staging: spmi: hisi-spmi-controller: Use proper format in call to dev_err()
[linux-2.6-microblaze.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #include <linux/atomic.h>
4 #include <linux/bug.h>
5 #include <linux/delay.h>
6 #include <linux/export.h>
7 #include <linux/init.h>
8 #include <linux/kernel.h>
9 #include <linux/list.h>
10 #include <linux/moduleparam.h>
11 #include <linux/percpu.h>
12 #include <linux/preempt.h>
13 #include <linux/random.h>
14 #include <linux/sched.h>
15 #include <linux/uaccess.h>
16
17 #include "atomic.h"
18 #include "encoding.h"
19 #include "kcsan.h"
20
21 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
22 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
23 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
24 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
25 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
26
27 #ifdef MODULE_PARAM_PREFIX
28 #undef MODULE_PARAM_PREFIX
29 #endif
30 #define MODULE_PARAM_PREFIX "kcsan."
31 module_param_named(early_enable, kcsan_early_enable, bool, 0);
32 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
33 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
34 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
35 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
36
37 bool kcsan_enabled;
38
39 /* Per-CPU kcsan_ctx for interrupts */
40 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
41         .disable_count          = 0,
42         .atomic_next            = 0,
43         .atomic_nest_count      = 0,
44         .in_flat_atomic         = false,
45         .access_mask            = 0,
46         .scoped_accesses        = {LIST_POISON1, NULL},
47 };
48
49 /*
50  * Helper macros to index into adjacent slots, starting from address slot
51  * itself, followed by the right and left slots.
52  *
53  * The purpose is 2-fold:
54  *
55  *      1. if during insertion the address slot is already occupied, check if
56  *         any adjacent slots are free;
57  *      2. accesses that straddle a slot boundary due to size that exceeds a
58  *         slot's range may check adjacent slots if any watchpoint matches.
59  *
60  * Note that accesses with very large size may still miss a watchpoint; however,
61  * given this should be rare, this is a reasonable trade-off to make, since this
62  * will avoid:
63  *
64  *      1. excessive contention between watchpoint checks and setup;
65  *      2. larger number of simultaneous watchpoints without sacrificing
66  *         performance.
67  *
68  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
69  *
70  *   slot=0:  [ 1,  2,  0]
71  *   slot=9:  [10, 11,  9]
72  *   slot=63: [64, 65, 63]
73  */
74 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
75
76 /*
77  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
78  * slot (middle) is fine if we assume that races occur rarely. The set of
79  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
80  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
81  */
82 #define SLOT_IDX_FAST(slot, i) (slot + i)
83
84 /*
85  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
86  * able to safely update and access a watchpoint without introducing locking
87  * overhead, we encode each watchpoint as a single atomic long. The initial
88  * zero-initialized state matches INVALID_WATCHPOINT.
89  *
90  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
91  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
92  */
93 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
94
95 /*
96  * Instructions to skip watching counter, used in should_watch(). We use a
97  * per-CPU counter to avoid excessive contention.
98  */
99 static DEFINE_PER_CPU(long, kcsan_skip);
100
101 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
102                                                       size_t size,
103                                                       bool expect_write,
104                                                       long *encoded_watchpoint)
105 {
106         const int slot = watchpoint_slot(addr);
107         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
108         atomic_long_t *watchpoint;
109         unsigned long wp_addr_masked;
110         size_t wp_size;
111         bool is_write;
112         int i;
113
114         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
115
116         for (i = 0; i < NUM_SLOTS; ++i) {
117                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
118                 *encoded_watchpoint = atomic_long_read(watchpoint);
119                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
120                                        &wp_size, &is_write))
121                         continue;
122
123                 if (expect_write && !is_write)
124                         continue;
125
126                 /* Check if the watchpoint matches the access. */
127                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
128                         return watchpoint;
129         }
130
131         return NULL;
132 }
133
134 static inline atomic_long_t *
135 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
136 {
137         const int slot = watchpoint_slot(addr);
138         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
139         atomic_long_t *watchpoint;
140         int i;
141
142         /* Check slot index logic, ensuring we stay within array bounds. */
143         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
144         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
145         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
146         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
147
148         for (i = 0; i < NUM_SLOTS; ++i) {
149                 long expect_val = INVALID_WATCHPOINT;
150
151                 /* Try to acquire this slot. */
152                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
153                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
154                         return watchpoint;
155         }
156
157         return NULL;
158 }
159
160 /*
161  * Return true if watchpoint was successfully consumed, false otherwise.
162  *
163  * This may return false if:
164  *
165  *      1. another thread already consumed the watchpoint;
166  *      2. the thread that set up the watchpoint already removed it;
167  *      3. the watchpoint was removed and then re-used.
168  */
169 static __always_inline bool
170 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
171 {
172         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
173 }
174
175 /* Return true if watchpoint was not touched, false if already consumed. */
176 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
177 {
178         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
179 }
180
181 /* Remove the watchpoint -- its slot may be reused after. */
182 static inline void remove_watchpoint(atomic_long_t *watchpoint)
183 {
184         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
185 }
186
187 static __always_inline struct kcsan_ctx *get_ctx(void)
188 {
189         /*
190          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
191          * also result in calls that generate warnings in uaccess regions.
192          */
193         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
194 }
195
196 /* Check scoped accesses; never inline because this is a slow-path! */
197 static noinline void kcsan_check_scoped_accesses(void)
198 {
199         struct kcsan_ctx *ctx = get_ctx();
200         struct list_head *prev_save = ctx->scoped_accesses.prev;
201         struct kcsan_scoped_access *scoped_access;
202
203         ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
204         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
205                 __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
206         ctx->scoped_accesses.prev = prev_save;
207 }
208
209 /* Rules for generic atomic accesses. Called from fast-path. */
210 static __always_inline bool
211 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
212 {
213         if (type & KCSAN_ACCESS_ATOMIC)
214                 return true;
215
216         /*
217          * Unless explicitly declared atomic, never consider an assertion access
218          * as atomic. This allows using them also in atomic regions, such as
219          * seqlocks, without implicitly changing their semantics.
220          */
221         if (type & KCSAN_ACCESS_ASSERT)
222                 return false;
223
224         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
225             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
226             IS_ALIGNED((unsigned long)ptr, size))
227                 return true; /* Assume aligned writes up to word size are atomic. */
228
229         if (ctx->atomic_next > 0) {
230                 /*
231                  * Because we do not have separate contexts for nested
232                  * interrupts, in case atomic_next is set, we simply assume that
233                  * the outer interrupt set atomic_next. In the worst case, we
234                  * will conservatively consider operations as atomic. This is a
235                  * reasonable trade-off to make, since this case should be
236                  * extremely rare; however, even if extremely rare, it could
237                  * lead to false positives otherwise.
238                  */
239                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
240                         --ctx->atomic_next; /* in task, or outer interrupt */
241                 return true;
242         }
243
244         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
245 }
246
247 static __always_inline bool
248 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
249 {
250         /*
251          * Never set up watchpoints when memory operations are atomic.
252          *
253          * Need to check this first, before kcsan_skip check below: (1) atomics
254          * should not count towards skipped instructions, and (2) to actually
255          * decrement kcsan_atomic_next for consecutive instruction stream.
256          */
257         if (is_atomic(ptr, size, type, ctx))
258                 return false;
259
260         if (this_cpu_dec_return(kcsan_skip) >= 0)
261                 return false;
262
263         /*
264          * NOTE: If we get here, kcsan_skip must always be reset in slow path
265          * via reset_kcsan_skip() to avoid underflow.
266          */
267
268         /* this operation should be watched */
269         return true;
270 }
271
272 static inline void reset_kcsan_skip(void)
273 {
274         long skip_count = kcsan_skip_watch -
275                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
276                                    prandom_u32_max(kcsan_skip_watch) :
277                                    0);
278         this_cpu_write(kcsan_skip, skip_count);
279 }
280
281 static __always_inline bool kcsan_is_enabled(void)
282 {
283         return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
284 }
285
286 static inline unsigned int get_delay(void)
287 {
288         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
289         return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
290                                 prandom_u32_max(delay) :
291                                 0);
292 }
293
294 void kcsan_save_irqtrace(struct task_struct *task)
295 {
296 #ifdef CONFIG_TRACE_IRQFLAGS
297         task->kcsan_save_irqtrace = task->irqtrace;
298 #endif
299 }
300
301 void kcsan_restore_irqtrace(struct task_struct *task)
302 {
303 #ifdef CONFIG_TRACE_IRQFLAGS
304         task->irqtrace = task->kcsan_save_irqtrace;
305 #endif
306 }
307
308 /*
309  * Pull everything together: check_access() below contains the performance
310  * critical operations; the fast-path (including check_access) functions should
311  * all be inlinable by the instrumentation functions.
312  *
313  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
314  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
315  * be filtered from the stacktrace, as well as give them unique names for the
316  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
317  * since they do not access any user memory, but instrumentation is still
318  * emitted in UACCESS regions.
319  */
320
321 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
322                                             size_t size,
323                                             int type,
324                                             atomic_long_t *watchpoint,
325                                             long encoded_watchpoint)
326 {
327         unsigned long flags;
328         bool consumed;
329
330         if (!kcsan_is_enabled())
331                 return;
332
333         /*
334          * The access_mask check relies on value-change comparison. To avoid
335          * reporting a race where e.g. the writer set up the watchpoint, but the
336          * reader has access_mask!=0, we have to ignore the found watchpoint.
337          */
338         if (get_ctx()->access_mask != 0)
339                 return;
340
341         /*
342          * Consume the watchpoint as soon as possible, to minimize the chances
343          * of !consumed. Consuming the watchpoint must always be guarded by
344          * kcsan_is_enabled() check, as otherwise we might erroneously
345          * triggering reports when disabled.
346          */
347         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
348
349         /* keep this after try_consume_watchpoint */
350         flags = user_access_save();
351
352         if (consumed) {
353                 kcsan_save_irqtrace(current);
354                 kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
355                              KCSAN_REPORT_CONSUMED_WATCHPOINT,
356                              watchpoint - watchpoints);
357                 kcsan_restore_irqtrace(current);
358         } else {
359                 /*
360                  * The other thread may not print any diagnostics, as it has
361                  * already removed the watchpoint, or another thread consumed
362                  * the watchpoint before this thread.
363                  */
364                 kcsan_counter_inc(KCSAN_COUNTER_REPORT_RACES);
365         }
366
367         if ((type & KCSAN_ACCESS_ASSERT) != 0)
368                 kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
369         else
370                 kcsan_counter_inc(KCSAN_COUNTER_DATA_RACES);
371
372         user_access_restore(flags);
373 }
374
375 static noinline void
376 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
377 {
378         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
379         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
380         atomic_long_t *watchpoint;
381         union {
382                 u8 _1;
383                 u16 _2;
384                 u32 _4;
385                 u64 _8;
386         } expect_value;
387         unsigned long access_mask;
388         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
389         unsigned long ua_flags = user_access_save();
390         unsigned long irq_flags = 0;
391
392         /*
393          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
394          * should_watch().
395          */
396         reset_kcsan_skip();
397
398         if (!kcsan_is_enabled())
399                 goto out;
400
401         /*
402          * Special atomic rules: unlikely to be true, so we check them here in
403          * the slow-path, and not in the fast-path in is_atomic(). Call after
404          * kcsan_is_enabled(), as we may access memory that is not yet
405          * initialized during early boot.
406          */
407         if (!is_assert && kcsan_is_atomic_special(ptr))
408                 goto out;
409
410         if (!check_encodable((unsigned long)ptr, size)) {
411                 kcsan_counter_inc(KCSAN_COUNTER_UNENCODABLE_ACCESSES);
412                 goto out;
413         }
414
415         /*
416          * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
417          * runtime is entered for every memory access, and potentially useful
418          * information is lost if dirtied by KCSAN.
419          */
420         kcsan_save_irqtrace(current);
421         if (!kcsan_interrupt_watcher)
422                 local_irq_save(irq_flags);
423
424         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
425         if (watchpoint == NULL) {
426                 /*
427                  * Out of capacity: the size of 'watchpoints', and the frequency
428                  * with which should_watch() returns true should be tweaked so
429                  * that this case happens very rarely.
430                  */
431                 kcsan_counter_inc(KCSAN_COUNTER_NO_CAPACITY);
432                 goto out_unlock;
433         }
434
435         kcsan_counter_inc(KCSAN_COUNTER_SETUP_WATCHPOINTS);
436         kcsan_counter_inc(KCSAN_COUNTER_USED_WATCHPOINTS);
437
438         /*
439          * Read the current value, to later check and infer a race if the data
440          * was modified via a non-instrumented access, e.g. from a device.
441          */
442         expect_value._8 = 0;
443         switch (size) {
444         case 1:
445                 expect_value._1 = READ_ONCE(*(const u8 *)ptr);
446                 break;
447         case 2:
448                 expect_value._2 = READ_ONCE(*(const u16 *)ptr);
449                 break;
450         case 4:
451                 expect_value._4 = READ_ONCE(*(const u32 *)ptr);
452                 break;
453         case 8:
454                 expect_value._8 = READ_ONCE(*(const u64 *)ptr);
455                 break;
456         default:
457                 break; /* ignore; we do not diff the values */
458         }
459
460         if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
461                 kcsan_disable_current();
462                 pr_err("KCSAN: watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
463                        is_write ? "write" : "read", size, ptr,
464                        watchpoint_slot((unsigned long)ptr),
465                        encode_watchpoint((unsigned long)ptr, size, is_write));
466                 kcsan_enable_current();
467         }
468
469         /*
470          * Delay this thread, to increase probability of observing a racy
471          * conflicting access.
472          */
473         udelay(get_delay());
474
475         /*
476          * Re-read value, and check if it is as expected; if not, we infer a
477          * racy access.
478          */
479         access_mask = get_ctx()->access_mask;
480         switch (size) {
481         case 1:
482                 expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
483                 if (access_mask)
484                         expect_value._1 &= (u8)access_mask;
485                 break;
486         case 2:
487                 expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
488                 if (access_mask)
489                         expect_value._2 &= (u16)access_mask;
490                 break;
491         case 4:
492                 expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
493                 if (access_mask)
494                         expect_value._4 &= (u32)access_mask;
495                 break;
496         case 8:
497                 expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
498                 if (access_mask)
499                         expect_value._8 &= (u64)access_mask;
500                 break;
501         default:
502                 break; /* ignore; we do not diff the values */
503         }
504
505         /* Were we able to observe a value-change? */
506         if (expect_value._8 != 0)
507                 value_change = KCSAN_VALUE_CHANGE_TRUE;
508
509         /* Check if this access raced with another. */
510         if (!consume_watchpoint(watchpoint)) {
511                 /*
512                  * Depending on the access type, map a value_change of MAYBE to
513                  * TRUE (always report) or FALSE (never report).
514                  */
515                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
516                         if (access_mask != 0) {
517                                 /*
518                                  * For access with access_mask, we require a
519                                  * value-change, as it is likely that races on
520                                  * ~access_mask bits are expected.
521                                  */
522                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
523                         } else if (size > 8 || is_assert) {
524                                 /* Always assume a value-change. */
525                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
526                         }
527                 }
528
529                 /*
530                  * No need to increment 'data_races' counter, as the racing
531                  * thread already did.
532                  *
533                  * Count 'assert_failures' for each failed ASSERT access,
534                  * therefore both this thread and the racing thread may
535                  * increment this counter.
536                  */
537                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
538                         kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
539
540                 kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
541                              watchpoint - watchpoints);
542         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
543                 /* Inferring a race, since the value should not have changed. */
544
545                 kcsan_counter_inc(KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN);
546                 if (is_assert)
547                         kcsan_counter_inc(KCSAN_COUNTER_ASSERT_FAILURES);
548
549                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
550                         kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
551                                      KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
552                                      watchpoint - watchpoints);
553         }
554
555         /*
556          * Remove watchpoint; must be after reporting, since the slot may be
557          * reused after this point.
558          */
559         remove_watchpoint(watchpoint);
560         kcsan_counter_dec(KCSAN_COUNTER_USED_WATCHPOINTS);
561 out_unlock:
562         if (!kcsan_interrupt_watcher)
563                 local_irq_restore(irq_flags);
564         kcsan_restore_irqtrace(current);
565 out:
566         user_access_restore(ua_flags);
567 }
568
569 static __always_inline void check_access(const volatile void *ptr, size_t size,
570                                          int type)
571 {
572         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
573         atomic_long_t *watchpoint;
574         long encoded_watchpoint;
575
576         /*
577          * Do nothing for 0 sized check; this comparison will be optimized out
578          * for constant sized instrumentation (__tsan_{read,write}N).
579          */
580         if (unlikely(size == 0))
581                 return;
582
583         /*
584          * Avoid user_access_save in fast-path: find_watchpoint is safe without
585          * user_access_save, as the address that ptr points to is only used to
586          * check if a watchpoint exists; ptr is never dereferenced.
587          */
588         watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
589                                      &encoded_watchpoint);
590         /*
591          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
592          * slow-path, as long as no state changes that cause a race to be
593          * detected and reported have occurred until kcsan_is_enabled() is
594          * checked.
595          */
596
597         if (unlikely(watchpoint != NULL))
598                 kcsan_found_watchpoint(ptr, size, type, watchpoint,
599                                        encoded_watchpoint);
600         else {
601                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
602
603                 if (unlikely(should_watch(ptr, size, type, ctx)))
604                         kcsan_setup_watchpoint(ptr, size, type);
605                 else if (unlikely(ctx->scoped_accesses.prev))
606                         kcsan_check_scoped_accesses();
607         }
608 }
609
610 /* === Public interface ===================================================== */
611
612 void __init kcsan_init(void)
613 {
614         BUG_ON(!in_task());
615
616         kcsan_debugfs_init();
617
618         /*
619          * We are in the init task, and no other tasks should be running;
620          * WRITE_ONCE without memory barrier is sufficient.
621          */
622         if (kcsan_early_enable)
623                 WRITE_ONCE(kcsan_enabled, true);
624 }
625
626 /* === Exported interface =================================================== */
627
628 void kcsan_disable_current(void)
629 {
630         ++get_ctx()->disable_count;
631 }
632 EXPORT_SYMBOL(kcsan_disable_current);
633
634 void kcsan_enable_current(void)
635 {
636         if (get_ctx()->disable_count-- == 0) {
637                 /*
638                  * Warn if kcsan_enable_current() calls are unbalanced with
639                  * kcsan_disable_current() calls, which causes disable_count to
640                  * become negative and should not happen.
641                  */
642                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
643                 kcsan_disable_current(); /* disable to generate warning */
644                 WARN(1, "Unbalanced %s()", __func__);
645                 kcsan_enable_current();
646         }
647 }
648 EXPORT_SYMBOL(kcsan_enable_current);
649
650 void kcsan_enable_current_nowarn(void)
651 {
652         if (get_ctx()->disable_count-- == 0)
653                 kcsan_disable_current();
654 }
655 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
656
657 void kcsan_nestable_atomic_begin(void)
658 {
659         /*
660          * Do *not* check and warn if we are in a flat atomic region: nestable
661          * and flat atomic regions are independent from each other.
662          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
663          * comments.
664          */
665
666         ++get_ctx()->atomic_nest_count;
667 }
668 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
669
670 void kcsan_nestable_atomic_end(void)
671 {
672         if (get_ctx()->atomic_nest_count-- == 0) {
673                 /*
674                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
675                  * kcsan_nestable_atomic_begin() calls, which causes
676                  * atomic_nest_count to become negative and should not happen.
677                  */
678                 kcsan_nestable_atomic_begin(); /* restore to 0 */
679                 kcsan_disable_current(); /* disable to generate warning */
680                 WARN(1, "Unbalanced %s()", __func__);
681                 kcsan_enable_current();
682         }
683 }
684 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
685
686 void kcsan_flat_atomic_begin(void)
687 {
688         get_ctx()->in_flat_atomic = true;
689 }
690 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
691
692 void kcsan_flat_atomic_end(void)
693 {
694         get_ctx()->in_flat_atomic = false;
695 }
696 EXPORT_SYMBOL(kcsan_flat_atomic_end);
697
698 void kcsan_atomic_next(int n)
699 {
700         get_ctx()->atomic_next = n;
701 }
702 EXPORT_SYMBOL(kcsan_atomic_next);
703
704 void kcsan_set_access_mask(unsigned long mask)
705 {
706         get_ctx()->access_mask = mask;
707 }
708 EXPORT_SYMBOL(kcsan_set_access_mask);
709
710 struct kcsan_scoped_access *
711 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
712                           struct kcsan_scoped_access *sa)
713 {
714         struct kcsan_ctx *ctx = get_ctx();
715
716         __kcsan_check_access(ptr, size, type);
717
718         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
719
720         INIT_LIST_HEAD(&sa->list);
721         sa->ptr = ptr;
722         sa->size = size;
723         sa->type = type;
724
725         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
726                 INIT_LIST_HEAD(&ctx->scoped_accesses);
727         list_add(&sa->list, &ctx->scoped_accesses);
728
729         ctx->disable_count--;
730         return sa;
731 }
732 EXPORT_SYMBOL(kcsan_begin_scoped_access);
733
734 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
735 {
736         struct kcsan_ctx *ctx = get_ctx();
737
738         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
739                 return;
740
741         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
742
743         list_del(&sa->list);
744         if (list_empty(&ctx->scoped_accesses))
745                 /*
746                  * Ensure we do not enter kcsan_check_scoped_accesses()
747                  * slow-path if unnecessary, and avoids requiring list_empty()
748                  * in the fast-path (to avoid a READ_ONCE() and potential
749                  * uaccess warning).
750                  */
751                 ctx->scoped_accesses.prev = NULL;
752
753         ctx->disable_count--;
754
755         __kcsan_check_access(sa->ptr, sa->size, sa->type);
756 }
757 EXPORT_SYMBOL(kcsan_end_scoped_access);
758
759 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
760 {
761         check_access(ptr, size, type);
762 }
763 EXPORT_SYMBOL(__kcsan_check_access);
764
765 /*
766  * KCSAN uses the same instrumentation that is emitted by supported compilers
767  * for ThreadSanitizer (TSAN).
768  *
769  * When enabled, the compiler emits instrumentation calls (the functions
770  * prefixed with "__tsan" below) for all loads and stores that it generated;
771  * inline asm is not instrumented.
772  *
773  * Note that, not all supported compiler versions distinguish aligned/unaligned
774  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
775  * version to the generic version, which can handle both.
776  */
777
778 #define DEFINE_TSAN_READ_WRITE(size)                                           \
779         void __tsan_read##size(void *ptr);                                     \
780         void __tsan_read##size(void *ptr)                                      \
781         {                                                                      \
782                 check_access(ptr, size, 0);                                    \
783         }                                                                      \
784         EXPORT_SYMBOL(__tsan_read##size);                                      \
785         void __tsan_unaligned_read##size(void *ptr)                            \
786                 __alias(__tsan_read##size);                                    \
787         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
788         void __tsan_write##size(void *ptr);                                    \
789         void __tsan_write##size(void *ptr)                                     \
790         {                                                                      \
791                 check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
792         }                                                                      \
793         EXPORT_SYMBOL(__tsan_write##size);                                     \
794         void __tsan_unaligned_write##size(void *ptr)                           \
795                 __alias(__tsan_write##size);                                   \
796         EXPORT_SYMBOL(__tsan_unaligned_write##size)
797
798 DEFINE_TSAN_READ_WRITE(1);
799 DEFINE_TSAN_READ_WRITE(2);
800 DEFINE_TSAN_READ_WRITE(4);
801 DEFINE_TSAN_READ_WRITE(8);
802 DEFINE_TSAN_READ_WRITE(16);
803
804 void __tsan_read_range(void *ptr, size_t size);
805 void __tsan_read_range(void *ptr, size_t size)
806 {
807         check_access(ptr, size, 0);
808 }
809 EXPORT_SYMBOL(__tsan_read_range);
810
811 void __tsan_write_range(void *ptr, size_t size);
812 void __tsan_write_range(void *ptr, size_t size)
813 {
814         check_access(ptr, size, KCSAN_ACCESS_WRITE);
815 }
816 EXPORT_SYMBOL(__tsan_write_range);
817
818 /*
819  * Use of explicit volatile is generally disallowed [1], however, volatile is
820  * still used in various concurrent context, whether in low-level
821  * synchronization primitives or for legacy reasons.
822  * [1] https://lwn.net/Articles/233479/
823  *
824  * We only consider volatile accesses atomic if they are aligned and would pass
825  * the size-check of compiletime_assert_rwonce_type().
826  */
827 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
828         void __tsan_volatile_read##size(void *ptr);                            \
829         void __tsan_volatile_read##size(void *ptr)                             \
830         {                                                                      \
831                 const bool is_atomic = size <= sizeof(long long) &&            \
832                                        IS_ALIGNED((unsigned long)ptr, size);   \
833                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
834                         return;                                                \
835                 check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
836         }                                                                      \
837         EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
838         void __tsan_unaligned_volatile_read##size(void *ptr)                   \
839                 __alias(__tsan_volatile_read##size);                           \
840         EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
841         void __tsan_volatile_write##size(void *ptr);                           \
842         void __tsan_volatile_write##size(void *ptr)                            \
843         {                                                                      \
844                 const bool is_atomic = size <= sizeof(long long) &&            \
845                                        IS_ALIGNED((unsigned long)ptr, size);   \
846                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
847                         return;                                                \
848                 check_access(ptr, size,                                        \
849                              KCSAN_ACCESS_WRITE |                              \
850                                      (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
851         }                                                                      \
852         EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
853         void __tsan_unaligned_volatile_write##size(void *ptr)                  \
854                 __alias(__tsan_volatile_write##size);                          \
855         EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
856
857 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
858 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
859 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
860 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
861 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
862
863 /*
864  * The below are not required by KCSAN, but can still be emitted by the
865  * compiler.
866  */
867 void __tsan_func_entry(void *call_pc);
868 void __tsan_func_entry(void *call_pc)
869 {
870 }
871 EXPORT_SYMBOL(__tsan_func_entry);
872 void __tsan_func_exit(void);
873 void __tsan_func_exit(void)
874 {
875 }
876 EXPORT_SYMBOL(__tsan_func_exit);
877 void __tsan_init(void);
878 void __tsan_init(void)
879 {
880 }
881 EXPORT_SYMBOL(__tsan_init);