Merge branch 'x86-build-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/memblock.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76  * READ this before attempting to hack on futexes!
77  *
78  * Basic futex operation and ordering guarantees
79  * =============================================
80  *
81  * The waiter reads the futex value in user space and calls
82  * futex_wait(). This function computes the hash bucket and acquires
83  * the hash bucket lock. After that it reads the futex user space value
84  * again and verifies that the data has not changed. If it has not changed
85  * it enqueues itself into the hash bucket, releases the hash bucket lock
86  * and schedules.
87  *
88  * The waker side modifies the user space value of the futex and calls
89  * futex_wake(). This function computes the hash bucket and acquires the
90  * hash bucket lock. Then it looks for waiters on that futex in the hash
91  * bucket and wakes them.
92  *
93  * In futex wake up scenarios where no tasks are blocked on a futex, taking
94  * the hb spinlock can be avoided and simply return. In order for this
95  * optimization to work, ordering guarantees must exist so that the waiter
96  * being added to the list is acknowledged when the list is concurrently being
97  * checked by the waker, avoiding scenarios like the following:
98  *
99  * CPU 0                               CPU 1
100  * val = *futex;
101  * sys_futex(WAIT, futex, val);
102  *   futex_wait(futex, val);
103  *   uval = *futex;
104  *                                     *futex = newval;
105  *                                     sys_futex(WAKE, futex);
106  *                                       futex_wake(futex);
107  *                                       if (queue_empty())
108  *                                         return;
109  *   if (uval == val)
110  *      lock(hash_bucket(futex));
111  *      queue();
112  *     unlock(hash_bucket(futex));
113  *     schedule();
114  *
115  * This would cause the waiter on CPU 0 to wait forever because it
116  * missed the transition of the user space value from val to newval
117  * and the waker did not find the waiter in the hash bucket queue.
118  *
119  * The correct serialization ensures that a waiter either observes
120  * the changed user space value before blocking or is woken by a
121  * concurrent waker:
122  *
123  * CPU 0                                 CPU 1
124  * val = *futex;
125  * sys_futex(WAIT, futex, val);
126  *   futex_wait(futex, val);
127  *
128  *   waiters++; (a)
129  *   smp_mb(); (A) <-- paired with -.
130  *                                  |
131  *   lock(hash_bucket(futex));      |
132  *                                  |
133  *   uval = *futex;                 |
134  *                                  |        *futex = newval;
135  *                                  |        sys_futex(WAKE, futex);
136  *                                  |          futex_wake(futex);
137  *                                  |
138  *                                  `--------> smp_mb(); (B)
139  *   if (uval == val)
140  *     queue();
141  *     unlock(hash_bucket(futex));
142  *     schedule();                         if (waiters)
143  *                                           lock(hash_bucket(futex));
144  *   else                                    wake_waiters(futex);
145  *     waiters--; (b)                        unlock(hash_bucket(futex));
146  *
147  * Where (A) orders the waiters increment and the futex value read through
148  * atomic operations (see hb_waiters_inc) and where (B) orders the write
149  * to futex and the waiters read -- this is done by the barriers for both
150  * shared and private futexes in get_futex_key_refs().
151  *
152  * This yields the following case (where X:=waiters, Y:=futex):
153  *
154  *      X = Y = 0
155  *
156  *      w[X]=1          w[Y]=1
157  *      MB              MB
158  *      r[Y]=y          r[X]=x
159  *
160  * Which guarantees that x==0 && y==0 is impossible; which translates back into
161  * the guarantee that we cannot both miss the futex variable change and the
162  * enqueue.
163  *
164  * Note that a new waiter is accounted for in (a) even when it is possible that
165  * the wait call can return error, in which case we backtrack from it in (b).
166  * Refer to the comment in queue_lock().
167  *
168  * Similarly, in order to account for waiters being requeued on another
169  * address we always increment the waiters for the destination bucket before
170  * acquiring the lock. It then decrements them again  after releasing it -
171  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172  * will do the additional required waiter count housekeeping. This is done for
173  * double_lock_hb() and double_unlock_hb(), respectively.
174  */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181  * Futex flags used to encode options to functions and preserve them across
182  * restarts.
183  */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED           0x01
186 #else
187 /*
188  * NOMMU does not have per process address space. Let the compiler optimize
189  * code away.
190  */
191 # define FLAGS_SHARED           0x00
192 #endif
193 #define FLAGS_CLOCKRT           0x02
194 #define FLAGS_HAS_TIMEOUT       0x04
195
196 /*
197  * Priority Inheritance state:
198  */
199 struct futex_pi_state {
200         /*
201          * list of 'owned' pi_state instances - these have to be
202          * cleaned up in do_exit() if the task exits prematurely:
203          */
204         struct list_head list;
205
206         /*
207          * The PI object:
208          */
209         struct rt_mutex pi_mutex;
210
211         struct task_struct *owner;
212         atomic_t refcount;
213
214         union futex_key key;
215 } __randomize_layout;
216
217 /**
218  * struct futex_q - The hashed futex queue entry, one per waiting task
219  * @list:               priority-sorted list of tasks waiting on this futex
220  * @task:               the task waiting on the futex
221  * @lock_ptr:           the hash bucket lock
222  * @key:                the key the futex is hashed on
223  * @pi_state:           optional priority inheritance state
224  * @rt_waiter:          rt_waiter storage for use with requeue_pi
225  * @requeue_pi_key:     the requeue_pi target futex key
226  * @bitset:             bitset for the optional bitmasked wakeup
227  *
228  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229  * we can wake only the relevant ones (hashed queues may be shared).
230  *
231  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233  * The order of wakeup is always to make the first condition true, then
234  * the second.
235  *
236  * PI futexes are typically woken before they are removed from the hash list via
237  * the rt_mutex code. See unqueue_me_pi().
238  */
239 struct futex_q {
240         struct plist_node list;
241
242         struct task_struct *task;
243         spinlock_t *lock_ptr;
244         union futex_key key;
245         struct futex_pi_state *pi_state;
246         struct rt_mutex_waiter *rt_waiter;
247         union futex_key *requeue_pi_key;
248         u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252         /* list gets initialized in queue_me()*/
253         .key = FUTEX_KEY_INIT,
254         .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258  * Hash buckets are shared by all the futex_keys that hash to the same
259  * location.  Each key may have multiple futex_q structures, one for each task
260  * waiting on a futex.
261  */
262 struct futex_hash_bucket {
263         atomic_t waiters;
264         spinlock_t lock;
265         struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269  * The base of the bucket array and its size are always used together
270  * (after initialization only in hash_futex()), so ensure that they
271  * reside in the same cacheline.
272  */
273 static struct {
274         struct futex_hash_bucket *queues;
275         unsigned long            hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues   (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282  * Fault injections for futexes.
283  */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287         struct fault_attr attr;
288
289         bool ignore_private;
290 } fail_futex = {
291         .attr = FAULT_ATTR_INITIALIZER,
292         .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297         return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303         if (fail_futex.ignore_private && !fshared)
304                 return false;
305
306         return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314         struct dentry *dir;
315
316         dir = fault_create_debugfs_attr("fail_futex", NULL,
317                                         &fail_futex.attr);
318         if (IS_ERR(dir))
319                 return PTR_ERR(dir);
320
321         if (!debugfs_create_bool("ignore-private", mode, dir,
322                                  &fail_futex.ignore_private)) {
323                 debugfs_remove_recursive(dir);
324                 return -ENOMEM;
325         }
326
327         return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337         return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343         mmgrab(key->private.mm);
344         /*
345          * Ensure futex_get_mm() implies a full barrier such that
346          * get_futex_key() implies a full barrier. This is relied upon
347          * as smp_mb(); (B), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 }
351
352 /*
353  * Reflects a new waiter being added to the waitqueue.
354  */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358         atomic_inc(&hb->waiters);
359         /*
360          * Full barrier (A), see the ordering comment above.
361          */
362         smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367  * Reflects a waiter being removed from the waitqueue by wakeup
368  * paths.
369  */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380         return atomic_read(&hb->waiters);
381 #else
382         return 1;
383 #endif
384 }
385
386 /**
387  * hash_futex - Return the hash bucket in the global hash
388  * @key:        Pointer to the futex key for which the hash is calculated
389  *
390  * We hash on the keys returned from get_futex_key (see below) and return the
391  * corresponding hash bucket in the global hash.
392  */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395         u32 hash = jhash2((u32*)&key->both.word,
396                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397                           key->both.offset);
398         return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403  * match_futex - Check whether two futex keys are equal
404  * @key1:       Pointer to key1
405  * @key2:       Pointer to key2
406  *
407  * Return 1 if two futex_keys are equal, 0 otherwise.
408  */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411         return (key1 && key2
412                 && key1->both.word == key2->both.word
413                 && key1->both.ptr == key2->both.ptr
414                 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418  * Take a reference to the resource addressed by a key.
419  * Can be called while holding spinlocks.
420  *
421  */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424         if (!key->both.ptr)
425                 return;
426
427         /*
428          * On MMU less systems futexes are always "private" as there is no per
429          * process address space. We need the smp wmb nevertheless - yes,
430          * arch/blackfin has MMU less SMP ...
431          */
432         if (!IS_ENABLED(CONFIG_MMU)) {
433                 smp_mb(); /* explicit smp_mb(); (B) */
434                 return;
435         }
436
437         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438         case FUT_OFF_INODE:
439                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440                 break;
441         case FUT_OFF_MMSHARED:
442                 futex_get_mm(key); /* implies smp_mb(); (B) */
443                 break;
444         default:
445                 /*
446                  * Private futexes do not hold reference on an inode or
447                  * mm, therefore the only purpose of calling get_futex_key_refs
448                  * is because we need the barrier for the lockless waiter check.
449                  */
450                 smp_mb(); /* explicit smp_mb(); (B) */
451         }
452 }
453
454 /*
455  * Drop a reference to the resource addressed by a key.
456  * The hash bucket spinlock must not be held. This is
457  * a no-op for private futexes, see comment in the get
458  * counterpart.
459  */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462         if (!key->both.ptr) {
463                 /* If we're here then we tried to put a key we failed to get */
464                 WARN_ON_ONCE(1);
465                 return;
466         }
467
468         if (!IS_ENABLED(CONFIG_MMU))
469                 return;
470
471         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472         case FUT_OFF_INODE:
473                 iput(key->shared.inode);
474                 break;
475         case FUT_OFF_MMSHARED:
476                 mmdrop(key->private.mm);
477                 break;
478         }
479 }
480
481 /**
482  * get_futex_key() - Get parameters which are the keys for a futex
483  * @uaddr:      virtual address of the futex
484  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485  * @key:        address where result is stored.
486  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
487  *              VERIFY_WRITE)
488  *
489  * Return: a negative error code or 0
490  *
491  * The key words are stored in @key on success.
492  *
493  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
495  * We can usually work out the index without swapping in the page.
496  *
497  * lock_page() might sleep, the caller should not hold a spinlock.
498  */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502         unsigned long address = (unsigned long)uaddr;
503         struct mm_struct *mm = current->mm;
504         struct page *page, *tail;
505         struct address_space *mapping;
506         int err, ro = 0;
507
508         /*
509          * The futex address must be "naturally" aligned.
510          */
511         key->both.offset = address % PAGE_SIZE;
512         if (unlikely((address % sizeof(u32)) != 0))
513                 return -EINVAL;
514         address -= key->both.offset;
515
516         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517                 return -EFAULT;
518
519         if (unlikely(should_fail_futex(fshared)))
520                 return -EFAULT;
521
522         /*
523          * PROCESS_PRIVATE futexes are fast.
524          * As the mm cannot disappear under us and the 'key' only needs
525          * virtual address, we dont even have to find the underlying vma.
526          * Note : We do have to check 'uaddr' is a valid user address,
527          *        but access_ok() should be faster than find_vma()
528          */
529         if (!fshared) {
530                 key->private.mm = mm;
531                 key->private.address = address;
532                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
533                 return 0;
534         }
535
536 again:
537         /* Ignore any VERIFY_READ mapping (futex common case) */
538         if (unlikely(should_fail_futex(fshared)))
539                 return -EFAULT;
540
541         err = get_user_pages_fast(address, 1, 1, &page);
542         /*
543          * If write access is not required (eg. FUTEX_WAIT), try
544          * and get read-only access.
545          */
546         if (err == -EFAULT && rw == VERIFY_READ) {
547                 err = get_user_pages_fast(address, 1, 0, &page);
548                 ro = 1;
549         }
550         if (err < 0)
551                 return err;
552         else
553                 err = 0;
554
555         /*
556          * The treatment of mapping from this point on is critical. The page
557          * lock protects many things but in this context the page lock
558          * stabilizes mapping, prevents inode freeing in the shared
559          * file-backed region case and guards against movement to swap cache.
560          *
561          * Strictly speaking the page lock is not needed in all cases being
562          * considered here and page lock forces unnecessarily serialization
563          * From this point on, mapping will be re-verified if necessary and
564          * page lock will be acquired only if it is unavoidable
565          *
566          * Mapping checks require the head page for any compound page so the
567          * head page and mapping is looked up now. For anonymous pages, it
568          * does not matter if the page splits in the future as the key is
569          * based on the address. For filesystem-backed pages, the tail is
570          * required as the index of the page determines the key. For
571          * base pages, there is no tail page and tail == page.
572          */
573         tail = page;
574         page = compound_head(page);
575         mapping = READ_ONCE(page->mapping);
576
577         /*
578          * If page->mapping is NULL, then it cannot be a PageAnon
579          * page; but it might be the ZERO_PAGE or in the gate area or
580          * in a special mapping (all cases which we are happy to fail);
581          * or it may have been a good file page when get_user_pages_fast
582          * found it, but truncated or holepunched or subjected to
583          * invalidate_complete_page2 before we got the page lock (also
584          * cases which we are happy to fail).  And we hold a reference,
585          * so refcount care in invalidate_complete_page's remove_mapping
586          * prevents drop_caches from setting mapping to NULL beneath us.
587          *
588          * The case we do have to guard against is when memory pressure made
589          * shmem_writepage move it from filecache to swapcache beneath us:
590          * an unlikely race, but we do need to retry for page->mapping.
591          */
592         if (unlikely(!mapping)) {
593                 int shmem_swizzled;
594
595                 /*
596                  * Page lock is required to identify which special case above
597                  * applies. If this is really a shmem page then the page lock
598                  * will prevent unexpected transitions.
599                  */
600                 lock_page(page);
601                 shmem_swizzled = PageSwapCache(page) || page->mapping;
602                 unlock_page(page);
603                 put_page(page);
604
605                 if (shmem_swizzled)
606                         goto again;
607
608                 return -EFAULT;
609         }
610
611         /*
612          * Private mappings are handled in a simple way.
613          *
614          * If the futex key is stored on an anonymous page, then the associated
615          * object is the mm which is implicitly pinned by the calling process.
616          *
617          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618          * it's a read-only handle, it's expected that futexes attach to
619          * the object not the particular process.
620          */
621         if (PageAnon(page)) {
622                 /*
623                  * A RO anonymous page will never change and thus doesn't make
624                  * sense for futex operations.
625                  */
626                 if (unlikely(should_fail_futex(fshared)) || ro) {
627                         err = -EFAULT;
628                         goto out;
629                 }
630
631                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632                 key->private.mm = mm;
633                 key->private.address = address;
634
635                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637         } else {
638                 struct inode *inode;
639
640                 /*
641                  * The associated futex object in this case is the inode and
642                  * the page->mapping must be traversed. Ordinarily this should
643                  * be stabilised under page lock but it's not strictly
644                  * necessary in this case as we just want to pin the inode, not
645                  * update the radix tree or anything like that.
646                  *
647                  * The RCU read lock is taken as the inode is finally freed
648                  * under RCU. If the mapping still matches expectations then the
649                  * mapping->host can be safely accessed as being a valid inode.
650                  */
651                 rcu_read_lock();
652
653                 if (READ_ONCE(page->mapping) != mapping) {
654                         rcu_read_unlock();
655                         put_page(page);
656
657                         goto again;
658                 }
659
660                 inode = READ_ONCE(mapping->host);
661                 if (!inode) {
662                         rcu_read_unlock();
663                         put_page(page);
664
665                         goto again;
666                 }
667
668                 /*
669                  * Take a reference unless it is about to be freed. Previously
670                  * this reference was taken by ihold under the page lock
671                  * pinning the inode in place so i_lock was unnecessary. The
672                  * only way for this check to fail is if the inode was
673                  * truncated in parallel which is almost certainly an
674                  * application bug. In such a case, just retry.
675                  *
676                  * We are not calling into get_futex_key_refs() in file-backed
677                  * cases, therefore a successful atomic_inc return below will
678                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
679                  */
680                 if (!atomic_inc_not_zero(&inode->i_count)) {
681                         rcu_read_unlock();
682                         put_page(page);
683
684                         goto again;
685                 }
686
687                 /* Should be impossible but lets be paranoid for now */
688                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689                         err = -EFAULT;
690                         rcu_read_unlock();
691                         iput(inode);
692
693                         goto out;
694                 }
695
696                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697                 key->shared.inode = inode;
698                 key->shared.pgoff = basepage_index(tail);
699                 rcu_read_unlock();
700         }
701
702 out:
703         put_page(page);
704         return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709         drop_futex_key_refs(key);
710 }
711
712 /**
713  * fault_in_user_writeable() - Fault in user address and verify RW access
714  * @uaddr:      pointer to faulting user space address
715  *
716  * Slow path to fixup the fault we just took in the atomic write
717  * access to @uaddr.
718  *
719  * We have no generic implementation of a non-destructive write to the
720  * user address. We know that we faulted in the atomic pagefault
721  * disabled section so we can as well avoid the #PF overhead by
722  * calling get_user_pages() right away.
723  */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726         struct mm_struct *mm = current->mm;
727         int ret;
728
729         down_read(&mm->mmap_sem);
730         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731                                FAULT_FLAG_WRITE, NULL);
732         up_read(&mm->mmap_sem);
733
734         return ret < 0 ? ret : 0;
735 }
736
737 /**
738  * futex_top_waiter() - Return the highest priority waiter on a futex
739  * @hb:         the hash bucket the futex_q's reside in
740  * @key:        the futex key (to distinguish it from other futex futex_q's)
741  *
742  * Must be called with the hb lock held.
743  */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745                                         union futex_key *key)
746 {
747         struct futex_q *this;
748
749         plist_for_each_entry(this, &hb->chain, list) {
750                 if (match_futex(&this->key, key))
751                         return this;
752         }
753         return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757                                       u32 uval, u32 newval)
758 {
759         int ret;
760
761         pagefault_disable();
762         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763         pagefault_enable();
764
765         return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770         int ret;
771
772         pagefault_disable();
773         ret = __get_user(*dest, from);
774         pagefault_enable();
775
776         return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781  * PI code:
782  */
783 static int refill_pi_state_cache(void)
784 {
785         struct futex_pi_state *pi_state;
786
787         if (likely(current->pi_state_cache))
788                 return 0;
789
790         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792         if (!pi_state)
793                 return -ENOMEM;
794
795         INIT_LIST_HEAD(&pi_state->list);
796         /* pi_mutex gets initialized later */
797         pi_state->owner = NULL;
798         atomic_set(&pi_state->refcount, 1);
799         pi_state->key = FUTEX_KEY_INIT;
800
801         current->pi_state_cache = pi_state;
802
803         return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808         struct futex_pi_state *pi_state = current->pi_state_cache;
809
810         WARN_ON(!pi_state);
811         current->pi_state_cache = NULL;
812
813         return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822  * Drops a reference to the pi_state object and frees or caches it
823  * when the last reference is gone.
824  */
825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827         if (!pi_state)
828                 return;
829
830         if (!atomic_dec_and_test(&pi_state->refcount))
831                 return;
832
833         /*
834          * If pi_state->owner is NULL, the owner is most probably dying
835          * and has cleaned up the pi_state already
836          */
837         if (pi_state->owner) {
838                 struct task_struct *owner;
839
840                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841                 owner = pi_state->owner;
842                 if (owner) {
843                         raw_spin_lock(&owner->pi_lock);
844                         list_del_init(&pi_state->list);
845                         raw_spin_unlock(&owner->pi_lock);
846                 }
847                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849         }
850
851         if (current->pi_state_cache) {
852                 kfree(pi_state);
853         } else {
854                 /*
855                  * pi_state->list is already empty.
856                  * clear pi_state->owner.
857                  * refcount is at 0 - put it back to 1.
858                  */
859                 pi_state->owner = NULL;
860                 atomic_set(&pi_state->refcount, 1);
861                 current->pi_state_cache = pi_state;
862         }
863 }
864
865 #ifdef CONFIG_FUTEX_PI
866
867 /*
868  * This task is holding PI mutexes at exit time => bad.
869  * Kernel cleans up PI-state, but userspace is likely hosed.
870  * (Robust-futex cleanup is separate and might save the day for userspace.)
871  */
872 void exit_pi_state_list(struct task_struct *curr)
873 {
874         struct list_head *next, *head = &curr->pi_state_list;
875         struct futex_pi_state *pi_state;
876         struct futex_hash_bucket *hb;
877         union futex_key key = FUTEX_KEY_INIT;
878
879         if (!futex_cmpxchg_enabled)
880                 return;
881         /*
882          * We are a ZOMBIE and nobody can enqueue itself on
883          * pi_state_list anymore, but we have to be careful
884          * versus waiters unqueueing themselves:
885          */
886         raw_spin_lock_irq(&curr->pi_lock);
887         while (!list_empty(head)) {
888                 next = head->next;
889                 pi_state = list_entry(next, struct futex_pi_state, list);
890                 key = pi_state->key;
891                 hb = hash_futex(&key);
892
893                 /*
894                  * We can race against put_pi_state() removing itself from the
895                  * list (a waiter going away). put_pi_state() will first
896                  * decrement the reference count and then modify the list, so
897                  * its possible to see the list entry but fail this reference
898                  * acquire.
899                  *
900                  * In that case; drop the locks to let put_pi_state() make
901                  * progress and retry the loop.
902                  */
903                 if (!atomic_inc_not_zero(&pi_state->refcount)) {
904                         raw_spin_unlock_irq(&curr->pi_lock);
905                         cpu_relax();
906                         raw_spin_lock_irq(&curr->pi_lock);
907                         continue;
908                 }
909                 raw_spin_unlock_irq(&curr->pi_lock);
910
911                 spin_lock(&hb->lock);
912                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
913                 raw_spin_lock(&curr->pi_lock);
914                 /*
915                  * We dropped the pi-lock, so re-check whether this
916                  * task still owns the PI-state:
917                  */
918                 if (head->next != next) {
919                         /* retain curr->pi_lock for the loop invariant */
920                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
921                         spin_unlock(&hb->lock);
922                         put_pi_state(pi_state);
923                         continue;
924                 }
925
926                 WARN_ON(pi_state->owner != curr);
927                 WARN_ON(list_empty(&pi_state->list));
928                 list_del_init(&pi_state->list);
929                 pi_state->owner = NULL;
930
931                 raw_spin_unlock(&curr->pi_lock);
932                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
933                 spin_unlock(&hb->lock);
934
935                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
936                 put_pi_state(pi_state);
937
938                 raw_spin_lock_irq(&curr->pi_lock);
939         }
940         raw_spin_unlock_irq(&curr->pi_lock);
941 }
942
943 #endif
944
945 /*
946  * We need to check the following states:
947  *
948  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
949  *
950  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
951  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
952  *
953  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
954  *
955  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
956  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
957  *
958  * [6]  Found  | Found    | task      | 0         | 1      | Valid
959  *
960  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
961  *
962  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
963  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
964  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
965  *
966  * [1]  Indicates that the kernel can acquire the futex atomically. We
967  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
968  *
969  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
970  *      thread is found then it indicates that the owner TID has died.
971  *
972  * [3]  Invalid. The waiter is queued on a non PI futex
973  *
974  * [4]  Valid state after exit_robust_list(), which sets the user space
975  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
976  *
977  * [5]  The user space value got manipulated between exit_robust_list()
978  *      and exit_pi_state_list()
979  *
980  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
981  *      the pi_state but cannot access the user space value.
982  *
983  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
984  *
985  * [8]  Owner and user space value match
986  *
987  * [9]  There is no transient state which sets the user space TID to 0
988  *      except exit_robust_list(), but this is indicated by the
989  *      FUTEX_OWNER_DIED bit. See [4]
990  *
991  * [10] There is no transient state which leaves owner and user space
992  *      TID out of sync.
993  *
994  *
995  * Serialization and lifetime rules:
996  *
997  * hb->lock:
998  *
999  *      hb -> futex_q, relation
1000  *      futex_q -> pi_state, relation
1001  *
1002  *      (cannot be raw because hb can contain arbitrary amount
1003  *       of futex_q's)
1004  *
1005  * pi_mutex->wait_lock:
1006  *
1007  *      {uval, pi_state}
1008  *
1009  *      (and pi_mutex 'obviously')
1010  *
1011  * p->pi_lock:
1012  *
1013  *      p->pi_state_list -> pi_state->list, relation
1014  *
1015  * pi_state->refcount:
1016  *
1017  *      pi_state lifetime
1018  *
1019  *
1020  * Lock order:
1021  *
1022  *   hb->lock
1023  *     pi_mutex->wait_lock
1024  *       p->pi_lock
1025  *
1026  */
1027
1028 /*
1029  * Validate that the existing waiter has a pi_state and sanity check
1030  * the pi_state against the user space value. If correct, attach to
1031  * it.
1032  */
1033 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1034                               struct futex_pi_state *pi_state,
1035                               struct futex_pi_state **ps)
1036 {
1037         pid_t pid = uval & FUTEX_TID_MASK;
1038         u32 uval2;
1039         int ret;
1040
1041         /*
1042          * Userspace might have messed up non-PI and PI futexes [3]
1043          */
1044         if (unlikely(!pi_state))
1045                 return -EINVAL;
1046
1047         /*
1048          * We get here with hb->lock held, and having found a
1049          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1050          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1051          * which in turn means that futex_lock_pi() still has a reference on
1052          * our pi_state.
1053          *
1054          * The waiter holding a reference on @pi_state also protects against
1055          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1056          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1057          * free pi_state before we can take a reference ourselves.
1058          */
1059         WARN_ON(!atomic_read(&pi_state->refcount));
1060
1061         /*
1062          * Now that we have a pi_state, we can acquire wait_lock
1063          * and do the state validation.
1064          */
1065         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1066
1067         /*
1068          * Since {uval, pi_state} is serialized by wait_lock, and our current
1069          * uval was read without holding it, it can have changed. Verify it
1070          * still is what we expect it to be, otherwise retry the entire
1071          * operation.
1072          */
1073         if (get_futex_value_locked(&uval2, uaddr))
1074                 goto out_efault;
1075
1076         if (uval != uval2)
1077                 goto out_eagain;
1078
1079         /*
1080          * Handle the owner died case:
1081          */
1082         if (uval & FUTEX_OWNER_DIED) {
1083                 /*
1084                  * exit_pi_state_list sets owner to NULL and wakes the
1085                  * topmost waiter. The task which acquires the
1086                  * pi_state->rt_mutex will fixup owner.
1087                  */
1088                 if (!pi_state->owner) {
1089                         /*
1090                          * No pi state owner, but the user space TID
1091                          * is not 0. Inconsistent state. [5]
1092                          */
1093                         if (pid)
1094                                 goto out_einval;
1095                         /*
1096                          * Take a ref on the state and return success. [4]
1097                          */
1098                         goto out_attach;
1099                 }
1100
1101                 /*
1102                  * If TID is 0, then either the dying owner has not
1103                  * yet executed exit_pi_state_list() or some waiter
1104                  * acquired the rtmutex in the pi state, but did not
1105                  * yet fixup the TID in user space.
1106                  *
1107                  * Take a ref on the state and return success. [6]
1108                  */
1109                 if (!pid)
1110                         goto out_attach;
1111         } else {
1112                 /*
1113                  * If the owner died bit is not set, then the pi_state
1114                  * must have an owner. [7]
1115                  */
1116                 if (!pi_state->owner)
1117                         goto out_einval;
1118         }
1119
1120         /*
1121          * Bail out if user space manipulated the futex value. If pi
1122          * state exists then the owner TID must be the same as the
1123          * user space TID. [9/10]
1124          */
1125         if (pid != task_pid_vnr(pi_state->owner))
1126                 goto out_einval;
1127
1128 out_attach:
1129         get_pi_state(pi_state);
1130         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1131         *ps = pi_state;
1132         return 0;
1133
1134 out_einval:
1135         ret = -EINVAL;
1136         goto out_error;
1137
1138 out_eagain:
1139         ret = -EAGAIN;
1140         goto out_error;
1141
1142 out_efault:
1143         ret = -EFAULT;
1144         goto out_error;
1145
1146 out_error:
1147         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1148         return ret;
1149 }
1150
1151 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1152                             struct task_struct *tsk)
1153 {
1154         u32 uval2;
1155
1156         /*
1157          * If PF_EXITPIDONE is not yet set, then try again.
1158          */
1159         if (tsk && !(tsk->flags & PF_EXITPIDONE))
1160                 return -EAGAIN;
1161
1162         /*
1163          * Reread the user space value to handle the following situation:
1164          *
1165          * CPU0                         CPU1
1166          *
1167          * sys_exit()                   sys_futex()
1168          *  do_exit()                    futex_lock_pi()
1169          *                                futex_lock_pi_atomic()
1170          *   exit_signals(tsk)              No waiters:
1171          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1172          *  mm_release(tsk)                 Set waiter bit
1173          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1174          *      Set owner died              attach_to_pi_owner() {
1175          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1176          *   }                               if (!tsk->flags & PF_EXITING) {
1177          *  ...                                attach();
1178          *  tsk->flags |= PF_EXITPIDONE;     } else {
1179          *                                     if (!(tsk->flags & PF_EXITPIDONE))
1180          *                                       return -EAGAIN;
1181          *                                     return -ESRCH; <--- FAIL
1182          *                                   }
1183          *
1184          * Returning ESRCH unconditionally is wrong here because the
1185          * user space value has been changed by the exiting task.
1186          *
1187          * The same logic applies to the case where the exiting task is
1188          * already gone.
1189          */
1190         if (get_futex_value_locked(&uval2, uaddr))
1191                 return -EFAULT;
1192
1193         /* If the user space value has changed, try again. */
1194         if (uval2 != uval)
1195                 return -EAGAIN;
1196
1197         /*
1198          * The exiting task did not have a robust list, the robust list was
1199          * corrupted or the user space value in *uaddr is simply bogus.
1200          * Give up and tell user space.
1201          */
1202         return -ESRCH;
1203 }
1204
1205 /*
1206  * Lookup the task for the TID provided from user space and attach to
1207  * it after doing proper sanity checks.
1208  */
1209 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1210                               struct futex_pi_state **ps)
1211 {
1212         pid_t pid = uval & FUTEX_TID_MASK;
1213         struct futex_pi_state *pi_state;
1214         struct task_struct *p;
1215
1216         /*
1217          * We are the first waiter - try to look up the real owner and attach
1218          * the new pi_state to it, but bail out when TID = 0 [1]
1219          *
1220          * The !pid check is paranoid. None of the call sites should end up
1221          * with pid == 0, but better safe than sorry. Let the caller retry
1222          */
1223         if (!pid)
1224                 return -EAGAIN;
1225         p = find_get_task_by_vpid(pid);
1226         if (!p)
1227                 return handle_exit_race(uaddr, uval, NULL);
1228
1229         if (unlikely(p->flags & PF_KTHREAD)) {
1230                 put_task_struct(p);
1231                 return -EPERM;
1232         }
1233
1234         /*
1235          * We need to look at the task state flags to figure out,
1236          * whether the task is exiting. To protect against the do_exit
1237          * change of the task flags, we do this protected by
1238          * p->pi_lock:
1239          */
1240         raw_spin_lock_irq(&p->pi_lock);
1241         if (unlikely(p->flags & PF_EXITING)) {
1242                 /*
1243                  * The task is on the way out. When PF_EXITPIDONE is
1244                  * set, we know that the task has finished the
1245                  * cleanup:
1246                  */
1247                 int ret = handle_exit_race(uaddr, uval, p);
1248
1249                 raw_spin_unlock_irq(&p->pi_lock);
1250                 put_task_struct(p);
1251                 return ret;
1252         }
1253
1254         /*
1255          * No existing pi state. First waiter. [2]
1256          *
1257          * This creates pi_state, we have hb->lock held, this means nothing can
1258          * observe this state, wait_lock is irrelevant.
1259          */
1260         pi_state = alloc_pi_state();
1261
1262         /*
1263          * Initialize the pi_mutex in locked state and make @p
1264          * the owner of it:
1265          */
1266         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1267
1268         /* Store the key for possible exit cleanups: */
1269         pi_state->key = *key;
1270
1271         WARN_ON(!list_empty(&pi_state->list));
1272         list_add(&pi_state->list, &p->pi_state_list);
1273         /*
1274          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1275          * because there is no concurrency as the object is not published yet.
1276          */
1277         pi_state->owner = p;
1278         raw_spin_unlock_irq(&p->pi_lock);
1279
1280         put_task_struct(p);
1281
1282         *ps = pi_state;
1283
1284         return 0;
1285 }
1286
1287 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1288                            struct futex_hash_bucket *hb,
1289                            union futex_key *key, struct futex_pi_state **ps)
1290 {
1291         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1292
1293         /*
1294          * If there is a waiter on that futex, validate it and
1295          * attach to the pi_state when the validation succeeds.
1296          */
1297         if (top_waiter)
1298                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1299
1300         /*
1301          * We are the first waiter - try to look up the owner based on
1302          * @uval and attach to it.
1303          */
1304         return attach_to_pi_owner(uaddr, uval, key, ps);
1305 }
1306
1307 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1308 {
1309         u32 uninitialized_var(curval);
1310
1311         if (unlikely(should_fail_futex(true)))
1312                 return -EFAULT;
1313
1314         if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1315                 return -EFAULT;
1316
1317         /* If user space value changed, let the caller retry */
1318         return curval != uval ? -EAGAIN : 0;
1319 }
1320
1321 /**
1322  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1323  * @uaddr:              the pi futex user address
1324  * @hb:                 the pi futex hash bucket
1325  * @key:                the futex key associated with uaddr and hb
1326  * @ps:                 the pi_state pointer where we store the result of the
1327  *                      lookup
1328  * @task:               the task to perform the atomic lock work for.  This will
1329  *                      be "current" except in the case of requeue pi.
1330  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1331  *
1332  * Return:
1333  *  -  0 - ready to wait;
1334  *  -  1 - acquired the lock;
1335  *  - <0 - error
1336  *
1337  * The hb->lock and futex_key refs shall be held by the caller.
1338  */
1339 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1340                                 union futex_key *key,
1341                                 struct futex_pi_state **ps,
1342                                 struct task_struct *task, int set_waiters)
1343 {
1344         u32 uval, newval, vpid = task_pid_vnr(task);
1345         struct futex_q *top_waiter;
1346         int ret;
1347
1348         /*
1349          * Read the user space value first so we can validate a few
1350          * things before proceeding further.
1351          */
1352         if (get_futex_value_locked(&uval, uaddr))
1353                 return -EFAULT;
1354
1355         if (unlikely(should_fail_futex(true)))
1356                 return -EFAULT;
1357
1358         /*
1359          * Detect deadlocks.
1360          */
1361         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1362                 return -EDEADLK;
1363
1364         if ((unlikely(should_fail_futex(true))))
1365                 return -EDEADLK;
1366
1367         /*
1368          * Lookup existing state first. If it exists, try to attach to
1369          * its pi_state.
1370          */
1371         top_waiter = futex_top_waiter(hb, key);
1372         if (top_waiter)
1373                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1374
1375         /*
1376          * No waiter and user TID is 0. We are here because the
1377          * waiters or the owner died bit is set or called from
1378          * requeue_cmp_pi or for whatever reason something took the
1379          * syscall.
1380          */
1381         if (!(uval & FUTEX_TID_MASK)) {
1382                 /*
1383                  * We take over the futex. No other waiters and the user space
1384                  * TID is 0. We preserve the owner died bit.
1385                  */
1386                 newval = uval & FUTEX_OWNER_DIED;
1387                 newval |= vpid;
1388
1389                 /* The futex requeue_pi code can enforce the waiters bit */
1390                 if (set_waiters)
1391                         newval |= FUTEX_WAITERS;
1392
1393                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1394                 /* If the take over worked, return 1 */
1395                 return ret < 0 ? ret : 1;
1396         }
1397
1398         /*
1399          * First waiter. Set the waiters bit before attaching ourself to
1400          * the owner. If owner tries to unlock, it will be forced into
1401          * the kernel and blocked on hb->lock.
1402          */
1403         newval = uval | FUTEX_WAITERS;
1404         ret = lock_pi_update_atomic(uaddr, uval, newval);
1405         if (ret)
1406                 return ret;
1407         /*
1408          * If the update of the user space value succeeded, we try to
1409          * attach to the owner. If that fails, no harm done, we only
1410          * set the FUTEX_WAITERS bit in the user space variable.
1411          */
1412         return attach_to_pi_owner(uaddr, newval, key, ps);
1413 }
1414
1415 /**
1416  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1417  * @q:  The futex_q to unqueue
1418  *
1419  * The q->lock_ptr must not be NULL and must be held by the caller.
1420  */
1421 static void __unqueue_futex(struct futex_q *q)
1422 {
1423         struct futex_hash_bucket *hb;
1424
1425         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1426                 return;
1427         lockdep_assert_held(q->lock_ptr);
1428
1429         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1430         plist_del(&q->list, &hb->chain);
1431         hb_waiters_dec(hb);
1432 }
1433
1434 /*
1435  * The hash bucket lock must be held when this is called.
1436  * Afterwards, the futex_q must not be accessed. Callers
1437  * must ensure to later call wake_up_q() for the actual
1438  * wakeups to occur.
1439  */
1440 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1441 {
1442         struct task_struct *p = q->task;
1443
1444         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1445                 return;
1446
1447         /*
1448          * Queue the task for later wakeup for after we've released
1449          * the hb->lock. wake_q_add() grabs reference to p.
1450          */
1451         wake_q_add(wake_q, p);
1452         __unqueue_futex(q);
1453         /*
1454          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1455          * is written, without taking any locks. This is possible in the event
1456          * of a spurious wakeup, for example. A memory barrier is required here
1457          * to prevent the following store to lock_ptr from getting ahead of the
1458          * plist_del in __unqueue_futex().
1459          */
1460         smp_store_release(&q->lock_ptr, NULL);
1461 }
1462
1463 /*
1464  * Caller must hold a reference on @pi_state.
1465  */
1466 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1467 {
1468         u32 uninitialized_var(curval), newval;
1469         struct task_struct *new_owner;
1470         bool postunlock = false;
1471         DEFINE_WAKE_Q(wake_q);
1472         int ret = 0;
1473
1474         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1475         if (WARN_ON_ONCE(!new_owner)) {
1476                 /*
1477                  * As per the comment in futex_unlock_pi() this should not happen.
1478                  *
1479                  * When this happens, give up our locks and try again, giving
1480                  * the futex_lock_pi() instance time to complete, either by
1481                  * waiting on the rtmutex or removing itself from the futex
1482                  * queue.
1483                  */
1484                 ret = -EAGAIN;
1485                 goto out_unlock;
1486         }
1487
1488         /*
1489          * We pass it to the next owner. The WAITERS bit is always kept
1490          * enabled while there is PI state around. We cleanup the owner
1491          * died bit, because we are the owner.
1492          */
1493         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1494
1495         if (unlikely(should_fail_futex(true)))
1496                 ret = -EFAULT;
1497
1498         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1499                 ret = -EFAULT;
1500
1501         } else if (curval != uval) {
1502                 /*
1503                  * If a unconditional UNLOCK_PI operation (user space did not
1504                  * try the TID->0 transition) raced with a waiter setting the
1505                  * FUTEX_WAITERS flag between get_user() and locking the hash
1506                  * bucket lock, retry the operation.
1507                  */
1508                 if ((FUTEX_TID_MASK & curval) == uval)
1509                         ret = -EAGAIN;
1510                 else
1511                         ret = -EINVAL;
1512         }
1513
1514         if (ret)
1515                 goto out_unlock;
1516
1517         /*
1518          * This is a point of no return; once we modify the uval there is no
1519          * going back and subsequent operations must not fail.
1520          */
1521
1522         raw_spin_lock(&pi_state->owner->pi_lock);
1523         WARN_ON(list_empty(&pi_state->list));
1524         list_del_init(&pi_state->list);
1525         raw_spin_unlock(&pi_state->owner->pi_lock);
1526
1527         raw_spin_lock(&new_owner->pi_lock);
1528         WARN_ON(!list_empty(&pi_state->list));
1529         list_add(&pi_state->list, &new_owner->pi_state_list);
1530         pi_state->owner = new_owner;
1531         raw_spin_unlock(&new_owner->pi_lock);
1532
1533         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1534
1535 out_unlock:
1536         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1537
1538         if (postunlock)
1539                 rt_mutex_postunlock(&wake_q);
1540
1541         return ret;
1542 }
1543
1544 /*
1545  * Express the locking dependencies for lockdep:
1546  */
1547 static inline void
1548 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1549 {
1550         if (hb1 <= hb2) {
1551                 spin_lock(&hb1->lock);
1552                 if (hb1 < hb2)
1553                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1554         } else { /* hb1 > hb2 */
1555                 spin_lock(&hb2->lock);
1556                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1557         }
1558 }
1559
1560 static inline void
1561 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1562 {
1563         spin_unlock(&hb1->lock);
1564         if (hb1 != hb2)
1565                 spin_unlock(&hb2->lock);
1566 }
1567
1568 /*
1569  * Wake up waiters matching bitset queued on this futex (uaddr).
1570  */
1571 static int
1572 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1573 {
1574         struct futex_hash_bucket *hb;
1575         struct futex_q *this, *next;
1576         union futex_key key = FUTEX_KEY_INIT;
1577         int ret;
1578         DEFINE_WAKE_Q(wake_q);
1579
1580         if (!bitset)
1581                 return -EINVAL;
1582
1583         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1584         if (unlikely(ret != 0))
1585                 goto out;
1586
1587         hb = hash_futex(&key);
1588
1589         /* Make sure we really have tasks to wakeup */
1590         if (!hb_waiters_pending(hb))
1591                 goto out_put_key;
1592
1593         spin_lock(&hb->lock);
1594
1595         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1596                 if (match_futex (&this->key, &key)) {
1597                         if (this->pi_state || this->rt_waiter) {
1598                                 ret = -EINVAL;
1599                                 break;
1600                         }
1601
1602                         /* Check if one of the bits is set in both bitsets */
1603                         if (!(this->bitset & bitset))
1604                                 continue;
1605
1606                         mark_wake_futex(&wake_q, this);
1607                         if (++ret >= nr_wake)
1608                                 break;
1609                 }
1610         }
1611
1612         spin_unlock(&hb->lock);
1613         wake_up_q(&wake_q);
1614 out_put_key:
1615         put_futex_key(&key);
1616 out:
1617         return ret;
1618 }
1619
1620 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1621 {
1622         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1623         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1624         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1625         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1626         int oldval, ret;
1627
1628         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1629                 if (oparg < 0 || oparg > 31) {
1630                         char comm[sizeof(current->comm)];
1631                         /*
1632                          * kill this print and return -EINVAL when userspace
1633                          * is sane again
1634                          */
1635                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1636                                         get_task_comm(comm, current), oparg);
1637                         oparg &= 31;
1638                 }
1639                 oparg = 1 << oparg;
1640         }
1641
1642         if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1643                 return -EFAULT;
1644
1645         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1646         if (ret)
1647                 return ret;
1648
1649         switch (cmp) {
1650         case FUTEX_OP_CMP_EQ:
1651                 return oldval == cmparg;
1652         case FUTEX_OP_CMP_NE:
1653                 return oldval != cmparg;
1654         case FUTEX_OP_CMP_LT:
1655                 return oldval < cmparg;
1656         case FUTEX_OP_CMP_GE:
1657                 return oldval >= cmparg;
1658         case FUTEX_OP_CMP_LE:
1659                 return oldval <= cmparg;
1660         case FUTEX_OP_CMP_GT:
1661                 return oldval > cmparg;
1662         default:
1663                 return -ENOSYS;
1664         }
1665 }
1666
1667 /*
1668  * Wake up all waiters hashed on the physical page that is mapped
1669  * to this virtual address:
1670  */
1671 static int
1672 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1673               int nr_wake, int nr_wake2, int op)
1674 {
1675         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1676         struct futex_hash_bucket *hb1, *hb2;
1677         struct futex_q *this, *next;
1678         int ret, op_ret;
1679         DEFINE_WAKE_Q(wake_q);
1680
1681 retry:
1682         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1683         if (unlikely(ret != 0))
1684                 goto out;
1685         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1686         if (unlikely(ret != 0))
1687                 goto out_put_key1;
1688
1689         hb1 = hash_futex(&key1);
1690         hb2 = hash_futex(&key2);
1691
1692 retry_private:
1693         double_lock_hb(hb1, hb2);
1694         op_ret = futex_atomic_op_inuser(op, uaddr2);
1695         if (unlikely(op_ret < 0)) {
1696
1697                 double_unlock_hb(hb1, hb2);
1698
1699 #ifndef CONFIG_MMU
1700                 /*
1701                  * we don't get EFAULT from MMU faults if we don't have an MMU,
1702                  * but we might get them from range checking
1703                  */
1704                 ret = op_ret;
1705                 goto out_put_keys;
1706 #endif
1707
1708                 if (unlikely(op_ret != -EFAULT)) {
1709                         ret = op_ret;
1710                         goto out_put_keys;
1711                 }
1712
1713                 ret = fault_in_user_writeable(uaddr2);
1714                 if (ret)
1715                         goto out_put_keys;
1716
1717                 if (!(flags & FLAGS_SHARED))
1718                         goto retry_private;
1719
1720                 put_futex_key(&key2);
1721                 put_futex_key(&key1);
1722                 goto retry;
1723         }
1724
1725         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1726                 if (match_futex (&this->key, &key1)) {
1727                         if (this->pi_state || this->rt_waiter) {
1728                                 ret = -EINVAL;
1729                                 goto out_unlock;
1730                         }
1731                         mark_wake_futex(&wake_q, this);
1732                         if (++ret >= nr_wake)
1733                                 break;
1734                 }
1735         }
1736
1737         if (op_ret > 0) {
1738                 op_ret = 0;
1739                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1740                         if (match_futex (&this->key, &key2)) {
1741                                 if (this->pi_state || this->rt_waiter) {
1742                                         ret = -EINVAL;
1743                                         goto out_unlock;
1744                                 }
1745                                 mark_wake_futex(&wake_q, this);
1746                                 if (++op_ret >= nr_wake2)
1747                                         break;
1748                         }
1749                 }
1750                 ret += op_ret;
1751         }
1752
1753 out_unlock:
1754         double_unlock_hb(hb1, hb2);
1755         wake_up_q(&wake_q);
1756 out_put_keys:
1757         put_futex_key(&key2);
1758 out_put_key1:
1759         put_futex_key(&key1);
1760 out:
1761         return ret;
1762 }
1763
1764 /**
1765  * requeue_futex() - Requeue a futex_q from one hb to another
1766  * @q:          the futex_q to requeue
1767  * @hb1:        the source hash_bucket
1768  * @hb2:        the target hash_bucket
1769  * @key2:       the new key for the requeued futex_q
1770  */
1771 static inline
1772 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1773                    struct futex_hash_bucket *hb2, union futex_key *key2)
1774 {
1775
1776         /*
1777          * If key1 and key2 hash to the same bucket, no need to
1778          * requeue.
1779          */
1780         if (likely(&hb1->chain != &hb2->chain)) {
1781                 plist_del(&q->list, &hb1->chain);
1782                 hb_waiters_dec(hb1);
1783                 hb_waiters_inc(hb2);
1784                 plist_add(&q->list, &hb2->chain);
1785                 q->lock_ptr = &hb2->lock;
1786         }
1787         get_futex_key_refs(key2);
1788         q->key = *key2;
1789 }
1790
1791 /**
1792  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1793  * @q:          the futex_q
1794  * @key:        the key of the requeue target futex
1795  * @hb:         the hash_bucket of the requeue target futex
1796  *
1797  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1798  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1799  * to the requeue target futex so the waiter can detect the wakeup on the right
1800  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1801  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1802  * to protect access to the pi_state to fixup the owner later.  Must be called
1803  * with both q->lock_ptr and hb->lock held.
1804  */
1805 static inline
1806 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1807                            struct futex_hash_bucket *hb)
1808 {
1809         get_futex_key_refs(key);
1810         q->key = *key;
1811
1812         __unqueue_futex(q);
1813
1814         WARN_ON(!q->rt_waiter);
1815         q->rt_waiter = NULL;
1816
1817         q->lock_ptr = &hb->lock;
1818
1819         wake_up_state(q->task, TASK_NORMAL);
1820 }
1821
1822 /**
1823  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1824  * @pifutex:            the user address of the to futex
1825  * @hb1:                the from futex hash bucket, must be locked by the caller
1826  * @hb2:                the to futex hash bucket, must be locked by the caller
1827  * @key1:               the from futex key
1828  * @key2:               the to futex key
1829  * @ps:                 address to store the pi_state pointer
1830  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1831  *
1832  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1833  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1834  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1835  * hb1 and hb2 must be held by the caller.
1836  *
1837  * Return:
1838  *  -  0 - failed to acquire the lock atomically;
1839  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1840  *  - <0 - error
1841  */
1842 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1843                                  struct futex_hash_bucket *hb1,
1844                                  struct futex_hash_bucket *hb2,
1845                                  union futex_key *key1, union futex_key *key2,
1846                                  struct futex_pi_state **ps, int set_waiters)
1847 {
1848         struct futex_q *top_waiter = NULL;
1849         u32 curval;
1850         int ret, vpid;
1851
1852         if (get_futex_value_locked(&curval, pifutex))
1853                 return -EFAULT;
1854
1855         if (unlikely(should_fail_futex(true)))
1856                 return -EFAULT;
1857
1858         /*
1859          * Find the top_waiter and determine if there are additional waiters.
1860          * If the caller intends to requeue more than 1 waiter to pifutex,
1861          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1862          * as we have means to handle the possible fault.  If not, don't set
1863          * the bit unecessarily as it will force the subsequent unlock to enter
1864          * the kernel.
1865          */
1866         top_waiter = futex_top_waiter(hb1, key1);
1867
1868         /* There are no waiters, nothing for us to do. */
1869         if (!top_waiter)
1870                 return 0;
1871
1872         /* Ensure we requeue to the expected futex. */
1873         if (!match_futex(top_waiter->requeue_pi_key, key2))
1874                 return -EINVAL;
1875
1876         /*
1877          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1878          * the contended case or if set_waiters is 1.  The pi_state is returned
1879          * in ps in contended cases.
1880          */
1881         vpid = task_pid_vnr(top_waiter->task);
1882         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1883                                    set_waiters);
1884         if (ret == 1) {
1885                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1886                 return vpid;
1887         }
1888         return ret;
1889 }
1890
1891 /**
1892  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1893  * @uaddr1:     source futex user address
1894  * @flags:      futex flags (FLAGS_SHARED, etc.)
1895  * @uaddr2:     target futex user address
1896  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1897  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1898  * @cmpval:     @uaddr1 expected value (or %NULL)
1899  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1900  *              pi futex (pi to pi requeue is not supported)
1901  *
1902  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1903  * uaddr2 atomically on behalf of the top waiter.
1904  *
1905  * Return:
1906  *  - >=0 - on success, the number of tasks requeued or woken;
1907  *  -  <0 - on error
1908  */
1909 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1910                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1911                          u32 *cmpval, int requeue_pi)
1912 {
1913         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1914         int drop_count = 0, task_count = 0, ret;
1915         struct futex_pi_state *pi_state = NULL;
1916         struct futex_hash_bucket *hb1, *hb2;
1917         struct futex_q *this, *next;
1918         DEFINE_WAKE_Q(wake_q);
1919
1920         if (nr_wake < 0 || nr_requeue < 0)
1921                 return -EINVAL;
1922
1923         /*
1924          * When PI not supported: return -ENOSYS if requeue_pi is true,
1925          * consequently the compiler knows requeue_pi is always false past
1926          * this point which will optimize away all the conditional code
1927          * further down.
1928          */
1929         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1930                 return -ENOSYS;
1931
1932         if (requeue_pi) {
1933                 /*
1934                  * Requeue PI only works on two distinct uaddrs. This
1935                  * check is only valid for private futexes. See below.
1936                  */
1937                 if (uaddr1 == uaddr2)
1938                         return -EINVAL;
1939
1940                 /*
1941                  * requeue_pi requires a pi_state, try to allocate it now
1942                  * without any locks in case it fails.
1943                  */
1944                 if (refill_pi_state_cache())
1945                         return -ENOMEM;
1946                 /*
1947                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1948                  * + nr_requeue, since it acquires the rt_mutex prior to
1949                  * returning to userspace, so as to not leave the rt_mutex with
1950                  * waiters and no owner.  However, second and third wake-ups
1951                  * cannot be predicted as they involve race conditions with the
1952                  * first wake and a fault while looking up the pi_state.  Both
1953                  * pthread_cond_signal() and pthread_cond_broadcast() should
1954                  * use nr_wake=1.
1955                  */
1956                 if (nr_wake != 1)
1957                         return -EINVAL;
1958         }
1959
1960 retry:
1961         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1962         if (unlikely(ret != 0))
1963                 goto out;
1964         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1965                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1966         if (unlikely(ret != 0))
1967                 goto out_put_key1;
1968
1969         /*
1970          * The check above which compares uaddrs is not sufficient for
1971          * shared futexes. We need to compare the keys:
1972          */
1973         if (requeue_pi && match_futex(&key1, &key2)) {
1974                 ret = -EINVAL;
1975                 goto out_put_keys;
1976         }
1977
1978         hb1 = hash_futex(&key1);
1979         hb2 = hash_futex(&key2);
1980
1981 retry_private:
1982         hb_waiters_inc(hb2);
1983         double_lock_hb(hb1, hb2);
1984
1985         if (likely(cmpval != NULL)) {
1986                 u32 curval;
1987
1988                 ret = get_futex_value_locked(&curval, uaddr1);
1989
1990                 if (unlikely(ret)) {
1991                         double_unlock_hb(hb1, hb2);
1992                         hb_waiters_dec(hb2);
1993
1994                         ret = get_user(curval, uaddr1);
1995                         if (ret)
1996                                 goto out_put_keys;
1997
1998                         if (!(flags & FLAGS_SHARED))
1999                                 goto retry_private;
2000
2001                         put_futex_key(&key2);
2002                         put_futex_key(&key1);
2003                         goto retry;
2004                 }
2005                 if (curval != *cmpval) {
2006                         ret = -EAGAIN;
2007                         goto out_unlock;
2008                 }
2009         }
2010
2011         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2012                 /*
2013                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2014                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2015                  * bit.  We force this here where we are able to easily handle
2016                  * faults rather in the requeue loop below.
2017                  */
2018                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2019                                                  &key2, &pi_state, nr_requeue);
2020
2021                 /*
2022                  * At this point the top_waiter has either taken uaddr2 or is
2023                  * waiting on it.  If the former, then the pi_state will not
2024                  * exist yet, look it up one more time to ensure we have a
2025                  * reference to it. If the lock was taken, ret contains the
2026                  * vpid of the top waiter task.
2027                  * If the lock was not taken, we have pi_state and an initial
2028                  * refcount on it. In case of an error we have nothing.
2029                  */
2030                 if (ret > 0) {
2031                         WARN_ON(pi_state);
2032                         drop_count++;
2033                         task_count++;
2034                         /*
2035                          * If we acquired the lock, then the user space value
2036                          * of uaddr2 should be vpid. It cannot be changed by
2037                          * the top waiter as it is blocked on hb2 lock if it
2038                          * tries to do so. If something fiddled with it behind
2039                          * our back the pi state lookup might unearth it. So
2040                          * we rather use the known value than rereading and
2041                          * handing potential crap to lookup_pi_state.
2042                          *
2043                          * If that call succeeds then we have pi_state and an
2044                          * initial refcount on it.
2045                          */
2046                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2047                 }
2048
2049                 switch (ret) {
2050                 case 0:
2051                         /* We hold a reference on the pi state. */
2052                         break;
2053
2054                         /* If the above failed, then pi_state is NULL */
2055                 case -EFAULT:
2056                         double_unlock_hb(hb1, hb2);
2057                         hb_waiters_dec(hb2);
2058                         put_futex_key(&key2);
2059                         put_futex_key(&key1);
2060                         ret = fault_in_user_writeable(uaddr2);
2061                         if (!ret)
2062                                 goto retry;
2063                         goto out;
2064                 case -EAGAIN:
2065                         /*
2066                          * Two reasons for this:
2067                          * - Owner is exiting and we just wait for the
2068                          *   exit to complete.
2069                          * - The user space value changed.
2070                          */
2071                         double_unlock_hb(hb1, hb2);
2072                         hb_waiters_dec(hb2);
2073                         put_futex_key(&key2);
2074                         put_futex_key(&key1);
2075                         cond_resched();
2076                         goto retry;
2077                 default:
2078                         goto out_unlock;
2079                 }
2080         }
2081
2082         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2083                 if (task_count - nr_wake >= nr_requeue)
2084                         break;
2085
2086                 if (!match_futex(&this->key, &key1))
2087                         continue;
2088
2089                 /*
2090                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2091                  * be paired with each other and no other futex ops.
2092                  *
2093                  * We should never be requeueing a futex_q with a pi_state,
2094                  * which is awaiting a futex_unlock_pi().
2095                  */
2096                 if ((requeue_pi && !this->rt_waiter) ||
2097                     (!requeue_pi && this->rt_waiter) ||
2098                     this->pi_state) {
2099                         ret = -EINVAL;
2100                         break;
2101                 }
2102
2103                 /*
2104                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2105                  * lock, we already woke the top_waiter.  If not, it will be
2106                  * woken by futex_unlock_pi().
2107                  */
2108                 if (++task_count <= nr_wake && !requeue_pi) {
2109                         mark_wake_futex(&wake_q, this);
2110                         continue;
2111                 }
2112
2113                 /* Ensure we requeue to the expected futex for requeue_pi. */
2114                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2115                         ret = -EINVAL;
2116                         break;
2117                 }
2118
2119                 /*
2120                  * Requeue nr_requeue waiters and possibly one more in the case
2121                  * of requeue_pi if we couldn't acquire the lock atomically.
2122                  */
2123                 if (requeue_pi) {
2124                         /*
2125                          * Prepare the waiter to take the rt_mutex. Take a
2126                          * refcount on the pi_state and store the pointer in
2127                          * the futex_q object of the waiter.
2128                          */
2129                         get_pi_state(pi_state);
2130                         this->pi_state = pi_state;
2131                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2132                                                         this->rt_waiter,
2133                                                         this->task);
2134                         if (ret == 1) {
2135                                 /*
2136                                  * We got the lock. We do neither drop the
2137                                  * refcount on pi_state nor clear
2138                                  * this->pi_state because the waiter needs the
2139                                  * pi_state for cleaning up the user space
2140                                  * value. It will drop the refcount after
2141                                  * doing so.
2142                                  */
2143                                 requeue_pi_wake_futex(this, &key2, hb2);
2144                                 drop_count++;
2145                                 continue;
2146                         } else if (ret) {
2147                                 /*
2148                                  * rt_mutex_start_proxy_lock() detected a
2149                                  * potential deadlock when we tried to queue
2150                                  * that waiter. Drop the pi_state reference
2151                                  * which we took above and remove the pointer
2152                                  * to the state from the waiters futex_q
2153                                  * object.
2154                                  */
2155                                 this->pi_state = NULL;
2156                                 put_pi_state(pi_state);
2157                                 /*
2158                                  * We stop queueing more waiters and let user
2159                                  * space deal with the mess.
2160                                  */
2161                                 break;
2162                         }
2163                 }
2164                 requeue_futex(this, hb1, hb2, &key2);
2165                 drop_count++;
2166         }
2167
2168         /*
2169          * We took an extra initial reference to the pi_state either
2170          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2171          * need to drop it here again.
2172          */
2173         put_pi_state(pi_state);
2174
2175 out_unlock:
2176         double_unlock_hb(hb1, hb2);
2177         wake_up_q(&wake_q);
2178         hb_waiters_dec(hb2);
2179
2180         /*
2181          * drop_futex_key_refs() must be called outside the spinlocks. During
2182          * the requeue we moved futex_q's from the hash bucket at key1 to the
2183          * one at key2 and updated their key pointer.  We no longer need to
2184          * hold the references to key1.
2185          */
2186         while (--drop_count >= 0)
2187                 drop_futex_key_refs(&key1);
2188
2189 out_put_keys:
2190         put_futex_key(&key2);
2191 out_put_key1:
2192         put_futex_key(&key1);
2193 out:
2194         return ret ? ret : task_count;
2195 }
2196
2197 /* The key must be already stored in q->key. */
2198 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2199         __acquires(&hb->lock)
2200 {
2201         struct futex_hash_bucket *hb;
2202
2203         hb = hash_futex(&q->key);
2204
2205         /*
2206          * Increment the counter before taking the lock so that
2207          * a potential waker won't miss a to-be-slept task that is
2208          * waiting for the spinlock. This is safe as all queue_lock()
2209          * users end up calling queue_me(). Similarly, for housekeeping,
2210          * decrement the counter at queue_unlock() when some error has
2211          * occurred and we don't end up adding the task to the list.
2212          */
2213         hb_waiters_inc(hb);
2214
2215         q->lock_ptr = &hb->lock;
2216
2217         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2218         return hb;
2219 }
2220
2221 static inline void
2222 queue_unlock(struct futex_hash_bucket *hb)
2223         __releases(&hb->lock)
2224 {
2225         spin_unlock(&hb->lock);
2226         hb_waiters_dec(hb);
2227 }
2228
2229 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2230 {
2231         int prio;
2232
2233         /*
2234          * The priority used to register this element is
2235          * - either the real thread-priority for the real-time threads
2236          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2237          * - or MAX_RT_PRIO for non-RT threads.
2238          * Thus, all RT-threads are woken first in priority order, and
2239          * the others are woken last, in FIFO order.
2240          */
2241         prio = min(current->normal_prio, MAX_RT_PRIO);
2242
2243         plist_node_init(&q->list, prio);
2244         plist_add(&q->list, &hb->chain);
2245         q->task = current;
2246 }
2247
2248 /**
2249  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2250  * @q:  The futex_q to enqueue
2251  * @hb: The destination hash bucket
2252  *
2253  * The hb->lock must be held by the caller, and is released here. A call to
2254  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2255  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2256  * or nothing if the unqueue is done as part of the wake process and the unqueue
2257  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2258  * an example).
2259  */
2260 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2261         __releases(&hb->lock)
2262 {
2263         __queue_me(q, hb);
2264         spin_unlock(&hb->lock);
2265 }
2266
2267 /**
2268  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2269  * @q:  The futex_q to unqueue
2270  *
2271  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2272  * be paired with exactly one earlier call to queue_me().
2273  *
2274  * Return:
2275  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2276  *  - 0 - if the futex_q was already removed by the waking thread
2277  */
2278 static int unqueue_me(struct futex_q *q)
2279 {
2280         spinlock_t *lock_ptr;
2281         int ret = 0;
2282
2283         /* In the common case we don't take the spinlock, which is nice. */
2284 retry:
2285         /*
2286          * q->lock_ptr can change between this read and the following spin_lock.
2287          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2288          * optimizing lock_ptr out of the logic below.
2289          */
2290         lock_ptr = READ_ONCE(q->lock_ptr);
2291         if (lock_ptr != NULL) {
2292                 spin_lock(lock_ptr);
2293                 /*
2294                  * q->lock_ptr can change between reading it and
2295                  * spin_lock(), causing us to take the wrong lock.  This
2296                  * corrects the race condition.
2297                  *
2298                  * Reasoning goes like this: if we have the wrong lock,
2299                  * q->lock_ptr must have changed (maybe several times)
2300                  * between reading it and the spin_lock().  It can
2301                  * change again after the spin_lock() but only if it was
2302                  * already changed before the spin_lock().  It cannot,
2303                  * however, change back to the original value.  Therefore
2304                  * we can detect whether we acquired the correct lock.
2305                  */
2306                 if (unlikely(lock_ptr != q->lock_ptr)) {
2307                         spin_unlock(lock_ptr);
2308                         goto retry;
2309                 }
2310                 __unqueue_futex(q);
2311
2312                 BUG_ON(q->pi_state);
2313
2314                 spin_unlock(lock_ptr);
2315                 ret = 1;
2316         }
2317
2318         drop_futex_key_refs(&q->key);
2319         return ret;
2320 }
2321
2322 /*
2323  * PI futexes can not be requeued and must remove themself from the
2324  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2325  * and dropped here.
2326  */
2327 static void unqueue_me_pi(struct futex_q *q)
2328         __releases(q->lock_ptr)
2329 {
2330         __unqueue_futex(q);
2331
2332         BUG_ON(!q->pi_state);
2333         put_pi_state(q->pi_state);
2334         q->pi_state = NULL;
2335
2336         spin_unlock(q->lock_ptr);
2337 }
2338
2339 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2340                                 struct task_struct *argowner)
2341 {
2342         struct futex_pi_state *pi_state = q->pi_state;
2343         u32 uval, uninitialized_var(curval), newval;
2344         struct task_struct *oldowner, *newowner;
2345         u32 newtid;
2346         int ret;
2347
2348         lockdep_assert_held(q->lock_ptr);
2349
2350         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2351
2352         oldowner = pi_state->owner;
2353
2354         /*
2355          * We are here because either:
2356          *
2357          *  - we stole the lock and pi_state->owner needs updating to reflect
2358          *    that (@argowner == current),
2359          *
2360          * or:
2361          *
2362          *  - someone stole our lock and we need to fix things to point to the
2363          *    new owner (@argowner == NULL).
2364          *
2365          * Either way, we have to replace the TID in the user space variable.
2366          * This must be atomic as we have to preserve the owner died bit here.
2367          *
2368          * Note: We write the user space value _before_ changing the pi_state
2369          * because we can fault here. Imagine swapped out pages or a fork
2370          * that marked all the anonymous memory readonly for cow.
2371          *
2372          * Modifying pi_state _before_ the user space value would leave the
2373          * pi_state in an inconsistent state when we fault here, because we
2374          * need to drop the locks to handle the fault. This might be observed
2375          * in the PID check in lookup_pi_state.
2376          */
2377 retry:
2378         if (!argowner) {
2379                 if (oldowner != current) {
2380                         /*
2381                          * We raced against a concurrent self; things are
2382                          * already fixed up. Nothing to do.
2383                          */
2384                         ret = 0;
2385                         goto out_unlock;
2386                 }
2387
2388                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2389                         /* We got the lock after all, nothing to fix. */
2390                         ret = 0;
2391                         goto out_unlock;
2392                 }
2393
2394                 /*
2395                  * Since we just failed the trylock; there must be an owner.
2396                  */
2397                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2398                 BUG_ON(!newowner);
2399         } else {
2400                 WARN_ON_ONCE(argowner != current);
2401                 if (oldowner == current) {
2402                         /*
2403                          * We raced against a concurrent self; things are
2404                          * already fixed up. Nothing to do.
2405                          */
2406                         ret = 0;
2407                         goto out_unlock;
2408                 }
2409                 newowner = argowner;
2410         }
2411
2412         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2413         /* Owner died? */
2414         if (!pi_state->owner)
2415                 newtid |= FUTEX_OWNER_DIED;
2416
2417         if (get_futex_value_locked(&uval, uaddr))
2418                 goto handle_fault;
2419
2420         for (;;) {
2421                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2422
2423                 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2424                         goto handle_fault;
2425                 if (curval == uval)
2426                         break;
2427                 uval = curval;
2428         }
2429
2430         /*
2431          * We fixed up user space. Now we need to fix the pi_state
2432          * itself.
2433          */
2434         if (pi_state->owner != NULL) {
2435                 raw_spin_lock(&pi_state->owner->pi_lock);
2436                 WARN_ON(list_empty(&pi_state->list));
2437                 list_del_init(&pi_state->list);
2438                 raw_spin_unlock(&pi_state->owner->pi_lock);
2439         }
2440
2441         pi_state->owner = newowner;
2442
2443         raw_spin_lock(&newowner->pi_lock);
2444         WARN_ON(!list_empty(&pi_state->list));
2445         list_add(&pi_state->list, &newowner->pi_state_list);
2446         raw_spin_unlock(&newowner->pi_lock);
2447         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2448
2449         return 0;
2450
2451         /*
2452          * To handle the page fault we need to drop the locks here. That gives
2453          * the other task (either the highest priority waiter itself or the
2454          * task which stole the rtmutex) the chance to try the fixup of the
2455          * pi_state. So once we are back from handling the fault we need to
2456          * check the pi_state after reacquiring the locks and before trying to
2457          * do another fixup. When the fixup has been done already we simply
2458          * return.
2459          *
2460          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2461          * drop hb->lock since the caller owns the hb -> futex_q relation.
2462          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2463          */
2464 handle_fault:
2465         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2466         spin_unlock(q->lock_ptr);
2467
2468         ret = fault_in_user_writeable(uaddr);
2469
2470         spin_lock(q->lock_ptr);
2471         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2472
2473         /*
2474          * Check if someone else fixed it for us:
2475          */
2476         if (pi_state->owner != oldowner) {
2477                 ret = 0;
2478                 goto out_unlock;
2479         }
2480
2481         if (ret)
2482                 goto out_unlock;
2483
2484         goto retry;
2485
2486 out_unlock:
2487         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2488         return ret;
2489 }
2490
2491 static long futex_wait_restart(struct restart_block *restart);
2492
2493 /**
2494  * fixup_owner() - Post lock pi_state and corner case management
2495  * @uaddr:      user address of the futex
2496  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2497  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2498  *
2499  * After attempting to lock an rt_mutex, this function is called to cleanup
2500  * the pi_state owner as well as handle race conditions that may allow us to
2501  * acquire the lock. Must be called with the hb lock held.
2502  *
2503  * Return:
2504  *  -  1 - success, lock taken;
2505  *  -  0 - success, lock not taken;
2506  *  - <0 - on error (-EFAULT)
2507  */
2508 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2509 {
2510         int ret = 0;
2511
2512         if (locked) {
2513                 /*
2514                  * Got the lock. We might not be the anticipated owner if we
2515                  * did a lock-steal - fix up the PI-state in that case:
2516                  *
2517                  * Speculative pi_state->owner read (we don't hold wait_lock);
2518                  * since we own the lock pi_state->owner == current is the
2519                  * stable state, anything else needs more attention.
2520                  */
2521                 if (q->pi_state->owner != current)
2522                         ret = fixup_pi_state_owner(uaddr, q, current);
2523                 goto out;
2524         }
2525
2526         /*
2527          * If we didn't get the lock; check if anybody stole it from us. In
2528          * that case, we need to fix up the uval to point to them instead of
2529          * us, otherwise bad things happen. [10]
2530          *
2531          * Another speculative read; pi_state->owner == current is unstable
2532          * but needs our attention.
2533          */
2534         if (q->pi_state->owner == current) {
2535                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2536                 goto out;
2537         }
2538
2539         /*
2540          * Paranoia check. If we did not take the lock, then we should not be
2541          * the owner of the rt_mutex.
2542          */
2543         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2544                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2545                                 "pi-state %p\n", ret,
2546                                 q->pi_state->pi_mutex.owner,
2547                                 q->pi_state->owner);
2548         }
2549
2550 out:
2551         return ret ? ret : locked;
2552 }
2553
2554 /**
2555  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2556  * @hb:         the futex hash bucket, must be locked by the caller
2557  * @q:          the futex_q to queue up on
2558  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2559  */
2560 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2561                                 struct hrtimer_sleeper *timeout)
2562 {
2563         /*
2564          * The task state is guaranteed to be set before another task can
2565          * wake it. set_current_state() is implemented using smp_store_mb() and
2566          * queue_me() calls spin_unlock() upon completion, both serializing
2567          * access to the hash list and forcing another memory barrier.
2568          */
2569         set_current_state(TASK_INTERRUPTIBLE);
2570         queue_me(q, hb);
2571
2572         /* Arm the timer */
2573         if (timeout)
2574                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2575
2576         /*
2577          * If we have been removed from the hash list, then another task
2578          * has tried to wake us, and we can skip the call to schedule().
2579          */
2580         if (likely(!plist_node_empty(&q->list))) {
2581                 /*
2582                  * If the timer has already expired, current will already be
2583                  * flagged for rescheduling. Only call schedule if there
2584                  * is no timeout, or if it has yet to expire.
2585                  */
2586                 if (!timeout || timeout->task)
2587                         freezable_schedule();
2588         }
2589         __set_current_state(TASK_RUNNING);
2590 }
2591
2592 /**
2593  * futex_wait_setup() - Prepare to wait on a futex
2594  * @uaddr:      the futex userspace address
2595  * @val:        the expected value
2596  * @flags:      futex flags (FLAGS_SHARED, etc.)
2597  * @q:          the associated futex_q
2598  * @hb:         storage for hash_bucket pointer to be returned to caller
2599  *
2600  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2601  * compare it with the expected value.  Handle atomic faults internally.
2602  * Return with the hb lock held and a q.key reference on success, and unlocked
2603  * with no q.key reference on failure.
2604  *
2605  * Return:
2606  *  -  0 - uaddr contains val and hb has been locked;
2607  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2608  */
2609 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2610                            struct futex_q *q, struct futex_hash_bucket **hb)
2611 {
2612         u32 uval;
2613         int ret;
2614
2615         /*
2616          * Access the page AFTER the hash-bucket is locked.
2617          * Order is important:
2618          *
2619          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2620          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2621          *
2622          * The basic logical guarantee of a futex is that it blocks ONLY
2623          * if cond(var) is known to be true at the time of blocking, for
2624          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2625          * would open a race condition where we could block indefinitely with
2626          * cond(var) false, which would violate the guarantee.
2627          *
2628          * On the other hand, we insert q and release the hash-bucket only
2629          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2630          * absorb a wakeup if *uaddr does not match the desired values
2631          * while the syscall executes.
2632          */
2633 retry:
2634         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2635         if (unlikely(ret != 0))
2636                 return ret;
2637
2638 retry_private:
2639         *hb = queue_lock(q);
2640
2641         ret = get_futex_value_locked(&uval, uaddr);
2642
2643         if (ret) {
2644                 queue_unlock(*hb);
2645
2646                 ret = get_user(uval, uaddr);
2647                 if (ret)
2648                         goto out;
2649
2650                 if (!(flags & FLAGS_SHARED))
2651                         goto retry_private;
2652
2653                 put_futex_key(&q->key);
2654                 goto retry;
2655         }
2656
2657         if (uval != val) {
2658                 queue_unlock(*hb);
2659                 ret = -EWOULDBLOCK;
2660         }
2661
2662 out:
2663         if (ret)
2664                 put_futex_key(&q->key);
2665         return ret;
2666 }
2667
2668 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2669                       ktime_t *abs_time, u32 bitset)
2670 {
2671         struct hrtimer_sleeper timeout, *to = NULL;
2672         struct restart_block *restart;
2673         struct futex_hash_bucket *hb;
2674         struct futex_q q = futex_q_init;
2675         int ret;
2676
2677         if (!bitset)
2678                 return -EINVAL;
2679         q.bitset = bitset;
2680
2681         if (abs_time) {
2682                 to = &timeout;
2683
2684                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2685                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2686                                       HRTIMER_MODE_ABS);
2687                 hrtimer_init_sleeper(to, current);
2688                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2689                                              current->timer_slack_ns);
2690         }
2691
2692 retry:
2693         /*
2694          * Prepare to wait on uaddr. On success, holds hb lock and increments
2695          * q.key refs.
2696          */
2697         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2698         if (ret)
2699                 goto out;
2700
2701         /* queue_me and wait for wakeup, timeout, or a signal. */
2702         futex_wait_queue_me(hb, &q, to);
2703
2704         /* If we were woken (and unqueued), we succeeded, whatever. */
2705         ret = 0;
2706         /* unqueue_me() drops q.key ref */
2707         if (!unqueue_me(&q))
2708                 goto out;
2709         ret = -ETIMEDOUT;
2710         if (to && !to->task)
2711                 goto out;
2712
2713         /*
2714          * We expect signal_pending(current), but we might be the
2715          * victim of a spurious wakeup as well.
2716          */
2717         if (!signal_pending(current))
2718                 goto retry;
2719
2720         ret = -ERESTARTSYS;
2721         if (!abs_time)
2722                 goto out;
2723
2724         restart = &current->restart_block;
2725         restart->fn = futex_wait_restart;
2726         restart->futex.uaddr = uaddr;
2727         restart->futex.val = val;
2728         restart->futex.time = *abs_time;
2729         restart->futex.bitset = bitset;
2730         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2731
2732         ret = -ERESTART_RESTARTBLOCK;
2733
2734 out:
2735         if (to) {
2736                 hrtimer_cancel(&to->timer);
2737                 destroy_hrtimer_on_stack(&to->timer);
2738         }
2739         return ret;
2740 }
2741
2742
2743 static long futex_wait_restart(struct restart_block *restart)
2744 {
2745         u32 __user *uaddr = restart->futex.uaddr;
2746         ktime_t t, *tp = NULL;
2747
2748         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2749                 t = restart->futex.time;
2750                 tp = &t;
2751         }
2752         restart->fn = do_no_restart_syscall;
2753
2754         return (long)futex_wait(uaddr, restart->futex.flags,
2755                                 restart->futex.val, tp, restart->futex.bitset);
2756 }
2757
2758
2759 /*
2760  * Userspace tried a 0 -> TID atomic transition of the futex value
2761  * and failed. The kernel side here does the whole locking operation:
2762  * if there are waiters then it will block as a consequence of relying
2763  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2764  * a 0 value of the futex too.).
2765  *
2766  * Also serves as futex trylock_pi()'ing, and due semantics.
2767  */
2768 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2769                          ktime_t *time, int trylock)
2770 {
2771         struct hrtimer_sleeper timeout, *to = NULL;
2772         struct futex_pi_state *pi_state = NULL;
2773         struct rt_mutex_waiter rt_waiter;
2774         struct futex_hash_bucket *hb;
2775         struct futex_q q = futex_q_init;
2776         int res, ret;
2777
2778         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2779                 return -ENOSYS;
2780
2781         if (refill_pi_state_cache())
2782                 return -ENOMEM;
2783
2784         if (time) {
2785                 to = &timeout;
2786                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2787                                       HRTIMER_MODE_ABS);
2788                 hrtimer_init_sleeper(to, current);
2789                 hrtimer_set_expires(&to->timer, *time);
2790         }
2791
2792 retry:
2793         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2794         if (unlikely(ret != 0))
2795                 goto out;
2796
2797 retry_private:
2798         hb = queue_lock(&q);
2799
2800         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2801         if (unlikely(ret)) {
2802                 /*
2803                  * Atomic work succeeded and we got the lock,
2804                  * or failed. Either way, we do _not_ block.
2805                  */
2806                 switch (ret) {
2807                 case 1:
2808                         /* We got the lock. */
2809                         ret = 0;
2810                         goto out_unlock_put_key;
2811                 case -EFAULT:
2812                         goto uaddr_faulted;
2813                 case -EAGAIN:
2814                         /*
2815                          * Two reasons for this:
2816                          * - Task is exiting and we just wait for the
2817                          *   exit to complete.
2818                          * - The user space value changed.
2819                          */
2820                         queue_unlock(hb);
2821                         put_futex_key(&q.key);
2822                         cond_resched();
2823                         goto retry;
2824                 default:
2825                         goto out_unlock_put_key;
2826                 }
2827         }
2828
2829         WARN_ON(!q.pi_state);
2830
2831         /*
2832          * Only actually queue now that the atomic ops are done:
2833          */
2834         __queue_me(&q, hb);
2835
2836         if (trylock) {
2837                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2838                 /* Fixup the trylock return value: */
2839                 ret = ret ? 0 : -EWOULDBLOCK;
2840                 goto no_block;
2841         }
2842
2843         rt_mutex_init_waiter(&rt_waiter);
2844
2845         /*
2846          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2847          * hold it while doing rt_mutex_start_proxy(), because then it will
2848          * include hb->lock in the blocking chain, even through we'll not in
2849          * fact hold it while blocking. This will lead it to report -EDEADLK
2850          * and BUG when futex_unlock_pi() interleaves with this.
2851          *
2852          * Therefore acquire wait_lock while holding hb->lock, but drop the
2853          * latter before calling rt_mutex_start_proxy_lock(). This still fully
2854          * serializes against futex_unlock_pi() as that does the exact same
2855          * lock handoff sequence.
2856          */
2857         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2858         spin_unlock(q.lock_ptr);
2859         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2860         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2861
2862         if (ret) {
2863                 if (ret == 1)
2864                         ret = 0;
2865
2866                 spin_lock(q.lock_ptr);
2867                 goto no_block;
2868         }
2869
2870
2871         if (unlikely(to))
2872                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2873
2874         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2875
2876         spin_lock(q.lock_ptr);
2877         /*
2878          * If we failed to acquire the lock (signal/timeout), we must
2879          * first acquire the hb->lock before removing the lock from the
2880          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2881          * wait lists consistent.
2882          *
2883          * In particular; it is important that futex_unlock_pi() can not
2884          * observe this inconsistency.
2885          */
2886         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2887                 ret = 0;
2888
2889 no_block:
2890         /*
2891          * Fixup the pi_state owner and possibly acquire the lock if we
2892          * haven't already.
2893          */
2894         res = fixup_owner(uaddr, &q, !ret);
2895         /*
2896          * If fixup_owner() returned an error, proprogate that.  If it acquired
2897          * the lock, clear our -ETIMEDOUT or -EINTR.
2898          */
2899         if (res)
2900                 ret = (res < 0) ? res : 0;
2901
2902         /*
2903          * If fixup_owner() faulted and was unable to handle the fault, unlock
2904          * it and return the fault to userspace.
2905          */
2906         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2907                 pi_state = q.pi_state;
2908                 get_pi_state(pi_state);
2909         }
2910
2911         /* Unqueue and drop the lock */
2912         unqueue_me_pi(&q);
2913
2914         if (pi_state) {
2915                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2916                 put_pi_state(pi_state);
2917         }
2918
2919         goto out_put_key;
2920
2921 out_unlock_put_key:
2922         queue_unlock(hb);
2923
2924 out_put_key:
2925         put_futex_key(&q.key);
2926 out:
2927         if (to) {
2928                 hrtimer_cancel(&to->timer);
2929                 destroy_hrtimer_on_stack(&to->timer);
2930         }
2931         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2932
2933 uaddr_faulted:
2934         queue_unlock(hb);
2935
2936         ret = fault_in_user_writeable(uaddr);
2937         if (ret)
2938                 goto out_put_key;
2939
2940         if (!(flags & FLAGS_SHARED))
2941                 goto retry_private;
2942
2943         put_futex_key(&q.key);
2944         goto retry;
2945 }
2946
2947 /*
2948  * Userspace attempted a TID -> 0 atomic transition, and failed.
2949  * This is the in-kernel slowpath: we look up the PI state (if any),
2950  * and do the rt-mutex unlock.
2951  */
2952 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2953 {
2954         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2955         union futex_key key = FUTEX_KEY_INIT;
2956         struct futex_hash_bucket *hb;
2957         struct futex_q *top_waiter;
2958         int ret;
2959
2960         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2961                 return -ENOSYS;
2962
2963 retry:
2964         if (get_user(uval, uaddr))
2965                 return -EFAULT;
2966         /*
2967          * We release only a lock we actually own:
2968          */
2969         if ((uval & FUTEX_TID_MASK) != vpid)
2970                 return -EPERM;
2971
2972         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2973         if (ret)
2974                 return ret;
2975
2976         hb = hash_futex(&key);
2977         spin_lock(&hb->lock);
2978
2979         /*
2980          * Check waiters first. We do not trust user space values at
2981          * all and we at least want to know if user space fiddled
2982          * with the futex value instead of blindly unlocking.
2983          */
2984         top_waiter = futex_top_waiter(hb, &key);
2985         if (top_waiter) {
2986                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2987
2988                 ret = -EINVAL;
2989                 if (!pi_state)
2990                         goto out_unlock;
2991
2992                 /*
2993                  * If current does not own the pi_state then the futex is
2994                  * inconsistent and user space fiddled with the futex value.
2995                  */
2996                 if (pi_state->owner != current)
2997                         goto out_unlock;
2998
2999                 get_pi_state(pi_state);
3000                 /*
3001                  * By taking wait_lock while still holding hb->lock, we ensure
3002                  * there is no point where we hold neither; and therefore
3003                  * wake_futex_pi() must observe a state consistent with what we
3004                  * observed.
3005                  */
3006                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3007                 spin_unlock(&hb->lock);
3008
3009                 /* drops pi_state->pi_mutex.wait_lock */
3010                 ret = wake_futex_pi(uaddr, uval, pi_state);
3011
3012                 put_pi_state(pi_state);
3013
3014                 /*
3015                  * Success, we're done! No tricky corner cases.
3016                  */
3017                 if (!ret)
3018                         goto out_putkey;
3019                 /*
3020                  * The atomic access to the futex value generated a
3021                  * pagefault, so retry the user-access and the wakeup:
3022                  */
3023                 if (ret == -EFAULT)
3024                         goto pi_faulted;
3025                 /*
3026                  * A unconditional UNLOCK_PI op raced against a waiter
3027                  * setting the FUTEX_WAITERS bit. Try again.
3028                  */
3029                 if (ret == -EAGAIN) {
3030                         put_futex_key(&key);
3031                         goto retry;
3032                 }
3033                 /*
3034                  * wake_futex_pi has detected invalid state. Tell user
3035                  * space.
3036                  */
3037                 goto out_putkey;
3038         }
3039
3040         /*
3041          * We have no kernel internal state, i.e. no waiters in the
3042          * kernel. Waiters which are about to queue themselves are stuck
3043          * on hb->lock. So we can safely ignore them. We do neither
3044          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3045          * owner.
3046          */
3047         if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3048                 spin_unlock(&hb->lock);
3049                 goto pi_faulted;
3050         }
3051
3052         /*
3053          * If uval has changed, let user space handle it.
3054          */
3055         ret = (curval == uval) ? 0 : -EAGAIN;
3056
3057 out_unlock:
3058         spin_unlock(&hb->lock);
3059 out_putkey:
3060         put_futex_key(&key);
3061         return ret;
3062
3063 pi_faulted:
3064         put_futex_key(&key);
3065
3066         ret = fault_in_user_writeable(uaddr);
3067         if (!ret)
3068                 goto retry;
3069
3070         return ret;
3071 }
3072
3073 /**
3074  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3075  * @hb:         the hash_bucket futex_q was original enqueued on
3076  * @q:          the futex_q woken while waiting to be requeued
3077  * @key2:       the futex_key of the requeue target futex
3078  * @timeout:    the timeout associated with the wait (NULL if none)
3079  *
3080  * Detect if the task was woken on the initial futex as opposed to the requeue
3081  * target futex.  If so, determine if it was a timeout or a signal that caused
3082  * the wakeup and return the appropriate error code to the caller.  Must be
3083  * called with the hb lock held.
3084  *
3085  * Return:
3086  *  -  0 = no early wakeup detected;
3087  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3088  */
3089 static inline
3090 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3091                                    struct futex_q *q, union futex_key *key2,
3092                                    struct hrtimer_sleeper *timeout)
3093 {
3094         int ret = 0;
3095
3096         /*
3097          * With the hb lock held, we avoid races while we process the wakeup.
3098          * We only need to hold hb (and not hb2) to ensure atomicity as the
3099          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3100          * It can't be requeued from uaddr2 to something else since we don't
3101          * support a PI aware source futex for requeue.
3102          */
3103         if (!match_futex(&q->key, key2)) {
3104                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3105                 /*
3106                  * We were woken prior to requeue by a timeout or a signal.
3107                  * Unqueue the futex_q and determine which it was.
3108                  */
3109                 plist_del(&q->list, &hb->chain);
3110                 hb_waiters_dec(hb);
3111
3112                 /* Handle spurious wakeups gracefully */
3113                 ret = -EWOULDBLOCK;
3114                 if (timeout && !timeout->task)
3115                         ret = -ETIMEDOUT;
3116                 else if (signal_pending(current))
3117                         ret = -ERESTARTNOINTR;
3118         }
3119         return ret;
3120 }
3121
3122 /**
3123  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3124  * @uaddr:      the futex we initially wait on (non-pi)
3125  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3126  *              the same type, no requeueing from private to shared, etc.
3127  * @val:        the expected value of uaddr
3128  * @abs_time:   absolute timeout
3129  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3130  * @uaddr2:     the pi futex we will take prior to returning to user-space
3131  *
3132  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3133  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3134  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3135  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3136  * without one, the pi logic would not know which task to boost/deboost, if
3137  * there was a need to.
3138  *
3139  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3140  * via the following--
3141  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3142  * 2) wakeup on uaddr2 after a requeue
3143  * 3) signal
3144  * 4) timeout
3145  *
3146  * If 3, cleanup and return -ERESTARTNOINTR.
3147  *
3148  * If 2, we may then block on trying to take the rt_mutex and return via:
3149  * 5) successful lock
3150  * 6) signal
3151  * 7) timeout
3152  * 8) other lock acquisition failure
3153  *
3154  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3155  *
3156  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3157  *
3158  * Return:
3159  *  -  0 - On success;
3160  *  - <0 - On error
3161  */
3162 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3163                                  u32 val, ktime_t *abs_time, u32 bitset,
3164                                  u32 __user *uaddr2)
3165 {
3166         struct hrtimer_sleeper timeout, *to = NULL;
3167         struct futex_pi_state *pi_state = NULL;
3168         struct rt_mutex_waiter rt_waiter;
3169         struct futex_hash_bucket *hb;
3170         union futex_key key2 = FUTEX_KEY_INIT;
3171         struct futex_q q = futex_q_init;
3172         int res, ret;
3173
3174         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3175                 return -ENOSYS;
3176
3177         if (uaddr == uaddr2)
3178                 return -EINVAL;
3179
3180         if (!bitset)
3181                 return -EINVAL;
3182
3183         if (abs_time) {
3184                 to = &timeout;
3185                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3186                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
3187                                       HRTIMER_MODE_ABS);
3188                 hrtimer_init_sleeper(to, current);
3189                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3190                                              current->timer_slack_ns);
3191         }
3192
3193         /*
3194          * The waiter is allocated on our stack, manipulated by the requeue
3195          * code while we sleep on uaddr.
3196          */
3197         rt_mutex_init_waiter(&rt_waiter);
3198
3199         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3200         if (unlikely(ret != 0))
3201                 goto out;
3202
3203         q.bitset = bitset;
3204         q.rt_waiter = &rt_waiter;
3205         q.requeue_pi_key = &key2;
3206
3207         /*
3208          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3209          * count.
3210          */
3211         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3212         if (ret)
3213                 goto out_key2;
3214
3215         /*
3216          * The check above which compares uaddrs is not sufficient for
3217          * shared futexes. We need to compare the keys:
3218          */
3219         if (match_futex(&q.key, &key2)) {
3220                 queue_unlock(hb);
3221                 ret = -EINVAL;
3222                 goto out_put_keys;
3223         }
3224
3225         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3226         futex_wait_queue_me(hb, &q, to);
3227
3228         spin_lock(&hb->lock);
3229         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3230         spin_unlock(&hb->lock);
3231         if (ret)
3232                 goto out_put_keys;
3233
3234         /*
3235          * In order for us to be here, we know our q.key == key2, and since
3236          * we took the hb->lock above, we also know that futex_requeue() has
3237          * completed and we no longer have to concern ourselves with a wakeup
3238          * race with the atomic proxy lock acquisition by the requeue code. The
3239          * futex_requeue dropped our key1 reference and incremented our key2
3240          * reference count.
3241          */
3242
3243         /* Check if the requeue code acquired the second futex for us. */
3244         if (!q.rt_waiter) {
3245                 /*
3246                  * Got the lock. We might not be the anticipated owner if we
3247                  * did a lock-steal - fix up the PI-state in that case.
3248                  */
3249                 if (q.pi_state && (q.pi_state->owner != current)) {
3250                         spin_lock(q.lock_ptr);
3251                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3252                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3253                                 pi_state = q.pi_state;
3254                                 get_pi_state(pi_state);
3255                         }
3256                         /*
3257                          * Drop the reference to the pi state which
3258                          * the requeue_pi() code acquired for us.
3259                          */
3260                         put_pi_state(q.pi_state);
3261                         spin_unlock(q.lock_ptr);
3262                 }
3263         } else {
3264                 struct rt_mutex *pi_mutex;
3265
3266                 /*
3267                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3268                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3269                  * the pi_state.
3270                  */
3271                 WARN_ON(!q.pi_state);
3272                 pi_mutex = &q.pi_state->pi_mutex;
3273                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3274
3275                 spin_lock(q.lock_ptr);
3276                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3277                         ret = 0;
3278
3279                 debug_rt_mutex_free_waiter(&rt_waiter);
3280                 /*
3281                  * Fixup the pi_state owner and possibly acquire the lock if we
3282                  * haven't already.
3283                  */
3284                 res = fixup_owner(uaddr2, &q, !ret);
3285                 /*
3286                  * If fixup_owner() returned an error, proprogate that.  If it
3287                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3288                  */
3289                 if (res)
3290                         ret = (res < 0) ? res : 0;
3291
3292                 /*
3293                  * If fixup_pi_state_owner() faulted and was unable to handle
3294                  * the fault, unlock the rt_mutex and return the fault to
3295                  * userspace.
3296                  */
3297                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3298                         pi_state = q.pi_state;
3299                         get_pi_state(pi_state);
3300                 }
3301
3302                 /* Unqueue and drop the lock. */
3303                 unqueue_me_pi(&q);
3304         }
3305
3306         if (pi_state) {
3307                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3308                 put_pi_state(pi_state);
3309         }
3310
3311         if (ret == -EINTR) {
3312                 /*
3313                  * We've already been requeued, but cannot restart by calling
3314                  * futex_lock_pi() directly. We could restart this syscall, but
3315                  * it would detect that the user space "val" changed and return
3316                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3317                  * -EWOULDBLOCK directly.
3318                  */
3319                 ret = -EWOULDBLOCK;
3320         }
3321
3322 out_put_keys:
3323         put_futex_key(&q.key);
3324 out_key2:
3325         put_futex_key(&key2);
3326
3327 out:
3328         if (to) {
3329                 hrtimer_cancel(&to->timer);
3330                 destroy_hrtimer_on_stack(&to->timer);
3331         }
3332         return ret;
3333 }
3334
3335 /*
3336  * Support for robust futexes: the kernel cleans up held futexes at
3337  * thread exit time.
3338  *
3339  * Implementation: user-space maintains a per-thread list of locks it
3340  * is holding. Upon do_exit(), the kernel carefully walks this list,
3341  * and marks all locks that are owned by this thread with the
3342  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3343  * always manipulated with the lock held, so the list is private and
3344  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3345  * field, to allow the kernel to clean up if the thread dies after
3346  * acquiring the lock, but just before it could have added itself to
3347  * the list. There can only be one such pending lock.
3348  */
3349
3350 /**
3351  * sys_set_robust_list() - Set the robust-futex list head of a task
3352  * @head:       pointer to the list-head
3353  * @len:        length of the list-head, as userspace expects
3354  */
3355 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3356                 size_t, len)
3357 {
3358         if (!futex_cmpxchg_enabled)
3359                 return -ENOSYS;
3360         /*
3361          * The kernel knows only one size for now:
3362          */
3363         if (unlikely(len != sizeof(*head)))
3364                 return -EINVAL;
3365
3366         current->robust_list = head;
3367
3368         return 0;
3369 }
3370
3371 /**
3372  * sys_get_robust_list() - Get the robust-futex list head of a task
3373  * @pid:        pid of the process [zero for current task]
3374  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3375  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3376  */
3377 SYSCALL_DEFINE3(get_robust_list, int, pid,
3378                 struct robust_list_head __user * __user *, head_ptr,
3379                 size_t __user *, len_ptr)
3380 {
3381         struct robust_list_head __user *head;
3382         unsigned long ret;
3383         struct task_struct *p;
3384
3385         if (!futex_cmpxchg_enabled)
3386                 return -ENOSYS;
3387
3388         rcu_read_lock();
3389
3390         ret = -ESRCH;
3391         if (!pid)
3392                 p = current;
3393         else {
3394                 p = find_task_by_vpid(pid);
3395                 if (!p)
3396                         goto err_unlock;
3397         }
3398
3399         ret = -EPERM;
3400         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3401                 goto err_unlock;
3402
3403         head = p->robust_list;
3404         rcu_read_unlock();
3405
3406         if (put_user(sizeof(*head), len_ptr))
3407                 return -EFAULT;
3408         return put_user(head, head_ptr);
3409
3410 err_unlock:
3411         rcu_read_unlock();
3412
3413         return ret;
3414 }
3415
3416 /*
3417  * Process a futex-list entry, check whether it's owned by the
3418  * dying task, and do notification if so:
3419  */
3420 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3421 {
3422         u32 uval, uninitialized_var(nval), mval;
3423
3424 retry:
3425         if (get_user(uval, uaddr))
3426                 return -1;
3427
3428         if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3429                 /*
3430                  * Ok, this dying thread is truly holding a futex
3431                  * of interest. Set the OWNER_DIED bit atomically
3432                  * via cmpxchg, and if the value had FUTEX_WAITERS
3433                  * set, wake up a waiter (if any). (We have to do a
3434                  * futex_wake() even if OWNER_DIED is already set -
3435                  * to handle the rare but possible case of recursive
3436                  * thread-death.) The rest of the cleanup is done in
3437                  * userspace.
3438                  */
3439                 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3440                 /*
3441                  * We are not holding a lock here, but we want to have
3442                  * the pagefault_disable/enable() protection because
3443                  * we want to handle the fault gracefully. If the
3444                  * access fails we try to fault in the futex with R/W
3445                  * verification via get_user_pages. get_user() above
3446                  * does not guarantee R/W access. If that fails we
3447                  * give up and leave the futex locked.
3448                  */
3449                 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3450                         if (fault_in_user_writeable(uaddr))
3451                                 return -1;
3452                         goto retry;
3453                 }
3454                 if (nval != uval)
3455                         goto retry;
3456
3457                 /*
3458                  * Wake robust non-PI futexes here. The wakeup of
3459                  * PI futexes happens in exit_pi_state():
3460                  */
3461                 if (!pi && (uval & FUTEX_WAITERS))
3462                         futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3463         }
3464         return 0;
3465 }
3466
3467 /*
3468  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3469  */
3470 static inline int fetch_robust_entry(struct robust_list __user **entry,
3471                                      struct robust_list __user * __user *head,
3472                                      unsigned int *pi)
3473 {
3474         unsigned long uentry;
3475
3476         if (get_user(uentry, (unsigned long __user *)head))
3477                 return -EFAULT;
3478
3479         *entry = (void __user *)(uentry & ~1UL);
3480         *pi = uentry & 1;
3481
3482         return 0;
3483 }
3484
3485 /*
3486  * Walk curr->robust_list (very carefully, it's a userspace list!)
3487  * and mark any locks found there dead, and notify any waiters.
3488  *
3489  * We silently return on any sign of list-walking problem.
3490  */
3491 void exit_robust_list(struct task_struct *curr)
3492 {
3493         struct robust_list_head __user *head = curr->robust_list;
3494         struct robust_list __user *entry, *next_entry, *pending;
3495         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3496         unsigned int uninitialized_var(next_pi);
3497         unsigned long futex_offset;
3498         int rc;
3499
3500         if (!futex_cmpxchg_enabled)
3501                 return;
3502
3503         /*
3504          * Fetch the list head (which was registered earlier, via
3505          * sys_set_robust_list()):
3506          */
3507         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3508                 return;
3509         /*
3510          * Fetch the relative futex offset:
3511          */
3512         if (get_user(futex_offset, &head->futex_offset))
3513                 return;
3514         /*
3515          * Fetch any possibly pending lock-add first, and handle it
3516          * if it exists:
3517          */
3518         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3519                 return;
3520
3521         next_entry = NULL;      /* avoid warning with gcc */
3522         while (entry != &head->list) {
3523                 /*
3524                  * Fetch the next entry in the list before calling
3525                  * handle_futex_death:
3526                  */
3527                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3528                 /*
3529                  * A pending lock might already be on the list, so
3530                  * don't process it twice:
3531                  */
3532                 if (entry != pending)
3533                         if (handle_futex_death((void __user *)entry + futex_offset,
3534                                                 curr, pi))
3535                                 return;
3536                 if (rc)
3537                         return;
3538                 entry = next_entry;
3539                 pi = next_pi;
3540                 /*
3541                  * Avoid excessively long or circular lists:
3542                  */
3543                 if (!--limit)
3544                         break;
3545
3546                 cond_resched();
3547         }
3548
3549         if (pending)
3550                 handle_futex_death((void __user *)pending + futex_offset,
3551                                    curr, pip);
3552 }
3553
3554 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3555                 u32 __user *uaddr2, u32 val2, u32 val3)
3556 {
3557         int cmd = op & FUTEX_CMD_MASK;
3558         unsigned int flags = 0;
3559
3560         if (!(op & FUTEX_PRIVATE_FLAG))
3561                 flags |= FLAGS_SHARED;
3562
3563         if (op & FUTEX_CLOCK_REALTIME) {
3564                 flags |= FLAGS_CLOCKRT;
3565                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3566                     cmd != FUTEX_WAIT_REQUEUE_PI)
3567                         return -ENOSYS;
3568         }
3569
3570         switch (cmd) {
3571         case FUTEX_LOCK_PI:
3572         case FUTEX_UNLOCK_PI:
3573         case FUTEX_TRYLOCK_PI:
3574         case FUTEX_WAIT_REQUEUE_PI:
3575         case FUTEX_CMP_REQUEUE_PI:
3576                 if (!futex_cmpxchg_enabled)
3577                         return -ENOSYS;
3578         }
3579
3580         switch (cmd) {
3581         case FUTEX_WAIT:
3582                 val3 = FUTEX_BITSET_MATCH_ANY;
3583                 /* fall through */
3584         case FUTEX_WAIT_BITSET:
3585                 return futex_wait(uaddr, flags, val, timeout, val3);
3586         case FUTEX_WAKE:
3587                 val3 = FUTEX_BITSET_MATCH_ANY;
3588                 /* fall through */
3589         case FUTEX_WAKE_BITSET:
3590                 return futex_wake(uaddr, flags, val, val3);
3591         case FUTEX_REQUEUE:
3592                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3593         case FUTEX_CMP_REQUEUE:
3594                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3595         case FUTEX_WAKE_OP:
3596                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3597         case FUTEX_LOCK_PI:
3598                 return futex_lock_pi(uaddr, flags, timeout, 0);
3599         case FUTEX_UNLOCK_PI:
3600                 return futex_unlock_pi(uaddr, flags);
3601         case FUTEX_TRYLOCK_PI:
3602                 return futex_lock_pi(uaddr, flags, NULL, 1);
3603         case FUTEX_WAIT_REQUEUE_PI:
3604                 val3 = FUTEX_BITSET_MATCH_ANY;
3605                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3606                                              uaddr2);
3607         case FUTEX_CMP_REQUEUE_PI:
3608                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3609         }
3610         return -ENOSYS;
3611 }
3612
3613
3614 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3615                 struct timespec __user *, utime, u32 __user *, uaddr2,
3616                 u32, val3)
3617 {
3618         struct timespec ts;
3619         ktime_t t, *tp = NULL;
3620         u32 val2 = 0;
3621         int cmd = op & FUTEX_CMD_MASK;
3622
3623         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3624                       cmd == FUTEX_WAIT_BITSET ||
3625                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3626                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3627                         return -EFAULT;
3628                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3629                         return -EFAULT;
3630                 if (!timespec_valid(&ts))
3631                         return -EINVAL;
3632
3633                 t = timespec_to_ktime(ts);
3634                 if (cmd == FUTEX_WAIT)
3635                         t = ktime_add_safe(ktime_get(), t);
3636                 tp = &t;
3637         }
3638         /*
3639          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3640          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3641          */
3642         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3643             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3644                 val2 = (u32) (unsigned long) utime;
3645
3646         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3647 }
3648
3649 static void __init futex_detect_cmpxchg(void)
3650 {
3651 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3652         u32 curval;
3653
3654         /*
3655          * This will fail and we want it. Some arch implementations do
3656          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3657          * functionality. We want to know that before we call in any
3658          * of the complex code paths. Also we want to prevent
3659          * registration of robust lists in that case. NULL is
3660          * guaranteed to fault and we get -EFAULT on functional
3661          * implementation, the non-functional ones will return
3662          * -ENOSYS.
3663          */
3664         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3665                 futex_cmpxchg_enabled = 1;
3666 #endif
3667 }
3668
3669 static int __init futex_init(void)
3670 {
3671         unsigned int futex_shift;
3672         unsigned long i;
3673
3674 #if CONFIG_BASE_SMALL
3675         futex_hashsize = 16;
3676 #else
3677         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3678 #endif
3679
3680         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3681                                                futex_hashsize, 0,
3682                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3683                                                &futex_shift, NULL,
3684                                                futex_hashsize, futex_hashsize);
3685         futex_hashsize = 1UL << futex_shift;
3686
3687         futex_detect_cmpxchg();
3688
3689         for (i = 0; i < futex_hashsize; i++) {
3690                 atomic_set(&futex_queues[i].waiters, 0);
3691                 plist_head_init(&futex_queues[i].chain);
3692                 spin_lock_init(&futex_queues[i].lock);
3693         }
3694
3695         return 0;
3696 }
3697 core_initcall(futex_init);