Merge tag 'hwlock-v6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/remoteproc...
[linux-2.6-microblaze.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4  * Copyright (C) 2005-2006 Thomas Gleixner
5  *
6  * This file contains driver APIs to the irq subsystem.
7  */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/irqdomain.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <linux/sched/isolation.h>
22 #include <uapi/linux/sched/types.h>
23 #include <linux/task_work.h>
24
25 #include "internals.h"
26
27 #if defined(CONFIG_IRQ_FORCED_THREADING) && !defined(CONFIG_PREEMPT_RT)
28 DEFINE_STATIC_KEY_FALSE(force_irqthreads_key);
29
30 static int __init setup_forced_irqthreads(char *arg)
31 {
32         static_branch_enable(&force_irqthreads_key);
33         return 0;
34 }
35 early_param("threadirqs", setup_forced_irqthreads);
36 #endif
37
38 static void __synchronize_hardirq(struct irq_desc *desc, bool sync_chip)
39 {
40         struct irq_data *irqd = irq_desc_get_irq_data(desc);
41         bool inprogress;
42
43         do {
44                 unsigned long flags;
45
46                 /*
47                  * Wait until we're out of the critical section.  This might
48                  * give the wrong answer due to the lack of memory barriers.
49                  */
50                 while (irqd_irq_inprogress(&desc->irq_data))
51                         cpu_relax();
52
53                 /* Ok, that indicated we're done: double-check carefully. */
54                 raw_spin_lock_irqsave(&desc->lock, flags);
55                 inprogress = irqd_irq_inprogress(&desc->irq_data);
56
57                 /*
58                  * If requested and supported, check at the chip whether it
59                  * is in flight at the hardware level, i.e. already pending
60                  * in a CPU and waiting for service and acknowledge.
61                  */
62                 if (!inprogress && sync_chip) {
63                         /*
64                          * Ignore the return code. inprogress is only updated
65                          * when the chip supports it.
66                          */
67                         __irq_get_irqchip_state(irqd, IRQCHIP_STATE_ACTIVE,
68                                                 &inprogress);
69                 }
70                 raw_spin_unlock_irqrestore(&desc->lock, flags);
71
72                 /* Oops, that failed? */
73         } while (inprogress);
74 }
75
76 /**
77  *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
78  *      @irq: interrupt number to wait for
79  *
80  *      This function waits for any pending hard IRQ handlers for this
81  *      interrupt to complete before returning. If you use this
82  *      function while holding a resource the IRQ handler may need you
83  *      will deadlock. It does not take associated threaded handlers
84  *      into account.
85  *
86  *      Do not use this for shutdown scenarios where you must be sure
87  *      that all parts (hardirq and threaded handler) have completed.
88  *
89  *      Returns: false if a threaded handler is active.
90  *
91  *      This function may be called - with care - from IRQ context.
92  *
93  *      It does not check whether there is an interrupt in flight at the
94  *      hardware level, but not serviced yet, as this might deadlock when
95  *      called with interrupts disabled and the target CPU of the interrupt
96  *      is the current CPU.
97  */
98 bool synchronize_hardirq(unsigned int irq)
99 {
100         struct irq_desc *desc = irq_to_desc(irq);
101
102         if (desc) {
103                 __synchronize_hardirq(desc, false);
104                 return !atomic_read(&desc->threads_active);
105         }
106
107         return true;
108 }
109 EXPORT_SYMBOL(synchronize_hardirq);
110
111 static void __synchronize_irq(struct irq_desc *desc)
112 {
113         __synchronize_hardirq(desc, true);
114         /*
115          * We made sure that no hardirq handler is running. Now verify that no
116          * threaded handlers are active.
117          */
118         wait_event(desc->wait_for_threads, !atomic_read(&desc->threads_active));
119 }
120
121 /**
122  *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
123  *      @irq: interrupt number to wait for
124  *
125  *      This function waits for any pending IRQ handlers for this interrupt
126  *      to complete before returning. If you use this function while
127  *      holding a resource the IRQ handler may need you will deadlock.
128  *
129  *      Can only be called from preemptible code as it might sleep when
130  *      an interrupt thread is associated to @irq.
131  *
132  *      It optionally makes sure (when the irq chip supports that method)
133  *      that the interrupt is not pending in any CPU and waiting for
134  *      service.
135  */
136 void synchronize_irq(unsigned int irq)
137 {
138         struct irq_desc *desc = irq_to_desc(irq);
139
140         if (desc)
141                 __synchronize_irq(desc);
142 }
143 EXPORT_SYMBOL(synchronize_irq);
144
145 #ifdef CONFIG_SMP
146 cpumask_var_t irq_default_affinity;
147
148 static bool __irq_can_set_affinity(struct irq_desc *desc)
149 {
150         if (!desc || !irqd_can_balance(&desc->irq_data) ||
151             !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
152                 return false;
153         return true;
154 }
155
156 /**
157  *      irq_can_set_affinity - Check if the affinity of a given irq can be set
158  *      @irq:           Interrupt to check
159  *
160  */
161 int irq_can_set_affinity(unsigned int irq)
162 {
163         return __irq_can_set_affinity(irq_to_desc(irq));
164 }
165
166 /**
167  * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
168  * @irq:        Interrupt to check
169  *
170  * Like irq_can_set_affinity() above, but additionally checks for the
171  * AFFINITY_MANAGED flag.
172  */
173 bool irq_can_set_affinity_usr(unsigned int irq)
174 {
175         struct irq_desc *desc = irq_to_desc(irq);
176
177         return __irq_can_set_affinity(desc) &&
178                 !irqd_affinity_is_managed(&desc->irq_data);
179 }
180
181 /**
182  *      irq_set_thread_affinity - Notify irq threads to adjust affinity
183  *      @desc:          irq descriptor which has affinity changed
184  *
185  *      We just set IRQTF_AFFINITY and delegate the affinity setting
186  *      to the interrupt thread itself. We can not call
187  *      set_cpus_allowed_ptr() here as we hold desc->lock and this
188  *      code can be called from hard interrupt context.
189  */
190 void irq_set_thread_affinity(struct irq_desc *desc)
191 {
192         struct irqaction *action;
193
194         for_each_action_of_desc(desc, action) {
195                 if (action->thread) {
196                         set_bit(IRQTF_AFFINITY, &action->thread_flags);
197                         wake_up_process(action->thread);
198                 }
199                 if (action->secondary && action->secondary->thread) {
200                         set_bit(IRQTF_AFFINITY, &action->secondary->thread_flags);
201                         wake_up_process(action->secondary->thread);
202                 }
203         }
204 }
205
206 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
207 static void irq_validate_effective_affinity(struct irq_data *data)
208 {
209         const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
210         struct irq_chip *chip = irq_data_get_irq_chip(data);
211
212         if (!cpumask_empty(m))
213                 return;
214         pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
215                      chip->name, data->irq);
216 }
217 #else
218 static inline void irq_validate_effective_affinity(struct irq_data *data) { }
219 #endif
220
221 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
222                         bool force)
223 {
224         struct irq_desc *desc = irq_data_to_desc(data);
225         struct irq_chip *chip = irq_data_get_irq_chip(data);
226         const struct cpumask  *prog_mask;
227         int ret;
228
229         static DEFINE_RAW_SPINLOCK(tmp_mask_lock);
230         static struct cpumask tmp_mask;
231
232         if (!chip || !chip->irq_set_affinity)
233                 return -EINVAL;
234
235         raw_spin_lock(&tmp_mask_lock);
236         /*
237          * If this is a managed interrupt and housekeeping is enabled on
238          * it check whether the requested affinity mask intersects with
239          * a housekeeping CPU. If so, then remove the isolated CPUs from
240          * the mask and just keep the housekeeping CPU(s). This prevents
241          * the affinity setter from routing the interrupt to an isolated
242          * CPU to avoid that I/O submitted from a housekeeping CPU causes
243          * interrupts on an isolated one.
244          *
245          * If the masks do not intersect or include online CPU(s) then
246          * keep the requested mask. The isolated target CPUs are only
247          * receiving interrupts when the I/O operation was submitted
248          * directly from them.
249          *
250          * If all housekeeping CPUs in the affinity mask are offline, the
251          * interrupt will be migrated by the CPU hotplug code once a
252          * housekeeping CPU which belongs to the affinity mask comes
253          * online.
254          */
255         if (irqd_affinity_is_managed(data) &&
256             housekeeping_enabled(HK_TYPE_MANAGED_IRQ)) {
257                 const struct cpumask *hk_mask;
258
259                 hk_mask = housekeeping_cpumask(HK_TYPE_MANAGED_IRQ);
260
261                 cpumask_and(&tmp_mask, mask, hk_mask);
262                 if (!cpumask_intersects(&tmp_mask, cpu_online_mask))
263                         prog_mask = mask;
264                 else
265                         prog_mask = &tmp_mask;
266         } else {
267                 prog_mask = mask;
268         }
269
270         /*
271          * Make sure we only provide online CPUs to the irqchip,
272          * unless we are being asked to force the affinity (in which
273          * case we do as we are told).
274          */
275         cpumask_and(&tmp_mask, prog_mask, cpu_online_mask);
276         if (!force && !cpumask_empty(&tmp_mask))
277                 ret = chip->irq_set_affinity(data, &tmp_mask, force);
278         else if (force)
279                 ret = chip->irq_set_affinity(data, mask, force);
280         else
281                 ret = -EINVAL;
282
283         raw_spin_unlock(&tmp_mask_lock);
284
285         switch (ret) {
286         case IRQ_SET_MASK_OK:
287         case IRQ_SET_MASK_OK_DONE:
288                 cpumask_copy(desc->irq_common_data.affinity, mask);
289                 fallthrough;
290         case IRQ_SET_MASK_OK_NOCOPY:
291                 irq_validate_effective_affinity(data);
292                 irq_set_thread_affinity(desc);
293                 ret = 0;
294         }
295
296         return ret;
297 }
298
299 #ifdef CONFIG_GENERIC_PENDING_IRQ
300 static inline int irq_set_affinity_pending(struct irq_data *data,
301                                            const struct cpumask *dest)
302 {
303         struct irq_desc *desc = irq_data_to_desc(data);
304
305         irqd_set_move_pending(data);
306         irq_copy_pending(desc, dest);
307         return 0;
308 }
309 #else
310 static inline int irq_set_affinity_pending(struct irq_data *data,
311                                            const struct cpumask *dest)
312 {
313         return -EBUSY;
314 }
315 #endif
316
317 static int irq_try_set_affinity(struct irq_data *data,
318                                 const struct cpumask *dest, bool force)
319 {
320         int ret = irq_do_set_affinity(data, dest, force);
321
322         /*
323          * In case that the underlying vector management is busy and the
324          * architecture supports the generic pending mechanism then utilize
325          * this to avoid returning an error to user space.
326          */
327         if (ret == -EBUSY && !force)
328                 ret = irq_set_affinity_pending(data, dest);
329         return ret;
330 }
331
332 static bool irq_set_affinity_deactivated(struct irq_data *data,
333                                          const struct cpumask *mask)
334 {
335         struct irq_desc *desc = irq_data_to_desc(data);
336
337         /*
338          * Handle irq chips which can handle affinity only in activated
339          * state correctly
340          *
341          * If the interrupt is not yet activated, just store the affinity
342          * mask and do not call the chip driver at all. On activation the
343          * driver has to make sure anyway that the interrupt is in a
344          * usable state so startup works.
345          */
346         if (!IS_ENABLED(CONFIG_IRQ_DOMAIN_HIERARCHY) ||
347             irqd_is_activated(data) || !irqd_affinity_on_activate(data))
348                 return false;
349
350         cpumask_copy(desc->irq_common_data.affinity, mask);
351         irq_data_update_effective_affinity(data, mask);
352         irqd_set(data, IRQD_AFFINITY_SET);
353         return true;
354 }
355
356 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
357                             bool force)
358 {
359         struct irq_chip *chip = irq_data_get_irq_chip(data);
360         struct irq_desc *desc = irq_data_to_desc(data);
361         int ret = 0;
362
363         if (!chip || !chip->irq_set_affinity)
364                 return -EINVAL;
365
366         if (irq_set_affinity_deactivated(data, mask))
367                 return 0;
368
369         if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
370                 ret = irq_try_set_affinity(data, mask, force);
371         } else {
372                 irqd_set_move_pending(data);
373                 irq_copy_pending(desc, mask);
374         }
375
376         if (desc->affinity_notify) {
377                 kref_get(&desc->affinity_notify->kref);
378                 if (!schedule_work(&desc->affinity_notify->work)) {
379                         /* Work was already scheduled, drop our extra ref */
380                         kref_put(&desc->affinity_notify->kref,
381                                  desc->affinity_notify->release);
382                 }
383         }
384         irqd_set(data, IRQD_AFFINITY_SET);
385
386         return ret;
387 }
388
389 /**
390  * irq_update_affinity_desc - Update affinity management for an interrupt
391  * @irq:        The interrupt number to update
392  * @affinity:   Pointer to the affinity descriptor
393  *
394  * This interface can be used to configure the affinity management of
395  * interrupts which have been allocated already.
396  *
397  * There are certain limitations on when it may be used - attempts to use it
398  * for when the kernel is configured for generic IRQ reservation mode (in
399  * config GENERIC_IRQ_RESERVATION_MODE) will fail, as it may conflict with
400  * managed/non-managed interrupt accounting. In addition, attempts to use it on
401  * an interrupt which is already started or which has already been configured
402  * as managed will also fail, as these mean invalid init state or double init.
403  */
404 int irq_update_affinity_desc(unsigned int irq,
405                              struct irq_affinity_desc *affinity)
406 {
407         struct irq_desc *desc;
408         unsigned long flags;
409         bool activated;
410         int ret = 0;
411
412         /*
413          * Supporting this with the reservation scheme used by x86 needs
414          * some more thought. Fail it for now.
415          */
416         if (IS_ENABLED(CONFIG_GENERIC_IRQ_RESERVATION_MODE))
417                 return -EOPNOTSUPP;
418
419         desc = irq_get_desc_buslock(irq, &flags, 0);
420         if (!desc)
421                 return -EINVAL;
422
423         /* Requires the interrupt to be shut down */
424         if (irqd_is_started(&desc->irq_data)) {
425                 ret = -EBUSY;
426                 goto out_unlock;
427         }
428
429         /* Interrupts which are already managed cannot be modified */
430         if (irqd_affinity_is_managed(&desc->irq_data)) {
431                 ret = -EBUSY;
432                 goto out_unlock;
433         }
434
435         /*
436          * Deactivate the interrupt. That's required to undo
437          * anything an earlier activation has established.
438          */
439         activated = irqd_is_activated(&desc->irq_data);
440         if (activated)
441                 irq_domain_deactivate_irq(&desc->irq_data);
442
443         if (affinity->is_managed) {
444                 irqd_set(&desc->irq_data, IRQD_AFFINITY_MANAGED);
445                 irqd_set(&desc->irq_data, IRQD_MANAGED_SHUTDOWN);
446         }
447
448         cpumask_copy(desc->irq_common_data.affinity, &affinity->mask);
449
450         /* Restore the activation state */
451         if (activated)
452                 irq_domain_activate_irq(&desc->irq_data, false);
453
454 out_unlock:
455         irq_put_desc_busunlock(desc, flags);
456         return ret;
457 }
458
459 static int __irq_set_affinity(unsigned int irq, const struct cpumask *mask,
460                               bool force)
461 {
462         struct irq_desc *desc = irq_to_desc(irq);
463         unsigned long flags;
464         int ret;
465
466         if (!desc)
467                 return -EINVAL;
468
469         raw_spin_lock_irqsave(&desc->lock, flags);
470         ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
471         raw_spin_unlock_irqrestore(&desc->lock, flags);
472         return ret;
473 }
474
475 /**
476  * irq_set_affinity - Set the irq affinity of a given irq
477  * @irq:        Interrupt to set affinity
478  * @cpumask:    cpumask
479  *
480  * Fails if cpumask does not contain an online CPU
481  */
482 int irq_set_affinity(unsigned int irq, const struct cpumask *cpumask)
483 {
484         return __irq_set_affinity(irq, cpumask, false);
485 }
486 EXPORT_SYMBOL_GPL(irq_set_affinity);
487
488 /**
489  * irq_force_affinity - Force the irq affinity of a given irq
490  * @irq:        Interrupt to set affinity
491  * @cpumask:    cpumask
492  *
493  * Same as irq_set_affinity, but without checking the mask against
494  * online cpus.
495  *
496  * Solely for low level cpu hotplug code, where we need to make per
497  * cpu interrupts affine before the cpu becomes online.
498  */
499 int irq_force_affinity(unsigned int irq, const struct cpumask *cpumask)
500 {
501         return __irq_set_affinity(irq, cpumask, true);
502 }
503 EXPORT_SYMBOL_GPL(irq_force_affinity);
504
505 int __irq_apply_affinity_hint(unsigned int irq, const struct cpumask *m,
506                               bool setaffinity)
507 {
508         unsigned long flags;
509         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
510
511         if (!desc)
512                 return -EINVAL;
513         desc->affinity_hint = m;
514         irq_put_desc_unlock(desc, flags);
515         if (m && setaffinity)
516                 __irq_set_affinity(irq, m, false);
517         return 0;
518 }
519 EXPORT_SYMBOL_GPL(__irq_apply_affinity_hint);
520
521 static void irq_affinity_notify(struct work_struct *work)
522 {
523         struct irq_affinity_notify *notify =
524                 container_of(work, struct irq_affinity_notify, work);
525         struct irq_desc *desc = irq_to_desc(notify->irq);
526         cpumask_var_t cpumask;
527         unsigned long flags;
528
529         if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
530                 goto out;
531
532         raw_spin_lock_irqsave(&desc->lock, flags);
533         if (irq_move_pending(&desc->irq_data))
534                 irq_get_pending(cpumask, desc);
535         else
536                 cpumask_copy(cpumask, desc->irq_common_data.affinity);
537         raw_spin_unlock_irqrestore(&desc->lock, flags);
538
539         notify->notify(notify, cpumask);
540
541         free_cpumask_var(cpumask);
542 out:
543         kref_put(&notify->kref, notify->release);
544 }
545
546 /**
547  *      irq_set_affinity_notifier - control notification of IRQ affinity changes
548  *      @irq:           Interrupt for which to enable/disable notification
549  *      @notify:        Context for notification, or %NULL to disable
550  *                      notification.  Function pointers must be initialised;
551  *                      the other fields will be initialised by this function.
552  *
553  *      Must be called in process context.  Notification may only be enabled
554  *      after the IRQ is allocated and must be disabled before the IRQ is
555  *      freed using free_irq().
556  */
557 int
558 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
559 {
560         struct irq_desc *desc = irq_to_desc(irq);
561         struct irq_affinity_notify *old_notify;
562         unsigned long flags;
563
564         /* The release function is promised process context */
565         might_sleep();
566
567         if (!desc || desc->istate & IRQS_NMI)
568                 return -EINVAL;
569
570         /* Complete initialisation of *notify */
571         if (notify) {
572                 notify->irq = irq;
573                 kref_init(&notify->kref);
574                 INIT_WORK(&notify->work, irq_affinity_notify);
575         }
576
577         raw_spin_lock_irqsave(&desc->lock, flags);
578         old_notify = desc->affinity_notify;
579         desc->affinity_notify = notify;
580         raw_spin_unlock_irqrestore(&desc->lock, flags);
581
582         if (old_notify) {
583                 if (cancel_work_sync(&old_notify->work)) {
584                         /* Pending work had a ref, put that one too */
585                         kref_put(&old_notify->kref, old_notify->release);
586                 }
587                 kref_put(&old_notify->kref, old_notify->release);
588         }
589
590         return 0;
591 }
592 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
593
594 #ifndef CONFIG_AUTO_IRQ_AFFINITY
595 /*
596  * Generic version of the affinity autoselector.
597  */
598 int irq_setup_affinity(struct irq_desc *desc)
599 {
600         struct cpumask *set = irq_default_affinity;
601         int ret, node = irq_desc_get_node(desc);
602         static DEFINE_RAW_SPINLOCK(mask_lock);
603         static struct cpumask mask;
604
605         /* Excludes PER_CPU and NO_BALANCE interrupts */
606         if (!__irq_can_set_affinity(desc))
607                 return 0;
608
609         raw_spin_lock(&mask_lock);
610         /*
611          * Preserve the managed affinity setting and a userspace affinity
612          * setup, but make sure that one of the targets is online.
613          */
614         if (irqd_affinity_is_managed(&desc->irq_data) ||
615             irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
616                 if (cpumask_intersects(desc->irq_common_data.affinity,
617                                        cpu_online_mask))
618                         set = desc->irq_common_data.affinity;
619                 else
620                         irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
621         }
622
623         cpumask_and(&mask, cpu_online_mask, set);
624         if (cpumask_empty(&mask))
625                 cpumask_copy(&mask, cpu_online_mask);
626
627         if (node != NUMA_NO_NODE) {
628                 const struct cpumask *nodemask = cpumask_of_node(node);
629
630                 /* make sure at least one of the cpus in nodemask is online */
631                 if (cpumask_intersects(&mask, nodemask))
632                         cpumask_and(&mask, &mask, nodemask);
633         }
634         ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
635         raw_spin_unlock(&mask_lock);
636         return ret;
637 }
638 #else
639 /* Wrapper for ALPHA specific affinity selector magic */
640 int irq_setup_affinity(struct irq_desc *desc)
641 {
642         return irq_select_affinity(irq_desc_get_irq(desc));
643 }
644 #endif /* CONFIG_AUTO_IRQ_AFFINITY */
645 #endif /* CONFIG_SMP */
646
647
648 /**
649  *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
650  *      @irq: interrupt number to set affinity
651  *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
652  *                  specific data for percpu_devid interrupts
653  *
654  *      This function uses the vCPU specific data to set the vCPU
655  *      affinity for an irq. The vCPU specific data is passed from
656  *      outside, such as KVM. One example code path is as below:
657  *      KVM -> IOMMU -> irq_set_vcpu_affinity().
658  */
659 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
660 {
661         unsigned long flags;
662         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
663         struct irq_data *data;
664         struct irq_chip *chip;
665         int ret = -ENOSYS;
666
667         if (!desc)
668                 return -EINVAL;
669
670         data = irq_desc_get_irq_data(desc);
671         do {
672                 chip = irq_data_get_irq_chip(data);
673                 if (chip && chip->irq_set_vcpu_affinity)
674                         break;
675 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
676                 data = data->parent_data;
677 #else
678                 data = NULL;
679 #endif
680         } while (data);
681
682         if (data)
683                 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
684         irq_put_desc_unlock(desc, flags);
685
686         return ret;
687 }
688 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
689
690 void __disable_irq(struct irq_desc *desc)
691 {
692         if (!desc->depth++)
693                 irq_disable(desc);
694 }
695
696 static int __disable_irq_nosync(unsigned int irq)
697 {
698         unsigned long flags;
699         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
700
701         if (!desc)
702                 return -EINVAL;
703         __disable_irq(desc);
704         irq_put_desc_busunlock(desc, flags);
705         return 0;
706 }
707
708 /**
709  *      disable_irq_nosync - disable an irq without waiting
710  *      @irq: Interrupt to disable
711  *
712  *      Disable the selected interrupt line.  Disables and Enables are
713  *      nested.
714  *      Unlike disable_irq(), this function does not ensure existing
715  *      instances of the IRQ handler have completed before returning.
716  *
717  *      This function may be called from IRQ context.
718  */
719 void disable_irq_nosync(unsigned int irq)
720 {
721         __disable_irq_nosync(irq);
722 }
723 EXPORT_SYMBOL(disable_irq_nosync);
724
725 /**
726  *      disable_irq - disable an irq and wait for completion
727  *      @irq: Interrupt to disable
728  *
729  *      Disable the selected interrupt line.  Enables and Disables are
730  *      nested.
731  *      This function waits for any pending IRQ handlers for this interrupt
732  *      to complete before returning. If you use this function while
733  *      holding a resource the IRQ handler may need you will deadlock.
734  *
735  *      Can only be called from preemptible code as it might sleep when
736  *      an interrupt thread is associated to @irq.
737  *
738  */
739 void disable_irq(unsigned int irq)
740 {
741         might_sleep();
742         if (!__disable_irq_nosync(irq))
743                 synchronize_irq(irq);
744 }
745 EXPORT_SYMBOL(disable_irq);
746
747 /**
748  *      disable_hardirq - disables an irq and waits for hardirq completion
749  *      @irq: Interrupt to disable
750  *
751  *      Disable the selected interrupt line.  Enables and Disables are
752  *      nested.
753  *      This function waits for any pending hard IRQ handlers for this
754  *      interrupt to complete before returning. If you use this function while
755  *      holding a resource the hard IRQ handler may need you will deadlock.
756  *
757  *      When used to optimistically disable an interrupt from atomic context
758  *      the return value must be checked.
759  *
760  *      Returns: false if a threaded handler is active.
761  *
762  *      This function may be called - with care - from IRQ context.
763  */
764 bool disable_hardirq(unsigned int irq)
765 {
766         if (!__disable_irq_nosync(irq))
767                 return synchronize_hardirq(irq);
768
769         return false;
770 }
771 EXPORT_SYMBOL_GPL(disable_hardirq);
772
773 /**
774  *      disable_nmi_nosync - disable an nmi without waiting
775  *      @irq: Interrupt to disable
776  *
777  *      Disable the selected interrupt line. Disables and enables are
778  *      nested.
779  *      The interrupt to disable must have been requested through request_nmi.
780  *      Unlike disable_nmi(), this function does not ensure existing
781  *      instances of the IRQ handler have completed before returning.
782  */
783 void disable_nmi_nosync(unsigned int irq)
784 {
785         disable_irq_nosync(irq);
786 }
787
788 void __enable_irq(struct irq_desc *desc)
789 {
790         switch (desc->depth) {
791         case 0:
792  err_out:
793                 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
794                      irq_desc_get_irq(desc));
795                 break;
796         case 1: {
797                 if (desc->istate & IRQS_SUSPENDED)
798                         goto err_out;
799                 /* Prevent probing on this irq: */
800                 irq_settings_set_noprobe(desc);
801                 /*
802                  * Call irq_startup() not irq_enable() here because the
803                  * interrupt might be marked NOAUTOEN. So irq_startup()
804                  * needs to be invoked when it gets enabled the first
805                  * time. If it was already started up, then irq_startup()
806                  * will invoke irq_enable() under the hood.
807                  */
808                 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
809                 break;
810         }
811         default:
812                 desc->depth--;
813         }
814 }
815
816 /**
817  *      enable_irq - enable handling of an irq
818  *      @irq: Interrupt to enable
819  *
820  *      Undoes the effect of one call to disable_irq().  If this
821  *      matches the last disable, processing of interrupts on this
822  *      IRQ line is re-enabled.
823  *
824  *      This function may be called from IRQ context only when
825  *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
826  */
827 void enable_irq(unsigned int irq)
828 {
829         unsigned long flags;
830         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
831
832         if (!desc)
833                 return;
834         if (WARN(!desc->irq_data.chip,
835                  KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
836                 goto out;
837
838         __enable_irq(desc);
839 out:
840         irq_put_desc_busunlock(desc, flags);
841 }
842 EXPORT_SYMBOL(enable_irq);
843
844 /**
845  *      enable_nmi - enable handling of an nmi
846  *      @irq: Interrupt to enable
847  *
848  *      The interrupt to enable must have been requested through request_nmi.
849  *      Undoes the effect of one call to disable_nmi(). If this
850  *      matches the last disable, processing of interrupts on this
851  *      IRQ line is re-enabled.
852  */
853 void enable_nmi(unsigned int irq)
854 {
855         enable_irq(irq);
856 }
857
858 static int set_irq_wake_real(unsigned int irq, unsigned int on)
859 {
860         struct irq_desc *desc = irq_to_desc(irq);
861         int ret = -ENXIO;
862
863         if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
864                 return 0;
865
866         if (desc->irq_data.chip->irq_set_wake)
867                 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
868
869         return ret;
870 }
871
872 /**
873  *      irq_set_irq_wake - control irq power management wakeup
874  *      @irq:   interrupt to control
875  *      @on:    enable/disable power management wakeup
876  *
877  *      Enable/disable power management wakeup mode, which is
878  *      disabled by default.  Enables and disables must match,
879  *      just as they match for non-wakeup mode support.
880  *
881  *      Wakeup mode lets this IRQ wake the system from sleep
882  *      states like "suspend to RAM".
883  *
884  *      Note: irq enable/disable state is completely orthogonal
885  *      to the enable/disable state of irq wake. An irq can be
886  *      disabled with disable_irq() and still wake the system as
887  *      long as the irq has wake enabled. If this does not hold,
888  *      then the underlying irq chip and the related driver need
889  *      to be investigated.
890  */
891 int irq_set_irq_wake(unsigned int irq, unsigned int on)
892 {
893         unsigned long flags;
894         struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
895         int ret = 0;
896
897         if (!desc)
898                 return -EINVAL;
899
900         /* Don't use NMIs as wake up interrupts please */
901         if (desc->istate & IRQS_NMI) {
902                 ret = -EINVAL;
903                 goto out_unlock;
904         }
905
906         /* wakeup-capable irqs can be shared between drivers that
907          * don't need to have the same sleep mode behaviors.
908          */
909         if (on) {
910                 if (desc->wake_depth++ == 0) {
911                         ret = set_irq_wake_real(irq, on);
912                         if (ret)
913                                 desc->wake_depth = 0;
914                         else
915                                 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
916                 }
917         } else {
918                 if (desc->wake_depth == 0) {
919                         WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
920                 } else if (--desc->wake_depth == 0) {
921                         ret = set_irq_wake_real(irq, on);
922                         if (ret)
923                                 desc->wake_depth = 1;
924                         else
925                                 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
926                 }
927         }
928
929 out_unlock:
930         irq_put_desc_busunlock(desc, flags);
931         return ret;
932 }
933 EXPORT_SYMBOL(irq_set_irq_wake);
934
935 /*
936  * Internal function that tells the architecture code whether a
937  * particular irq has been exclusively allocated or is available
938  * for driver use.
939  */
940 int can_request_irq(unsigned int irq, unsigned long irqflags)
941 {
942         unsigned long flags;
943         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
944         int canrequest = 0;
945
946         if (!desc)
947                 return 0;
948
949         if (irq_settings_can_request(desc)) {
950                 if (!desc->action ||
951                     irqflags & desc->action->flags & IRQF_SHARED)
952                         canrequest = 1;
953         }
954         irq_put_desc_unlock(desc, flags);
955         return canrequest;
956 }
957
958 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
959 {
960         struct irq_chip *chip = desc->irq_data.chip;
961         int ret, unmask = 0;
962
963         if (!chip || !chip->irq_set_type) {
964                 /*
965                  * IRQF_TRIGGER_* but the PIC does not support multiple
966                  * flow-types?
967                  */
968                 pr_debug("No set_type function for IRQ %d (%s)\n",
969                          irq_desc_get_irq(desc),
970                          chip ? (chip->name ? : "unknown") : "unknown");
971                 return 0;
972         }
973
974         if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
975                 if (!irqd_irq_masked(&desc->irq_data))
976                         mask_irq(desc);
977                 if (!irqd_irq_disabled(&desc->irq_data))
978                         unmask = 1;
979         }
980
981         /* Mask all flags except trigger mode */
982         flags &= IRQ_TYPE_SENSE_MASK;
983         ret = chip->irq_set_type(&desc->irq_data, flags);
984
985         switch (ret) {
986         case IRQ_SET_MASK_OK:
987         case IRQ_SET_MASK_OK_DONE:
988                 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
989                 irqd_set(&desc->irq_data, flags);
990                 fallthrough;
991
992         case IRQ_SET_MASK_OK_NOCOPY:
993                 flags = irqd_get_trigger_type(&desc->irq_data);
994                 irq_settings_set_trigger_mask(desc, flags);
995                 irqd_clear(&desc->irq_data, IRQD_LEVEL);
996                 irq_settings_clr_level(desc);
997                 if (flags & IRQ_TYPE_LEVEL_MASK) {
998                         irq_settings_set_level(desc);
999                         irqd_set(&desc->irq_data, IRQD_LEVEL);
1000                 }
1001
1002                 ret = 0;
1003                 break;
1004         default:
1005                 pr_err("Setting trigger mode %lu for irq %u failed (%pS)\n",
1006                        flags, irq_desc_get_irq(desc), chip->irq_set_type);
1007         }
1008         if (unmask)
1009                 unmask_irq(desc);
1010         return ret;
1011 }
1012
1013 #ifdef CONFIG_HARDIRQS_SW_RESEND
1014 int irq_set_parent(int irq, int parent_irq)
1015 {
1016         unsigned long flags;
1017         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
1018
1019         if (!desc)
1020                 return -EINVAL;
1021
1022         desc->parent_irq = parent_irq;
1023
1024         irq_put_desc_unlock(desc, flags);
1025         return 0;
1026 }
1027 EXPORT_SYMBOL_GPL(irq_set_parent);
1028 #endif
1029
1030 /*
1031  * Default primary interrupt handler for threaded interrupts. Is
1032  * assigned as primary handler when request_threaded_irq is called
1033  * with handler == NULL. Useful for oneshot interrupts.
1034  */
1035 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
1036 {
1037         return IRQ_WAKE_THREAD;
1038 }
1039
1040 /*
1041  * Primary handler for nested threaded interrupts. Should never be
1042  * called.
1043  */
1044 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
1045 {
1046         WARN(1, "Primary handler called for nested irq %d\n", irq);
1047         return IRQ_NONE;
1048 }
1049
1050 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
1051 {
1052         WARN(1, "Secondary action handler called for irq %d\n", irq);
1053         return IRQ_NONE;
1054 }
1055
1056 #ifdef CONFIG_SMP
1057 /*
1058  * Check whether we need to change the affinity of the interrupt thread.
1059  */
1060 static void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
1061 {
1062         cpumask_var_t mask;
1063         bool valid = false;
1064
1065         if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
1066                 return;
1067
1068         __set_current_state(TASK_RUNNING);
1069
1070         /*
1071          * In case we are out of memory we set IRQTF_AFFINITY again and
1072          * try again next time
1073          */
1074         if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1075                 set_bit(IRQTF_AFFINITY, &action->thread_flags);
1076                 return;
1077         }
1078
1079         raw_spin_lock_irq(&desc->lock);
1080         /*
1081          * This code is triggered unconditionally. Check the affinity
1082          * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
1083          */
1084         if (cpumask_available(desc->irq_common_data.affinity)) {
1085                 const struct cpumask *m;
1086
1087                 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
1088                 cpumask_copy(mask, m);
1089                 valid = true;
1090         }
1091         raw_spin_unlock_irq(&desc->lock);
1092
1093         if (valid)
1094                 set_cpus_allowed_ptr(current, mask);
1095         free_cpumask_var(mask);
1096 }
1097 #else
1098 static inline void irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
1099 #endif
1100
1101 static int irq_wait_for_interrupt(struct irq_desc *desc,
1102                                   struct irqaction *action)
1103 {
1104         for (;;) {
1105                 set_current_state(TASK_INTERRUPTIBLE);
1106                 irq_thread_check_affinity(desc, action);
1107
1108                 if (kthread_should_stop()) {
1109                         /* may need to run one last time */
1110                         if (test_and_clear_bit(IRQTF_RUNTHREAD,
1111                                                &action->thread_flags)) {
1112                                 __set_current_state(TASK_RUNNING);
1113                                 return 0;
1114                         }
1115                         __set_current_state(TASK_RUNNING);
1116                         return -1;
1117                 }
1118
1119                 if (test_and_clear_bit(IRQTF_RUNTHREAD,
1120                                        &action->thread_flags)) {
1121                         __set_current_state(TASK_RUNNING);
1122                         return 0;
1123                 }
1124                 schedule();
1125         }
1126 }
1127
1128 /*
1129  * Oneshot interrupts keep the irq line masked until the threaded
1130  * handler finished. unmask if the interrupt has not been disabled and
1131  * is marked MASKED.
1132  */
1133 static void irq_finalize_oneshot(struct irq_desc *desc,
1134                                  struct irqaction *action)
1135 {
1136         if (!(desc->istate & IRQS_ONESHOT) ||
1137             action->handler == irq_forced_secondary_handler)
1138                 return;
1139 again:
1140         chip_bus_lock(desc);
1141         raw_spin_lock_irq(&desc->lock);
1142
1143         /*
1144          * Implausible though it may be we need to protect us against
1145          * the following scenario:
1146          *
1147          * The thread is faster done than the hard interrupt handler
1148          * on the other CPU. If we unmask the irq line then the
1149          * interrupt can come in again and masks the line, leaves due
1150          * to IRQS_INPROGRESS and the irq line is masked forever.
1151          *
1152          * This also serializes the state of shared oneshot handlers
1153          * versus "desc->threads_oneshot |= action->thread_mask;" in
1154          * irq_wake_thread(). See the comment there which explains the
1155          * serialization.
1156          */
1157         if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
1158                 raw_spin_unlock_irq(&desc->lock);
1159                 chip_bus_sync_unlock(desc);
1160                 cpu_relax();
1161                 goto again;
1162         }
1163
1164         /*
1165          * Now check again, whether the thread should run. Otherwise
1166          * we would clear the threads_oneshot bit of this thread which
1167          * was just set.
1168          */
1169         if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1170                 goto out_unlock;
1171
1172         desc->threads_oneshot &= ~action->thread_mask;
1173
1174         if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
1175             irqd_irq_masked(&desc->irq_data))
1176                 unmask_threaded_irq(desc);
1177
1178 out_unlock:
1179         raw_spin_unlock_irq(&desc->lock);
1180         chip_bus_sync_unlock(desc);
1181 }
1182
1183 /*
1184  * Interrupts which are not explicitly requested as threaded
1185  * interrupts rely on the implicit bh/preempt disable of the hard irq
1186  * context. So we need to disable bh here to avoid deadlocks and other
1187  * side effects.
1188  */
1189 static irqreturn_t
1190 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
1191 {
1192         irqreturn_t ret;
1193
1194         local_bh_disable();
1195         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1196                 local_irq_disable();
1197         ret = action->thread_fn(action->irq, action->dev_id);
1198         if (ret == IRQ_HANDLED)
1199                 atomic_inc(&desc->threads_handled);
1200
1201         irq_finalize_oneshot(desc, action);
1202         if (!IS_ENABLED(CONFIG_PREEMPT_RT))
1203                 local_irq_enable();
1204         local_bh_enable();
1205         return ret;
1206 }
1207
1208 /*
1209  * Interrupts explicitly requested as threaded interrupts want to be
1210  * preemptible - many of them need to sleep and wait for slow busses to
1211  * complete.
1212  */
1213 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
1214                 struct irqaction *action)
1215 {
1216         irqreturn_t ret;
1217
1218         ret = action->thread_fn(action->irq, action->dev_id);
1219         if (ret == IRQ_HANDLED)
1220                 atomic_inc(&desc->threads_handled);
1221
1222         irq_finalize_oneshot(desc, action);
1223         return ret;
1224 }
1225
1226 void wake_threads_waitq(struct irq_desc *desc)
1227 {
1228         if (atomic_dec_and_test(&desc->threads_active))
1229                 wake_up(&desc->wait_for_threads);
1230 }
1231
1232 static void irq_thread_dtor(struct callback_head *unused)
1233 {
1234         struct task_struct *tsk = current;
1235         struct irq_desc *desc;
1236         struct irqaction *action;
1237
1238         if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1239                 return;
1240
1241         action = kthread_data(tsk);
1242
1243         pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1244                tsk->comm, tsk->pid, action->irq);
1245
1246
1247         desc = irq_to_desc(action->irq);
1248         /*
1249          * If IRQTF_RUNTHREAD is set, we need to decrement
1250          * desc->threads_active and wake possible waiters.
1251          */
1252         if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1253                 wake_threads_waitq(desc);
1254
1255         /* Prevent a stale desc->threads_oneshot */
1256         irq_finalize_oneshot(desc, action);
1257 }
1258
1259 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1260 {
1261         struct irqaction *secondary = action->secondary;
1262
1263         if (WARN_ON_ONCE(!secondary))
1264                 return;
1265
1266         raw_spin_lock_irq(&desc->lock);
1267         __irq_wake_thread(desc, secondary);
1268         raw_spin_unlock_irq(&desc->lock);
1269 }
1270
1271 /*
1272  * Internal function to notify that a interrupt thread is ready.
1273  */
1274 static void irq_thread_set_ready(struct irq_desc *desc,
1275                                  struct irqaction *action)
1276 {
1277         set_bit(IRQTF_READY, &action->thread_flags);
1278         wake_up(&desc->wait_for_threads);
1279 }
1280
1281 /*
1282  * Internal function to wake up a interrupt thread and wait until it is
1283  * ready.
1284  */
1285 static void wake_up_and_wait_for_irq_thread_ready(struct irq_desc *desc,
1286                                                   struct irqaction *action)
1287 {
1288         if (!action || !action->thread)
1289                 return;
1290
1291         wake_up_process(action->thread);
1292         wait_event(desc->wait_for_threads,
1293                    test_bit(IRQTF_READY, &action->thread_flags));
1294 }
1295
1296 /*
1297  * Interrupt handler thread
1298  */
1299 static int irq_thread(void *data)
1300 {
1301         struct callback_head on_exit_work;
1302         struct irqaction *action = data;
1303         struct irq_desc *desc = irq_to_desc(action->irq);
1304         irqreturn_t (*handler_fn)(struct irq_desc *desc,
1305                         struct irqaction *action);
1306
1307         irq_thread_set_ready(desc, action);
1308
1309         sched_set_fifo(current);
1310
1311         if (force_irqthreads() && test_bit(IRQTF_FORCED_THREAD,
1312                                            &action->thread_flags))
1313                 handler_fn = irq_forced_thread_fn;
1314         else
1315                 handler_fn = irq_thread_fn;
1316
1317         init_task_work(&on_exit_work, irq_thread_dtor);
1318         task_work_add(current, &on_exit_work, TWA_NONE);
1319
1320         while (!irq_wait_for_interrupt(desc, action)) {
1321                 irqreturn_t action_ret;
1322
1323                 action_ret = handler_fn(desc, action);
1324                 if (action_ret == IRQ_WAKE_THREAD)
1325                         irq_wake_secondary(desc, action);
1326
1327                 wake_threads_waitq(desc);
1328         }
1329
1330         /*
1331          * This is the regular exit path. __free_irq() is stopping the
1332          * thread via kthread_stop() after calling
1333          * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1334          * oneshot mask bit can be set.
1335          */
1336         task_work_cancel(current, irq_thread_dtor);
1337         return 0;
1338 }
1339
1340 /**
1341  *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1342  *      @irq:           Interrupt line
1343  *      @dev_id:        Device identity for which the thread should be woken
1344  *
1345  */
1346 void irq_wake_thread(unsigned int irq, void *dev_id)
1347 {
1348         struct irq_desc *desc = irq_to_desc(irq);
1349         struct irqaction *action;
1350         unsigned long flags;
1351
1352         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1353                 return;
1354
1355         raw_spin_lock_irqsave(&desc->lock, flags);
1356         for_each_action_of_desc(desc, action) {
1357                 if (action->dev_id == dev_id) {
1358                         if (action->thread)
1359                                 __irq_wake_thread(desc, action);
1360                         break;
1361                 }
1362         }
1363         raw_spin_unlock_irqrestore(&desc->lock, flags);
1364 }
1365 EXPORT_SYMBOL_GPL(irq_wake_thread);
1366
1367 static int irq_setup_forced_threading(struct irqaction *new)
1368 {
1369         if (!force_irqthreads())
1370                 return 0;
1371         if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1372                 return 0;
1373
1374         /*
1375          * No further action required for interrupts which are requested as
1376          * threaded interrupts already
1377          */
1378         if (new->handler == irq_default_primary_handler)
1379                 return 0;
1380
1381         new->flags |= IRQF_ONESHOT;
1382
1383         /*
1384          * Handle the case where we have a real primary handler and a
1385          * thread handler. We force thread them as well by creating a
1386          * secondary action.
1387          */
1388         if (new->handler && new->thread_fn) {
1389                 /* Allocate the secondary action */
1390                 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1391                 if (!new->secondary)
1392                         return -ENOMEM;
1393                 new->secondary->handler = irq_forced_secondary_handler;
1394                 new->secondary->thread_fn = new->thread_fn;
1395                 new->secondary->dev_id = new->dev_id;
1396                 new->secondary->irq = new->irq;
1397                 new->secondary->name = new->name;
1398         }
1399         /* Deal with the primary handler */
1400         set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1401         new->thread_fn = new->handler;
1402         new->handler = irq_default_primary_handler;
1403         return 0;
1404 }
1405
1406 static int irq_request_resources(struct irq_desc *desc)
1407 {
1408         struct irq_data *d = &desc->irq_data;
1409         struct irq_chip *c = d->chip;
1410
1411         return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1412 }
1413
1414 static void irq_release_resources(struct irq_desc *desc)
1415 {
1416         struct irq_data *d = &desc->irq_data;
1417         struct irq_chip *c = d->chip;
1418
1419         if (c->irq_release_resources)
1420                 c->irq_release_resources(d);
1421 }
1422
1423 static bool irq_supports_nmi(struct irq_desc *desc)
1424 {
1425         struct irq_data *d = irq_desc_get_irq_data(desc);
1426
1427 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1428         /* Only IRQs directly managed by the root irqchip can be set as NMI */
1429         if (d->parent_data)
1430                 return false;
1431 #endif
1432         /* Don't support NMIs for chips behind a slow bus */
1433         if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1434                 return false;
1435
1436         return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1437 }
1438
1439 static int irq_nmi_setup(struct irq_desc *desc)
1440 {
1441         struct irq_data *d = irq_desc_get_irq_data(desc);
1442         struct irq_chip *c = d->chip;
1443
1444         return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1445 }
1446
1447 static void irq_nmi_teardown(struct irq_desc *desc)
1448 {
1449         struct irq_data *d = irq_desc_get_irq_data(desc);
1450         struct irq_chip *c = d->chip;
1451
1452         if (c->irq_nmi_teardown)
1453                 c->irq_nmi_teardown(d);
1454 }
1455
1456 static int
1457 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1458 {
1459         struct task_struct *t;
1460
1461         if (!secondary) {
1462                 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1463                                    new->name);
1464         } else {
1465                 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1466                                    new->name);
1467         }
1468
1469         if (IS_ERR(t))
1470                 return PTR_ERR(t);
1471
1472         /*
1473          * We keep the reference to the task struct even if
1474          * the thread dies to avoid that the interrupt code
1475          * references an already freed task_struct.
1476          */
1477         new->thread = get_task_struct(t);
1478         /*
1479          * Tell the thread to set its affinity. This is
1480          * important for shared interrupt handlers as we do
1481          * not invoke setup_affinity() for the secondary
1482          * handlers as everything is already set up. Even for
1483          * interrupts marked with IRQF_NO_BALANCE this is
1484          * correct as we want the thread to move to the cpu(s)
1485          * on which the requesting code placed the interrupt.
1486          */
1487         set_bit(IRQTF_AFFINITY, &new->thread_flags);
1488         return 0;
1489 }
1490
1491 /*
1492  * Internal function to register an irqaction - typically used to
1493  * allocate special interrupts that are part of the architecture.
1494  *
1495  * Locking rules:
1496  *
1497  * desc->request_mutex  Provides serialization against a concurrent free_irq()
1498  *   chip_bus_lock      Provides serialization for slow bus operations
1499  *     desc->lock       Provides serialization against hard interrupts
1500  *
1501  * chip_bus_lock and desc->lock are sufficient for all other management and
1502  * interrupt related functions. desc->request_mutex solely serializes
1503  * request/free_irq().
1504  */
1505 static int
1506 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1507 {
1508         struct irqaction *old, **old_ptr;
1509         unsigned long flags, thread_mask = 0;
1510         int ret, nested, shared = 0;
1511
1512         if (!desc)
1513                 return -EINVAL;
1514
1515         if (desc->irq_data.chip == &no_irq_chip)
1516                 return -ENOSYS;
1517         if (!try_module_get(desc->owner))
1518                 return -ENODEV;
1519
1520         new->irq = irq;
1521
1522         /*
1523          * If the trigger type is not specified by the caller,
1524          * then use the default for this interrupt.
1525          */
1526         if (!(new->flags & IRQF_TRIGGER_MASK))
1527                 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1528
1529         /*
1530          * Check whether the interrupt nests into another interrupt
1531          * thread.
1532          */
1533         nested = irq_settings_is_nested_thread(desc);
1534         if (nested) {
1535                 if (!new->thread_fn) {
1536                         ret = -EINVAL;
1537                         goto out_mput;
1538                 }
1539                 /*
1540                  * Replace the primary handler which was provided from
1541                  * the driver for non nested interrupt handling by the
1542                  * dummy function which warns when called.
1543                  */
1544                 new->handler = irq_nested_primary_handler;
1545         } else {
1546                 if (irq_settings_can_thread(desc)) {
1547                         ret = irq_setup_forced_threading(new);
1548                         if (ret)
1549                                 goto out_mput;
1550                 }
1551         }
1552
1553         /*
1554          * Create a handler thread when a thread function is supplied
1555          * and the interrupt does not nest into another interrupt
1556          * thread.
1557          */
1558         if (new->thread_fn && !nested) {
1559                 ret = setup_irq_thread(new, irq, false);
1560                 if (ret)
1561                         goto out_mput;
1562                 if (new->secondary) {
1563                         ret = setup_irq_thread(new->secondary, irq, true);
1564                         if (ret)
1565                                 goto out_thread;
1566                 }
1567         }
1568
1569         /*
1570          * Drivers are often written to work w/o knowledge about the
1571          * underlying irq chip implementation, so a request for a
1572          * threaded irq without a primary hard irq context handler
1573          * requires the ONESHOT flag to be set. Some irq chips like
1574          * MSI based interrupts are per se one shot safe. Check the
1575          * chip flags, so we can avoid the unmask dance at the end of
1576          * the threaded handler for those.
1577          */
1578         if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1579                 new->flags &= ~IRQF_ONESHOT;
1580
1581         /*
1582          * Protects against a concurrent __free_irq() call which might wait
1583          * for synchronize_hardirq() to complete without holding the optional
1584          * chip bus lock and desc->lock. Also protects against handing out
1585          * a recycled oneshot thread_mask bit while it's still in use by
1586          * its previous owner.
1587          */
1588         mutex_lock(&desc->request_mutex);
1589
1590         /*
1591          * Acquire bus lock as the irq_request_resources() callback below
1592          * might rely on the serialization or the magic power management
1593          * functions which are abusing the irq_bus_lock() callback,
1594          */
1595         chip_bus_lock(desc);
1596
1597         /* First installed action requests resources. */
1598         if (!desc->action) {
1599                 ret = irq_request_resources(desc);
1600                 if (ret) {
1601                         pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1602                                new->name, irq, desc->irq_data.chip->name);
1603                         goto out_bus_unlock;
1604                 }
1605         }
1606
1607         /*
1608          * The following block of code has to be executed atomically
1609          * protected against a concurrent interrupt and any of the other
1610          * management calls which are not serialized via
1611          * desc->request_mutex or the optional bus lock.
1612          */
1613         raw_spin_lock_irqsave(&desc->lock, flags);
1614         old_ptr = &desc->action;
1615         old = *old_ptr;
1616         if (old) {
1617                 /*
1618                  * Can't share interrupts unless both agree to and are
1619                  * the same type (level, edge, polarity). So both flag
1620                  * fields must have IRQF_SHARED set and the bits which
1621                  * set the trigger type must match. Also all must
1622                  * agree on ONESHOT.
1623                  * Interrupt lines used for NMIs cannot be shared.
1624                  */
1625                 unsigned int oldtype;
1626
1627                 if (desc->istate & IRQS_NMI) {
1628                         pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1629                                 new->name, irq, desc->irq_data.chip->name);
1630                         ret = -EINVAL;
1631                         goto out_unlock;
1632                 }
1633
1634                 /*
1635                  * If nobody did set the configuration before, inherit
1636                  * the one provided by the requester.
1637                  */
1638                 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1639                         oldtype = irqd_get_trigger_type(&desc->irq_data);
1640                 } else {
1641                         oldtype = new->flags & IRQF_TRIGGER_MASK;
1642                         irqd_set_trigger_type(&desc->irq_data, oldtype);
1643                 }
1644
1645                 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1646                     (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1647                     ((old->flags ^ new->flags) & IRQF_ONESHOT))
1648                         goto mismatch;
1649
1650                 /* All handlers must agree on per-cpuness */
1651                 if ((old->flags & IRQF_PERCPU) !=
1652                     (new->flags & IRQF_PERCPU))
1653                         goto mismatch;
1654
1655                 /* add new interrupt at end of irq queue */
1656                 do {
1657                         /*
1658                          * Or all existing action->thread_mask bits,
1659                          * so we can find the next zero bit for this
1660                          * new action.
1661                          */
1662                         thread_mask |= old->thread_mask;
1663                         old_ptr = &old->next;
1664                         old = *old_ptr;
1665                 } while (old);
1666                 shared = 1;
1667         }
1668
1669         /*
1670          * Setup the thread mask for this irqaction for ONESHOT. For
1671          * !ONESHOT irqs the thread mask is 0 so we can avoid a
1672          * conditional in irq_wake_thread().
1673          */
1674         if (new->flags & IRQF_ONESHOT) {
1675                 /*
1676                  * Unlikely to have 32 resp 64 irqs sharing one line,
1677                  * but who knows.
1678                  */
1679                 if (thread_mask == ~0UL) {
1680                         ret = -EBUSY;
1681                         goto out_unlock;
1682                 }
1683                 /*
1684                  * The thread_mask for the action is or'ed to
1685                  * desc->thread_active to indicate that the
1686                  * IRQF_ONESHOT thread handler has been woken, but not
1687                  * yet finished. The bit is cleared when a thread
1688                  * completes. When all threads of a shared interrupt
1689                  * line have completed desc->threads_active becomes
1690                  * zero and the interrupt line is unmasked. See
1691                  * handle.c:irq_wake_thread() for further information.
1692                  *
1693                  * If no thread is woken by primary (hard irq context)
1694                  * interrupt handlers, then desc->threads_active is
1695                  * also checked for zero to unmask the irq line in the
1696                  * affected hard irq flow handlers
1697                  * (handle_[fasteoi|level]_irq).
1698                  *
1699                  * The new action gets the first zero bit of
1700                  * thread_mask assigned. See the loop above which or's
1701                  * all existing action->thread_mask bits.
1702                  */
1703                 new->thread_mask = 1UL << ffz(thread_mask);
1704
1705         } else if (new->handler == irq_default_primary_handler &&
1706                    !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1707                 /*
1708                  * The interrupt was requested with handler = NULL, so
1709                  * we use the default primary handler for it. But it
1710                  * does not have the oneshot flag set. In combination
1711                  * with level interrupts this is deadly, because the
1712                  * default primary handler just wakes the thread, then
1713                  * the irq lines is reenabled, but the device still
1714                  * has the level irq asserted. Rinse and repeat....
1715                  *
1716                  * While this works for edge type interrupts, we play
1717                  * it safe and reject unconditionally because we can't
1718                  * say for sure which type this interrupt really
1719                  * has. The type flags are unreliable as the
1720                  * underlying chip implementation can override them.
1721                  */
1722                 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for %s (irq %d)\n",
1723                        new->name, irq);
1724                 ret = -EINVAL;
1725                 goto out_unlock;
1726         }
1727
1728         if (!shared) {
1729                 /* Setup the type (level, edge polarity) if configured: */
1730                 if (new->flags & IRQF_TRIGGER_MASK) {
1731                         ret = __irq_set_trigger(desc,
1732                                                 new->flags & IRQF_TRIGGER_MASK);
1733
1734                         if (ret)
1735                                 goto out_unlock;
1736                 }
1737
1738                 /*
1739                  * Activate the interrupt. That activation must happen
1740                  * independently of IRQ_NOAUTOEN. request_irq() can fail
1741                  * and the callers are supposed to handle
1742                  * that. enable_irq() of an interrupt requested with
1743                  * IRQ_NOAUTOEN is not supposed to fail. The activation
1744                  * keeps it in shutdown mode, it merily associates
1745                  * resources if necessary and if that's not possible it
1746                  * fails. Interrupts which are in managed shutdown mode
1747                  * will simply ignore that activation request.
1748                  */
1749                 ret = irq_activate(desc);
1750                 if (ret)
1751                         goto out_unlock;
1752
1753                 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1754                                   IRQS_ONESHOT | IRQS_WAITING);
1755                 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1756
1757                 if (new->flags & IRQF_PERCPU) {
1758                         irqd_set(&desc->irq_data, IRQD_PER_CPU);
1759                         irq_settings_set_per_cpu(desc);
1760                         if (new->flags & IRQF_NO_DEBUG)
1761                                 irq_settings_set_no_debug(desc);
1762                 }
1763
1764                 if (noirqdebug)
1765                         irq_settings_set_no_debug(desc);
1766
1767                 if (new->flags & IRQF_ONESHOT)
1768                         desc->istate |= IRQS_ONESHOT;
1769
1770                 /* Exclude IRQ from balancing if requested */
1771                 if (new->flags & IRQF_NOBALANCING) {
1772                         irq_settings_set_no_balancing(desc);
1773                         irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1774                 }
1775
1776                 if (!(new->flags & IRQF_NO_AUTOEN) &&
1777                     irq_settings_can_autoenable(desc)) {
1778                         irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1779                 } else {
1780                         /*
1781                          * Shared interrupts do not go well with disabling
1782                          * auto enable. The sharing interrupt might request
1783                          * it while it's still disabled and then wait for
1784                          * interrupts forever.
1785                          */
1786                         WARN_ON_ONCE(new->flags & IRQF_SHARED);
1787                         /* Undo nested disables: */
1788                         desc->depth = 1;
1789                 }
1790
1791         } else if (new->flags & IRQF_TRIGGER_MASK) {
1792                 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1793                 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1794
1795                 if (nmsk != omsk)
1796                         /* hope the handler works with current  trigger mode */
1797                         pr_warn("irq %d uses trigger mode %u; requested %u\n",
1798                                 irq, omsk, nmsk);
1799         }
1800
1801         *old_ptr = new;
1802
1803         irq_pm_install_action(desc, new);
1804
1805         /* Reset broken irq detection when installing new handler */
1806         desc->irq_count = 0;
1807         desc->irqs_unhandled = 0;
1808
1809         /*
1810          * Check whether we disabled the irq via the spurious handler
1811          * before. Reenable it and give it another chance.
1812          */
1813         if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1814                 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1815                 __enable_irq(desc);
1816         }
1817
1818         raw_spin_unlock_irqrestore(&desc->lock, flags);
1819         chip_bus_sync_unlock(desc);
1820         mutex_unlock(&desc->request_mutex);
1821
1822         irq_setup_timings(desc, new);
1823
1824         wake_up_and_wait_for_irq_thread_ready(desc, new);
1825         wake_up_and_wait_for_irq_thread_ready(desc, new->secondary);
1826
1827         register_irq_proc(irq, desc);
1828         new->dir = NULL;
1829         register_handler_proc(irq, new);
1830         return 0;
1831
1832 mismatch:
1833         if (!(new->flags & IRQF_PROBE_SHARED)) {
1834                 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1835                        irq, new->flags, new->name, old->flags, old->name);
1836 #ifdef CONFIG_DEBUG_SHIRQ
1837                 dump_stack();
1838 #endif
1839         }
1840         ret = -EBUSY;
1841
1842 out_unlock:
1843         raw_spin_unlock_irqrestore(&desc->lock, flags);
1844
1845         if (!desc->action)
1846                 irq_release_resources(desc);
1847 out_bus_unlock:
1848         chip_bus_sync_unlock(desc);
1849         mutex_unlock(&desc->request_mutex);
1850
1851 out_thread:
1852         if (new->thread) {
1853                 struct task_struct *t = new->thread;
1854
1855                 new->thread = NULL;
1856                 kthread_stop_put(t);
1857         }
1858         if (new->secondary && new->secondary->thread) {
1859                 struct task_struct *t = new->secondary->thread;
1860
1861                 new->secondary->thread = NULL;
1862                 kthread_stop_put(t);
1863         }
1864 out_mput:
1865         module_put(desc->owner);
1866         return ret;
1867 }
1868
1869 /*
1870  * Internal function to unregister an irqaction - used to free
1871  * regular and special interrupts that are part of the architecture.
1872  */
1873 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1874 {
1875         unsigned irq = desc->irq_data.irq;
1876         struct irqaction *action, **action_ptr;
1877         unsigned long flags;
1878
1879         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1880
1881         mutex_lock(&desc->request_mutex);
1882         chip_bus_lock(desc);
1883         raw_spin_lock_irqsave(&desc->lock, flags);
1884
1885         /*
1886          * There can be multiple actions per IRQ descriptor, find the right
1887          * one based on the dev_id:
1888          */
1889         action_ptr = &desc->action;
1890         for (;;) {
1891                 action = *action_ptr;
1892
1893                 if (!action) {
1894                         WARN(1, "Trying to free already-free IRQ %d\n", irq);
1895                         raw_spin_unlock_irqrestore(&desc->lock, flags);
1896                         chip_bus_sync_unlock(desc);
1897                         mutex_unlock(&desc->request_mutex);
1898                         return NULL;
1899                 }
1900
1901                 if (action->dev_id == dev_id)
1902                         break;
1903                 action_ptr = &action->next;
1904         }
1905
1906         /* Found it - now remove it from the list of entries: */
1907         *action_ptr = action->next;
1908
1909         irq_pm_remove_action(desc, action);
1910
1911         /* If this was the last handler, shut down the IRQ line: */
1912         if (!desc->action) {
1913                 irq_settings_clr_disable_unlazy(desc);
1914                 /* Only shutdown. Deactivate after synchronize_hardirq() */
1915                 irq_shutdown(desc);
1916         }
1917
1918 #ifdef CONFIG_SMP
1919         /* make sure affinity_hint is cleaned up */
1920         if (WARN_ON_ONCE(desc->affinity_hint))
1921                 desc->affinity_hint = NULL;
1922 #endif
1923
1924         raw_spin_unlock_irqrestore(&desc->lock, flags);
1925         /*
1926          * Drop bus_lock here so the changes which were done in the chip
1927          * callbacks above are synced out to the irq chips which hang
1928          * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1929          *
1930          * Aside of that the bus_lock can also be taken from the threaded
1931          * handler in irq_finalize_oneshot() which results in a deadlock
1932          * because kthread_stop() would wait forever for the thread to
1933          * complete, which is blocked on the bus lock.
1934          *
1935          * The still held desc->request_mutex() protects against a
1936          * concurrent request_irq() of this irq so the release of resources
1937          * and timing data is properly serialized.
1938          */
1939         chip_bus_sync_unlock(desc);
1940
1941         unregister_handler_proc(irq, action);
1942
1943         /*
1944          * Make sure it's not being used on another CPU and if the chip
1945          * supports it also make sure that there is no (not yet serviced)
1946          * interrupt in flight at the hardware level.
1947          */
1948         __synchronize_irq(desc);
1949
1950 #ifdef CONFIG_DEBUG_SHIRQ
1951         /*
1952          * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1953          * event to happen even now it's being freed, so let's make sure that
1954          * is so by doing an extra call to the handler ....
1955          *
1956          * ( We do this after actually deregistering it, to make sure that a
1957          *   'real' IRQ doesn't run in parallel with our fake. )
1958          */
1959         if (action->flags & IRQF_SHARED) {
1960                 local_irq_save(flags);
1961                 action->handler(irq, dev_id);
1962                 local_irq_restore(flags);
1963         }
1964 #endif
1965
1966         /*
1967          * The action has already been removed above, but the thread writes
1968          * its oneshot mask bit when it completes. Though request_mutex is
1969          * held across this which prevents __setup_irq() from handing out
1970          * the same bit to a newly requested action.
1971          */
1972         if (action->thread) {
1973                 kthread_stop_put(action->thread);
1974                 if (action->secondary && action->secondary->thread)
1975                         kthread_stop_put(action->secondary->thread);
1976         }
1977
1978         /* Last action releases resources */
1979         if (!desc->action) {
1980                 /*
1981                  * Reacquire bus lock as irq_release_resources() might
1982                  * require it to deallocate resources over the slow bus.
1983                  */
1984                 chip_bus_lock(desc);
1985                 /*
1986                  * There is no interrupt on the fly anymore. Deactivate it
1987                  * completely.
1988                  */
1989                 raw_spin_lock_irqsave(&desc->lock, flags);
1990                 irq_domain_deactivate_irq(&desc->irq_data);
1991                 raw_spin_unlock_irqrestore(&desc->lock, flags);
1992
1993                 irq_release_resources(desc);
1994                 chip_bus_sync_unlock(desc);
1995                 irq_remove_timings(desc);
1996         }
1997
1998         mutex_unlock(&desc->request_mutex);
1999
2000         irq_chip_pm_put(&desc->irq_data);
2001         module_put(desc->owner);
2002         kfree(action->secondary);
2003         return action;
2004 }
2005
2006 /**
2007  *      free_irq - free an interrupt allocated with request_irq
2008  *      @irq: Interrupt line to free
2009  *      @dev_id: Device identity to free
2010  *
2011  *      Remove an interrupt handler. The handler is removed and if the
2012  *      interrupt line is no longer in use by any driver it is disabled.
2013  *      On a shared IRQ the caller must ensure the interrupt is disabled
2014  *      on the card it drives before calling this function. The function
2015  *      does not return until any executing interrupts for this IRQ
2016  *      have completed.
2017  *
2018  *      This function must not be called from interrupt context.
2019  *
2020  *      Returns the devname argument passed to request_irq.
2021  */
2022 const void *free_irq(unsigned int irq, void *dev_id)
2023 {
2024         struct irq_desc *desc = irq_to_desc(irq);
2025         struct irqaction *action;
2026         const char *devname;
2027
2028         if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2029                 return NULL;
2030
2031 #ifdef CONFIG_SMP
2032         if (WARN_ON(desc->affinity_notify))
2033                 desc->affinity_notify = NULL;
2034 #endif
2035
2036         action = __free_irq(desc, dev_id);
2037
2038         if (!action)
2039                 return NULL;
2040
2041         devname = action->name;
2042         kfree(action);
2043         return devname;
2044 }
2045 EXPORT_SYMBOL(free_irq);
2046
2047 /* This function must be called with desc->lock held */
2048 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
2049 {
2050         const char *devname = NULL;
2051
2052         desc->istate &= ~IRQS_NMI;
2053
2054         if (!WARN_ON(desc->action == NULL)) {
2055                 irq_pm_remove_action(desc, desc->action);
2056                 devname = desc->action->name;
2057                 unregister_handler_proc(irq, desc->action);
2058
2059                 kfree(desc->action);
2060                 desc->action = NULL;
2061         }
2062
2063         irq_settings_clr_disable_unlazy(desc);
2064         irq_shutdown_and_deactivate(desc);
2065
2066         irq_release_resources(desc);
2067
2068         irq_chip_pm_put(&desc->irq_data);
2069         module_put(desc->owner);
2070
2071         return devname;
2072 }
2073
2074 const void *free_nmi(unsigned int irq, void *dev_id)
2075 {
2076         struct irq_desc *desc = irq_to_desc(irq);
2077         unsigned long flags;
2078         const void *devname;
2079
2080         if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
2081                 return NULL;
2082
2083         if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2084                 return NULL;
2085
2086         /* NMI still enabled */
2087         if (WARN_ON(desc->depth == 0))
2088                 disable_nmi_nosync(irq);
2089
2090         raw_spin_lock_irqsave(&desc->lock, flags);
2091
2092         irq_nmi_teardown(desc);
2093         devname = __cleanup_nmi(irq, desc);
2094
2095         raw_spin_unlock_irqrestore(&desc->lock, flags);
2096
2097         return devname;
2098 }
2099
2100 /**
2101  *      request_threaded_irq - allocate an interrupt line
2102  *      @irq: Interrupt line to allocate
2103  *      @handler: Function to be called when the IRQ occurs.
2104  *                Primary handler for threaded interrupts.
2105  *                If handler is NULL and thread_fn != NULL
2106  *                the default primary handler is installed.
2107  *      @thread_fn: Function called from the irq handler thread
2108  *                  If NULL, no irq thread is created
2109  *      @irqflags: Interrupt type flags
2110  *      @devname: An ascii name for the claiming device
2111  *      @dev_id: A cookie passed back to the handler function
2112  *
2113  *      This call allocates interrupt resources and enables the
2114  *      interrupt line and IRQ handling. From the point this
2115  *      call is made your handler function may be invoked. Since
2116  *      your handler function must clear any interrupt the board
2117  *      raises, you must take care both to initialise your hardware
2118  *      and to set up the interrupt handler in the right order.
2119  *
2120  *      If you want to set up a threaded irq handler for your device
2121  *      then you need to supply @handler and @thread_fn. @handler is
2122  *      still called in hard interrupt context and has to check
2123  *      whether the interrupt originates from the device. If yes it
2124  *      needs to disable the interrupt on the device and return
2125  *      IRQ_WAKE_THREAD which will wake up the handler thread and run
2126  *      @thread_fn. This split handler design is necessary to support
2127  *      shared interrupts.
2128  *
2129  *      Dev_id must be globally unique. Normally the address of the
2130  *      device data structure is used as the cookie. Since the handler
2131  *      receives this value it makes sense to use it.
2132  *
2133  *      If your interrupt is shared you must pass a non NULL dev_id
2134  *      as this is required when freeing the interrupt.
2135  *
2136  *      Flags:
2137  *
2138  *      IRQF_SHARED             Interrupt is shared
2139  *      IRQF_TRIGGER_*          Specify active edge(s) or level
2140  *      IRQF_ONESHOT            Run thread_fn with interrupt line masked
2141  */
2142 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
2143                          irq_handler_t thread_fn, unsigned long irqflags,
2144                          const char *devname, void *dev_id)
2145 {
2146         struct irqaction *action;
2147         struct irq_desc *desc;
2148         int retval;
2149
2150         if (irq == IRQ_NOTCONNECTED)
2151                 return -ENOTCONN;
2152
2153         /*
2154          * Sanity-check: shared interrupts must pass in a real dev-ID,
2155          * otherwise we'll have trouble later trying to figure out
2156          * which interrupt is which (messes up the interrupt freeing
2157          * logic etc).
2158          *
2159          * Also shared interrupts do not go well with disabling auto enable.
2160          * The sharing interrupt might request it while it's still disabled
2161          * and then wait for interrupts forever.
2162          *
2163          * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
2164          * it cannot be set along with IRQF_NO_SUSPEND.
2165          */
2166         if (((irqflags & IRQF_SHARED) && !dev_id) ||
2167             ((irqflags & IRQF_SHARED) && (irqflags & IRQF_NO_AUTOEN)) ||
2168             (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
2169             ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
2170                 return -EINVAL;
2171
2172         desc = irq_to_desc(irq);
2173         if (!desc)
2174                 return -EINVAL;
2175
2176         if (!irq_settings_can_request(desc) ||
2177             WARN_ON(irq_settings_is_per_cpu_devid(desc)))
2178                 return -EINVAL;
2179
2180         if (!handler) {
2181                 if (!thread_fn)
2182                         return -EINVAL;
2183                 handler = irq_default_primary_handler;
2184         }
2185
2186         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2187         if (!action)
2188                 return -ENOMEM;
2189
2190         action->handler = handler;
2191         action->thread_fn = thread_fn;
2192         action->flags = irqflags;
2193         action->name = devname;
2194         action->dev_id = dev_id;
2195
2196         retval = irq_chip_pm_get(&desc->irq_data);
2197         if (retval < 0) {
2198                 kfree(action);
2199                 return retval;
2200         }
2201
2202         retval = __setup_irq(irq, desc, action);
2203
2204         if (retval) {
2205                 irq_chip_pm_put(&desc->irq_data);
2206                 kfree(action->secondary);
2207                 kfree(action);
2208         }
2209
2210 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
2211         if (!retval && (irqflags & IRQF_SHARED)) {
2212                 /*
2213                  * It's a shared IRQ -- the driver ought to be prepared for it
2214                  * to happen immediately, so let's make sure....
2215                  * We disable the irq to make sure that a 'real' IRQ doesn't
2216                  * run in parallel with our fake.
2217                  */
2218                 unsigned long flags;
2219
2220                 disable_irq(irq);
2221                 local_irq_save(flags);
2222
2223                 handler(irq, dev_id);
2224
2225                 local_irq_restore(flags);
2226                 enable_irq(irq);
2227         }
2228 #endif
2229         return retval;
2230 }
2231 EXPORT_SYMBOL(request_threaded_irq);
2232
2233 /**
2234  *      request_any_context_irq - allocate an interrupt line
2235  *      @irq: Interrupt line to allocate
2236  *      @handler: Function to be called when the IRQ occurs.
2237  *                Threaded handler for threaded interrupts.
2238  *      @flags: Interrupt type flags
2239  *      @name: An ascii name for the claiming device
2240  *      @dev_id: A cookie passed back to the handler function
2241  *
2242  *      This call allocates interrupt resources and enables the
2243  *      interrupt line and IRQ handling. It selects either a
2244  *      hardirq or threaded handling method depending on the
2245  *      context.
2246  *
2247  *      On failure, it returns a negative value. On success,
2248  *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2249  */
2250 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2251                             unsigned long flags, const char *name, void *dev_id)
2252 {
2253         struct irq_desc *desc;
2254         int ret;
2255
2256         if (irq == IRQ_NOTCONNECTED)
2257                 return -ENOTCONN;
2258
2259         desc = irq_to_desc(irq);
2260         if (!desc)
2261                 return -EINVAL;
2262
2263         if (irq_settings_is_nested_thread(desc)) {
2264                 ret = request_threaded_irq(irq, NULL, handler,
2265                                            flags, name, dev_id);
2266                 return !ret ? IRQC_IS_NESTED : ret;
2267         }
2268
2269         ret = request_irq(irq, handler, flags, name, dev_id);
2270         return !ret ? IRQC_IS_HARDIRQ : ret;
2271 }
2272 EXPORT_SYMBOL_GPL(request_any_context_irq);
2273
2274 /**
2275  *      request_nmi - allocate an interrupt line for NMI delivery
2276  *      @irq: Interrupt line to allocate
2277  *      @handler: Function to be called when the IRQ occurs.
2278  *                Threaded handler for threaded interrupts.
2279  *      @irqflags: Interrupt type flags
2280  *      @name: An ascii name for the claiming device
2281  *      @dev_id: A cookie passed back to the handler function
2282  *
2283  *      This call allocates interrupt resources and enables the
2284  *      interrupt line and IRQ handling. It sets up the IRQ line
2285  *      to be handled as an NMI.
2286  *
2287  *      An interrupt line delivering NMIs cannot be shared and IRQ handling
2288  *      cannot be threaded.
2289  *
2290  *      Interrupt lines requested for NMI delivering must produce per cpu
2291  *      interrupts and have auto enabling setting disabled.
2292  *
2293  *      Dev_id must be globally unique. Normally the address of the
2294  *      device data structure is used as the cookie. Since the handler
2295  *      receives this value it makes sense to use it.
2296  *
2297  *      If the interrupt line cannot be used to deliver NMIs, function
2298  *      will fail and return a negative value.
2299  */
2300 int request_nmi(unsigned int irq, irq_handler_t handler,
2301                 unsigned long irqflags, const char *name, void *dev_id)
2302 {
2303         struct irqaction *action;
2304         struct irq_desc *desc;
2305         unsigned long flags;
2306         int retval;
2307
2308         if (irq == IRQ_NOTCONNECTED)
2309                 return -ENOTCONN;
2310
2311         /* NMI cannot be shared, used for Polling */
2312         if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2313                 return -EINVAL;
2314
2315         if (!(irqflags & IRQF_PERCPU))
2316                 return -EINVAL;
2317
2318         if (!handler)
2319                 return -EINVAL;
2320
2321         desc = irq_to_desc(irq);
2322
2323         if (!desc || (irq_settings_can_autoenable(desc) &&
2324             !(irqflags & IRQF_NO_AUTOEN)) ||
2325             !irq_settings_can_request(desc) ||
2326             WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2327             !irq_supports_nmi(desc))
2328                 return -EINVAL;
2329
2330         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2331         if (!action)
2332                 return -ENOMEM;
2333
2334         action->handler = handler;
2335         action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2336         action->name = name;
2337         action->dev_id = dev_id;
2338
2339         retval = irq_chip_pm_get(&desc->irq_data);
2340         if (retval < 0)
2341                 goto err_out;
2342
2343         retval = __setup_irq(irq, desc, action);
2344         if (retval)
2345                 goto err_irq_setup;
2346
2347         raw_spin_lock_irqsave(&desc->lock, flags);
2348
2349         /* Setup NMI state */
2350         desc->istate |= IRQS_NMI;
2351         retval = irq_nmi_setup(desc);
2352         if (retval) {
2353                 __cleanup_nmi(irq, desc);
2354                 raw_spin_unlock_irqrestore(&desc->lock, flags);
2355                 return -EINVAL;
2356         }
2357
2358         raw_spin_unlock_irqrestore(&desc->lock, flags);
2359
2360         return 0;
2361
2362 err_irq_setup:
2363         irq_chip_pm_put(&desc->irq_data);
2364 err_out:
2365         kfree(action);
2366
2367         return retval;
2368 }
2369
2370 void enable_percpu_irq(unsigned int irq, unsigned int type)
2371 {
2372         unsigned int cpu = smp_processor_id();
2373         unsigned long flags;
2374         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2375
2376         if (!desc)
2377                 return;
2378
2379         /*
2380          * If the trigger type is not specified by the caller, then
2381          * use the default for this interrupt.
2382          */
2383         type &= IRQ_TYPE_SENSE_MASK;
2384         if (type == IRQ_TYPE_NONE)
2385                 type = irqd_get_trigger_type(&desc->irq_data);
2386
2387         if (type != IRQ_TYPE_NONE) {
2388                 int ret;
2389
2390                 ret = __irq_set_trigger(desc, type);
2391
2392                 if (ret) {
2393                         WARN(1, "failed to set type for IRQ%d\n", irq);
2394                         goto out;
2395                 }
2396         }
2397
2398         irq_percpu_enable(desc, cpu);
2399 out:
2400         irq_put_desc_unlock(desc, flags);
2401 }
2402 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2403
2404 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2405 {
2406         enable_percpu_irq(irq, type);
2407 }
2408
2409 /**
2410  * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2411  * @irq:        Linux irq number to check for
2412  *
2413  * Must be called from a non migratable context. Returns the enable
2414  * state of a per cpu interrupt on the current cpu.
2415  */
2416 bool irq_percpu_is_enabled(unsigned int irq)
2417 {
2418         unsigned int cpu = smp_processor_id();
2419         struct irq_desc *desc;
2420         unsigned long flags;
2421         bool is_enabled;
2422
2423         desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2424         if (!desc)
2425                 return false;
2426
2427         is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2428         irq_put_desc_unlock(desc, flags);
2429
2430         return is_enabled;
2431 }
2432 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2433
2434 void disable_percpu_irq(unsigned int irq)
2435 {
2436         unsigned int cpu = smp_processor_id();
2437         unsigned long flags;
2438         struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2439
2440         if (!desc)
2441                 return;
2442
2443         irq_percpu_disable(desc, cpu);
2444         irq_put_desc_unlock(desc, flags);
2445 }
2446 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2447
2448 void disable_percpu_nmi(unsigned int irq)
2449 {
2450         disable_percpu_irq(irq);
2451 }
2452
2453 /*
2454  * Internal function to unregister a percpu irqaction.
2455  */
2456 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2457 {
2458         struct irq_desc *desc = irq_to_desc(irq);
2459         struct irqaction *action;
2460         unsigned long flags;
2461
2462         WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2463
2464         if (!desc)
2465                 return NULL;
2466
2467         raw_spin_lock_irqsave(&desc->lock, flags);
2468
2469         action = desc->action;
2470         if (!action || action->percpu_dev_id != dev_id) {
2471                 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2472                 goto bad;
2473         }
2474
2475         if (!cpumask_empty(desc->percpu_enabled)) {
2476                 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2477                      irq, cpumask_first(desc->percpu_enabled));
2478                 goto bad;
2479         }
2480
2481         /* Found it - now remove it from the list of entries: */
2482         desc->action = NULL;
2483
2484         desc->istate &= ~IRQS_NMI;
2485
2486         raw_spin_unlock_irqrestore(&desc->lock, flags);
2487
2488         unregister_handler_proc(irq, action);
2489
2490         irq_chip_pm_put(&desc->irq_data);
2491         module_put(desc->owner);
2492         return action;
2493
2494 bad:
2495         raw_spin_unlock_irqrestore(&desc->lock, flags);
2496         return NULL;
2497 }
2498
2499 /**
2500  *      remove_percpu_irq - free a per-cpu interrupt
2501  *      @irq: Interrupt line to free
2502  *      @act: irqaction for the interrupt
2503  *
2504  * Used to remove interrupts statically setup by the early boot process.
2505  */
2506 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2507 {
2508         struct irq_desc *desc = irq_to_desc(irq);
2509
2510         if (desc && irq_settings_is_per_cpu_devid(desc))
2511             __free_percpu_irq(irq, act->percpu_dev_id);
2512 }
2513
2514 /**
2515  *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2516  *      @irq: Interrupt line to free
2517  *      @dev_id: Device identity to free
2518  *
2519  *      Remove a percpu interrupt handler. The handler is removed, but
2520  *      the interrupt line is not disabled. This must be done on each
2521  *      CPU before calling this function. The function does not return
2522  *      until any executing interrupts for this IRQ have completed.
2523  *
2524  *      This function must not be called from interrupt context.
2525  */
2526 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2527 {
2528         struct irq_desc *desc = irq_to_desc(irq);
2529
2530         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2531                 return;
2532
2533         chip_bus_lock(desc);
2534         kfree(__free_percpu_irq(irq, dev_id));
2535         chip_bus_sync_unlock(desc);
2536 }
2537 EXPORT_SYMBOL_GPL(free_percpu_irq);
2538
2539 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2540 {
2541         struct irq_desc *desc = irq_to_desc(irq);
2542
2543         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2544                 return;
2545
2546         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2547                 return;
2548
2549         kfree(__free_percpu_irq(irq, dev_id));
2550 }
2551
2552 /**
2553  *      setup_percpu_irq - setup a per-cpu interrupt
2554  *      @irq: Interrupt line to setup
2555  *      @act: irqaction for the interrupt
2556  *
2557  * Used to statically setup per-cpu interrupts in the early boot process.
2558  */
2559 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2560 {
2561         struct irq_desc *desc = irq_to_desc(irq);
2562         int retval;
2563
2564         if (!desc || !irq_settings_is_per_cpu_devid(desc))
2565                 return -EINVAL;
2566
2567         retval = irq_chip_pm_get(&desc->irq_data);
2568         if (retval < 0)
2569                 return retval;
2570
2571         retval = __setup_irq(irq, desc, act);
2572
2573         if (retval)
2574                 irq_chip_pm_put(&desc->irq_data);
2575
2576         return retval;
2577 }
2578
2579 /**
2580  *      __request_percpu_irq - allocate a percpu interrupt line
2581  *      @irq: Interrupt line to allocate
2582  *      @handler: Function to be called when the IRQ occurs.
2583  *      @flags: Interrupt type flags (IRQF_TIMER only)
2584  *      @devname: An ascii name for the claiming device
2585  *      @dev_id: A percpu cookie passed back to the handler function
2586  *
2587  *      This call allocates interrupt resources and enables the
2588  *      interrupt on the local CPU. If the interrupt is supposed to be
2589  *      enabled on other CPUs, it has to be done on each CPU using
2590  *      enable_percpu_irq().
2591  *
2592  *      Dev_id must be globally unique. It is a per-cpu variable, and
2593  *      the handler gets called with the interrupted CPU's instance of
2594  *      that variable.
2595  */
2596 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2597                          unsigned long flags, const char *devname,
2598                          void __percpu *dev_id)
2599 {
2600         struct irqaction *action;
2601         struct irq_desc *desc;
2602         int retval;
2603
2604         if (!dev_id)
2605                 return -EINVAL;
2606
2607         desc = irq_to_desc(irq);
2608         if (!desc || !irq_settings_can_request(desc) ||
2609             !irq_settings_is_per_cpu_devid(desc))
2610                 return -EINVAL;
2611
2612         if (flags && flags != IRQF_TIMER)
2613                 return -EINVAL;
2614
2615         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2616         if (!action)
2617                 return -ENOMEM;
2618
2619         action->handler = handler;
2620         action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2621         action->name = devname;
2622         action->percpu_dev_id = dev_id;
2623
2624         retval = irq_chip_pm_get(&desc->irq_data);
2625         if (retval < 0) {
2626                 kfree(action);
2627                 return retval;
2628         }
2629
2630         retval = __setup_irq(irq, desc, action);
2631
2632         if (retval) {
2633                 irq_chip_pm_put(&desc->irq_data);
2634                 kfree(action);
2635         }
2636
2637         return retval;
2638 }
2639 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2640
2641 /**
2642  *      request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2643  *      @irq: Interrupt line to allocate
2644  *      @handler: Function to be called when the IRQ occurs.
2645  *      @name: An ascii name for the claiming device
2646  *      @dev_id: A percpu cookie passed back to the handler function
2647  *
2648  *      This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2649  *      have to be setup on each CPU by calling prepare_percpu_nmi() before
2650  *      being enabled on the same CPU by using enable_percpu_nmi().
2651  *
2652  *      Dev_id must be globally unique. It is a per-cpu variable, and
2653  *      the handler gets called with the interrupted CPU's instance of
2654  *      that variable.
2655  *
2656  *      Interrupt lines requested for NMI delivering should have auto enabling
2657  *      setting disabled.
2658  *
2659  *      If the interrupt line cannot be used to deliver NMIs, function
2660  *      will fail returning a negative value.
2661  */
2662 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2663                        const char *name, void __percpu *dev_id)
2664 {
2665         struct irqaction *action;
2666         struct irq_desc *desc;
2667         unsigned long flags;
2668         int retval;
2669
2670         if (!handler)
2671                 return -EINVAL;
2672
2673         desc = irq_to_desc(irq);
2674
2675         if (!desc || !irq_settings_can_request(desc) ||
2676             !irq_settings_is_per_cpu_devid(desc) ||
2677             irq_settings_can_autoenable(desc) ||
2678             !irq_supports_nmi(desc))
2679                 return -EINVAL;
2680
2681         /* The line cannot already be NMI */
2682         if (desc->istate & IRQS_NMI)
2683                 return -EINVAL;
2684
2685         action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2686         if (!action)
2687                 return -ENOMEM;
2688
2689         action->handler = handler;
2690         action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2691                 | IRQF_NOBALANCING;
2692         action->name = name;
2693         action->percpu_dev_id = dev_id;
2694
2695         retval = irq_chip_pm_get(&desc->irq_data);
2696         if (retval < 0)
2697                 goto err_out;
2698
2699         retval = __setup_irq(irq, desc, action);
2700         if (retval)
2701                 goto err_irq_setup;
2702
2703         raw_spin_lock_irqsave(&desc->lock, flags);
2704         desc->istate |= IRQS_NMI;
2705         raw_spin_unlock_irqrestore(&desc->lock, flags);
2706
2707         return 0;
2708
2709 err_irq_setup:
2710         irq_chip_pm_put(&desc->irq_data);
2711 err_out:
2712         kfree(action);
2713
2714         return retval;
2715 }
2716
2717 /**
2718  *      prepare_percpu_nmi - performs CPU local setup for NMI delivery
2719  *      @irq: Interrupt line to prepare for NMI delivery
2720  *
2721  *      This call prepares an interrupt line to deliver NMI on the current CPU,
2722  *      before that interrupt line gets enabled with enable_percpu_nmi().
2723  *
2724  *      As a CPU local operation, this should be called from non-preemptible
2725  *      context.
2726  *
2727  *      If the interrupt line cannot be used to deliver NMIs, function
2728  *      will fail returning a negative value.
2729  */
2730 int prepare_percpu_nmi(unsigned int irq)
2731 {
2732         unsigned long flags;
2733         struct irq_desc *desc;
2734         int ret = 0;
2735
2736         WARN_ON(preemptible());
2737
2738         desc = irq_get_desc_lock(irq, &flags,
2739                                  IRQ_GET_DESC_CHECK_PERCPU);
2740         if (!desc)
2741                 return -EINVAL;
2742
2743         if (WARN(!(desc->istate & IRQS_NMI),
2744                  KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2745                  irq)) {
2746                 ret = -EINVAL;
2747                 goto out;
2748         }
2749
2750         ret = irq_nmi_setup(desc);
2751         if (ret) {
2752                 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2753                 goto out;
2754         }
2755
2756 out:
2757         irq_put_desc_unlock(desc, flags);
2758         return ret;
2759 }
2760
2761 /**
2762  *      teardown_percpu_nmi - undoes NMI setup of IRQ line
2763  *      @irq: Interrupt line from which CPU local NMI configuration should be
2764  *            removed
2765  *
2766  *      This call undoes the setup done by prepare_percpu_nmi().
2767  *
2768  *      IRQ line should not be enabled for the current CPU.
2769  *
2770  *      As a CPU local operation, this should be called from non-preemptible
2771  *      context.
2772  */
2773 void teardown_percpu_nmi(unsigned int irq)
2774 {
2775         unsigned long flags;
2776         struct irq_desc *desc;
2777
2778         WARN_ON(preemptible());
2779
2780         desc = irq_get_desc_lock(irq, &flags,
2781                                  IRQ_GET_DESC_CHECK_PERCPU);
2782         if (!desc)
2783                 return;
2784
2785         if (WARN_ON(!(desc->istate & IRQS_NMI)))
2786                 goto out;
2787
2788         irq_nmi_teardown(desc);
2789 out:
2790         irq_put_desc_unlock(desc, flags);
2791 }
2792
2793 int __irq_get_irqchip_state(struct irq_data *data, enum irqchip_irq_state which,
2794                             bool *state)
2795 {
2796         struct irq_chip *chip;
2797         int err = -EINVAL;
2798
2799         do {
2800                 chip = irq_data_get_irq_chip(data);
2801                 if (WARN_ON_ONCE(!chip))
2802                         return -ENODEV;
2803                 if (chip->irq_get_irqchip_state)
2804                         break;
2805 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2806                 data = data->parent_data;
2807 #else
2808                 data = NULL;
2809 #endif
2810         } while (data);
2811
2812         if (data)
2813                 err = chip->irq_get_irqchip_state(data, which, state);
2814         return err;
2815 }
2816
2817 /**
2818  *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2819  *      @irq: Interrupt line that is forwarded to a VM
2820  *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2821  *      @state: a pointer to a boolean where the state is to be stored
2822  *
2823  *      This call snapshots the internal irqchip state of an
2824  *      interrupt, returning into @state the bit corresponding to
2825  *      stage @which
2826  *
2827  *      This function should be called with preemption disabled if the
2828  *      interrupt controller has per-cpu registers.
2829  */
2830 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2831                           bool *state)
2832 {
2833         struct irq_desc *desc;
2834         struct irq_data *data;
2835         unsigned long flags;
2836         int err = -EINVAL;
2837
2838         desc = irq_get_desc_buslock(irq, &flags, 0);
2839         if (!desc)
2840                 return err;
2841
2842         data = irq_desc_get_irq_data(desc);
2843
2844         err = __irq_get_irqchip_state(data, which, state);
2845
2846         irq_put_desc_busunlock(desc, flags);
2847         return err;
2848 }
2849 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2850
2851 /**
2852  *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2853  *      @irq: Interrupt line that is forwarded to a VM
2854  *      @which: State to be restored (one of IRQCHIP_STATE_*)
2855  *      @val: Value corresponding to @which
2856  *
2857  *      This call sets the internal irqchip state of an interrupt,
2858  *      depending on the value of @which.
2859  *
2860  *      This function should be called with migration disabled if the
2861  *      interrupt controller has per-cpu registers.
2862  */
2863 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2864                           bool val)
2865 {
2866         struct irq_desc *desc;
2867         struct irq_data *data;
2868         struct irq_chip *chip;
2869         unsigned long flags;
2870         int err = -EINVAL;
2871
2872         desc = irq_get_desc_buslock(irq, &flags, 0);
2873         if (!desc)
2874                 return err;
2875
2876         data = irq_desc_get_irq_data(desc);
2877
2878         do {
2879                 chip = irq_data_get_irq_chip(data);
2880                 if (WARN_ON_ONCE(!chip)) {
2881                         err = -ENODEV;
2882                         goto out_unlock;
2883                 }
2884                 if (chip->irq_set_irqchip_state)
2885                         break;
2886 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2887                 data = data->parent_data;
2888 #else
2889                 data = NULL;
2890 #endif
2891         } while (data);
2892
2893         if (data)
2894                 err = chip->irq_set_irqchip_state(data, which, val);
2895
2896 out_unlock:
2897         irq_put_desc_busunlock(desc, flags);
2898         return err;
2899 }
2900 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2901
2902 /**
2903  * irq_has_action - Check whether an interrupt is requested
2904  * @irq:        The linux irq number
2905  *
2906  * Returns: A snapshot of the current state
2907  */
2908 bool irq_has_action(unsigned int irq)
2909 {
2910         bool res;
2911
2912         rcu_read_lock();
2913         res = irq_desc_has_action(irq_to_desc(irq));
2914         rcu_read_unlock();
2915         return res;
2916 }
2917 EXPORT_SYMBOL_GPL(irq_has_action);
2918
2919 /**
2920  * irq_check_status_bit - Check whether bits in the irq descriptor status are set
2921  * @irq:        The linux irq number
2922  * @bitmask:    The bitmask to evaluate
2923  *
2924  * Returns: True if one of the bits in @bitmask is set
2925  */
2926 bool irq_check_status_bit(unsigned int irq, unsigned int bitmask)
2927 {
2928         struct irq_desc *desc;
2929         bool res = false;
2930
2931         rcu_read_lock();
2932         desc = irq_to_desc(irq);
2933         if (desc)
2934                 res = !!(desc->status_use_accessors & bitmask);
2935         rcu_read_unlock();
2936         return res;
2937 }
2938 EXPORT_SYMBOL_GPL(irq_check_status_bit);