kasan: inline kasan_reset_tag for tag-based modes
[linux-2.6-microblaze.git] / kernel / kcsan / core.c
1 // SPDX-License-Identifier: GPL-2.0
2
3 #define pr_fmt(fmt) "kcsan: " fmt
4
5 #include <linux/atomic.h>
6 #include <linux/bug.h>
7 #include <linux/delay.h>
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/list.h>
12 #include <linux/moduleparam.h>
13 #include <linux/percpu.h>
14 #include <linux/preempt.h>
15 #include <linux/random.h>
16 #include <linux/sched.h>
17 #include <linux/uaccess.h>
18
19 #include "atomic.h"
20 #include "encoding.h"
21 #include "kcsan.h"
22
23 static bool kcsan_early_enable = IS_ENABLED(CONFIG_KCSAN_EARLY_ENABLE);
24 unsigned int kcsan_udelay_task = CONFIG_KCSAN_UDELAY_TASK;
25 unsigned int kcsan_udelay_interrupt = CONFIG_KCSAN_UDELAY_INTERRUPT;
26 static long kcsan_skip_watch = CONFIG_KCSAN_SKIP_WATCH;
27 static bool kcsan_interrupt_watcher = IS_ENABLED(CONFIG_KCSAN_INTERRUPT_WATCHER);
28
29 #ifdef MODULE_PARAM_PREFIX
30 #undef MODULE_PARAM_PREFIX
31 #endif
32 #define MODULE_PARAM_PREFIX "kcsan."
33 module_param_named(early_enable, kcsan_early_enable, bool, 0);
34 module_param_named(udelay_task, kcsan_udelay_task, uint, 0644);
35 module_param_named(udelay_interrupt, kcsan_udelay_interrupt, uint, 0644);
36 module_param_named(skip_watch, kcsan_skip_watch, long, 0644);
37 module_param_named(interrupt_watcher, kcsan_interrupt_watcher, bool, 0444);
38
39 bool kcsan_enabled;
40
41 /* Per-CPU kcsan_ctx for interrupts */
42 static DEFINE_PER_CPU(struct kcsan_ctx, kcsan_cpu_ctx) = {
43         .disable_count          = 0,
44         .atomic_next            = 0,
45         .atomic_nest_count      = 0,
46         .in_flat_atomic         = false,
47         .access_mask            = 0,
48         .scoped_accesses        = {LIST_POISON1, NULL},
49 };
50
51 /*
52  * Helper macros to index into adjacent slots, starting from address slot
53  * itself, followed by the right and left slots.
54  *
55  * The purpose is 2-fold:
56  *
57  *      1. if during insertion the address slot is already occupied, check if
58  *         any adjacent slots are free;
59  *      2. accesses that straddle a slot boundary due to size that exceeds a
60  *         slot's range may check adjacent slots if any watchpoint matches.
61  *
62  * Note that accesses with very large size may still miss a watchpoint; however,
63  * given this should be rare, this is a reasonable trade-off to make, since this
64  * will avoid:
65  *
66  *      1. excessive contention between watchpoint checks and setup;
67  *      2. larger number of simultaneous watchpoints without sacrificing
68  *         performance.
69  *
70  * Example: SLOT_IDX values for KCSAN_CHECK_ADJACENT=1, where i is [0, 1, 2]:
71  *
72  *   slot=0:  [ 1,  2,  0]
73  *   slot=9:  [10, 11,  9]
74  *   slot=63: [64, 65, 63]
75  */
76 #define SLOT_IDX(slot, i) (slot + ((i + KCSAN_CHECK_ADJACENT) % NUM_SLOTS))
77
78 /*
79  * SLOT_IDX_FAST is used in the fast-path. Not first checking the address's primary
80  * slot (middle) is fine if we assume that races occur rarely. The set of
81  * indices {SLOT_IDX(slot, i) | i in [0, NUM_SLOTS)} is equivalent to
82  * {SLOT_IDX_FAST(slot, i) | i in [0, NUM_SLOTS)}.
83  */
84 #define SLOT_IDX_FAST(slot, i) (slot + i)
85
86 /*
87  * Watchpoints, with each entry encoded as defined in encoding.h: in order to be
88  * able to safely update and access a watchpoint without introducing locking
89  * overhead, we encode each watchpoint as a single atomic long. The initial
90  * zero-initialized state matches INVALID_WATCHPOINT.
91  *
92  * Add NUM_SLOTS-1 entries to account for overflow; this helps avoid having to
93  * use more complicated SLOT_IDX_FAST calculation with modulo in the fast-path.
94  */
95 static atomic_long_t watchpoints[CONFIG_KCSAN_NUM_WATCHPOINTS + NUM_SLOTS-1];
96
97 /*
98  * Instructions to skip watching counter, used in should_watch(). We use a
99  * per-CPU counter to avoid excessive contention.
100  */
101 static DEFINE_PER_CPU(long, kcsan_skip);
102
103 /* For kcsan_prandom_u32_max(). */
104 static DEFINE_PER_CPU(struct rnd_state, kcsan_rand_state);
105
106 static __always_inline atomic_long_t *find_watchpoint(unsigned long addr,
107                                                       size_t size,
108                                                       bool expect_write,
109                                                       long *encoded_watchpoint)
110 {
111         const int slot = watchpoint_slot(addr);
112         const unsigned long addr_masked = addr & WATCHPOINT_ADDR_MASK;
113         atomic_long_t *watchpoint;
114         unsigned long wp_addr_masked;
115         size_t wp_size;
116         bool is_write;
117         int i;
118
119         BUILD_BUG_ON(CONFIG_KCSAN_NUM_WATCHPOINTS < NUM_SLOTS);
120
121         for (i = 0; i < NUM_SLOTS; ++i) {
122                 watchpoint = &watchpoints[SLOT_IDX_FAST(slot, i)];
123                 *encoded_watchpoint = atomic_long_read(watchpoint);
124                 if (!decode_watchpoint(*encoded_watchpoint, &wp_addr_masked,
125                                        &wp_size, &is_write))
126                         continue;
127
128                 if (expect_write && !is_write)
129                         continue;
130
131                 /* Check if the watchpoint matches the access. */
132                 if (matching_access(wp_addr_masked, wp_size, addr_masked, size))
133                         return watchpoint;
134         }
135
136         return NULL;
137 }
138
139 static inline atomic_long_t *
140 insert_watchpoint(unsigned long addr, size_t size, bool is_write)
141 {
142         const int slot = watchpoint_slot(addr);
143         const long encoded_watchpoint = encode_watchpoint(addr, size, is_write);
144         atomic_long_t *watchpoint;
145         int i;
146
147         /* Check slot index logic, ensuring we stay within array bounds. */
148         BUILD_BUG_ON(SLOT_IDX(0, 0) != KCSAN_CHECK_ADJACENT);
149         BUILD_BUG_ON(SLOT_IDX(0, KCSAN_CHECK_ADJACENT+1) != 0);
150         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT) != ARRAY_SIZE(watchpoints)-1);
151         BUILD_BUG_ON(SLOT_IDX(CONFIG_KCSAN_NUM_WATCHPOINTS-1, KCSAN_CHECK_ADJACENT+1) != ARRAY_SIZE(watchpoints) - NUM_SLOTS);
152
153         for (i = 0; i < NUM_SLOTS; ++i) {
154                 long expect_val = INVALID_WATCHPOINT;
155
156                 /* Try to acquire this slot. */
157                 watchpoint = &watchpoints[SLOT_IDX(slot, i)];
158                 if (atomic_long_try_cmpxchg_relaxed(watchpoint, &expect_val, encoded_watchpoint))
159                         return watchpoint;
160         }
161
162         return NULL;
163 }
164
165 /*
166  * Return true if watchpoint was successfully consumed, false otherwise.
167  *
168  * This may return false if:
169  *
170  *      1. another thread already consumed the watchpoint;
171  *      2. the thread that set up the watchpoint already removed it;
172  *      3. the watchpoint was removed and then re-used.
173  */
174 static __always_inline bool
175 try_consume_watchpoint(atomic_long_t *watchpoint, long encoded_watchpoint)
176 {
177         return atomic_long_try_cmpxchg_relaxed(watchpoint, &encoded_watchpoint, CONSUMED_WATCHPOINT);
178 }
179
180 /* Return true if watchpoint was not touched, false if already consumed. */
181 static inline bool consume_watchpoint(atomic_long_t *watchpoint)
182 {
183         return atomic_long_xchg_relaxed(watchpoint, CONSUMED_WATCHPOINT) != CONSUMED_WATCHPOINT;
184 }
185
186 /* Remove the watchpoint -- its slot may be reused after. */
187 static inline void remove_watchpoint(atomic_long_t *watchpoint)
188 {
189         atomic_long_set(watchpoint, INVALID_WATCHPOINT);
190 }
191
192 static __always_inline struct kcsan_ctx *get_ctx(void)
193 {
194         /*
195          * In interrupts, use raw_cpu_ptr to avoid unnecessary checks, that would
196          * also result in calls that generate warnings in uaccess regions.
197          */
198         return in_task() ? &current->kcsan_ctx : raw_cpu_ptr(&kcsan_cpu_ctx);
199 }
200
201 /* Check scoped accesses; never inline because this is a slow-path! */
202 static noinline void kcsan_check_scoped_accesses(void)
203 {
204         struct kcsan_ctx *ctx = get_ctx();
205         struct list_head *prev_save = ctx->scoped_accesses.prev;
206         struct kcsan_scoped_access *scoped_access;
207
208         ctx->scoped_accesses.prev = NULL;  /* Avoid recursion. */
209         list_for_each_entry(scoped_access, &ctx->scoped_accesses, list)
210                 __kcsan_check_access(scoped_access->ptr, scoped_access->size, scoped_access->type);
211         ctx->scoped_accesses.prev = prev_save;
212 }
213
214 /* Rules for generic atomic accesses. Called from fast-path. */
215 static __always_inline bool
216 is_atomic(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
217 {
218         if (type & KCSAN_ACCESS_ATOMIC)
219                 return true;
220
221         /*
222          * Unless explicitly declared atomic, never consider an assertion access
223          * as atomic. This allows using them also in atomic regions, such as
224          * seqlocks, without implicitly changing their semantics.
225          */
226         if (type & KCSAN_ACCESS_ASSERT)
227                 return false;
228
229         if (IS_ENABLED(CONFIG_KCSAN_ASSUME_PLAIN_WRITES_ATOMIC) &&
230             (type & KCSAN_ACCESS_WRITE) && size <= sizeof(long) &&
231             !(type & KCSAN_ACCESS_COMPOUND) && IS_ALIGNED((unsigned long)ptr, size))
232                 return true; /* Assume aligned writes up to word size are atomic. */
233
234         if (ctx->atomic_next > 0) {
235                 /*
236                  * Because we do not have separate contexts for nested
237                  * interrupts, in case atomic_next is set, we simply assume that
238                  * the outer interrupt set atomic_next. In the worst case, we
239                  * will conservatively consider operations as atomic. This is a
240                  * reasonable trade-off to make, since this case should be
241                  * extremely rare; however, even if extremely rare, it could
242                  * lead to false positives otherwise.
243                  */
244                 if ((hardirq_count() >> HARDIRQ_SHIFT) < 2)
245                         --ctx->atomic_next; /* in task, or outer interrupt */
246                 return true;
247         }
248
249         return ctx->atomic_nest_count > 0 || ctx->in_flat_atomic;
250 }
251
252 static __always_inline bool
253 should_watch(const volatile void *ptr, size_t size, int type, struct kcsan_ctx *ctx)
254 {
255         /*
256          * Never set up watchpoints when memory operations are atomic.
257          *
258          * Need to check this first, before kcsan_skip check below: (1) atomics
259          * should not count towards skipped instructions, and (2) to actually
260          * decrement kcsan_atomic_next for consecutive instruction stream.
261          */
262         if (is_atomic(ptr, size, type, ctx))
263                 return false;
264
265         if (this_cpu_dec_return(kcsan_skip) >= 0)
266                 return false;
267
268         /*
269          * NOTE: If we get here, kcsan_skip must always be reset in slow path
270          * via reset_kcsan_skip() to avoid underflow.
271          */
272
273         /* this operation should be watched */
274         return true;
275 }
276
277 /*
278  * Returns a pseudo-random number in interval [0, ep_ro). See prandom_u32_max()
279  * for more details.
280  *
281  * The open-coded version here is using only safe primitives for all contexts
282  * where we can have KCSAN instrumentation. In particular, we cannot use
283  * prandom_u32() directly, as its tracepoint could cause recursion.
284  */
285 static u32 kcsan_prandom_u32_max(u32 ep_ro)
286 {
287         struct rnd_state *state = &get_cpu_var(kcsan_rand_state);
288         const u32 res = prandom_u32_state(state);
289
290         put_cpu_var(kcsan_rand_state);
291         return (u32)(((u64) res * ep_ro) >> 32);
292 }
293
294 static inline void reset_kcsan_skip(void)
295 {
296         long skip_count = kcsan_skip_watch -
297                           (IS_ENABLED(CONFIG_KCSAN_SKIP_WATCH_RANDOMIZE) ?
298                                    kcsan_prandom_u32_max(kcsan_skip_watch) :
299                                    0);
300         this_cpu_write(kcsan_skip, skip_count);
301 }
302
303 static __always_inline bool kcsan_is_enabled(void)
304 {
305         return READ_ONCE(kcsan_enabled) && get_ctx()->disable_count == 0;
306 }
307
308 /* Introduce delay depending on context and configuration. */
309 static void delay_access(int type)
310 {
311         unsigned int delay = in_task() ? kcsan_udelay_task : kcsan_udelay_interrupt;
312         /* For certain access types, skew the random delay to be longer. */
313         unsigned int skew_delay_order =
314                 (type & (KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_ASSERT)) ? 1 : 0;
315
316         delay -= IS_ENABLED(CONFIG_KCSAN_DELAY_RANDOMIZE) ?
317                                kcsan_prandom_u32_max(delay >> skew_delay_order) :
318                                0;
319         udelay(delay);
320 }
321
322 void kcsan_save_irqtrace(struct task_struct *task)
323 {
324 #ifdef CONFIG_TRACE_IRQFLAGS
325         task->kcsan_save_irqtrace = task->irqtrace;
326 #endif
327 }
328
329 void kcsan_restore_irqtrace(struct task_struct *task)
330 {
331 #ifdef CONFIG_TRACE_IRQFLAGS
332         task->irqtrace = task->kcsan_save_irqtrace;
333 #endif
334 }
335
336 /*
337  * Pull everything together: check_access() below contains the performance
338  * critical operations; the fast-path (including check_access) functions should
339  * all be inlinable by the instrumentation functions.
340  *
341  * The slow-path (kcsan_found_watchpoint, kcsan_setup_watchpoint) are
342  * non-inlinable -- note that, we prefix these with "kcsan_" to ensure they can
343  * be filtered from the stacktrace, as well as give them unique names for the
344  * UACCESS whitelist of objtool. Each function uses user_access_save/restore(),
345  * since they do not access any user memory, but instrumentation is still
346  * emitted in UACCESS regions.
347  */
348
349 static noinline void kcsan_found_watchpoint(const volatile void *ptr,
350                                             size_t size,
351                                             int type,
352                                             atomic_long_t *watchpoint,
353                                             long encoded_watchpoint)
354 {
355         unsigned long flags;
356         bool consumed;
357
358         if (!kcsan_is_enabled())
359                 return;
360
361         /*
362          * The access_mask check relies on value-change comparison. To avoid
363          * reporting a race where e.g. the writer set up the watchpoint, but the
364          * reader has access_mask!=0, we have to ignore the found watchpoint.
365          */
366         if (get_ctx()->access_mask != 0)
367                 return;
368
369         /*
370          * Consume the watchpoint as soon as possible, to minimize the chances
371          * of !consumed. Consuming the watchpoint must always be guarded by
372          * kcsan_is_enabled() check, as otherwise we might erroneously
373          * triggering reports when disabled.
374          */
375         consumed = try_consume_watchpoint(watchpoint, encoded_watchpoint);
376
377         /* keep this after try_consume_watchpoint */
378         flags = user_access_save();
379
380         if (consumed) {
381                 kcsan_save_irqtrace(current);
382                 kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_MAYBE,
383                              KCSAN_REPORT_CONSUMED_WATCHPOINT,
384                              watchpoint - watchpoints);
385                 kcsan_restore_irqtrace(current);
386         } else {
387                 /*
388                  * The other thread may not print any diagnostics, as it has
389                  * already removed the watchpoint, or another thread consumed
390                  * the watchpoint before this thread.
391                  */
392                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_REPORT_RACES]);
393         }
394
395         if ((type & KCSAN_ACCESS_ASSERT) != 0)
396                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
397         else
398                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_DATA_RACES]);
399
400         user_access_restore(flags);
401 }
402
403 static noinline void
404 kcsan_setup_watchpoint(const volatile void *ptr, size_t size, int type)
405 {
406         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
407         const bool is_assert = (type & KCSAN_ACCESS_ASSERT) != 0;
408         atomic_long_t *watchpoint;
409         union {
410                 u8 _1;
411                 u16 _2;
412                 u32 _4;
413                 u64 _8;
414         } expect_value;
415         unsigned long access_mask;
416         enum kcsan_value_change value_change = KCSAN_VALUE_CHANGE_MAYBE;
417         unsigned long ua_flags = user_access_save();
418         unsigned long irq_flags = 0;
419
420         /*
421          * Always reset kcsan_skip counter in slow-path to avoid underflow; see
422          * should_watch().
423          */
424         reset_kcsan_skip();
425
426         if (!kcsan_is_enabled())
427                 goto out;
428
429         /*
430          * Special atomic rules: unlikely to be true, so we check them here in
431          * the slow-path, and not in the fast-path in is_atomic(). Call after
432          * kcsan_is_enabled(), as we may access memory that is not yet
433          * initialized during early boot.
434          */
435         if (!is_assert && kcsan_is_atomic_special(ptr))
436                 goto out;
437
438         if (!check_encodable((unsigned long)ptr, size)) {
439                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_UNENCODABLE_ACCESSES]);
440                 goto out;
441         }
442
443         /*
444          * Save and restore the IRQ state trace touched by KCSAN, since KCSAN's
445          * runtime is entered for every memory access, and potentially useful
446          * information is lost if dirtied by KCSAN.
447          */
448         kcsan_save_irqtrace(current);
449         if (!kcsan_interrupt_watcher)
450                 local_irq_save(irq_flags);
451
452         watchpoint = insert_watchpoint((unsigned long)ptr, size, is_write);
453         if (watchpoint == NULL) {
454                 /*
455                  * Out of capacity: the size of 'watchpoints', and the frequency
456                  * with which should_watch() returns true should be tweaked so
457                  * that this case happens very rarely.
458                  */
459                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_NO_CAPACITY]);
460                 goto out_unlock;
461         }
462
463         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_SETUP_WATCHPOINTS]);
464         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
465
466         /*
467          * Read the current value, to later check and infer a race if the data
468          * was modified via a non-instrumented access, e.g. from a device.
469          */
470         expect_value._8 = 0;
471         switch (size) {
472         case 1:
473                 expect_value._1 = READ_ONCE(*(const u8 *)ptr);
474                 break;
475         case 2:
476                 expect_value._2 = READ_ONCE(*(const u16 *)ptr);
477                 break;
478         case 4:
479                 expect_value._4 = READ_ONCE(*(const u32 *)ptr);
480                 break;
481         case 8:
482                 expect_value._8 = READ_ONCE(*(const u64 *)ptr);
483                 break;
484         default:
485                 break; /* ignore; we do not diff the values */
486         }
487
488         if (IS_ENABLED(CONFIG_KCSAN_DEBUG)) {
489                 kcsan_disable_current();
490                 pr_err("watching %s, size: %zu, addr: %px [slot: %d, encoded: %lx]\n",
491                        is_write ? "write" : "read", size, ptr,
492                        watchpoint_slot((unsigned long)ptr),
493                        encode_watchpoint((unsigned long)ptr, size, is_write));
494                 kcsan_enable_current();
495         }
496
497         /*
498          * Delay this thread, to increase probability of observing a racy
499          * conflicting access.
500          */
501         delay_access(type);
502
503         /*
504          * Re-read value, and check if it is as expected; if not, we infer a
505          * racy access.
506          */
507         access_mask = get_ctx()->access_mask;
508         switch (size) {
509         case 1:
510                 expect_value._1 ^= READ_ONCE(*(const u8 *)ptr);
511                 if (access_mask)
512                         expect_value._1 &= (u8)access_mask;
513                 break;
514         case 2:
515                 expect_value._2 ^= READ_ONCE(*(const u16 *)ptr);
516                 if (access_mask)
517                         expect_value._2 &= (u16)access_mask;
518                 break;
519         case 4:
520                 expect_value._4 ^= READ_ONCE(*(const u32 *)ptr);
521                 if (access_mask)
522                         expect_value._4 &= (u32)access_mask;
523                 break;
524         case 8:
525                 expect_value._8 ^= READ_ONCE(*(const u64 *)ptr);
526                 if (access_mask)
527                         expect_value._8 &= (u64)access_mask;
528                 break;
529         default:
530                 break; /* ignore; we do not diff the values */
531         }
532
533         /* Were we able to observe a value-change? */
534         if (expect_value._8 != 0)
535                 value_change = KCSAN_VALUE_CHANGE_TRUE;
536
537         /* Check if this access raced with another. */
538         if (!consume_watchpoint(watchpoint)) {
539                 /*
540                  * Depending on the access type, map a value_change of MAYBE to
541                  * TRUE (always report) or FALSE (never report).
542                  */
543                 if (value_change == KCSAN_VALUE_CHANGE_MAYBE) {
544                         if (access_mask != 0) {
545                                 /*
546                                  * For access with access_mask, we require a
547                                  * value-change, as it is likely that races on
548                                  * ~access_mask bits are expected.
549                                  */
550                                 value_change = KCSAN_VALUE_CHANGE_FALSE;
551                         } else if (size > 8 || is_assert) {
552                                 /* Always assume a value-change. */
553                                 value_change = KCSAN_VALUE_CHANGE_TRUE;
554                         }
555                 }
556
557                 /*
558                  * No need to increment 'data_races' counter, as the racing
559                  * thread already did.
560                  *
561                  * Count 'assert_failures' for each failed ASSERT access,
562                  * therefore both this thread and the racing thread may
563                  * increment this counter.
564                  */
565                 if (is_assert && value_change == KCSAN_VALUE_CHANGE_TRUE)
566                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
567
568                 kcsan_report(ptr, size, type, value_change, KCSAN_REPORT_RACE_SIGNAL,
569                              watchpoint - watchpoints);
570         } else if (value_change == KCSAN_VALUE_CHANGE_TRUE) {
571                 /* Inferring a race, since the value should not have changed. */
572
573                 atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_RACES_UNKNOWN_ORIGIN]);
574                 if (is_assert)
575                         atomic_long_inc(&kcsan_counters[KCSAN_COUNTER_ASSERT_FAILURES]);
576
577                 if (IS_ENABLED(CONFIG_KCSAN_REPORT_RACE_UNKNOWN_ORIGIN) || is_assert)
578                         kcsan_report(ptr, size, type, KCSAN_VALUE_CHANGE_TRUE,
579                                      KCSAN_REPORT_RACE_UNKNOWN_ORIGIN,
580                                      watchpoint - watchpoints);
581         }
582
583         /*
584          * Remove watchpoint; must be after reporting, since the slot may be
585          * reused after this point.
586          */
587         remove_watchpoint(watchpoint);
588         atomic_long_dec(&kcsan_counters[KCSAN_COUNTER_USED_WATCHPOINTS]);
589 out_unlock:
590         if (!kcsan_interrupt_watcher)
591                 local_irq_restore(irq_flags);
592         kcsan_restore_irqtrace(current);
593 out:
594         user_access_restore(ua_flags);
595 }
596
597 static __always_inline void check_access(const volatile void *ptr, size_t size,
598                                          int type)
599 {
600         const bool is_write = (type & KCSAN_ACCESS_WRITE) != 0;
601         atomic_long_t *watchpoint;
602         long encoded_watchpoint;
603
604         /*
605          * Do nothing for 0 sized check; this comparison will be optimized out
606          * for constant sized instrumentation (__tsan_{read,write}N).
607          */
608         if (unlikely(size == 0))
609                 return;
610
611         /*
612          * Avoid user_access_save in fast-path: find_watchpoint is safe without
613          * user_access_save, as the address that ptr points to is only used to
614          * check if a watchpoint exists; ptr is never dereferenced.
615          */
616         watchpoint = find_watchpoint((unsigned long)ptr, size, !is_write,
617                                      &encoded_watchpoint);
618         /*
619          * It is safe to check kcsan_is_enabled() after find_watchpoint in the
620          * slow-path, as long as no state changes that cause a race to be
621          * detected and reported have occurred until kcsan_is_enabled() is
622          * checked.
623          */
624
625         if (unlikely(watchpoint != NULL))
626                 kcsan_found_watchpoint(ptr, size, type, watchpoint,
627                                        encoded_watchpoint);
628         else {
629                 struct kcsan_ctx *ctx = get_ctx(); /* Call only once in fast-path. */
630
631                 if (unlikely(should_watch(ptr, size, type, ctx)))
632                         kcsan_setup_watchpoint(ptr, size, type);
633                 else if (unlikely(ctx->scoped_accesses.prev))
634                         kcsan_check_scoped_accesses();
635         }
636 }
637
638 /* === Public interface ===================================================== */
639
640 void __init kcsan_init(void)
641 {
642         BUG_ON(!in_task());
643
644         kcsan_debugfs_init();
645         prandom_seed_full_state(&kcsan_rand_state);
646
647         /*
648          * We are in the init task, and no other tasks should be running;
649          * WRITE_ONCE without memory barrier is sufficient.
650          */
651         if (kcsan_early_enable) {
652                 pr_info("enabled early\n");
653                 WRITE_ONCE(kcsan_enabled, true);
654         }
655 }
656
657 /* === Exported interface =================================================== */
658
659 void kcsan_disable_current(void)
660 {
661         ++get_ctx()->disable_count;
662 }
663 EXPORT_SYMBOL(kcsan_disable_current);
664
665 void kcsan_enable_current(void)
666 {
667         if (get_ctx()->disable_count-- == 0) {
668                 /*
669                  * Warn if kcsan_enable_current() calls are unbalanced with
670                  * kcsan_disable_current() calls, which causes disable_count to
671                  * become negative and should not happen.
672                  */
673                 kcsan_disable_current(); /* restore to 0, KCSAN still enabled */
674                 kcsan_disable_current(); /* disable to generate warning */
675                 WARN(1, "Unbalanced %s()", __func__);
676                 kcsan_enable_current();
677         }
678 }
679 EXPORT_SYMBOL(kcsan_enable_current);
680
681 void kcsan_enable_current_nowarn(void)
682 {
683         if (get_ctx()->disable_count-- == 0)
684                 kcsan_disable_current();
685 }
686 EXPORT_SYMBOL(kcsan_enable_current_nowarn);
687
688 void kcsan_nestable_atomic_begin(void)
689 {
690         /*
691          * Do *not* check and warn if we are in a flat atomic region: nestable
692          * and flat atomic regions are independent from each other.
693          * See include/linux/kcsan.h: struct kcsan_ctx comments for more
694          * comments.
695          */
696
697         ++get_ctx()->atomic_nest_count;
698 }
699 EXPORT_SYMBOL(kcsan_nestable_atomic_begin);
700
701 void kcsan_nestable_atomic_end(void)
702 {
703         if (get_ctx()->atomic_nest_count-- == 0) {
704                 /*
705                  * Warn if kcsan_nestable_atomic_end() calls are unbalanced with
706                  * kcsan_nestable_atomic_begin() calls, which causes
707                  * atomic_nest_count to become negative and should not happen.
708                  */
709                 kcsan_nestable_atomic_begin(); /* restore to 0 */
710                 kcsan_disable_current(); /* disable to generate warning */
711                 WARN(1, "Unbalanced %s()", __func__);
712                 kcsan_enable_current();
713         }
714 }
715 EXPORT_SYMBOL(kcsan_nestable_atomic_end);
716
717 void kcsan_flat_atomic_begin(void)
718 {
719         get_ctx()->in_flat_atomic = true;
720 }
721 EXPORT_SYMBOL(kcsan_flat_atomic_begin);
722
723 void kcsan_flat_atomic_end(void)
724 {
725         get_ctx()->in_flat_atomic = false;
726 }
727 EXPORT_SYMBOL(kcsan_flat_atomic_end);
728
729 void kcsan_atomic_next(int n)
730 {
731         get_ctx()->atomic_next = n;
732 }
733 EXPORT_SYMBOL(kcsan_atomic_next);
734
735 void kcsan_set_access_mask(unsigned long mask)
736 {
737         get_ctx()->access_mask = mask;
738 }
739 EXPORT_SYMBOL(kcsan_set_access_mask);
740
741 struct kcsan_scoped_access *
742 kcsan_begin_scoped_access(const volatile void *ptr, size_t size, int type,
743                           struct kcsan_scoped_access *sa)
744 {
745         struct kcsan_ctx *ctx = get_ctx();
746
747         __kcsan_check_access(ptr, size, type);
748
749         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
750
751         INIT_LIST_HEAD(&sa->list);
752         sa->ptr = ptr;
753         sa->size = size;
754         sa->type = type;
755
756         if (!ctx->scoped_accesses.prev) /* Lazy initialize list head. */
757                 INIT_LIST_HEAD(&ctx->scoped_accesses);
758         list_add(&sa->list, &ctx->scoped_accesses);
759
760         ctx->disable_count--;
761         return sa;
762 }
763 EXPORT_SYMBOL(kcsan_begin_scoped_access);
764
765 void kcsan_end_scoped_access(struct kcsan_scoped_access *sa)
766 {
767         struct kcsan_ctx *ctx = get_ctx();
768
769         if (WARN(!ctx->scoped_accesses.prev, "Unbalanced %s()?", __func__))
770                 return;
771
772         ctx->disable_count++; /* Disable KCSAN, in case list debugging is on. */
773
774         list_del(&sa->list);
775         if (list_empty(&ctx->scoped_accesses))
776                 /*
777                  * Ensure we do not enter kcsan_check_scoped_accesses()
778                  * slow-path if unnecessary, and avoids requiring list_empty()
779                  * in the fast-path (to avoid a READ_ONCE() and potential
780                  * uaccess warning).
781                  */
782                 ctx->scoped_accesses.prev = NULL;
783
784         ctx->disable_count--;
785
786         __kcsan_check_access(sa->ptr, sa->size, sa->type);
787 }
788 EXPORT_SYMBOL(kcsan_end_scoped_access);
789
790 void __kcsan_check_access(const volatile void *ptr, size_t size, int type)
791 {
792         check_access(ptr, size, type);
793 }
794 EXPORT_SYMBOL(__kcsan_check_access);
795
796 /*
797  * KCSAN uses the same instrumentation that is emitted by supported compilers
798  * for ThreadSanitizer (TSAN).
799  *
800  * When enabled, the compiler emits instrumentation calls (the functions
801  * prefixed with "__tsan" below) for all loads and stores that it generated;
802  * inline asm is not instrumented.
803  *
804  * Note that, not all supported compiler versions distinguish aligned/unaligned
805  * accesses, but e.g. recent versions of Clang do. We simply alias the unaligned
806  * version to the generic version, which can handle both.
807  */
808
809 #define DEFINE_TSAN_READ_WRITE(size)                                           \
810         void __tsan_read##size(void *ptr);                                     \
811         void __tsan_read##size(void *ptr)                                      \
812         {                                                                      \
813                 check_access(ptr, size, 0);                                    \
814         }                                                                      \
815         EXPORT_SYMBOL(__tsan_read##size);                                      \
816         void __tsan_unaligned_read##size(void *ptr)                            \
817                 __alias(__tsan_read##size);                                    \
818         EXPORT_SYMBOL(__tsan_unaligned_read##size);                            \
819         void __tsan_write##size(void *ptr);                                    \
820         void __tsan_write##size(void *ptr)                                     \
821         {                                                                      \
822                 check_access(ptr, size, KCSAN_ACCESS_WRITE);                   \
823         }                                                                      \
824         EXPORT_SYMBOL(__tsan_write##size);                                     \
825         void __tsan_unaligned_write##size(void *ptr)                           \
826                 __alias(__tsan_write##size);                                   \
827         EXPORT_SYMBOL(__tsan_unaligned_write##size);                           \
828         void __tsan_read_write##size(void *ptr);                               \
829         void __tsan_read_write##size(void *ptr)                                \
830         {                                                                      \
831                 check_access(ptr, size,                                        \
832                              KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE);      \
833         }                                                                      \
834         EXPORT_SYMBOL(__tsan_read_write##size);                                \
835         void __tsan_unaligned_read_write##size(void *ptr)                      \
836                 __alias(__tsan_read_write##size);                              \
837         EXPORT_SYMBOL(__tsan_unaligned_read_write##size)
838
839 DEFINE_TSAN_READ_WRITE(1);
840 DEFINE_TSAN_READ_WRITE(2);
841 DEFINE_TSAN_READ_WRITE(4);
842 DEFINE_TSAN_READ_WRITE(8);
843 DEFINE_TSAN_READ_WRITE(16);
844
845 void __tsan_read_range(void *ptr, size_t size);
846 void __tsan_read_range(void *ptr, size_t size)
847 {
848         check_access(ptr, size, 0);
849 }
850 EXPORT_SYMBOL(__tsan_read_range);
851
852 void __tsan_write_range(void *ptr, size_t size);
853 void __tsan_write_range(void *ptr, size_t size)
854 {
855         check_access(ptr, size, KCSAN_ACCESS_WRITE);
856 }
857 EXPORT_SYMBOL(__tsan_write_range);
858
859 /*
860  * Use of explicit volatile is generally disallowed [1], however, volatile is
861  * still used in various concurrent context, whether in low-level
862  * synchronization primitives or for legacy reasons.
863  * [1] https://lwn.net/Articles/233479/
864  *
865  * We only consider volatile accesses atomic if they are aligned and would pass
866  * the size-check of compiletime_assert_rwonce_type().
867  */
868 #define DEFINE_TSAN_VOLATILE_READ_WRITE(size)                                  \
869         void __tsan_volatile_read##size(void *ptr);                            \
870         void __tsan_volatile_read##size(void *ptr)                             \
871         {                                                                      \
872                 const bool is_atomic = size <= sizeof(long long) &&            \
873                                        IS_ALIGNED((unsigned long)ptr, size);   \
874                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
875                         return;                                                \
876                 check_access(ptr, size, is_atomic ? KCSAN_ACCESS_ATOMIC : 0);  \
877         }                                                                      \
878         EXPORT_SYMBOL(__tsan_volatile_read##size);                             \
879         void __tsan_unaligned_volatile_read##size(void *ptr)                   \
880                 __alias(__tsan_volatile_read##size);                           \
881         EXPORT_SYMBOL(__tsan_unaligned_volatile_read##size);                   \
882         void __tsan_volatile_write##size(void *ptr);                           \
883         void __tsan_volatile_write##size(void *ptr)                            \
884         {                                                                      \
885                 const bool is_atomic = size <= sizeof(long long) &&            \
886                                        IS_ALIGNED((unsigned long)ptr, size);   \
887                 if (IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS) && is_atomic)      \
888                         return;                                                \
889                 check_access(ptr, size,                                        \
890                              KCSAN_ACCESS_WRITE |                              \
891                                      (is_atomic ? KCSAN_ACCESS_ATOMIC : 0));   \
892         }                                                                      \
893         EXPORT_SYMBOL(__tsan_volatile_write##size);                            \
894         void __tsan_unaligned_volatile_write##size(void *ptr)                  \
895                 __alias(__tsan_volatile_write##size);                          \
896         EXPORT_SYMBOL(__tsan_unaligned_volatile_write##size)
897
898 DEFINE_TSAN_VOLATILE_READ_WRITE(1);
899 DEFINE_TSAN_VOLATILE_READ_WRITE(2);
900 DEFINE_TSAN_VOLATILE_READ_WRITE(4);
901 DEFINE_TSAN_VOLATILE_READ_WRITE(8);
902 DEFINE_TSAN_VOLATILE_READ_WRITE(16);
903
904 /*
905  * The below are not required by KCSAN, but can still be emitted by the
906  * compiler.
907  */
908 void __tsan_func_entry(void *call_pc);
909 void __tsan_func_entry(void *call_pc)
910 {
911 }
912 EXPORT_SYMBOL(__tsan_func_entry);
913 void __tsan_func_exit(void);
914 void __tsan_func_exit(void)
915 {
916 }
917 EXPORT_SYMBOL(__tsan_func_exit);
918 void __tsan_init(void);
919 void __tsan_init(void)
920 {
921 }
922 EXPORT_SYMBOL(__tsan_init);
923
924 /*
925  * Instrumentation for atomic builtins (__atomic_*, __sync_*).
926  *
927  * Normal kernel code _should not_ be using them directly, but some
928  * architectures may implement some or all atomics using the compilers'
929  * builtins.
930  *
931  * Note: If an architecture decides to fully implement atomics using the
932  * builtins, because they are implicitly instrumented by KCSAN (and KASAN,
933  * etc.), implementing the ARCH_ATOMIC interface (to get instrumentation via
934  * atomic-instrumented) is no longer necessary.
935  *
936  * TSAN instrumentation replaces atomic accesses with calls to any of the below
937  * functions, whose job is to also execute the operation itself.
938  */
939
940 #define DEFINE_TSAN_ATOMIC_LOAD_STORE(bits)                                                        \
941         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder);                      \
942         u##bits __tsan_atomic##bits##_load(const u##bits *ptr, int memorder)                       \
943         {                                                                                          \
944                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
945                         check_access(ptr, bits / BITS_PER_BYTE, KCSAN_ACCESS_ATOMIC);              \
946                 }                                                                                  \
947                 return __atomic_load_n(ptr, memorder);                                             \
948         }                                                                                          \
949         EXPORT_SYMBOL(__tsan_atomic##bits##_load);                                                 \
950         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder);                   \
951         void __tsan_atomic##bits##_store(u##bits *ptr, u##bits v, int memorder)                    \
952         {                                                                                          \
953                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
954                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
955                                      KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ATOMIC);                    \
956                 }                                                                                  \
957                 __atomic_store_n(ptr, v, memorder);                                                \
958         }                                                                                          \
959         EXPORT_SYMBOL(__tsan_atomic##bits##_store)
960
961 #define DEFINE_TSAN_ATOMIC_RMW(op, bits, suffix)                                                   \
962         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder);                 \
963         u##bits __tsan_atomic##bits##_##op(u##bits *ptr, u##bits v, int memorder)                  \
964         {                                                                                          \
965                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
966                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
967                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
968                                              KCSAN_ACCESS_ATOMIC);                                 \
969                 }                                                                                  \
970                 return __atomic_##op##suffix(ptr, v, memorder);                                    \
971         }                                                                                          \
972         EXPORT_SYMBOL(__tsan_atomic##bits##_##op)
973
974 /*
975  * Note: CAS operations are always classified as write, even in case they
976  * fail. We cannot perform check_access() after a write, as it might lead to
977  * false positives, in cases such as:
978  *
979  *      T0: __atomic_compare_exchange_n(&p->flag, &old, 1, ...)
980  *
981  *      T1: if (__atomic_load_n(&p->flag, ...)) {
982  *              modify *p;
983  *              p->flag = 0;
984  *          }
985  *
986  * The only downside is that, if there are 3 threads, with one CAS that
987  * succeeds, another CAS that fails, and an unmarked racing operation, we may
988  * point at the wrong CAS as the source of the race. However, if we assume that
989  * all CAS can succeed in some other execution, the data race is still valid.
990  */
991 #define DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strength, weak)                                           \
992         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
993                                                               u##bits val, int mo, int fail_mo);   \
994         int __tsan_atomic##bits##_compare_exchange_##strength(u##bits *ptr, u##bits *exp,          \
995                                                               u##bits val, int mo, int fail_mo)    \
996         {                                                                                          \
997                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
998                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
999                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1000                                              KCSAN_ACCESS_ATOMIC);                                 \
1001                 }                                                                                  \
1002                 return __atomic_compare_exchange_n(ptr, exp, val, weak, mo, fail_mo);              \
1003         }                                                                                          \
1004         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_##strength)
1005
1006 #define DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)                                                       \
1007         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1008                                                            int mo, int fail_mo);                   \
1009         u##bits __tsan_atomic##bits##_compare_exchange_val(u##bits *ptr, u##bits exp, u##bits val, \
1010                                                            int mo, int fail_mo)                    \
1011         {                                                                                          \
1012                 if (!IS_ENABLED(CONFIG_KCSAN_IGNORE_ATOMICS)) {                                    \
1013                         check_access(ptr, bits / BITS_PER_BYTE,                                    \
1014                                      KCSAN_ACCESS_COMPOUND | KCSAN_ACCESS_WRITE |                  \
1015                                              KCSAN_ACCESS_ATOMIC);                                 \
1016                 }                                                                                  \
1017                 __atomic_compare_exchange_n(ptr, &exp, val, 0, mo, fail_mo);                       \
1018                 return exp;                                                                        \
1019         }                                                                                          \
1020         EXPORT_SYMBOL(__tsan_atomic##bits##_compare_exchange_val)
1021
1022 #define DEFINE_TSAN_ATOMIC_OPS(bits)                                                               \
1023         DEFINE_TSAN_ATOMIC_LOAD_STORE(bits);                                                       \
1024         DEFINE_TSAN_ATOMIC_RMW(exchange, bits, _n);                                                \
1025         DEFINE_TSAN_ATOMIC_RMW(fetch_add, bits, );                                                 \
1026         DEFINE_TSAN_ATOMIC_RMW(fetch_sub, bits, );                                                 \
1027         DEFINE_TSAN_ATOMIC_RMW(fetch_and, bits, );                                                 \
1028         DEFINE_TSAN_ATOMIC_RMW(fetch_or, bits, );                                                  \
1029         DEFINE_TSAN_ATOMIC_RMW(fetch_xor, bits, );                                                 \
1030         DEFINE_TSAN_ATOMIC_RMW(fetch_nand, bits, );                                                \
1031         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, strong, 0);                                               \
1032         DEFINE_TSAN_ATOMIC_CMPXCHG(bits, weak, 1);                                                 \
1033         DEFINE_TSAN_ATOMIC_CMPXCHG_VAL(bits)
1034
1035 DEFINE_TSAN_ATOMIC_OPS(8);
1036 DEFINE_TSAN_ATOMIC_OPS(16);
1037 DEFINE_TSAN_ATOMIC_OPS(32);
1038 DEFINE_TSAN_ATOMIC_OPS(64);
1039
1040 void __tsan_atomic_thread_fence(int memorder);
1041 void __tsan_atomic_thread_fence(int memorder)
1042 {
1043         __atomic_thread_fence(memorder);
1044 }
1045 EXPORT_SYMBOL(__tsan_atomic_thread_fence);
1046
1047 void __tsan_atomic_signal_fence(int memorder);
1048 void __tsan_atomic_signal_fence(int memorder) { }
1049 EXPORT_SYMBOL(__tsan_atomic_signal_fence);