Merge branch 'linus' into irq/core to pick up dependencies.
[linux-2.6-microblaze.git] / kernel / irq / manage.c
1 /*
2  * linux/kernel/irq/manage.c
3  *
4  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5  * Copyright (C) 2005-2006 Thomas Gleixner
6  *
7  * This file contains driver APIs to the irq subsystem.
8  */
9
10 #define pr_fmt(fmt) "genirq: " fmt
11
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23
24 #include "internals.h"
25
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31         force_irqthreads = true;
32         return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39         bool inprogress;
40
41         do {
42                 unsigned long flags;
43
44                 /*
45                  * Wait until we're out of the critical section.  This might
46                  * give the wrong answer due to the lack of memory barriers.
47                  */
48                 while (irqd_irq_inprogress(&desc->irq_data))
49                         cpu_relax();
50
51                 /* Ok, that indicated we're done: double-check carefully. */
52                 raw_spin_lock_irqsave(&desc->lock, flags);
53                 inprogress = irqd_irq_inprogress(&desc->irq_data);
54                 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56                 /* Oops, that failed? */
57         } while (inprogress);
58 }
59
60 /**
61  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62  *      @irq: interrupt number to wait for
63  *
64  *      This function waits for any pending hard IRQ handlers for this
65  *      interrupt to complete before returning. If you use this
66  *      function while holding a resource the IRQ handler may need you
67  *      will deadlock. It does not take associated threaded handlers
68  *      into account.
69  *
70  *      Do not use this for shutdown scenarios where you must be sure
71  *      that all parts (hardirq and threaded handler) have completed.
72  *
73  *      Returns: false if a threaded handler is active.
74  *
75  *      This function may be called - with care - from IRQ context.
76  */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79         struct irq_desc *desc = irq_to_desc(irq);
80
81         if (desc) {
82                 __synchronize_hardirq(desc);
83                 return !atomic_read(&desc->threads_active);
84         }
85
86         return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92  *      @irq: interrupt number to wait for
93  *
94  *      This function waits for any pending IRQ handlers for this interrupt
95  *      to complete before returning. If you use this function while
96  *      holding a resource the IRQ handler may need you will deadlock.
97  *
98  *      This function may be called - with care - from IRQ context.
99  */
100 void synchronize_irq(unsigned int irq)
101 {
102         struct irq_desc *desc = irq_to_desc(irq);
103
104         if (desc) {
105                 __synchronize_hardirq(desc);
106                 /*
107                  * We made sure that no hardirq handler is
108                  * running. Now verify that no threaded handlers are
109                  * active.
110                  */
111                 wait_event(desc->wait_for_threads,
112                            !atomic_read(&desc->threads_active));
113         }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122         if (!desc || !irqd_can_balance(&desc->irq_data) ||
123             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124                 return false;
125         return true;
126 }
127
128 /**
129  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
130  *      @irq:           Interrupt to check
131  *
132  */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135         return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140  * @irq:        Interrupt to check
141  *
142  * Like irq_can_set_affinity() above, but additionally checks for the
143  * AFFINITY_MANAGED flag.
144  */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147         struct irq_desc *desc = irq_to_desc(irq);
148
149         return __irq_can_set_affinity(desc) &&
150                 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
155  *      @desc:          irq descriptor which has affitnity changed
156  *
157  *      We just set IRQTF_AFFINITY and delegate the affinity setting
158  *      to the interrupt thread itself. We can not call
159  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
160  *      code can be called from hard interrupt context.
161  */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164         struct irqaction *action;
165
166         for_each_action_of_desc(desc, action)
167                 if (action->thread)
168                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175         struct irq_chip *chip = irq_data_get_irq_chip(data);
176
177         if (!cpumask_empty(m))
178                 return;
179         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180                      chip->name, data->irq);
181 #endif
182 }
183
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185                         bool force)
186 {
187         struct irq_desc *desc = irq_data_to_desc(data);
188         struct irq_chip *chip = irq_data_get_irq_chip(data);
189         int ret;
190
191         if (!chip || !chip->irq_set_affinity)
192                 return -EINVAL;
193
194         ret = chip->irq_set_affinity(data, mask, force);
195         switch (ret) {
196         case IRQ_SET_MASK_OK:
197         case IRQ_SET_MASK_OK_DONE:
198                 cpumask_copy(desc->irq_common_data.affinity, mask);
199         case IRQ_SET_MASK_OK_NOCOPY:
200                 irq_validate_effective_affinity(data);
201                 irq_set_thread_affinity(desc);
202                 ret = 0;
203         }
204
205         return ret;
206 }
207
208 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
209                             bool force)
210 {
211         struct irq_chip *chip = irq_data_get_irq_chip(data);
212         struct irq_desc *desc = irq_data_to_desc(data);
213         int ret = 0;
214
215         if (!chip || !chip->irq_set_affinity)
216                 return -EINVAL;
217
218         if (irq_can_move_pcntxt(data)) {
219                 ret = irq_do_set_affinity(data, mask, force);
220         } else {
221                 irqd_set_move_pending(data);
222                 irq_copy_pending(desc, mask);
223         }
224
225         if (desc->affinity_notify) {
226                 kref_get(&desc->affinity_notify->kref);
227                 schedule_work(&desc->affinity_notify->work);
228         }
229         irqd_set(data, IRQD_AFFINITY_SET);
230
231         return ret;
232 }
233
234 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
235 {
236         struct irq_desc *desc = irq_to_desc(irq);
237         unsigned long flags;
238         int ret;
239
240         if (!desc)
241                 return -EINVAL;
242
243         raw_spin_lock_irqsave(&desc->lock, flags);
244         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
245         raw_spin_unlock_irqrestore(&desc->lock, flags);
246         return ret;
247 }
248
249 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
250 {
251         unsigned long flags;
252         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
253
254         if (!desc)
255                 return -EINVAL;
256         desc->affinity_hint = m;
257         irq_put_desc_unlock(desc, flags);
258         /* set the initial affinity to prevent every interrupt being on CPU0 */
259         if (m)
260                 __irq_set_affinity(irq, m, false);
261         return 0;
262 }
263 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
264
265 static void irq_affinity_notify(struct work_struct *work)
266 {
267         struct irq_affinity_notify *notify =
268                 container_of(work, struct irq_affinity_notify, work);
269         struct irq_desc *desc = irq_to_desc(notify->irq);
270         cpumask_var_t cpumask;
271         unsigned long flags;
272
273         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
274                 goto out;
275
276         raw_spin_lock_irqsave(&desc->lock, flags);
277         if (irq_move_pending(&desc->irq_data))
278                 irq_get_pending(cpumask, desc);
279         else
280                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
281         raw_spin_unlock_irqrestore(&desc->lock, flags);
282
283         notify->notify(notify, cpumask);
284
285         free_cpumask_var(cpumask);
286 out:
287         kref_put(&notify->kref, notify->release);
288 }
289
290 /**
291  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
292  *      @irq:           Interrupt for which to enable/disable notification
293  *      @notify:        Context for notification, or %NULL to disable
294  *                      notification.  Function pointers must be initialised;
295  *                      the other fields will be initialised by this function.
296  *
297  *      Must be called in process context.  Notification may only be enabled
298  *      after the IRQ is allocated and must be disabled before the IRQ is
299  *      freed using free_irq().
300  */
301 int
302 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
303 {
304         struct irq_desc *desc = irq_to_desc(irq);
305         struct irq_affinity_notify *old_notify;
306         unsigned long flags;
307
308         /* The release function is promised process context */
309         might_sleep();
310
311         if (!desc)
312                 return -EINVAL;
313
314         /* Complete initialisation of *notify */
315         if (notify) {
316                 notify->irq = irq;
317                 kref_init(&notify->kref);
318                 INIT_WORK(&notify->work, irq_affinity_notify);
319         }
320
321         raw_spin_lock_irqsave(&desc->lock, flags);
322         old_notify = desc->affinity_notify;
323         desc->affinity_notify = notify;
324         raw_spin_unlock_irqrestore(&desc->lock, flags);
325
326         if (old_notify)
327                 kref_put(&old_notify->kref, old_notify->release);
328
329         return 0;
330 }
331 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
332
333 #ifndef CONFIG_AUTO_IRQ_AFFINITY
334 /*
335  * Generic version of the affinity autoselector.
336  */
337 int irq_setup_affinity(struct irq_desc *desc)
338 {
339         struct cpumask *set = irq_default_affinity;
340         int ret, node = irq_desc_get_node(desc);
341         static DEFINE_RAW_SPINLOCK(mask_lock);
342         static struct cpumask mask;
343
344         /* Excludes PER_CPU and NO_BALANCE interrupts */
345         if (!__irq_can_set_affinity(desc))
346                 return 0;
347
348         raw_spin_lock(&mask_lock);
349         /*
350          * Preserve the managed affinity setting and a userspace affinity
351          * setup, but make sure that one of the targets is online.
352          */
353         if (irqd_affinity_is_managed(&desc->irq_data) ||
354             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
355                 if (cpumask_intersects(desc->irq_common_data.affinity,
356                                        cpu_online_mask))
357                         set = desc->irq_common_data.affinity;
358                 else
359                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
360         }
361
362         cpumask_and(&mask, cpu_online_mask, set);
363         if (node != NUMA_NO_NODE) {
364                 const struct cpumask *nodemask = cpumask_of_node(node);
365
366                 /* make sure at least one of the cpus in nodemask is online */
367                 if (cpumask_intersects(&mask, nodemask))
368                         cpumask_and(&mask, &mask, nodemask);
369         }
370         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
371         raw_spin_unlock(&mask_lock);
372         return ret;
373 }
374 #else
375 /* Wrapper for ALPHA specific affinity selector magic */
376 int irq_setup_affinity(struct irq_desc *desc)
377 {
378         return irq_select_affinity(irq_desc_get_irq(desc));
379 }
380 #endif
381
382 /*
383  * Called when a bogus affinity is set via /proc/irq
384  */
385 int irq_select_affinity_usr(unsigned int irq)
386 {
387         struct irq_desc *desc = irq_to_desc(irq);
388         unsigned long flags;
389         int ret;
390
391         raw_spin_lock_irqsave(&desc->lock, flags);
392         ret = irq_setup_affinity(desc);
393         raw_spin_unlock_irqrestore(&desc->lock, flags);
394         return ret;
395 }
396 #endif
397
398 /**
399  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
400  *      @irq: interrupt number to set affinity
401  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
402  *                  specific data for percpu_devid interrupts
403  *
404  *      This function uses the vCPU specific data to set the vCPU
405  *      affinity for an irq. The vCPU specific data is passed from
406  *      outside, such as KVM. One example code path is as below:
407  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
408  */
409 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
410 {
411         unsigned long flags;
412         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
413         struct irq_data *data;
414         struct irq_chip *chip;
415         int ret = -ENOSYS;
416
417         if (!desc)
418                 return -EINVAL;
419
420         data = irq_desc_get_irq_data(desc);
421         do {
422                 chip = irq_data_get_irq_chip(data);
423                 if (chip && chip->irq_set_vcpu_affinity)
424                         break;
425 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
426                 data = data->parent_data;
427 #else
428                 data = NULL;
429 #endif
430         } while (data);
431
432         if (data)
433                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
434         irq_put_desc_unlock(desc, flags);
435
436         return ret;
437 }
438 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
439
440 void __disable_irq(struct irq_desc *desc)
441 {
442         if (!desc->depth++)
443                 irq_disable(desc);
444 }
445
446 static int __disable_irq_nosync(unsigned int irq)
447 {
448         unsigned long flags;
449         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
450
451         if (!desc)
452                 return -EINVAL;
453         __disable_irq(desc);
454         irq_put_desc_busunlock(desc, flags);
455         return 0;
456 }
457
458 /**
459  *      disable_irq_nosync - disable an irq without waiting
460  *      @irq: Interrupt to disable
461  *
462  *      Disable the selected interrupt line.  Disables and Enables are
463  *      nested.
464  *      Unlike disable_irq(), this function does not ensure existing
465  *      instances of the IRQ handler have completed before returning.
466  *
467  *      This function may be called from IRQ context.
468  */
469 void disable_irq_nosync(unsigned int irq)
470 {
471         __disable_irq_nosync(irq);
472 }
473 EXPORT_SYMBOL(disable_irq_nosync);
474
475 /**
476  *      disable_irq - disable an irq and wait for completion
477  *      @irq: Interrupt to disable
478  *
479  *      Disable the selected interrupt line.  Enables and Disables are
480  *      nested.
481  *      This function waits for any pending IRQ handlers for this interrupt
482  *      to complete before returning. If you use this function while
483  *      holding a resource the IRQ handler may need you will deadlock.
484  *
485  *      This function may be called - with care - from IRQ context.
486  */
487 void disable_irq(unsigned int irq)
488 {
489         if (!__disable_irq_nosync(irq))
490                 synchronize_irq(irq);
491 }
492 EXPORT_SYMBOL(disable_irq);
493
494 /**
495  *      disable_hardirq - disables an irq and waits for hardirq completion
496  *      @irq: Interrupt to disable
497  *
498  *      Disable the selected interrupt line.  Enables and Disables are
499  *      nested.
500  *      This function waits for any pending hard IRQ handlers for this
501  *      interrupt to complete before returning. If you use this function while
502  *      holding a resource the hard IRQ handler may need you will deadlock.
503  *
504  *      When used to optimistically disable an interrupt from atomic context
505  *      the return value must be checked.
506  *
507  *      Returns: false if a threaded handler is active.
508  *
509  *      This function may be called - with care - from IRQ context.
510  */
511 bool disable_hardirq(unsigned int irq)
512 {
513         if (!__disable_irq_nosync(irq))
514                 return synchronize_hardirq(irq);
515
516         return false;
517 }
518 EXPORT_SYMBOL_GPL(disable_hardirq);
519
520 void __enable_irq(struct irq_desc *desc)
521 {
522         switch (desc->depth) {
523         case 0:
524  err_out:
525                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
526                      irq_desc_get_irq(desc));
527                 break;
528         case 1: {
529                 if (desc->istate & IRQS_SUSPENDED)
530                         goto err_out;
531                 /* Prevent probing on this irq: */
532                 irq_settings_set_noprobe(desc);
533                 /*
534                  * Call irq_startup() not irq_enable() here because the
535                  * interrupt might be marked NOAUTOEN. So irq_startup()
536                  * needs to be invoked when it gets enabled the first
537                  * time. If it was already started up, then irq_startup()
538                  * will invoke irq_enable() under the hood.
539                  */
540                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
541                 break;
542         }
543         default:
544                 desc->depth--;
545         }
546 }
547
548 /**
549  *      enable_irq - enable handling of an irq
550  *      @irq: Interrupt to enable
551  *
552  *      Undoes the effect of one call to disable_irq().  If this
553  *      matches the last disable, processing of interrupts on this
554  *      IRQ line is re-enabled.
555  *
556  *      This function may be called from IRQ context only when
557  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
558  */
559 void enable_irq(unsigned int irq)
560 {
561         unsigned long flags;
562         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
563
564         if (!desc)
565                 return;
566         if (WARN(!desc->irq_data.chip,
567                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
568                 goto out;
569
570         __enable_irq(desc);
571 out:
572         irq_put_desc_busunlock(desc, flags);
573 }
574 EXPORT_SYMBOL(enable_irq);
575
576 static int set_irq_wake_real(unsigned int irq, unsigned int on)
577 {
578         struct irq_desc *desc = irq_to_desc(irq);
579         int ret = -ENXIO;
580
581         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
582                 return 0;
583
584         if (desc->irq_data.chip->irq_set_wake)
585                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
586
587         return ret;
588 }
589
590 /**
591  *      irq_set_irq_wake - control irq power management wakeup
592  *      @irq:   interrupt to control
593  *      @on:    enable/disable power management wakeup
594  *
595  *      Enable/disable power management wakeup mode, which is
596  *      disabled by default.  Enables and disables must match,
597  *      just as they match for non-wakeup mode support.
598  *
599  *      Wakeup mode lets this IRQ wake the system from sleep
600  *      states like "suspend to RAM".
601  */
602 int irq_set_irq_wake(unsigned int irq, unsigned int on)
603 {
604         unsigned long flags;
605         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
606         int ret = 0;
607
608         if (!desc)
609                 return -EINVAL;
610
611         /* wakeup-capable irqs can be shared between drivers that
612          * don't need to have the same sleep mode behaviors.
613          */
614         if (on) {
615                 if (desc->wake_depth++ == 0) {
616                         ret = set_irq_wake_real(irq, on);
617                         if (ret)
618                                 desc->wake_depth = 0;
619                         else
620                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
621                 }
622         } else {
623                 if (desc->wake_depth == 0) {
624                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
625                 } else if (--desc->wake_depth == 0) {
626                         ret = set_irq_wake_real(irq, on);
627                         if (ret)
628                                 desc->wake_depth = 1;
629                         else
630                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
631                 }
632         }
633         irq_put_desc_busunlock(desc, flags);
634         return ret;
635 }
636 EXPORT_SYMBOL(irq_set_irq_wake);
637
638 /*
639  * Internal function that tells the architecture code whether a
640  * particular irq has been exclusively allocated or is available
641  * for driver use.
642  */
643 int can_request_irq(unsigned int irq, unsigned long irqflags)
644 {
645         unsigned long flags;
646         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
647         int canrequest = 0;
648
649         if (!desc)
650                 return 0;
651
652         if (irq_settings_can_request(desc)) {
653                 if (!desc->action ||
654                     irqflags & desc->action->flags & IRQF_SHARED)
655                         canrequest = 1;
656         }
657         irq_put_desc_unlock(desc, flags);
658         return canrequest;
659 }
660
661 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
662 {
663         struct irq_chip *chip = desc->irq_data.chip;
664         int ret, unmask = 0;
665
666         if (!chip || !chip->irq_set_type) {
667                 /*
668                  * IRQF_TRIGGER_* but the PIC does not support multiple
669                  * flow-types?
670                  */
671                 pr_debug("No set_type function for IRQ %d (%s)\n",
672                          irq_desc_get_irq(desc),
673                          chip ? (chip->name ? : "unknown") : "unknown");
674                 return 0;
675         }
676
677         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
678                 if (!irqd_irq_masked(&desc->irq_data))
679                         mask_irq(desc);
680                 if (!irqd_irq_disabled(&desc->irq_data))
681                         unmask = 1;
682         }
683
684         /* Mask all flags except trigger mode */
685         flags &= IRQ_TYPE_SENSE_MASK;
686         ret = chip->irq_set_type(&desc->irq_data, flags);
687
688         switch (ret) {
689         case IRQ_SET_MASK_OK:
690         case IRQ_SET_MASK_OK_DONE:
691                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
692                 irqd_set(&desc->irq_data, flags);
693
694         case IRQ_SET_MASK_OK_NOCOPY:
695                 flags = irqd_get_trigger_type(&desc->irq_data);
696                 irq_settings_set_trigger_mask(desc, flags);
697                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
698                 irq_settings_clr_level(desc);
699                 if (flags & IRQ_TYPE_LEVEL_MASK) {
700                         irq_settings_set_level(desc);
701                         irqd_set(&desc->irq_data, IRQD_LEVEL);
702                 }
703
704                 ret = 0;
705                 break;
706         default:
707                 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
708                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
709         }
710         if (unmask)
711                 unmask_irq(desc);
712         return ret;
713 }
714
715 #ifdef CONFIG_HARDIRQS_SW_RESEND
716 int irq_set_parent(int irq, int parent_irq)
717 {
718         unsigned long flags;
719         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
720
721         if (!desc)
722                 return -EINVAL;
723
724         desc->parent_irq = parent_irq;
725
726         irq_put_desc_unlock(desc, flags);
727         return 0;
728 }
729 EXPORT_SYMBOL_GPL(irq_set_parent);
730 #endif
731
732 /*
733  * Default primary interrupt handler for threaded interrupts. Is
734  * assigned as primary handler when request_threaded_irq is called
735  * with handler == NULL. Useful for oneshot interrupts.
736  */
737 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
738 {
739         return IRQ_WAKE_THREAD;
740 }
741
742 /*
743  * Primary handler for nested threaded interrupts. Should never be
744  * called.
745  */
746 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
747 {
748         WARN(1, "Primary handler called for nested irq %d\n", irq);
749         return IRQ_NONE;
750 }
751
752 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
753 {
754         WARN(1, "Secondary action handler called for irq %d\n", irq);
755         return IRQ_NONE;
756 }
757
758 static int irq_wait_for_interrupt(struct irqaction *action)
759 {
760         set_current_state(TASK_INTERRUPTIBLE);
761
762         while (!kthread_should_stop()) {
763
764                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
765                                        &action->thread_flags)) {
766                         __set_current_state(TASK_RUNNING);
767                         return 0;
768                 }
769                 schedule();
770                 set_current_state(TASK_INTERRUPTIBLE);
771         }
772         __set_current_state(TASK_RUNNING);
773         return -1;
774 }
775
776 /*
777  * Oneshot interrupts keep the irq line masked until the threaded
778  * handler finished. unmask if the interrupt has not been disabled and
779  * is marked MASKED.
780  */
781 static void irq_finalize_oneshot(struct irq_desc *desc,
782                                  struct irqaction *action)
783 {
784         if (!(desc->istate & IRQS_ONESHOT) ||
785             action->handler == irq_forced_secondary_handler)
786                 return;
787 again:
788         chip_bus_lock(desc);
789         raw_spin_lock_irq(&desc->lock);
790
791         /*
792          * Implausible though it may be we need to protect us against
793          * the following scenario:
794          *
795          * The thread is faster done than the hard interrupt handler
796          * on the other CPU. If we unmask the irq line then the
797          * interrupt can come in again and masks the line, leaves due
798          * to IRQS_INPROGRESS and the irq line is masked forever.
799          *
800          * This also serializes the state of shared oneshot handlers
801          * versus "desc->threads_onehsot |= action->thread_mask;" in
802          * irq_wake_thread(). See the comment there which explains the
803          * serialization.
804          */
805         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
806                 raw_spin_unlock_irq(&desc->lock);
807                 chip_bus_sync_unlock(desc);
808                 cpu_relax();
809                 goto again;
810         }
811
812         /*
813          * Now check again, whether the thread should run. Otherwise
814          * we would clear the threads_oneshot bit of this thread which
815          * was just set.
816          */
817         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
818                 goto out_unlock;
819
820         desc->threads_oneshot &= ~action->thread_mask;
821
822         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
823             irqd_irq_masked(&desc->irq_data))
824                 unmask_threaded_irq(desc);
825
826 out_unlock:
827         raw_spin_unlock_irq(&desc->lock);
828         chip_bus_sync_unlock(desc);
829 }
830
831 #ifdef CONFIG_SMP
832 /*
833  * Check whether we need to change the affinity of the interrupt thread.
834  */
835 static void
836 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
837 {
838         cpumask_var_t mask;
839         bool valid = true;
840
841         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
842                 return;
843
844         /*
845          * In case we are out of memory we set IRQTF_AFFINITY again and
846          * try again next time
847          */
848         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
849                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
850                 return;
851         }
852
853         raw_spin_lock_irq(&desc->lock);
854         /*
855          * This code is triggered unconditionally. Check the affinity
856          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
857          */
858         if (cpumask_available(desc->irq_common_data.affinity)) {
859                 const struct cpumask *m;
860
861                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
862                 cpumask_copy(mask, m);
863         } else {
864                 valid = false;
865         }
866         raw_spin_unlock_irq(&desc->lock);
867
868         if (valid)
869                 set_cpus_allowed_ptr(current, mask);
870         free_cpumask_var(mask);
871 }
872 #else
873 static inline void
874 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
875 #endif
876
877 /*
878  * Interrupts which are not explicitely requested as threaded
879  * interrupts rely on the implicit bh/preempt disable of the hard irq
880  * context. So we need to disable bh here to avoid deadlocks and other
881  * side effects.
882  */
883 static irqreturn_t
884 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
885 {
886         irqreturn_t ret;
887
888         local_bh_disable();
889         ret = action->thread_fn(action->irq, action->dev_id);
890         irq_finalize_oneshot(desc, action);
891         local_bh_enable();
892         return ret;
893 }
894
895 /*
896  * Interrupts explicitly requested as threaded interrupts want to be
897  * preemtible - many of them need to sleep and wait for slow busses to
898  * complete.
899  */
900 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
901                 struct irqaction *action)
902 {
903         irqreturn_t ret;
904
905         ret = action->thread_fn(action->irq, action->dev_id);
906         irq_finalize_oneshot(desc, action);
907         return ret;
908 }
909
910 static void wake_threads_waitq(struct irq_desc *desc)
911 {
912         if (atomic_dec_and_test(&desc->threads_active))
913                 wake_up(&desc->wait_for_threads);
914 }
915
916 static void irq_thread_dtor(struct callback_head *unused)
917 {
918         struct task_struct *tsk = current;
919         struct irq_desc *desc;
920         struct irqaction *action;
921
922         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
923                 return;
924
925         action = kthread_data(tsk);
926
927         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
928                tsk->comm, tsk->pid, action->irq);
929
930
931         desc = irq_to_desc(action->irq);
932         /*
933          * If IRQTF_RUNTHREAD is set, we need to decrement
934          * desc->threads_active and wake possible waiters.
935          */
936         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
937                 wake_threads_waitq(desc);
938
939         /* Prevent a stale desc->threads_oneshot */
940         irq_finalize_oneshot(desc, action);
941 }
942
943 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
944 {
945         struct irqaction *secondary = action->secondary;
946
947         if (WARN_ON_ONCE(!secondary))
948                 return;
949
950         raw_spin_lock_irq(&desc->lock);
951         __irq_wake_thread(desc, secondary);
952         raw_spin_unlock_irq(&desc->lock);
953 }
954
955 /*
956  * Interrupt handler thread
957  */
958 static int irq_thread(void *data)
959 {
960         struct callback_head on_exit_work;
961         struct irqaction *action = data;
962         struct irq_desc *desc = irq_to_desc(action->irq);
963         irqreturn_t (*handler_fn)(struct irq_desc *desc,
964                         struct irqaction *action);
965
966         if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
967                                         &action->thread_flags))
968                 handler_fn = irq_forced_thread_fn;
969         else
970                 handler_fn = irq_thread_fn;
971
972         init_task_work(&on_exit_work, irq_thread_dtor);
973         task_work_add(current, &on_exit_work, false);
974
975         irq_thread_check_affinity(desc, action);
976
977         while (!irq_wait_for_interrupt(action)) {
978                 irqreturn_t action_ret;
979
980                 irq_thread_check_affinity(desc, action);
981
982                 action_ret = handler_fn(desc, action);
983                 if (action_ret == IRQ_HANDLED)
984                         atomic_inc(&desc->threads_handled);
985                 if (action_ret == IRQ_WAKE_THREAD)
986                         irq_wake_secondary(desc, action);
987
988                 wake_threads_waitq(desc);
989         }
990
991         /*
992          * This is the regular exit path. __free_irq() is stopping the
993          * thread via kthread_stop() after calling
994          * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
995          * oneshot mask bit can be set. We cannot verify that as we
996          * cannot touch the oneshot mask at this point anymore as
997          * __setup_irq() might have given out currents thread_mask
998          * again.
999          */
1000         task_work_cancel(current, irq_thread_dtor);
1001         return 0;
1002 }
1003
1004 /**
1005  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1006  *      @irq:           Interrupt line
1007  *      @dev_id:        Device identity for which the thread should be woken
1008  *
1009  */
1010 void irq_wake_thread(unsigned int irq, void *dev_id)
1011 {
1012         struct irq_desc *desc = irq_to_desc(irq);
1013         struct irqaction *action;
1014         unsigned long flags;
1015
1016         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1017                 return;
1018
1019         raw_spin_lock_irqsave(&desc->lock, flags);
1020         for_each_action_of_desc(desc, action) {
1021                 if (action->dev_id == dev_id) {
1022                         if (action->thread)
1023                                 __irq_wake_thread(desc, action);
1024                         break;
1025                 }
1026         }
1027         raw_spin_unlock_irqrestore(&desc->lock, flags);
1028 }
1029 EXPORT_SYMBOL_GPL(irq_wake_thread);
1030
1031 static int irq_setup_forced_threading(struct irqaction *new)
1032 {
1033         if (!force_irqthreads)
1034                 return 0;
1035         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1036                 return 0;
1037
1038         new->flags |= IRQF_ONESHOT;
1039
1040         /*
1041          * Handle the case where we have a real primary handler and a
1042          * thread handler. We force thread them as well by creating a
1043          * secondary action.
1044          */
1045         if (new->handler != irq_default_primary_handler && new->thread_fn) {
1046                 /* Allocate the secondary action */
1047                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1048                 if (!new->secondary)
1049                         return -ENOMEM;
1050                 new->secondary->handler = irq_forced_secondary_handler;
1051                 new->secondary->thread_fn = new->thread_fn;
1052                 new->secondary->dev_id = new->dev_id;
1053                 new->secondary->irq = new->irq;
1054                 new->secondary->name = new->name;
1055         }
1056         /* Deal with the primary handler */
1057         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1058         new->thread_fn = new->handler;
1059         new->handler = irq_default_primary_handler;
1060         return 0;
1061 }
1062
1063 static int irq_request_resources(struct irq_desc *desc)
1064 {
1065         struct irq_data *d = &desc->irq_data;
1066         struct irq_chip *c = d->chip;
1067
1068         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1069 }
1070
1071 static void irq_release_resources(struct irq_desc *desc)
1072 {
1073         struct irq_data *d = &desc->irq_data;
1074         struct irq_chip *c = d->chip;
1075
1076         if (c->irq_release_resources)
1077                 c->irq_release_resources(d);
1078 }
1079
1080 static int
1081 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1082 {
1083         struct task_struct *t;
1084         struct sched_param param = {
1085                 .sched_priority = MAX_USER_RT_PRIO/2,
1086         };
1087
1088         if (!secondary) {
1089                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1090                                    new->name);
1091         } else {
1092                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1093                                    new->name);
1094                 param.sched_priority -= 1;
1095         }
1096
1097         if (IS_ERR(t))
1098                 return PTR_ERR(t);
1099
1100         sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1101
1102         /*
1103          * We keep the reference to the task struct even if
1104          * the thread dies to avoid that the interrupt code
1105          * references an already freed task_struct.
1106          */
1107         get_task_struct(t);
1108         new->thread = t;
1109         /*
1110          * Tell the thread to set its affinity. This is
1111          * important for shared interrupt handlers as we do
1112          * not invoke setup_affinity() for the secondary
1113          * handlers as everything is already set up. Even for
1114          * interrupts marked with IRQF_NO_BALANCE this is
1115          * correct as we want the thread to move to the cpu(s)
1116          * on which the requesting code placed the interrupt.
1117          */
1118         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1119         return 0;
1120 }
1121
1122 /*
1123  * Internal function to register an irqaction - typically used to
1124  * allocate special interrupts that are part of the architecture.
1125  *
1126  * Locking rules:
1127  *
1128  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1129  *   chip_bus_lock      Provides serialization for slow bus operations
1130  *     desc->lock       Provides serialization against hard interrupts
1131  *
1132  * chip_bus_lock and desc->lock are sufficient for all other management and
1133  * interrupt related functions. desc->request_mutex solely serializes
1134  * request/free_irq().
1135  */
1136 static int
1137 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1138 {
1139         struct irqaction *old, **old_ptr;
1140         unsigned long flags, thread_mask = 0;
1141         int ret, nested, shared = 0;
1142
1143         if (!desc)
1144                 return -EINVAL;
1145
1146         if (desc->irq_data.chip == &no_irq_chip)
1147                 return -ENOSYS;
1148         if (!try_module_get(desc->owner))
1149                 return -ENODEV;
1150
1151         new->irq = irq;
1152
1153         /*
1154          * If the trigger type is not specified by the caller,
1155          * then use the default for this interrupt.
1156          */
1157         if (!(new->flags & IRQF_TRIGGER_MASK))
1158                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1159
1160         /*
1161          * Check whether the interrupt nests into another interrupt
1162          * thread.
1163          */
1164         nested = irq_settings_is_nested_thread(desc);
1165         if (nested) {
1166                 if (!new->thread_fn) {
1167                         ret = -EINVAL;
1168                         goto out_mput;
1169                 }
1170                 /*
1171                  * Replace the primary handler which was provided from
1172                  * the driver for non nested interrupt handling by the
1173                  * dummy function which warns when called.
1174                  */
1175                 new->handler = irq_nested_primary_handler;
1176         } else {
1177                 if (irq_settings_can_thread(desc)) {
1178                         ret = irq_setup_forced_threading(new);
1179                         if (ret)
1180                                 goto out_mput;
1181                 }
1182         }
1183
1184         /*
1185          * Create a handler thread when a thread function is supplied
1186          * and the interrupt does not nest into another interrupt
1187          * thread.
1188          */
1189         if (new->thread_fn && !nested) {
1190                 ret = setup_irq_thread(new, irq, false);
1191                 if (ret)
1192                         goto out_mput;
1193                 if (new->secondary) {
1194                         ret = setup_irq_thread(new->secondary, irq, true);
1195                         if (ret)
1196                                 goto out_thread;
1197                 }
1198         }
1199
1200         /*
1201          * Drivers are often written to work w/o knowledge about the
1202          * underlying irq chip implementation, so a request for a
1203          * threaded irq without a primary hard irq context handler
1204          * requires the ONESHOT flag to be set. Some irq chips like
1205          * MSI based interrupts are per se one shot safe. Check the
1206          * chip flags, so we can avoid the unmask dance at the end of
1207          * the threaded handler for those.
1208          */
1209         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1210                 new->flags &= ~IRQF_ONESHOT;
1211
1212         /*
1213          * Protects against a concurrent __free_irq() call which might wait
1214          * for synchronize_irq() to complete without holding the optional
1215          * chip bus lock and desc->lock.
1216          */
1217         mutex_lock(&desc->request_mutex);
1218
1219         /*
1220          * Acquire bus lock as the irq_request_resources() callback below
1221          * might rely on the serialization or the magic power management
1222          * functions which are abusing the irq_bus_lock() callback,
1223          */
1224         chip_bus_lock(desc);
1225
1226         /* First installed action requests resources. */
1227         if (!desc->action) {
1228                 ret = irq_request_resources(desc);
1229                 if (ret) {
1230                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1231                                new->name, irq, desc->irq_data.chip->name);
1232                         goto out_bus_unlock;
1233                 }
1234         }
1235
1236         /*
1237          * The following block of code has to be executed atomically
1238          * protected against a concurrent interrupt and any of the other
1239          * management calls which are not serialized via
1240          * desc->request_mutex or the optional bus lock.
1241          */
1242         raw_spin_lock_irqsave(&desc->lock, flags);
1243         old_ptr = &desc->action;
1244         old = *old_ptr;
1245         if (old) {
1246                 /*
1247                  * Can't share interrupts unless both agree to and are
1248                  * the same type (level, edge, polarity). So both flag
1249                  * fields must have IRQF_SHARED set and the bits which
1250                  * set the trigger type must match. Also all must
1251                  * agree on ONESHOT.
1252                  */
1253                 unsigned int oldtype;
1254
1255                 /*
1256                  * If nobody did set the configuration before, inherit
1257                  * the one provided by the requester.
1258                  */
1259                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1260                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1261                 } else {
1262                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1263                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1264                 }
1265
1266                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1267                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1268                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1269                         goto mismatch;
1270
1271                 /* All handlers must agree on per-cpuness */
1272                 if ((old->flags & IRQF_PERCPU) !=
1273                     (new->flags & IRQF_PERCPU))
1274                         goto mismatch;
1275
1276                 /* add new interrupt at end of irq queue */
1277                 do {
1278                         /*
1279                          * Or all existing action->thread_mask bits,
1280                          * so we can find the next zero bit for this
1281                          * new action.
1282                          */
1283                         thread_mask |= old->thread_mask;
1284                         old_ptr = &old->next;
1285                         old = *old_ptr;
1286                 } while (old);
1287                 shared = 1;
1288         }
1289
1290         /*
1291          * Setup the thread mask for this irqaction for ONESHOT. For
1292          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1293          * conditional in irq_wake_thread().
1294          */
1295         if (new->flags & IRQF_ONESHOT) {
1296                 /*
1297                  * Unlikely to have 32 resp 64 irqs sharing one line,
1298                  * but who knows.
1299                  */
1300                 if (thread_mask == ~0UL) {
1301                         ret = -EBUSY;
1302                         goto out_unlock;
1303                 }
1304                 /*
1305                  * The thread_mask for the action is or'ed to
1306                  * desc->thread_active to indicate that the
1307                  * IRQF_ONESHOT thread handler has been woken, but not
1308                  * yet finished. The bit is cleared when a thread
1309                  * completes. When all threads of a shared interrupt
1310                  * line have completed desc->threads_active becomes
1311                  * zero and the interrupt line is unmasked. See
1312                  * handle.c:irq_wake_thread() for further information.
1313                  *
1314                  * If no thread is woken by primary (hard irq context)
1315                  * interrupt handlers, then desc->threads_active is
1316                  * also checked for zero to unmask the irq line in the
1317                  * affected hard irq flow handlers
1318                  * (handle_[fasteoi|level]_irq).
1319                  *
1320                  * The new action gets the first zero bit of
1321                  * thread_mask assigned. See the loop above which or's
1322                  * all existing action->thread_mask bits.
1323                  */
1324                 new->thread_mask = 1UL << ffz(thread_mask);
1325
1326         } else if (new->handler == irq_default_primary_handler &&
1327                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1328                 /*
1329                  * The interrupt was requested with handler = NULL, so
1330                  * we use the default primary handler for it. But it
1331                  * does not have the oneshot flag set. In combination
1332                  * with level interrupts this is deadly, because the
1333                  * default primary handler just wakes the thread, then
1334                  * the irq lines is reenabled, but the device still
1335                  * has the level irq asserted. Rinse and repeat....
1336                  *
1337                  * While this works for edge type interrupts, we play
1338                  * it safe and reject unconditionally because we can't
1339                  * say for sure which type this interrupt really
1340                  * has. The type flags are unreliable as the
1341                  * underlying chip implementation can override them.
1342                  */
1343                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1344                        irq);
1345                 ret = -EINVAL;
1346                 goto out_unlock;
1347         }
1348
1349         if (!shared) {
1350                 init_waitqueue_head(&desc->wait_for_threads);
1351
1352                 /* Setup the type (level, edge polarity) if configured: */
1353                 if (new->flags & IRQF_TRIGGER_MASK) {
1354                         ret = __irq_set_trigger(desc,
1355                                                 new->flags & IRQF_TRIGGER_MASK);
1356
1357                         if (ret)
1358                                 goto out_unlock;
1359                 }
1360
1361                 /*
1362                  * Activate the interrupt. That activation must happen
1363                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1364                  * and the callers are supposed to handle
1365                  * that. enable_irq() of an interrupt requested with
1366                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1367                  * keeps it in shutdown mode, it merily associates
1368                  * resources if necessary and if that's not possible it
1369                  * fails. Interrupts which are in managed shutdown mode
1370                  * will simply ignore that activation request.
1371                  */
1372                 ret = irq_activate(desc);
1373                 if (ret)
1374                         goto out_unlock;
1375
1376                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1377                                   IRQS_ONESHOT | IRQS_WAITING);
1378                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1379
1380                 if (new->flags & IRQF_PERCPU) {
1381                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1382                         irq_settings_set_per_cpu(desc);
1383                 }
1384
1385                 if (new->flags & IRQF_ONESHOT)
1386                         desc->istate |= IRQS_ONESHOT;
1387
1388                 /* Exclude IRQ from balancing if requested */
1389                 if (new->flags & IRQF_NOBALANCING) {
1390                         irq_settings_set_no_balancing(desc);
1391                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1392                 }
1393
1394                 if (irq_settings_can_autoenable(desc)) {
1395                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1396                 } else {
1397                         /*
1398                          * Shared interrupts do not go well with disabling
1399                          * auto enable. The sharing interrupt might request
1400                          * it while it's still disabled and then wait for
1401                          * interrupts forever.
1402                          */
1403                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1404                         /* Undo nested disables: */
1405                         desc->depth = 1;
1406                 }
1407
1408         } else if (new->flags & IRQF_TRIGGER_MASK) {
1409                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1410                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1411
1412                 if (nmsk != omsk)
1413                         /* hope the handler works with current  trigger mode */
1414                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1415                                 irq, omsk, nmsk);
1416         }
1417
1418         *old_ptr = new;
1419
1420         irq_pm_install_action(desc, new);
1421
1422         /* Reset broken irq detection when installing new handler */
1423         desc->irq_count = 0;
1424         desc->irqs_unhandled = 0;
1425
1426         /*
1427          * Check whether we disabled the irq via the spurious handler
1428          * before. Reenable it and give it another chance.
1429          */
1430         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1431                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1432                 __enable_irq(desc);
1433         }
1434
1435         raw_spin_unlock_irqrestore(&desc->lock, flags);
1436         chip_bus_sync_unlock(desc);
1437         mutex_unlock(&desc->request_mutex);
1438
1439         irq_setup_timings(desc, new);
1440
1441         /*
1442          * Strictly no need to wake it up, but hung_task complains
1443          * when no hard interrupt wakes the thread up.
1444          */
1445         if (new->thread)
1446                 wake_up_process(new->thread);
1447         if (new->secondary)
1448                 wake_up_process(new->secondary->thread);
1449
1450         register_irq_proc(irq, desc);
1451         new->dir = NULL;
1452         register_handler_proc(irq, new);
1453         return 0;
1454
1455 mismatch:
1456         if (!(new->flags & IRQF_PROBE_SHARED)) {
1457                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1458                        irq, new->flags, new->name, old->flags, old->name);
1459 #ifdef CONFIG_DEBUG_SHIRQ
1460                 dump_stack();
1461 #endif
1462         }
1463         ret = -EBUSY;
1464
1465 out_unlock:
1466         raw_spin_unlock_irqrestore(&desc->lock, flags);
1467
1468         if (!desc->action)
1469                 irq_release_resources(desc);
1470 out_bus_unlock:
1471         chip_bus_sync_unlock(desc);
1472         mutex_unlock(&desc->request_mutex);
1473
1474 out_thread:
1475         if (new->thread) {
1476                 struct task_struct *t = new->thread;
1477
1478                 new->thread = NULL;
1479                 kthread_stop(t);
1480                 put_task_struct(t);
1481         }
1482         if (new->secondary && new->secondary->thread) {
1483                 struct task_struct *t = new->secondary->thread;
1484
1485                 new->secondary->thread = NULL;
1486                 kthread_stop(t);
1487                 put_task_struct(t);
1488         }
1489 out_mput:
1490         module_put(desc->owner);
1491         return ret;
1492 }
1493
1494 /**
1495  *      setup_irq - setup an interrupt
1496  *      @irq: Interrupt line to setup
1497  *      @act: irqaction for the interrupt
1498  *
1499  * Used to statically setup interrupts in the early boot process.
1500  */
1501 int setup_irq(unsigned int irq, struct irqaction *act)
1502 {
1503         int retval;
1504         struct irq_desc *desc = irq_to_desc(irq);
1505
1506         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1507                 return -EINVAL;
1508
1509         retval = irq_chip_pm_get(&desc->irq_data);
1510         if (retval < 0)
1511                 return retval;
1512
1513         retval = __setup_irq(irq, desc, act);
1514
1515         if (retval)
1516                 irq_chip_pm_put(&desc->irq_data);
1517
1518         return retval;
1519 }
1520 EXPORT_SYMBOL_GPL(setup_irq);
1521
1522 /*
1523  * Internal function to unregister an irqaction - used to free
1524  * regular and special interrupts that are part of the architecture.
1525  */
1526 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1527 {
1528         struct irq_desc *desc = irq_to_desc(irq);
1529         struct irqaction *action, **action_ptr;
1530         unsigned long flags;
1531
1532         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1533
1534         if (!desc)
1535                 return NULL;
1536
1537         mutex_lock(&desc->request_mutex);
1538         chip_bus_lock(desc);
1539         raw_spin_lock_irqsave(&desc->lock, flags);
1540
1541         /*
1542          * There can be multiple actions per IRQ descriptor, find the right
1543          * one based on the dev_id:
1544          */
1545         action_ptr = &desc->action;
1546         for (;;) {
1547                 action = *action_ptr;
1548
1549                 if (!action) {
1550                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1551                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1552                         chip_bus_sync_unlock(desc);
1553                         mutex_unlock(&desc->request_mutex);
1554                         return NULL;
1555                 }
1556
1557                 if (action->dev_id == dev_id)
1558                         break;
1559                 action_ptr = &action->next;
1560         }
1561
1562         /* Found it - now remove it from the list of entries: */
1563         *action_ptr = action->next;
1564
1565         irq_pm_remove_action(desc, action);
1566
1567         /* If this was the last handler, shut down the IRQ line: */
1568         if (!desc->action) {
1569                 irq_settings_clr_disable_unlazy(desc);
1570                 irq_shutdown(desc);
1571         }
1572
1573 #ifdef CONFIG_SMP
1574         /* make sure affinity_hint is cleaned up */
1575         if (WARN_ON_ONCE(desc->affinity_hint))
1576                 desc->affinity_hint = NULL;
1577 #endif
1578
1579         raw_spin_unlock_irqrestore(&desc->lock, flags);
1580         /*
1581          * Drop bus_lock here so the changes which were done in the chip
1582          * callbacks above are synced out to the irq chips which hang
1583          * behind a slow bus (I2C, SPI) before calling synchronize_irq().
1584          *
1585          * Aside of that the bus_lock can also be taken from the threaded
1586          * handler in irq_finalize_oneshot() which results in a deadlock
1587          * because synchronize_irq() would wait forever for the thread to
1588          * complete, which is blocked on the bus lock.
1589          *
1590          * The still held desc->request_mutex() protects against a
1591          * concurrent request_irq() of this irq so the release of resources
1592          * and timing data is properly serialized.
1593          */
1594         chip_bus_sync_unlock(desc);
1595
1596         unregister_handler_proc(irq, action);
1597
1598         /* Make sure it's not being used on another CPU: */
1599         synchronize_irq(irq);
1600
1601 #ifdef CONFIG_DEBUG_SHIRQ
1602         /*
1603          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1604          * event to happen even now it's being freed, so let's make sure that
1605          * is so by doing an extra call to the handler ....
1606          *
1607          * ( We do this after actually deregistering it, to make sure that a
1608          *   'real' IRQ doesn't run in * parallel with our fake. )
1609          */
1610         if (action->flags & IRQF_SHARED) {
1611                 local_irq_save(flags);
1612                 action->handler(irq, dev_id);
1613                 local_irq_restore(flags);
1614         }
1615 #endif
1616
1617         if (action->thread) {
1618                 kthread_stop(action->thread);
1619                 put_task_struct(action->thread);
1620                 if (action->secondary && action->secondary->thread) {
1621                         kthread_stop(action->secondary->thread);
1622                         put_task_struct(action->secondary->thread);
1623                 }
1624         }
1625
1626         /* Last action releases resources */
1627         if (!desc->action) {
1628                 /*
1629                  * Reaquire bus lock as irq_release_resources() might
1630                  * require it to deallocate resources over the slow bus.
1631                  */
1632                 chip_bus_lock(desc);
1633                 irq_release_resources(desc);
1634                 chip_bus_sync_unlock(desc);
1635                 irq_remove_timings(desc);
1636         }
1637
1638         mutex_unlock(&desc->request_mutex);
1639
1640         irq_chip_pm_put(&desc->irq_data);
1641         module_put(desc->owner);
1642         kfree(action->secondary);
1643         return action;
1644 }
1645
1646 /**
1647  *      remove_irq - free an interrupt
1648  *      @irq: Interrupt line to free
1649  *      @act: irqaction for the interrupt
1650  *
1651  * Used to remove interrupts statically setup by the early boot process.
1652  */
1653 void remove_irq(unsigned int irq, struct irqaction *act)
1654 {
1655         struct irq_desc *desc = irq_to_desc(irq);
1656
1657         if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1658                 __free_irq(irq, act->dev_id);
1659 }
1660 EXPORT_SYMBOL_GPL(remove_irq);
1661
1662 /**
1663  *      free_irq - free an interrupt allocated with request_irq
1664  *      @irq: Interrupt line to free
1665  *      @dev_id: Device identity to free
1666  *
1667  *      Remove an interrupt handler. The handler is removed and if the
1668  *      interrupt line is no longer in use by any driver it is disabled.
1669  *      On a shared IRQ the caller must ensure the interrupt is disabled
1670  *      on the card it drives before calling this function. The function
1671  *      does not return until any executing interrupts for this IRQ
1672  *      have completed.
1673  *
1674  *      This function must not be called from interrupt context.
1675  *
1676  *      Returns the devname argument passed to request_irq.
1677  */
1678 const void *free_irq(unsigned int irq, void *dev_id)
1679 {
1680         struct irq_desc *desc = irq_to_desc(irq);
1681         struct irqaction *action;
1682         const char *devname;
1683
1684         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1685                 return NULL;
1686
1687 #ifdef CONFIG_SMP
1688         if (WARN_ON(desc->affinity_notify))
1689                 desc->affinity_notify = NULL;
1690 #endif
1691
1692         action = __free_irq(irq, dev_id);
1693
1694         if (!action)
1695                 return NULL;
1696
1697         devname = action->name;
1698         kfree(action);
1699         return devname;
1700 }
1701 EXPORT_SYMBOL(free_irq);
1702
1703 /**
1704  *      request_threaded_irq - allocate an interrupt line
1705  *      @irq: Interrupt line to allocate
1706  *      @handler: Function to be called when the IRQ occurs.
1707  *                Primary handler for threaded interrupts
1708  *                If NULL and thread_fn != NULL the default
1709  *                primary handler is installed
1710  *      @thread_fn: Function called from the irq handler thread
1711  *                  If NULL, no irq thread is created
1712  *      @irqflags: Interrupt type flags
1713  *      @devname: An ascii name for the claiming device
1714  *      @dev_id: A cookie passed back to the handler function
1715  *
1716  *      This call allocates interrupt resources and enables the
1717  *      interrupt line and IRQ handling. From the point this
1718  *      call is made your handler function may be invoked. Since
1719  *      your handler function must clear any interrupt the board
1720  *      raises, you must take care both to initialise your hardware
1721  *      and to set up the interrupt handler in the right order.
1722  *
1723  *      If you want to set up a threaded irq handler for your device
1724  *      then you need to supply @handler and @thread_fn. @handler is
1725  *      still called in hard interrupt context and has to check
1726  *      whether the interrupt originates from the device. If yes it
1727  *      needs to disable the interrupt on the device and return
1728  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1729  *      @thread_fn. This split handler design is necessary to support
1730  *      shared interrupts.
1731  *
1732  *      Dev_id must be globally unique. Normally the address of the
1733  *      device data structure is used as the cookie. Since the handler
1734  *      receives this value it makes sense to use it.
1735  *
1736  *      If your interrupt is shared you must pass a non NULL dev_id
1737  *      as this is required when freeing the interrupt.
1738  *
1739  *      Flags:
1740  *
1741  *      IRQF_SHARED             Interrupt is shared
1742  *      IRQF_TRIGGER_*          Specify active edge(s) or level
1743  *
1744  */
1745 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1746                          irq_handler_t thread_fn, unsigned long irqflags,
1747                          const char *devname, void *dev_id)
1748 {
1749         struct irqaction *action;
1750         struct irq_desc *desc;
1751         int retval;
1752
1753         if (irq == IRQ_NOTCONNECTED)
1754                 return -ENOTCONN;
1755
1756         /*
1757          * Sanity-check: shared interrupts must pass in a real dev-ID,
1758          * otherwise we'll have trouble later trying to figure out
1759          * which interrupt is which (messes up the interrupt freeing
1760          * logic etc).
1761          *
1762          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1763          * it cannot be set along with IRQF_NO_SUSPEND.
1764          */
1765         if (((irqflags & IRQF_SHARED) && !dev_id) ||
1766             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1767             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1768                 return -EINVAL;
1769
1770         desc = irq_to_desc(irq);
1771         if (!desc)
1772                 return -EINVAL;
1773
1774         if (!irq_settings_can_request(desc) ||
1775             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1776                 return -EINVAL;
1777
1778         if (!handler) {
1779                 if (!thread_fn)
1780                         return -EINVAL;
1781                 handler = irq_default_primary_handler;
1782         }
1783
1784         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1785         if (!action)
1786                 return -ENOMEM;
1787
1788         action->handler = handler;
1789         action->thread_fn = thread_fn;
1790         action->flags = irqflags;
1791         action->name = devname;
1792         action->dev_id = dev_id;
1793
1794         retval = irq_chip_pm_get(&desc->irq_data);
1795         if (retval < 0) {
1796                 kfree(action);
1797                 return retval;
1798         }
1799
1800         retval = __setup_irq(irq, desc, action);
1801
1802         if (retval) {
1803                 irq_chip_pm_put(&desc->irq_data);
1804                 kfree(action->secondary);
1805                 kfree(action);
1806         }
1807
1808 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1809         if (!retval && (irqflags & IRQF_SHARED)) {
1810                 /*
1811                  * It's a shared IRQ -- the driver ought to be prepared for it
1812                  * to happen immediately, so let's make sure....
1813                  * We disable the irq to make sure that a 'real' IRQ doesn't
1814                  * run in parallel with our fake.
1815                  */
1816                 unsigned long flags;
1817
1818                 disable_irq(irq);
1819                 local_irq_save(flags);
1820
1821                 handler(irq, dev_id);
1822
1823                 local_irq_restore(flags);
1824                 enable_irq(irq);
1825         }
1826 #endif
1827         return retval;
1828 }
1829 EXPORT_SYMBOL(request_threaded_irq);
1830
1831 /**
1832  *      request_any_context_irq - allocate an interrupt line
1833  *      @irq: Interrupt line to allocate
1834  *      @handler: Function to be called when the IRQ occurs.
1835  *                Threaded handler for threaded interrupts.
1836  *      @flags: Interrupt type flags
1837  *      @name: An ascii name for the claiming device
1838  *      @dev_id: A cookie passed back to the handler function
1839  *
1840  *      This call allocates interrupt resources and enables the
1841  *      interrupt line and IRQ handling. It selects either a
1842  *      hardirq or threaded handling method depending on the
1843  *      context.
1844  *
1845  *      On failure, it returns a negative value. On success,
1846  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1847  */
1848 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1849                             unsigned long flags, const char *name, void *dev_id)
1850 {
1851         struct irq_desc *desc;
1852         int ret;
1853
1854         if (irq == IRQ_NOTCONNECTED)
1855                 return -ENOTCONN;
1856
1857         desc = irq_to_desc(irq);
1858         if (!desc)
1859                 return -EINVAL;
1860
1861         if (irq_settings_is_nested_thread(desc)) {
1862                 ret = request_threaded_irq(irq, NULL, handler,
1863                                            flags, name, dev_id);
1864                 return !ret ? IRQC_IS_NESTED : ret;
1865         }
1866
1867         ret = request_irq(irq, handler, flags, name, dev_id);
1868         return !ret ? IRQC_IS_HARDIRQ : ret;
1869 }
1870 EXPORT_SYMBOL_GPL(request_any_context_irq);
1871
1872 void enable_percpu_irq(unsigned int irq, unsigned int type)
1873 {
1874         unsigned int cpu = smp_processor_id();
1875         unsigned long flags;
1876         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1877
1878         if (!desc)
1879                 return;
1880
1881         /*
1882          * If the trigger type is not specified by the caller, then
1883          * use the default for this interrupt.
1884          */
1885         type &= IRQ_TYPE_SENSE_MASK;
1886         if (type == IRQ_TYPE_NONE)
1887                 type = irqd_get_trigger_type(&desc->irq_data);
1888
1889         if (type != IRQ_TYPE_NONE) {
1890                 int ret;
1891
1892                 ret = __irq_set_trigger(desc, type);
1893
1894                 if (ret) {
1895                         WARN(1, "failed to set type for IRQ%d\n", irq);
1896                         goto out;
1897                 }
1898         }
1899
1900         irq_percpu_enable(desc, cpu);
1901 out:
1902         irq_put_desc_unlock(desc, flags);
1903 }
1904 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1905
1906 /**
1907  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1908  * @irq:        Linux irq number to check for
1909  *
1910  * Must be called from a non migratable context. Returns the enable
1911  * state of a per cpu interrupt on the current cpu.
1912  */
1913 bool irq_percpu_is_enabled(unsigned int irq)
1914 {
1915         unsigned int cpu = smp_processor_id();
1916         struct irq_desc *desc;
1917         unsigned long flags;
1918         bool is_enabled;
1919
1920         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1921         if (!desc)
1922                 return false;
1923
1924         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1925         irq_put_desc_unlock(desc, flags);
1926
1927         return is_enabled;
1928 }
1929 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1930
1931 void disable_percpu_irq(unsigned int irq)
1932 {
1933         unsigned int cpu = smp_processor_id();
1934         unsigned long flags;
1935         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1936
1937         if (!desc)
1938                 return;
1939
1940         irq_percpu_disable(desc, cpu);
1941         irq_put_desc_unlock(desc, flags);
1942 }
1943 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1944
1945 /*
1946  * Internal function to unregister a percpu irqaction.
1947  */
1948 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1949 {
1950         struct irq_desc *desc = irq_to_desc(irq);
1951         struct irqaction *action;
1952         unsigned long flags;
1953
1954         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1955
1956         if (!desc)
1957                 return NULL;
1958
1959         raw_spin_lock_irqsave(&desc->lock, flags);
1960
1961         action = desc->action;
1962         if (!action || action->percpu_dev_id != dev_id) {
1963                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1964                 goto bad;
1965         }
1966
1967         if (!cpumask_empty(desc->percpu_enabled)) {
1968                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1969                      irq, cpumask_first(desc->percpu_enabled));
1970                 goto bad;
1971         }
1972
1973         /* Found it - now remove it from the list of entries: */
1974         desc->action = NULL;
1975
1976         raw_spin_unlock_irqrestore(&desc->lock, flags);
1977
1978         unregister_handler_proc(irq, action);
1979
1980         irq_chip_pm_put(&desc->irq_data);
1981         module_put(desc->owner);
1982         return action;
1983
1984 bad:
1985         raw_spin_unlock_irqrestore(&desc->lock, flags);
1986         return NULL;
1987 }
1988
1989 /**
1990  *      remove_percpu_irq - free a per-cpu interrupt
1991  *      @irq: Interrupt line to free
1992  *      @act: irqaction for the interrupt
1993  *
1994  * Used to remove interrupts statically setup by the early boot process.
1995  */
1996 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1997 {
1998         struct irq_desc *desc = irq_to_desc(irq);
1999
2000         if (desc && irq_settings_is_per_cpu_devid(desc))
2001             __free_percpu_irq(irq, act->percpu_dev_id);
2002 }
2003
2004 /**
2005  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2006  *      @irq: Interrupt line to free
2007  *      @dev_id: Device identity to free
2008  *
2009  *      Remove a percpu interrupt handler. The handler is removed, but
2010  *      the interrupt line is not disabled. This must be done on each
2011  *      CPU before calling this function. The function does not return
2012  *      until any executing interrupts for this IRQ have completed.
2013  *
2014  *      This function must not be called from interrupt context.
2015  */
2016 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2017 {
2018         struct irq_desc *desc = irq_to_desc(irq);
2019
2020         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2021                 return;
2022
2023         chip_bus_lock(desc);
2024         kfree(__free_percpu_irq(irq, dev_id));
2025         chip_bus_sync_unlock(desc);
2026 }
2027 EXPORT_SYMBOL_GPL(free_percpu_irq);
2028
2029 /**
2030  *      setup_percpu_irq - setup a per-cpu interrupt
2031  *      @irq: Interrupt line to setup
2032  *      @act: irqaction for the interrupt
2033  *
2034  * Used to statically setup per-cpu interrupts in the early boot process.
2035  */
2036 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2037 {
2038         struct irq_desc *desc = irq_to_desc(irq);
2039         int retval;
2040
2041         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2042                 return -EINVAL;
2043
2044         retval = irq_chip_pm_get(&desc->irq_data);
2045         if (retval < 0)
2046                 return retval;
2047
2048         retval = __setup_irq(irq, desc, act);
2049
2050         if (retval)
2051                 irq_chip_pm_put(&desc->irq_data);
2052
2053         return retval;
2054 }
2055
2056 /**
2057  *      __request_percpu_irq - allocate a percpu interrupt line
2058  *      @irq: Interrupt line to allocate
2059  *      @handler: Function to be called when the IRQ occurs.
2060  *      @flags: Interrupt type flags (IRQF_TIMER only)
2061  *      @devname: An ascii name for the claiming device
2062  *      @dev_id: A percpu cookie passed back to the handler function
2063  *
2064  *      This call allocates interrupt resources and enables the
2065  *      interrupt on the local CPU. If the interrupt is supposed to be
2066  *      enabled on other CPUs, it has to be done on each CPU using
2067  *      enable_percpu_irq().
2068  *
2069  *      Dev_id must be globally unique. It is a per-cpu variable, and
2070  *      the handler gets called with the interrupted CPU's instance of
2071  *      that variable.
2072  */
2073 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2074                          unsigned long flags, const char *devname,
2075                          void __percpu *dev_id)
2076 {
2077         struct irqaction *action;
2078         struct irq_desc *desc;
2079         int retval;
2080
2081         if (!dev_id)
2082                 return -EINVAL;
2083
2084         desc = irq_to_desc(irq);
2085         if (!desc || !irq_settings_can_request(desc) ||
2086             !irq_settings_is_per_cpu_devid(desc))
2087                 return -EINVAL;
2088
2089         if (flags && flags != IRQF_TIMER)
2090                 return -EINVAL;
2091
2092         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2093         if (!action)
2094                 return -ENOMEM;
2095
2096         action->handler = handler;
2097         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2098         action->name = devname;
2099         action->percpu_dev_id = dev_id;
2100
2101         retval = irq_chip_pm_get(&desc->irq_data);
2102         if (retval < 0) {
2103                 kfree(action);
2104                 return retval;
2105         }
2106
2107         retval = __setup_irq(irq, desc, action);
2108
2109         if (retval) {
2110                 irq_chip_pm_put(&desc->irq_data);
2111                 kfree(action);
2112         }
2113
2114         return retval;
2115 }
2116 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2117
2118 /**
2119  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2120  *      @irq: Interrupt line that is forwarded to a VM
2121  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2122  *      @state: a pointer to a boolean where the state is to be storeed
2123  *
2124  *      This call snapshots the internal irqchip state of an
2125  *      interrupt, returning into @state the bit corresponding to
2126  *      stage @which
2127  *
2128  *      This function should be called with preemption disabled if the
2129  *      interrupt controller has per-cpu registers.
2130  */
2131 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2132                           bool *state)
2133 {
2134         struct irq_desc *desc;
2135         struct irq_data *data;
2136         struct irq_chip *chip;
2137         unsigned long flags;
2138         int err = -EINVAL;
2139
2140         desc = irq_get_desc_buslock(irq, &flags, 0);
2141         if (!desc)
2142                 return err;
2143
2144         data = irq_desc_get_irq_data(desc);
2145
2146         do {
2147                 chip = irq_data_get_irq_chip(data);
2148                 if (chip->irq_get_irqchip_state)
2149                         break;
2150 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2151                 data = data->parent_data;
2152 #else
2153                 data = NULL;
2154 #endif
2155         } while (data);
2156
2157         if (data)
2158                 err = chip->irq_get_irqchip_state(data, which, state);
2159
2160         irq_put_desc_busunlock(desc, flags);
2161         return err;
2162 }
2163 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2164
2165 /**
2166  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2167  *      @irq: Interrupt line that is forwarded to a VM
2168  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2169  *      @val: Value corresponding to @which
2170  *
2171  *      This call sets the internal irqchip state of an interrupt,
2172  *      depending on the value of @which.
2173  *
2174  *      This function should be called with preemption disabled if the
2175  *      interrupt controller has per-cpu registers.
2176  */
2177 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2178                           bool val)
2179 {
2180         struct irq_desc *desc;
2181         struct irq_data *data;
2182         struct irq_chip *chip;
2183         unsigned long flags;
2184         int err = -EINVAL;
2185
2186         desc = irq_get_desc_buslock(irq, &flags, 0);
2187         if (!desc)
2188                 return err;
2189
2190         data = irq_desc_get_irq_data(desc);
2191
2192         do {
2193                 chip = irq_data_get_irq_chip(data);
2194                 if (chip->irq_set_irqchip_state)
2195                         break;
2196 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2197                 data = data->parent_data;
2198 #else
2199                 data = NULL;
2200 #endif
2201         } while (data);
2202
2203         if (data)
2204                 err = chip->irq_set_irqchip_state(data, which, val);
2205
2206         irq_put_desc_busunlock(desc, flags);
2207         return err;
2208 }
2209 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);