Merge remote-tracking branch 'spi/for-5.13' into spi-linus
[linux-2.6-microblaze.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KCSAN core runtime.
4  *
5  * Copyright (C) 2019, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kcsan: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/delay.h>
13 #include <linux/export.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/moduleparam.h>
18 #include <linux/percpu.h>
19 #include <linux/preempt.h>
20 #include <linux/sched.h>
21 #include <linux/uaccess.h>
22
23 #include "atomic.h"
24 #include "encoding.h"
25 #include "kcsan.h"
26
27 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
28 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
29 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
30 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
31 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
32
33 #ifdef MODULE_PARAM_PREFIX
34 #undef MODULE_PARAM_PREFIX
35 #endif
36 #define MODULE_PARAM_PREFIX "kcsan."
37 module_param_named(early_enable, kcsan_early_enable, bool, 0);
38 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
39 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
40 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
41 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
42
43 bool kcsan_enabled;
44
45 /* Per-CPU kcsan_ctx for interrupts */
46 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
47         .disable_count          = 0,
48         .atomic_next            = 0,
49         .atomic_nest_count      = 0,
50         .in_flat_atomic         = false,
51         .access_mask            = 0,
52         .scoped_accesses        = {LIST_POISON1, NULL},
53 };
54
55 /*
56  * Helper macros to index into adjacent slots, starting from address slot
57  * itself, followed by the right and left slots.
58  *
59  * The purpose is 2-fold:
60  *
61  *      1. if during insertion the address slot is already occupied, check if
62  *         any adjacent slots are free;
63  *      2. accesses that straddle a slot boundary due to size that exceeds a
64  *         slot's range may check adjacent slots if any watchpoint matches.
65  *
66  * Note that accesses with very large size may still miss a watchpoint; however,
67  * given this should be rare, this is a reasonable trade-off to make, since this
68  * will avoid:
69  *
70  *      1. excessive contention between watchpoint checks and setup;
71  *      2. larger number of simultaneous watchpoints without sacrificing
72  *         performance.
73  *
74  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
75  *
76  *   slot=0:  [ 1,  2,  0]
77  *   slot=9:  [10, 11,  9]
78  *   slot=63: [64, 65, 63]
79  */
80 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
81
82 /*
83  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
84  * slot (middle) is fine if we assume that races occur rarely. The set of
85  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
86  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
87  */
88 #define SLOT_IDX_FAST(slot, i) (slot + i)
89
90 /*
91  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
92  * able to safely update and access a watchpoint without introducing locking
93  * overhead, we encode each watchpoint as a single atomic long. The initial
94  * zero-initialized state matches INVALID_WATCHPOINT.
95  *
96  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
97  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
98  */
99 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
100
101 /*
102  * Instructions to skip watching counter, used in should_watch(). We use a
103  * per-CPU counter to avoid excessive contention.
104  */
105 static DEFINE_PER_CPU(long, kcsan_skip);
106
107 /* For kcsan_prandom_u32_max(). */
108 static DEFINE_PER_CPU(u32, kcsan_rand_state);
109
110 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
111                                                       size_t size,
112                                                       bool expect_write,
113                                                       long *encoded_watchpoint)
114 {
115         const int slot = watchpoint_slot(addr);
116         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
117         atomic_long_t *watchpoint;
118         unsigned long wp_addr_masked;
119         size_t wp_size;
120         bool is_write;
121         int i;
122
123         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
124
125         for (i = 0; i < NUM_SLOTS; ++i) {
126                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
127                 *encoded_watchpoint = atomic_long_read(watchpoint);
128                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
129                                        &wp_size, &is_write))
130                         continue;
131
132                 if (expect_write && !is_write)
133                         continue;
134
135                 /* Check if the watchpoint matches the access. */
136                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
137                         return watchpoint;
138         }
139
140         return NULL;
141 }
142
143 static inline atomic_long_t *
144 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
145 {
146         const int slot = watchpoint_slot(addr);
147         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
148         atomic_long_t *watchpoint;
149         int i;
150
151         /* Check slot index logic, ensuring we stay within array bounds. */
152         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
153         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
154         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
155         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
156
157         for (i = 0; i < NUM_SLOTS; ++i) {
158                 long expect_val = INVALID_WATCHPOINT;
159
160                 /* Try to acquire this slot. */
161                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
162                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
163                         return watchpoint;
164         }
165
166         return NULL;
167 }
168
169 /*
170  * Return true if watchpoint was successfully consumed, false otherwise.
171  *
172  * This may return false if:
173  *
174  *      1. another thread already consumed the watchpoint;
175  *      2. the thread that set up the watchpoint already removed it;
176  *      3. the watchpoint was removed and then re-used.
177  */
178 static __always_inline bool
179 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
180 {
181         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
182 }
183
184 /* Return true if watchpoint was not touched, false if already consumed. */
185 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
186 {
187         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
188 }
189
190 /* Remove the watchpoint -- its slot may be reused after. */
191 static inline void remove_watchpoint(atomic_long_t *watchpoint)
192 {
193         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
194 }
195
196 static __always_inline struct kcsan_ctx *get_ctx(void)
197 {
198         /*
199          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
200          * also result in calls that generate warnings in uaccess regions.
201          */
202         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
203 }
204
205 /* Check scoped accesses; never inline because this is a slow-path! */
206 static noinline void kcsan_check_scoped_accesses(void)
207 {
208         struct kcsan_ctx *ctx = get_ctx();
209         struct list_head *prev_save = ctx->scoped_accesses.prev;
210         struct kcsan_scoped_access *scoped_access;
211
212         ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
213         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
214                 __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
215         ctx->scoped_accesses.prev = prev_save;
216 }
217
218 /* Rules for generic atomic accesses. Called from fast-path. */
219 static __always_inline bool
220 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
221 {
222         if (type & KCSAN_ACCESS_ATOMIC)
223                 return true;
224
225         /*
226          * Unless explicitly declared atomic, never consider an assertion access
227          * as atomic. This allows using them also in atomic regions, such as
228          * seqlocks, without implicitly changing their semantics.
229          */
230         if (type & KCSAN_ACCESS_ASSERT)
231                 return false;
232
233         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
234             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
235             !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
236                 return true; /* Assume aligned writes up to word size are atomic. */
237
238         if (ctx->atomic_next > 0) {
239                 /*
240                  * Because we do not have separate contexts for nested
241                  * interrupts, in case atomic_next is set, we simply assume that
242                  * the outer interrupt set atomic_next. In the worst case, we
243                  * will conservatively consider operations as atomic. This is a
244                  * reasonable trade-off to make, since this case should be
245                  * extremely rare; however, even if extremely rare, it could
246                  * lead to false positives otherwise.
247                  */
248                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
249                         --ctx->atomic_next; /* in task, or outer interrupt */
250                 return true;
251         }
252
253         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
254 }
255
256 static __always_inline bool
257 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
258 {
259         /*
260          * Never set up watchpoints when memory operations are atomic.
261          *
262          * Need to check this first, before kcsan_skip check below: (1) atomics
263          * should not count towards skipped instructions, and (2) to actually
264          * decrement kcsan_atomic_next for consecutive instruction stream.
265          */
266         if (is_atomic(ptr, size, type, ctx))
267                 return false;
268
269         if (this_cpu_dec_return(kcsan_skip) >= 0)
270                 return false;
271
272         /*
273          * NOTE: If we get here, kcsan_skip must always be reset in slow path
274          * via reset_kcsan_skip() to avoid underflow.
275          */
276
277         /* this operation should be watched */
278         return true;
279 }
280
281 /*
282  * Returns a pseudo-random number in interval [0, ep_ro). Simple linear
283  * congruential generator, using constants from "Numerical Recipes".
284  */
285 static u32 kcsan_prandom_u32_max(u32 ep_ro)
286 {
287         u32 state = this_cpu_read(kcsan_rand_state);
288
289         state = 1664525 * state + 1013904223;
290         this_cpu_write(kcsan_rand_state, state);
291
292         return state % ep_ro;
293 }
294
295 static inline void reset_kcsan_skip(void)
296 {
297         long skip_count = kcsan_skip_watch -
298                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
299                                    kcsan_prandom_u32_max(kcsan_skip_watch) :
300                                    0);
301         this_cpu_write(kcsan_skip, skip_count);
302 }
303
304 static __always_inline bool kcsan_is_enabled(void)
305 {
306         return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
307 }
308
309 /* Introduce delay depending on context and configuration. */
310 static void delay_access(int type)
311 {
312         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
313         /* For certain access types, skew the random delay to be longer. */
314         unsigned int skew_delay_order =
315                 (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
316
317         delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
318                                kcsan_prandom_u32_max(delay >> skew_delay_order) :
319                                0;
320         udelay(delay);
321 }
322
323 void kcsan_save_irqtrace(struct task_struct *task)
324 {
325 #ifdef CONFIG_TRACE_IRQFLAGS
326         task->kcsan_save_irqtrace = task->irqtrace;
327 #endif
328 }
329
330 void kcsan_restore_irqtrace(struct task_struct *task)
331 {
332 #ifdef CONFIG_TRACE_IRQFLAGS
333         task->irqtrace = task->kcsan_save_irqtrace;
334 #endif
335 }
336
337 /*
338  * Pull everything together: check_access() below contains the performance
339  * critical operations; the fast-path (including check_access) functions should
340  * all be inlinable by the instrumentation functions.
341  *
342  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
343  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
344  * be filtered from the stacktrace, as well as give them unique names for the
345  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
346  * since they do not access any user memory, but instrumentation is still
347  * emitted in UACCESS regions.
348  */
349
350 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
351                                             size_t size,
352                                             int type,
353                                             atomic_long_t *watchpoint,
354                                             long encoded_watchpoint)
355 {
356         unsigned long flags;
357         bool consumed;
358
359         if (!kcsan_is_enabled())
360                 return;
361
362         /*
363          * The access_mask check relies on value-change comparison. To avoid
364          * reporting a race where e.g. the writer set up the watchpoint, but the
365          * reader has access_mask!=0, we have to ignore the found watchpoint.
366          */
367         if (get_ctx()->access_mask != 0)
368                 return;
369
370         /*
371          * Consume the watchpoint as soon as possible, to minimize the chances
372          * of !consumed. Consuming the watchpoint must always be guarded by
373          * kcsan_is_enabled() check, as otherwise we might erroneously
374          * triggering reports when disabled.
375          */
376         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
377
378         /* keep this after try_consume_watchpoint */
379         flags = user_access_save();
380
381         if (consumed) {
382                 kcsan_save_irqtrace(current);
383                 kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
384                              KCSAN_REPORT_CONSUMED_WATCHPOINT,
385                              watchpoint - watchpoints);
386                 kcsan_restore_irqtrace(current);
387         } else {
388                 /*
389                  * The other thread may not print any diagnostics, as it has
390                  * already removed the watchpoint, or another thread consumed
391                  * the watchpoint before this thread.
392                  */
393                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
394         }
395
396         if ((type & KCSAN_ACCESS_ASSERT) != 0)
397                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
398         else
399                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
400
401         user_access_restore(flags);
402 }
403
404 static noinline void
405 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
406 {
407         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
408         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
409         atomic_long_t *watchpoint;
410         union {
411                 u8 _1;
412                 u16 _2;
413                 u32 _4;
414                 u64 _8;
415         } expect_value;
416         unsigned long access_mask;
417         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
418         unsigned long ua_flags = user_access_save();
419         unsigned long irq_flags = 0;
420
421         /*
422          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
423          * should_watch().
424          */
425         reset_kcsan_skip();
426
427         if (!kcsan_is_enabled())
428                 goto out;
429
430         /*
431          * Special atomic rules: unlikely to be true, so we check them here in
432          * the slow-path, and not in the fast-path in is_atomic(). Call after
433          * kcsan_is_enabled(), as we may access memory that is not yet
434          * initialized during early boot.
435          */
436         if (!is_assert && kcsan_is_atomic_special(ptr))
437                 goto out;
438
439         if (!check_encodable((unsigned long)ptr, size)) {
440                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
441                 goto out;
442         }
443
444         /*
445          * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
446          * runtime is entered for every memory access, and potentially useful
447          * information is lost if dirtied by KCSAN.
448          */
449         kcsan_save_irqtrace(current);
450         if (!kcsan_interrupt_watcher)
451                 local_irq_save(irq_flags);
452
453         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
454         if (watchpoint == NULL) {
455                 /*
456                  * Out of capacity: the size of 'watchpoints', and the frequency
457                  * with which should_watch() returns true should be tweaked so
458                  * that this case happens very rarely.
459                  */
460                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
461                 goto out_unlock;
462         }
463
464         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
465         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
466
467         /*
468          * Read the current value, to later check and infer a race if the data
469          * was modified via a non-instrumented access, e.g. from a device.
470          */
471         expect_value._8 = 0;
472         switch (size) {
473         case 1:
474                 expect_value._1 = READ_ONCE(*(const u8 *)ptr);
475                 break;
476         case 2:
477                 expect_value._2 = READ_ONCE(*(const u16 *)ptr);
478                 break;
479         case 4:
480                 expect_value._4 = READ_ONCE(*(const u32 *)ptr);
481                 break;
482         case 8:
483                 expect_value._8 = READ_ONCE(*(const u64 *)ptr);
484                 break;
485         default:
486                 break; /* ignore; we do not diff the values */
487         }
488
489         if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
490                 kcsan_disable_current();
491                 pr_err("watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
492                        is_write ? "write" : "read", size, ptr,
493                        watchpoint_slot((unsigned long)ptr),
494                        encode_watchpoint((unsigned long)ptr, size, is_write));
495                 kcsan_enable_current();
496         }
497
498         /*
499          * Delay this thread, to increase probability of observing a racy
500          * conflicting access.
501          */
502         delay_access(type);
503
504         /*
505          * Re-read value, and check if it is as expected; if not, we infer a
506          * racy access.
507          */
508         access_mask = get_ctx()->access_mask;
509         switch (size) {
510         case 1:
511                 expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
512                 if (access_mask)
513                         expect_value._1 &= (u8)access_mask;
514                 break;
515         case 2:
516                 expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
517                 if (access_mask)
518                         expect_value._2 &= (u16)access_mask;
519                 break;
520         case 4:
521                 expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
522                 if (access_mask)
523                         expect_value._4 &= (u32)access_mask;
524                 break;
525         case 8:
526                 expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
527                 if (access_mask)
528                         expect_value._8 &= (u64)access_mask;
529                 break;
530         default:
531                 break; /* ignore; we do not diff the values */
532         }
533
534         /* Were we able to observe a value-change? */
535         if (expect_value._8 != 0)
536                 value_change = KCSAN_VALUE_CHANGE_TRUE;
537
538         /* Check if this access raced with another. */
539         if (!consume_watchpoint(watchpoint)) {
540                 /*
541                  * Depending on the access type, map a value_change of MAYBE to
542                  * TRUE (always report) or FALSE (never report).
543                  */
544                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
545                         if (access_mask != 0) {
546                                 /*
547                                  * For access with access_mask, we require a
548                                  * value-change, as it is likely that races on
549                                  * ~access_mask bits are expected.
550                                  */
551                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
552                         } else if (size > 8 || is_assert) {
553                                 /* Always assume a value-change. */
554                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
555                         }
556                 }
557
558                 /*
559                  * No need to increment 'data_races' counter, as the racing
560                  * thread already did.
561                  *
562                  * Count 'assert_failures' for each failed ASSERT access,
563                  * therefore both this thread and the racing thread may
564                  * increment this counter.
565                  */
566                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
567                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
568
569                 kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
570                              watchpoint - watchpoints);
571         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
572                 /* Inferring a race, since the value should not have changed. */
573
574                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
575                 if (is_assert)
576                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
577
578                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
579                         kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
580                                      KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
581                                      watchpoint - watchpoints);
582         }
583
584         /*
585          * Remove watchpoint; must be after reporting, since the slot may be
586          * reused after this point.
587          */
588         remove_watchpoint(watchpoint);
589         atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
590 out_unlock:
591         if (!kcsan_interrupt_watcher)
592                 local_irq_restore(irq_flags);
593         kcsan_restore_irqtrace(current);
594 out:
595         user_access_restore(ua_flags);
596 }
597
598 static __always_inline void check_access(const volatile void *ptr, size_t size,
599                                          int type)
600 {
601         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
602         atomic_long_t *watchpoint;
603         long encoded_watchpoint;
604
605         /*
606          * Do nothing for 0 sized check; this comparison will be optimized out
607          * for constant sized instrumentation (__tsan_{read,write}N).
608          */
609         if (unlikely(size == 0))
610                 return;
611
612         /*
613          * Avoid user_access_save in fast-path: find_watchpoint is safe without
614          * user_access_save, as the address that ptr points to is only used to
615          * check if a watchpoint exists; ptr is never dereferenced.
616          */
617         watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
618                                      &encoded_watchpoint);
619         /*
620          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
621          * slow-path, as long as no state changes that cause a race to be
622          * detected and reported have occurred until kcsan_is_enabled() is
623          * checked.
624          */
625
626         if (unlikely(watchpoint != NULL))
627                 kcsan_found_watchpoint(ptr, size, type, watchpoint,
628                                        encoded_watchpoint);
629         else {
630                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
631
632                 if (unlikely(should_watch(ptr, size, type, ctx)))
633                         kcsan_setup_watchpoint(ptr, size, type);
634                 else if (unlikely(ctx->scoped_accesses.prev))
635                         kcsan_check_scoped_accesses();
636         }
637 }
638
639 /* === Public interface ===================================================== */
640
641 void __init kcsan_init(void)
642 {
643         int cpu;
644
645         BUG_ON(!in_task());
646
647         for_each_possible_cpu(cpu)
648                 per_cpu(kcsan_rand_state, cpu) = (u32)get_cycles();
649
650         /*
651          * We are in the init task, and no other tasks should be running;
652          * WRITE_ONCE without memory barrier is sufficient.
653          */
654         if (kcsan_early_enable) {
655                 pr_info("enabled early\n");
656                 WRITE_ONCE(kcsan_enabled, true);
657         }
658 }
659
660 /* === Exported interface =================================================== */
661
662 void kcsan_disable_current(void)
663 {
664         ++get_ctx()->disable_count;
665 }
666 EXPORT_SYMBOL(kcsan_disable_current);
667
668 void kcsan_enable_current(void)
669 {
670         if (get_ctx()->disable_count-- == 0) {
671                 /*
672                  * Warn if kcsan_enable_current() calls are unbalanced with
673                  * kcsan_disable_current() calls, which causes disable_count to
674                  * become negative and should not happen.
675                  */
676                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
677                 kcsan_disable_current(); /* disable to generate warning */
678                 WARN(1, "Unbalanced %s()", __func__);
679                 kcsan_enable_current();
680         }
681 }
682 EXPORT_SYMBOL(kcsan_enable_current);
683
684 void kcsan_enable_current_nowarn(void)
685 {
686         if (get_ctx()->disable_count-- == 0)
687                 kcsan_disable_current();
688 }
689 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
690
691 void kcsan_nestable_atomic_begin(void)
692 {
693         /*
694          * Do *not* check and warn if we are in a flat atomic region: nestable
695          * and flat atomic regions are independent from each other.
696          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
697          * comments.
698          */
699
700         ++get_ctx()->atomic_nest_count;
701 }
702 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
703
704 void kcsan_nestable_atomic_end(void)
705 {
706         if (get_ctx()->atomic_nest_count-- == 0) {
707                 /*
708                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
709                  * kcsan_nestable_atomic_begin() calls, which causes
710                  * atomic_nest_count to become negative and should not happen.
711                  */
712                 kcsan_nestable_atomic_begin(); /* restore to 0 */
713                 kcsan_disable_current(); /* disable to generate warning */
714                 WARN(1, "Unbalanced %s()", __func__);
715                 kcsan_enable_current();
716         }
717 }
718 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
719
720 void kcsan_flat_atomic_begin(void)
721 {
722         get_ctx()->in_flat_atomic = true;
723 }
724 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
725
726 void kcsan_flat_atomic_end(void)
727 {
728         get_ctx()->in_flat_atomic = false;
729 }
730 EXPORT_SYMBOL(kcsan_flat_atomic_end);
731
732 void kcsan_atomic_next(int n)
733 {
734         get_ctx()->atomic_next = n;
735 }
736 EXPORT_SYMBOL(kcsan_atomic_next);
737
738 void kcsan_set_access_mask(unsigned long mask)
739 {
740         get_ctx()->access_mask = mask;
741 }
742 EXPORT_SYMBOL(kcsan_set_access_mask);
743
744 struct kcsan_scoped_access *
745 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
746                           struct kcsan_scoped_access *sa)
747 {
748         struct kcsan_ctx *ctx = get_ctx();
749
750         __kcsan_check_access(ptr, size, type);
751
752         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
753
754         INIT_LIST_HEAD(&sa->list);
755         sa->ptr = ptr;
756         sa->size = size;
757         sa->type = type;
758
759         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
760                 INIT_LIST_HEAD(&ctx->scoped_accesses);
761         list_add(&sa->list, &ctx->scoped_accesses);
762
763         ctx->disable_count--;
764         return sa;
765 }
766 EXPORT_SYMBOL(kcsan_begin_scoped_access);
767
768 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
769 {
770         struct kcsan_ctx *ctx = get_ctx();
771
772         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
773                 return;
774
775         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
776
777         list_del(&sa->list);
778         if (list_empty(&ctx->scoped_accesses))
779                 /*
780                  * Ensure we do not enter kcsan_check_scoped_accesses()
781                  * slow-path if unnecessary, and avoids requiring list_empty()
782                  * in the fast-path (to avoid a READ_ONCE() and potential
783                  * uaccess warning).
784                  */
785                 ctx->scoped_accesses.prev = NULL;
786
787         ctx->disable_count--;
788
789         __kcsan_check_access(sa->ptr, sa->size, sa->type);
790 }
791 EXPORT_SYMBOL(kcsan_end_scoped_access);
792
793 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
794 {
795         check_access(ptr, size, type);
796 }
797 EXPORT_SYMBOL(__kcsan_check_access);
798
799 /*
800  * KCSAN uses the same instrumentation that is emitted by supported compilers
801  * for ThreadSanitizer (TSAN).
802  *
803  * When enabled, the compiler emits instrumentation calls (the functions
804  * prefixed with "__tsan" below) for all loads and stores that it generated;
805  * inline asm is not instrumented.
806  *
807  * Note that, not all supported compiler versions distinguish aligned/unaligned
808  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
809  * version to the generic version, which can handle both.
810  */
811
812 #define DEFINE_TSAN_READ_WRITE(size)                                           \
813         void __tsan_read##size(void *ptr);                                     \
814         void __tsan_read##size(void *ptr)                                      \
815         {                                                                      \
816                 check_access(ptr, size, 0);                                    \
817         }                                                                      \
818         EXPORT_SYMBOL(__tsan_read##size);                                      \
819         void __tsan_unaligned_read##size(void *ptr)                            \
820                 __alias(__tsan_read##size);                                    \
821         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
822         void __tsan_write##size(void *ptr);                                    \
823         void __tsan_write##size(void *ptr)                                     \
824         {                                                                      \
825                 check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
826         }                                                                      \
827         EXPORT_SYMBOL(__tsan_write##size);                                     \
828         void __tsan_unaligned_write##size(void *ptr)                           \
829                 __alias(__tsan_write##size);                                   \
830         EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
831         void __tsan_read_write##size(void *ptr);                               \
832         void __tsan_read_write##size(void *ptr)                                \
833         {                                                                      \
834                 check_access(ptr, size,                                        \
835                              KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE);      \
836         }                                                                      \
837         EXPORT_SYMBOL(__tsan_read_write##size);                                \
838         void __tsan_unaligned_read_write##size(void *ptr)                      \
839                 __alias(__tsan_read_write##size);                              \
840         EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
841
842 DEFINE_TSAN_READ_WRITE(1);
843 DEFINE_TSAN_READ_WRITE(2);
844 DEFINE_TSAN_READ_WRITE(4);
845 DEFINE_TSAN_READ_WRITE(8);
846 DEFINE_TSAN_READ_WRITE(16);
847
848 void __tsan_read_range(void *ptr, size_t size);
849 void __tsan_read_range(void *ptr, size_t size)
850 {
851         check_access(ptr, size, 0);
852 }
853 EXPORT_SYMBOL(__tsan_read_range);
854
855 void __tsan_write_range(void *ptr, size_t size);
856 void __tsan_write_range(void *ptr, size_t size)
857 {
858         check_access(ptr, size, KCSAN_ACCESS_WRITE);
859 }
860 EXPORT_SYMBOL(__tsan_write_range);
861
862 /*
863  * Use of explicit volatile is generally disallowed [1], however, volatile is
864  * still used in various concurrent context, whether in low-level
865  * synchronization primitives or for legacy reasons.
866  * [1] https://lwn.net/Articles/233479/
867  *
868  * We only consider volatile accesses atomic if they are aligned and would pass
869  * the size-check of compiletime_assert_rwonce_type().
870  */
871 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
872         void __tsan_volatile_read##size(void *ptr);                            \
873         void __tsan_volatile_read##size(void *ptr)                             \
874         {                                                                      \
875                 const bool is_atomic = size <= sizeof(long long) &&            \
876                                        IS_ALIGNED((unsigned long)ptr, size);   \
877                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
878                         return;                                                \
879                 check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
880         }                                                                      \
881         EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
882         void __tsan_unaligned_volatile_read##size(void *ptr)                   \
883                 __alias(__tsan_volatile_read##size);                           \
884         EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
885         void __tsan_volatile_write##size(void *ptr);                           \
886         void __tsan_volatile_write##size(void *ptr)                            \
887         {                                                                      \
888                 const bool is_atomic = size <= sizeof(long long) &&            \
889                                        IS_ALIGNED((unsigned long)ptr, size);   \
890                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
891                         return;                                                \
892                 check_access(ptr, size,                                        \
893                              KCSAN_ACCESS_WRITE |                              \
894                                      (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
895         }                                                                      \
896         EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
897         void __tsan_unaligned_volatile_write##size(void *ptr)                  \
898                 __alias(__tsan_volatile_write##size);                          \
899         EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
900
901 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
902 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
903 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
904 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
905 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
906
907 /*
908  * The below are not required by KCSAN, but can still be emitted by the
909  * compiler.
910  */
911 void __tsan_func_entry(void *call_pc);
912 void __tsan_func_entry(void *call_pc)
913 {
914 }
915 EXPORT_SYMBOL(__tsan_func_entry);
916 void __tsan_func_exit(void);
917 void __tsan_func_exit(void)
918 {
919 }
920 EXPORT_SYMBOL(__tsan_func_exit);
921 void __tsan_init(void);
922 void __tsan_init(void)
923 {
924 }
925 EXPORT_SYMBOL(__tsan_init);
926
927 /*
928  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
929  *
930  * Normal kernel code _should not_ be using them directly, but some
931  * architectures may implement some or all atomics using the compilers'
932  * builtins.
933  *
934  * Note: If an architecture decides to fully implement atomics using the
935  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
936  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
937  * atomic-instrumented) is no longer necessary.
938  *
939  * TSAN instrumentation replaces atomic accesses with calls to any of the below
940  * functions, whose job is to also execute the operation itself.
941  */
942
943 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
944         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
945         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
946         {                                                                                          \
947                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
948                         check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC);              \
949                 }                                                                                  \
950                 return __atomic_load_n(ptr, memorder);                                             \
951         }                                                                                          \
952         EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
953         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
954         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
955         {                                                                                          \
956                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
957                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
958                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC);                    \
959                 }                                                                                  \
960                 __atomic_store_n(ptr, v, memorder);                                                \
961         }                                                                                          \
962         EXPORT_SYMBOL(__tsan_atomic##bits##_store)
963
964 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
965         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
966         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
967         {                                                                                          \
968                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
969                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
970                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
971                                              KCSAN_ACCESS_ATOMIC);                                 \
972                 }                                                                                  \
973                 return __atomic_##op##suffix(ptr, v, memorder);                                    \
974         }                                                                                          \
975         EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
976
977 /*
978  * Note: CAS operations are always classified as write, even in case they
979  * fail. We cannot perform check_access() after a write, as it might lead to
980  * false positives, in cases such as:
981  *
982  *      T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
983  *
984  *      T1: if (__atomic_load_n(&p->flag, ...)) {
985  *              modify *p;
986  *              p->flag = 0;
987  *          }
988  *
989  * The only downside is that, if there are 3 threads, with one CAS that
990  * succeeds, another CAS that fails, and an unmarked racing operation, we may
991  * point at the wrong CAS as the source of the race. However, if we assume that
992  * all CAS can succeed in some other execution, the data race is still valid.
993  */
994 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
995         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
996                                                               u##bits val, int mo, int fail_mo);   \
997         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
998                                                               u##bits val, int mo, int fail_mo)    \
999         {                                                                                          \
1000                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1001                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1002                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1003                                              KCSAN_ACCESS_ATOMIC);                                 \
1004                 }                                                                                  \
1005                 return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1006         }                                                                                          \
1007         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1008
1009 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1010         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1011                                                            int mo, int fail_mo);                   \
1012         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1013                                                            int mo, int fail_mo)                    \
1014         {                                                                                          \
1015                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1016                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1017                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1018                                              KCSAN_ACCESS_ATOMIC);                                 \
1019                 }                                                                                  \
1020                 __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1021                 return exp;                                                                        \
1022         }                                                                                          \
1023         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1024
1025 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1026         DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1027         DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1028         DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1029         DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1030         DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1031         DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1032         DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1033         DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1034         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1035         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1036         DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1037
1038 DEFINE_TSAN_ATOMIC_OPS(8);
1039 DEFINE_TSAN_ATOMIC_OPS(16);
1040 DEFINE_TSAN_ATOMIC_OPS(32);
1041 DEFINE_TSAN_ATOMIC_OPS(64);
1042
1043 void __tsan_atomic_thread_fence(int memorder);
1044 void __tsan_atomic_thread_fence(int memorder)
1045 {
1046         __atomic_thread_fence(memorder);
1047 }
1048 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1049
1050 void __tsan_atomic_signal_fence(int memorder);
1051 void __tsan_atomic_signal_fence(int memorder) { }
1052 EXPORT_SYMBOL(__tsan_atomic_signal_fence);