kernel/futex: Make futex_wait_requeue_pi() only call fixup_owner()
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/hugetlb.h>
39 #include <linux/freezer.h>
40 #include <linux/memblock.h>
41 #include <linux/fault-inject.h>
42 #include <linux/time_namespace.h>
43
44 #include <asm/futex.h>
45
46 #include "locking/rtmutex_common.h"
47
48 /*
49  * READ this before attempting to hack on futexes!
50  *
51  * Basic futex operation and ordering guarantees
52  * =============================================
53  *
54  * The waiter reads the futex value in user space and calls
55  * futex_wait(). This function computes the hash bucket and acquires
56  * the hash bucket lock. After that it reads the futex user space value
57  * again and verifies that the data has not changed. If it has not changed
58  * it enqueues itself into the hash bucket, releases the hash bucket lock
59  * and schedules.
60  *
61  * The waker side modifies the user space value of the futex and calls
62  * futex_wake(). This function computes the hash bucket and acquires the
63  * hash bucket lock. Then it looks for waiters on that futex in the hash
64  * bucket and wakes them.
65  *
66  * In futex wake up scenarios where no tasks are blocked on a futex, taking
67  * the hb spinlock can be avoided and simply return. In order for this
68  * optimization to work, ordering guarantees must exist so that the waiter
69  * being added to the list is acknowledged when the list is concurrently being
70  * checked by the waker, avoiding scenarios like the following:
71  *
72  * CPU 0                               CPU 1
73  * val = *futex;
74  * sys_futex(WAIT, futex, val);
75  *   futex_wait(futex, val);
76  *   uval = *futex;
77  *                                     *futex = newval;
78  *                                     sys_futex(WAKE, futex);
79  *                                       futex_wake(futex);
80  *                                       if (queue_empty())
81  *                                         return;
82  *   if (uval == val)
83  *      lock(hash_bucket(futex));
84  *      queue();
85  *     unlock(hash_bucket(futex));
86  *     schedule();
87  *
88  * This would cause the waiter on CPU 0 to wait forever because it
89  * missed the transition of the user space value from val to newval
90  * and the waker did not find the waiter in the hash bucket queue.
91  *
92  * The correct serialization ensures that a waiter either observes
93  * the changed user space value before blocking or is woken by a
94  * concurrent waker:
95  *
96  * CPU 0                                 CPU 1
97  * val = *futex;
98  * sys_futex(WAIT, futex, val);
99  *   futex_wait(futex, val);
100  *
101  *   waiters++; (a)
102  *   smp_mb(); (A) <-- paired with -.
103  *                                  |
104  *   lock(hash_bucket(futex));      |
105  *                                  |
106  *   uval = *futex;                 |
107  *                                  |        *futex = newval;
108  *                                  |        sys_futex(WAKE, futex);
109  *                                  |          futex_wake(futex);
110  *                                  |
111  *                                  `--------> smp_mb(); (B)
112  *   if (uval == val)
113  *     queue();
114  *     unlock(hash_bucket(futex));
115  *     schedule();                         if (waiters)
116  *                                           lock(hash_bucket(futex));
117  *   else                                    wake_waiters(futex);
118  *     waiters--; (b)                        unlock(hash_bucket(futex));
119  *
120  * Where (A) orders the waiters increment and the futex value read through
121  * atomic operations (see hb_waiters_inc) and where (B) orders the write
122  * to futex and the waiters read (see hb_waiters_pending()).
123  *
124  * This yields the following case (where X:=waiters, Y:=futex):
125  *
126  *      X = Y = 0
127  *
128  *      w[X]=1          w[Y]=1
129  *      MB              MB
130  *      r[Y]=y          r[X]=x
131  *
132  * Which guarantees that x==0 && y==0 is impossible; which translates back into
133  * the guarantee that we cannot both miss the futex variable change and the
134  * enqueue.
135  *
136  * Note that a new waiter is accounted for in (a) even when it is possible that
137  * the wait call can return error, in which case we backtrack from it in (b).
138  * Refer to the comment in queue_lock().
139  *
140  * Similarly, in order to account for waiters being requeued on another
141  * address we always increment the waiters for the destination bucket before
142  * acquiring the lock. It then decrements them again  after releasing it -
143  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
144  * will do the additional required waiter count housekeeping. This is done for
145  * double_lock_hb() and double_unlock_hb(), respectively.
146  */
147
148 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
149 #define futex_cmpxchg_enabled 1
150 #else
151 static int  __read_mostly futex_cmpxchg_enabled;
152 #endif
153
154 /*
155  * Futex flags used to encode options to functions and preserve them across
156  * restarts.
157  */
158 #ifdef CONFIG_MMU
159 # define FLAGS_SHARED           0x01
160 #else
161 /*
162  * NOMMU does not have per process address space. Let the compiler optimize
163  * code away.
164  */
165 # define FLAGS_SHARED           0x00
166 #endif
167 #define FLAGS_CLOCKRT           0x02
168 #define FLAGS_HAS_TIMEOUT       0x04
169
170 /*
171  * Priority Inheritance state:
172  */
173 struct futex_pi_state {
174         /*
175          * list of 'owned' pi_state instances - these have to be
176          * cleaned up in do_exit() if the task exits prematurely:
177          */
178         struct list_head list;
179
180         /*
181          * The PI object:
182          */
183         struct rt_mutex pi_mutex;
184
185         struct task_struct *owner;
186         refcount_t refcount;
187
188         union futex_key key;
189 } __randomize_layout;
190
191 /**
192  * struct futex_q - The hashed futex queue entry, one per waiting task
193  * @list:               priority-sorted list of tasks waiting on this futex
194  * @task:               the task waiting on the futex
195  * @lock_ptr:           the hash bucket lock
196  * @key:                the key the futex is hashed on
197  * @pi_state:           optional priority inheritance state
198  * @rt_waiter:          rt_waiter storage for use with requeue_pi
199  * @requeue_pi_key:     the requeue_pi target futex key
200  * @bitset:             bitset for the optional bitmasked wakeup
201  *
202  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
203  * we can wake only the relevant ones (hashed queues may be shared).
204  *
205  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
206  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
207  * The order of wakeup is always to make the first condition true, then
208  * the second.
209  *
210  * PI futexes are typically woken before they are removed from the hash list via
211  * the rt_mutex code. See unqueue_me_pi().
212  */
213 struct futex_q {
214         struct plist_node list;
215
216         struct task_struct *task;
217         spinlock_t *lock_ptr;
218         union futex_key key;
219         struct futex_pi_state *pi_state;
220         struct rt_mutex_waiter *rt_waiter;
221         union futex_key *requeue_pi_key;
222         u32 bitset;
223 } __randomize_layout;
224
225 static const struct futex_q futex_q_init = {
226         /* list gets initialized in queue_me()*/
227         .key = FUTEX_KEY_INIT,
228         .bitset = FUTEX_BITSET_MATCH_ANY
229 };
230
231 /*
232  * Hash buckets are shared by all the futex_keys that hash to the same
233  * location.  Each key may have multiple futex_q structures, one for each task
234  * waiting on a futex.
235  */
236 struct futex_hash_bucket {
237         atomic_t waiters;
238         spinlock_t lock;
239         struct plist_head chain;
240 } ____cacheline_aligned_in_smp;
241
242 /*
243  * The base of the bucket array and its size are always used together
244  * (after initialization only in hash_futex()), so ensure that they
245  * reside in the same cacheline.
246  */
247 static struct {
248         struct futex_hash_bucket *queues;
249         unsigned long            hashsize;
250 } __futex_data __read_mostly __aligned(2*sizeof(long));
251 #define futex_queues   (__futex_data.queues)
252 #define futex_hashsize (__futex_data.hashsize)
253
254
255 /*
256  * Fault injections for futexes.
257  */
258 #ifdef CONFIG_FAIL_FUTEX
259
260 static struct {
261         struct fault_attr attr;
262
263         bool ignore_private;
264 } fail_futex = {
265         .attr = FAULT_ATTR_INITIALIZER,
266         .ignore_private = false,
267 };
268
269 static int __init setup_fail_futex(char *str)
270 {
271         return setup_fault_attr(&fail_futex.attr, str);
272 }
273 __setup("fail_futex=", setup_fail_futex);
274
275 static bool should_fail_futex(bool fshared)
276 {
277         if (fail_futex.ignore_private && !fshared)
278                 return false;
279
280         return should_fail(&fail_futex.attr, 1);
281 }
282
283 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
284
285 static int __init fail_futex_debugfs(void)
286 {
287         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
288         struct dentry *dir;
289
290         dir = fault_create_debugfs_attr("fail_futex", NULL,
291                                         &fail_futex.attr);
292         if (IS_ERR(dir))
293                 return PTR_ERR(dir);
294
295         debugfs_create_bool("ignore-private", mode, dir,
296                             &fail_futex.ignore_private);
297         return 0;
298 }
299
300 late_initcall(fail_futex_debugfs);
301
302 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
303
304 #else
305 static inline bool should_fail_futex(bool fshared)
306 {
307         return false;
308 }
309 #endif /* CONFIG_FAIL_FUTEX */
310
311 #ifdef CONFIG_COMPAT
312 static void compat_exit_robust_list(struct task_struct *curr);
313 #endif
314
315 /*
316  * Reflects a new waiter being added to the waitqueue.
317  */
318 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
319 {
320 #ifdef CONFIG_SMP
321         atomic_inc(&hb->waiters);
322         /*
323          * Full barrier (A), see the ordering comment above.
324          */
325         smp_mb__after_atomic();
326 #endif
327 }
328
329 /*
330  * Reflects a waiter being removed from the waitqueue by wakeup
331  * paths.
332  */
333 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
334 {
335 #ifdef CONFIG_SMP
336         atomic_dec(&hb->waiters);
337 #endif
338 }
339
340 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
341 {
342 #ifdef CONFIG_SMP
343         /*
344          * Full barrier (B), see the ordering comment above.
345          */
346         smp_mb();
347         return atomic_read(&hb->waiters);
348 #else
349         return 1;
350 #endif
351 }
352
353 /**
354  * hash_futex - Return the hash bucket in the global hash
355  * @key:        Pointer to the futex key for which the hash is calculated
356  *
357  * We hash on the keys returned from get_futex_key (see below) and return the
358  * corresponding hash bucket in the global hash.
359  */
360 static struct futex_hash_bucket *hash_futex(union futex_key *key)
361 {
362         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
363                           key->both.offset);
364
365         return &futex_queues[hash & (futex_hashsize - 1)];
366 }
367
368
369 /**
370  * match_futex - Check whether two futex keys are equal
371  * @key1:       Pointer to key1
372  * @key2:       Pointer to key2
373  *
374  * Return 1 if two futex_keys are equal, 0 otherwise.
375  */
376 static inline int match_futex(union futex_key *key1, union futex_key *key2)
377 {
378         return (key1 && key2
379                 && key1->both.word == key2->both.word
380                 && key1->both.ptr == key2->both.ptr
381                 && key1->both.offset == key2->both.offset);
382 }
383
384 enum futex_access {
385         FUTEX_READ,
386         FUTEX_WRITE
387 };
388
389 /**
390  * futex_setup_timer - set up the sleeping hrtimer.
391  * @time:       ptr to the given timeout value
392  * @timeout:    the hrtimer_sleeper structure to be set up
393  * @flags:      futex flags
394  * @range_ns:   optional range in ns
395  *
396  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
397  *         value given
398  */
399 static inline struct hrtimer_sleeper *
400 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
401                   int flags, u64 range_ns)
402 {
403         if (!time)
404                 return NULL;
405
406         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
407                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
408                                       HRTIMER_MODE_ABS);
409         /*
410          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
411          * effectively the same as calling hrtimer_set_expires().
412          */
413         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
414
415         return timeout;
416 }
417
418 /*
419  * Generate a machine wide unique identifier for this inode.
420  *
421  * This relies on u64 not wrapping in the life-time of the machine; which with
422  * 1ns resolution means almost 585 years.
423  *
424  * This further relies on the fact that a well formed program will not unmap
425  * the file while it has a (shared) futex waiting on it. This mapping will have
426  * a file reference which pins the mount and inode.
427  *
428  * If for some reason an inode gets evicted and read back in again, it will get
429  * a new sequence number and will _NOT_ match, even though it is the exact same
430  * file.
431  *
432  * It is important that match_futex() will never have a false-positive, esp.
433  * for PI futexes that can mess up the state. The above argues that false-negatives
434  * are only possible for malformed programs.
435  */
436 static u64 get_inode_sequence_number(struct inode *inode)
437 {
438         static atomic64_t i_seq;
439         u64 old;
440
441         /* Does the inode already have a sequence number? */
442         old = atomic64_read(&inode->i_sequence);
443         if (likely(old))
444                 return old;
445
446         for (;;) {
447                 u64 new = atomic64_add_return(1, &i_seq);
448                 if (WARN_ON_ONCE(!new))
449                         continue;
450
451                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
452                 if (old)
453                         return old;
454                 return new;
455         }
456 }
457
458 /**
459  * get_futex_key() - Get parameters which are the keys for a futex
460  * @uaddr:      virtual address of the futex
461  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
462  * @key:        address where result is stored.
463  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
464  *              FUTEX_WRITE)
465  *
466  * Return: a negative error code or 0
467  *
468  * The key words are stored in @key on success.
469  *
470  * For shared mappings (when @fshared), the key is:
471  *
472  *   ( inode->i_sequence, page->index, offset_within_page )
473  *
474  * [ also see get_inode_sequence_number() ]
475  *
476  * For private mappings (or when !@fshared), the key is:
477  *
478  *   ( current->mm, address, 0 )
479  *
480  * This allows (cross process, where applicable) identification of the futex
481  * without keeping the page pinned for the duration of the FUTEX_WAIT.
482  *
483  * lock_page() might sleep, the caller should not hold a spinlock.
484  */
485 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
486                          enum futex_access rw)
487 {
488         unsigned long address = (unsigned long)uaddr;
489         struct mm_struct *mm = current->mm;
490         struct page *page, *tail;
491         struct address_space *mapping;
492         int err, ro = 0;
493
494         /*
495          * The futex address must be "naturally" aligned.
496          */
497         key->both.offset = address % PAGE_SIZE;
498         if (unlikely((address % sizeof(u32)) != 0))
499                 return -EINVAL;
500         address -= key->both.offset;
501
502         if (unlikely(!access_ok(uaddr, sizeof(u32))))
503                 return -EFAULT;
504
505         if (unlikely(should_fail_futex(fshared)))
506                 return -EFAULT;
507
508         /*
509          * PROCESS_PRIVATE futexes are fast.
510          * As the mm cannot disappear under us and the 'key' only needs
511          * virtual address, we dont even have to find the underlying vma.
512          * Note : We do have to check 'uaddr' is a valid user address,
513          *        but access_ok() should be faster than find_vma()
514          */
515         if (!fshared) {
516                 key->private.mm = mm;
517                 key->private.address = address;
518                 return 0;
519         }
520
521 again:
522         /* Ignore any VERIFY_READ mapping (futex common case) */
523         if (unlikely(should_fail_futex(true)))
524                 return -EFAULT;
525
526         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
527         /*
528          * If write access is not required (eg. FUTEX_WAIT), try
529          * and get read-only access.
530          */
531         if (err == -EFAULT && rw == FUTEX_READ) {
532                 err = get_user_pages_fast(address, 1, 0, &page);
533                 ro = 1;
534         }
535         if (err < 0)
536                 return err;
537         else
538                 err = 0;
539
540         /*
541          * The treatment of mapping from this point on is critical. The page
542          * lock protects many things but in this context the page lock
543          * stabilizes mapping, prevents inode freeing in the shared
544          * file-backed region case and guards against movement to swap cache.
545          *
546          * Strictly speaking the page lock is not needed in all cases being
547          * considered here and page lock forces unnecessarily serialization
548          * From this point on, mapping will be re-verified if necessary and
549          * page lock will be acquired only if it is unavoidable
550          *
551          * Mapping checks require the head page for any compound page so the
552          * head page and mapping is looked up now. For anonymous pages, it
553          * does not matter if the page splits in the future as the key is
554          * based on the address. For filesystem-backed pages, the tail is
555          * required as the index of the page determines the key. For
556          * base pages, there is no tail page and tail == page.
557          */
558         tail = page;
559         page = compound_head(page);
560         mapping = READ_ONCE(page->mapping);
561
562         /*
563          * If page->mapping is NULL, then it cannot be a PageAnon
564          * page; but it might be the ZERO_PAGE or in the gate area or
565          * in a special mapping (all cases which we are happy to fail);
566          * or it may have been a good file page when get_user_pages_fast
567          * found it, but truncated or holepunched or subjected to
568          * invalidate_complete_page2 before we got the page lock (also
569          * cases which we are happy to fail).  And we hold a reference,
570          * so refcount care in invalidate_complete_page's remove_mapping
571          * prevents drop_caches from setting mapping to NULL beneath us.
572          *
573          * The case we do have to guard against is when memory pressure made
574          * shmem_writepage move it from filecache to swapcache beneath us:
575          * an unlikely race, but we do need to retry for page->mapping.
576          */
577         if (unlikely(!mapping)) {
578                 int shmem_swizzled;
579
580                 /*
581                  * Page lock is required to identify which special case above
582                  * applies. If this is really a shmem page then the page lock
583                  * will prevent unexpected transitions.
584                  */
585                 lock_page(page);
586                 shmem_swizzled = PageSwapCache(page) || page->mapping;
587                 unlock_page(page);
588                 put_page(page);
589
590                 if (shmem_swizzled)
591                         goto again;
592
593                 return -EFAULT;
594         }
595
596         /*
597          * Private mappings are handled in a simple way.
598          *
599          * If the futex key is stored on an anonymous page, then the associated
600          * object is the mm which is implicitly pinned by the calling process.
601          *
602          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
603          * it's a read-only handle, it's expected that futexes attach to
604          * the object not the particular process.
605          */
606         if (PageAnon(page)) {
607                 /*
608                  * A RO anonymous page will never change and thus doesn't make
609                  * sense for futex operations.
610                  */
611                 if (unlikely(should_fail_futex(true)) || ro) {
612                         err = -EFAULT;
613                         goto out;
614                 }
615
616                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
617                 key->private.mm = mm;
618                 key->private.address = address;
619
620         } else {
621                 struct inode *inode;
622
623                 /*
624                  * The associated futex object in this case is the inode and
625                  * the page->mapping must be traversed. Ordinarily this should
626                  * be stabilised under page lock but it's not strictly
627                  * necessary in this case as we just want to pin the inode, not
628                  * update the radix tree or anything like that.
629                  *
630                  * The RCU read lock is taken as the inode is finally freed
631                  * under RCU. If the mapping still matches expectations then the
632                  * mapping->host can be safely accessed as being a valid inode.
633                  */
634                 rcu_read_lock();
635
636                 if (READ_ONCE(page->mapping) != mapping) {
637                         rcu_read_unlock();
638                         put_page(page);
639
640                         goto again;
641                 }
642
643                 inode = READ_ONCE(mapping->host);
644                 if (!inode) {
645                         rcu_read_unlock();
646                         put_page(page);
647
648                         goto again;
649                 }
650
651                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
652                 key->shared.i_seq = get_inode_sequence_number(inode);
653                 key->shared.pgoff = basepage_index(tail);
654                 rcu_read_unlock();
655         }
656
657 out:
658         put_page(page);
659         return err;
660 }
661
662 /**
663  * fault_in_user_writeable() - Fault in user address and verify RW access
664  * @uaddr:      pointer to faulting user space address
665  *
666  * Slow path to fixup the fault we just took in the atomic write
667  * access to @uaddr.
668  *
669  * We have no generic implementation of a non-destructive write to the
670  * user address. We know that we faulted in the atomic pagefault
671  * disabled section so we can as well avoid the #PF overhead by
672  * calling get_user_pages() right away.
673  */
674 static int fault_in_user_writeable(u32 __user *uaddr)
675 {
676         struct mm_struct *mm = current->mm;
677         int ret;
678
679         mmap_read_lock(mm);
680         ret = fixup_user_fault(mm, (unsigned long)uaddr,
681                                FAULT_FLAG_WRITE, NULL);
682         mmap_read_unlock(mm);
683
684         return ret < 0 ? ret : 0;
685 }
686
687 /**
688  * futex_top_waiter() - Return the highest priority waiter on a futex
689  * @hb:         the hash bucket the futex_q's reside in
690  * @key:        the futex key (to distinguish it from other futex futex_q's)
691  *
692  * Must be called with the hb lock held.
693  */
694 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
695                                         union futex_key *key)
696 {
697         struct futex_q *this;
698
699         plist_for_each_entry(this, &hb->chain, list) {
700                 if (match_futex(&this->key, key))
701                         return this;
702         }
703         return NULL;
704 }
705
706 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
707                                       u32 uval, u32 newval)
708 {
709         int ret;
710
711         pagefault_disable();
712         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
713         pagefault_enable();
714
715         return ret;
716 }
717
718 static int get_futex_value_locked(u32 *dest, u32 __user *from)
719 {
720         int ret;
721
722         pagefault_disable();
723         ret = __get_user(*dest, from);
724         pagefault_enable();
725
726         return ret ? -EFAULT : 0;
727 }
728
729
730 /*
731  * PI code:
732  */
733 static int refill_pi_state_cache(void)
734 {
735         struct futex_pi_state *pi_state;
736
737         if (likely(current->pi_state_cache))
738                 return 0;
739
740         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
741
742         if (!pi_state)
743                 return -ENOMEM;
744
745         INIT_LIST_HEAD(&pi_state->list);
746         /* pi_mutex gets initialized later */
747         pi_state->owner = NULL;
748         refcount_set(&pi_state->refcount, 1);
749         pi_state->key = FUTEX_KEY_INIT;
750
751         current->pi_state_cache = pi_state;
752
753         return 0;
754 }
755
756 static struct futex_pi_state *alloc_pi_state(void)
757 {
758         struct futex_pi_state *pi_state = current->pi_state_cache;
759
760         WARN_ON(!pi_state);
761         current->pi_state_cache = NULL;
762
763         return pi_state;
764 }
765
766 static void pi_state_update_owner(struct futex_pi_state *pi_state,
767                                   struct task_struct *new_owner)
768 {
769         struct task_struct *old_owner = pi_state->owner;
770
771         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
772
773         if (old_owner) {
774                 raw_spin_lock(&old_owner->pi_lock);
775                 WARN_ON(list_empty(&pi_state->list));
776                 list_del_init(&pi_state->list);
777                 raw_spin_unlock(&old_owner->pi_lock);
778         }
779
780         if (new_owner) {
781                 raw_spin_lock(&new_owner->pi_lock);
782                 WARN_ON(!list_empty(&pi_state->list));
783                 list_add(&pi_state->list, &new_owner->pi_state_list);
784                 pi_state->owner = new_owner;
785                 raw_spin_unlock(&new_owner->pi_lock);
786         }
787 }
788
789 static void get_pi_state(struct futex_pi_state *pi_state)
790 {
791         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
792 }
793
794 /*
795  * Drops a reference to the pi_state object and frees or caches it
796  * when the last reference is gone.
797  */
798 static void put_pi_state(struct futex_pi_state *pi_state)
799 {
800         if (!pi_state)
801                 return;
802
803         if (!refcount_dec_and_test(&pi_state->refcount))
804                 return;
805
806         /*
807          * If pi_state->owner is NULL, the owner is most probably dying
808          * and has cleaned up the pi_state already
809          */
810         if (pi_state->owner) {
811                 unsigned long flags;
812
813                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
814                 pi_state_update_owner(pi_state, NULL);
815                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
816                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
817         }
818
819         if (current->pi_state_cache) {
820                 kfree(pi_state);
821         } else {
822                 /*
823                  * pi_state->list is already empty.
824                  * clear pi_state->owner.
825                  * refcount is at 0 - put it back to 1.
826                  */
827                 pi_state->owner = NULL;
828                 refcount_set(&pi_state->refcount, 1);
829                 current->pi_state_cache = pi_state;
830         }
831 }
832
833 #ifdef CONFIG_FUTEX_PI
834
835 /*
836  * This task is holding PI mutexes at exit time => bad.
837  * Kernel cleans up PI-state, but userspace is likely hosed.
838  * (Robust-futex cleanup is separate and might save the day for userspace.)
839  */
840 static void exit_pi_state_list(struct task_struct *curr)
841 {
842         struct list_head *next, *head = &curr->pi_state_list;
843         struct futex_pi_state *pi_state;
844         struct futex_hash_bucket *hb;
845         union futex_key key = FUTEX_KEY_INIT;
846
847         if (!futex_cmpxchg_enabled)
848                 return;
849         /*
850          * We are a ZOMBIE and nobody can enqueue itself on
851          * pi_state_list anymore, but we have to be careful
852          * versus waiters unqueueing themselves:
853          */
854         raw_spin_lock_irq(&curr->pi_lock);
855         while (!list_empty(head)) {
856                 next = head->next;
857                 pi_state = list_entry(next, struct futex_pi_state, list);
858                 key = pi_state->key;
859                 hb = hash_futex(&key);
860
861                 /*
862                  * We can race against put_pi_state() removing itself from the
863                  * list (a waiter going away). put_pi_state() will first
864                  * decrement the reference count and then modify the list, so
865                  * its possible to see the list entry but fail this reference
866                  * acquire.
867                  *
868                  * In that case; drop the locks to let put_pi_state() make
869                  * progress and retry the loop.
870                  */
871                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
872                         raw_spin_unlock_irq(&curr->pi_lock);
873                         cpu_relax();
874                         raw_spin_lock_irq(&curr->pi_lock);
875                         continue;
876                 }
877                 raw_spin_unlock_irq(&curr->pi_lock);
878
879                 spin_lock(&hb->lock);
880                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
881                 raw_spin_lock(&curr->pi_lock);
882                 /*
883                  * We dropped the pi-lock, so re-check whether this
884                  * task still owns the PI-state:
885                  */
886                 if (head->next != next) {
887                         /* retain curr->pi_lock for the loop invariant */
888                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
889                         spin_unlock(&hb->lock);
890                         put_pi_state(pi_state);
891                         continue;
892                 }
893
894                 WARN_ON(pi_state->owner != curr);
895                 WARN_ON(list_empty(&pi_state->list));
896                 list_del_init(&pi_state->list);
897                 pi_state->owner = NULL;
898
899                 raw_spin_unlock(&curr->pi_lock);
900                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
901                 spin_unlock(&hb->lock);
902
903                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
904                 put_pi_state(pi_state);
905
906                 raw_spin_lock_irq(&curr->pi_lock);
907         }
908         raw_spin_unlock_irq(&curr->pi_lock);
909 }
910 #else
911 static inline void exit_pi_state_list(struct task_struct *curr) { }
912 #endif
913
914 /*
915  * We need to check the following states:
916  *
917  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
918  *
919  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
920  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
921  *
922  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
923  *
924  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
925  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
926  *
927  * [6]  Found  | Found    | task      | 0         | 1      | Valid
928  *
929  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
930  *
931  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
932  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
933  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
934  *
935  * [1]  Indicates that the kernel can acquire the futex atomically. We
936  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
937  *
938  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
939  *      thread is found then it indicates that the owner TID has died.
940  *
941  * [3]  Invalid. The waiter is queued on a non PI futex
942  *
943  * [4]  Valid state after exit_robust_list(), which sets the user space
944  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
945  *
946  * [5]  The user space value got manipulated between exit_robust_list()
947  *      and exit_pi_state_list()
948  *
949  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
950  *      the pi_state but cannot access the user space value.
951  *
952  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
953  *
954  * [8]  Owner and user space value match
955  *
956  * [9]  There is no transient state which sets the user space TID to 0
957  *      except exit_robust_list(), but this is indicated by the
958  *      FUTEX_OWNER_DIED bit. See [4]
959  *
960  * [10] There is no transient state which leaves owner and user space
961  *      TID out of sync. Except one error case where the kernel is denied
962  *      write access to the user address, see fixup_pi_state_owner().
963  *
964  *
965  * Serialization and lifetime rules:
966  *
967  * hb->lock:
968  *
969  *      hb -> futex_q, relation
970  *      futex_q -> pi_state, relation
971  *
972  *      (cannot be raw because hb can contain arbitrary amount
973  *       of futex_q's)
974  *
975  * pi_mutex->wait_lock:
976  *
977  *      {uval, pi_state}
978  *
979  *      (and pi_mutex 'obviously')
980  *
981  * p->pi_lock:
982  *
983  *      p->pi_state_list -> pi_state->list, relation
984  *
985  * pi_state->refcount:
986  *
987  *      pi_state lifetime
988  *
989  *
990  * Lock order:
991  *
992  *   hb->lock
993  *     pi_mutex->wait_lock
994  *       p->pi_lock
995  *
996  */
997
998 /*
999  * Validate that the existing waiter has a pi_state and sanity check
1000  * the pi_state against the user space value. If correct, attach to
1001  * it.
1002  */
1003 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004                               struct futex_pi_state *pi_state,
1005                               struct futex_pi_state **ps)
1006 {
1007         pid_t pid = uval & FUTEX_TID_MASK;
1008         u32 uval2;
1009         int ret;
1010
1011         /*
1012          * Userspace might have messed up non-PI and PI futexes [3]
1013          */
1014         if (unlikely(!pi_state))
1015                 return -EINVAL;
1016
1017         /*
1018          * We get here with hb->lock held, and having found a
1019          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021          * which in turn means that futex_lock_pi() still has a reference on
1022          * our pi_state.
1023          *
1024          * The waiter holding a reference on @pi_state also protects against
1025          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027          * free pi_state before we can take a reference ourselves.
1028          */
1029         WARN_ON(!refcount_read(&pi_state->refcount));
1030
1031         /*
1032          * Now that we have a pi_state, we can acquire wait_lock
1033          * and do the state validation.
1034          */
1035         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037         /*
1038          * Since {uval, pi_state} is serialized by wait_lock, and our current
1039          * uval was read without holding it, it can have changed. Verify it
1040          * still is what we expect it to be, otherwise retry the entire
1041          * operation.
1042          */
1043         if (get_futex_value_locked(&uval2, uaddr))
1044                 goto out_efault;
1045
1046         if (uval != uval2)
1047                 goto out_eagain;
1048
1049         /*
1050          * Handle the owner died case:
1051          */
1052         if (uval & FUTEX_OWNER_DIED) {
1053                 /*
1054                  * exit_pi_state_list sets owner to NULL and wakes the
1055                  * topmost waiter. The task which acquires the
1056                  * pi_state->rt_mutex will fixup owner.
1057                  */
1058                 if (!pi_state->owner) {
1059                         /*
1060                          * No pi state owner, but the user space TID
1061                          * is not 0. Inconsistent state. [5]
1062                          */
1063                         if (pid)
1064                                 goto out_einval;
1065                         /*
1066                          * Take a ref on the state and return success. [4]
1067                          */
1068                         goto out_attach;
1069                 }
1070
1071                 /*
1072                  * If TID is 0, then either the dying owner has not
1073                  * yet executed exit_pi_state_list() or some waiter
1074                  * acquired the rtmutex in the pi state, but did not
1075                  * yet fixup the TID in user space.
1076                  *
1077                  * Take a ref on the state and return success. [6]
1078                  */
1079                 if (!pid)
1080                         goto out_attach;
1081         } else {
1082                 /*
1083                  * If the owner died bit is not set, then the pi_state
1084                  * must have an owner. [7]
1085                  */
1086                 if (!pi_state->owner)
1087                         goto out_einval;
1088         }
1089
1090         /*
1091          * Bail out if user space manipulated the futex value. If pi
1092          * state exists then the owner TID must be the same as the
1093          * user space TID. [9/10]
1094          */
1095         if (pid != task_pid_vnr(pi_state->owner))
1096                 goto out_einval;
1097
1098 out_attach:
1099         get_pi_state(pi_state);
1100         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101         *ps = pi_state;
1102         return 0;
1103
1104 out_einval:
1105         ret = -EINVAL;
1106         goto out_error;
1107
1108 out_eagain:
1109         ret = -EAGAIN;
1110         goto out_error;
1111
1112 out_efault:
1113         ret = -EFAULT;
1114         goto out_error;
1115
1116 out_error:
1117         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118         return ret;
1119 }
1120
1121 /**
1122  * wait_for_owner_exiting - Block until the owner has exited
1123  * @ret: owner's current futex lock status
1124  * @exiting:    Pointer to the exiting task
1125  *
1126  * Caller must hold a refcount on @exiting.
1127  */
1128 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129 {
1130         if (ret != -EBUSY) {
1131                 WARN_ON_ONCE(exiting);
1132                 return;
1133         }
1134
1135         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136                 return;
1137
1138         mutex_lock(&exiting->futex_exit_mutex);
1139         /*
1140          * No point in doing state checking here. If the waiter got here
1141          * while the task was in exec()->exec_futex_release() then it can
1142          * have any FUTEX_STATE_* value when the waiter has acquired the
1143          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144          * already. Highly unlikely and not a problem. Just one more round
1145          * through the futex maze.
1146          */
1147         mutex_unlock(&exiting->futex_exit_mutex);
1148
1149         put_task_struct(exiting);
1150 }
1151
1152 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153                             struct task_struct *tsk)
1154 {
1155         u32 uval2;
1156
1157         /*
1158          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159          * caller that the alleged owner is busy.
1160          */
1161         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1162                 return -EBUSY;
1163
1164         /*
1165          * Reread the user space value to handle the following situation:
1166          *
1167          * CPU0                         CPU1
1168          *
1169          * sys_exit()                   sys_futex()
1170          *  do_exit()                    futex_lock_pi()
1171          *                                futex_lock_pi_atomic()
1172          *   exit_signals(tsk)              No waiters:
1173          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1174          *  mm_release(tsk)                 Set waiter bit
1175          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1176          *      Set owner died              attach_to_pi_owner() {
1177          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1178          *   }                               if (!tsk->flags & PF_EXITING) {
1179          *  ...                                attach();
1180          *  tsk->futex_state =               } else {
1181          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1182          *                                        FUTEX_STATE_DEAD)
1183          *                                       return -EAGAIN;
1184          *                                     return -ESRCH; <--- FAIL
1185          *                                   }
1186          *
1187          * Returning ESRCH unconditionally is wrong here because the
1188          * user space value has been changed by the exiting task.
1189          *
1190          * The same logic applies to the case where the exiting task is
1191          * already gone.
1192          */
1193         if (get_futex_value_locked(&uval2, uaddr))
1194                 return -EFAULT;
1195
1196         /* If the user space value has changed, try again. */
1197         if (uval2 != uval)
1198                 return -EAGAIN;
1199
1200         /*
1201          * The exiting task did not have a robust list, the robust list was
1202          * corrupted or the user space value in *uaddr is simply bogus.
1203          * Give up and tell user space.
1204          */
1205         return -ESRCH;
1206 }
1207
1208 /*
1209  * Lookup the task for the TID provided from user space and attach to
1210  * it after doing proper sanity checks.
1211  */
1212 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1213                               struct futex_pi_state **ps,
1214                               struct task_struct **exiting)
1215 {
1216         pid_t pid = uval & FUTEX_TID_MASK;
1217         struct futex_pi_state *pi_state;
1218         struct task_struct *p;
1219
1220         /*
1221          * We are the first waiter - try to look up the real owner and attach
1222          * the new pi_state to it, but bail out when TID = 0 [1]
1223          *
1224          * The !pid check is paranoid. None of the call sites should end up
1225          * with pid == 0, but better safe than sorry. Let the caller retry
1226          */
1227         if (!pid)
1228                 return -EAGAIN;
1229         p = find_get_task_by_vpid(pid);
1230         if (!p)
1231                 return handle_exit_race(uaddr, uval, NULL);
1232
1233         if (unlikely(p->flags & PF_KTHREAD)) {
1234                 put_task_struct(p);
1235                 return -EPERM;
1236         }
1237
1238         /*
1239          * We need to look at the task state to figure out, whether the
1240          * task is exiting. To protect against the change of the task state
1241          * in futex_exit_release(), we do this protected by p->pi_lock:
1242          */
1243         raw_spin_lock_irq(&p->pi_lock);
1244         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1245                 /*
1246                  * The task is on the way out. When the futex state is
1247                  * FUTEX_STATE_DEAD, we know that the task has finished
1248                  * the cleanup:
1249                  */
1250                 int ret = handle_exit_race(uaddr, uval, p);
1251
1252                 raw_spin_unlock_irq(&p->pi_lock);
1253                 /*
1254                  * If the owner task is between FUTEX_STATE_EXITING and
1255                  * FUTEX_STATE_DEAD then store the task pointer and keep
1256                  * the reference on the task struct. The calling code will
1257                  * drop all locks, wait for the task to reach
1258                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1259                  * required to prevent a live lock when the current task
1260                  * preempted the exiting task between the two states.
1261                  */
1262                 if (ret == -EBUSY)
1263                         *exiting = p;
1264                 else
1265                         put_task_struct(p);
1266                 return ret;
1267         }
1268
1269         /*
1270          * No existing pi state. First waiter. [2]
1271          *
1272          * This creates pi_state, we have hb->lock held, this means nothing can
1273          * observe this state, wait_lock is irrelevant.
1274          */
1275         pi_state = alloc_pi_state();
1276
1277         /*
1278          * Initialize the pi_mutex in locked state and make @p
1279          * the owner of it:
1280          */
1281         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283         /* Store the key for possible exit cleanups: */
1284         pi_state->key = *key;
1285
1286         WARN_ON(!list_empty(&pi_state->list));
1287         list_add(&pi_state->list, &p->pi_state_list);
1288         /*
1289          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290          * because there is no concurrency as the object is not published yet.
1291          */
1292         pi_state->owner = p;
1293         raw_spin_unlock_irq(&p->pi_lock);
1294
1295         put_task_struct(p);
1296
1297         *ps = pi_state;
1298
1299         return 0;
1300 }
1301
1302 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1303                            struct futex_hash_bucket *hb,
1304                            union futex_key *key, struct futex_pi_state **ps,
1305                            struct task_struct **exiting)
1306 {
1307         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1308
1309         /*
1310          * If there is a waiter on that futex, validate it and
1311          * attach to the pi_state when the validation succeeds.
1312          */
1313         if (top_waiter)
1314                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1315
1316         /*
1317          * We are the first waiter - try to look up the owner based on
1318          * @uval and attach to it.
1319          */
1320         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1321 }
1322
1323 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1324 {
1325         int err;
1326         u32 curval;
1327
1328         if (unlikely(should_fail_futex(true)))
1329                 return -EFAULT;
1330
1331         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1332         if (unlikely(err))
1333                 return err;
1334
1335         /* If user space value changed, let the caller retry */
1336         return curval != uval ? -EAGAIN : 0;
1337 }
1338
1339 /**
1340  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1341  * @uaddr:              the pi futex user address
1342  * @hb:                 the pi futex hash bucket
1343  * @key:                the futex key associated with uaddr and hb
1344  * @ps:                 the pi_state pointer where we store the result of the
1345  *                      lookup
1346  * @task:               the task to perform the atomic lock work for.  This will
1347  *                      be "current" except in the case of requeue pi.
1348  * @exiting:            Pointer to store the task pointer of the owner task
1349  *                      which is in the middle of exiting
1350  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1351  *
1352  * Return:
1353  *  -  0 - ready to wait;
1354  *  -  1 - acquired the lock;
1355  *  - <0 - error
1356  *
1357  * The hb->lock and futex_key refs shall be held by the caller.
1358  *
1359  * @exiting is only set when the return value is -EBUSY. If so, this holds
1360  * a refcount on the exiting task on return and the caller needs to drop it
1361  * after waiting for the exit to complete.
1362  */
1363 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1364                                 union futex_key *key,
1365                                 struct futex_pi_state **ps,
1366                                 struct task_struct *task,
1367                                 struct task_struct **exiting,
1368                                 int set_waiters)
1369 {
1370         u32 uval, newval, vpid = task_pid_vnr(task);
1371         struct futex_q *top_waiter;
1372         int ret;
1373
1374         /*
1375          * Read the user space value first so we can validate a few
1376          * things before proceeding further.
1377          */
1378         if (get_futex_value_locked(&uval, uaddr))
1379                 return -EFAULT;
1380
1381         if (unlikely(should_fail_futex(true)))
1382                 return -EFAULT;
1383
1384         /*
1385          * Detect deadlocks.
1386          */
1387         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1388                 return -EDEADLK;
1389
1390         if ((unlikely(should_fail_futex(true))))
1391                 return -EDEADLK;
1392
1393         /*
1394          * Lookup existing state first. If it exists, try to attach to
1395          * its pi_state.
1396          */
1397         top_waiter = futex_top_waiter(hb, key);
1398         if (top_waiter)
1399                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1400
1401         /*
1402          * No waiter and user TID is 0. We are here because the
1403          * waiters or the owner died bit is set or called from
1404          * requeue_cmp_pi or for whatever reason something took the
1405          * syscall.
1406          */
1407         if (!(uval & FUTEX_TID_MASK)) {
1408                 /*
1409                  * We take over the futex. No other waiters and the user space
1410                  * TID is 0. We preserve the owner died bit.
1411                  */
1412                 newval = uval & FUTEX_OWNER_DIED;
1413                 newval |= vpid;
1414
1415                 /* The futex requeue_pi code can enforce the waiters bit */
1416                 if (set_waiters)
1417                         newval |= FUTEX_WAITERS;
1418
1419                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1420                 /* If the take over worked, return 1 */
1421                 return ret < 0 ? ret : 1;
1422         }
1423
1424         /*
1425          * First waiter. Set the waiters bit before attaching ourself to
1426          * the owner. If owner tries to unlock, it will be forced into
1427          * the kernel and blocked on hb->lock.
1428          */
1429         newval = uval | FUTEX_WAITERS;
1430         ret = lock_pi_update_atomic(uaddr, uval, newval);
1431         if (ret)
1432                 return ret;
1433         /*
1434          * If the update of the user space value succeeded, we try to
1435          * attach to the owner. If that fails, no harm done, we only
1436          * set the FUTEX_WAITERS bit in the user space variable.
1437          */
1438         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1439 }
1440
1441 /**
1442  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1443  * @q:  The futex_q to unqueue
1444  *
1445  * The q->lock_ptr must not be NULL and must be held by the caller.
1446  */
1447 static void __unqueue_futex(struct futex_q *q)
1448 {
1449         struct futex_hash_bucket *hb;
1450
1451         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1452                 return;
1453         lockdep_assert_held(q->lock_ptr);
1454
1455         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1456         plist_del(&q->list, &hb->chain);
1457         hb_waiters_dec(hb);
1458 }
1459
1460 /*
1461  * The hash bucket lock must be held when this is called.
1462  * Afterwards, the futex_q must not be accessed. Callers
1463  * must ensure to later call wake_up_q() for the actual
1464  * wakeups to occur.
1465  */
1466 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1467 {
1468         struct task_struct *p = q->task;
1469
1470         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1471                 return;
1472
1473         get_task_struct(p);
1474         __unqueue_futex(q);
1475         /*
1476          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1477          * is written, without taking any locks. This is possible in the event
1478          * of a spurious wakeup, for example. A memory barrier is required here
1479          * to prevent the following store to lock_ptr from getting ahead of the
1480          * plist_del in __unqueue_futex().
1481          */
1482         smp_store_release(&q->lock_ptr, NULL);
1483
1484         /*
1485          * Queue the task for later wakeup for after we've released
1486          * the hb->lock.
1487          */
1488         wake_q_add_safe(wake_q, p);
1489 }
1490
1491 /*
1492  * Caller must hold a reference on @pi_state.
1493  */
1494 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1495 {
1496         u32 curval, newval;
1497         struct rt_mutex_waiter *top_waiter;
1498         struct task_struct *new_owner;
1499         bool postunlock = false;
1500         DEFINE_WAKE_Q(wake_q);
1501         int ret = 0;
1502
1503         top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1504         if (WARN_ON_ONCE(!top_waiter)) {
1505                 /*
1506                  * As per the comment in futex_unlock_pi() this should not happen.
1507                  *
1508                  * When this happens, give up our locks and try again, giving
1509                  * the futex_lock_pi() instance time to complete, either by
1510                  * waiting on the rtmutex or removing itself from the futex
1511                  * queue.
1512                  */
1513                 ret = -EAGAIN;
1514                 goto out_unlock;
1515         }
1516
1517         new_owner = top_waiter->task;
1518
1519         /*
1520          * We pass it to the next owner. The WAITERS bit is always kept
1521          * enabled while there is PI state around. We cleanup the owner
1522          * died bit, because we are the owner.
1523          */
1524         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1525
1526         if (unlikely(should_fail_futex(true))) {
1527                 ret = -EFAULT;
1528                 goto out_unlock;
1529         }
1530
1531         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1532         if (!ret && (curval != uval)) {
1533                 /*
1534                  * If a unconditional UNLOCK_PI operation (user space did not
1535                  * try the TID->0 transition) raced with a waiter setting the
1536                  * FUTEX_WAITERS flag between get_user() and locking the hash
1537                  * bucket lock, retry the operation.
1538                  */
1539                 if ((FUTEX_TID_MASK & curval) == uval)
1540                         ret = -EAGAIN;
1541                 else
1542                         ret = -EINVAL;
1543         }
1544
1545         if (!ret) {
1546                 /*
1547                  * This is a point of no return; once we modified the uval
1548                  * there is no going back and subsequent operations must
1549                  * not fail.
1550                  */
1551                 pi_state_update_owner(pi_state, new_owner);
1552                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1553         }
1554
1555 out_unlock:
1556         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1557
1558         if (postunlock)
1559                 rt_mutex_postunlock(&wake_q);
1560
1561         return ret;
1562 }
1563
1564 /*
1565  * Express the locking dependencies for lockdep:
1566  */
1567 static inline void
1568 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1569 {
1570         if (hb1 <= hb2) {
1571                 spin_lock(&hb1->lock);
1572                 if (hb1 < hb2)
1573                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1574         } else { /* hb1 > hb2 */
1575                 spin_lock(&hb2->lock);
1576                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1577         }
1578 }
1579
1580 static inline void
1581 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1582 {
1583         spin_unlock(&hb1->lock);
1584         if (hb1 != hb2)
1585                 spin_unlock(&hb2->lock);
1586 }
1587
1588 /*
1589  * Wake up waiters matching bitset queued on this futex (uaddr).
1590  */
1591 static int
1592 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1593 {
1594         struct futex_hash_bucket *hb;
1595         struct futex_q *this, *next;
1596         union futex_key key = FUTEX_KEY_INIT;
1597         int ret;
1598         DEFINE_WAKE_Q(wake_q);
1599
1600         if (!bitset)
1601                 return -EINVAL;
1602
1603         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1604         if (unlikely(ret != 0))
1605                 return ret;
1606
1607         hb = hash_futex(&key);
1608
1609         /* Make sure we really have tasks to wakeup */
1610         if (!hb_waiters_pending(hb))
1611                 return ret;
1612
1613         spin_lock(&hb->lock);
1614
1615         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1616                 if (match_futex (&this->key, &key)) {
1617                         if (this->pi_state || this->rt_waiter) {
1618                                 ret = -EINVAL;
1619                                 break;
1620                         }
1621
1622                         /* Check if one of the bits is set in both bitsets */
1623                         if (!(this->bitset & bitset))
1624                                 continue;
1625
1626                         mark_wake_futex(&wake_q, this);
1627                         if (++ret >= nr_wake)
1628                                 break;
1629                 }
1630         }
1631
1632         spin_unlock(&hb->lock);
1633         wake_up_q(&wake_q);
1634         return ret;
1635 }
1636
1637 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1638 {
1639         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1640         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1641         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1642         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1643         int oldval, ret;
1644
1645         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1646                 if (oparg < 0 || oparg > 31) {
1647                         char comm[sizeof(current->comm)];
1648                         /*
1649                          * kill this print and return -EINVAL when userspace
1650                          * is sane again
1651                          */
1652                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1653                                         get_task_comm(comm, current), oparg);
1654                         oparg &= 31;
1655                 }
1656                 oparg = 1 << oparg;
1657         }
1658
1659         pagefault_disable();
1660         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1661         pagefault_enable();
1662         if (ret)
1663                 return ret;
1664
1665         switch (cmp) {
1666         case FUTEX_OP_CMP_EQ:
1667                 return oldval == cmparg;
1668         case FUTEX_OP_CMP_NE:
1669                 return oldval != cmparg;
1670         case FUTEX_OP_CMP_LT:
1671                 return oldval < cmparg;
1672         case FUTEX_OP_CMP_GE:
1673                 return oldval >= cmparg;
1674         case FUTEX_OP_CMP_LE:
1675                 return oldval <= cmparg;
1676         case FUTEX_OP_CMP_GT:
1677                 return oldval > cmparg;
1678         default:
1679                 return -ENOSYS;
1680         }
1681 }
1682
1683 /*
1684  * Wake up all waiters hashed on the physical page that is mapped
1685  * to this virtual address:
1686  */
1687 static int
1688 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1689               int nr_wake, int nr_wake2, int op)
1690 {
1691         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1692         struct futex_hash_bucket *hb1, *hb2;
1693         struct futex_q *this, *next;
1694         int ret, op_ret;
1695         DEFINE_WAKE_Q(wake_q);
1696
1697 retry:
1698         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1699         if (unlikely(ret != 0))
1700                 return ret;
1701         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1702         if (unlikely(ret != 0))
1703                 return ret;
1704
1705         hb1 = hash_futex(&key1);
1706         hb2 = hash_futex(&key2);
1707
1708 retry_private:
1709         double_lock_hb(hb1, hb2);
1710         op_ret = futex_atomic_op_inuser(op, uaddr2);
1711         if (unlikely(op_ret < 0)) {
1712                 double_unlock_hb(hb1, hb2);
1713
1714                 if (!IS_ENABLED(CONFIG_MMU) ||
1715                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1716                         /*
1717                          * we don't get EFAULT from MMU faults if we don't have
1718                          * an MMU, but we might get them from range checking
1719                          */
1720                         ret = op_ret;
1721                         return ret;
1722                 }
1723
1724                 if (op_ret == -EFAULT) {
1725                         ret = fault_in_user_writeable(uaddr2);
1726                         if (ret)
1727                                 return ret;
1728                 }
1729
1730                 if (!(flags & FLAGS_SHARED)) {
1731                         cond_resched();
1732                         goto retry_private;
1733                 }
1734
1735                 cond_resched();
1736                 goto retry;
1737         }
1738
1739         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1740                 if (match_futex (&this->key, &key1)) {
1741                         if (this->pi_state || this->rt_waiter) {
1742                                 ret = -EINVAL;
1743                                 goto out_unlock;
1744                         }
1745                         mark_wake_futex(&wake_q, this);
1746                         if (++ret >= nr_wake)
1747                                 break;
1748                 }
1749         }
1750
1751         if (op_ret > 0) {
1752                 op_ret = 0;
1753                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1754                         if (match_futex (&this->key, &key2)) {
1755                                 if (this->pi_state || this->rt_waiter) {
1756                                         ret = -EINVAL;
1757                                         goto out_unlock;
1758                                 }
1759                                 mark_wake_futex(&wake_q, this);
1760                                 if (++op_ret >= nr_wake2)
1761                                         break;
1762                         }
1763                 }
1764                 ret += op_ret;
1765         }
1766
1767 out_unlock:
1768         double_unlock_hb(hb1, hb2);
1769         wake_up_q(&wake_q);
1770         return ret;
1771 }
1772
1773 /**
1774  * requeue_futex() - Requeue a futex_q from one hb to another
1775  * @q:          the futex_q to requeue
1776  * @hb1:        the source hash_bucket
1777  * @hb2:        the target hash_bucket
1778  * @key2:       the new key for the requeued futex_q
1779  */
1780 static inline
1781 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1782                    struct futex_hash_bucket *hb2, union futex_key *key2)
1783 {
1784
1785         /*
1786          * If key1 and key2 hash to the same bucket, no need to
1787          * requeue.
1788          */
1789         if (likely(&hb1->chain != &hb2->chain)) {
1790                 plist_del(&q->list, &hb1->chain);
1791                 hb_waiters_dec(hb1);
1792                 hb_waiters_inc(hb2);
1793                 plist_add(&q->list, &hb2->chain);
1794                 q->lock_ptr = &hb2->lock;
1795         }
1796         q->key = *key2;
1797 }
1798
1799 /**
1800  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1801  * @q:          the futex_q
1802  * @key:        the key of the requeue target futex
1803  * @hb:         the hash_bucket of the requeue target futex
1804  *
1805  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1806  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1807  * to the requeue target futex so the waiter can detect the wakeup on the right
1808  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1809  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1810  * to protect access to the pi_state to fixup the owner later.  Must be called
1811  * with both q->lock_ptr and hb->lock held.
1812  */
1813 static inline
1814 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1815                            struct futex_hash_bucket *hb)
1816 {
1817         q->key = *key;
1818
1819         __unqueue_futex(q);
1820
1821         WARN_ON(!q->rt_waiter);
1822         q->rt_waiter = NULL;
1823
1824         q->lock_ptr = &hb->lock;
1825
1826         wake_up_state(q->task, TASK_NORMAL);
1827 }
1828
1829 /**
1830  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1831  * @pifutex:            the user address of the to futex
1832  * @hb1:                the from futex hash bucket, must be locked by the caller
1833  * @hb2:                the to futex hash bucket, must be locked by the caller
1834  * @key1:               the from futex key
1835  * @key2:               the to futex key
1836  * @ps:                 address to store the pi_state pointer
1837  * @exiting:            Pointer to store the task pointer of the owner task
1838  *                      which is in the middle of exiting
1839  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1840  *
1841  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1842  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1843  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1844  * hb1 and hb2 must be held by the caller.
1845  *
1846  * @exiting is only set when the return value is -EBUSY. If so, this holds
1847  * a refcount on the exiting task on return and the caller needs to drop it
1848  * after waiting for the exit to complete.
1849  *
1850  * Return:
1851  *  -  0 - failed to acquire the lock atomically;
1852  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1853  *  - <0 - error
1854  */
1855 static int
1856 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1857                            struct futex_hash_bucket *hb2, union futex_key *key1,
1858                            union futex_key *key2, struct futex_pi_state **ps,
1859                            struct task_struct **exiting, int set_waiters)
1860 {
1861         struct futex_q *top_waiter = NULL;
1862         u32 curval;
1863         int ret, vpid;
1864
1865         if (get_futex_value_locked(&curval, pifutex))
1866                 return -EFAULT;
1867
1868         if (unlikely(should_fail_futex(true)))
1869                 return -EFAULT;
1870
1871         /*
1872          * Find the top_waiter and determine if there are additional waiters.
1873          * If the caller intends to requeue more than 1 waiter to pifutex,
1874          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1875          * as we have means to handle the possible fault.  If not, don't set
1876          * the bit unecessarily as it will force the subsequent unlock to enter
1877          * the kernel.
1878          */
1879         top_waiter = futex_top_waiter(hb1, key1);
1880
1881         /* There are no waiters, nothing for us to do. */
1882         if (!top_waiter)
1883                 return 0;
1884
1885         /* Ensure we requeue to the expected futex. */
1886         if (!match_futex(top_waiter->requeue_pi_key, key2))
1887                 return -EINVAL;
1888
1889         /*
1890          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1891          * the contended case or if set_waiters is 1.  The pi_state is returned
1892          * in ps in contended cases.
1893          */
1894         vpid = task_pid_vnr(top_waiter->task);
1895         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1896                                    exiting, set_waiters);
1897         if (ret == 1) {
1898                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1899                 return vpid;
1900         }
1901         return ret;
1902 }
1903
1904 /**
1905  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1906  * @uaddr1:     source futex user address
1907  * @flags:      futex flags (FLAGS_SHARED, etc.)
1908  * @uaddr2:     target futex user address
1909  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1910  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1911  * @cmpval:     @uaddr1 expected value (or %NULL)
1912  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1913  *              pi futex (pi to pi requeue is not supported)
1914  *
1915  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1916  * uaddr2 atomically on behalf of the top waiter.
1917  *
1918  * Return:
1919  *  - >=0 - on success, the number of tasks requeued or woken;
1920  *  -  <0 - on error
1921  */
1922 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1923                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1924                          u32 *cmpval, int requeue_pi)
1925 {
1926         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1927         int task_count = 0, ret;
1928         struct futex_pi_state *pi_state = NULL;
1929         struct futex_hash_bucket *hb1, *hb2;
1930         struct futex_q *this, *next;
1931         DEFINE_WAKE_Q(wake_q);
1932
1933         if (nr_wake < 0 || nr_requeue < 0)
1934                 return -EINVAL;
1935
1936         /*
1937          * When PI not supported: return -ENOSYS if requeue_pi is true,
1938          * consequently the compiler knows requeue_pi is always false past
1939          * this point which will optimize away all the conditional code
1940          * further down.
1941          */
1942         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1943                 return -ENOSYS;
1944
1945         if (requeue_pi) {
1946                 /*
1947                  * Requeue PI only works on two distinct uaddrs. This
1948                  * check is only valid for private futexes. See below.
1949                  */
1950                 if (uaddr1 == uaddr2)
1951                         return -EINVAL;
1952
1953                 /*
1954                  * requeue_pi requires a pi_state, try to allocate it now
1955                  * without any locks in case it fails.
1956                  */
1957                 if (refill_pi_state_cache())
1958                         return -ENOMEM;
1959                 /*
1960                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1961                  * + nr_requeue, since it acquires the rt_mutex prior to
1962                  * returning to userspace, so as to not leave the rt_mutex with
1963                  * waiters and no owner.  However, second and third wake-ups
1964                  * cannot be predicted as they involve race conditions with the
1965                  * first wake and a fault while looking up the pi_state.  Both
1966                  * pthread_cond_signal() and pthread_cond_broadcast() should
1967                  * use nr_wake=1.
1968                  */
1969                 if (nr_wake != 1)
1970                         return -EINVAL;
1971         }
1972
1973 retry:
1974         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1975         if (unlikely(ret != 0))
1976                 return ret;
1977         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1978                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1979         if (unlikely(ret != 0))
1980                 return ret;
1981
1982         /*
1983          * The check above which compares uaddrs is not sufficient for
1984          * shared futexes. We need to compare the keys:
1985          */
1986         if (requeue_pi && match_futex(&key1, &key2))
1987                 return -EINVAL;
1988
1989         hb1 = hash_futex(&key1);
1990         hb2 = hash_futex(&key2);
1991
1992 retry_private:
1993         hb_waiters_inc(hb2);
1994         double_lock_hb(hb1, hb2);
1995
1996         if (likely(cmpval != NULL)) {
1997                 u32 curval;
1998
1999                 ret = get_futex_value_locked(&curval, uaddr1);
2000
2001                 if (unlikely(ret)) {
2002                         double_unlock_hb(hb1, hb2);
2003                         hb_waiters_dec(hb2);
2004
2005                         ret = get_user(curval, uaddr1);
2006                         if (ret)
2007                                 return ret;
2008
2009                         if (!(flags & FLAGS_SHARED))
2010                                 goto retry_private;
2011
2012                         goto retry;
2013                 }
2014                 if (curval != *cmpval) {
2015                         ret = -EAGAIN;
2016                         goto out_unlock;
2017                 }
2018         }
2019
2020         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2021                 struct task_struct *exiting = NULL;
2022
2023                 /*
2024                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2025                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2026                  * bit.  We force this here where we are able to easily handle
2027                  * faults rather in the requeue loop below.
2028                  */
2029                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2030                                                  &key2, &pi_state,
2031                                                  &exiting, nr_requeue);
2032
2033                 /*
2034                  * At this point the top_waiter has either taken uaddr2 or is
2035                  * waiting on it.  If the former, then the pi_state will not
2036                  * exist yet, look it up one more time to ensure we have a
2037                  * reference to it. If the lock was taken, ret contains the
2038                  * vpid of the top waiter task.
2039                  * If the lock was not taken, we have pi_state and an initial
2040                  * refcount on it. In case of an error we have nothing.
2041                  */
2042                 if (ret > 0) {
2043                         WARN_ON(pi_state);
2044                         task_count++;
2045                         /*
2046                          * If we acquired the lock, then the user space value
2047                          * of uaddr2 should be vpid. It cannot be changed by
2048                          * the top waiter as it is blocked on hb2 lock if it
2049                          * tries to do so. If something fiddled with it behind
2050                          * our back the pi state lookup might unearth it. So
2051                          * we rather use the known value than rereading and
2052                          * handing potential crap to lookup_pi_state.
2053                          *
2054                          * If that call succeeds then we have pi_state and an
2055                          * initial refcount on it.
2056                          */
2057                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2058                                               &pi_state, &exiting);
2059                 }
2060
2061                 switch (ret) {
2062                 case 0:
2063                         /* We hold a reference on the pi state. */
2064                         break;
2065
2066                         /* If the above failed, then pi_state is NULL */
2067                 case -EFAULT:
2068                         double_unlock_hb(hb1, hb2);
2069                         hb_waiters_dec(hb2);
2070                         ret = fault_in_user_writeable(uaddr2);
2071                         if (!ret)
2072                                 goto retry;
2073                         return ret;
2074                 case -EBUSY:
2075                 case -EAGAIN:
2076                         /*
2077                          * Two reasons for this:
2078                          * - EBUSY: Owner is exiting and we just wait for the
2079                          *   exit to complete.
2080                          * - EAGAIN: The user space value changed.
2081                          */
2082                         double_unlock_hb(hb1, hb2);
2083                         hb_waiters_dec(hb2);
2084                         /*
2085                          * Handle the case where the owner is in the middle of
2086                          * exiting. Wait for the exit to complete otherwise
2087                          * this task might loop forever, aka. live lock.
2088                          */
2089                         wait_for_owner_exiting(ret, exiting);
2090                         cond_resched();
2091                         goto retry;
2092                 default:
2093                         goto out_unlock;
2094                 }
2095         }
2096
2097         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2098                 if (task_count - nr_wake >= nr_requeue)
2099                         break;
2100
2101                 if (!match_futex(&this->key, &key1))
2102                         continue;
2103
2104                 /*
2105                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2106                  * be paired with each other and no other futex ops.
2107                  *
2108                  * We should never be requeueing a futex_q with a pi_state,
2109                  * which is awaiting a futex_unlock_pi().
2110                  */
2111                 if ((requeue_pi && !this->rt_waiter) ||
2112                     (!requeue_pi && this->rt_waiter) ||
2113                     this->pi_state) {
2114                         ret = -EINVAL;
2115                         break;
2116                 }
2117
2118                 /*
2119                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2120                  * lock, we already woke the top_waiter.  If not, it will be
2121                  * woken by futex_unlock_pi().
2122                  */
2123                 if (++task_count <= nr_wake && !requeue_pi) {
2124                         mark_wake_futex(&wake_q, this);
2125                         continue;
2126                 }
2127
2128                 /* Ensure we requeue to the expected futex for requeue_pi. */
2129                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2130                         ret = -EINVAL;
2131                         break;
2132                 }
2133
2134                 /*
2135                  * Requeue nr_requeue waiters and possibly one more in the case
2136                  * of requeue_pi if we couldn't acquire the lock atomically.
2137                  */
2138                 if (requeue_pi) {
2139                         /*
2140                          * Prepare the waiter to take the rt_mutex. Take a
2141                          * refcount on the pi_state and store the pointer in
2142                          * the futex_q object of the waiter.
2143                          */
2144                         get_pi_state(pi_state);
2145                         this->pi_state = pi_state;
2146                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2147                                                         this->rt_waiter,
2148                                                         this->task);
2149                         if (ret == 1) {
2150                                 /*
2151                                  * We got the lock. We do neither drop the
2152                                  * refcount on pi_state nor clear
2153                                  * this->pi_state because the waiter needs the
2154                                  * pi_state for cleaning up the user space
2155                                  * value. It will drop the refcount after
2156                                  * doing so.
2157                                  */
2158                                 requeue_pi_wake_futex(this, &key2, hb2);
2159                                 continue;
2160                         } else if (ret) {
2161                                 /*
2162                                  * rt_mutex_start_proxy_lock() detected a
2163                                  * potential deadlock when we tried to queue
2164                                  * that waiter. Drop the pi_state reference
2165                                  * which we took above and remove the pointer
2166                                  * to the state from the waiters futex_q
2167                                  * object.
2168                                  */
2169                                 this->pi_state = NULL;
2170                                 put_pi_state(pi_state);
2171                                 /*
2172                                  * We stop queueing more waiters and let user
2173                                  * space deal with the mess.
2174                                  */
2175                                 break;
2176                         }
2177                 }
2178                 requeue_futex(this, hb1, hb2, &key2);
2179         }
2180
2181         /*
2182          * We took an extra initial reference to the pi_state either
2183          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2184          * need to drop it here again.
2185          */
2186         put_pi_state(pi_state);
2187
2188 out_unlock:
2189         double_unlock_hb(hb1, hb2);
2190         wake_up_q(&wake_q);
2191         hb_waiters_dec(hb2);
2192         return ret ? ret : task_count;
2193 }
2194
2195 /* The key must be already stored in q->key. */
2196 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2197         __acquires(&hb->lock)
2198 {
2199         struct futex_hash_bucket *hb;
2200
2201         hb = hash_futex(&q->key);
2202
2203         /*
2204          * Increment the counter before taking the lock so that
2205          * a potential waker won't miss a to-be-slept task that is
2206          * waiting for the spinlock. This is safe as all queue_lock()
2207          * users end up calling queue_me(). Similarly, for housekeeping,
2208          * decrement the counter at queue_unlock() when some error has
2209          * occurred and we don't end up adding the task to the list.
2210          */
2211         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2212
2213         q->lock_ptr = &hb->lock;
2214
2215         spin_lock(&hb->lock);
2216         return hb;
2217 }
2218
2219 static inline void
2220 queue_unlock(struct futex_hash_bucket *hb)
2221         __releases(&hb->lock)
2222 {
2223         spin_unlock(&hb->lock);
2224         hb_waiters_dec(hb);
2225 }
2226
2227 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2228 {
2229         int prio;
2230
2231         /*
2232          * The priority used to register this element is
2233          * - either the real thread-priority for the real-time threads
2234          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2235          * - or MAX_RT_PRIO for non-RT threads.
2236          * Thus, all RT-threads are woken first in priority order, and
2237          * the others are woken last, in FIFO order.
2238          */
2239         prio = min(current->normal_prio, MAX_RT_PRIO);
2240
2241         plist_node_init(&q->list, prio);
2242         plist_add(&q->list, &hb->chain);
2243         q->task = current;
2244 }
2245
2246 /**
2247  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2248  * @q:  The futex_q to enqueue
2249  * @hb: The destination hash bucket
2250  *
2251  * The hb->lock must be held by the caller, and is released here. A call to
2252  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2253  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2254  * or nothing if the unqueue is done as part of the wake process and the unqueue
2255  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2256  * an example).
2257  */
2258 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2259         __releases(&hb->lock)
2260 {
2261         __queue_me(q, hb);
2262         spin_unlock(&hb->lock);
2263 }
2264
2265 /**
2266  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2267  * @q:  The futex_q to unqueue
2268  *
2269  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2270  * be paired with exactly one earlier call to queue_me().
2271  *
2272  * Return:
2273  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2274  *  - 0 - if the futex_q was already removed by the waking thread
2275  */
2276 static int unqueue_me(struct futex_q *q)
2277 {
2278         spinlock_t *lock_ptr;
2279         int ret = 0;
2280
2281         /* In the common case we don't take the spinlock, which is nice. */
2282 retry:
2283         /*
2284          * q->lock_ptr can change between this read and the following spin_lock.
2285          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2286          * optimizing lock_ptr out of the logic below.
2287          */
2288         lock_ptr = READ_ONCE(q->lock_ptr);
2289         if (lock_ptr != NULL) {
2290                 spin_lock(lock_ptr);
2291                 /*
2292                  * q->lock_ptr can change between reading it and
2293                  * spin_lock(), causing us to take the wrong lock.  This
2294                  * corrects the race condition.
2295                  *
2296                  * Reasoning goes like this: if we have the wrong lock,
2297                  * q->lock_ptr must have changed (maybe several times)
2298                  * between reading it and the spin_lock().  It can
2299                  * change again after the spin_lock() but only if it was
2300                  * already changed before the spin_lock().  It cannot,
2301                  * however, change back to the original value.  Therefore
2302                  * we can detect whether we acquired the correct lock.
2303                  */
2304                 if (unlikely(lock_ptr != q->lock_ptr)) {
2305                         spin_unlock(lock_ptr);
2306                         goto retry;
2307                 }
2308                 __unqueue_futex(q);
2309
2310                 BUG_ON(q->pi_state);
2311
2312                 spin_unlock(lock_ptr);
2313                 ret = 1;
2314         }
2315
2316         return ret;
2317 }
2318
2319 /*
2320  * PI futexes can not be requeued and must remove themself from the
2321  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2322  * and dropped here.
2323  */
2324 static void unqueue_me_pi(struct futex_q *q)
2325         __releases(q->lock_ptr)
2326 {
2327         __unqueue_futex(q);
2328
2329         BUG_ON(!q->pi_state);
2330         put_pi_state(q->pi_state);
2331         q->pi_state = NULL;
2332
2333         spin_unlock(q->lock_ptr);
2334 }
2335
2336 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2337                                   struct task_struct *argowner)
2338 {
2339         struct futex_pi_state *pi_state = q->pi_state;
2340         struct task_struct *oldowner, *newowner;
2341         u32 uval, curval, newval, newtid;
2342         int err = 0;
2343
2344         oldowner = pi_state->owner;
2345
2346         /*
2347          * We are here because either:
2348          *
2349          *  - we stole the lock and pi_state->owner needs updating to reflect
2350          *    that (@argowner == current),
2351          *
2352          * or:
2353          *
2354          *  - someone stole our lock and we need to fix things to point to the
2355          *    new owner (@argowner == NULL).
2356          *
2357          * Either way, we have to replace the TID in the user space variable.
2358          * This must be atomic as we have to preserve the owner died bit here.
2359          *
2360          * Note: We write the user space value _before_ changing the pi_state
2361          * because we can fault here. Imagine swapped out pages or a fork
2362          * that marked all the anonymous memory readonly for cow.
2363          *
2364          * Modifying pi_state _before_ the user space value would leave the
2365          * pi_state in an inconsistent state when we fault here, because we
2366          * need to drop the locks to handle the fault. This might be observed
2367          * in the PID check in lookup_pi_state.
2368          */
2369 retry:
2370         if (!argowner) {
2371                 if (oldowner != current) {
2372                         /*
2373                          * We raced against a concurrent self; things are
2374                          * already fixed up. Nothing to do.
2375                          */
2376                         return 0;
2377                 }
2378
2379                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2380                         /* We got the lock. pi_state is correct. Tell caller. */
2381                         return 1;
2382                 }
2383
2384                 /*
2385                  * The trylock just failed, so either there is an owner or
2386                  * there is a higher priority waiter than this one.
2387                  */
2388                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2389                 /*
2390                  * If the higher priority waiter has not yet taken over the
2391                  * rtmutex then newowner is NULL. We can't return here with
2392                  * that state because it's inconsistent vs. the user space
2393                  * state. So drop the locks and try again. It's a valid
2394                  * situation and not any different from the other retry
2395                  * conditions.
2396                  */
2397                 if (unlikely(!newowner)) {
2398                         err = -EAGAIN;
2399                         goto handle_err;
2400                 }
2401         } else {
2402                 WARN_ON_ONCE(argowner != current);
2403                 if (oldowner == current) {
2404                         /*
2405                          * We raced against a concurrent self; things are
2406                          * already fixed up. Nothing to do.
2407                          */
2408                         return 1;
2409                 }
2410                 newowner = argowner;
2411         }
2412
2413         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2414         /* Owner died? */
2415         if (!pi_state->owner)
2416                 newtid |= FUTEX_OWNER_DIED;
2417
2418         err = get_futex_value_locked(&uval, uaddr);
2419         if (err)
2420                 goto handle_err;
2421
2422         for (;;) {
2423                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2424
2425                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2426                 if (err)
2427                         goto handle_err;
2428
2429                 if (curval == uval)
2430                         break;
2431                 uval = curval;
2432         }
2433
2434         /*
2435          * We fixed up user space. Now we need to fix the pi_state
2436          * itself.
2437          */
2438         pi_state_update_owner(pi_state, newowner);
2439
2440         return argowner == current;
2441
2442         /*
2443          * In order to reschedule or handle a page fault, we need to drop the
2444          * locks here. In the case of a fault, this gives the other task
2445          * (either the highest priority waiter itself or the task which stole
2446          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2447          * are back from handling the fault we need to check the pi_state after
2448          * reacquiring the locks and before trying to do another fixup. When
2449          * the fixup has been done already we simply return.
2450          *
2451          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2452          * drop hb->lock since the caller owns the hb -> futex_q relation.
2453          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2454          */
2455 handle_err:
2456         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2457         spin_unlock(q->lock_ptr);
2458
2459         switch (err) {
2460         case -EFAULT:
2461                 err = fault_in_user_writeable(uaddr);
2462                 break;
2463
2464         case -EAGAIN:
2465                 cond_resched();
2466                 err = 0;
2467                 break;
2468
2469         default:
2470                 WARN_ON_ONCE(1);
2471                 break;
2472         }
2473
2474         spin_lock(q->lock_ptr);
2475         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2476
2477         /*
2478          * Check if someone else fixed it for us:
2479          */
2480         if (pi_state->owner != oldowner)
2481                 return argowner == current;
2482
2483         /* Retry if err was -EAGAIN or the fault in succeeded */
2484         if (!err)
2485                 goto retry;
2486
2487         /*
2488          * fault_in_user_writeable() failed so user state is immutable. At
2489          * best we can make the kernel state consistent but user state will
2490          * be most likely hosed and any subsequent unlock operation will be
2491          * rejected due to PI futex rule [10].
2492          *
2493          * Ensure that the rtmutex owner is also the pi_state owner despite
2494          * the user space value claiming something different. There is no
2495          * point in unlocking the rtmutex if current is the owner as it
2496          * would need to wait until the next waiter has taken the rtmutex
2497          * to guarantee consistent state. Keep it simple. Userspace asked
2498          * for this wreckaged state.
2499          *
2500          * The rtmutex has an owner - either current or some other
2501          * task. See the EAGAIN loop above.
2502          */
2503         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2504
2505         return err;
2506 }
2507
2508 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2509                                 struct task_struct *argowner)
2510 {
2511         struct futex_pi_state *pi_state = q->pi_state;
2512         int ret;
2513
2514         lockdep_assert_held(q->lock_ptr);
2515
2516         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2517         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2518         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2519         return ret;
2520 }
2521
2522 static long futex_wait_restart(struct restart_block *restart);
2523
2524 /**
2525  * fixup_owner() - Post lock pi_state and corner case management
2526  * @uaddr:      user address of the futex
2527  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2528  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2529  *
2530  * After attempting to lock an rt_mutex, this function is called to cleanup
2531  * the pi_state owner as well as handle race conditions that may allow us to
2532  * acquire the lock. Must be called with the hb lock held.
2533  *
2534  * Return:
2535  *  -  1 - success, lock taken;
2536  *  -  0 - success, lock not taken;
2537  *  - <0 - on error (-EFAULT)
2538  */
2539 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2540 {
2541         if (locked) {
2542                 /*
2543                  * Got the lock. We might not be the anticipated owner if we
2544                  * did a lock-steal - fix up the PI-state in that case:
2545                  *
2546                  * Speculative pi_state->owner read (we don't hold wait_lock);
2547                  * since we own the lock pi_state->owner == current is the
2548                  * stable state, anything else needs more attention.
2549                  */
2550                 if (q->pi_state->owner != current)
2551                         return fixup_pi_state_owner(uaddr, q, current);
2552                 return 1;
2553         }
2554
2555         /*
2556          * If we didn't get the lock; check if anybody stole it from us. In
2557          * that case, we need to fix up the uval to point to them instead of
2558          * us, otherwise bad things happen. [10]
2559          *
2560          * Another speculative read; pi_state->owner == current is unstable
2561          * but needs our attention.
2562          */
2563         if (q->pi_state->owner == current)
2564                 return fixup_pi_state_owner(uaddr, q, NULL);
2565
2566         /*
2567          * Paranoia check. If we did not take the lock, then we should not be
2568          * the owner of the rt_mutex. Warn and establish consistent state.
2569          */
2570         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2571                 return fixup_pi_state_owner(uaddr, q, current);
2572
2573         return 0;
2574 }
2575
2576 /**
2577  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2578  * @hb:         the futex hash bucket, must be locked by the caller
2579  * @q:          the futex_q to queue up on
2580  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2581  */
2582 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2583                                 struct hrtimer_sleeper *timeout)
2584 {
2585         /*
2586          * The task state is guaranteed to be set before another task can
2587          * wake it. set_current_state() is implemented using smp_store_mb() and
2588          * queue_me() calls spin_unlock() upon completion, both serializing
2589          * access to the hash list and forcing another memory barrier.
2590          */
2591         set_current_state(TASK_INTERRUPTIBLE);
2592         queue_me(q, hb);
2593
2594         /* Arm the timer */
2595         if (timeout)
2596                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2597
2598         /*
2599          * If we have been removed from the hash list, then another task
2600          * has tried to wake us, and we can skip the call to schedule().
2601          */
2602         if (likely(!plist_node_empty(&q->list))) {
2603                 /*
2604                  * If the timer has already expired, current will already be
2605                  * flagged for rescheduling. Only call schedule if there
2606                  * is no timeout, or if it has yet to expire.
2607                  */
2608                 if (!timeout || timeout->task)
2609                         freezable_schedule();
2610         }
2611         __set_current_state(TASK_RUNNING);
2612 }
2613
2614 /**
2615  * futex_wait_setup() - Prepare to wait on a futex
2616  * @uaddr:      the futex userspace address
2617  * @val:        the expected value
2618  * @flags:      futex flags (FLAGS_SHARED, etc.)
2619  * @q:          the associated futex_q
2620  * @hb:         storage for hash_bucket pointer to be returned to caller
2621  *
2622  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2623  * compare it with the expected value.  Handle atomic faults internally.
2624  * Return with the hb lock held and a q.key reference on success, and unlocked
2625  * with no q.key reference on failure.
2626  *
2627  * Return:
2628  *  -  0 - uaddr contains val and hb has been locked;
2629  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2630  */
2631 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2632                            struct futex_q *q, struct futex_hash_bucket **hb)
2633 {
2634         u32 uval;
2635         int ret;
2636
2637         /*
2638          * Access the page AFTER the hash-bucket is locked.
2639          * Order is important:
2640          *
2641          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2642          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2643          *
2644          * The basic logical guarantee of a futex is that it blocks ONLY
2645          * if cond(var) is known to be true at the time of blocking, for
2646          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2647          * would open a race condition where we could block indefinitely with
2648          * cond(var) false, which would violate the guarantee.
2649          *
2650          * On the other hand, we insert q and release the hash-bucket only
2651          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2652          * absorb a wakeup if *uaddr does not match the desired values
2653          * while the syscall executes.
2654          */
2655 retry:
2656         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2657         if (unlikely(ret != 0))
2658                 return ret;
2659
2660 retry_private:
2661         *hb = queue_lock(q);
2662
2663         ret = get_futex_value_locked(&uval, uaddr);
2664
2665         if (ret) {
2666                 queue_unlock(*hb);
2667
2668                 ret = get_user(uval, uaddr);
2669                 if (ret)
2670                         return ret;
2671
2672                 if (!(flags & FLAGS_SHARED))
2673                         goto retry_private;
2674
2675                 goto retry;
2676         }
2677
2678         if (uval != val) {
2679                 queue_unlock(*hb);
2680                 ret = -EWOULDBLOCK;
2681         }
2682
2683         return ret;
2684 }
2685
2686 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2687                       ktime_t *abs_time, u32 bitset)
2688 {
2689         struct hrtimer_sleeper timeout, *to;
2690         struct restart_block *restart;
2691         struct futex_hash_bucket *hb;
2692         struct futex_q q = futex_q_init;
2693         int ret;
2694
2695         if (!bitset)
2696                 return -EINVAL;
2697         q.bitset = bitset;
2698
2699         to = futex_setup_timer(abs_time, &timeout, flags,
2700                                current->timer_slack_ns);
2701 retry:
2702         /*
2703          * Prepare to wait on uaddr. On success, holds hb lock and increments
2704          * q.key refs.
2705          */
2706         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2707         if (ret)
2708                 goto out;
2709
2710         /* queue_me and wait for wakeup, timeout, or a signal. */
2711         futex_wait_queue_me(hb, &q, to);
2712
2713         /* If we were woken (and unqueued), we succeeded, whatever. */
2714         ret = 0;
2715         /* unqueue_me() drops q.key ref */
2716         if (!unqueue_me(&q))
2717                 goto out;
2718         ret = -ETIMEDOUT;
2719         if (to && !to->task)
2720                 goto out;
2721
2722         /*
2723          * We expect signal_pending(current), but we might be the
2724          * victim of a spurious wakeup as well.
2725          */
2726         if (!signal_pending(current))
2727                 goto retry;
2728
2729         ret = -ERESTARTSYS;
2730         if (!abs_time)
2731                 goto out;
2732
2733         restart = &current->restart_block;
2734         restart->fn = futex_wait_restart;
2735         restart->futex.uaddr = uaddr;
2736         restart->futex.val = val;
2737         restart->futex.time = *abs_time;
2738         restart->futex.bitset = bitset;
2739         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2740
2741         ret = -ERESTART_RESTARTBLOCK;
2742
2743 out:
2744         if (to) {
2745                 hrtimer_cancel(&to->timer);
2746                 destroy_hrtimer_on_stack(&to->timer);
2747         }
2748         return ret;
2749 }
2750
2751
2752 static long futex_wait_restart(struct restart_block *restart)
2753 {
2754         u32 __user *uaddr = restart->futex.uaddr;
2755         ktime_t t, *tp = NULL;
2756
2757         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2758                 t = restart->futex.time;
2759                 tp = &t;
2760         }
2761         restart->fn = do_no_restart_syscall;
2762
2763         return (long)futex_wait(uaddr, restart->futex.flags,
2764                                 restart->futex.val, tp, restart->futex.bitset);
2765 }
2766
2767
2768 /*
2769  * Userspace tried a 0 -> TID atomic transition of the futex value
2770  * and failed. The kernel side here does the whole locking operation:
2771  * if there are waiters then it will block as a consequence of relying
2772  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2773  * a 0 value of the futex too.).
2774  *
2775  * Also serves as futex trylock_pi()'ing, and due semantics.
2776  */
2777 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2778                          ktime_t *time, int trylock)
2779 {
2780         struct hrtimer_sleeper timeout, *to;
2781         struct task_struct *exiting = NULL;
2782         struct rt_mutex_waiter rt_waiter;
2783         struct futex_hash_bucket *hb;
2784         struct futex_q q = futex_q_init;
2785         int res, ret;
2786
2787         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2788                 return -ENOSYS;
2789
2790         if (refill_pi_state_cache())
2791                 return -ENOMEM;
2792
2793         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2794
2795 retry:
2796         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2797         if (unlikely(ret != 0))
2798                 goto out;
2799
2800 retry_private:
2801         hb = queue_lock(&q);
2802
2803         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2804                                    &exiting, 0);
2805         if (unlikely(ret)) {
2806                 /*
2807                  * Atomic work succeeded and we got the lock,
2808                  * or failed. Either way, we do _not_ block.
2809                  */
2810                 switch (ret) {
2811                 case 1:
2812                         /* We got the lock. */
2813                         ret = 0;
2814                         goto out_unlock_put_key;
2815                 case -EFAULT:
2816                         goto uaddr_faulted;
2817                 case -EBUSY:
2818                 case -EAGAIN:
2819                         /*
2820                          * Two reasons for this:
2821                          * - EBUSY: Task is exiting and we just wait for the
2822                          *   exit to complete.
2823                          * - EAGAIN: The user space value changed.
2824                          */
2825                         queue_unlock(hb);
2826                         /*
2827                          * Handle the case where the owner is in the middle of
2828                          * exiting. Wait for the exit to complete otherwise
2829                          * this task might loop forever, aka. live lock.
2830                          */
2831                         wait_for_owner_exiting(ret, exiting);
2832                         cond_resched();
2833                         goto retry;
2834                 default:
2835                         goto out_unlock_put_key;
2836                 }
2837         }
2838
2839         WARN_ON(!q.pi_state);
2840
2841         /*
2842          * Only actually queue now that the atomic ops are done:
2843          */
2844         __queue_me(&q, hb);
2845
2846         if (trylock) {
2847                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2848                 /* Fixup the trylock return value: */
2849                 ret = ret ? 0 : -EWOULDBLOCK;
2850                 goto no_block;
2851         }
2852
2853         rt_mutex_init_waiter(&rt_waiter);
2854
2855         /*
2856          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2857          * hold it while doing rt_mutex_start_proxy(), because then it will
2858          * include hb->lock in the blocking chain, even through we'll not in
2859          * fact hold it while blocking. This will lead it to report -EDEADLK
2860          * and BUG when futex_unlock_pi() interleaves with this.
2861          *
2862          * Therefore acquire wait_lock while holding hb->lock, but drop the
2863          * latter before calling __rt_mutex_start_proxy_lock(). This
2864          * interleaves with futex_unlock_pi() -- which does a similar lock
2865          * handoff -- such that the latter can observe the futex_q::pi_state
2866          * before __rt_mutex_start_proxy_lock() is done.
2867          */
2868         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2869         spin_unlock(q.lock_ptr);
2870         /*
2871          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2872          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2873          * it sees the futex_q::pi_state.
2874          */
2875         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2876         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2877
2878         if (ret) {
2879                 if (ret == 1)
2880                         ret = 0;
2881                 goto cleanup;
2882         }
2883
2884         if (unlikely(to))
2885                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2886
2887         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2888
2889 cleanup:
2890         spin_lock(q.lock_ptr);
2891         /*
2892          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2893          * first acquire the hb->lock before removing the lock from the
2894          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2895          * lists consistent.
2896          *
2897          * In particular; it is important that futex_unlock_pi() can not
2898          * observe this inconsistency.
2899          */
2900         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2901                 ret = 0;
2902
2903 no_block:
2904         /*
2905          * Fixup the pi_state owner and possibly acquire the lock if we
2906          * haven't already.
2907          */
2908         res = fixup_owner(uaddr, &q, !ret);
2909         /*
2910          * If fixup_owner() returned an error, proprogate that.  If it acquired
2911          * the lock, clear our -ETIMEDOUT or -EINTR.
2912          */
2913         if (res)
2914                 ret = (res < 0) ? res : 0;
2915
2916         /* Unqueue and drop the lock */
2917         unqueue_me_pi(&q);
2918         goto out;
2919
2920 out_unlock_put_key:
2921         queue_unlock(hb);
2922
2923 out:
2924         if (to) {
2925                 hrtimer_cancel(&to->timer);
2926                 destroy_hrtimer_on_stack(&to->timer);
2927         }
2928         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2929
2930 uaddr_faulted:
2931         queue_unlock(hb);
2932
2933         ret = fault_in_user_writeable(uaddr);
2934         if (ret)
2935                 goto out;
2936
2937         if (!(flags & FLAGS_SHARED))
2938                 goto retry_private;
2939
2940         goto retry;
2941 }
2942
2943 /*
2944  * Userspace attempted a TID -> 0 atomic transition, and failed.
2945  * This is the in-kernel slowpath: we look up the PI state (if any),
2946  * and do the rt-mutex unlock.
2947  */
2948 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2949 {
2950         u32 curval, uval, vpid = task_pid_vnr(current);
2951         union futex_key key = FUTEX_KEY_INIT;
2952         struct futex_hash_bucket *hb;
2953         struct futex_q *top_waiter;
2954         int ret;
2955
2956         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2957                 return -ENOSYS;
2958
2959 retry:
2960         if (get_user(uval, uaddr))
2961                 return -EFAULT;
2962         /*
2963          * We release only a lock we actually own:
2964          */
2965         if ((uval & FUTEX_TID_MASK) != vpid)
2966                 return -EPERM;
2967
2968         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2969         if (ret)
2970                 return ret;
2971
2972         hb = hash_futex(&key);
2973         spin_lock(&hb->lock);
2974
2975         /*
2976          * Check waiters first. We do not trust user space values at
2977          * all and we at least want to know if user space fiddled
2978          * with the futex value instead of blindly unlocking.
2979          */
2980         top_waiter = futex_top_waiter(hb, &key);
2981         if (top_waiter) {
2982                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2983
2984                 ret = -EINVAL;
2985                 if (!pi_state)
2986                         goto out_unlock;
2987
2988                 /*
2989                  * If current does not own the pi_state then the futex is
2990                  * inconsistent and user space fiddled with the futex value.
2991                  */
2992                 if (pi_state->owner != current)
2993                         goto out_unlock;
2994
2995                 get_pi_state(pi_state);
2996                 /*
2997                  * By taking wait_lock while still holding hb->lock, we ensure
2998                  * there is no point where we hold neither; and therefore
2999                  * wake_futex_pi() must observe a state consistent with what we
3000                  * observed.
3001                  *
3002                  * In particular; this forces __rt_mutex_start_proxy() to
3003                  * complete such that we're guaranteed to observe the
3004                  * rt_waiter. Also see the WARN in wake_futex_pi().
3005                  */
3006                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3007                 spin_unlock(&hb->lock);
3008
3009                 /* drops pi_state->pi_mutex.wait_lock */
3010                 ret = wake_futex_pi(uaddr, uval, pi_state);
3011
3012                 put_pi_state(pi_state);
3013
3014                 /*
3015                  * Success, we're done! No tricky corner cases.
3016                  */
3017                 if (!ret)
3018                         return ret;
3019                 /*
3020                  * The atomic access to the futex value generated a
3021                  * pagefault, so retry the user-access and the wakeup:
3022                  */
3023                 if (ret == -EFAULT)
3024                         goto pi_faulted;
3025                 /*
3026                  * A unconditional UNLOCK_PI op raced against a waiter
3027                  * setting the FUTEX_WAITERS bit. Try again.
3028                  */
3029                 if (ret == -EAGAIN)
3030                         goto pi_retry;
3031                 /*
3032                  * wake_futex_pi has detected invalid state. Tell user
3033                  * space.
3034                  */
3035                 return ret;
3036         }
3037
3038         /*
3039          * We have no kernel internal state, i.e. no waiters in the
3040          * kernel. Waiters which are about to queue themselves are stuck
3041          * on hb->lock. So we can safely ignore them. We do neither
3042          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3043          * owner.
3044          */
3045         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3046                 spin_unlock(&hb->lock);
3047                 switch (ret) {
3048                 case -EFAULT:
3049                         goto pi_faulted;
3050
3051                 case -EAGAIN:
3052                         goto pi_retry;
3053
3054                 default:
3055                         WARN_ON_ONCE(1);
3056                         return ret;
3057                 }
3058         }
3059
3060         /*
3061          * If uval has changed, let user space handle it.
3062          */
3063         ret = (curval == uval) ? 0 : -EAGAIN;
3064
3065 out_unlock:
3066         spin_unlock(&hb->lock);
3067         return ret;
3068
3069 pi_retry:
3070         cond_resched();
3071         goto retry;
3072
3073 pi_faulted:
3074
3075         ret = fault_in_user_writeable(uaddr);
3076         if (!ret)
3077                 goto retry;
3078
3079         return ret;
3080 }
3081
3082 /**
3083  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3084  * @hb:         the hash_bucket futex_q was original enqueued on
3085  * @q:          the futex_q woken while waiting to be requeued
3086  * @key2:       the futex_key of the requeue target futex
3087  * @timeout:    the timeout associated with the wait (NULL if none)
3088  *
3089  * Detect if the task was woken on the initial futex as opposed to the requeue
3090  * target futex.  If so, determine if it was a timeout or a signal that caused
3091  * the wakeup and return the appropriate error code to the caller.  Must be
3092  * called with the hb lock held.
3093  *
3094  * Return:
3095  *  -  0 = no early wakeup detected;
3096  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3097  */
3098 static inline
3099 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3100                                    struct futex_q *q, union futex_key *key2,
3101                                    struct hrtimer_sleeper *timeout)
3102 {
3103         int ret = 0;
3104
3105         /*
3106          * With the hb lock held, we avoid races while we process the wakeup.
3107          * We only need to hold hb (and not hb2) to ensure atomicity as the
3108          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3109          * It can't be requeued from uaddr2 to something else since we don't
3110          * support a PI aware source futex for requeue.
3111          */
3112         if (!match_futex(&q->key, key2)) {
3113                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3114                 /*
3115                  * We were woken prior to requeue by a timeout or a signal.
3116                  * Unqueue the futex_q and determine which it was.
3117                  */
3118                 plist_del(&q->list, &hb->chain);
3119                 hb_waiters_dec(hb);
3120
3121                 /* Handle spurious wakeups gracefully */
3122                 ret = -EWOULDBLOCK;
3123                 if (timeout && !timeout->task)
3124                         ret = -ETIMEDOUT;
3125                 else if (signal_pending(current))
3126                         ret = -ERESTARTNOINTR;
3127         }
3128         return ret;
3129 }
3130
3131 /**
3132  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3133  * @uaddr:      the futex we initially wait on (non-pi)
3134  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3135  *              the same type, no requeueing from private to shared, etc.
3136  * @val:        the expected value of uaddr
3137  * @abs_time:   absolute timeout
3138  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3139  * @uaddr2:     the pi futex we will take prior to returning to user-space
3140  *
3141  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3142  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3143  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3144  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3145  * without one, the pi logic would not know which task to boost/deboost, if
3146  * there was a need to.
3147  *
3148  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3149  * via the following--
3150  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3151  * 2) wakeup on uaddr2 after a requeue
3152  * 3) signal
3153  * 4) timeout
3154  *
3155  * If 3, cleanup and return -ERESTARTNOINTR.
3156  *
3157  * If 2, we may then block on trying to take the rt_mutex and return via:
3158  * 5) successful lock
3159  * 6) signal
3160  * 7) timeout
3161  * 8) other lock acquisition failure
3162  *
3163  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3164  *
3165  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3166  *
3167  * Return:
3168  *  -  0 - On success;
3169  *  - <0 - On error
3170  */
3171 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3172                                  u32 val, ktime_t *abs_time, u32 bitset,
3173                                  u32 __user *uaddr2)
3174 {
3175         struct hrtimer_sleeper timeout, *to;
3176         struct rt_mutex_waiter rt_waiter;
3177         struct futex_hash_bucket *hb;
3178         union futex_key key2 = FUTEX_KEY_INIT;
3179         struct futex_q q = futex_q_init;
3180         int res, ret;
3181
3182         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3183                 return -ENOSYS;
3184
3185         if (uaddr == uaddr2)
3186                 return -EINVAL;
3187
3188         if (!bitset)
3189                 return -EINVAL;
3190
3191         to = futex_setup_timer(abs_time, &timeout, flags,
3192                                current->timer_slack_ns);
3193
3194         /*
3195          * The waiter is allocated on our stack, manipulated by the requeue
3196          * code while we sleep on uaddr.
3197          */
3198         rt_mutex_init_waiter(&rt_waiter);
3199
3200         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3201         if (unlikely(ret != 0))
3202                 goto out;
3203
3204         q.bitset = bitset;
3205         q.rt_waiter = &rt_waiter;
3206         q.requeue_pi_key = &key2;
3207
3208         /*
3209          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3210          * count.
3211          */
3212         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3213         if (ret)
3214                 goto out;
3215
3216         /*
3217          * The check above which compares uaddrs is not sufficient for
3218          * shared futexes. We need to compare the keys:
3219          */
3220         if (match_futex(&q.key, &key2)) {
3221                 queue_unlock(hb);
3222                 ret = -EINVAL;
3223                 goto out;
3224         }
3225
3226         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3227         futex_wait_queue_me(hb, &q, to);
3228
3229         spin_lock(&hb->lock);
3230         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3231         spin_unlock(&hb->lock);
3232         if (ret)
3233                 goto out;
3234
3235         /*
3236          * In order for us to be here, we know our q.key == key2, and since
3237          * we took the hb->lock above, we also know that futex_requeue() has
3238          * completed and we no longer have to concern ourselves with a wakeup
3239          * race with the atomic proxy lock acquisition by the requeue code. The
3240          * futex_requeue dropped our key1 reference and incremented our key2
3241          * reference count.
3242          */
3243
3244         /*
3245          * Check if the requeue code acquired the second futex for us and do
3246          * any pertinent fixup.
3247          */
3248         if (!q.rt_waiter) {
3249                 if (q.pi_state && (q.pi_state->owner != current)) {
3250                         spin_lock(q.lock_ptr);
3251                         ret = fixup_owner(uaddr2, &q, true);
3252                         /*
3253                          * Drop the reference to the pi state which
3254                          * the requeue_pi() code acquired for us.
3255                          */
3256                         put_pi_state(q.pi_state);
3257                         spin_unlock(q.lock_ptr);
3258                         /*
3259                          * Adjust the return value. It's either -EFAULT or
3260                          * success (1) but the caller expects 0 for success.
3261                          */
3262                         ret = ret < 0 ? ret : 0;
3263                 }
3264         } else {
3265                 struct rt_mutex *pi_mutex;
3266
3267                 /*
3268                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3269                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3270                  * the pi_state.
3271                  */
3272                 WARN_ON(!q.pi_state);
3273                 pi_mutex = &q.pi_state->pi_mutex;
3274                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3275
3276                 spin_lock(q.lock_ptr);
3277                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3278                         ret = 0;
3279
3280                 debug_rt_mutex_free_waiter(&rt_waiter);
3281                 /*
3282                  * Fixup the pi_state owner and possibly acquire the lock if we
3283                  * haven't already.
3284                  */
3285                 res = fixup_owner(uaddr2, &q, !ret);
3286                 /*
3287                  * If fixup_owner() returned an error, proprogate that.  If it
3288                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3289                  */
3290                 if (res)
3291                         ret = (res < 0) ? res : 0;
3292
3293                 /* Unqueue and drop the lock. */
3294                 unqueue_me_pi(&q);
3295         }
3296
3297         if (ret == -EINTR) {
3298                 /*
3299                  * We've already been requeued, but cannot restart by calling
3300                  * futex_lock_pi() directly. We could restart this syscall, but
3301                  * it would detect that the user space "val" changed and return
3302                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3303                  * -EWOULDBLOCK directly.
3304                  */
3305                 ret = -EWOULDBLOCK;
3306         }
3307
3308 out:
3309         if (to) {
3310                 hrtimer_cancel(&to->timer);
3311                 destroy_hrtimer_on_stack(&to->timer);
3312         }
3313         return ret;
3314 }
3315
3316 /*
3317  * Support for robust futexes: the kernel cleans up held futexes at
3318  * thread exit time.
3319  *
3320  * Implementation: user-space maintains a per-thread list of locks it
3321  * is holding. Upon do_exit(), the kernel carefully walks this list,
3322  * and marks all locks that are owned by this thread with the
3323  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3324  * always manipulated with the lock held, so the list is private and
3325  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3326  * field, to allow the kernel to clean up if the thread dies after
3327  * acquiring the lock, but just before it could have added itself to
3328  * the list. There can only be one such pending lock.
3329  */
3330
3331 /**
3332  * sys_set_robust_list() - Set the robust-futex list head of a task
3333  * @head:       pointer to the list-head
3334  * @len:        length of the list-head, as userspace expects
3335  */
3336 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3337                 size_t, len)
3338 {
3339         if (!futex_cmpxchg_enabled)
3340                 return -ENOSYS;
3341         /*
3342          * The kernel knows only one size for now:
3343          */
3344         if (unlikely(len != sizeof(*head)))
3345                 return -EINVAL;
3346
3347         current->robust_list = head;
3348
3349         return 0;
3350 }
3351
3352 /**
3353  * sys_get_robust_list() - Get the robust-futex list head of a task
3354  * @pid:        pid of the process [zero for current task]
3355  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3356  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3357  */
3358 SYSCALL_DEFINE3(get_robust_list, int, pid,
3359                 struct robust_list_head __user * __user *, head_ptr,
3360                 size_t __user *, len_ptr)
3361 {
3362         struct robust_list_head __user *head;
3363         unsigned long ret;
3364         struct task_struct *p;
3365
3366         if (!futex_cmpxchg_enabled)
3367                 return -ENOSYS;
3368
3369         rcu_read_lock();
3370
3371         ret = -ESRCH;
3372         if (!pid)
3373                 p = current;
3374         else {
3375                 p = find_task_by_vpid(pid);
3376                 if (!p)
3377                         goto err_unlock;
3378         }
3379
3380         ret = -EPERM;
3381         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3382                 goto err_unlock;
3383
3384         head = p->robust_list;
3385         rcu_read_unlock();
3386
3387         if (put_user(sizeof(*head), len_ptr))
3388                 return -EFAULT;
3389         return put_user(head, head_ptr);
3390
3391 err_unlock:
3392         rcu_read_unlock();
3393
3394         return ret;
3395 }
3396
3397 /* Constants for the pending_op argument of handle_futex_death */
3398 #define HANDLE_DEATH_PENDING    true
3399 #define HANDLE_DEATH_LIST       false
3400
3401 /*
3402  * Process a futex-list entry, check whether it's owned by the
3403  * dying task, and do notification if so:
3404  */
3405 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3406                               bool pi, bool pending_op)
3407 {
3408         u32 uval, nval, mval;
3409         int err;
3410
3411         /* Futex address must be 32bit aligned */
3412         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3413                 return -1;
3414
3415 retry:
3416         if (get_user(uval, uaddr))
3417                 return -1;
3418
3419         /*
3420          * Special case for regular (non PI) futexes. The unlock path in
3421          * user space has two race scenarios:
3422          *
3423          * 1. The unlock path releases the user space futex value and
3424          *    before it can execute the futex() syscall to wake up
3425          *    waiters it is killed.
3426          *
3427          * 2. A woken up waiter is killed before it can acquire the
3428          *    futex in user space.
3429          *
3430          * In both cases the TID validation below prevents a wakeup of
3431          * potential waiters which can cause these waiters to block
3432          * forever.
3433          *
3434          * In both cases the following conditions are met:
3435          *
3436          *      1) task->robust_list->list_op_pending != NULL
3437          *         @pending_op == true
3438          *      2) User space futex value == 0
3439          *      3) Regular futex: @pi == false
3440          *
3441          * If these conditions are met, it is safe to attempt waking up a
3442          * potential waiter without touching the user space futex value and
3443          * trying to set the OWNER_DIED bit. The user space futex value is
3444          * uncontended and the rest of the user space mutex state is
3445          * consistent, so a woken waiter will just take over the
3446          * uncontended futex. Setting the OWNER_DIED bit would create
3447          * inconsistent state and malfunction of the user space owner died
3448          * handling.
3449          */
3450         if (pending_op && !pi && !uval) {
3451                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3452                 return 0;
3453         }
3454
3455         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3456                 return 0;
3457
3458         /*
3459          * Ok, this dying thread is truly holding a futex
3460          * of interest. Set the OWNER_DIED bit atomically
3461          * via cmpxchg, and if the value had FUTEX_WAITERS
3462          * set, wake up a waiter (if any). (We have to do a
3463          * futex_wake() even if OWNER_DIED is already set -
3464          * to handle the rare but possible case of recursive
3465          * thread-death.) The rest of the cleanup is done in
3466          * userspace.
3467          */
3468         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3469
3470         /*
3471          * We are not holding a lock here, but we want to have
3472          * the pagefault_disable/enable() protection because
3473          * we want to handle the fault gracefully. If the
3474          * access fails we try to fault in the futex with R/W
3475          * verification via get_user_pages. get_user() above
3476          * does not guarantee R/W access. If that fails we
3477          * give up and leave the futex locked.
3478          */
3479         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3480                 switch (err) {
3481                 case -EFAULT:
3482                         if (fault_in_user_writeable(uaddr))
3483                                 return -1;
3484                         goto retry;
3485
3486                 case -EAGAIN:
3487                         cond_resched();
3488                         goto retry;
3489
3490                 default:
3491                         WARN_ON_ONCE(1);
3492                         return err;
3493                 }
3494         }
3495
3496         if (nval != uval)
3497                 goto retry;
3498
3499         /*
3500          * Wake robust non-PI futexes here. The wakeup of
3501          * PI futexes happens in exit_pi_state():
3502          */
3503         if (!pi && (uval & FUTEX_WAITERS))
3504                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3505
3506         return 0;
3507 }
3508
3509 /*
3510  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3511  */
3512 static inline int fetch_robust_entry(struct robust_list __user **entry,
3513                                      struct robust_list __user * __user *head,
3514                                      unsigned int *pi)
3515 {
3516         unsigned long uentry;
3517
3518         if (get_user(uentry, (unsigned long __user *)head))
3519                 return -EFAULT;
3520
3521         *entry = (void __user *)(uentry & ~1UL);
3522         *pi = uentry & 1;
3523
3524         return 0;
3525 }
3526
3527 /*
3528  * Walk curr->robust_list (very carefully, it's a userspace list!)
3529  * and mark any locks found there dead, and notify any waiters.
3530  *
3531  * We silently return on any sign of list-walking problem.
3532  */
3533 static void exit_robust_list(struct task_struct *curr)
3534 {
3535         struct robust_list_head __user *head = curr->robust_list;
3536         struct robust_list __user *entry, *next_entry, *pending;
3537         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3538         unsigned int next_pi;
3539         unsigned long futex_offset;
3540         int rc;
3541
3542         if (!futex_cmpxchg_enabled)
3543                 return;
3544
3545         /*
3546          * Fetch the list head (which was registered earlier, via
3547          * sys_set_robust_list()):
3548          */
3549         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3550                 return;
3551         /*
3552          * Fetch the relative futex offset:
3553          */
3554         if (get_user(futex_offset, &head->futex_offset))
3555                 return;
3556         /*
3557          * Fetch any possibly pending lock-add first, and handle it
3558          * if it exists:
3559          */
3560         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3561                 return;
3562
3563         next_entry = NULL;      /* avoid warning with gcc */
3564         while (entry != &head->list) {
3565                 /*
3566                  * Fetch the next entry in the list before calling
3567                  * handle_futex_death:
3568                  */
3569                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3570                 /*
3571                  * A pending lock might already be on the list, so
3572                  * don't process it twice:
3573                  */
3574                 if (entry != pending) {
3575                         if (handle_futex_death((void __user *)entry + futex_offset,
3576                                                 curr, pi, HANDLE_DEATH_LIST))
3577                                 return;
3578                 }
3579                 if (rc)
3580                         return;
3581                 entry = next_entry;
3582                 pi = next_pi;
3583                 /*
3584                  * Avoid excessively long or circular lists:
3585                  */
3586                 if (!--limit)
3587                         break;
3588
3589                 cond_resched();
3590         }
3591
3592         if (pending) {
3593                 handle_futex_death((void __user *)pending + futex_offset,
3594                                    curr, pip, HANDLE_DEATH_PENDING);
3595         }
3596 }
3597
3598 static void futex_cleanup(struct task_struct *tsk)
3599 {
3600         if (unlikely(tsk->robust_list)) {
3601                 exit_robust_list(tsk);
3602                 tsk->robust_list = NULL;
3603         }
3604
3605 #ifdef CONFIG_COMPAT
3606         if (unlikely(tsk->compat_robust_list)) {
3607                 compat_exit_robust_list(tsk);
3608                 tsk->compat_robust_list = NULL;
3609         }
3610 #endif
3611
3612         if (unlikely(!list_empty(&tsk->pi_state_list)))
3613                 exit_pi_state_list(tsk);
3614 }
3615
3616 /**
3617  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3618  * @tsk:        task to set the state on
3619  *
3620  * Set the futex exit state of the task lockless. The futex waiter code
3621  * observes that state when a task is exiting and loops until the task has
3622  * actually finished the futex cleanup. The worst case for this is that the
3623  * waiter runs through the wait loop until the state becomes visible.
3624  *
3625  * This is called from the recursive fault handling path in do_exit().
3626  *
3627  * This is best effort. Either the futex exit code has run already or
3628  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3629  * take it over. If not, the problem is pushed back to user space. If the
3630  * futex exit code did not run yet, then an already queued waiter might
3631  * block forever, but there is nothing which can be done about that.
3632  */
3633 void futex_exit_recursive(struct task_struct *tsk)
3634 {
3635         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3636         if (tsk->futex_state == FUTEX_STATE_EXITING)
3637                 mutex_unlock(&tsk->futex_exit_mutex);
3638         tsk->futex_state = FUTEX_STATE_DEAD;
3639 }
3640
3641 static void futex_cleanup_begin(struct task_struct *tsk)
3642 {
3643         /*
3644          * Prevent various race issues against a concurrent incoming waiter
3645          * including live locks by forcing the waiter to block on
3646          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3647          * attach_to_pi_owner().
3648          */
3649         mutex_lock(&tsk->futex_exit_mutex);
3650
3651         /*
3652          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3653          *
3654          * This ensures that all subsequent checks of tsk->futex_state in
3655          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3656          * tsk->pi_lock held.
3657          *
3658          * It guarantees also that a pi_state which was queued right before
3659          * the state change under tsk->pi_lock by a concurrent waiter must
3660          * be observed in exit_pi_state_list().
3661          */
3662         raw_spin_lock_irq(&tsk->pi_lock);
3663         tsk->futex_state = FUTEX_STATE_EXITING;
3664         raw_spin_unlock_irq(&tsk->pi_lock);
3665 }
3666
3667 static void futex_cleanup_end(struct task_struct *tsk, int state)
3668 {
3669         /*
3670          * Lockless store. The only side effect is that an observer might
3671          * take another loop until it becomes visible.
3672          */
3673         tsk->futex_state = state;
3674         /*
3675          * Drop the exit protection. This unblocks waiters which observed
3676          * FUTEX_STATE_EXITING to reevaluate the state.
3677          */
3678         mutex_unlock(&tsk->futex_exit_mutex);
3679 }
3680
3681 void futex_exec_release(struct task_struct *tsk)
3682 {
3683         /*
3684          * The state handling is done for consistency, but in the case of
3685          * exec() there is no way to prevent futher damage as the PID stays
3686          * the same. But for the unlikely and arguably buggy case that a
3687          * futex is held on exec(), this provides at least as much state
3688          * consistency protection which is possible.
3689          */
3690         futex_cleanup_begin(tsk);
3691         futex_cleanup(tsk);
3692         /*
3693          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3694          * exec a new binary.
3695          */
3696         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3697 }
3698
3699 void futex_exit_release(struct task_struct *tsk)
3700 {
3701         futex_cleanup_begin(tsk);
3702         futex_cleanup(tsk);
3703         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3704 }
3705
3706 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3707                 u32 __user *uaddr2, u32 val2, u32 val3)
3708 {
3709         int cmd = op & FUTEX_CMD_MASK;
3710         unsigned int flags = 0;
3711
3712         if (!(op & FUTEX_PRIVATE_FLAG))
3713                 flags |= FLAGS_SHARED;
3714
3715         if (op & FUTEX_CLOCK_REALTIME) {
3716                 flags |= FLAGS_CLOCKRT;
3717                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3718                     cmd != FUTEX_WAIT_REQUEUE_PI)
3719                         return -ENOSYS;
3720         }
3721
3722         switch (cmd) {
3723         case FUTEX_LOCK_PI:
3724         case FUTEX_UNLOCK_PI:
3725         case FUTEX_TRYLOCK_PI:
3726         case FUTEX_WAIT_REQUEUE_PI:
3727         case FUTEX_CMP_REQUEUE_PI:
3728                 if (!futex_cmpxchg_enabled)
3729                         return -ENOSYS;
3730         }
3731
3732         switch (cmd) {
3733         case FUTEX_WAIT:
3734                 val3 = FUTEX_BITSET_MATCH_ANY;
3735                 fallthrough;
3736         case FUTEX_WAIT_BITSET:
3737                 return futex_wait(uaddr, flags, val, timeout, val3);
3738         case FUTEX_WAKE:
3739                 val3 = FUTEX_BITSET_MATCH_ANY;
3740                 fallthrough;
3741         case FUTEX_WAKE_BITSET:
3742                 return futex_wake(uaddr, flags, val, val3);
3743         case FUTEX_REQUEUE:
3744                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3745         case FUTEX_CMP_REQUEUE:
3746                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3747         case FUTEX_WAKE_OP:
3748                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3749         case FUTEX_LOCK_PI:
3750                 return futex_lock_pi(uaddr, flags, timeout, 0);
3751         case FUTEX_UNLOCK_PI:
3752                 return futex_unlock_pi(uaddr, flags);
3753         case FUTEX_TRYLOCK_PI:
3754                 return futex_lock_pi(uaddr, flags, NULL, 1);
3755         case FUTEX_WAIT_REQUEUE_PI:
3756                 val3 = FUTEX_BITSET_MATCH_ANY;
3757                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3758                                              uaddr2);
3759         case FUTEX_CMP_REQUEUE_PI:
3760                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3761         }
3762         return -ENOSYS;
3763 }
3764
3765
3766 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3767                 const struct __kernel_timespec __user *, utime,
3768                 u32 __user *, uaddr2, u32, val3)
3769 {
3770         struct timespec64 ts;
3771         ktime_t t, *tp = NULL;
3772         u32 val2 = 0;
3773         int cmd = op & FUTEX_CMD_MASK;
3774
3775         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3776                       cmd == FUTEX_WAIT_BITSET ||
3777                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3778                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3779                         return -EFAULT;
3780                 if (get_timespec64(&ts, utime))
3781                         return -EFAULT;
3782                 if (!timespec64_valid(&ts))
3783                         return -EINVAL;
3784
3785                 t = timespec64_to_ktime(ts);
3786                 if (cmd == FUTEX_WAIT)
3787                         t = ktime_add_safe(ktime_get(), t);
3788                 else if (!(op & FUTEX_CLOCK_REALTIME))
3789                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3790                 tp = &t;
3791         }
3792         /*
3793          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3794          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3795          */
3796         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3797             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3798                 val2 = (u32) (unsigned long) utime;
3799
3800         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3801 }
3802
3803 #ifdef CONFIG_COMPAT
3804 /*
3805  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3806  */
3807 static inline int
3808 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3809                    compat_uptr_t __user *head, unsigned int *pi)
3810 {
3811         if (get_user(*uentry, head))
3812                 return -EFAULT;
3813
3814         *entry = compat_ptr((*uentry) & ~1);
3815         *pi = (unsigned int)(*uentry) & 1;
3816
3817         return 0;
3818 }
3819
3820 static void __user *futex_uaddr(struct robust_list __user *entry,
3821                                 compat_long_t futex_offset)
3822 {
3823         compat_uptr_t base = ptr_to_compat(entry);
3824         void __user *uaddr = compat_ptr(base + futex_offset);
3825
3826         return uaddr;
3827 }
3828
3829 /*
3830  * Walk curr->robust_list (very carefully, it's a userspace list!)
3831  * and mark any locks found there dead, and notify any waiters.
3832  *
3833  * We silently return on any sign of list-walking problem.
3834  */
3835 static void compat_exit_robust_list(struct task_struct *curr)
3836 {
3837         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3838         struct robust_list __user *entry, *next_entry, *pending;
3839         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3840         unsigned int next_pi;
3841         compat_uptr_t uentry, next_uentry, upending;
3842         compat_long_t futex_offset;
3843         int rc;
3844
3845         if (!futex_cmpxchg_enabled)
3846                 return;
3847
3848         /*
3849          * Fetch the list head (which was registered earlier, via
3850          * sys_set_robust_list()):
3851          */
3852         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3853                 return;
3854         /*
3855          * Fetch the relative futex offset:
3856          */
3857         if (get_user(futex_offset, &head->futex_offset))
3858                 return;
3859         /*
3860          * Fetch any possibly pending lock-add first, and handle it
3861          * if it exists:
3862          */
3863         if (compat_fetch_robust_entry(&upending, &pending,
3864                                &head->list_op_pending, &pip))
3865                 return;
3866
3867         next_entry = NULL;      /* avoid warning with gcc */
3868         while (entry != (struct robust_list __user *) &head->list) {
3869                 /*
3870                  * Fetch the next entry in the list before calling
3871                  * handle_futex_death:
3872                  */
3873                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3874                         (compat_uptr_t __user *)&entry->next, &next_pi);
3875                 /*
3876                  * A pending lock might already be on the list, so
3877                  * dont process it twice:
3878                  */
3879                 if (entry != pending) {
3880                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3881
3882                         if (handle_futex_death(uaddr, curr, pi,
3883                                                HANDLE_DEATH_LIST))
3884                                 return;
3885                 }
3886                 if (rc)
3887                         return;
3888                 uentry = next_uentry;
3889                 entry = next_entry;
3890                 pi = next_pi;
3891                 /*
3892                  * Avoid excessively long or circular lists:
3893                  */
3894                 if (!--limit)
3895                         break;
3896
3897                 cond_resched();
3898         }
3899         if (pending) {
3900                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3901
3902                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3903         }
3904 }
3905
3906 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3907                 struct compat_robust_list_head __user *, head,
3908                 compat_size_t, len)
3909 {
3910         if (!futex_cmpxchg_enabled)
3911                 return -ENOSYS;
3912
3913         if (unlikely(len != sizeof(*head)))
3914                 return -EINVAL;
3915
3916         current->compat_robust_list = head;
3917
3918         return 0;
3919 }
3920
3921 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3922                         compat_uptr_t __user *, head_ptr,
3923                         compat_size_t __user *, len_ptr)
3924 {
3925         struct compat_robust_list_head __user *head;
3926         unsigned long ret;
3927         struct task_struct *p;
3928
3929         if (!futex_cmpxchg_enabled)
3930                 return -ENOSYS;
3931
3932         rcu_read_lock();
3933
3934         ret = -ESRCH;
3935         if (!pid)
3936                 p = current;
3937         else {
3938                 p = find_task_by_vpid(pid);
3939                 if (!p)
3940                         goto err_unlock;
3941         }
3942
3943         ret = -EPERM;
3944         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3945                 goto err_unlock;
3946
3947         head = p->compat_robust_list;
3948         rcu_read_unlock();
3949
3950         if (put_user(sizeof(*head), len_ptr))
3951                 return -EFAULT;
3952         return put_user(ptr_to_compat(head), head_ptr);
3953
3954 err_unlock:
3955         rcu_read_unlock();
3956
3957         return ret;
3958 }
3959 #endif /* CONFIG_COMPAT */
3960
3961 #ifdef CONFIG_COMPAT_32BIT_TIME
3962 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3963                 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3964                 u32, val3)
3965 {
3966         struct timespec64 ts;
3967         ktime_t t, *tp = NULL;
3968         int val2 = 0;
3969         int cmd = op & FUTEX_CMD_MASK;
3970
3971         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3972                       cmd == FUTEX_WAIT_BITSET ||
3973                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3974                 if (get_old_timespec32(&ts, utime))
3975                         return -EFAULT;
3976                 if (!timespec64_valid(&ts))
3977                         return -EINVAL;
3978
3979                 t = timespec64_to_ktime(ts);
3980                 if (cmd == FUTEX_WAIT)
3981                         t = ktime_add_safe(ktime_get(), t);
3982                 else if (!(op & FUTEX_CLOCK_REALTIME))
3983                         t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3984                 tp = &t;
3985         }
3986         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3987             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3988                 val2 = (int) (unsigned long) utime;
3989
3990         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3991 }
3992 #endif /* CONFIG_COMPAT_32BIT_TIME */
3993
3994 static void __init futex_detect_cmpxchg(void)
3995 {
3996 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3997         u32 curval;
3998
3999         /*
4000          * This will fail and we want it. Some arch implementations do
4001          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4002          * functionality. We want to know that before we call in any
4003          * of the complex code paths. Also we want to prevent
4004          * registration of robust lists in that case. NULL is
4005          * guaranteed to fault and we get -EFAULT on functional
4006          * implementation, the non-functional ones will return
4007          * -ENOSYS.
4008          */
4009         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4010                 futex_cmpxchg_enabled = 1;
4011 #endif
4012 }
4013
4014 static int __init futex_init(void)
4015 {
4016         unsigned int futex_shift;
4017         unsigned long i;
4018
4019 #if CONFIG_BASE_SMALL
4020         futex_hashsize = 16;
4021 #else
4022         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4023 #endif
4024
4025         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4026                                                futex_hashsize, 0,
4027                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4028                                                &futex_shift, NULL,
4029                                                futex_hashsize, futex_hashsize);
4030         futex_hashsize = 1UL << futex_shift;
4031
4032         futex_detect_cmpxchg();
4033
4034         for (i = 0; i < futex_hashsize; i++) {
4035                 atomic_set(&futex_queues[i].waiters, 0);
4036                 plist_head_init(&futex_queues[i].chain);
4037                 spin_lock_init(&futex_queues[i].lock);
4038         }
4039
4040         return 0;
4041 }
4042 core_initcall(futex_init);