should
297  * all be inlinable by the instrumentation functions.
298  *
299  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
300  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
301  * be filtered from the stacktrace, as well as give them unique names for the
302  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
303  * since they do not access any user memory, but instrumentation is still
304  * emitted in UACCESS regions.
305  */
306
307 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
308                                             size_t size,
309                                             int type,
310                                             atomic_long_t *watchpoint,
311                                             long encoded_watchpoint)
312 {
313         unsigned long flags;
314         bool consumed;
315
316         if (!kcsan_is_enabled())
317                 return;
318
319         /*
320          * The access_mask check relies on value-change comparison. To avoid
321          * reporting a race where e.g. the writer set up the watchpoint, but the
322          * reader has access_mask!=0, we have to ignore the found watchpoint.
323          */
324         if (get_ctx()->access_mask != 0)
325                 return;
326
327         /*
328          * Consume the watchpoint as soon as possible, to minimize the chances
329          * of !consumed. Consuming the watchpoint must always be guarded by
330          * kcsan_is_enabled() check, as otherwise we might erroneously
331          * triggering reports when disabled.
332          */
333         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
334
335         /* keep this after try_consume_watchpoint */
336         flags = user_access_save();
337
338         if (consumed) {
339                 kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
340                              KCSAN_REPORT_CONSUMED_WATCHPOINT,
341                              watchpoint - watchpoints);
342         } else {
343                 /*
344                  * The other thread may not print any diagnostics, as it has
345                  * already removed the watchpoint, or another thread consumed
346                  * the watchpoint before this thread.
347                  */
348                 kcsan_counter_inc(KCSAN_COUNTER_REPORT_RACES);
349         }
350
351         if ((type & KCSAN_ACCESS_ASSERT) != 0)
352                 kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
353         else
354                 kcsan_counter_inc(KCSAN_COUNTER_DATA_RACES);
355
356         user_access_restore(flags);
357 }
358
359 static noinline void
360 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
361 {
362         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
363         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
364         atomic_long_t *watchpoint;
365         union {
366                 u8 _1;
367                 u16 _2;
368                 u32 _4;
369                 u64 _8;
370         } expect_value;
371         unsigned long access_mask;
372         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
373         unsigned long ua_flags = user_access_save();
374         unsigned long irq_flags = 0;
375
376         /*
377          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
378          * should_watch().
379          */
380         reset_kcsan_skip();
381
382         if (!kcsan_is_enabled())
383                 goto out;
384
385         /*
386          * Special atomic rules: unlikely to be true, so we check them here in
387          * the slow-path, and not in the fast-path in is_atomic(). Call after
388          * kcsan_is_enabled(), as we may access memory that is not yet
389          * initialized during early boot.
390          */
391         if (!is_assert && kcsan_is_atomic_special(ptr))
392                 goto out;
393
394         if (!check_encodable((unsigned long)ptr, size)) {
395                 kcsan_counter_inc(KCSAN_COUNTER_UNENCODABLE_ACCESSES);
396                 goto out;
397         }
398
399         if (!kcsan_interrupt_watcher)
400                 /* Use raw to avoid lockdep recursion via IRQ flags tracing. */
401                 raw_local_irq_save(irq_flags);
402
403         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
404         if (watchpoint == NULL) {
405                 /*
406                  * Out of capacity: the size of 'watchpoints', and the frequency
407                  * with which should_watch() returns true should be tweaked so
408                  * that this case happens very rarely.
409                  */
410                 kcsan_counter_inc(KCSAN_COUNTER_NO_CAPACITY);
411                 goto out_unlock;
412         }
413
414         kcsan_counter_inc(KCSAN_COUNTER_SETUP_WATCHPOINTS);
415         kcsan_counter_inc(KCSAN_COUNTER_USED_WATCHPOINTS);
416
417         /*
418          * Read the current value, to later check and infer a race if the data
419          * was modified via a non-instrumented access, e.g. from a device.
420          */
421         expect_value._8 = 0;
422         switch (size) {
423         case 1:
424                 expect_value._1 = READ_ONCE(*(const u8 *)ptr);
425                 break;
426         case 2:
427                 expect_value._2 = READ_ONCE(*(const u16 *)ptr);
428                 break;
429         case 4:
430                 expect_value._4 = READ_ONCE(*(const u32 *)ptr);
431                 break;
432         case 8:
433                 expect_value._8 = READ_ONCE(*(const u64 *)ptr);
434                 break;
435         default:
436                 break; /* ignore; we do not diff the values */
437         }
438
439         if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
440                 kcsan_disable_current();
441                 pr_err("KCSAN: watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
442                        is_write ? "write" : "read", size, ptr,
443                        watchpoint_slot((unsigned long)ptr),
444                        encode_watchpoint((unsigned long)ptr, size, is_write));
445                 kcsan_enable_current();
446         }
447
448         /*
449          * Delay this thread, to increase probability of observing a racy
450          * conflicting access.
451          */
452         udelay(get_delay());
453
454         /*
455          * Re-read value, and check if it is as expected; if not, we infer a
456          * racy access.
457          */
458         access_mask = get_ctx()->access_mask;
459         switch (size) {
460         case 1:
461                 expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
462                 if (access_mask)
463                         expect_value._1 &= (u8)access_mask;
464                 break;
465         case 2:
466                 expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
467                 if (access_mask)
468                         expect_value._2 &= (u16)access_mask;
469                 break;
470         case 4:
471                 expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
472                 if (access_mask)
473                         expect_value._4 &= (u32)access_mask;
474                 break;
475         case 8:
476                 expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
477                 if (access_mask)
478                         expect_value._8 &= (u64)access_mask;
479                 break;
480         default:
481                 break; /* ignore; we do not diff the values */
482         }
483
484         /* Were we able to observe a value-change? */
485         if (expect_value._8 != 0)
486                 value_change = KCSAN_VALUE_CHANGE_TRUE;
487
488         /* Check if this access raced with another. */
489         if (!consume_watchpoint(watchpoint)) {
490                 /*
491                  * Depending on the access type, map a value_change of MAYBE to
492                  * TRUE (always report) or FALSE (never report).
493                  */
494                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
495                         if (access_mask != 0) {
496                                 /*
497                                  * For access with access_mask, we require a
498                                  * value-change, as it is likely that races on
499                                  * ~access_mask bits are expected.
500                                  */
501                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
502                         } else if (size > 8 || is_assert) {
503                                 /* Always assume a value-change. */
504                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
505                         }
506                 }
507
508                 /*
509                  * No need to increment 'data_races' counter, as the racing
510                  * thread already did.
511                  *
512                  * Count 'assert_failures' for each failed ASSERT access,
513                  * therefore both this thread and the racing thread may
514                  * increment this counter.
515                  */
516                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
517                         kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
518
519                 kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
520                              watchpoint - watchpoints);
521         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
522                 /* Inferring a race, since the value should not have changed. */
523
524                 kcsan_counter_inc(KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN);
525                 if (is_assert)
526                         kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
527
528                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
529                         kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
530                                      KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
531                                      watchpoint - watchpoints);
532         }
533
534         /*
535          * Remove watchpoint; must be after reporting, since the slot may be
536          * reused after this point.
537          */
538         remove_watchpoint(watchpoint);
539         kcsan_counter_dec(KCSAN_COUNTER_USED_WATCHPOINTS);
540 out_unlock:
541         if (!kcsan_interrupt_watcher)
542                 raw_local_irq_restore(irq_flags);
543 out:
544         user_access_restore(ua_flags);
545 }
546
547 static __always_inline void check_access(const volatile void *ptr, size_t size,
548                                          int type)
549 {
550         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
551         atomic_long_t *watchpoint;
552         long encoded_watchpoint;
553
554         /*
555          * Do nothing for 0 sized check; this comparison will be optimized out
556          * for constant sized instrumentation (__tsan_{read,write}N).
557          */
558         if (unlikely(size == 0))
559                 return;
560
561         /*
562          * Avoid user_access_save in fast-path: find_watchpoint is safe without
563          * user_access_save, as the address that ptr points to is only used to
564          * check if a watchpoint exists; ptr is never dereferenced.
565          */
566         watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
567                                      &encoded_watchpoint);
568         /*
569          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
570          * slow-path, as long as no state changes that cause a race to be
571          * detected and reported have occurred until kcsan_is_enabled() is
572          * checked.
573          */
574
575         if (unlikely(watchpoint != NULL))
576                 kcsan_found_watchpoint(ptr, size, type, watchpoint,
577                                        encoded_watchpoint);
578         else {
579                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
580
581                 if (unlikely(should_watch(ptr, size, type, ctx)))
582                         kcsan_setup_watchpoint(ptr, size, type);
583                 else if (unlikely(ctx->scoped_accesses.prev))
584                         kcsan_check_scoped_accesses();
585         }
586 }
587
588 /* === Public interface ===================================================== */
589
590 void __init kcsan_init(void)
591 {
592         BUG_ON(!in_task());
593
594         kcsan_debugfs_init();
595
596         /*
597          * We are in the init task, and no other tasks should be running;
598          * WRITE_ONCE without memory barrier is sufficient.
599          */
600         if (kcsan_early_enable)
601                 WRITE_ONCE(kcsan_enabled, true);
602 }
603
604 /* === Exported interface =================================================== */
605
606 void kcsan_disable_current(void)
607 {
608         ++get_ctx()->disable_count;
609 }
610 EXPORT_SYMBOL(kcsan_disable_current);
611
612 void kcsan_enable_current(void)
613 {
614         if (get_ctx()->disable_count-- == 0) {
615                 /*
616                  * Warn if kcsan_enable_current() calls are unbalanced with
617                  * kcsan_disable_current() calls, which causes disable_count to
618                  * become negative and should not happen.
619                  */
620                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
621                 kcsan_disable_current(); /* disable to generate warning */
622                 WARN(1, "Unbalanced %s()", __func__);
623                 kcsan_enable_current();
624         }
625 }
626 EXPORT_SYMBOL(kcsan_enable_current);
627
628 void kcsan_enable_current_nowarn(void)
629 {
630         if (get_ctx()->disable_count-- == 0)
631                 kcsan_disable_current();
632 }
633 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
634
635 void kcsan_nestable_atomic_begin(void)
636 {
637         /*
638          * Do *not* check and warn if we are in a flat atomic region: nestable
639          * and flat atomic regions are independent from each other.
640          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
641          * comments.
642          */
643
644         ++get_ctx()->atomic_nest_count;
645 }
646 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
647
648 void kcsan_nestable_atomic_end(void)
649 {
650         if (get_ctx()->atomic_nest_count-- == 0) {
651                 /*
652                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
653                  * kcsan_nestable_atomic_begin() calls, which causes
654                  * atomic_nest_count to become negative and should not happen.
655                  */
656                 kcsan_nestable_atomic_begin(); /* restore to 0 */
657                 kcsan_disable_current(); /* disable to generate warning */
658                 WARN(1, "Unbalanced %s()", __func__);
659                 kcsan_enable_current();
660         }
661 }
662 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
663
664 void kcsan_flat_atomic_begin(void)
665 {
666         get_ctx()->in_flat_atomic = true;
667 }
668 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
669
670 void kcsan_flat_atomic_end(void)
671 {
672         get_ctx()->in_flat_atomic = false;
673 }
674 EXPORT_SYMBOL(kcsan_flat_atomic_end);
675
676 void kcsan_atomic_next(int n)
677 {
678         get_ctx()->atomic_next = n;
679 }
680 EXPORT_SYMBOL(kcsan_atomic_next);
681
682 void kcsan_set_access_mask(unsigned long mask)
683 {
684         get_ctx()->access_mask = mask;
685 }
686 EXPORT_SYMBOL(kcsan_set_access_mask);
687
688 struct kcsan_scoped_access *
689 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
690                           struct kcsan_scoped_access *sa)
691 {
692         struct kcsan_ctx *ctx = get_ctx();
693
694         __kcsan_check_access(ptr, size, type);
695
696         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
697
698         INIT_LIST_HEAD(&sa->list);
699         sa->ptr = ptr;
700         sa->size = size;
701         sa->type = type;
702
703         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
704                 INIT_LIST_HEAD(&ctx->scoped_accesses);
705         list_add(&sa->list, &ctx->scoped_accesses);
706
707         ctx->disable_count--;
708         return sa;
709 }
710 EXPORT_SYMBOL(kcsan_begin_scoped_access);
711
712 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
713 {
714         struct kcsan_ctx *ctx = get_ctx();
715
716         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
717                 return;
718
719         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
720
721         list_del(&sa->list);
722         if (list_empty(&ctx->scoped_accesses))
723                 /*
724                  * Ensure we do not enter kcsan_check_scoped_accesses()
725                  * slow-path if unnecessary, and avoids requiring list_empty()
726                  * in the fast-path (to avoid a READ_ONCE() and potential
727                  * uaccess warning).
728                  */
729                 ctx->scoped_accesses.prev = NULL;
730
731         ctx->disable_count--;
732
733         __kcsan_check_access(sa->ptr, sa->size, sa->type);
734 }
735 EXPORT_SYMBOL(kcsan_end_scoped_access);
736
737 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
738 {
739         check_access(ptr, size, type);
740 }
741 EXPORT_SYMBOL(__kcsan_check_access);
742
743 /*
744  * KCSAN uses the same instrumentation that is emitted by supported compilers
745  * for ThreadSanitizer (TSAN).
746  *
747  * When enabled, the compiler emits instrumentation calls (the functions
748  * prefixed with "__tsan" below) for all loads and stores that it generated;
749  * inline asm is not instrumented.
750  *
751  * Note that, not all supported compiler versions distinguish aligned/unaligned
752  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
753  * version to the generic version, which can handle both.
754  */
755
756 #define DEFINE_TSAN_READ_WRITE(size)                                           \
757         void __tsan_read##size(void *ptr)                                      \
758         {                                                                      \
759                 check_access(ptr, size, 0);                                    \
760         }                                                                      \
761         EXPORT_SYMBOL(__tsan_read##size);                                      \
762         void __tsan_unaligned_read##size(void *ptr)                            \
763                 __alias(__tsan_read##size);                                    \
764         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
765         void __tsan_write##size(void *ptr)                                     \
766         {                                                                      \
767                 check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
768         }                                                                      \
769         EXPORT_SYMBOL(__tsan_write##size);                                     \
770         void __tsan_unaligned_write##size(void *ptr)                           \
771                 __alias(__tsan_write##size);                                   \
772         EXPORT_SYMBOL(__tsan_unaligned_write##size)
773
774 DEFINE_TSAN_READ_WRITE(1);
775 DEFINE_TSAN_READ_WRITE(2);
776 DEFINE_TSAN_READ_WRITE(4);
777 DEFINE_TSAN_READ_WRITE(8);
778 DEFINE_TSAN_READ_WRITE(16);
779
780 void __tsan_read_range(void *ptr, size_t size)
781 {
782         check_access(ptr, size, 0);
783 }
784 EXPORT_SYMBOL(__tsan_read_range);
785
786 void __tsan_write_range(void *ptr, size_t size)
787 {
788         check_access(ptr, size, KCSAN_ACCESS_WRITE);
789 }
790 EXPORT_SYMBOL(__tsan_write_range);
791
792 /*
793  * The below are not required by KCSAN, but can still be emitted by the
794  * compiler.
795  */
796 void __tsan_func_entry(void *call_pc)
797 {
798 }
799 EXPORT_SYMBOL(__tsan_func_entry);
800 void __tsan_func_exit(void)
801 {
802 }
803 EXPORT_SYMBOL(__tsan_func_exit);
804 void __tsan_init(void)
805 {
806 }
807 EXPORT_SYMBOL(__tsan_init);