Merge branch 'for-5.8' into for-linus
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read (see hb_waiters_pending()).
139  *
140  * This yields the following case (where X:=waiters, Y:=futex):
141  *
142  *      X = Y = 0
143  *
144  *      w[X]=1          w[Y]=1
145  *      MB              MB
146  *      r[Y]=y          r[X]=x
147  *
148  * Which guarantees that x==0 && y==0 is impossible; which translates back into
149  * the guarantee that we cannot both miss the futex variable change and the
150  * enqueue.
151  *
152  * Note that a new waiter is accounted for in (a) even when it is possible that
153  * the wait call can return error, in which case we backtrack from it in (b).
154  * Refer to the comment in queue_lock().
155  *
156  * Similarly, in order to account for waiters being requeued on another
157  * address we always increment the waiters for the destination bucket before
158  * acquiring the lock. It then decrements them again  after releasing it -
159  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
160  * will do the additional required waiter count housekeeping. This is done for
161  * double_lock_hb() and double_unlock_hb(), respectively.
162  */
163
164 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
165 #define futex_cmpxchg_enabled 1
166 #else
167 static int  __read_mostly futex_cmpxchg_enabled;
168 #endif
169
170 /*
171  * Futex flags used to encode options to functions and preserve them across
172  * restarts.
173  */
174 #ifdef CONFIG_MMU
175 # define FLAGS_SHARED           0x01
176 #else
177 /*
178  * NOMMU does not have per process address space. Let the compiler optimize
179  * code away.
180  */
181 # define FLAGS_SHARED           0x00
182 #endif
183 #define FLAGS_CLOCKRT           0x02
184 #define FLAGS_HAS_TIMEOUT       0x04
185
186 /*
187  * Priority Inheritance state:
188  */
189 struct futex_pi_state {
190         /*
191          * list of 'owned' pi_state instances - these have to be
192          * cleaned up in do_exit() if the task exits prematurely:
193          */
194         struct list_head list;
195
196         /*
197          * The PI object:
198          */
199         struct rt_mutex pi_mutex;
200
201         struct task_struct *owner;
202         refcount_t refcount;
203
204         union futex_key key;
205 } __randomize_layout;
206
207 /**
208  * struct futex_q - The hashed futex queue entry, one per waiting task
209  * @list:               priority-sorted list of tasks waiting on this futex
210  * @task:               the task waiting on the futex
211  * @lock_ptr:           the hash bucket lock
212  * @key:                the key the futex is hashed on
213  * @pi_state:           optional priority inheritance state
214  * @rt_waiter:          rt_waiter storage for use with requeue_pi
215  * @requeue_pi_key:     the requeue_pi target futex key
216  * @bitset:             bitset for the optional bitmasked wakeup
217  *
218  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
219  * we can wake only the relevant ones (hashed queues may be shared).
220  *
221  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223  * The order of wakeup is always to make the first condition true, then
224  * the second.
225  *
226  * PI futexes are typically woken before they are removed from the hash list via
227  * the rt_mutex code. See unqueue_me_pi().
228  */
229 struct futex_q {
230         struct plist_node list;
231
232         struct task_struct *task;
233         spinlock_t *lock_ptr;
234         union futex_key key;
235         struct futex_pi_state *pi_state;
236         struct rt_mutex_waiter *rt_waiter;
237         union futex_key *requeue_pi_key;
238         u32 bitset;
239 } __randomize_layout;
240
241 static const struct futex_q futex_q_init = {
242         /* list gets initialized in queue_me()*/
243         .key = FUTEX_KEY_INIT,
244         .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248  * Hash buckets are shared by all the futex_keys that hash to the same
249  * location.  Each key may have multiple futex_q structures, one for each task
250  * waiting on a futex.
251  */
252 struct futex_hash_bucket {
253         atomic_t waiters;
254         spinlock_t lock;
255         struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 /*
259  * The base of the bucket array and its size are always used together
260  * (after initialization only in hash_futex()), so ensure that they
261  * reside in the same cacheline.
262  */
263 static struct {
264         struct futex_hash_bucket *queues;
265         unsigned long            hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues   (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269
270
271 /*
272  * Fault injections for futexes.
273  */
274 #ifdef CONFIG_FAIL_FUTEX
275
276 static struct {
277         struct fault_attr attr;
278
279         bool ignore_private;
280 } fail_futex = {
281         .attr = FAULT_ATTR_INITIALIZER,
282         .ignore_private = false,
283 };
284
285 static int __init setup_fail_futex(char *str)
286 {
287         return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290
291 static bool should_fail_futex(bool fshared)
292 {
293         if (fail_futex.ignore_private && !fshared)
294                 return false;
295
296         return should_fail(&fail_futex.attr, 1);
297 }
298
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301 static int __init fail_futex_debugfs(void)
302 {
303         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304         struct dentry *dir;
305
306         dir = fault_create_debugfs_attr("fail_futex", NULL,
307                                         &fail_futex.attr);
308         if (IS_ERR(dir))
309                 return PTR_ERR(dir);
310
311         debugfs_create_bool("ignore-private", mode, dir,
312                             &fail_futex.ignore_private);
313         return 0;
314 }
315
316 late_initcall(fail_futex_debugfs);
317
318 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
319
320 #else
321 static inline bool should_fail_futex(bool fshared)
322 {
323         return false;
324 }
325 #endif /* CONFIG_FAIL_FUTEX */
326
327 #ifdef CONFIG_COMPAT
328 static void compat_exit_robust_list(struct task_struct *curr);
329 #else
330 static inline void compat_exit_robust_list(struct task_struct *curr) { }
331 #endif
332
333 /*
334  * Reflects a new waiter being added to the waitqueue.
335  */
336 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
337 {
338 #ifdef CONFIG_SMP
339         atomic_inc(&hb->waiters);
340         /*
341          * Full barrier (A), see the ordering comment above.
342          */
343         smp_mb__after_atomic();
344 #endif
345 }
346
347 /*
348  * Reflects a waiter being removed from the waitqueue by wakeup
349  * paths.
350  */
351 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
352 {
353 #ifdef CONFIG_SMP
354         atomic_dec(&hb->waiters);
355 #endif
356 }
357
358 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
359 {
360 #ifdef CONFIG_SMP
361         /*
362          * Full barrier (B), see the ordering comment above.
363          */
364         smp_mb();
365         return atomic_read(&hb->waiters);
366 #else
367         return 1;
368 #endif
369 }
370
371 /**
372  * hash_futex - Return the hash bucket in the global hash
373  * @key:        Pointer to the futex key for which the hash is calculated
374  *
375  * We hash on the keys returned from get_futex_key (see below) and return the
376  * corresponding hash bucket in the global hash.
377  */
378 static struct futex_hash_bucket *hash_futex(union futex_key *key)
379 {
380         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
381                           key->both.offset);
382
383         return &futex_queues[hash & (futex_hashsize - 1)];
384 }
385
386
387 /**
388  * match_futex - Check whether two futex keys are equal
389  * @key1:       Pointer to key1
390  * @key2:       Pointer to key2
391  *
392  * Return 1 if two futex_keys are equal, 0 otherwise.
393  */
394 static inline int match_futex(union futex_key *key1, union futex_key *key2)
395 {
396         return (key1 && key2
397                 && key1->both.word == key2->both.word
398                 && key1->both.ptr == key2->both.ptr
399                 && key1->both.offset == key2->both.offset);
400 }
401
402 enum futex_access {
403         FUTEX_READ,
404         FUTEX_WRITE
405 };
406
407 /**
408  * futex_setup_timer - set up the sleeping hrtimer.
409  * @time:       ptr to the given timeout value
410  * @timeout:    the hrtimer_sleeper structure to be set up
411  * @flags:      futex flags
412  * @range_ns:   optional range in ns
413  *
414  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
415  *         value given
416  */
417 static inline struct hrtimer_sleeper *
418 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
419                   int flags, u64 range_ns)
420 {
421         if (!time)
422                 return NULL;
423
424         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
425                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
426                                       HRTIMER_MODE_ABS);
427         /*
428          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
429          * effectively the same as calling hrtimer_set_expires().
430          */
431         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
432
433         return timeout;
434 }
435
436 /*
437  * Generate a machine wide unique identifier for this inode.
438  *
439  * This relies on u64 not wrapping in the life-time of the machine; which with
440  * 1ns resolution means almost 585 years.
441  *
442  * This further relies on the fact that a well formed program will not unmap
443  * the file while it has a (shared) futex waiting on it. This mapping will have
444  * a file reference which pins the mount and inode.
445  *
446  * If for some reason an inode gets evicted and read back in again, it will get
447  * a new sequence number and will _NOT_ match, even though it is the exact same
448  * file.
449  *
450  * It is important that match_futex() will never have a false-positive, esp.
451  * for PI futexes that can mess up the state. The above argues that false-negatives
452  * are only possible for malformed programs.
453  */
454 static u64 get_inode_sequence_number(struct inode *inode)
455 {
456         static atomic64_t i_seq;
457         u64 old;
458
459         /* Does the inode already have a sequence number? */
460         old = atomic64_read(&inode->i_sequence);
461         if (likely(old))
462                 return old;
463
464         for (;;) {
465                 u64 new = atomic64_add_return(1, &i_seq);
466                 if (WARN_ON_ONCE(!new))
467                         continue;
468
469                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
470                 if (old)
471                         return old;
472                 return new;
473         }
474 }
475
476 /**
477  * get_futex_key() - Get parameters which are the keys for a futex
478  * @uaddr:      virtual address of the futex
479  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
480  * @key:        address where result is stored.
481  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
482  *              FUTEX_WRITE)
483  *
484  * Return: a negative error code or 0
485  *
486  * The key words are stored in @key on success.
487  *
488  * For shared mappings (when @fshared), the key is:
489  *   ( inode->i_sequence, page->index, offset_within_page )
490  * [ also see get_inode_sequence_number() ]
491  *
492  * For private mappings (or when !@fshared), the key is:
493  *   ( current->mm, address, 0 )
494  *
495  * This allows (cross process, where applicable) identification of the futex
496  * without keeping the page pinned for the duration of the FUTEX_WAIT.
497  *
498  * lock_page() might sleep, the caller should not hold a spinlock.
499  */
500 static int
501 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
502 {
503         unsigned long address = (unsigned long)uaddr;
504         struct mm_struct *mm = current->mm;
505         struct page *page, *tail;
506         struct address_space *mapping;
507         int err, ro = 0;
508
509         /*
510          * The futex address must be "naturally" aligned.
511          */
512         key->both.offset = address % PAGE_SIZE;
513         if (unlikely((address % sizeof(u32)) != 0))
514                 return -EINVAL;
515         address -= key->both.offset;
516
517         if (unlikely(!access_ok(uaddr, sizeof(u32))))
518                 return -EFAULT;
519
520         if (unlikely(should_fail_futex(fshared)))
521                 return -EFAULT;
522
523         /*
524          * PROCESS_PRIVATE futexes are fast.
525          * As the mm cannot disappear under us and the 'key' only needs
526          * virtual address, we dont even have to find the underlying vma.
527          * Note : We do have to check 'uaddr' is a valid user address,
528          *        but access_ok() should be faster than find_vma()
529          */
530         if (!fshared) {
531                 key->private.mm = mm;
532                 key->private.address = address;
533                 return 0;
534         }
535
536 again:
537         /* Ignore any VERIFY_READ mapping (futex common case) */
538         if (unlikely(should_fail_futex(fshared)))
539                 return -EFAULT;
540
541         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
542         /*
543          * If write access is not required (eg. FUTEX_WAIT), try
544          * and get read-only access.
545          */
546         if (err == -EFAULT && rw == FUTEX_READ) {
547                 err = get_user_pages_fast(address, 1, 0, &page);
548                 ro = 1;
549         }
550         if (err < 0)
551                 return err;
552         else
553                 err = 0;
554
555         /*
556          * The treatment of mapping from this point on is critical. The page
557          * lock protects many things but in this context the page lock
558          * stabilizes mapping, prevents inode freeing in the shared
559          * file-backed region case and guards against movement to swap cache.
560          *
561          * Strictly speaking the page lock is not needed in all cases being
562          * considered here and page lock forces unnecessarily serialization
563          * From this point on, mapping will be re-verified if necessary and
564          * page lock will be acquired only if it is unavoidable
565          *
566          * Mapping checks require the head page for any compound page so the
567          * head page and mapping is looked up now. For anonymous pages, it
568          * does not matter if the page splits in the future as the key is
569          * based on the address. For filesystem-backed pages, the tail is
570          * required as the index of the page determines the key. For
571          * base pages, there is no tail page and tail == page.
572          */
573         tail = page;
574         page = compound_head(page);
575         mapping = READ_ONCE(page->mapping);
576
577         /*
578          * If page->mapping is NULL, then it cannot be a PageAnon
579          * page; but it might be the ZERO_PAGE or in the gate area or
580          * in a special mapping (all cases which we are happy to fail);
581          * or it may have been a good file page when get_user_pages_fast
582          * found it, but truncated or holepunched or subjected to
583          * invalidate_complete_page2 before we got the page lock (also
584          * cases which we are happy to fail).  And we hold a reference,
585          * so refcount care in invalidate_complete_page's remove_mapping
586          * prevents drop_caches from setting mapping to NULL beneath us.
587          *
588          * The case we do have to guard against is when memory pressure made
589          * shmem_writepage move it from filecache to swapcache beneath us:
590          * an unlikely race, but we do need to retry for page->mapping.
591          */
592         if (unlikely(!mapping)) {
593                 int shmem_swizzled;
594
595                 /*
596                  * Page lock is required to identify which special case above
597                  * applies. If this is really a shmem page then the page lock
598                  * will prevent unexpected transitions.
599                  */
600                 lock_page(page);
601                 shmem_swizzled = PageSwapCache(page) || page->mapping;
602                 unlock_page(page);
603                 put_page(page);
604
605                 if (shmem_swizzled)
606                         goto again;
607
608                 return -EFAULT;
609         }
610
611         /*
612          * Private mappings are handled in a simple way.
613          *
614          * If the futex key is stored on an anonymous page, then the associated
615          * object is the mm which is implicitly pinned by the calling process.
616          *
617          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618          * it's a read-only handle, it's expected that futexes attach to
619          * the object not the particular process.
620          */
621         if (PageAnon(page)) {
622                 /*
623                  * A RO anonymous page will never change and thus doesn't make
624                  * sense for futex operations.
625                  */
626                 if (unlikely(should_fail_futex(fshared)) || ro) {
627                         err = -EFAULT;
628                         goto out;
629                 }
630
631                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632                 key->private.mm = mm;
633                 key->private.address = address;
634
635         } else {
636                 struct inode *inode;
637
638                 /*
639                  * The associated futex object in this case is the inode and
640                  * the page->mapping must be traversed. Ordinarily this should
641                  * be stabilised under page lock but it's not strictly
642                  * necessary in this case as we just want to pin the inode, not
643                  * update the radix tree or anything like that.
644                  *
645                  * The RCU read lock is taken as the inode is finally freed
646                  * under RCU. If the mapping still matches expectations then the
647                  * mapping->host can be safely accessed as being a valid inode.
648                  */
649                 rcu_read_lock();
650
651                 if (READ_ONCE(page->mapping) != mapping) {
652                         rcu_read_unlock();
653                         put_page(page);
654
655                         goto again;
656                 }
657
658                 inode = READ_ONCE(mapping->host);
659                 if (!inode) {
660                         rcu_read_unlock();
661                         put_page(page);
662
663                         goto again;
664                 }
665
666                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
667                 key->shared.i_seq = get_inode_sequence_number(inode);
668                 key->shared.pgoff = basepage_index(tail);
669                 rcu_read_unlock();
670         }
671
672 out:
673         put_page(page);
674         return err;
675 }
676
677 static inline void put_futex_key(union futex_key *key)
678 {
679 }
680
681 /**
682  * fault_in_user_writeable() - Fault in user address and verify RW access
683  * @uaddr:      pointer to faulting user space address
684  *
685  * Slow path to fixup the fault we just took in the atomic write
686  * access to @uaddr.
687  *
688  * We have no generic implementation of a non-destructive write to the
689  * user address. We know that we faulted in the atomic pagefault
690  * disabled section so we can as well avoid the #PF overhead by
691  * calling get_user_pages() right away.
692  */
693 static int fault_in_user_writeable(u32 __user *uaddr)
694 {
695         struct mm_struct *mm = current->mm;
696         int ret;
697
698         down_read(&mm->mmap_sem);
699         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
700                                FAULT_FLAG_WRITE, NULL);
701         up_read(&mm->mmap_sem);
702
703         return ret < 0 ? ret : 0;
704 }
705
706 /**
707  * futex_top_waiter() - Return the highest priority waiter on a futex
708  * @hb:         the hash bucket the futex_q's reside in
709  * @key:        the futex key (to distinguish it from other futex futex_q's)
710  *
711  * Must be called with the hb lock held.
712  */
713 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
714                                         union futex_key *key)
715 {
716         struct futex_q *this;
717
718         plist_for_each_entry(this, &hb->chain, list) {
719                 if (match_futex(&this->key, key))
720                         return this;
721         }
722         return NULL;
723 }
724
725 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
726                                       u32 uval, u32 newval)
727 {
728         int ret;
729
730         pagefault_disable();
731         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
732         pagefault_enable();
733
734         return ret;
735 }
736
737 static int get_futex_value_locked(u32 *dest, u32 __user *from)
738 {
739         int ret;
740
741         pagefault_disable();
742         ret = __get_user(*dest, from);
743         pagefault_enable();
744
745         return ret ? -EFAULT : 0;
746 }
747
748
749 /*
750  * PI code:
751  */
752 static int refill_pi_state_cache(void)
753 {
754         struct futex_pi_state *pi_state;
755
756         if (likely(current->pi_state_cache))
757                 return 0;
758
759         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
760
761         if (!pi_state)
762                 return -ENOMEM;
763
764         INIT_LIST_HEAD(&pi_state->list);
765         /* pi_mutex gets initialized later */
766         pi_state->owner = NULL;
767         refcount_set(&pi_state->refcount, 1);
768         pi_state->key = FUTEX_KEY_INIT;
769
770         current->pi_state_cache = pi_state;
771
772         return 0;
773 }
774
775 static struct futex_pi_state *alloc_pi_state(void)
776 {
777         struct futex_pi_state *pi_state = current->pi_state_cache;
778
779         WARN_ON(!pi_state);
780         current->pi_state_cache = NULL;
781
782         return pi_state;
783 }
784
785 static void get_pi_state(struct futex_pi_state *pi_state)
786 {
787         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
788 }
789
790 /*
791  * Drops a reference to the pi_state object and frees or caches it
792  * when the last reference is gone.
793  */
794 static void put_pi_state(struct futex_pi_state *pi_state)
795 {
796         if (!pi_state)
797                 return;
798
799         if (!refcount_dec_and_test(&pi_state->refcount))
800                 return;
801
802         /*
803          * If pi_state->owner is NULL, the owner is most probably dying
804          * and has cleaned up the pi_state already
805          */
806         if (pi_state->owner) {
807                 struct task_struct *owner;
808
809                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
810                 owner = pi_state->owner;
811                 if (owner) {
812                         raw_spin_lock(&owner->pi_lock);
813                         list_del_init(&pi_state->list);
814                         raw_spin_unlock(&owner->pi_lock);
815                 }
816                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
817                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
818         }
819
820         if (current->pi_state_cache) {
821                 kfree(pi_state);
822         } else {
823                 /*
824                  * pi_state->list is already empty.
825                  * clear pi_state->owner.
826                  * refcount is at 0 - put it back to 1.
827                  */
828                 pi_state->owner = NULL;
829                 refcount_set(&pi_state->refcount, 1);
830                 current->pi_state_cache = pi_state;
831         }
832 }
833
834 #ifdef CONFIG_FUTEX_PI
835
836 /*
837  * This task is holding PI mutexes at exit time => bad.
838  * Kernel cleans up PI-state, but userspace is likely hosed.
839  * (Robust-futex cleanup is separate and might save the day for userspace.)
840  */
841 static void exit_pi_state_list(struct task_struct *curr)
842 {
843         struct list_head *next, *head = &curr->pi_state_list;
844         struct futex_pi_state *pi_state;
845         struct futex_hash_bucket *hb;
846         union futex_key key = FUTEX_KEY_INIT;
847
848         if (!futex_cmpxchg_enabled)
849                 return;
850         /*
851          * We are a ZOMBIE and nobody can enqueue itself on
852          * pi_state_list anymore, but we have to be careful
853          * versus waiters unqueueing themselves:
854          */
855         raw_spin_lock_irq(&curr->pi_lock);
856         while (!list_empty(head)) {
857                 next = head->next;
858                 pi_state = list_entry(next, struct futex_pi_state, list);
859                 key = pi_state->key;
860                 hb = hash_futex(&key);
861
862                 /*
863                  * We can race against put_pi_state() removing itself from the
864                  * list (a waiter going away). put_pi_state() will first
865                  * decrement the reference count and then modify the list, so
866                  * its possible to see the list entry but fail this reference
867                  * acquire.
868                  *
869                  * In that case; drop the locks to let put_pi_state() make
870                  * progress and retry the loop.
871                  */
872                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
873                         raw_spin_unlock_irq(&curr->pi_lock);
874                         cpu_relax();
875                         raw_spin_lock_irq(&curr->pi_lock);
876                         continue;
877                 }
878                 raw_spin_unlock_irq(&curr->pi_lock);
879
880                 spin_lock(&hb->lock);
881                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
882                 raw_spin_lock(&curr->pi_lock);
883                 /*
884                  * We dropped the pi-lock, so re-check whether this
885                  * task still owns the PI-state:
886                  */
887                 if (head->next != next) {
888                         /* retain curr->pi_lock for the loop invariant */
889                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
890                         spin_unlock(&hb->lock);
891                         put_pi_state(pi_state);
892                         continue;
893                 }
894
895                 WARN_ON(pi_state->owner != curr);
896                 WARN_ON(list_empty(&pi_state->list));
897                 list_del_init(&pi_state->list);
898                 pi_state->owner = NULL;
899
900                 raw_spin_unlock(&curr->pi_lock);
901                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
902                 spin_unlock(&hb->lock);
903
904                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
905                 put_pi_state(pi_state);
906
907                 raw_spin_lock_irq(&curr->pi_lock);
908         }
909         raw_spin_unlock_irq(&curr->pi_lock);
910 }
911 #else
912 static inline void exit_pi_state_list(struct task_struct *curr) { }
913 #endif
914
915 /*
916  * We need to check the following states:
917  *
918  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
919  *
920  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
921  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
922  *
923  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
924  *
925  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
926  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
927  *
928  * [6]  Found  | Found    | task      | 0         | 1      | Valid
929  *
930  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
931  *
932  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
933  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
934  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
935  *
936  * [1]  Indicates that the kernel can acquire the futex atomically. We
937  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
938  *
939  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
940  *      thread is found then it indicates that the owner TID has died.
941  *
942  * [3]  Invalid. The waiter is queued on a non PI futex
943  *
944  * [4]  Valid state after exit_robust_list(), which sets the user space
945  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
946  *
947  * [5]  The user space value got manipulated between exit_robust_list()
948  *      and exit_pi_state_list()
949  *
950  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
951  *      the pi_state but cannot access the user space value.
952  *
953  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
954  *
955  * [8]  Owner and user space value match
956  *
957  * [9]  There is no transient state which sets the user space TID to 0
958  *      except exit_robust_list(), but this is indicated by the
959  *      FUTEX_OWNER_DIED bit. See [4]
960  *
961  * [10] There is no transient state which leaves owner and user space
962  *      TID out of sync.
963  *
964  *
965  * Serialization and lifetime rules:
966  *
967  * hb->lock:
968  *
969  *      hb -> futex_q, relation
970  *      futex_q -> pi_state, relation
971  *
972  *      (cannot be raw because hb can contain arbitrary amount
973  *       of futex_q's)
974  *
975  * pi_mutex->wait_lock:
976  *
977  *      {uval, pi_state}
978  *
979  *      (and pi_mutex 'obviously')
980  *
981  * p->pi_lock:
982  *
983  *      p->pi_state_list -> pi_state->list, relation
984  *
985  * pi_state->refcount:
986  *
987  *      pi_state lifetime
988  *
989  *
990  * Lock order:
991  *
992  *   hb->lock
993  *     pi_mutex->wait_lock
994  *       p->pi_lock
995  *
996  */
997
998 /*
999  * Validate that the existing waiter has a pi_state and sanity check
1000  * the pi_state against the user space value. If correct, attach to
1001  * it.
1002  */
1003 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004                               struct futex_pi_state *pi_state,
1005                               struct futex_pi_state **ps)
1006 {
1007         pid_t pid = uval & FUTEX_TID_MASK;
1008         u32 uval2;
1009         int ret;
1010
1011         /*
1012          * Userspace might have messed up non-PI and PI futexes [3]
1013          */
1014         if (unlikely(!pi_state))
1015                 return -EINVAL;
1016
1017         /*
1018          * We get here with hb->lock held, and having found a
1019          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021          * which in turn means that futex_lock_pi() still has a reference on
1022          * our pi_state.
1023          *
1024          * The waiter holding a reference on @pi_state also protects against
1025          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027          * free pi_state before we can take a reference ourselves.
1028          */
1029         WARN_ON(!refcount_read(&pi_state->refcount));
1030
1031         /*
1032          * Now that we have a pi_state, we can acquire wait_lock
1033          * and do the state validation.
1034          */
1035         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037         /*
1038          * Since {uval, pi_state} is serialized by wait_lock, and our current
1039          * uval was read without holding it, it can have changed. Verify it
1040          * still is what we expect it to be, otherwise retry the entire
1041          * operation.
1042          */
1043         if (get_futex_value_locked(&uval2, uaddr))
1044                 goto out_efault;
1045
1046         if (uval != uval2)
1047                 goto out_eagain;
1048
1049         /*
1050          * Handle the owner died case:
1051          */
1052         if (uval & FUTEX_OWNER_DIED) {
1053                 /*
1054                  * exit_pi_state_list sets owner to NULL and wakes the
1055                  * topmost waiter. The task which acquires the
1056                  * pi_state->rt_mutex will fixup owner.
1057                  */
1058                 if (!pi_state->owner) {
1059                         /*
1060                          * No pi state owner, but the user space TID
1061                          * is not 0. Inconsistent state. [5]
1062                          */
1063                         if (pid)
1064                                 goto out_einval;
1065                         /*
1066                          * Take a ref on the state and return success. [4]
1067                          */
1068                         goto out_attach;
1069                 }
1070
1071                 /*
1072                  * If TID is 0, then either the dying owner has not
1073                  * yet executed exit_pi_state_list() or some waiter
1074                  * acquired the rtmutex in the pi state, but did not
1075                  * yet fixup the TID in user space.
1076                  *
1077                  * Take a ref on the state and return success. [6]
1078                  */
1079                 if (!pid)
1080                         goto out_attach;
1081         } else {
1082                 /*
1083                  * If the owner died bit is not set, then the pi_state
1084                  * must have an owner. [7]
1085                  */
1086                 if (!pi_state->owner)
1087                         goto out_einval;
1088         }
1089
1090         /*
1091          * Bail out if user space manipulated the futex value. If pi
1092          * state exists then the owner TID must be the same as the
1093          * user space TID. [9/10]
1094          */
1095         if (pid != task_pid_vnr(pi_state->owner))
1096                 goto out_einval;
1097
1098 out_attach:
1099         get_pi_state(pi_state);
1100         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101         *ps = pi_state;
1102         return 0;
1103
1104 out_einval:
1105         ret = -EINVAL;
1106         goto out_error;
1107
1108 out_eagain:
1109         ret = -EAGAIN;
1110         goto out_error;
1111
1112 out_efault:
1113         ret = -EFAULT;
1114         goto out_error;
1115
1116 out_error:
1117         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118         return ret;
1119 }
1120
1121 /**
1122  * wait_for_owner_exiting - Block until the owner has exited
1123  * @ret: owner's current futex lock status
1124  * @exiting:    Pointer to the exiting task
1125  *
1126  * Caller must hold a refcount on @exiting.
1127  */
1128 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129 {
1130         if (ret != -EBUSY) {
1131                 WARN_ON_ONCE(exiting);
1132                 return;
1133         }
1134
1135         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136                 return;
1137
1138         mutex_lock(&exiting->futex_exit_mutex);
1139         /*
1140          * No point in doing state checking here. If the waiter got here
1141          * while the task was in exec()->exec_futex_release() then it can
1142          * have any FUTEX_STATE_* value when the waiter has acquired the
1143          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144          * already. Highly unlikely and not a problem. Just one more round
1145          * through the futex maze.
1146          */
1147         mutex_unlock(&exiting->futex_exit_mutex);
1148
1149         put_task_struct(exiting);
1150 }
1151
1152 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153                             struct task_struct *tsk)
1154 {
1155         u32 uval2;
1156
1157         /*
1158          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159          * caller that the alleged owner is busy.
1160          */
1161         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1162                 return -EBUSY;
1163
1164         /*
1165          * Reread the user space value to handle the following situation:
1166          *
1167          * CPU0                         CPU1
1168          *
1169          * sys_exit()                   sys_futex()
1170          *  do_exit()                    futex_lock_pi()
1171          *                                futex_lock_pi_atomic()
1172          *   exit_signals(tsk)              No waiters:
1173          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1174          *  mm_release(tsk)                 Set waiter bit
1175          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1176          *      Set owner died              attach_to_pi_owner() {
1177          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1178          *   }                               if (!tsk->flags & PF_EXITING) {
1179          *  ...                                attach();
1180          *  tsk->futex_state =               } else {
1181          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1182          *                                        FUTEX_STATE_DEAD)
1183          *                                       return -EAGAIN;
1184          *                                     return -ESRCH; <--- FAIL
1185          *                                   }
1186          *
1187          * Returning ESRCH unconditionally is wrong here because the
1188          * user space value has been changed by the exiting task.
1189          *
1190          * The same logic applies to the case where the exiting task is
1191          * already gone.
1192          */
1193         if (get_futex_value_locked(&uval2, uaddr))
1194                 return -EFAULT;
1195
1196         /* If the user space value has changed, try again. */
1197         if (uval2 != uval)
1198                 return -EAGAIN;
1199
1200         /*
1201          * The exiting task did not have a robust list, the robust list was
1202          * corrupted or the user space value in *uaddr is simply bogus.
1203          * Give up and tell user space.
1204          */
1205         return -ESRCH;
1206 }
1207
1208 /*
1209  * Lookup the task for the TID provided from user space and attach to
1210  * it after doing proper sanity checks.
1211  */
1212 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1213                               struct futex_pi_state **ps,
1214                               struct task_struct **exiting)
1215 {
1216         pid_t pid = uval & FUTEX_TID_MASK;
1217         struct futex_pi_state *pi_state;
1218         struct task_struct *p;
1219
1220         /*
1221          * We are the first waiter - try to look up the real owner and attach
1222          * the new pi_state to it, but bail out when TID = 0 [1]
1223          *
1224          * The !pid check is paranoid. None of the call sites should end up
1225          * with pid == 0, but better safe than sorry. Let the caller retry
1226          */
1227         if (!pid)
1228                 return -EAGAIN;
1229         p = find_get_task_by_vpid(pid);
1230         if (!p)
1231                 return handle_exit_race(uaddr, uval, NULL);
1232
1233         if (unlikely(p->flags & PF_KTHREAD)) {
1234                 put_task_struct(p);
1235                 return -EPERM;
1236         }
1237
1238         /*
1239          * We need to look at the task state to figure out, whether the
1240          * task is exiting. To protect against the change of the task state
1241          * in futex_exit_release(), we do this protected by p->pi_lock:
1242          */
1243         raw_spin_lock_irq(&p->pi_lock);
1244         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1245                 /*
1246                  * The task is on the way out. When the futex state is
1247                  * FUTEX_STATE_DEAD, we know that the task has finished
1248                  * the cleanup:
1249                  */
1250                 int ret = handle_exit_race(uaddr, uval, p);
1251
1252                 raw_spin_unlock_irq(&p->pi_lock);
1253                 /*
1254                  * If the owner task is between FUTEX_STATE_EXITING and
1255                  * FUTEX_STATE_DEAD then store the task pointer and keep
1256                  * the reference on the task struct. The calling code will
1257                  * drop all locks, wait for the task to reach
1258                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1259                  * required to prevent a live lock when the current task
1260                  * preempted the exiting task between the two states.
1261                  */
1262                 if (ret == -EBUSY)
1263                         *exiting = p;
1264                 else
1265                         put_task_struct(p);
1266                 return ret;
1267         }
1268
1269         /*
1270          * No existing pi state. First waiter. [2]
1271          *
1272          * This creates pi_state, we have hb->lock held, this means nothing can
1273          * observe this state, wait_lock is irrelevant.
1274          */
1275         pi_state = alloc_pi_state();
1276
1277         /*
1278          * Initialize the pi_mutex in locked state and make @p
1279          * the owner of it:
1280          */
1281         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283         /* Store the key for possible exit cleanups: */
1284         pi_state->key = *key;
1285
1286         WARN_ON(!list_empty(&pi_state->list));
1287         list_add(&pi_state->list, &p->pi_state_list);
1288         /*
1289          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290          * because there is no concurrency as the object is not published yet.
1291          */
1292         pi_state->owner = p;
1293         raw_spin_unlock_irq(&p->pi_lock);
1294
1295         put_task_struct(p);
1296
1297         *ps = pi_state;
1298
1299         return 0;
1300 }
1301
1302 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1303                            struct futex_hash_bucket *hb,
1304                            union futex_key *key, struct futex_pi_state **ps,
1305                            struct task_struct **exiting)
1306 {
1307         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1308
1309         /*
1310          * If there is a waiter on that futex, validate it and
1311          * attach to the pi_state when the validation succeeds.
1312          */
1313         if (top_waiter)
1314                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1315
1316         /*
1317          * We are the first waiter - try to look up the owner based on
1318          * @uval and attach to it.
1319          */
1320         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1321 }
1322
1323 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1324 {
1325         int err;
1326         u32 uninitialized_var(curval);
1327
1328         if (unlikely(should_fail_futex(true)))
1329                 return -EFAULT;
1330
1331         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1332         if (unlikely(err))
1333                 return err;
1334
1335         /* If user space value changed, let the caller retry */
1336         return curval != uval ? -EAGAIN : 0;
1337 }
1338
1339 /**
1340  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1341  * @uaddr:              the pi futex user address
1342  * @hb:                 the pi futex hash bucket
1343  * @key:                the futex key associated with uaddr and hb
1344  * @ps:                 the pi_state pointer where we store the result of the
1345  *                      lookup
1346  * @task:               the task to perform the atomic lock work for.  This will
1347  *                      be "current" except in the case of requeue pi.
1348  * @exiting:            Pointer to store the task pointer of the owner task
1349  *                      which is in the middle of exiting
1350  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1351  *
1352  * Return:
1353  *  -  0 - ready to wait;
1354  *  -  1 - acquired the lock;
1355  *  - <0 - error
1356  *
1357  * The hb->lock and futex_key refs shall be held by the caller.
1358  *
1359  * @exiting is only set when the return value is -EBUSY. If so, this holds
1360  * a refcount on the exiting task on return and the caller needs to drop it
1361  * after waiting for the exit to complete.
1362  */
1363 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1364                                 union futex_key *key,
1365                                 struct futex_pi_state **ps,
1366                                 struct task_struct *task,
1367                                 struct task_struct **exiting,
1368                                 int set_waiters)
1369 {
1370         u32 uval, newval, vpid = task_pid_vnr(task);
1371         struct futex_q *top_waiter;
1372         int ret;
1373
1374         /*
1375          * Read the user space value first so we can validate a few
1376          * things before proceeding further.
1377          */
1378         if (get_futex_value_locked(&uval, uaddr))
1379                 return -EFAULT;
1380
1381         if (unlikely(should_fail_futex(true)))
1382                 return -EFAULT;
1383
1384         /*
1385          * Detect deadlocks.
1386          */
1387         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1388                 return -EDEADLK;
1389
1390         if ((unlikely(should_fail_futex(true))))
1391                 return -EDEADLK;
1392
1393         /*
1394          * Lookup existing state first. If it exists, try to attach to
1395          * its pi_state.
1396          */
1397         top_waiter = futex_top_waiter(hb, key);
1398         if (top_waiter)
1399                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1400
1401         /*
1402          * No waiter and user TID is 0. We are here because the
1403          * waiters or the owner died bit is set or called from
1404          * requeue_cmp_pi or for whatever reason something took the
1405          * syscall.
1406          */
1407         if (!(uval & FUTEX_TID_MASK)) {
1408                 /*
1409                  * We take over the futex. No other waiters and the user space
1410                  * TID is 0. We preserve the owner died bit.
1411                  */
1412                 newval = uval & FUTEX_OWNER_DIED;
1413                 newval |= vpid;
1414
1415                 /* The futex requeue_pi code can enforce the waiters bit */
1416                 if (set_waiters)
1417                         newval |= FUTEX_WAITERS;
1418
1419                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1420                 /* If the take over worked, return 1 */
1421                 return ret < 0 ? ret : 1;
1422         }
1423
1424         /*
1425          * First waiter. Set the waiters bit before attaching ourself to
1426          * the owner. If owner tries to unlock, it will be forced into
1427          * the kernel and blocked on hb->lock.
1428          */
1429         newval = uval | FUTEX_WAITERS;
1430         ret = lock_pi_update_atomic(uaddr, uval, newval);
1431         if (ret)
1432                 return ret;
1433         /*
1434          * If the update of the user space value succeeded, we try to
1435          * attach to the owner. If that fails, no harm done, we only
1436          * set the FUTEX_WAITERS bit in the user space variable.
1437          */
1438         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1439 }
1440
1441 /**
1442  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1443  * @q:  The futex_q to unqueue
1444  *
1445  * The q->lock_ptr must not be NULL and must be held by the caller.
1446  */
1447 static void __unqueue_futex(struct futex_q *q)
1448 {
1449         struct futex_hash_bucket *hb;
1450
1451         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1452                 return;
1453         lockdep_assert_held(q->lock_ptr);
1454
1455         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1456         plist_del(&q->list, &hb->chain);
1457         hb_waiters_dec(hb);
1458 }
1459
1460 /*
1461  * The hash bucket lock must be held when this is called.
1462  * Afterwards, the futex_q must not be accessed. Callers
1463  * must ensure to later call wake_up_q() for the actual
1464  * wakeups to occur.
1465  */
1466 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1467 {
1468         struct task_struct *p = q->task;
1469
1470         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1471                 return;
1472
1473         get_task_struct(p);
1474         __unqueue_futex(q);
1475         /*
1476          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1477          * is written, without taking any locks. This is possible in the event
1478          * of a spurious wakeup, for example. A memory barrier is required here
1479          * to prevent the following store to lock_ptr from getting ahead of the
1480          * plist_del in __unqueue_futex().
1481          */
1482         smp_store_release(&q->lock_ptr, NULL);
1483
1484         /*
1485          * Queue the task for later wakeup for after we've released
1486          * the hb->lock.
1487          */
1488         wake_q_add_safe(wake_q, p);
1489 }
1490
1491 /*
1492  * Caller must hold a reference on @pi_state.
1493  */
1494 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1495 {
1496         u32 uninitialized_var(curval), newval;
1497         struct task_struct *new_owner;
1498         bool postunlock = false;
1499         DEFINE_WAKE_Q(wake_q);
1500         int ret = 0;
1501
1502         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1503         if (WARN_ON_ONCE(!new_owner)) {
1504                 /*
1505                  * As per the comment in futex_unlock_pi() this should not happen.
1506                  *
1507                  * When this happens, give up our locks and try again, giving
1508                  * the futex_lock_pi() instance time to complete, either by
1509                  * waiting on the rtmutex or removing itself from the futex
1510                  * queue.
1511                  */
1512                 ret = -EAGAIN;
1513                 goto out_unlock;
1514         }
1515
1516         /*
1517          * We pass it to the next owner. The WAITERS bit is always kept
1518          * enabled while there is PI state around. We cleanup the owner
1519          * died bit, because we are the owner.
1520          */
1521         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1522
1523         if (unlikely(should_fail_futex(true)))
1524                 ret = -EFAULT;
1525
1526         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1527         if (!ret && (curval != uval)) {
1528                 /*
1529                  * If a unconditional UNLOCK_PI operation (user space did not
1530                  * try the TID->0 transition) raced with a waiter setting the
1531                  * FUTEX_WAITERS flag between get_user() and locking the hash
1532                  * bucket lock, retry the operation.
1533                  */
1534                 if ((FUTEX_TID_MASK & curval) == uval)
1535                         ret = -EAGAIN;
1536                 else
1537                         ret = -EINVAL;
1538         }
1539
1540         if (ret)
1541                 goto out_unlock;
1542
1543         /*
1544          * This is a point of no return; once we modify the uval there is no
1545          * going back and subsequent operations must not fail.
1546          */
1547
1548         raw_spin_lock(&pi_state->owner->pi_lock);
1549         WARN_ON(list_empty(&pi_state->list));
1550         list_del_init(&pi_state->list);
1551         raw_spin_unlock(&pi_state->owner->pi_lock);
1552
1553         raw_spin_lock(&new_owner->pi_lock);
1554         WARN_ON(!list_empty(&pi_state->list));
1555         list_add(&pi_state->list, &new_owner->pi_state_list);
1556         pi_state->owner = new_owner;
1557         raw_spin_unlock(&new_owner->pi_lock);
1558
1559         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1560
1561 out_unlock:
1562         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1563
1564         if (postunlock)
1565                 rt_mutex_postunlock(&wake_q);
1566
1567         return ret;
1568 }
1569
1570 /*
1571  * Express the locking dependencies for lockdep:
1572  */
1573 static inline void
1574 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1575 {
1576         if (hb1 <= hb2) {
1577                 spin_lock(&hb1->lock);
1578                 if (hb1 < hb2)
1579                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1580         } else { /* hb1 > hb2 */
1581                 spin_lock(&hb2->lock);
1582                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1583         }
1584 }
1585
1586 static inline void
1587 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1588 {
1589         spin_unlock(&hb1->lock);
1590         if (hb1 != hb2)
1591                 spin_unlock(&hb2->lock);
1592 }
1593
1594 /*
1595  * Wake up waiters matching bitset queued on this futex (uaddr).
1596  */
1597 static int
1598 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1599 {
1600         struct futex_hash_bucket *hb;
1601         struct futex_q *this, *next;
1602         union futex_key key = FUTEX_KEY_INIT;
1603         int ret;
1604         DEFINE_WAKE_Q(wake_q);
1605
1606         if (!bitset)
1607                 return -EINVAL;
1608
1609         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1610         if (unlikely(ret != 0))
1611                 goto out;
1612
1613         hb = hash_futex(&key);
1614
1615         /* Make sure we really have tasks to wakeup */
1616         if (!hb_waiters_pending(hb))
1617                 goto out_put_key;
1618
1619         spin_lock(&hb->lock);
1620
1621         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1622                 if (match_futex (&this->key, &key)) {
1623                         if (this->pi_state || this->rt_waiter) {
1624                                 ret = -EINVAL;
1625                                 break;
1626                         }
1627
1628                         /* Check if one of the bits is set in both bitsets */
1629                         if (!(this->bitset & bitset))
1630                                 continue;
1631
1632                         mark_wake_futex(&wake_q, this);
1633                         if (++ret >= nr_wake)
1634                                 break;
1635                 }
1636         }
1637
1638         spin_unlock(&hb->lock);
1639         wake_up_q(&wake_q);
1640 out_put_key:
1641         put_futex_key(&key);
1642 out:
1643         return ret;
1644 }
1645
1646 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1647 {
1648         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1649         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1650         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1651         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1652         int oldval, ret;
1653
1654         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1655                 if (oparg < 0 || oparg > 31) {
1656                         char comm[sizeof(current->comm)];
1657                         /*
1658                          * kill this print and return -EINVAL when userspace
1659                          * is sane again
1660                          */
1661                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1662                                         get_task_comm(comm, current), oparg);
1663                         oparg &= 31;
1664                 }
1665                 oparg = 1 << oparg;
1666         }
1667
1668         pagefault_disable();
1669         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1670         pagefault_enable();
1671         if (ret)
1672                 return ret;
1673
1674         switch (cmp) {
1675         case FUTEX_OP_CMP_EQ:
1676                 return oldval == cmparg;
1677         case FUTEX_OP_CMP_NE:
1678                 return oldval != cmparg;
1679         case FUTEX_OP_CMP_LT:
1680                 return oldval < cmparg;
1681         case FUTEX_OP_CMP_GE:
1682                 return oldval >= cmparg;
1683         case FUTEX_OP_CMP_LE:
1684                 return oldval <= cmparg;
1685         case FUTEX_OP_CMP_GT:
1686                 return oldval > cmparg;
1687         default:
1688                 return -ENOSYS;
1689         }
1690 }
1691
1692 /*
1693  * Wake up all waiters hashed on the physical page that is mapped
1694  * to this virtual address:
1695  */
1696 static int
1697 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1698               int nr_wake, int nr_wake2, int op)
1699 {
1700         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1701         struct futex_hash_bucket *hb1, *hb2;
1702         struct futex_q *this, *next;
1703         int ret, op_ret;
1704         DEFINE_WAKE_Q(wake_q);
1705
1706 retry:
1707         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1708         if (unlikely(ret != 0))
1709                 goto out;
1710         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1711         if (unlikely(ret != 0))
1712                 goto out_put_key1;
1713
1714         hb1 = hash_futex(&key1);
1715         hb2 = hash_futex(&key2);
1716
1717 retry_private:
1718         double_lock_hb(hb1, hb2);
1719         op_ret = futex_atomic_op_inuser(op, uaddr2);
1720         if (unlikely(op_ret < 0)) {
1721                 double_unlock_hb(hb1, hb2);
1722
1723                 if (!IS_ENABLED(CONFIG_MMU) ||
1724                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1725                         /*
1726                          * we don't get EFAULT from MMU faults if we don't have
1727                          * an MMU, but we might get them from range checking
1728                          */
1729                         ret = op_ret;
1730                         goto out_put_keys;
1731                 }
1732
1733                 if (op_ret == -EFAULT) {
1734                         ret = fault_in_user_writeable(uaddr2);
1735                         if (ret)
1736                                 goto out_put_keys;
1737                 }
1738
1739                 if (!(flags & FLAGS_SHARED)) {
1740                         cond_resched();
1741                         goto retry_private;
1742                 }
1743
1744                 put_futex_key(&key2);
1745                 put_futex_key(&key1);
1746                 cond_resched();
1747                 goto retry;
1748         }
1749
1750         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1751                 if (match_futex (&this->key, &key1)) {
1752                         if (this->pi_state || this->rt_waiter) {
1753                                 ret = -EINVAL;
1754                                 goto out_unlock;
1755                         }
1756                         mark_wake_futex(&wake_q, this);
1757                         if (++ret >= nr_wake)
1758                                 break;
1759                 }
1760         }
1761
1762         if (op_ret > 0) {
1763                 op_ret = 0;
1764                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1765                         if (match_futex (&this->key, &key2)) {
1766                                 if (this->pi_state || this->rt_waiter) {
1767                                         ret = -EINVAL;
1768                                         goto out_unlock;
1769                                 }
1770                                 mark_wake_futex(&wake_q, this);
1771                                 if (++op_ret >= nr_wake2)
1772                                         break;
1773                         }
1774                 }
1775                 ret += op_ret;
1776         }
1777
1778 out_unlock:
1779         double_unlock_hb(hb1, hb2);
1780         wake_up_q(&wake_q);
1781 out_put_keys:
1782         put_futex_key(&key2);
1783 out_put_key1:
1784         put_futex_key(&key1);
1785 out:
1786         return ret;
1787 }
1788
1789 /**
1790  * requeue_futex() - Requeue a futex_q from one hb to another
1791  * @q:          the futex_q to requeue
1792  * @hb1:        the source hash_bucket
1793  * @hb2:        the target hash_bucket
1794  * @key2:       the new key for the requeued futex_q
1795  */
1796 static inline
1797 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1798                    struct futex_hash_bucket *hb2, union futex_key *key2)
1799 {
1800
1801         /*
1802          * If key1 and key2 hash to the same bucket, no need to
1803          * requeue.
1804          */
1805         if (likely(&hb1->chain != &hb2->chain)) {
1806                 plist_del(&q->list, &hb1->chain);
1807                 hb_waiters_dec(hb1);
1808                 hb_waiters_inc(hb2);
1809                 plist_add(&q->list, &hb2->chain);
1810                 q->lock_ptr = &hb2->lock;
1811         }
1812         q->key = *key2;
1813 }
1814
1815 /**
1816  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1817  * @q:          the futex_q
1818  * @key:        the key of the requeue target futex
1819  * @hb:         the hash_bucket of the requeue target futex
1820  *
1821  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1822  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1823  * to the requeue target futex so the waiter can detect the wakeup on the right
1824  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1825  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1826  * to protect access to the pi_state to fixup the owner later.  Must be called
1827  * with both q->lock_ptr and hb->lock held.
1828  */
1829 static inline
1830 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1831                            struct futex_hash_bucket *hb)
1832 {
1833         q->key = *key;
1834
1835         __unqueue_futex(q);
1836
1837         WARN_ON(!q->rt_waiter);
1838         q->rt_waiter = NULL;
1839
1840         q->lock_ptr = &hb->lock;
1841
1842         wake_up_state(q->task, TASK_NORMAL);
1843 }
1844
1845 /**
1846  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1847  * @pifutex:            the user address of the to futex
1848  * @hb1:                the from futex hash bucket, must be locked by the caller
1849  * @hb2:                the to futex hash bucket, must be locked by the caller
1850  * @key1:               the from futex key
1851  * @key2:               the to futex key
1852  * @ps:                 address to store the pi_state pointer
1853  * @exiting:            Pointer to store the task pointer of the owner task
1854  *                      which is in the middle of exiting
1855  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1856  *
1857  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1858  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1859  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1860  * hb1 and hb2 must be held by the caller.
1861  *
1862  * @exiting is only set when the return value is -EBUSY. If so, this holds
1863  * a refcount on the exiting task on return and the caller needs to drop it
1864  * after waiting for the exit to complete.
1865  *
1866  * Return:
1867  *  -  0 - failed to acquire the lock atomically;
1868  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1869  *  - <0 - error
1870  */
1871 static int
1872 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1873                            struct futex_hash_bucket *hb2, union futex_key *key1,
1874                            union futex_key *key2, struct futex_pi_state **ps,
1875                            struct task_struct **exiting, int set_waiters)
1876 {
1877         struct futex_q *top_waiter = NULL;
1878         u32 curval;
1879         int ret, vpid;
1880
1881         if (get_futex_value_locked(&curval, pifutex))
1882                 return -EFAULT;
1883
1884         if (unlikely(should_fail_futex(true)))
1885                 return -EFAULT;
1886
1887         /*
1888          * Find the top_waiter and determine if there are additional waiters.
1889          * If the caller intends to requeue more than 1 waiter to pifutex,
1890          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1891          * as we have means to handle the possible fault.  If not, don't set
1892          * the bit unecessarily as it will force the subsequent unlock to enter
1893          * the kernel.
1894          */
1895         top_waiter = futex_top_waiter(hb1, key1);
1896
1897         /* There are no waiters, nothing for us to do. */
1898         if (!top_waiter)
1899                 return 0;
1900
1901         /* Ensure we requeue to the expected futex. */
1902         if (!match_futex(top_waiter->requeue_pi_key, key2))
1903                 return -EINVAL;
1904
1905         /*
1906          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1907          * the contended case or if set_waiters is 1.  The pi_state is returned
1908          * in ps in contended cases.
1909          */
1910         vpid = task_pid_vnr(top_waiter->task);
1911         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1912                                    exiting, set_waiters);
1913         if (ret == 1) {
1914                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1915                 return vpid;
1916         }
1917         return ret;
1918 }
1919
1920 /**
1921  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1922  * @uaddr1:     source futex user address
1923  * @flags:      futex flags (FLAGS_SHARED, etc.)
1924  * @uaddr2:     target futex user address
1925  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1926  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1927  * @cmpval:     @uaddr1 expected value (or %NULL)
1928  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1929  *              pi futex (pi to pi requeue is not supported)
1930  *
1931  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1932  * uaddr2 atomically on behalf of the top waiter.
1933  *
1934  * Return:
1935  *  - >=0 - on success, the number of tasks requeued or woken;
1936  *  -  <0 - on error
1937  */
1938 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1939                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1940                          u32 *cmpval, int requeue_pi)
1941 {
1942         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1943         int task_count = 0, ret;
1944         struct futex_pi_state *pi_state = NULL;
1945         struct futex_hash_bucket *hb1, *hb2;
1946         struct futex_q *this, *next;
1947         DEFINE_WAKE_Q(wake_q);
1948
1949         if (nr_wake < 0 || nr_requeue < 0)
1950                 return -EINVAL;
1951
1952         /*
1953          * When PI not supported: return -ENOSYS if requeue_pi is true,
1954          * consequently the compiler knows requeue_pi is always false past
1955          * this point which will optimize away all the conditional code
1956          * further down.
1957          */
1958         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1959                 return -ENOSYS;
1960
1961         if (requeue_pi) {
1962                 /*
1963                  * Requeue PI only works on two distinct uaddrs. This
1964                  * check is only valid for private futexes. See below.
1965                  */
1966                 if (uaddr1 == uaddr2)
1967                         return -EINVAL;
1968
1969                 /*
1970                  * requeue_pi requires a pi_state, try to allocate it now
1971                  * without any locks in case it fails.
1972                  */
1973                 if (refill_pi_state_cache())
1974                         return -ENOMEM;
1975                 /*
1976                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1977                  * + nr_requeue, since it acquires the rt_mutex prior to
1978                  * returning to userspace, so as to not leave the rt_mutex with
1979                  * waiters and no owner.  However, second and third wake-ups
1980                  * cannot be predicted as they involve race conditions with the
1981                  * first wake and a fault while looking up the pi_state.  Both
1982                  * pthread_cond_signal() and pthread_cond_broadcast() should
1983                  * use nr_wake=1.
1984                  */
1985                 if (nr_wake != 1)
1986                         return -EINVAL;
1987         }
1988
1989 retry:
1990         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1991         if (unlikely(ret != 0))
1992                 goto out;
1993         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1994                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1995         if (unlikely(ret != 0))
1996                 goto out_put_key1;
1997
1998         /*
1999          * The check above which compares uaddrs is not sufficient for
2000          * shared futexes. We need to compare the keys:
2001          */
2002         if (requeue_pi && match_futex(&key1, &key2)) {
2003                 ret = -EINVAL;
2004                 goto out_put_keys;
2005         }
2006
2007         hb1 = hash_futex(&key1);
2008         hb2 = hash_futex(&key2);
2009
2010 retry_private:
2011         hb_waiters_inc(hb2);
2012         double_lock_hb(hb1, hb2);
2013
2014         if (likely(cmpval != NULL)) {
2015                 u32 curval;
2016
2017                 ret = get_futex_value_locked(&curval, uaddr1);
2018
2019                 if (unlikely(ret)) {
2020                         double_unlock_hb(hb1, hb2);
2021                         hb_waiters_dec(hb2);
2022
2023                         ret = get_user(curval, uaddr1);
2024                         if (ret)
2025                                 goto out_put_keys;
2026
2027                         if (!(flags & FLAGS_SHARED))
2028                                 goto retry_private;
2029
2030                         put_futex_key(&key2);
2031                         put_futex_key(&key1);
2032                         goto retry;
2033                 }
2034                 if (curval != *cmpval) {
2035                         ret = -EAGAIN;
2036                         goto out_unlock;
2037                 }
2038         }
2039
2040         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2041                 struct task_struct *exiting = NULL;
2042
2043                 /*
2044                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2045                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2046                  * bit.  We force this here where we are able to easily handle
2047                  * faults rather in the requeue loop below.
2048                  */
2049                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2050                                                  &key2, &pi_state,
2051                                                  &exiting, nr_requeue);
2052
2053                 /*
2054                  * At this point the top_waiter has either taken uaddr2 or is
2055                  * waiting on it.  If the former, then the pi_state will not
2056                  * exist yet, look it up one more time to ensure we have a
2057                  * reference to it. If the lock was taken, ret contains the
2058                  * vpid of the top waiter task.
2059                  * If the lock was not taken, we have pi_state and an initial
2060                  * refcount on it. In case of an error we have nothing.
2061                  */
2062                 if (ret > 0) {
2063                         WARN_ON(pi_state);
2064                         task_count++;
2065                         /*
2066                          * If we acquired the lock, then the user space value
2067                          * of uaddr2 should be vpid. It cannot be changed by
2068                          * the top waiter as it is blocked on hb2 lock if it
2069                          * tries to do so. If something fiddled with it behind
2070                          * our back the pi state lookup might unearth it. So
2071                          * we rather use the known value than rereading and
2072                          * handing potential crap to lookup_pi_state.
2073                          *
2074                          * If that call succeeds then we have pi_state and an
2075                          * initial refcount on it.
2076                          */
2077                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2078                                               &pi_state, &exiting);
2079                 }
2080
2081                 switch (ret) {
2082                 case 0:
2083                         /* We hold a reference on the pi state. */
2084                         break;
2085
2086                         /* If the above failed, then pi_state is NULL */
2087                 case -EFAULT:
2088                         double_unlock_hb(hb1, hb2);
2089                         hb_waiters_dec(hb2);
2090                         put_futex_key(&key2);
2091                         put_futex_key(&key1);
2092                         ret = fault_in_user_writeable(uaddr2);
2093                         if (!ret)
2094                                 goto retry;
2095                         goto out;
2096                 case -EBUSY:
2097                 case -EAGAIN:
2098                         /*
2099                          * Two reasons for this:
2100                          * - EBUSY: Owner is exiting and we just wait for the
2101                          *   exit to complete.
2102                          * - EAGAIN: The user space value changed.
2103                          */
2104                         double_unlock_hb(hb1, hb2);
2105                         hb_waiters_dec(hb2);
2106                         put_futex_key(&key2);
2107                         put_futex_key(&key1);
2108                         /*
2109                          * Handle the case where the owner is in the middle of
2110                          * exiting. Wait for the exit to complete otherwise
2111                          * this task might loop forever, aka. live lock.
2112                          */
2113                         wait_for_owner_exiting(ret, exiting);
2114                         cond_resched();
2115                         goto retry;
2116                 default:
2117                         goto out_unlock;
2118                 }
2119         }
2120
2121         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2122                 if (task_count - nr_wake >= nr_requeue)
2123                         break;
2124
2125                 if (!match_futex(&this->key, &key1))
2126                         continue;
2127
2128                 /*
2129                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2130                  * be paired with each other and no other futex ops.
2131                  *
2132                  * We should never be requeueing a futex_q with a pi_state,
2133                  * which is awaiting a futex_unlock_pi().
2134                  */
2135                 if ((requeue_pi && !this->rt_waiter) ||
2136                     (!requeue_pi && this->rt_waiter) ||
2137                     this->pi_state) {
2138                         ret = -EINVAL;
2139                         break;
2140                 }
2141
2142                 /*
2143                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2144                  * lock, we already woke the top_waiter.  If not, it will be
2145                  * woken by futex_unlock_pi().
2146                  */
2147                 if (++task_count <= nr_wake && !requeue_pi) {
2148                         mark_wake_futex(&wake_q, this);
2149                         continue;
2150                 }
2151
2152                 /* Ensure we requeue to the expected futex for requeue_pi. */
2153                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2154                         ret = -EINVAL;
2155                         break;
2156                 }
2157
2158                 /*
2159                  * Requeue nr_requeue waiters and possibly one more in the case
2160                  * of requeue_pi if we couldn't acquire the lock atomically.
2161                  */
2162                 if (requeue_pi) {
2163                         /*
2164                          * Prepare the waiter to take the rt_mutex. Take a
2165                          * refcount on the pi_state and store the pointer in
2166                          * the futex_q object of the waiter.
2167                          */
2168                         get_pi_state(pi_state);
2169                         this->pi_state = pi_state;
2170                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2171                                                         this->rt_waiter,
2172                                                         this->task);
2173                         if (ret == 1) {
2174                                 /*
2175                                  * We got the lock. We do neither drop the
2176                                  * refcount on pi_state nor clear
2177                                  * this->pi_state because the waiter needs the
2178                                  * pi_state for cleaning up the user space
2179                                  * value. It will drop the refcount after
2180                                  * doing so.
2181                                  */
2182                                 requeue_pi_wake_futex(this, &key2, hb2);
2183                                 continue;
2184                         } else if (ret) {
2185                                 /*
2186                                  * rt_mutex_start_proxy_lock() detected a
2187                                  * potential deadlock when we tried to queue
2188                                  * that waiter. Drop the pi_state reference
2189                                  * which we took above and remove the pointer
2190                                  * to the state from the waiters futex_q
2191                                  * object.
2192                                  */
2193                                 this->pi_state = NULL;
2194                                 put_pi_state(pi_state);
2195                                 /*
2196                                  * We stop queueing more waiters and let user
2197                                  * space deal with the mess.
2198                                  */
2199                                 break;
2200                         }
2201                 }
2202                 requeue_futex(this, hb1, hb2, &key2);
2203         }
2204
2205         /*
2206          * We took an extra initial reference to the pi_state either
2207          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2208          * need to drop it here again.
2209          */
2210         put_pi_state(pi_state);
2211
2212 out_unlock:
2213         double_unlock_hb(hb1, hb2);
2214         wake_up_q(&wake_q);
2215         hb_waiters_dec(hb2);
2216
2217 out_put_keys:
2218         put_futex_key(&key2);
2219 out_put_key1:
2220         put_futex_key(&key1);
2221 out:
2222         return ret ? ret : task_count;
2223 }
2224
2225 /* The key must be already stored in q->key. */
2226 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2227         __acquires(&hb->lock)
2228 {
2229         struct futex_hash_bucket *hb;
2230
2231         hb = hash_futex(&q->key);
2232
2233         /*
2234          * Increment the counter before taking the lock so that
2235          * a potential waker won't miss a to-be-slept task that is
2236          * waiting for the spinlock. This is safe as all queue_lock()
2237          * users end up calling queue_me(). Similarly, for housekeeping,
2238          * decrement the counter at queue_unlock() when some error has
2239          * occurred and we don't end up adding the task to the list.
2240          */
2241         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2242
2243         q->lock_ptr = &hb->lock;
2244
2245         spin_lock(&hb->lock);
2246         return hb;
2247 }
2248
2249 static inline void
2250 queue_unlock(struct futex_hash_bucket *hb)
2251         __releases(&hb->lock)
2252 {
2253         spin_unlock(&hb->lock);
2254         hb_waiters_dec(hb);
2255 }
2256
2257 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2258 {
2259         int prio;
2260
2261         /*
2262          * The priority used to register this element is
2263          * - either the real thread-priority for the real-time threads
2264          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2265          * - or MAX_RT_PRIO for non-RT threads.
2266          * Thus, all RT-threads are woken first in priority order, and
2267          * the others are woken last, in FIFO order.
2268          */
2269         prio = min(current->normal_prio, MAX_RT_PRIO);
2270
2271         plist_node_init(&q->list, prio);
2272         plist_add(&q->list, &hb->chain);
2273         q->task = current;
2274 }
2275
2276 /**
2277  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2278  * @q:  The futex_q to enqueue
2279  * @hb: The destination hash bucket
2280  *
2281  * The hb->lock must be held by the caller, and is released here. A call to
2282  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2283  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2284  * or nothing if the unqueue is done as part of the wake process and the unqueue
2285  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2286  * an example).
2287  */
2288 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2289         __releases(&hb->lock)
2290 {
2291         __queue_me(q, hb);
2292         spin_unlock(&hb->lock);
2293 }
2294
2295 /**
2296  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2297  * @q:  The futex_q to unqueue
2298  *
2299  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2300  * be paired with exactly one earlier call to queue_me().
2301  *
2302  * Return:
2303  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2304  *  - 0 - if the futex_q was already removed by the waking thread
2305  */
2306 static int unqueue_me(struct futex_q *q)
2307 {
2308         spinlock_t *lock_ptr;
2309         int ret = 0;
2310
2311         /* In the common case we don't take the spinlock, which is nice. */
2312 retry:
2313         /*
2314          * q->lock_ptr can change between this read and the following spin_lock.
2315          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2316          * optimizing lock_ptr out of the logic below.
2317          */
2318         lock_ptr = READ_ONCE(q->lock_ptr);
2319         if (lock_ptr != NULL) {
2320                 spin_lock(lock_ptr);
2321                 /*
2322                  * q->lock_ptr can change between reading it and
2323                  * spin_lock(), causing us to take the wrong lock.  This
2324                  * corrects the race condition.
2325                  *
2326                  * Reasoning goes like this: if we have the wrong lock,
2327                  * q->lock_ptr must have changed (maybe several times)
2328                  * between reading it and the spin_lock().  It can
2329                  * change again after the spin_lock() but only if it was
2330                  * already changed before the spin_lock().  It cannot,
2331                  * however, change back to the original value.  Therefore
2332                  * we can detect whether we acquired the correct lock.
2333                  */
2334                 if (unlikely(lock_ptr != q->lock_ptr)) {
2335                         spin_unlock(lock_ptr);
2336                         goto retry;
2337                 }
2338                 __unqueue_futex(q);
2339
2340                 BUG_ON(q->pi_state);
2341
2342                 spin_unlock(lock_ptr);
2343                 ret = 1;
2344         }
2345
2346         return ret;
2347 }
2348
2349 /*
2350  * PI futexes can not be requeued and must remove themself from the
2351  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2352  * and dropped here.
2353  */
2354 static void unqueue_me_pi(struct futex_q *q)
2355         __releases(q->lock_ptr)
2356 {
2357         __unqueue_futex(q);
2358
2359         BUG_ON(!q->pi_state);
2360         put_pi_state(q->pi_state);
2361         q->pi_state = NULL;
2362
2363         spin_unlock(q->lock_ptr);
2364 }
2365
2366 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2367                                 struct task_struct *argowner)
2368 {
2369         struct futex_pi_state *pi_state = q->pi_state;
2370         u32 uval, uninitialized_var(curval), newval;
2371         struct task_struct *oldowner, *newowner;
2372         u32 newtid;
2373         int ret, err = 0;
2374
2375         lockdep_assert_held(q->lock_ptr);
2376
2377         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2378
2379         oldowner = pi_state->owner;
2380
2381         /*
2382          * We are here because either:
2383          *
2384          *  - we stole the lock and pi_state->owner needs updating to reflect
2385          *    that (@argowner == current),
2386          *
2387          * or:
2388          *
2389          *  - someone stole our lock and we need to fix things to point to the
2390          *    new owner (@argowner == NULL).
2391          *
2392          * Either way, we have to replace the TID in the user space variable.
2393          * This must be atomic as we have to preserve the owner died bit here.
2394          *
2395          * Note: We write the user space value _before_ changing the pi_state
2396          * because we can fault here. Imagine swapped out pages or a fork
2397          * that marked all the anonymous memory readonly for cow.
2398          *
2399          * Modifying pi_state _before_ the user space value would leave the
2400          * pi_state in an inconsistent state when we fault here, because we
2401          * need to drop the locks to handle the fault. This might be observed
2402          * in the PID check in lookup_pi_state.
2403          */
2404 retry:
2405         if (!argowner) {
2406                 if (oldowner != current) {
2407                         /*
2408                          * We raced against a concurrent self; things are
2409                          * already fixed up. Nothing to do.
2410                          */
2411                         ret = 0;
2412                         goto out_unlock;
2413                 }
2414
2415                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2416                         /* We got the lock after all, nothing to fix. */
2417                         ret = 0;
2418                         goto out_unlock;
2419                 }
2420
2421                 /*
2422                  * Since we just failed the trylock; there must be an owner.
2423                  */
2424                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2425                 BUG_ON(!newowner);
2426         } else {
2427                 WARN_ON_ONCE(argowner != current);
2428                 if (oldowner == current) {
2429                         /*
2430                          * We raced against a concurrent self; things are
2431                          * already fixed up. Nothing to do.
2432                          */
2433                         ret = 0;
2434                         goto out_unlock;
2435                 }
2436                 newowner = argowner;
2437         }
2438
2439         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2440         /* Owner died? */
2441         if (!pi_state->owner)
2442                 newtid |= FUTEX_OWNER_DIED;
2443
2444         err = get_futex_value_locked(&uval, uaddr);
2445         if (err)
2446                 goto handle_err;
2447
2448         for (;;) {
2449                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2450
2451                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2452                 if (err)
2453                         goto handle_err;
2454
2455                 if (curval == uval)
2456                         break;
2457                 uval = curval;
2458         }
2459
2460         /*
2461          * We fixed up user space. Now we need to fix the pi_state
2462          * itself.
2463          */
2464         if (pi_state->owner != NULL) {
2465                 raw_spin_lock(&pi_state->owner->pi_lock);
2466                 WARN_ON(list_empty(&pi_state->list));
2467                 list_del_init(&pi_state->list);
2468                 raw_spin_unlock(&pi_state->owner->pi_lock);
2469         }
2470
2471         pi_state->owner = newowner;
2472
2473         raw_spin_lock(&newowner->pi_lock);
2474         WARN_ON(!list_empty(&pi_state->list));
2475         list_add(&pi_state->list, &newowner->pi_state_list);
2476         raw_spin_unlock(&newowner->pi_lock);
2477         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2478
2479         return 0;
2480
2481         /*
2482          * In order to reschedule or handle a page fault, we need to drop the
2483          * locks here. In the case of a fault, this gives the other task
2484          * (either the highest priority waiter itself or the task which stole
2485          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2486          * are back from handling the fault we need to check the pi_state after
2487          * reacquiring the locks and before trying to do another fixup. When
2488          * the fixup has been done already we simply return.
2489          *
2490          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2491          * drop hb->lock since the caller owns the hb -> futex_q relation.
2492          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2493          */
2494 handle_err:
2495         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2496         spin_unlock(q->lock_ptr);
2497
2498         switch (err) {
2499         case -EFAULT:
2500                 ret = fault_in_user_writeable(uaddr);
2501                 break;
2502
2503         case -EAGAIN:
2504                 cond_resched();
2505                 ret = 0;
2506                 break;
2507
2508         default:
2509                 WARN_ON_ONCE(1);
2510                 ret = err;
2511                 break;
2512         }
2513
2514         spin_lock(q->lock_ptr);
2515         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2516
2517         /*
2518          * Check if someone else fixed it for us:
2519          */
2520         if (pi_state->owner != oldowner) {
2521                 ret = 0;
2522                 goto out_unlock;
2523         }
2524
2525         if (ret)
2526                 goto out_unlock;
2527
2528         goto retry;
2529
2530 out_unlock:
2531         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2532         return ret;
2533 }
2534
2535 static long futex_wait_restart(struct restart_block *restart);
2536
2537 /**
2538  * fixup_owner() - Post lock pi_state and corner case management
2539  * @uaddr:      user address of the futex
2540  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2541  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2542  *
2543  * After attempting to lock an rt_mutex, this function is called to cleanup
2544  * the pi_state owner as well as handle race conditions that may allow us to
2545  * acquire the lock. Must be called with the hb lock held.
2546  *
2547  * Return:
2548  *  -  1 - success, lock taken;
2549  *  -  0 - success, lock not taken;
2550  *  - <0 - on error (-EFAULT)
2551  */
2552 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2553 {
2554         int ret = 0;
2555
2556         if (locked) {
2557                 /*
2558                  * Got the lock. We might not be the anticipated owner if we
2559                  * did a lock-steal - fix up the PI-state in that case:
2560                  *
2561                  * Speculative pi_state->owner read (we don't hold wait_lock);
2562                  * since we own the lock pi_state->owner == current is the
2563                  * stable state, anything else needs more attention.
2564                  */
2565                 if (q->pi_state->owner != current)
2566                         ret = fixup_pi_state_owner(uaddr, q, current);
2567                 goto out;
2568         }
2569
2570         /*
2571          * If we didn't get the lock; check if anybody stole it from us. In
2572          * that case, we need to fix up the uval to point to them instead of
2573          * us, otherwise bad things happen. [10]
2574          *
2575          * Another speculative read; pi_state->owner == current is unstable
2576          * but needs our attention.
2577          */
2578         if (q->pi_state->owner == current) {
2579                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2580                 goto out;
2581         }
2582
2583         /*
2584          * Paranoia check. If we did not take the lock, then we should not be
2585          * the owner of the rt_mutex.
2586          */
2587         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2588                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2589                                 "pi-state %p\n", ret,
2590                                 q->pi_state->pi_mutex.owner,
2591                                 q->pi_state->owner);
2592         }
2593
2594 out:
2595         return ret ? ret : locked;
2596 }
2597
2598 /**
2599  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2600  * @hb:         the futex hash bucket, must be locked by the caller
2601  * @q:          the futex_q to queue up on
2602  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2603  */
2604 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2605                                 struct hrtimer_sleeper *timeout)
2606 {
2607         /*
2608          * The task state is guaranteed to be set before another task can
2609          * wake it. set_current_state() is implemented using smp_store_mb() and
2610          * queue_me() calls spin_unlock() upon completion, both serializing
2611          * access to the hash list and forcing another memory barrier.
2612          */
2613         set_current_state(TASK_INTERRUPTIBLE);
2614         queue_me(q, hb);
2615
2616         /* Arm the timer */
2617         if (timeout)
2618                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2619
2620         /*
2621          * If we have been removed from the hash list, then another task
2622          * has tried to wake us, and we can skip the call to schedule().
2623          */
2624         if (likely(!plist_node_empty(&q->list))) {
2625                 /*
2626                  * If the timer has already expired, current will already be
2627                  * flagged for rescheduling. Only call schedule if there
2628                  * is no timeout, or if it has yet to expire.
2629                  */
2630                 if (!timeout || timeout->task)
2631                         freezable_schedule();
2632         }
2633         __set_current_state(TASK_RUNNING);
2634 }
2635
2636 /**
2637  * futex_wait_setup() - Prepare to wait on a futex
2638  * @uaddr:      the futex userspace address
2639  * @val:        the expected value
2640  * @flags:      futex flags (FLAGS_SHARED, etc.)
2641  * @q:          the associated futex_q
2642  * @hb:         storage for hash_bucket pointer to be returned to caller
2643  *
2644  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2645  * compare it with the expected value.  Handle atomic faults internally.
2646  * Return with the hb lock held and a q.key reference on success, and unlocked
2647  * with no q.key reference on failure.
2648  *
2649  * Return:
2650  *  -  0 - uaddr contains val and hb has been locked;
2651  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2652  */
2653 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2654                            struct futex_q *q, struct futex_hash_bucket **hb)
2655 {
2656         u32 uval;
2657         int ret;
2658
2659         /*
2660          * Access the page AFTER the hash-bucket is locked.
2661          * Order is important:
2662          *
2663          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2664          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2665          *
2666          * The basic logical guarantee of a futex is that it blocks ONLY
2667          * if cond(var) is known to be true at the time of blocking, for
2668          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2669          * would open a race condition where we could block indefinitely with
2670          * cond(var) false, which would violate the guarantee.
2671          *
2672          * On the other hand, we insert q and release the hash-bucket only
2673          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2674          * absorb a wakeup if *uaddr does not match the desired values
2675          * while the syscall executes.
2676          */
2677 retry:
2678         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2679         if (unlikely(ret != 0))
2680                 return ret;
2681
2682 retry_private:
2683         *hb = queue_lock(q);
2684
2685         ret = get_futex_value_locked(&uval, uaddr);
2686
2687         if (ret) {
2688                 queue_unlock(*hb);
2689
2690                 ret = get_user(uval, uaddr);
2691                 if (ret)
2692                         goto out;
2693
2694                 if (!(flags & FLAGS_SHARED))
2695                         goto retry_private;
2696
2697                 put_futex_key(&q->key);
2698                 goto retry;
2699         }
2700
2701         if (uval != val) {
2702                 queue_unlock(*hb);
2703                 ret = -EWOULDBLOCK;
2704         }
2705
2706 out:
2707         if (ret)
2708                 put_futex_key(&q->key);
2709         return ret;
2710 }
2711
2712 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2713                       ktime_t *abs_time, u32 bitset)
2714 {
2715         struct hrtimer_sleeper timeout, *to;
2716         struct restart_block *restart;
2717         struct futex_hash_bucket *hb;
2718         struct futex_q q = futex_q_init;
2719         int ret;
2720
2721         if (!bitset)
2722                 return -EINVAL;
2723         q.bitset = bitset;
2724
2725         to = futex_setup_timer(abs_time, &timeout, flags,
2726                                current->timer_slack_ns);
2727 retry:
2728         /*
2729          * Prepare to wait on uaddr. On success, holds hb lock and increments
2730          * q.key refs.
2731          */
2732         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2733         if (ret)
2734                 goto out;
2735
2736         /* queue_me and wait for wakeup, timeout, or a signal. */
2737         futex_wait_queue_me(hb, &q, to);
2738
2739         /* If we were woken (and unqueued), we succeeded, whatever. */
2740         ret = 0;
2741         /* unqueue_me() drops q.key ref */
2742         if (!unqueue_me(&q))
2743                 goto out;
2744         ret = -ETIMEDOUT;
2745         if (to && !to->task)
2746                 goto out;
2747
2748         /*
2749          * We expect signal_pending(current), but we might be the
2750          * victim of a spurious wakeup as well.
2751          */
2752         if (!signal_pending(current))
2753                 goto retry;
2754
2755         ret = -ERESTARTSYS;
2756         if (!abs_time)
2757                 goto out;
2758
2759         restart = &current->restart_block;
2760         restart->fn = futex_wait_restart;
2761         restart->futex.uaddr = uaddr;
2762         restart->futex.val = val;
2763         restart->futex.time = *abs_time;
2764         restart->futex.bitset = bitset;
2765         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2766
2767         ret = -ERESTART_RESTARTBLOCK;
2768
2769 out:
2770         if (to) {
2771                 hrtimer_cancel(&to->timer);
2772                 destroy_hrtimer_on_stack(&to->timer);
2773         }
2774         return ret;
2775 }
2776
2777
2778 static long futex_wait_restart(struct restart_block *restart)
2779 {
2780         u32 __user *uaddr = restart->futex.uaddr;
2781         ktime_t t, *tp = NULL;
2782
2783         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2784                 t = restart->futex.time;
2785                 tp = &t;
2786         }
2787         restart->fn = do_no_restart_syscall;
2788
2789         return (long)futex_wait(uaddr, restart->futex.flags,
2790                                 restart->futex.val, tp, restart->futex.bitset);
2791 }
2792
2793
2794 /*
2795  * Userspace tried a 0 -> TID atomic transition of the futex value
2796  * and failed. The kernel side here does the whole locking operation:
2797  * if there are waiters then it will block as a consequence of relying
2798  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2799  * a 0 value of the futex too.).
2800  *
2801  * Also serves as futex trylock_pi()'ing, and due semantics.
2802  */
2803 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2804                          ktime_t *time, int trylock)
2805 {
2806         struct hrtimer_sleeper timeout, *to;
2807         struct futex_pi_state *pi_state = NULL;
2808         struct task_struct *exiting = NULL;
2809         struct rt_mutex_waiter rt_waiter;
2810         struct futex_hash_bucket *hb;
2811         struct futex_q q = futex_q_init;
2812         int res, ret;
2813
2814         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2815                 return -ENOSYS;
2816
2817         if (refill_pi_state_cache())
2818                 return -ENOMEM;
2819
2820         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2821
2822 retry:
2823         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2824         if (unlikely(ret != 0))
2825                 goto out;
2826
2827 retry_private:
2828         hb = queue_lock(&q);
2829
2830         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2831                                    &exiting, 0);
2832         if (unlikely(ret)) {
2833                 /*
2834                  * Atomic work succeeded and we got the lock,
2835                  * or failed. Either way, we do _not_ block.
2836                  */
2837                 switch (ret) {
2838                 case 1:
2839                         /* We got the lock. */
2840                         ret = 0;
2841                         goto out_unlock_put_key;
2842                 case -EFAULT:
2843                         goto uaddr_faulted;
2844                 case -EBUSY:
2845                 case -EAGAIN:
2846                         /*
2847                          * Two reasons for this:
2848                          * - EBUSY: Task is exiting and we just wait for the
2849                          *   exit to complete.
2850                          * - EAGAIN: The user space value changed.
2851                          */
2852                         queue_unlock(hb);
2853                         put_futex_key(&q.key);
2854                         /*
2855                          * Handle the case where the owner is in the middle of
2856                          * exiting. Wait for the exit to complete otherwise
2857                          * this task might loop forever, aka. live lock.
2858                          */
2859                         wait_for_owner_exiting(ret, exiting);
2860                         cond_resched();
2861                         goto retry;
2862                 default:
2863                         goto out_unlock_put_key;
2864                 }
2865         }
2866
2867         WARN_ON(!q.pi_state);
2868
2869         /*
2870          * Only actually queue now that the atomic ops are done:
2871          */
2872         __queue_me(&q, hb);
2873
2874         if (trylock) {
2875                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2876                 /* Fixup the trylock return value: */
2877                 ret = ret ? 0 : -EWOULDBLOCK;
2878                 goto no_block;
2879         }
2880
2881         rt_mutex_init_waiter(&rt_waiter);
2882
2883         /*
2884          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2885          * hold it while doing rt_mutex_start_proxy(), because then it will
2886          * include hb->lock in the blocking chain, even through we'll not in
2887          * fact hold it while blocking. This will lead it to report -EDEADLK
2888          * and BUG when futex_unlock_pi() interleaves with this.
2889          *
2890          * Therefore acquire wait_lock while holding hb->lock, but drop the
2891          * latter before calling __rt_mutex_start_proxy_lock(). This
2892          * interleaves with futex_unlock_pi() -- which does a similar lock
2893          * handoff -- such that the latter can observe the futex_q::pi_state
2894          * before __rt_mutex_start_proxy_lock() is done.
2895          */
2896         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2897         spin_unlock(q.lock_ptr);
2898         /*
2899          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2900          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2901          * it sees the futex_q::pi_state.
2902          */
2903         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2904         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2905
2906         if (ret) {
2907                 if (ret == 1)
2908                         ret = 0;
2909                 goto cleanup;
2910         }
2911
2912         if (unlikely(to))
2913                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2914
2915         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2916
2917 cleanup:
2918         spin_lock(q.lock_ptr);
2919         /*
2920          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2921          * first acquire the hb->lock before removing the lock from the
2922          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2923          * lists consistent.
2924          *
2925          * In particular; it is important that futex_unlock_pi() can not
2926          * observe this inconsistency.
2927          */
2928         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2929                 ret = 0;
2930
2931 no_block:
2932         /*
2933          * Fixup the pi_state owner and possibly acquire the lock if we
2934          * haven't already.
2935          */
2936         res = fixup_owner(uaddr, &q, !ret);
2937         /*
2938          * If fixup_owner() returned an error, proprogate that.  If it acquired
2939          * the lock, clear our -ETIMEDOUT or -EINTR.
2940          */
2941         if (res)
2942                 ret = (res < 0) ? res : 0;
2943
2944         /*
2945          * If fixup_owner() faulted and was unable to handle the fault, unlock
2946          * it and return the fault to userspace.
2947          */
2948         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2949                 pi_state = q.pi_state;
2950                 get_pi_state(pi_state);
2951         }
2952
2953         /* Unqueue and drop the lock */
2954         unqueue_me_pi(&q);
2955
2956         if (pi_state) {
2957                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2958                 put_pi_state(pi_state);
2959         }
2960
2961         goto out_put_key;
2962
2963 out_unlock_put_key:
2964         queue_unlock(hb);
2965
2966 out_put_key:
2967         put_futex_key(&q.key);
2968 out:
2969         if (to) {
2970                 hrtimer_cancel(&to->timer);
2971                 destroy_hrtimer_on_stack(&to->timer);
2972         }
2973         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2974
2975 uaddr_faulted:
2976         queue_unlock(hb);
2977
2978         ret = fault_in_user_writeable(uaddr);
2979         if (ret)
2980                 goto out_put_key;
2981
2982         if (!(flags & FLAGS_SHARED))
2983                 goto retry_private;
2984
2985         put_futex_key(&q.key);
2986         goto retry;
2987 }
2988
2989 /*
2990  * Userspace attempted a TID -> 0 atomic transition, and failed.
2991  * This is the in-kernel slowpath: we look up the PI state (if any),
2992  * and do the rt-mutex unlock.
2993  */
2994 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2995 {
2996         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2997         union futex_key key = FUTEX_KEY_INIT;
2998         struct futex_hash_bucket *hb;
2999         struct futex_q *top_waiter;
3000         int ret;
3001
3002         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3003                 return -ENOSYS;
3004
3005 retry:
3006         if (get_user(uval, uaddr))
3007                 return -EFAULT;
3008         /*
3009          * We release only a lock we actually own:
3010          */
3011         if ((uval & FUTEX_TID_MASK) != vpid)
3012                 return -EPERM;
3013
3014         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3015         if (ret)
3016                 return ret;
3017
3018         hb = hash_futex(&key);
3019         spin_lock(&hb->lock);
3020
3021         /*
3022          * Check waiters first. We do not trust user space values at
3023          * all and we at least want to know if user space fiddled
3024          * with the futex value instead of blindly unlocking.
3025          */
3026         top_waiter = futex_top_waiter(hb, &key);
3027         if (top_waiter) {
3028                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3029
3030                 ret = -EINVAL;
3031                 if (!pi_state)
3032                         goto out_unlock;
3033
3034                 /*
3035                  * If current does not own the pi_state then the futex is
3036                  * inconsistent and user space fiddled with the futex value.
3037                  */
3038                 if (pi_state->owner != current)
3039                         goto out_unlock;
3040
3041                 get_pi_state(pi_state);
3042                 /*
3043                  * By taking wait_lock while still holding hb->lock, we ensure
3044                  * there is no point where we hold neither; and therefore
3045                  * wake_futex_pi() must observe a state consistent with what we
3046                  * observed.
3047                  *
3048                  * In particular; this forces __rt_mutex_start_proxy() to
3049                  * complete such that we're guaranteed to observe the
3050                  * rt_waiter. Also see the WARN in wake_futex_pi().
3051                  */
3052                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3053                 spin_unlock(&hb->lock);
3054
3055                 /* drops pi_state->pi_mutex.wait_lock */
3056                 ret = wake_futex_pi(uaddr, uval, pi_state);
3057
3058                 put_pi_state(pi_state);
3059
3060                 /*
3061                  * Success, we're done! No tricky corner cases.
3062                  */
3063                 if (!ret)
3064                         goto out_putkey;
3065                 /*
3066                  * The atomic access to the futex value generated a
3067                  * pagefault, so retry the user-access and the wakeup:
3068                  */
3069                 if (ret == -EFAULT)
3070                         goto pi_faulted;
3071                 /*
3072                  * A unconditional UNLOCK_PI op raced against a waiter
3073                  * setting the FUTEX_WAITERS bit. Try again.
3074                  */
3075                 if (ret == -EAGAIN)
3076                         goto pi_retry;
3077                 /*
3078                  * wake_futex_pi has detected invalid state. Tell user
3079                  * space.
3080                  */
3081                 goto out_putkey;
3082         }
3083
3084         /*
3085          * We have no kernel internal state, i.e. no waiters in the
3086          * kernel. Waiters which are about to queue themselves are stuck
3087          * on hb->lock. So we can safely ignore them. We do neither
3088          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3089          * owner.
3090          */
3091         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3092                 spin_unlock(&hb->lock);
3093                 switch (ret) {
3094                 case -EFAULT:
3095                         goto pi_faulted;
3096
3097                 case -EAGAIN:
3098                         goto pi_retry;
3099
3100                 default:
3101                         WARN_ON_ONCE(1);
3102                         goto out_putkey;
3103                 }
3104         }
3105
3106         /*
3107          * If uval has changed, let user space handle it.
3108          */
3109         ret = (curval == uval) ? 0 : -EAGAIN;
3110
3111 out_unlock:
3112         spin_unlock(&hb->lock);
3113 out_putkey:
3114         put_futex_key(&key);
3115         return ret;
3116
3117 pi_retry:
3118         put_futex_key(&key);
3119         cond_resched();
3120         goto retry;
3121
3122 pi_faulted:
3123         put_futex_key(&key);
3124
3125         ret = fault_in_user_writeable(uaddr);
3126         if (!ret)
3127                 goto retry;
3128
3129         return ret;
3130 }
3131
3132 /**
3133  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3134  * @hb:         the hash_bucket futex_q was original enqueued on
3135  * @q:          the futex_q woken while waiting to be requeued
3136  * @key2:       the futex_key of the requeue target futex
3137  * @timeout:    the timeout associated with the wait (NULL if none)
3138  *
3139  * Detect if the task was woken on the initial futex as opposed to the requeue
3140  * target futex.  If so, determine if it was a timeout or a signal that caused
3141  * the wakeup and return the appropriate error code to the caller.  Must be
3142  * called with the hb lock held.
3143  *
3144  * Return:
3145  *  -  0 = no early wakeup detected;
3146  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3147  */
3148 static inline
3149 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3150                                    struct futex_q *q, union futex_key *key2,
3151                                    struct hrtimer_sleeper *timeout)
3152 {
3153         int ret = 0;
3154
3155         /*
3156          * With the hb lock held, we avoid races while we process the wakeup.
3157          * We only need to hold hb (and not hb2) to ensure atomicity as the
3158          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3159          * It can't be requeued from uaddr2 to something else since we don't
3160          * support a PI aware source futex for requeue.
3161          */
3162         if (!match_futex(&q->key, key2)) {
3163                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3164                 /*
3165                  * We were woken prior to requeue by a timeout or a signal.
3166                  * Unqueue the futex_q and determine which it was.
3167                  */
3168                 plist_del(&q->list, &hb->chain);
3169                 hb_waiters_dec(hb);
3170
3171                 /* Handle spurious wakeups gracefully */
3172                 ret = -EWOULDBLOCK;
3173                 if (timeout && !timeout->task)
3174                         ret = -ETIMEDOUT;
3175                 else if (signal_pending(current))
3176                         ret = -ERESTARTNOINTR;
3177         }
3178         return ret;
3179 }
3180
3181 /**
3182  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3183  * @uaddr:      the futex we initially wait on (non-pi)
3184  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3185  *              the same type, no requeueing from private to shared, etc.
3186  * @val:        the expected value of uaddr
3187  * @abs_time:   absolute timeout
3188  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3189  * @uaddr2:     the pi futex we will take prior to returning to user-space
3190  *
3191  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3192  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3193  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3194  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3195  * without one, the pi logic would not know which task to boost/deboost, if
3196  * there was a need to.
3197  *
3198  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3199  * via the following--
3200  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3201  * 2) wakeup on uaddr2 after a requeue
3202  * 3) signal
3203  * 4) timeout
3204  *
3205  * If 3, cleanup and return -ERESTARTNOINTR.
3206  *
3207  * If 2, we may then block on trying to take the rt_mutex and return via:
3208  * 5) successful lock
3209  * 6) signal
3210  * 7) timeout
3211  * 8) other lock acquisition failure
3212  *
3213  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3214  *
3215  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3216  *
3217  * Return:
3218  *  -  0 - On success;
3219  *  - <0 - On error
3220  */
3221 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3222                                  u32 val, ktime_t *abs_time, u32 bitset,
3223                                  u32 __user *uaddr2)
3224 {
3225         struct hrtimer_sleeper timeout, *to;
3226         struct futex_pi_state *pi_state = NULL;
3227         struct rt_mutex_waiter rt_waiter;
3228         struct futex_hash_bucket *hb;
3229         union futex_key key2 = FUTEX_KEY_INIT;
3230         struct futex_q q = futex_q_init;
3231         int res, ret;
3232
3233         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3234                 return -ENOSYS;
3235
3236         if (uaddr == uaddr2)
3237                 return -EINVAL;
3238
3239         if (!bitset)
3240                 return -EINVAL;
3241
3242         to = futex_setup_timer(abs_time, &timeout, flags,
3243                                current->timer_slack_ns);
3244
3245         /*
3246          * The waiter is allocated on our stack, manipulated by the requeue
3247          * code while we sleep on uaddr.
3248          */
3249         rt_mutex_init_waiter(&rt_waiter);
3250
3251         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3252         if (unlikely(ret != 0))
3253                 goto out;
3254
3255         q.bitset = bitset;
3256         q.rt_waiter = &rt_waiter;
3257         q.requeue_pi_key = &key2;
3258
3259         /*
3260          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3261          * count.
3262          */
3263         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3264         if (ret)
3265                 goto out_key2;
3266
3267         /*
3268          * The check above which compares uaddrs is not sufficient for
3269          * shared futexes. We need to compare the keys:
3270          */
3271         if (match_futex(&q.key, &key2)) {
3272                 queue_unlock(hb);
3273                 ret = -EINVAL;
3274                 goto out_put_keys;
3275         }
3276
3277         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3278         futex_wait_queue_me(hb, &q, to);
3279
3280         spin_lock(&hb->lock);
3281         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3282         spin_unlock(&hb->lock);
3283         if (ret)
3284                 goto out_put_keys;
3285
3286         /*
3287          * In order for us to be here, we know our q.key == key2, and since
3288          * we took the hb->lock above, we also know that futex_requeue() has
3289          * completed and we no longer have to concern ourselves with a wakeup
3290          * race with the atomic proxy lock acquisition by the requeue code. The
3291          * futex_requeue dropped our key1 reference and incremented our key2
3292          * reference count.
3293          */
3294
3295         /* Check if the requeue code acquired the second futex for us. */
3296         if (!q.rt_waiter) {
3297                 /*
3298                  * Got the lock. We might not be the anticipated owner if we
3299                  * did a lock-steal - fix up the PI-state in that case.
3300                  */
3301                 if (q.pi_state && (q.pi_state->owner != current)) {
3302                         spin_lock(q.lock_ptr);
3303                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3304                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3305                                 pi_state = q.pi_state;
3306                                 get_pi_state(pi_state);
3307                         }
3308                         /*
3309                          * Drop the reference to the pi state which
3310                          * the requeue_pi() code acquired for us.
3311                          */
3312                         put_pi_state(q.pi_state);
3313                         spin_unlock(q.lock_ptr);
3314                 }
3315         } else {
3316                 struct rt_mutex *pi_mutex;
3317
3318                 /*
3319                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3320                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3321                  * the pi_state.
3322                  */
3323                 WARN_ON(!q.pi_state);
3324                 pi_mutex = &q.pi_state->pi_mutex;
3325                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3326
3327                 spin_lock(q.lock_ptr);
3328                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3329                         ret = 0;
3330
3331                 debug_rt_mutex_free_waiter(&rt_waiter);
3332                 /*
3333                  * Fixup the pi_state owner and possibly acquire the lock if we
3334                  * haven't already.
3335                  */
3336                 res = fixup_owner(uaddr2, &q, !ret);
3337                 /*
3338                  * If fixup_owner() returned an error, proprogate that.  If it
3339                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3340                  */
3341                 if (res)
3342                         ret = (res < 0) ? res : 0;
3343
3344                 /*
3345                  * If fixup_pi_state_owner() faulted and was unable to handle
3346                  * the fault, unlock the rt_mutex and return the fault to
3347                  * userspace.
3348                  */
3349                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3350                         pi_state = q.pi_state;
3351                         get_pi_state(pi_state);
3352                 }
3353
3354                 /* Unqueue and drop the lock. */
3355                 unqueue_me_pi(&q);
3356         }
3357
3358         if (pi_state) {
3359                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3360                 put_pi_state(pi_state);
3361         }
3362
3363         if (ret == -EINTR) {
3364                 /*
3365                  * We've already been requeued, but cannot restart by calling
3366                  * futex_lock_pi() directly. We could restart this syscall, but
3367                  * it would detect that the user space "val" changed and return
3368                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3369                  * -EWOULDBLOCK directly.
3370                  */
3371                 ret = -EWOULDBLOCK;
3372         }
3373
3374 out_put_keys:
3375         put_futex_key(&q.key);
3376 out_key2:
3377         put_futex_key(&key2);
3378
3379 out:
3380         if (to) {
3381                 hrtimer_cancel(&to->timer);
3382                 destroy_hrtimer_on_stack(&to->timer);
3383         }
3384         return ret;
3385 }
3386
3387 /*
3388  * Support for robust futexes: the kernel cleans up held futexes at
3389  * thread exit time.
3390  *
3391  * Implementation: user-space maintains a per-thread list of locks it
3392  * is holding. Upon do_exit(), the kernel carefully walks this list,
3393  * and marks all locks that are owned by this thread with the
3394  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3395  * always manipulated with the lock held, so the list is private and
3396  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3397  * field, to allow the kernel to clean up if the thread dies after
3398  * acquiring the lock, but just before it could have added itself to
3399  * the list. There can only be one such pending lock.
3400  */
3401
3402 /**
3403  * sys_set_robust_list() - Set the robust-futex list head of a task
3404  * @head:       pointer to the list-head
3405  * @len:        length of the list-head, as userspace expects
3406  */
3407 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3408                 size_t, len)
3409 {
3410         if (!futex_cmpxchg_enabled)
3411                 return -ENOSYS;
3412         /*
3413          * The kernel knows only one size for now:
3414          */
3415         if (unlikely(len != sizeof(*head)))
3416                 return -EINVAL;
3417
3418         current->robust_list = head;
3419
3420         return 0;
3421 }
3422
3423 /**
3424  * sys_get_robust_list() - Get the robust-futex list head of a task
3425  * @pid:        pid of the process [zero for current task]
3426  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3427  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3428  */
3429 SYSCALL_DEFINE3(get_robust_list, int, pid,
3430                 struct robust_list_head __user * __user *, head_ptr,
3431                 size_t __user *, len_ptr)
3432 {
3433         struct robust_list_head __user *head;
3434         unsigned long ret;
3435         struct task_struct *p;
3436
3437         if (!futex_cmpxchg_enabled)
3438                 return -ENOSYS;
3439
3440         rcu_read_lock();
3441
3442         ret = -ESRCH;
3443         if (!pid)
3444                 p = current;
3445         else {
3446                 p = find_task_by_vpid(pid);
3447                 if (!p)
3448                         goto err_unlock;
3449         }
3450
3451         ret = -EPERM;
3452         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3453                 goto err_unlock;
3454
3455         head = p->robust_list;
3456         rcu_read_unlock();
3457
3458         if (put_user(sizeof(*head), len_ptr))
3459                 return -EFAULT;
3460         return put_user(head, head_ptr);
3461
3462 err_unlock:
3463         rcu_read_unlock();
3464
3465         return ret;
3466 }
3467
3468 /* Constants for the pending_op argument of handle_futex_death */
3469 #define HANDLE_DEATH_PENDING    true
3470 #define HANDLE_DEATH_LIST       false
3471
3472 /*
3473  * Process a futex-list entry, check whether it's owned by the
3474  * dying task, and do notification if so:
3475  */
3476 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3477                               bool pi, bool pending_op)
3478 {
3479         u32 uval, uninitialized_var(nval), mval;
3480         int err;
3481
3482         /* Futex address must be 32bit aligned */
3483         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3484                 return -1;
3485
3486 retry:
3487         if (get_user(uval, uaddr))
3488                 return -1;
3489
3490         /*
3491          * Special case for regular (non PI) futexes. The unlock path in
3492          * user space has two race scenarios:
3493          *
3494          * 1. The unlock path releases the user space futex value and
3495          *    before it can execute the futex() syscall to wake up
3496          *    waiters it is killed.
3497          *
3498          * 2. A woken up waiter is killed before it can acquire the
3499          *    futex in user space.
3500          *
3501          * In both cases the TID validation below prevents a wakeup of
3502          * potential waiters which can cause these waiters to block
3503          * forever.
3504          *
3505          * In both cases the following conditions are met:
3506          *
3507          *      1) task->robust_list->list_op_pending != NULL
3508          *         @pending_op == true
3509          *      2) User space futex value == 0
3510          *      3) Regular futex: @pi == false
3511          *
3512          * If these conditions are met, it is safe to attempt waking up a
3513          * potential waiter without touching the user space futex value and
3514          * trying to set the OWNER_DIED bit. The user space futex value is
3515          * uncontended and the rest of the user space mutex state is
3516          * consistent, so a woken waiter will just take over the
3517          * uncontended futex. Setting the OWNER_DIED bit would create
3518          * inconsistent state and malfunction of the user space owner died
3519          * handling.
3520          */
3521         if (pending_op && !pi && !uval) {
3522                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3523                 return 0;
3524         }
3525
3526         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3527                 return 0;
3528
3529         /*
3530          * Ok, this dying thread is truly holding a futex
3531          * of interest. Set the OWNER_DIED bit atomically
3532          * via cmpxchg, and if the value had FUTEX_WAITERS
3533          * set, wake up a waiter (if any). (We have to do a
3534          * futex_wake() even if OWNER_DIED is already set -
3535          * to handle the rare but possible case of recursive
3536          * thread-death.) The rest of the cleanup is done in
3537          * userspace.
3538          */
3539         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3540
3541         /*
3542          * We are not holding a lock here, but we want to have
3543          * the pagefault_disable/enable() protection because
3544          * we want to handle the fault gracefully. If the
3545          * access fails we try to fault in the futex with R/W
3546          * verification via get_user_pages. get_user() above
3547          * does not guarantee R/W access. If that fails we
3548          * give up and leave the futex locked.
3549          */
3550         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3551                 switch (err) {
3552                 case -EFAULT:
3553                         if (fault_in_user_writeable(uaddr))
3554                                 return -1;
3555                         goto retry;
3556
3557                 case -EAGAIN:
3558                         cond_resched();
3559                         goto retry;
3560
3561                 default:
3562                         WARN_ON_ONCE(1);
3563                         return err;
3564                 }
3565         }
3566
3567         if (nval != uval)
3568                 goto retry;
3569
3570         /*
3571          * Wake robust non-PI futexes here. The wakeup of
3572          * PI futexes happens in exit_pi_state():
3573          */
3574         if (!pi && (uval & FUTEX_WAITERS))
3575                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3576
3577         return 0;
3578 }
3579
3580 /*
3581  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3582  */
3583 static inline int fetch_robust_entry(struct robust_list __user **entry,
3584                                      struct robust_list __user * __user *head,
3585                                      unsigned int *pi)
3586 {
3587         unsigned long uentry;
3588
3589         if (get_user(uentry, (unsigned long __user *)head))
3590                 return -EFAULT;
3591
3592         *entry = (void __user *)(uentry & ~1UL);
3593         *pi = uentry & 1;
3594
3595         return 0;
3596 }
3597
3598 /*
3599  * Walk curr->robust_list (very carefully, it's a userspace list!)
3600  * and mark any locks found there dead, and notify any waiters.
3601  *
3602  * We silently return on any sign of list-walking problem.
3603  */
3604 static void exit_robust_list(struct task_struct *curr)
3605 {
3606         struct robust_list_head __user *head = curr->robust_list;
3607         struct robust_list __user *entry, *next_entry, *pending;
3608         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3609         unsigned int uninitialized_var(next_pi);
3610         unsigned long futex_offset;
3611         int rc;
3612
3613         if (!futex_cmpxchg_enabled)
3614                 return;
3615
3616         /*
3617          * Fetch the list head (which was registered earlier, via
3618          * sys_set_robust_list()):
3619          */
3620         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3621                 return;
3622         /*
3623          * Fetch the relative futex offset:
3624          */
3625         if (get_user(futex_offset, &head->futex_offset))
3626                 return;
3627         /*
3628          * Fetch any possibly pending lock-add first, and handle it
3629          * if it exists:
3630          */
3631         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3632                 return;
3633
3634         next_entry = NULL;      /* avoid warning with gcc */
3635         while (entry != &head->list) {
3636                 /*
3637                  * Fetch the next entry in the list before calling
3638                  * handle_futex_death:
3639                  */
3640                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3641                 /*
3642                  * A pending lock might already be on the list, so
3643                  * don't process it twice:
3644                  */
3645                 if (entry != pending) {
3646                         if (handle_futex_death((void __user *)entry + futex_offset,
3647                                                 curr, pi, HANDLE_DEATH_LIST))
3648                                 return;
3649                 }
3650                 if (rc)
3651                         return;
3652                 entry = next_entry;
3653                 pi = next_pi;
3654                 /*
3655                  * Avoid excessively long or circular lists:
3656                  */
3657                 if (!--limit)
3658                         break;
3659
3660                 cond_resched();
3661         }
3662
3663         if (pending) {
3664                 handle_futex_death((void __user *)pending + futex_offset,
3665                                    curr, pip, HANDLE_DEATH_PENDING);
3666         }
3667 }
3668
3669 static void futex_cleanup(struct task_struct *tsk)
3670 {
3671         if (unlikely(tsk->robust_list)) {
3672                 exit_robust_list(tsk);
3673                 tsk->robust_list = NULL;
3674         }
3675
3676 #ifdef CONFIG_COMPAT
3677         if (unlikely(tsk->compat_robust_list)) {
3678                 compat_exit_robust_list(tsk);
3679                 tsk->compat_robust_list = NULL;
3680         }
3681 #endif
3682
3683         if (unlikely(!list_empty(&tsk->pi_state_list)))
3684                 exit_pi_state_list(tsk);
3685 }
3686
3687 /**
3688  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3689  * @tsk:        task to set the state on
3690  *
3691  * Set the futex exit state of the task lockless. The futex waiter code
3692  * observes that state when a task is exiting and loops until the task has
3693  * actually finished the futex cleanup. The worst case for this is that the
3694  * waiter runs through the wait loop until the state becomes visible.
3695  *
3696  * This is called from the recursive fault handling path in do_exit().
3697  *
3698  * This is best effort. Either the futex exit code has run already or
3699  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3700  * take it over. If not, the problem is pushed back to user space. If the
3701  * futex exit code did not run yet, then an already queued waiter might
3702  * block forever, but there is nothing which can be done about that.
3703  */
3704 void futex_exit_recursive(struct task_struct *tsk)
3705 {
3706         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3707         if (tsk->futex_state == FUTEX_STATE_EXITING)
3708                 mutex_unlock(&tsk->futex_exit_mutex);
3709         tsk->futex_state = FUTEX_STATE_DEAD;
3710 }
3711
3712 static void futex_cleanup_begin(struct task_struct *tsk)
3713 {
3714         /*
3715          * Prevent various race issues against a concurrent incoming waiter
3716          * including live locks by forcing the waiter to block on
3717          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3718          * attach_to_pi_owner().
3719          */
3720         mutex_lock(&tsk->futex_exit_mutex);
3721
3722         /*
3723          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3724          *
3725          * This ensures that all subsequent checks of tsk->futex_state in
3726          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3727          * tsk->pi_lock held.
3728          *
3729          * It guarantees also that a pi_state which was queued right before
3730          * the state change under tsk->pi_lock by a concurrent waiter must
3731          * be observed in exit_pi_state_list().
3732          */
3733         raw_spin_lock_irq(&tsk->pi_lock);
3734         tsk->futex_state = FUTEX_STATE_EXITING;
3735         raw_spin_unlock_irq(&tsk->pi_lock);
3736 }
3737
3738 static void futex_cleanup_end(struct task_struct *tsk, int state)
3739 {
3740         /*
3741          * Lockless store. The only side effect is that an observer might
3742          * take another loop until it becomes visible.
3743          */
3744         tsk->futex_state = state;
3745         /*
3746          * Drop the exit protection. This unblocks waiters which observed
3747          * FUTEX_STATE_EXITING to reevaluate the state.
3748          */
3749         mutex_unlock(&tsk->futex_exit_mutex);
3750 }
3751
3752 void futex_exec_release(struct task_struct *tsk)
3753 {
3754         /*
3755          * The state handling is done for consistency, but in the case of
3756          * exec() there is no way to prevent futher damage as the PID stays
3757          * the same. But for the unlikely and arguably buggy case that a
3758          * futex is held on exec(), this provides at least as much state
3759          * consistency protection which is possible.
3760          */
3761         futex_cleanup_begin(tsk);
3762         futex_cleanup(tsk);
3763         /*
3764          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3765          * exec a new binary.
3766          */
3767         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3768 }
3769
3770 void futex_exit_release(struct task_struct *tsk)
3771 {
3772         futex_cleanup_begin(tsk);
3773         futex_cleanup(tsk);
3774         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3775 }
3776
3777 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3778                 u32 __user *uaddr2, u32 val2, u32 val3)
3779 {
3780         int cmd = op & FUTEX_CMD_MASK;
3781         unsigned int flags = 0;
3782
3783         if (!(op & FUTEX_PRIVATE_FLAG))
3784                 flags |= FLAGS_SHARED;
3785
3786         if (op & FUTEX_CLOCK_REALTIME) {
3787                 flags |= FLAGS_CLOCKRT;
3788                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3789                     cmd != FUTEX_WAIT_REQUEUE_PI)
3790                         return -ENOSYS;
3791         }
3792
3793         switch (cmd) {
3794         case FUTEX_LOCK_PI:
3795         case FUTEX_UNLOCK_PI:
3796         case FUTEX_TRYLOCK_PI:
3797         case FUTEX_WAIT_REQUEUE_PI:
3798         case FUTEX_CMP_REQUEUE_PI:
3799                 if (!futex_cmpxchg_enabled)
3800                         return -ENOSYS;
3801         }
3802
3803         switch (cmd) {
3804         case FUTEX_WAIT:
3805                 val3 = FUTEX_BITSET_MATCH_ANY;
3806                 /* fall through */
3807         case FUTEX_WAIT_BITSET:
3808                 return futex_wait(uaddr, flags, val, timeout, val3);
3809         case FUTEX_WAKE:
3810                 val3 = FUTEX_BITSET_MATCH_ANY;
3811                 /* fall through */
3812         case FUTEX_WAKE_BITSET:
3813                 return futex_wake(uaddr, flags, val, val3);
3814         case FUTEX_REQUEUE:
3815                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3816         case FUTEX_CMP_REQUEUE:
3817                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3818         case FUTEX_WAKE_OP:
3819                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3820         case FUTEX_LOCK_PI:
3821                 return futex_lock_pi(uaddr, flags, timeout, 0);
3822         case FUTEX_UNLOCK_PI:
3823                 return futex_unlock_pi(uaddr, flags);
3824         case FUTEX_TRYLOCK_PI:
3825                 return futex_lock_pi(uaddr, flags, NULL, 1);
3826         case FUTEX_WAIT_REQUEUE_PI:
3827                 val3 = FUTEX_BITSET_MATCH_ANY;
3828                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3829                                              uaddr2);
3830         case FUTEX_CMP_REQUEUE_PI:
3831                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3832         }
3833         return -ENOSYS;
3834 }
3835
3836
3837 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3838                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3839                 u32, val3)
3840 {
3841         struct timespec64 ts;
3842         ktime_t t, *tp = NULL;
3843         u32 val2 = 0;
3844         int cmd = op & FUTEX_CMD_MASK;
3845
3846         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3847                       cmd == FUTEX_WAIT_BITSET ||
3848                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3849                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3850                         return -EFAULT;
3851                 if (get_timespec64(&ts, utime))
3852                         return -EFAULT;
3853                 if (!timespec64_valid(&ts))
3854                         return -EINVAL;
3855
3856                 t = timespec64_to_ktime(ts);
3857                 if (cmd == FUTEX_WAIT)
3858                         t = ktime_add_safe(ktime_get(), t);
3859                 tp = &t;
3860         }
3861         /*
3862          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3863          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3864          */
3865         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3866             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3867                 val2 = (u32) (unsigned long) utime;
3868
3869         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3870 }
3871
3872 #ifdef CONFIG_COMPAT
3873 /*
3874  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3875  */
3876 static inline int
3877 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3878                    compat_uptr_t __user *head, unsigned int *pi)
3879 {
3880         if (get_user(*uentry, head))
3881                 return -EFAULT;
3882
3883         *entry = compat_ptr((*uentry) & ~1);
3884         *pi = (unsigned int)(*uentry) & 1;
3885
3886         return 0;
3887 }
3888
3889 static void __user *futex_uaddr(struct robust_list __user *entry,
3890                                 compat_long_t futex_offset)
3891 {
3892         compat_uptr_t base = ptr_to_compat(entry);
3893         void __user *uaddr = compat_ptr(base + futex_offset);
3894
3895         return uaddr;
3896 }
3897
3898 /*
3899  * Walk curr->robust_list (very carefully, it's a userspace list!)
3900  * and mark any locks found there dead, and notify any waiters.
3901  *
3902  * We silently return on any sign of list-walking problem.
3903  */
3904 static void compat_exit_robust_list(struct task_struct *curr)
3905 {
3906         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3907         struct robust_list __user *entry, *next_entry, *pending;
3908         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3909         unsigned int uninitialized_var(next_pi);
3910         compat_uptr_t uentry, next_uentry, upending;
3911         compat_long_t futex_offset;
3912         int rc;
3913
3914         if (!futex_cmpxchg_enabled)
3915                 return;
3916
3917         /*
3918          * Fetch the list head (which was registered earlier, via
3919          * sys_set_robust_list()):
3920          */
3921         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3922                 return;
3923         /*
3924          * Fetch the relative futex offset:
3925          */
3926         if (get_user(futex_offset, &head->futex_offset))
3927                 return;
3928         /*
3929          * Fetch any possibly pending lock-add first, and handle it
3930          * if it exists:
3931          */
3932         if (compat_fetch_robust_entry(&upending, &pending,
3933                                &head->list_op_pending, &pip))
3934                 return;
3935
3936         next_entry = NULL;      /* avoid warning with gcc */
3937         while (entry != (struct robust_list __user *) &head->list) {
3938                 /*
3939                  * Fetch the next entry in the list before calling
3940                  * handle_futex_death:
3941                  */
3942                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3943                         (compat_uptr_t __user *)&entry->next, &next_pi);
3944                 /*
3945                  * A pending lock might already be on the list, so
3946                  * dont process it twice:
3947                  */
3948                 if (entry != pending) {
3949                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3950
3951                         if (handle_futex_death(uaddr, curr, pi,
3952                                                HANDLE_DEATH_LIST))
3953                                 return;
3954                 }
3955                 if (rc)
3956                         return;
3957                 uentry = next_uentry;
3958                 entry = next_entry;
3959                 pi = next_pi;
3960                 /*
3961                  * Avoid excessively long or circular lists:
3962                  */
3963                 if (!--limit)
3964                         break;
3965
3966                 cond_resched();
3967         }
3968         if (pending) {
3969                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3970
3971                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3972         }
3973 }
3974
3975 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3976                 struct compat_robust_list_head __user *, head,
3977                 compat_size_t, len)
3978 {
3979         if (!futex_cmpxchg_enabled)
3980                 return -ENOSYS;
3981
3982         if (unlikely(len != sizeof(*head)))
3983                 return -EINVAL;
3984
3985         current->compat_robust_list = head;
3986
3987         return 0;
3988 }
3989
3990 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3991                         compat_uptr_t __user *, head_ptr,
3992                         compat_size_t __user *, len_ptr)
3993 {
3994         struct compat_robust_list_head __user *head;
3995         unsigned long ret;
3996         struct task_struct *p;
3997
3998         if (!futex_cmpxchg_enabled)
3999                 return -ENOSYS;
4000
4001         rcu_read_lock();
4002
4003         ret = -ESRCH;
4004         if (!pid)
4005                 p = current;
4006         else {
4007                 p = find_task_by_vpid(pid);
4008                 if (!p)
4009                         goto err_unlock;
4010         }
4011
4012         ret = -EPERM;
4013         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4014                 goto err_unlock;
4015
4016         head = p->compat_robust_list;
4017         rcu_read_unlock();
4018
4019         if (put_user(sizeof(*head), len_ptr))
4020                 return -EFAULT;
4021         return put_user(ptr_to_compat(head), head_ptr);
4022
4023 err_unlock:
4024         rcu_read_unlock();
4025
4026         return ret;
4027 }
4028 #endif /* CONFIG_COMPAT */
4029
4030 #ifdef CONFIG_COMPAT_32BIT_TIME
4031 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4032                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4033                 u32, val3)
4034 {
4035         struct timespec64 ts;
4036         ktime_t t, *tp = NULL;
4037         int val2 = 0;
4038         int cmd = op & FUTEX_CMD_MASK;
4039
4040         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4041                       cmd == FUTEX_WAIT_BITSET ||
4042                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
4043                 if (get_old_timespec32(&ts, utime))
4044                         return -EFAULT;
4045                 if (!timespec64_valid(&ts))
4046                         return -EINVAL;
4047
4048                 t = timespec64_to_ktime(ts);
4049                 if (cmd == FUTEX_WAIT)
4050                         t = ktime_add_safe(ktime_get(), t);
4051                 tp = &t;
4052         }
4053         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4054             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4055                 val2 = (int) (unsigned long) utime;
4056
4057         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4058 }
4059 #endif /* CONFIG_COMPAT_32BIT_TIME */
4060
4061 static void __init futex_detect_cmpxchg(void)
4062 {
4063 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4064         u32 curval;
4065
4066         /*
4067          * This will fail and we want it. Some arch implementations do
4068          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4069          * functionality. We want to know that before we call in any
4070          * of the complex code paths. Also we want to prevent
4071          * registration of robust lists in that case. NULL is
4072          * guaranteed to fault and we get -EFAULT on functional
4073          * implementation, the non-functional ones will return
4074          * -ENOSYS.
4075          */
4076         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4077                 futex_cmpxchg_enabled = 1;
4078 #endif
4079 }
4080
4081 static int __init futex_init(void)
4082 {
4083         unsigned int futex_shift;
4084         unsigned long i;
4085
4086 #if CONFIG_BASE_SMALL
4087         futex_hashsize = 16;
4088 #else
4089         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4090 #endif
4091
4092         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4093                                                futex_hashsize, 0,
4094                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4095                                                &futex_shift, NULL,
4096                                                futex_hashsize, futex_hashsize);
4097         futex_hashsize = 1UL << futex_shift;
4098
4099         futex_detect_cmpxchg();
4100
4101         for (i = 0; i < futex_hashsize; i++) {
4102                 atomic_set(&futex_queues[i].waiters, 0);
4103                 plist_head_init(&futex_queues[i].chain);
4104                 spin_lock_init(&futex_queues[i].lock);
4105         }
4106
4107         return 0;
4108 }
4109 core_initcall(futex_init);