kcsan: Optimize debugfs stats counters
[linux-2.6-microblaze.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt) "kcsan: " fmt
4
5 #include <linux/atomic.h>
6 #include <linux/bug.h>
7 #include <linux/delay.h>
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/list.h>
12 #include <linux/moduleparam.h>
13 #include <linux/percpu.h>
14 #include <linux/preempt.h>
15 #include <linux/random.h>
16 #include <linux/sched.h>
17 #include <linux/uaccess.h>
18
19 #include "atomic.h"
20 #include "encoding.h"
21 #include "kcsan.h"
22
23 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
24 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
25 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
26 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
27 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
28
29 #ifdef MODULE_PARAM_PREFIX
30 #undef MODULE_PARAM_PREFIX
31 #endif
32 #define MODULE_PARAM_PREFIX "kcsan."
33 module_param_named(early_enable, kcsan_early_enable, bool, 0);
34 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
35 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
36 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
37 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
38
39 bool kcsan_enabled;
40
41 /* Per-CPU kcsan_ctx for interrupts */
42 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
43         .disable_count          = 0,
44         .atomic_next            = 0,
45         .atomic_nest_count      = 0,
46         .in_flat_atomic         = false,
47         .access_mask            = 0,
48         .scoped_accesses        = {LIST_POISON1, NULL},
49 };
50
51 /*
52  * Helper macros to index into adjacent slots, starting from address slot
53  * itself, followed by the right and left slots.
54  *
55  * The purpose is 2-fold:
56  *
57  *      1. if during insertion the address slot is already occupied, check if
58  *         any adjacent slots are free;
59  *      2. accesses that straddle a slot boundary due to size that exceeds a
60  *         slot's range may check adjacent slots if any watchpoint matches.
61  *
62  * Note that accesses with very large size may still miss a watchpoint; however,
63  * given this should be rare, this is a reasonable trade-off to make, since this
64  * will avoid:
65  *
66  *      1. excessive contention between watchpoint checks and setup;
67  *      2. larger number of simultaneous watchpoints without sacrificing
68  *         performance.
69  *
70  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
71  *
72  *   slot=0:  [ 1,  2,  0]
73  *   slot=9:  [10, 11,  9]
74  *   slot=63: [64, 65, 63]
75  */
76 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
77
78 /*
79  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
80  * slot (middle) is fine if we assume that races occur rarely. The set of
81  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
82  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
83  */
84 #define SLOT_IDX_FAST(slot, i) (slot + i)
85
86 /*
87  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
88  * able to safely update and access a watchpoint without introducing locking
89  * overhead, we encode each watchpoint as a single atomic long. The initial
90  * zero-initialized state matches INVALID_WATCHPOINT.
91  *
92  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
93  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
94  */
95 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
96
97 /*
98  * Instructions to skip watching counter, used in should_watch(). We use a
99  * per-CPU counter to avoid excessive contention.
100  */
101 static DEFINE_PER_CPU(long, kcsan_skip);
102
103 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
104                                                       size_t size,
105                                                       bool expect_write,
106                                                       long *encoded_watchpoint)
107 {
108         const int slot = watchpoint_slot(addr);
109         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
110         atomic_long_t *watchpoint;
111         unsigned long wp_addr_masked;
112         size_t wp_size;
113         bool is_write;
114         int i;
115
116         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
117
118         for (i = 0; i < NUM_SLOTS; ++i) {
119                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
120                 *encoded_watchpoint = atomic_long_read(watchpoint);
121                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
122                                        &wp_size, &is_write))
123                         continue;
124
125                 if (expect_write && !is_write)
126                         continue;
127
128                 /* Check if the watchpoint matches the access. */
129                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
130                         return watchpoint;
131         }
132
133         return NULL;
134 }
135
136 static inline atomic_long_t *
137 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
138 {
139         const int slot = watchpoint_slot(addr);
140         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
141         atomic_long_t *watchpoint;
142         int i;
143
144         /* Check slot index logic, ensuring we stay within array bounds. */
145         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
146         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
147         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
148         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
149
150         for (i = 0; i < NUM_SLOTS; ++i) {
151                 long expect_val = INVALID_WATCHPOINT;
152
153                 /* Try to acquire this slot. */
154                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
155                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
156                         return watchpoint;
157         }
158
159         return NULL;
160 }
161
162 /*
163  * Return true if watchpoint was successfully consumed, false otherwise.
164  *
165  * This may return false if:
166  *
167  *      1. another thread already consumed the watchpoint;
168  *      2. the thread that set up the watchpoint already removed it;
169  *      3. the watchpoint was removed and then re-used.
170  */
171 static __always_inline bool
172 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
173 {
174         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
175 }
176
177 /* Return true if watchpoint was not touched, false if already consumed. */
178 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
179 {
180         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
181 }
182
183 /* Remove the watchpoint -- its slot may be reused after. */
184 static inline void remove_watchpoint(atomic_long_t *watchpoint)
185 {
186         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
187 }
188
189 static __always_inline struct kcsan_ctx *get_ctx(void)
190 {
191         /*
192          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
193          * also result in calls that generate warnings in uaccess regions.
194          */
195         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
196 }
197
198 /* Check scoped accesses; never inline because this is a slow-path! */
199 static noinline void kcsan_check_scoped_accesses(void)
200 {
201         struct kcsan_ctx *ctx = get_ctx();
202         struct list_head *prev_save = ctx->scoped_accesses.prev;
203         struct kcsan_scoped_access *scoped_access;
204
205         ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
206         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
207                 __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
208         ctx->scoped_accesses.prev = prev_save;
209 }
210
211 /* Rules for generic atomic accesses. Called from fast-path. */
212 static __always_inline bool
213 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
214 {
215         if (type & KCSAN_ACCESS_ATOMIC)
216                 return true;
217
218         /*
219          * Unless explicitly declared atomic, never consider an assertion access
220          * as atomic. This allows using them also in atomic regions, such as
221          * seqlocks, without implicitly changing their semantics.
222          */
223         if (type & KCSAN_ACCESS_ASSERT)
224                 return false;
225
226         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
227             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
228             !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
229                 return true; /* Assume aligned writes up to word size are atomic. */
230
231         if (ctx->atomic_next > 0) {
232                 /*
233                  * Because we do not have separate contexts for nested
234                  * interrupts, in case atomic_next is set, we simply assume that
235                  * the outer interrupt set atomic_next. In the worst case, we
236                  * will conservatively consider operations as atomic. This is a
237                  * reasonable trade-off to make, since this case should be
238                  * extremely rare; however, even if extremely rare, it could
239                  * lead to false positives otherwise.
240                  */
241                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
242                         --ctx->atomic_next; /* in task, or outer interrupt */
243                 return true;
244         }
245
246         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
247 }
248
249 static __always_inline bool
250 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
251 {
252         /*
253          * Never set up watchpoints when memory operations are atomic.
254          *
255          * Need to check this first, before kcsan_skip check below: (1) atomics
256          * should not count towards skipped instructions, and (2) to actually
257          * decrement kcsan_atomic_next for consecutive instruction stream.
258          */
259         if (is_atomic(ptr, size, type, ctx))
260                 return false;
261
262         if (this_cpu_dec_return(kcsan_skip) >= 0)
263                 return false;
264
265         /*
266          * NOTE: If we get here, kcsan_skip must always be reset in slow path
267          * via reset_kcsan_skip() to avoid underflow.
268          */
269
270         /* this operation should be watched */
271         return true;
272 }
273
274 static inline void reset_kcsan_skip(void)
275 {
276         long skip_count = kcsan_skip_watch -
277                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
278                                    prandom_u32_max(kcsan_skip_watch) :
279                                    0);
280         this_cpu_write(kcsan_skip, skip_count);
281 }
282
283 static __always_inline bool kcsan_is_enabled(void)
284 {
285         return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
286 }
287
288 static inline unsigned int get_delay(int type)
289 {
290         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
291         /* For certain access types, skew the random delay to be longer. */
292         unsigned int skew_delay_order =
293                 (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
294
295         return delay - (IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
296                                 prandom_u32_max(delay >> skew_delay_order) :
297                                 0);
298 }
299
300 void kcsan_save_irqtrace(struct task_struct *task)
301 {
302 #ifdef CONFIG_TRACE_IRQFLAGS
303         task->kcsan_save_irqtrace = task->irqtrace;
304 #endif
305 }
306
307 void kcsan_restore_irqtrace(struct task_struct *task)
308 {
309 #ifdef CONFIG_TRACE_IRQFLAGS
310         task->irqtrace = task->kcsan_save_irqtrace;
311 #endif
312 }
313
314 /*
315  * Pull everything together: check_access() below contains the performance
316  * critical operations; the fast-path (including check_access) functions should
317  * all be inlinable by the instrumentation functions.
318  *
319  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
320  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
321  * be filtered from the stacktrace, as well as give them unique names for the
322  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
323  * since they do not access any user memory, but instrumentation is still
324  * emitted in UACCESS regions.
325  */
326
327 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
328                                             size_t size,
329                                             int type,
330                                             atomic_long_t *watchpoint,
331                                             long encoded_watchpoint)
332 {
333         unsigned long flags;
334         bool consumed;
335
336         if (!kcsan_is_enabled())
337                 return;
338
339         /*
340          * The access_mask check relies on value-change comparison. To avoid
341          * reporting a race where e.g. the writer set up the watchpoint, but the
342          * reader has access_mask!=0, we have to ignore the found watchpoint.
343          */
344         if (get_ctx()->access_mask != 0)
345                 return;
346
347         /*
348          * Consume the watchpoint as soon as possible, to minimize the chances
349          * of !consumed. Consuming the watchpoint must always be guarded by
350          * kcsan_is_enabled() check, as otherwise we might erroneously
351          * triggering reports when disabled.
352          */
353         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
354
355         /* keep this after try_consume_watchpoint */
356         flags = user_access_save();
357
358         if (consumed) {
359                 kcsan_save_irqtrace(current);
360                 kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
361                              KCSAN_REPORT_CONSUMED_WATCHPOINT,
362                              watchpoint - watchpoints);
363                 kcsan_restore_irqtrace(current);
364         } else {
365                 /*
366                  * The other thread may not print any diagnostics, as it has
367                  * already removed the watchpoint, or another thread consumed
368                  * the watchpoint before this thread.
369                  */
370                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
371         }
372
373         if ((type & KCSAN_ACCESS_ASSERT) != 0)
374                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
375         else
376                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
377
378         user_access_restore(flags);
379 }
380
381 static noinline void
382 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
383 {
384         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
385         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
386         atomic_long_t *watchpoint;
387         union {
388                 u8 _1;
389                 u16 _2;
390                 u32 _4;
391                 u64 _8;
392         } expect_value;
393         unsigned long access_mask;
394         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
395         unsigned long ua_flags = user_access_save();
396         unsigned long irq_flags = 0;
397
398         /*
399          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
400          * should_watch().
401          */
402         reset_kcsan_skip();
403
404         if (!kcsan_is_enabled())
405                 goto out;
406
407         /*
408          * Special atomic rules: unlikely to be true, so we check them here in
409          * the slow-path, and not in the fast-path in is_atomic(). Call after
410          * kcsan_is_enabled(), as we may access memory that is not yet
411          * initialized during early boot.
412          */
413         if (!is_assert && kcsan_is_atomic_special(ptr))
414                 goto out;
415
416         if (!check_encodable((unsigned long)ptr, size)) {
417                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
418                 goto out;
419         }
420
421         /*
422          * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
423          * runtime is entered for every memory access, and potentially useful
424          * information is lost if dirtied by KCSAN.
425          */
426         kcsan_save_irqtrace(current);
427         if (!kcsan_interrupt_watcher)
428                 local_irq_save(irq_flags);
429
430         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
431         if (watchpoint == NULL) {
432                 /*
433                  * Out of capacity: the size of 'watchpoints', and the frequency
434                  * with which should_watch() returns true should be tweaked so
435                  * that this case happens very rarely.
436                  */
437                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
438                 goto out_unlock;
439         }
440
441         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
442         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
443
444         /*
445          * Read the current value, to later check and infer a race if the data
446          * was modified via a non-instrumented access, e.g. from a device.
447          */
448         expect_value._8 = 0;
449         switch (size) {
450         case 1:
451                 expect_value._1 = READ_ONCE(*(const u8 *)ptr);
452                 break;
453         case 2:
454                 expect_value._2 = READ_ONCE(*(const u16 *)ptr);
455                 break;
456         case 4:
457                 expect_value._4 = READ_ONCE(*(const u32 *)ptr);
458                 break;
459         case 8:
460                 expect_value._8 = READ_ONCE(*(const u64 *)ptr);
461                 break;
462         default:
463                 break; /* ignore; we do not diff the values */
464         }
465
466         if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
467                 kcsan_disable_current();
468                 pr_err("watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
469                        is_write ? "write" : "read", size, ptr,
470                        watchpoint_slot((unsigned long)ptr),
471                        encode_watchpoint((unsigned long)ptr, size, is_write));
472                 kcsan_enable_current();
473         }
474
475         /*
476          * Delay this thread, to increase probability of observing a racy
477          * conflicting access.
478          */
479         udelay(get_delay(type));
480
481         /*
482          * Re-read value, and check if it is as expected; if not, we infer a
483          * racy access.
484          */
485         access_mask = get_ctx()->access_mask;
486         switch (size) {
487         case 1:
488                 expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
489                 if (access_mask)
490                         expect_value._1 &= (u8)access_mask;
491                 break;
492         case 2:
493                 expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
494                 if (access_mask)
495                         expect_value._2 &= (u16)access_mask;
496                 break;
497         case 4:
498                 expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
499                 if (access_mask)
500                         expect_value._4 &= (u32)access_mask;
501                 break;
502         case 8:
503                 expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
504                 if (access_mask)
505                         expect_value._8 &= (u64)access_mask;
506                 break;
507         default:
508                 break; /* ignore; we do not diff the values */
509         }
510
511         /* Were we able to observe a value-change? */
512         if (expect_value._8 != 0)
513                 value_change = KCSAN_VALUE_CHANGE_TRUE;
514
515         /* Check if this access raced with another. */
516         if (!consume_watchpoint(watchpoint)) {
517                 /*
518                  * Depending on the access type, map a value_change of MAYBE to
519                  * TRUE (always report) or FALSE (never report).
520                  */
521                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
522                         if (access_mask != 0) {
523                                 /*
524                                  * For access with access_mask, we require a
525                                  * value-change, as it is likely that races on
526                                  * ~access_mask bits are expected.
527                                  */
528                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
529                         } else if (size > 8 || is_assert) {
530                                 /* Always assume a value-change. */
531                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
532                         }
533                 }
534
535                 /*
536                  * No need to increment 'data_races' counter, as the racing
537                  * thread already did.
538                  *
539                  * Count 'assert_failures' for each failed ASSERT access,
540                  * therefore both this thread and the racing thread may
541                  * increment this counter.
542                  */
543                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
544                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
545
546                 kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
547                              watchpoint - watchpoints);
548         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
549                 /* Inferring a race, since the value should not have changed. */
550
551                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
552                 if (is_assert)
553                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
554
555                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
556                         kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
557                                      KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
558                                      watchpoint - watchpoints);
559         }
560
561         /*
562          * Remove watchpoint; must be after reporting, since the slot may be
563          * reused after this point.
564          */
565         remove_watchpoint(watchpoint);
566         atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
567 out_unlock:
568         if (!kcsan_interrupt_watcher)
569                 local_irq_restore(irq_flags);
570         kcsan_restore_irqtrace(current);
571 out:
572         user_access_restore(ua_flags);
573 }
574
575 static __always_inline void check_access(const volatile void *ptr, size_t size,
576                                          int type)
577 {
578         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
579         atomic_long_t *watchpoint;
580         long encoded_watchpoint;
581
582         /*
583          * Do nothing for 0 sized check; this comparison will be optimized out
584          * for constant sized instrumentation (__tsan_{read,write}N).
585          */
586         if (unlikely(size == 0))
587                 return;
588
589         /*
590          * Avoid user_access_save in fast-path: find_watchpoint is safe without
591          * user_access_save, as the address that ptr points to is only used to
592          * check if a watchpoint exists; ptr is never dereferenced.
593          */
594         watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
595                                      &encoded_watchpoint);
596         /*
597          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
598          * slow-path, as long as no state changes that cause a race to be
599          * detected and reported have occurred until kcsan_is_enabled() is
600          * checked.
601          */
602
603         if (unlikely(watchpoint != NULL))
604                 kcsan_found_watchpoint(ptr, size, type, watchpoint,
605                                        encoded_watchpoint);
606         else {
607                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
608
609                 if (unlikely(should_watch(ptr, size, type, ctx)))
610                         kcsan_setup_watchpoint(ptr, size, type);
611                 else if (unlikely(ctx->scoped_accesses.prev))
612                         kcsan_check_scoped_accesses();
613         }
614 }
615
616 /* === Public interface ===================================================== */
617
618 void __init kcsan_init(void)
619 {
620         BUG_ON(!in_task());
621
622         kcsan_debugfs_init();
623
624         /*
625          * We are in the init task, and no other tasks should be running;
626          * WRITE_ONCE without memory barrier is sufficient.
627          */
628         if (kcsan_early_enable) {
629                 pr_info("enabled early\n");
630                 WRITE_ONCE(kcsan_enabled, true);
631         }
632 }
633
634 /* === Exported interface =================================================== */
635
636 void kcsan_disable_current(void)
637 {
638         ++get_ctx()->disable_count;
639 }
640 EXPORT_SYMBOL(kcsan_disable_current);
641
642 void kcsan_enable_current(void)
643 {
644         if (get_ctx()->disable_count-- == 0) {
645                 /*
646                  * Warn if kcsan_enable_current() calls are unbalanced with
647                  * kcsan_disable_current() calls, which causes disable_count to
648                  * become negative and should not happen.
649                  */
650                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
651                 kcsan_disable_current(); /* disable to generate warning */
652                 WARN(1, "Unbalanced %s()", __func__);
653                 kcsan_enable_current();
654         }
655 }
656 EXPORT_SYMBOL(kcsan_enable_current);
657
658 void kcsan_enable_current_nowarn(void)
659 {
660         if (get_ctx()->disable_count-- == 0)
661                 kcsan_disable_current();
662 }
663 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
664
665 void kcsan_nestable_atomic_begin(void)
666 {
667         /*
668          * Do *not* check and warn if we are in a flat atomic region: nestable
669          * and flat atomic regions are independent from each other.
670          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
671          * comments.
672          */
673
674         ++get_ctx()->atomic_nest_count;
675 }
676 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
677
678 void kcsan_nestable_atomic_end(void)
679 {
680         if (get_ctx()->atomic_nest_count-- == 0) {
681                 /*
682                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
683                  * kcsan_nestable_atomic_begin() calls, which causes
684                  * atomic_nest_count to become negative and should not happen.
685                  */
686                 kcsan_nestable_atomic_begin(); /* restore to 0 */
687                 kcsan_disable_current(); /* disable to generate warning */
688                 WARN(1, "Unbalanced %s()", __func__);
689                 kcsan_enable_current();
690         }
691 }
692 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
693
694 void kcsan_flat_atomic_begin(void)
695 {
696         get_ctx()->in_flat_atomic = true;
697 }
698 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
699
700 void kcsan_flat_atomic_end(void)
701 {
702         get_ctx()->in_flat_atomic = false;
703 }
704 EXPORT_SYMBOL(kcsan_flat_atomic_end);
705
706 void kcsan_atomic_next(int n)
707 {
708         get_ctx()->atomic_next = n;
709 }
710 EXPORT_SYMBOL(kcsan_atomic_next);
711
712 void kcsan_set_access_mask(unsigned long mask)
713 {
714         get_ctx()->access_mask = mask;
715 }
716 EXPORT_SYMBOL(kcsan_set_access_mask);
717
718 struct kcsan_scoped_access *
719 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
720                           struct kcsan_scoped_access *sa)
721 {
722         struct kcsan_ctx *ctx = get_ctx();
723
724         __kcsan_check_access(ptr, size, type);
725
726         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
727
728         INIT_LIST_HEAD(&sa->list);
729         sa->ptr = ptr;
730         sa->size = size;
731         sa->type = type;
732
733         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
734                 INIT_LIST_HEAD(&ctx->scoped_accesses);
735         list_add(&sa->list, &ctx->scoped_accesses);
736
737         ctx->disable_count--;
738         return sa;
739 }
740 EXPORT_SYMBOL(kcsan_begin_scoped_access);
741
742 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
743 {
744         struct kcsan_ctx *ctx = get_ctx();
745
746         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
747                 return;
748
749         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
750
751         list_del(&sa->list);
752         if (list_empty(&ctx->scoped_accesses))
753                 /*
754                  * Ensure we do not enter kcsan_check_scoped_accesses()
755                  * slow-path if unnecessary, and avoids requiring list_empty()
756                  * in the fast-path (to avoid a READ_ONCE() and potential
757                  * uaccess warning).
758                  */
759                 ctx->scoped_accesses.prev = NULL;
760
761         ctx->disable_count--;
762
763         __kcsan_check_access(sa->ptr, sa->size, sa->type);
764 }
765 EXPORT_SYMBOL(kcsan_end_scoped_access);
766
767 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
768 {
769         check_access(ptr, size, type);
770 }
771 EXPORT_SYMBOL(__kcsan_check_access);
772
773 /*
774  * KCSAN uses the same instrumentation that is emitted by supported compilers
775  * for ThreadSanitizer (TSAN).
776  *
777  * When enabled, the compiler emits instrumentation calls (the functions
778  * prefixed with "__tsan" below) for all loads and stores that it generated;
779  * inline asm is not instrumented.
780  *
781  * Note that, not all supported compiler versions distinguish aligned/unaligned
782  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
783  * version to the generic version, which can handle both.
784  */
785
786 #define DEFINE_TSAN_READ_WRITE(size)                                           \
787         void __tsan_read##size(void *ptr);                                     \
788         void __tsan_read##size(void *ptr)                                      \
789         {                                                                      \
790                 check_access(ptr, size, 0);                                    \
791         }                                                                      \
792         EXPORT_SYMBOL(__tsan_read##size);                                      \
793         void __tsan_unaligned_read##size(void *ptr)                            \
794                 __alias(__tsan_read##size);                                    \
795         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
796         void __tsan_write##size(void *ptr);                                    \
797         void __tsan_write##size(void *ptr)                                     \
798         {                                                                      \
799                 check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
800         }                                                                      \
801         EXPORT_SYMBOL(__tsan_write##size);                                     \
802         void __tsan_unaligned_write##size(void *ptr)                           \
803                 __alias(__tsan_write##size);                                   \
804         EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
805         void __tsan_read_write##size(void *ptr);                               \
806         void __tsan_read_write##size(void *ptr)                                \
807         {                                                                      \
808                 check_access(ptr, size,                                        \
809                              KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE);      \
810         }                                                                      \
811         EXPORT_SYMBOL(__tsan_read_write##size);                                \
812         void __tsan_unaligned_read_write##size(void *ptr)                      \
813                 __alias(__tsan_read_write##size);                              \
814         EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
815
816 DEFINE_TSAN_READ_WRITE(1);
817 DEFINE_TSAN_READ_WRITE(2);
818 DEFINE_TSAN_READ_WRITE(4);
819 DEFINE_TSAN_READ_WRITE(8);
820 DEFINE_TSAN_READ_WRITE(16);
821
822 void __tsan_read_range(void *ptr, size_t size);
823 void __tsan_read_range(void *ptr, size_t size)
824 {
825         check_access(ptr, size, 0);
826 }
827 EXPORT_SYMBOL(__tsan_read_range);
828
829 void __tsan_write_range(void *ptr, size_t size);
830 void __tsan_write_range(void *ptr, size_t size)
831 {
832         check_access(ptr, size, KCSAN_ACCESS_WRITE);
833 }
834 EXPORT_SYMBOL(__tsan_write_range);
835
836 /*
837  * Use of explicit volatile is generally disallowed [1], however, volatile is
838  * still used in various concurrent context, whether in low-level
839  * synchronization primitives or for legacy reasons.
840  * [1] https://lwn.net/Articles/233479/
841  *
842  * We only consider volatile accesses atomic if they are aligned and would pass
843  * the size-check of compiletime_assert_rwonce_type().
844  */
845 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
846         void __tsan_volatile_read##size(void *ptr);                            \
847         void __tsan_volatile_read##size(void *ptr)                             \
848         {                                                                      \
849                 const bool is_atomic = size <= sizeof(long long) &&            \
850                                        IS_ALIGNED((unsigned long)ptr, size);   \
851                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
852                         return;                                                \
853                 check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
854         }                                                                      \
855         EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
856         void __tsan_unaligned_volatile_read##size(void *ptr)                   \
857                 __alias(__tsan_volatile_read##size);                           \
858         EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
859         void __tsan_volatile_write##size(void *ptr);                           \
860         void __tsan_volatile_write##size(void *ptr)                            \
861         {                                                                      \
862                 const bool is_atomic = size <= sizeof(long long) &&            \
863                                        IS_ALIGNED((unsigned long)ptr, size);   \
864                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
865                         return;                                                \
866                 check_access(ptr, size,                                        \
867                              KCSAN_ACCESS_WRITE |                              \
868                                      (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
869         }                                                                      \
870         EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
871         void __tsan_unaligned_volatile_write##size(void *ptr)                  \
872                 __alias(__tsan_volatile_write##size);                          \
873         EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
874
875 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
876 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
877 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
878 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
879 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
880
881 /*
882  * The below are not required by KCSAN, but can still be emitted by the
883  * compiler.
884  */
885 void __tsan_func_entry(void *call_pc);
886 void __tsan_func_entry(void *call_pc)
887 {
888 }
889 EXPORT_SYMBOL(__tsan_func_entry);
890 void __tsan_func_exit(void);
891 void __tsan_func_exit(void)
892 {
893 }
894 EXPORT_SYMBOL(__tsan_func_exit);
895 void __tsan_init(void);
896 void __tsan_init(void)
897 {
898 }
899 EXPORT_SYMBOL(__tsan_init);
900
901 /*
902  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
903  *
904  * Normal kernel code _should not_ be using them directly, but some
905  * architectures may implement some or all atomics using the compilers'
906  * builtins.
907  *
908  * Note: If an architecture decides to fully implement atomics using the
909  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
910  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
911  * atomic-instrumented) is no longer necessary.
912  *
913  * TSAN instrumentation replaces atomic accesses with calls to any of the below
914  * functions, whose job is to also execute the operation itself.
915  */
916
917 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
918         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
919         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
920         {                                                                                          \
921                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
922                         check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC);              \
923                 }                                                                                  \
924                 return __atomic_load_n(ptr, memorder);                                             \
925         }                                                                                          \
926         EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
927         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
928         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
929         {                                                                                          \
930                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
931                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
932                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC);                    \
933                 }                                                                                  \
934                 __atomic_store_n(ptr, v, memorder);                                                \
935         }                                                                                          \
936         EXPORT_SYMBOL(__tsan_atomic##bits##_store)
937
938 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
939         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
940         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
941         {                                                                                          \
942                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
943                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
944                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
945                                              KCSAN_ACCESS_ATOMIC);                                 \
946                 }                                                                                  \
947                 return __atomic_##op##suffix(ptr, v, memorder);                                    \
948         }                                                                                          \
949         EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
950
951 /*
952  * Note: CAS operations are always classified as write, even in case they
953  * fail. We cannot perform check_access() after a write, as it might lead to
954  * false positives, in cases such as:
955  *
956  *      T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
957  *
958  *      T1: if (__atomic_load_n(&p->flag, ...)) {
959  *              modify *p;
960  *              p->flag = 0;
961  *          }
962  *
963  * The only downside is that, if there are 3 threads, with one CAS that
964  * succeeds, another CAS that fails, and an unmarked racing operation, we may
965  * point at the wrong CAS as the source of the race. However, if we assume that
966  * all CAS can succeed in some other execution, the data race is still valid.
967  */
968 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
969         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
970                                                               u##bits val, int mo, int fail_mo);   \
971         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
972                                                               u##bits val, int mo, int fail_mo)    \
973         {                                                                                          \
974                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
975                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
976                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
977                                              KCSAN_ACCESS_ATOMIC);                                 \
978                 }                                                                                  \
979                 return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
980         }                                                                                          \
981         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
982
983 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
984         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
985                                                            int mo, int fail_mo);                   \
986         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
987                                                            int mo, int fail_mo)                    \
988         {                                                                                          \
989                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
990                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
991                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
992                                              KCSAN_ACCESS_ATOMIC);                                 \
993                 }                                                                                  \
994                 __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
995                 return exp;                                                                        \
996         }                                                                                          \
997         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
998
999 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1000         DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1001         DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1002         DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1003         DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1004         DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1005         DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1006         DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1007         DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1008         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1009         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1010         DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1011
1012 DEFINE_TSAN_ATOMIC_OPS(8);
1013 DEFINE_TSAN_ATOMIC_OPS(16);
1014 DEFINE_TSAN_ATOMIC_OPS(32);
1015 DEFINE_TSAN_ATOMIC_OPS(64);
1016
1017 void __tsan_atomic_thread_fence(int memorder);
1018 void __tsan_atomic_thread_fence(int memorder)
1019 {
1020         __atomic_thread_fence(memorder);
1021 }
1022 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1023
1024 void __tsan_atomic_signal_fence(int memorder);
1025 void __tsan_atomic_signal_fence(int memorder) { }
1026 EXPORT_SYMBOL(__tsan_atomic_signal_fence);