futex: Consolidate duplicated timer setup code
[linux-2.6-microblaze.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/memblock.h>
70 #include <linux/fault-inject.h>
71 #include <linux/refcount.h>
72
73 #include <asm/futex.h>
74
75 #include "locking/rtmutex_common.h"
76
77 /*
78  * READ this before attempting to hack on futexes!
79  *
80  * Basic futex operation and ordering guarantees
81  * =============================================
82  *
83  * The waiter reads the futex value in user space and calls
84  * futex_wait(). This function computes the hash bucket and acquires
85  * the hash bucket lock. After that it reads the futex user space value
86  * again and verifies that the data has not changed. If it has not changed
87  * it enqueues itself into the hash bucket, releases the hash bucket lock
88  * and schedules.
89  *
90  * The waker side modifies the user space value of the futex and calls
91  * futex_wake(). This function computes the hash bucket and acquires the
92  * hash bucket lock. Then it looks for waiters on that futex in the hash
93  * bucket and wakes them.
94  *
95  * In futex wake up scenarios where no tasks are blocked on a futex, taking
96  * the hb spinlock can be avoided and simply return. In order for this
97  * optimization to work, ordering guarantees must exist so that the waiter
98  * being added to the list is acknowledged when the list is concurrently being
99  * checked by the waker, avoiding scenarios like the following:
100  *
101  * CPU 0                               CPU 1
102  * val = *futex;
103  * sys_futex(WAIT, futex, val);
104  *   futex_wait(futex, val);
105  *   uval = *futex;
106  *                                     *futex = newval;
107  *                                     sys_futex(WAKE, futex);
108  *                                       futex_wake(futex);
109  *                                       if (queue_empty())
110  *                                         return;
111  *   if (uval == val)
112  *      lock(hash_bucket(futex));
113  *      queue();
114  *     unlock(hash_bucket(futex));
115  *     schedule();
116  *
117  * This would cause the waiter on CPU 0 to wait forever because it
118  * missed the transition of the user space value from val to newval
119  * and the waker did not find the waiter in the hash bucket queue.
120  *
121  * The correct serialization ensures that a waiter either observes
122  * the changed user space value before blocking or is woken by a
123  * concurrent waker:
124  *
125  * CPU 0                                 CPU 1
126  * val = *futex;
127  * sys_futex(WAIT, futex, val);
128  *   futex_wait(futex, val);
129  *
130  *   waiters++; (a)
131  *   smp_mb(); (A) <-- paired with -.
132  *                                  |
133  *   lock(hash_bucket(futex));      |
134  *                                  |
135  *   uval = *futex;                 |
136  *                                  |        *futex = newval;
137  *                                  |        sys_futex(WAKE, futex);
138  *                                  |          futex_wake(futex);
139  *                                  |
140  *                                  `--------> smp_mb(); (B)
141  *   if (uval == val)
142  *     queue();
143  *     unlock(hash_bucket(futex));
144  *     schedule();                         if (waiters)
145  *                                           lock(hash_bucket(futex));
146  *   else                                    wake_waiters(futex);
147  *     waiters--; (b)                        unlock(hash_bucket(futex));
148  *
149  * Where (A) orders the waiters increment and the futex value read through
150  * atomic operations (see hb_waiters_inc) and where (B) orders the write
151  * to futex and the waiters read -- this is done by the barriers for both
152  * shared and private futexes in get_futex_key_refs().
153  *
154  * This yields the following case (where X:=waiters, Y:=futex):
155  *
156  *      X = Y = 0
157  *
158  *      w[X]=1          w[Y]=1
159  *      MB              MB
160  *      r[Y]=y          r[X]=x
161  *
162  * Which guarantees that x==0 && y==0 is impossible; which translates back into
163  * the guarantee that we cannot both miss the futex variable change and the
164  * enqueue.
165  *
166  * Note that a new waiter is accounted for in (a) even when it is possible that
167  * the wait call can return error, in which case we backtrack from it in (b).
168  * Refer to the comment in queue_lock().
169  *
170  * Similarly, in order to account for waiters being requeued on another
171  * address we always increment the waiters for the destination bucket before
172  * acquiring the lock. It then decrements them again  after releasing it -
173  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
174  * will do the additional required waiter count housekeeping. This is done for
175  * double_lock_hb() and double_unlock_hb(), respectively.
176  */
177
178 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
179 #define futex_cmpxchg_enabled 1
180 #else
181 static int  __read_mostly futex_cmpxchg_enabled;
182 #endif
183
184 /*
185  * Futex flags used to encode options to functions and preserve them across
186  * restarts.
187  */
188 #ifdef CONFIG_MMU
189 # define FLAGS_SHARED           0x01
190 #else
191 /*
192  * NOMMU does not have per process address space. Let the compiler optimize
193  * code away.
194  */
195 # define FLAGS_SHARED           0x00
196 #endif
197 #define FLAGS_CLOCKRT           0x02
198 #define FLAGS_HAS_TIMEOUT       0x04
199
200 /*
201  * Priority Inheritance state:
202  */
203 struct futex_pi_state {
204         /*
205          * list of 'owned' pi_state instances - these have to be
206          * cleaned up in do_exit() if the task exits prematurely:
207          */
208         struct list_head list;
209
210         /*
211          * The PI object:
212          */
213         struct rt_mutex pi_mutex;
214
215         struct task_struct *owner;
216         refcount_t refcount;
217
218         union futex_key key;
219 } __randomize_layout;
220
221 /**
222  * struct futex_q - The hashed futex queue entry, one per waiting task
223  * @list:               priority-sorted list of tasks waiting on this futex
224  * @task:               the task waiting on the futex
225  * @lock_ptr:           the hash bucket lock
226  * @key:                the key the futex is hashed on
227  * @pi_state:           optional priority inheritance state
228  * @rt_waiter:          rt_waiter storage for use with requeue_pi
229  * @requeue_pi_key:     the requeue_pi target futex key
230  * @bitset:             bitset for the optional bitmasked wakeup
231  *
232  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
233  * we can wake only the relevant ones (hashed queues may be shared).
234  *
235  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
236  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
237  * The order of wakeup is always to make the first condition true, then
238  * the second.
239  *
240  * PI futexes are typically woken before they are removed from the hash list via
241  * the rt_mutex code. See unqueue_me_pi().
242  */
243 struct futex_q {
244         struct plist_node list;
245
246         struct task_struct *task;
247         spinlock_t *lock_ptr;
248         union futex_key key;
249         struct futex_pi_state *pi_state;
250         struct rt_mutex_waiter *rt_waiter;
251         union futex_key *requeue_pi_key;
252         u32 bitset;
253 } __randomize_layout;
254
255 static const struct futex_q futex_q_init = {
256         /* list gets initialized in queue_me()*/
257         .key = FUTEX_KEY_INIT,
258         .bitset = FUTEX_BITSET_MATCH_ANY
259 };
260
261 /*
262  * Hash buckets are shared by all the futex_keys that hash to the same
263  * location.  Each key may have multiple futex_q structures, one for each task
264  * waiting on a futex.
265  */
266 struct futex_hash_bucket {
267         atomic_t waiters;
268         spinlock_t lock;
269         struct plist_head chain;
270 } ____cacheline_aligned_in_smp;
271
272 /*
273  * The base of the bucket array and its size are always used together
274  * (after initialization only in hash_futex()), so ensure that they
275  * reside in the same cacheline.
276  */
277 static struct {
278         struct futex_hash_bucket *queues;
279         unsigned long            hashsize;
280 } __futex_data __read_mostly __aligned(2*sizeof(long));
281 #define futex_queues   (__futex_data.queues)
282 #define futex_hashsize (__futex_data.hashsize)
283
284
285 /*
286  * Fault injections for futexes.
287  */
288 #ifdef CONFIG_FAIL_FUTEX
289
290 static struct {
291         struct fault_attr attr;
292
293         bool ignore_private;
294 } fail_futex = {
295         .attr = FAULT_ATTR_INITIALIZER,
296         .ignore_private = false,
297 };
298
299 static int __init setup_fail_futex(char *str)
300 {
301         return setup_fault_attr(&fail_futex.attr, str);
302 }
303 __setup("fail_futex=", setup_fail_futex);
304
305 static bool should_fail_futex(bool fshared)
306 {
307         if (fail_futex.ignore_private && !fshared)
308                 return false;
309
310         return should_fail(&fail_futex.attr, 1);
311 }
312
313 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
314
315 static int __init fail_futex_debugfs(void)
316 {
317         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
318         struct dentry *dir;
319
320         dir = fault_create_debugfs_attr("fail_futex", NULL,
321                                         &fail_futex.attr);
322         if (IS_ERR(dir))
323                 return PTR_ERR(dir);
324
325         debugfs_create_bool("ignore-private", mode, dir,
326                             &fail_futex.ignore_private);
327         return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337         return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343         mmgrab(key->private.mm);
344         /*
345          * Ensure futex_get_mm() implies a full barrier such that
346          * get_futex_key() implies a full barrier. This is relied upon
347          * as smp_mb(); (B), see the ordering comment above.
348          */
349         smp_mb__after_atomic();
350 }
351
352 /*
353  * Reflects a new waiter being added to the waitqueue.
354  */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358         atomic_inc(&hb->waiters);
359         /*
360          * Full barrier (A), see the ordering comment above.
361          */
362         smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367  * Reflects a waiter being removed from the waitqueue by wakeup
368  * paths.
369  */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380         return atomic_read(&hb->waiters);
381 #else
382         return 1;
383 #endif
384 }
385
386 /**
387  * hash_futex - Return the hash bucket in the global hash
388  * @key:        Pointer to the futex key for which the hash is calculated
389  *
390  * We hash on the keys returned from get_futex_key (see below) and return the
391  * corresponding hash bucket in the global hash.
392  */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395         u32 hash = jhash2((u32*)&key->both.word,
396                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397                           key->both.offset);
398         return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403  * match_futex - Check whether two futex keys are equal
404  * @key1:       Pointer to key1
405  * @key2:       Pointer to key2
406  *
407  * Return 1 if two futex_keys are equal, 0 otherwise.
408  */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411         return (key1 && key2
412                 && key1->both.word == key2->both.word
413                 && key1->both.ptr == key2->both.ptr
414                 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418  * Take a reference to the resource addressed by a key.
419  * Can be called while holding spinlocks.
420  *
421  */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424         if (!key->both.ptr)
425                 return;
426
427         /*
428          * On MMU less systems futexes are always "private" as there is no per
429          * process address space. We need the smp wmb nevertheless - yes,
430          * arch/blackfin has MMU less SMP ...
431          */
432         if (!IS_ENABLED(CONFIG_MMU)) {
433                 smp_mb(); /* explicit smp_mb(); (B) */
434                 return;
435         }
436
437         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438         case FUT_OFF_INODE:
439                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440                 break;
441         case FUT_OFF_MMSHARED:
442                 futex_get_mm(key); /* implies smp_mb(); (B) */
443                 break;
444         default:
445                 /*
446                  * Private futexes do not hold reference on an inode or
447                  * mm, therefore the only purpose of calling get_futex_key_refs
448                  * is because we need the barrier for the lockless waiter check.
449                  */
450                 smp_mb(); /* explicit smp_mb(); (B) */
451         }
452 }
453
454 /*
455  * Drop a reference to the resource addressed by a key.
456  * The hash bucket spinlock must not be held. This is
457  * a no-op for private futexes, see comment in the get
458  * counterpart.
459  */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462         if (!key->both.ptr) {
463                 /* If we're here then we tried to put a key we failed to get */
464                 WARN_ON_ONCE(1);
465                 return;
466         }
467
468         if (!IS_ENABLED(CONFIG_MMU))
469                 return;
470
471         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472         case FUT_OFF_INODE:
473                 iput(key->shared.inode);
474                 break;
475         case FUT_OFF_MMSHARED:
476                 mmdrop(key->private.mm);
477                 break;
478         }
479 }
480
481 enum futex_access {
482         FUTEX_READ,
483         FUTEX_WRITE
484 };
485
486 /**
487  * futex_setup_timer - set up the sleeping hrtimer.
488  * @time:       ptr to the given timeout value
489  * @timeout:    the hrtimer_sleeper structure to be set up
490  * @flags:      futex flags
491  * @range_ns:   optional range in ns
492  *
493  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
494  *         value given
495  */
496 static inline struct hrtimer_sleeper *
497 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
498                   int flags, u64 range_ns)
499 {
500         if (!time)
501                 return NULL;
502
503         hrtimer_init_on_stack(&timeout->timer, (flags & FLAGS_CLOCKRT) ?
504                               CLOCK_REALTIME : CLOCK_MONOTONIC,
505                               HRTIMER_MODE_ABS);
506         hrtimer_init_sleeper(timeout, current);
507
508         /*
509          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
510          * effectively the same as calling hrtimer_set_expires().
511          */
512         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
513
514         return timeout;
515 }
516
517 /**
518  * get_futex_key() - Get parameters which are the keys for a futex
519  * @uaddr:      virtual address of the futex
520  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
521  * @key:        address where result is stored.
522  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
523  *              FUTEX_WRITE)
524  *
525  * Return: a negative error code or 0
526  *
527  * The key words are stored in @key on success.
528  *
529  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
530  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
531  * We can usually work out the index without swapping in the page.
532  *
533  * lock_page() might sleep, the caller should not hold a spinlock.
534  */
535 static int
536 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
537 {
538         unsigned long address = (unsigned long)uaddr;
539         struct mm_struct *mm = current->mm;
540         struct page *page, *tail;
541         struct address_space *mapping;
542         int err, ro = 0;
543
544         /*
545          * The futex address must be "naturally" aligned.
546          */
547         key->both.offset = address % PAGE_SIZE;
548         if (unlikely((address % sizeof(u32)) != 0))
549                 return -EINVAL;
550         address -= key->both.offset;
551
552         if (unlikely(!access_ok(uaddr, sizeof(u32))))
553                 return -EFAULT;
554
555         if (unlikely(should_fail_futex(fshared)))
556                 return -EFAULT;
557
558         /*
559          * PROCESS_PRIVATE futexes are fast.
560          * As the mm cannot disappear under us and the 'key' only needs
561          * virtual address, we dont even have to find the underlying vma.
562          * Note : We do have to check 'uaddr' is a valid user address,
563          *        but access_ok() should be faster than find_vma()
564          */
565         if (!fshared) {
566                 key->private.mm = mm;
567                 key->private.address = address;
568                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
569                 return 0;
570         }
571
572 again:
573         /* Ignore any VERIFY_READ mapping (futex common case) */
574         if (unlikely(should_fail_futex(fshared)))
575                 return -EFAULT;
576
577         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
578         /*
579          * If write access is not required (eg. FUTEX_WAIT), try
580          * and get read-only access.
581          */
582         if (err == -EFAULT && rw == FUTEX_READ) {
583                 err = get_user_pages_fast(address, 1, 0, &page);
584                 ro = 1;
585         }
586         if (err < 0)
587                 return err;
588         else
589                 err = 0;
590
591         /*
592          * The treatment of mapping from this point on is critical. The page
593          * lock protects many things but in this context the page lock
594          * stabilizes mapping, prevents inode freeing in the shared
595          * file-backed region case and guards against movement to swap cache.
596          *
597          * Strictly speaking the page lock is not needed in all cases being
598          * considered here and page lock forces unnecessarily serialization
599          * From this point on, mapping will be re-verified if necessary and
600          * page lock will be acquired only if it is unavoidable
601          *
602          * Mapping checks require the head page for any compound page so the
603          * head page and mapping is looked up now. For anonymous pages, it
604          * does not matter if the page splits in the future as the key is
605          * based on the address. For filesystem-backed pages, the tail is
606          * required as the index of the page determines the key. For
607          * base pages, there is no tail page and tail == page.
608          */
609         tail = page;
610         page = compound_head(page);
611         mapping = READ_ONCE(page->mapping);
612
613         /*
614          * If page->mapping is NULL, then it cannot be a PageAnon
615          * page; but it might be the ZERO_PAGE or in the gate area or
616          * in a special mapping (all cases which we are happy to fail);
617          * or it may have been a good file page when get_user_pages_fast
618          * found it, but truncated or holepunched or subjected to
619          * invalidate_complete_page2 before we got the page lock (also
620          * cases which we are happy to fail).  And we hold a reference,
621          * so refcount care in invalidate_complete_page's remove_mapping
622          * prevents drop_caches from setting mapping to NULL beneath us.
623          *
624          * The case we do have to guard against is when memory pressure made
625          * shmem_writepage move it from filecache to swapcache beneath us:
626          * an unlikely race, but we do need to retry for page->mapping.
627          */
628         if (unlikely(!mapping)) {
629                 int shmem_swizzled;
630
631                 /*
632                  * Page lock is required to identify which special case above
633                  * applies. If this is really a shmem page then the page lock
634                  * will prevent unexpected transitions.
635                  */
636                 lock_page(page);
637                 shmem_swizzled = PageSwapCache(page) || page->mapping;
638                 unlock_page(page);
639                 put_page(page);
640
641                 if (shmem_swizzled)
642                         goto again;
643
644                 return -EFAULT;
645         }
646
647         /*
648          * Private mappings are handled in a simple way.
649          *
650          * If the futex key is stored on an anonymous page, then the associated
651          * object is the mm which is implicitly pinned by the calling process.
652          *
653          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
654          * it's a read-only handle, it's expected that futexes attach to
655          * the object not the particular process.
656          */
657         if (PageAnon(page)) {
658                 /*
659                  * A RO anonymous page will never change and thus doesn't make
660                  * sense for futex operations.
661                  */
662                 if (unlikely(should_fail_futex(fshared)) || ro) {
663                         err = -EFAULT;
664                         goto out;
665                 }
666
667                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
668                 key->private.mm = mm;
669                 key->private.address = address;
670
671                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
672
673         } else {
674                 struct inode *inode;
675
676                 /*
677                  * The associated futex object in this case is the inode and
678                  * the page->mapping must be traversed. Ordinarily this should
679                  * be stabilised under page lock but it's not strictly
680                  * necessary in this case as we just want to pin the inode, not
681                  * update the radix tree or anything like that.
682                  *
683                  * The RCU read lock is taken as the inode is finally freed
684                  * under RCU. If the mapping still matches expectations then the
685                  * mapping->host can be safely accessed as being a valid inode.
686                  */
687                 rcu_read_lock();
688
689                 if (READ_ONCE(page->mapping) != mapping) {
690                         rcu_read_unlock();
691                         put_page(page);
692
693                         goto again;
694                 }
695
696                 inode = READ_ONCE(mapping->host);
697                 if (!inode) {
698                         rcu_read_unlock();
699                         put_page(page);
700
701                         goto again;
702                 }
703
704                 /*
705                  * Take a reference unless it is about to be freed. Previously
706                  * this reference was taken by ihold under the page lock
707                  * pinning the inode in place so i_lock was unnecessary. The
708                  * only way for this check to fail is if the inode was
709                  * truncated in parallel which is almost certainly an
710                  * application bug. In such a case, just retry.
711                  *
712                  * We are not calling into get_futex_key_refs() in file-backed
713                  * cases, therefore a successful atomic_inc return below will
714                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
715                  */
716                 if (!atomic_inc_not_zero(&inode->i_count)) {
717                         rcu_read_unlock();
718                         put_page(page);
719
720                         goto again;
721                 }
722
723                 /* Should be impossible but lets be paranoid for now */
724                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
725                         err = -EFAULT;
726                         rcu_read_unlock();
727                         iput(inode);
728
729                         goto out;
730                 }
731
732                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
733                 key->shared.inode = inode;
734                 key->shared.pgoff = basepage_index(tail);
735                 rcu_read_unlock();
736         }
737
738 out:
739         put_page(page);
740         return err;
741 }
742
743 static inline void put_futex_key(union futex_key *key)
744 {
745         drop_futex_key_refs(key);
746 }
747
748 /**
749  * fault_in_user_writeable() - Fault in user address and verify RW access
750  * @uaddr:      pointer to faulting user space address
751  *
752  * Slow path to fixup the fault we just took in the atomic write
753  * access to @uaddr.
754  *
755  * We have no generic implementation of a non-destructive write to the
756  * user address. We know that we faulted in the atomic pagefault
757  * disabled section so we can as well avoid the #PF overhead by
758  * calling get_user_pages() right away.
759  */
760 static int fault_in_user_writeable(u32 __user *uaddr)
761 {
762         struct mm_struct *mm = current->mm;
763         int ret;
764
765         down_read(&mm->mmap_sem);
766         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
767                                FAULT_FLAG_WRITE, NULL);
768         up_read(&mm->mmap_sem);
769
770         return ret < 0 ? ret : 0;
771 }
772
773 /**
774  * futex_top_waiter() - Return the highest priority waiter on a futex
775  * @hb:         the hash bucket the futex_q's reside in
776  * @key:        the futex key (to distinguish it from other futex futex_q's)
777  *
778  * Must be called with the hb lock held.
779  */
780 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
781                                         union futex_key *key)
782 {
783         struct futex_q *this;
784
785         plist_for_each_entry(this, &hb->chain, list) {
786                 if (match_futex(&this->key, key))
787                         return this;
788         }
789         return NULL;
790 }
791
792 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
793                                       u32 uval, u32 newval)
794 {
795         int ret;
796
797         pagefault_disable();
798         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
799         pagefault_enable();
800
801         return ret;
802 }
803
804 static int get_futex_value_locked(u32 *dest, u32 __user *from)
805 {
806         int ret;
807
808         pagefault_disable();
809         ret = __get_user(*dest, from);
810         pagefault_enable();
811
812         return ret ? -EFAULT : 0;
813 }
814
815
816 /*
817  * PI code:
818  */
819 static int refill_pi_state_cache(void)
820 {
821         struct futex_pi_state *pi_state;
822
823         if (likely(current->pi_state_cache))
824                 return 0;
825
826         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
827
828         if (!pi_state)
829                 return -ENOMEM;
830
831         INIT_LIST_HEAD(&pi_state->list);
832         /* pi_mutex gets initialized later */
833         pi_state->owner = NULL;
834         refcount_set(&pi_state->refcount, 1);
835         pi_state->key = FUTEX_KEY_INIT;
836
837         current->pi_state_cache = pi_state;
838
839         return 0;
840 }
841
842 static struct futex_pi_state *alloc_pi_state(void)
843 {
844         struct futex_pi_state *pi_state = current->pi_state_cache;
845
846         WARN_ON(!pi_state);
847         current->pi_state_cache = NULL;
848
849         return pi_state;
850 }
851
852 static void get_pi_state(struct futex_pi_state *pi_state)
853 {
854         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
855 }
856
857 /*
858  * Drops a reference to the pi_state object and frees or caches it
859  * when the last reference is gone.
860  */
861 static void put_pi_state(struct futex_pi_state *pi_state)
862 {
863         if (!pi_state)
864                 return;
865
866         if (!refcount_dec_and_test(&pi_state->refcount))
867                 return;
868
869         /*
870          * If pi_state->owner is NULL, the owner is most probably dying
871          * and has cleaned up the pi_state already
872          */
873         if (pi_state->owner) {
874                 struct task_struct *owner;
875
876                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
877                 owner = pi_state->owner;
878                 if (owner) {
879                         raw_spin_lock(&owner->pi_lock);
880                         list_del_init(&pi_state->list);
881                         raw_spin_unlock(&owner->pi_lock);
882                 }
883                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
884                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
885         }
886
887         if (current->pi_state_cache) {
888                 kfree(pi_state);
889         } else {
890                 /*
891                  * pi_state->list is already empty.
892                  * clear pi_state->owner.
893                  * refcount is at 0 - put it back to 1.
894                  */
895                 pi_state->owner = NULL;
896                 refcount_set(&pi_state->refcount, 1);
897                 current->pi_state_cache = pi_state;
898         }
899 }
900
901 #ifdef CONFIG_FUTEX_PI
902
903 /*
904  * This task is holding PI mutexes at exit time => bad.
905  * Kernel cleans up PI-state, but userspace is likely hosed.
906  * (Robust-futex cleanup is separate and might save the day for userspace.)
907  */
908 void exit_pi_state_list(struct task_struct *curr)
909 {
910         struct list_head *next, *head = &curr->pi_state_list;
911         struct futex_pi_state *pi_state;
912         struct futex_hash_bucket *hb;
913         union futex_key key = FUTEX_KEY_INIT;
914
915         if (!futex_cmpxchg_enabled)
916                 return;
917         /*
918          * We are a ZOMBIE and nobody can enqueue itself on
919          * pi_state_list anymore, but we have to be careful
920          * versus waiters unqueueing themselves:
921          */
922         raw_spin_lock_irq(&curr->pi_lock);
923         while (!list_empty(head)) {
924                 next = head->next;
925                 pi_state = list_entry(next, struct futex_pi_state, list);
926                 key = pi_state->key;
927                 hb = hash_futex(&key);
928
929                 /*
930                  * We can race against put_pi_state() removing itself from the
931                  * list (a waiter going away). put_pi_state() will first
932                  * decrement the reference count and then modify the list, so
933                  * its possible to see the list entry but fail this reference
934                  * acquire.
935                  *
936                  * In that case; drop the locks to let put_pi_state() make
937                  * progress and retry the loop.
938                  */
939                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
940                         raw_spin_unlock_irq(&curr->pi_lock);
941                         cpu_relax();
942                         raw_spin_lock_irq(&curr->pi_lock);
943                         continue;
944                 }
945                 raw_spin_unlock_irq(&curr->pi_lock);
946
947                 spin_lock(&hb->lock);
948                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
949                 raw_spin_lock(&curr->pi_lock);
950                 /*
951                  * We dropped the pi-lock, so re-check whether this
952                  * task still owns the PI-state:
953                  */
954                 if (head->next != next) {
955                         /* retain curr->pi_lock for the loop invariant */
956                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
957                         spin_unlock(&hb->lock);
958                         put_pi_state(pi_state);
959                         continue;
960                 }
961
962                 WARN_ON(pi_state->owner != curr);
963                 WARN_ON(list_empty(&pi_state->list));
964                 list_del_init(&pi_state->list);
965                 pi_state->owner = NULL;
966
967                 raw_spin_unlock(&curr->pi_lock);
968                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
969                 spin_unlock(&hb->lock);
970
971                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
972                 put_pi_state(pi_state);
973
974                 raw_spin_lock_irq(&curr->pi_lock);
975         }
976         raw_spin_unlock_irq(&curr->pi_lock);
977 }
978
979 #endif
980
981 /*
982  * We need to check the following states:
983  *
984  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
985  *
986  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
987  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
988  *
989  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
990  *
991  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
992  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
993  *
994  * [6]  Found  | Found    | task      | 0         | 1      | Valid
995  *
996  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
997  *
998  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
999  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
1000  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
1001  *
1002  * [1]  Indicates that the kernel can acquire the futex atomically. We
1003  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
1004  *
1005  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
1006  *      thread is found then it indicates that the owner TID has died.
1007  *
1008  * [3]  Invalid. The waiter is queued on a non PI futex
1009  *
1010  * [4]  Valid state after exit_robust_list(), which sets the user space
1011  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1012  *
1013  * [5]  The user space value got manipulated between exit_robust_list()
1014  *      and exit_pi_state_list()
1015  *
1016  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1017  *      the pi_state but cannot access the user space value.
1018  *
1019  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1020  *
1021  * [8]  Owner and user space value match
1022  *
1023  * [9]  There is no transient state which sets the user space TID to 0
1024  *      except exit_robust_list(), but this is indicated by the
1025  *      FUTEX_OWNER_DIED bit. See [4]
1026  *
1027  * [10] There is no transient state which leaves owner and user space
1028  *      TID out of sync.
1029  *
1030  *
1031  * Serialization and lifetime rules:
1032  *
1033  * hb->lock:
1034  *
1035  *      hb -> futex_q, relation
1036  *      futex_q -> pi_state, relation
1037  *
1038  *      (cannot be raw because hb can contain arbitrary amount
1039  *       of futex_q's)
1040  *
1041  * pi_mutex->wait_lock:
1042  *
1043  *      {uval, pi_state}
1044  *
1045  *      (and pi_mutex 'obviously')
1046  *
1047  * p->pi_lock:
1048  *
1049  *      p->pi_state_list -> pi_state->list, relation
1050  *
1051  * pi_state->refcount:
1052  *
1053  *      pi_state lifetime
1054  *
1055  *
1056  * Lock order:
1057  *
1058  *   hb->lock
1059  *     pi_mutex->wait_lock
1060  *       p->pi_lock
1061  *
1062  */
1063
1064 /*
1065  * Validate that the existing waiter has a pi_state and sanity check
1066  * the pi_state against the user space value. If correct, attach to
1067  * it.
1068  */
1069 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1070                               struct futex_pi_state *pi_state,
1071                               struct futex_pi_state **ps)
1072 {
1073         pid_t pid = uval & FUTEX_TID_MASK;
1074         u32 uval2;
1075         int ret;
1076
1077         /*
1078          * Userspace might have messed up non-PI and PI futexes [3]
1079          */
1080         if (unlikely(!pi_state))
1081                 return -EINVAL;
1082
1083         /*
1084          * We get here with hb->lock held, and having found a
1085          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1086          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1087          * which in turn means that futex_lock_pi() still has a reference on
1088          * our pi_state.
1089          *
1090          * The waiter holding a reference on @pi_state also protects against
1091          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1092          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1093          * free pi_state before we can take a reference ourselves.
1094          */
1095         WARN_ON(!refcount_read(&pi_state->refcount));
1096
1097         /*
1098          * Now that we have a pi_state, we can acquire wait_lock
1099          * and do the state validation.
1100          */
1101         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1102
1103         /*
1104          * Since {uval, pi_state} is serialized by wait_lock, and our current
1105          * uval was read without holding it, it can have changed. Verify it
1106          * still is what we expect it to be, otherwise retry the entire
1107          * operation.
1108          */
1109         if (get_futex_value_locked(&uval2, uaddr))
1110                 goto out_efault;
1111
1112         if (uval != uval2)
1113                 goto out_eagain;
1114
1115         /*
1116          * Handle the owner died case:
1117          */
1118         if (uval & FUTEX_OWNER_DIED) {
1119                 /*
1120                  * exit_pi_state_list sets owner to NULL and wakes the
1121                  * topmost waiter. The task which acquires the
1122                  * pi_state->rt_mutex will fixup owner.
1123                  */
1124                 if (!pi_state->owner) {
1125                         /*
1126                          * No pi state owner, but the user space TID
1127                          * is not 0. Inconsistent state. [5]
1128                          */
1129                         if (pid)
1130                                 goto out_einval;
1131                         /*
1132                          * Take a ref on the state and return success. [4]
1133                          */
1134                         goto out_attach;
1135                 }
1136
1137                 /*
1138                  * If TID is 0, then either the dying owner has not
1139                  * yet executed exit_pi_state_list() or some waiter
1140                  * acquired the rtmutex in the pi state, but did not
1141                  * yet fixup the TID in user space.
1142                  *
1143                  * Take a ref on the state and return success. [6]
1144                  */
1145                 if (!pid)
1146                         goto out_attach;
1147         } else {
1148                 /*
1149                  * If the owner died bit is not set, then the pi_state
1150                  * must have an owner. [7]
1151                  */
1152                 if (!pi_state->owner)
1153                         goto out_einval;
1154         }
1155
1156         /*
1157          * Bail out if user space manipulated the futex value. If pi
1158          * state exists then the owner TID must be the same as the
1159          * user space TID. [9/10]
1160          */
1161         if (pid != task_pid_vnr(pi_state->owner))
1162                 goto out_einval;
1163
1164 out_attach:
1165         get_pi_state(pi_state);
1166         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1167         *ps = pi_state;
1168         return 0;
1169
1170 out_einval:
1171         ret = -EINVAL;
1172         goto out_error;
1173
1174 out_eagain:
1175         ret = -EAGAIN;
1176         goto out_error;
1177
1178 out_efault:
1179         ret = -EFAULT;
1180         goto out_error;
1181
1182 out_error:
1183         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1184         return ret;
1185 }
1186
1187 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1188                             struct task_struct *tsk)
1189 {
1190         u32 uval2;
1191
1192         /*
1193          * If PF_EXITPIDONE is not yet set, then try again.
1194          */
1195         if (tsk && !(tsk->flags & PF_EXITPIDONE))
1196                 return -EAGAIN;
1197
1198         /*
1199          * Reread the user space value to handle the following situation:
1200          *
1201          * CPU0                         CPU1
1202          *
1203          * sys_exit()                   sys_futex()
1204          *  do_exit()                    futex_lock_pi()
1205          *                                futex_lock_pi_atomic()
1206          *   exit_signals(tsk)              No waiters:
1207          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1208          *  mm_release(tsk)                 Set waiter bit
1209          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1210          *      Set owner died              attach_to_pi_owner() {
1211          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1212          *   }                               if (!tsk->flags & PF_EXITING) {
1213          *  ...                                attach();
1214          *  tsk->flags |= PF_EXITPIDONE;     } else {
1215          *                                     if (!(tsk->flags & PF_EXITPIDONE))
1216          *                                       return -EAGAIN;
1217          *                                     return -ESRCH; <--- FAIL
1218          *                                   }
1219          *
1220          * Returning ESRCH unconditionally is wrong here because the
1221          * user space value has been changed by the exiting task.
1222          *
1223          * The same logic applies to the case where the exiting task is
1224          * already gone.
1225          */
1226         if (get_futex_value_locked(&uval2, uaddr))
1227                 return -EFAULT;
1228
1229         /* If the user space value has changed, try again. */
1230         if (uval2 != uval)
1231                 return -EAGAIN;
1232
1233         /*
1234          * The exiting task did not have a robust list, the robust list was
1235          * corrupted or the user space value in *uaddr is simply bogus.
1236          * Give up and tell user space.
1237          */
1238         return -ESRCH;
1239 }
1240
1241 /*
1242  * Lookup the task for the TID provided from user space and attach to
1243  * it after doing proper sanity checks.
1244  */
1245 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1246                               struct futex_pi_state **ps)
1247 {
1248         pid_t pid = uval & FUTEX_TID_MASK;
1249         struct futex_pi_state *pi_state;
1250         struct task_struct *p;
1251
1252         /*
1253          * We are the first waiter - try to look up the real owner and attach
1254          * the new pi_state to it, but bail out when TID = 0 [1]
1255          *
1256          * The !pid check is paranoid. None of the call sites should end up
1257          * with pid == 0, but better safe than sorry. Let the caller retry
1258          */
1259         if (!pid)
1260                 return -EAGAIN;
1261         p = find_get_task_by_vpid(pid);
1262         if (!p)
1263                 return handle_exit_race(uaddr, uval, NULL);
1264
1265         if (unlikely(p->flags & PF_KTHREAD)) {
1266                 put_task_struct(p);
1267                 return -EPERM;
1268         }
1269
1270         /*
1271          * We need to look at the task state flags to figure out,
1272          * whether the task is exiting. To protect against the do_exit
1273          * change of the task flags, we do this protected by
1274          * p->pi_lock:
1275          */
1276         raw_spin_lock_irq(&p->pi_lock);
1277         if (unlikely(p->flags & PF_EXITING)) {
1278                 /*
1279                  * The task is on the way out. When PF_EXITPIDONE is
1280                  * set, we know that the task has finished the
1281                  * cleanup:
1282                  */
1283                 int ret = handle_exit_race(uaddr, uval, p);
1284
1285                 raw_spin_unlock_irq(&p->pi_lock);
1286                 put_task_struct(p);
1287                 return ret;
1288         }
1289
1290         /*
1291          * No existing pi state. First waiter. [2]
1292          *
1293          * This creates pi_state, we have hb->lock held, this means nothing can
1294          * observe this state, wait_lock is irrelevant.
1295          */
1296         pi_state = alloc_pi_state();
1297
1298         /*
1299          * Initialize the pi_mutex in locked state and make @p
1300          * the owner of it:
1301          */
1302         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1303
1304         /* Store the key for possible exit cleanups: */
1305         pi_state->key = *key;
1306
1307         WARN_ON(!list_empty(&pi_state->list));
1308         list_add(&pi_state->list, &p->pi_state_list);
1309         /*
1310          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1311          * because there is no concurrency as the object is not published yet.
1312          */
1313         pi_state->owner = p;
1314         raw_spin_unlock_irq(&p->pi_lock);
1315
1316         put_task_struct(p);
1317
1318         *ps = pi_state;
1319
1320         return 0;
1321 }
1322
1323 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1324                            struct futex_hash_bucket *hb,
1325                            union futex_key *key, struct futex_pi_state **ps)
1326 {
1327         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1328
1329         /*
1330          * If there is a waiter on that futex, validate it and
1331          * attach to the pi_state when the validation succeeds.
1332          */
1333         if (top_waiter)
1334                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1335
1336         /*
1337          * We are the first waiter - try to look up the owner based on
1338          * @uval and attach to it.
1339          */
1340         return attach_to_pi_owner(uaddr, uval, key, ps);
1341 }
1342
1343 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1344 {
1345         int err;
1346         u32 uninitialized_var(curval);
1347
1348         if (unlikely(should_fail_futex(true)))
1349                 return -EFAULT;
1350
1351         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1352         if (unlikely(err))
1353                 return err;
1354
1355         /* If user space value changed, let the caller retry */
1356         return curval != uval ? -EAGAIN : 0;
1357 }
1358
1359 /**
1360  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1361  * @uaddr:              the pi futex user address
1362  * @hb:                 the pi futex hash bucket
1363  * @key:                the futex key associated with uaddr and hb
1364  * @ps:                 the pi_state pointer where we store the result of the
1365  *                      lookup
1366  * @task:               the task to perform the atomic lock work for.  This will
1367  *                      be "current" except in the case of requeue pi.
1368  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1369  *
1370  * Return:
1371  *  -  0 - ready to wait;
1372  *  -  1 - acquired the lock;
1373  *  - <0 - error
1374  *
1375  * The hb->lock and futex_key refs shall be held by the caller.
1376  */
1377 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1378                                 union futex_key *key,
1379                                 struct futex_pi_state **ps,
1380                                 struct task_struct *task, int set_waiters)
1381 {
1382         u32 uval, newval, vpid = task_pid_vnr(task);
1383         struct futex_q *top_waiter;
1384         int ret;
1385
1386         /*
1387          * Read the user space value first so we can validate a few
1388          * things before proceeding further.
1389          */
1390         if (get_futex_value_locked(&uval, uaddr))
1391                 return -EFAULT;
1392
1393         if (unlikely(should_fail_futex(true)))
1394                 return -EFAULT;
1395
1396         /*
1397          * Detect deadlocks.
1398          */
1399         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1400                 return -EDEADLK;
1401
1402         if ((unlikely(should_fail_futex(true))))
1403                 return -EDEADLK;
1404
1405         /*
1406          * Lookup existing state first. If it exists, try to attach to
1407          * its pi_state.
1408          */
1409         top_waiter = futex_top_waiter(hb, key);
1410         if (top_waiter)
1411                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1412
1413         /*
1414          * No waiter and user TID is 0. We are here because the
1415          * waiters or the owner died bit is set or called from
1416          * requeue_cmp_pi or for whatever reason something took the
1417          * syscall.
1418          */
1419         if (!(uval & FUTEX_TID_MASK)) {
1420                 /*
1421                  * We take over the futex. No other waiters and the user space
1422                  * TID is 0. We preserve the owner died bit.
1423                  */
1424                 newval = uval & FUTEX_OWNER_DIED;
1425                 newval |= vpid;
1426
1427                 /* The futex requeue_pi code can enforce the waiters bit */
1428                 if (set_waiters)
1429                         newval |= FUTEX_WAITERS;
1430
1431                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1432                 /* If the take over worked, return 1 */
1433                 return ret < 0 ? ret : 1;
1434         }
1435
1436         /*
1437          * First waiter. Set the waiters bit before attaching ourself to
1438          * the owner. If owner tries to unlock, it will be forced into
1439          * the kernel and blocked on hb->lock.
1440          */
1441         newval = uval | FUTEX_WAITERS;
1442         ret = lock_pi_update_atomic(uaddr, uval, newval);
1443         if (ret)
1444                 return ret;
1445         /*
1446          * If the update of the user space value succeeded, we try to
1447          * attach to the owner. If that fails, no harm done, we only
1448          * set the FUTEX_WAITERS bit in the user space variable.
1449          */
1450         return attach_to_pi_owner(uaddr, newval, key, ps);
1451 }
1452
1453 /**
1454  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1455  * @q:  The futex_q to unqueue
1456  *
1457  * The q->lock_ptr must not be NULL and must be held by the caller.
1458  */
1459 static void __unqueue_futex(struct futex_q *q)
1460 {
1461         struct futex_hash_bucket *hb;
1462
1463         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1464                 return;
1465         lockdep_assert_held(q->lock_ptr);
1466
1467         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1468         plist_del(&q->list, &hb->chain);
1469         hb_waiters_dec(hb);
1470 }
1471
1472 /*
1473  * The hash bucket lock must be held when this is called.
1474  * Afterwards, the futex_q must not be accessed. Callers
1475  * must ensure to later call wake_up_q() for the actual
1476  * wakeups to occur.
1477  */
1478 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1479 {
1480         struct task_struct *p = q->task;
1481
1482         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1483                 return;
1484
1485         get_task_struct(p);
1486         __unqueue_futex(q);
1487         /*
1488          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1489          * is written, without taking any locks. This is possible in the event
1490          * of a spurious wakeup, for example. A memory barrier is required here
1491          * to prevent the following store to lock_ptr from getting ahead of the
1492          * plist_del in __unqueue_futex().
1493          */
1494         smp_store_release(&q->lock_ptr, NULL);
1495
1496         /*
1497          * Queue the task for later wakeup for after we've released
1498          * the hb->lock. wake_q_add() grabs reference to p.
1499          */
1500         wake_q_add_safe(wake_q, p);
1501 }
1502
1503 /*
1504  * Caller must hold a reference on @pi_state.
1505  */
1506 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1507 {
1508         u32 uninitialized_var(curval), newval;
1509         struct task_struct *new_owner;
1510         bool postunlock = false;
1511         DEFINE_WAKE_Q(wake_q);
1512         int ret = 0;
1513
1514         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1515         if (WARN_ON_ONCE(!new_owner)) {
1516                 /*
1517                  * As per the comment in futex_unlock_pi() this should not happen.
1518                  *
1519                  * When this happens, give up our locks and try again, giving
1520                  * the futex_lock_pi() instance time to complete, either by
1521                  * waiting on the rtmutex or removing itself from the futex
1522                  * queue.
1523                  */
1524                 ret = -EAGAIN;
1525                 goto out_unlock;
1526         }
1527
1528         /*
1529          * We pass it to the next owner. The WAITERS bit is always kept
1530          * enabled while there is PI state around. We cleanup the owner
1531          * died bit, because we are the owner.
1532          */
1533         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1534
1535         if (unlikely(should_fail_futex(true)))
1536                 ret = -EFAULT;
1537
1538         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1539         if (!ret && (curval != uval)) {
1540                 /*
1541                  * If a unconditional UNLOCK_PI operation (user space did not
1542                  * try the TID->0 transition) raced with a waiter setting the
1543                  * FUTEX_WAITERS flag between get_user() and locking the hash
1544                  * bucket lock, retry the operation.
1545                  */
1546                 if ((FUTEX_TID_MASK & curval) == uval)
1547                         ret = -EAGAIN;
1548                 else
1549                         ret = -EINVAL;
1550         }
1551
1552         if (ret)
1553                 goto out_unlock;
1554
1555         /*
1556          * This is a point of no return; once we modify the uval there is no
1557          * going back and subsequent operations must not fail.
1558          */
1559
1560         raw_spin_lock(&pi_state->owner->pi_lock);
1561         WARN_ON(list_empty(&pi_state->list));
1562         list_del_init(&pi_state->list);
1563         raw_spin_unlock(&pi_state->owner->pi_lock);
1564
1565         raw_spin_lock(&new_owner->pi_lock);
1566         WARN_ON(!list_empty(&pi_state->list));
1567         list_add(&pi_state->list, &new_owner->pi_state_list);
1568         pi_state->owner = new_owner;
1569         raw_spin_unlock(&new_owner->pi_lock);
1570
1571         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1572
1573 out_unlock:
1574         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1575
1576         if (postunlock)
1577                 rt_mutex_postunlock(&wake_q);
1578
1579         return ret;
1580 }
1581
1582 /*
1583  * Express the locking dependencies for lockdep:
1584  */
1585 static inline void
1586 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1587 {
1588         if (hb1 <= hb2) {
1589                 spin_lock(&hb1->lock);
1590                 if (hb1 < hb2)
1591                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1592         } else { /* hb1 > hb2 */
1593                 spin_lock(&hb2->lock);
1594                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1595         }
1596 }
1597
1598 static inline void
1599 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1600 {
1601         spin_unlock(&hb1->lock);
1602         if (hb1 != hb2)
1603                 spin_unlock(&hb2->lock);
1604 }
1605
1606 /*
1607  * Wake up waiters matching bitset queued on this futex (uaddr).
1608  */
1609 static int
1610 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1611 {
1612         struct futex_hash_bucket *hb;
1613         struct futex_q *this, *next;
1614         union futex_key key = FUTEX_KEY_INIT;
1615         int ret;
1616         DEFINE_WAKE_Q(wake_q);
1617
1618         if (!bitset)
1619                 return -EINVAL;
1620
1621         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1622         if (unlikely(ret != 0))
1623                 goto out;
1624
1625         hb = hash_futex(&key);
1626
1627         /* Make sure we really have tasks to wakeup */
1628         if (!hb_waiters_pending(hb))
1629                 goto out_put_key;
1630
1631         spin_lock(&hb->lock);
1632
1633         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1634                 if (match_futex (&this->key, &key)) {
1635                         if (this->pi_state || this->rt_waiter) {
1636                                 ret = -EINVAL;
1637                                 break;
1638                         }
1639
1640                         /* Check if one of the bits is set in both bitsets */
1641                         if (!(this->bitset & bitset))
1642                                 continue;
1643
1644                         mark_wake_futex(&wake_q, this);
1645                         if (++ret >= nr_wake)
1646                                 break;
1647                 }
1648         }
1649
1650         spin_unlock(&hb->lock);
1651         wake_up_q(&wake_q);
1652 out_put_key:
1653         put_futex_key(&key);
1654 out:
1655         return ret;
1656 }
1657
1658 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1659 {
1660         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1661         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1662         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1663         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1664         int oldval, ret;
1665
1666         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1667                 if (oparg < 0 || oparg > 31) {
1668                         char comm[sizeof(current->comm)];
1669                         /*
1670                          * kill this print and return -EINVAL when userspace
1671                          * is sane again
1672                          */
1673                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1674                                         get_task_comm(comm, current), oparg);
1675                         oparg &= 31;
1676                 }
1677                 oparg = 1 << oparg;
1678         }
1679
1680         if (!access_ok(uaddr, sizeof(u32)))
1681                 return -EFAULT;
1682
1683         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1684         if (ret)
1685                 return ret;
1686
1687         switch (cmp) {
1688         case FUTEX_OP_CMP_EQ:
1689                 return oldval == cmparg;
1690         case FUTEX_OP_CMP_NE:
1691                 return oldval != cmparg;
1692         case FUTEX_OP_CMP_LT:
1693                 return oldval < cmparg;
1694         case FUTEX_OP_CMP_GE:
1695                 return oldval >= cmparg;
1696         case FUTEX_OP_CMP_LE:
1697                 return oldval <= cmparg;
1698         case FUTEX_OP_CMP_GT:
1699                 return oldval > cmparg;
1700         default:
1701                 return -ENOSYS;
1702         }
1703 }
1704
1705 /*
1706  * Wake up all waiters hashed on the physical page that is mapped
1707  * to this virtual address:
1708  */
1709 static int
1710 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1711               int nr_wake, int nr_wake2, int op)
1712 {
1713         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1714         struct futex_hash_bucket *hb1, *hb2;
1715         struct futex_q *this, *next;
1716         int ret, op_ret;
1717         DEFINE_WAKE_Q(wake_q);
1718
1719 retry:
1720         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1721         if (unlikely(ret != 0))
1722                 goto out;
1723         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1724         if (unlikely(ret != 0))
1725                 goto out_put_key1;
1726
1727         hb1 = hash_futex(&key1);
1728         hb2 = hash_futex(&key2);
1729
1730 retry_private:
1731         double_lock_hb(hb1, hb2);
1732         op_ret = futex_atomic_op_inuser(op, uaddr2);
1733         if (unlikely(op_ret < 0)) {
1734                 double_unlock_hb(hb1, hb2);
1735
1736                 if (!IS_ENABLED(CONFIG_MMU) ||
1737                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1738                         /*
1739                          * we don't get EFAULT from MMU faults if we don't have
1740                          * an MMU, but we might get them from range checking
1741                          */
1742                         ret = op_ret;
1743                         goto out_put_keys;
1744                 }
1745
1746                 if (op_ret == -EFAULT) {
1747                         ret = fault_in_user_writeable(uaddr2);
1748                         if (ret)
1749                                 goto out_put_keys;
1750                 }
1751
1752                 if (!(flags & FLAGS_SHARED)) {
1753                         cond_resched();
1754                         goto retry_private;
1755                 }
1756
1757                 put_futex_key(&key2);
1758                 put_futex_key(&key1);
1759                 cond_resched();
1760                 goto retry;
1761         }
1762
1763         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1764                 if (match_futex (&this->key, &key1)) {
1765                         if (this->pi_state || this->rt_waiter) {
1766                                 ret = -EINVAL;
1767                                 goto out_unlock;
1768                         }
1769                         mark_wake_futex(&wake_q, this);
1770                         if (++ret >= nr_wake)
1771                                 break;
1772                 }
1773         }
1774
1775         if (op_ret > 0) {
1776                 op_ret = 0;
1777                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1778                         if (match_futex (&this->key, &key2)) {
1779                                 if (this->pi_state || this->rt_waiter) {
1780                                         ret = -EINVAL;
1781                                         goto out_unlock;
1782                                 }
1783                                 mark_wake_futex(&wake_q, this);
1784                                 if (++op_ret >= nr_wake2)
1785                                         break;
1786                         }
1787                 }
1788                 ret += op_ret;
1789         }
1790
1791 out_unlock:
1792         double_unlock_hb(hb1, hb2);
1793         wake_up_q(&wake_q);
1794 out_put_keys:
1795         put_futex_key(&key2);
1796 out_put_key1:
1797         put_futex_key(&key1);
1798 out:
1799         return ret;
1800 }
1801
1802 /**
1803  * requeue_futex() - Requeue a futex_q from one hb to another
1804  * @q:          the futex_q to requeue
1805  * @hb1:        the source hash_bucket
1806  * @hb2:        the target hash_bucket
1807  * @key2:       the new key for the requeued futex_q
1808  */
1809 static inline
1810 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1811                    struct futex_hash_bucket *hb2, union futex_key *key2)
1812 {
1813
1814         /*
1815          * If key1 and key2 hash to the same bucket, no need to
1816          * requeue.
1817          */
1818         if (likely(&hb1->chain != &hb2->chain)) {
1819                 plist_del(&q->list, &hb1->chain);
1820                 hb_waiters_dec(hb1);
1821                 hb_waiters_inc(hb2);
1822                 plist_add(&q->list, &hb2->chain);
1823                 q->lock_ptr = &hb2->lock;
1824         }
1825         get_futex_key_refs(key2);
1826         q->key = *key2;
1827 }
1828
1829 /**
1830  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1831  * @q:          the futex_q
1832  * @key:        the key of the requeue target futex
1833  * @hb:         the hash_bucket of the requeue target futex
1834  *
1835  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1836  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1837  * to the requeue target futex so the waiter can detect the wakeup on the right
1838  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1839  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1840  * to protect access to the pi_state to fixup the owner later.  Must be called
1841  * with both q->lock_ptr and hb->lock held.
1842  */
1843 static inline
1844 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1845                            struct futex_hash_bucket *hb)
1846 {
1847         get_futex_key_refs(key);
1848         q->key = *key;
1849
1850         __unqueue_futex(q);
1851
1852         WARN_ON(!q->rt_waiter);
1853         q->rt_waiter = NULL;
1854
1855         q->lock_ptr = &hb->lock;
1856
1857         wake_up_state(q->task, TASK_NORMAL);
1858 }
1859
1860 /**
1861  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1862  * @pifutex:            the user address of the to futex
1863  * @hb1:                the from futex hash bucket, must be locked by the caller
1864  * @hb2:                the to futex hash bucket, must be locked by the caller
1865  * @key1:               the from futex key
1866  * @key2:               the to futex key
1867  * @ps:                 address to store the pi_state pointer
1868  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1869  *
1870  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1871  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1872  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1873  * hb1 and hb2 must be held by the caller.
1874  *
1875  * Return:
1876  *  -  0 - failed to acquire the lock atomically;
1877  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1878  *  - <0 - error
1879  */
1880 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1881                                  struct futex_hash_bucket *hb1,
1882                                  struct futex_hash_bucket *hb2,
1883                                  union futex_key *key1, union futex_key *key2,
1884                                  struct futex_pi_state **ps, int set_waiters)
1885 {
1886         struct futex_q *top_waiter = NULL;
1887         u32 curval;
1888         int ret, vpid;
1889
1890         if (get_futex_value_locked(&curval, pifutex))
1891                 return -EFAULT;
1892
1893         if (unlikely(should_fail_futex(true)))
1894                 return -EFAULT;
1895
1896         /*
1897          * Find the top_waiter and determine if there are additional waiters.
1898          * If the caller intends to requeue more than 1 waiter to pifutex,
1899          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1900          * as we have means to handle the possible fault.  If not, don't set
1901          * the bit unecessarily as it will force the subsequent unlock to enter
1902          * the kernel.
1903          */
1904         top_waiter = futex_top_waiter(hb1, key1);
1905
1906         /* There are no waiters, nothing for us to do. */
1907         if (!top_waiter)
1908                 return 0;
1909
1910         /* Ensure we requeue to the expected futex. */
1911         if (!match_futex(top_waiter->requeue_pi_key, key2))
1912                 return -EINVAL;
1913
1914         /*
1915          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1916          * the contended case or if set_waiters is 1.  The pi_state is returned
1917          * in ps in contended cases.
1918          */
1919         vpid = task_pid_vnr(top_waiter->task);
1920         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1921                                    set_waiters);
1922         if (ret == 1) {
1923                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1924                 return vpid;
1925         }
1926         return ret;
1927 }
1928
1929 /**
1930  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1931  * @uaddr1:     source futex user address
1932  * @flags:      futex flags (FLAGS_SHARED, etc.)
1933  * @uaddr2:     target futex user address
1934  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1935  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1936  * @cmpval:     @uaddr1 expected value (or %NULL)
1937  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1938  *              pi futex (pi to pi requeue is not supported)
1939  *
1940  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1941  * uaddr2 atomically on behalf of the top waiter.
1942  *
1943  * Return:
1944  *  - >=0 - on success, the number of tasks requeued or woken;
1945  *  -  <0 - on error
1946  */
1947 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1948                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1949                          u32 *cmpval, int requeue_pi)
1950 {
1951         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1952         int drop_count = 0, task_count = 0, ret;
1953         struct futex_pi_state *pi_state = NULL;
1954         struct futex_hash_bucket *hb1, *hb2;
1955         struct futex_q *this, *next;
1956         DEFINE_WAKE_Q(wake_q);
1957
1958         if (nr_wake < 0 || nr_requeue < 0)
1959                 return -EINVAL;
1960
1961         /*
1962          * When PI not supported: return -ENOSYS if requeue_pi is true,
1963          * consequently the compiler knows requeue_pi is always false past
1964          * this point which will optimize away all the conditional code
1965          * further down.
1966          */
1967         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1968                 return -ENOSYS;
1969
1970         if (requeue_pi) {
1971                 /*
1972                  * Requeue PI only works on two distinct uaddrs. This
1973                  * check is only valid for private futexes. See below.
1974                  */
1975                 if (uaddr1 == uaddr2)
1976                         return -EINVAL;
1977
1978                 /*
1979                  * requeue_pi requires a pi_state, try to allocate it now
1980                  * without any locks in case it fails.
1981                  */
1982                 if (refill_pi_state_cache())
1983                         return -ENOMEM;
1984                 /*
1985                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1986                  * + nr_requeue, since it acquires the rt_mutex prior to
1987                  * returning to userspace, so as to not leave the rt_mutex with
1988                  * waiters and no owner.  However, second and third wake-ups
1989                  * cannot be predicted as they involve race conditions with the
1990                  * first wake and a fault while looking up the pi_state.  Both
1991                  * pthread_cond_signal() and pthread_cond_broadcast() should
1992                  * use nr_wake=1.
1993                  */
1994                 if (nr_wake != 1)
1995                         return -EINVAL;
1996         }
1997
1998 retry:
1999         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2000         if (unlikely(ret != 0))
2001                 goto out;
2002         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2003                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2004         if (unlikely(ret != 0))
2005                 goto out_put_key1;
2006
2007         /*
2008          * The check above which compares uaddrs is not sufficient for
2009          * shared futexes. We need to compare the keys:
2010          */
2011         if (requeue_pi && match_futex(&key1, &key2)) {
2012                 ret = -EINVAL;
2013                 goto out_put_keys;
2014         }
2015
2016         hb1 = hash_futex(&key1);
2017         hb2 = hash_futex(&key2);
2018
2019 retry_private:
2020         hb_waiters_inc(hb2);
2021         double_lock_hb(hb1, hb2);
2022
2023         if (likely(cmpval != NULL)) {
2024                 u32 curval;
2025
2026                 ret = get_futex_value_locked(&curval, uaddr1);
2027
2028                 if (unlikely(ret)) {
2029                         double_unlock_hb(hb1, hb2);
2030                         hb_waiters_dec(hb2);
2031
2032                         ret = get_user(curval, uaddr1);
2033                         if (ret)
2034                                 goto out_put_keys;
2035
2036                         if (!(flags & FLAGS_SHARED))
2037                                 goto retry_private;
2038
2039                         put_futex_key(&key2);
2040                         put_futex_key(&key1);
2041                         goto retry;
2042                 }
2043                 if (curval != *cmpval) {
2044                         ret = -EAGAIN;
2045                         goto out_unlock;
2046                 }
2047         }
2048
2049         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2050                 /*
2051                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2052                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2053                  * bit.  We force this here where we are able to easily handle
2054                  * faults rather in the requeue loop below.
2055                  */
2056                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2057                                                  &key2, &pi_state, nr_requeue);
2058
2059                 /*
2060                  * At this point the top_waiter has either taken uaddr2 or is
2061                  * waiting on it.  If the former, then the pi_state will not
2062                  * exist yet, look it up one more time to ensure we have a
2063                  * reference to it. If the lock was taken, ret contains the
2064                  * vpid of the top waiter task.
2065                  * If the lock was not taken, we have pi_state and an initial
2066                  * refcount on it. In case of an error we have nothing.
2067                  */
2068                 if (ret > 0) {
2069                         WARN_ON(pi_state);
2070                         drop_count++;
2071                         task_count++;
2072                         /*
2073                          * If we acquired the lock, then the user space value
2074                          * of uaddr2 should be vpid. It cannot be changed by
2075                          * the top waiter as it is blocked on hb2 lock if it
2076                          * tries to do so. If something fiddled with it behind
2077                          * our back the pi state lookup might unearth it. So
2078                          * we rather use the known value than rereading and
2079                          * handing potential crap to lookup_pi_state.
2080                          *
2081                          * If that call succeeds then we have pi_state and an
2082                          * initial refcount on it.
2083                          */
2084                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2085                 }
2086
2087                 switch (ret) {
2088                 case 0:
2089                         /* We hold a reference on the pi state. */
2090                         break;
2091
2092                         /* If the above failed, then pi_state is NULL */
2093                 case -EFAULT:
2094                         double_unlock_hb(hb1, hb2);
2095                         hb_waiters_dec(hb2);
2096                         put_futex_key(&key2);
2097                         put_futex_key(&key1);
2098                         ret = fault_in_user_writeable(uaddr2);
2099                         if (!ret)
2100                                 goto retry;
2101                         goto out;
2102                 case -EAGAIN:
2103                         /*
2104                          * Two reasons for this:
2105                          * - Owner is exiting and we just wait for the
2106                          *   exit to complete.
2107                          * - The user space value changed.
2108                          */
2109                         double_unlock_hb(hb1, hb2);
2110                         hb_waiters_dec(hb2);
2111                         put_futex_key(&key2);
2112                         put_futex_key(&key1);
2113                         cond_resched();
2114                         goto retry;
2115                 default:
2116                         goto out_unlock;
2117                 }
2118         }
2119
2120         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2121                 if (task_count - nr_wake >= nr_requeue)
2122                         break;
2123
2124                 if (!match_futex(&this->key, &key1))
2125                         continue;
2126
2127                 /*
2128                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2129                  * be paired with each other and no other futex ops.
2130                  *
2131                  * We should never be requeueing a futex_q with a pi_state,
2132                  * which is awaiting a futex_unlock_pi().
2133                  */
2134                 if ((requeue_pi && !this->rt_waiter) ||
2135                     (!requeue_pi && this->rt_waiter) ||
2136                     this->pi_state) {
2137                         ret = -EINVAL;
2138                         break;
2139                 }
2140
2141                 /*
2142                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2143                  * lock, we already woke the top_waiter.  If not, it will be
2144                  * woken by futex_unlock_pi().
2145                  */
2146                 if (++task_count <= nr_wake && !requeue_pi) {
2147                         mark_wake_futex(&wake_q, this);
2148                         continue;
2149                 }
2150
2151                 /* Ensure we requeue to the expected futex for requeue_pi. */
2152                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2153                         ret = -EINVAL;
2154                         break;
2155                 }
2156
2157                 /*
2158                  * Requeue nr_requeue waiters and possibly one more in the case
2159                  * of requeue_pi if we couldn't acquire the lock atomically.
2160                  */
2161                 if (requeue_pi) {
2162                         /*
2163                          * Prepare the waiter to take the rt_mutex. Take a
2164                          * refcount on the pi_state and store the pointer in
2165                          * the futex_q object of the waiter.
2166                          */
2167                         get_pi_state(pi_state);
2168                         this->pi_state = pi_state;
2169                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2170                                                         this->rt_waiter,
2171                                                         this->task);
2172                         if (ret == 1) {
2173                                 /*
2174                                  * We got the lock. We do neither drop the
2175                                  * refcount on pi_state nor clear
2176                                  * this->pi_state because the waiter needs the
2177                                  * pi_state for cleaning up the user space
2178                                  * value. It will drop the refcount after
2179                                  * doing so.
2180                                  */
2181                                 requeue_pi_wake_futex(this, &key2, hb2);
2182                                 drop_count++;
2183                                 continue;
2184                         } else if (ret) {
2185                                 /*
2186                                  * rt_mutex_start_proxy_lock() detected a
2187                                  * potential deadlock when we tried to queue
2188                                  * that waiter. Drop the pi_state reference
2189                                  * which we took above and remove the pointer
2190                                  * to the state from the waiters futex_q
2191                                  * object.
2192                                  */
2193                                 this->pi_state = NULL;
2194                                 put_pi_state(pi_state);
2195                                 /*
2196                                  * We stop queueing more waiters and let user
2197                                  * space deal with the mess.
2198                                  */
2199                                 break;
2200                         }
2201                 }
2202                 requeue_futex(this, hb1, hb2, &key2);
2203                 drop_count++;
2204         }
2205
2206         /*
2207          * We took an extra initial reference to the pi_state either
2208          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2209          * need to drop it here again.
2210          */
2211         put_pi_state(pi_state);
2212
2213 out_unlock:
2214         double_unlock_hb(hb1, hb2);
2215         wake_up_q(&wake_q);
2216         hb_waiters_dec(hb2);
2217
2218         /*
2219          * drop_futex_key_refs() must be called outside the spinlocks. During
2220          * the requeue we moved futex_q's from the hash bucket at key1 to the
2221          * one at key2 and updated their key pointer.  We no longer need to
2222          * hold the references to key1.
2223          */
2224         while (--drop_count >= 0)
2225                 drop_futex_key_refs(&key1);
2226
2227 out_put_keys:
2228         put_futex_key(&key2);
2229 out_put_key1:
2230         put_futex_key(&key1);
2231 out:
2232         return ret ? ret : task_count;
2233 }
2234
2235 /* The key must be already stored in q->key. */
2236 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2237         __acquires(&hb->lock)
2238 {
2239         struct futex_hash_bucket *hb;
2240
2241         hb = hash_futex(&q->key);
2242
2243         /*
2244          * Increment the counter before taking the lock so that
2245          * a potential waker won't miss a to-be-slept task that is
2246          * waiting for the spinlock. This is safe as all queue_lock()
2247          * users end up calling queue_me(). Similarly, for housekeeping,
2248          * decrement the counter at queue_unlock() when some error has
2249          * occurred and we don't end up adding the task to the list.
2250          */
2251         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2252
2253         q->lock_ptr = &hb->lock;
2254
2255         spin_lock(&hb->lock);
2256         return hb;
2257 }
2258
2259 static inline void
2260 queue_unlock(struct futex_hash_bucket *hb)
2261         __releases(&hb->lock)
2262 {
2263         spin_unlock(&hb->lock);
2264         hb_waiters_dec(hb);
2265 }
2266
2267 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2268 {
2269         int prio;
2270
2271         /*
2272          * The priority used to register this element is
2273          * - either the real thread-priority for the real-time threads
2274          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2275          * - or MAX_RT_PRIO for non-RT threads.
2276          * Thus, all RT-threads are woken first in priority order, and
2277          * the others are woken last, in FIFO order.
2278          */
2279         prio = min(current->normal_prio, MAX_RT_PRIO);
2280
2281         plist_node_init(&q->list, prio);
2282         plist_add(&q->list, &hb->chain);
2283         q->task = current;
2284 }
2285
2286 /**
2287  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2288  * @q:  The futex_q to enqueue
2289  * @hb: The destination hash bucket
2290  *
2291  * The hb->lock must be held by the caller, and is released here. A call to
2292  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2293  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2294  * or nothing if the unqueue is done as part of the wake process and the unqueue
2295  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2296  * an example).
2297  */
2298 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2299         __releases(&hb->lock)
2300 {
2301         __queue_me(q, hb);
2302         spin_unlock(&hb->lock);
2303 }
2304
2305 /**
2306  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2307  * @q:  The futex_q to unqueue
2308  *
2309  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2310  * be paired with exactly one earlier call to queue_me().
2311  *
2312  * Return:
2313  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2314  *  - 0 - if the futex_q was already removed by the waking thread
2315  */
2316 static int unqueue_me(struct futex_q *q)
2317 {
2318         spinlock_t *lock_ptr;
2319         int ret = 0;
2320
2321         /* In the common case we don't take the spinlock, which is nice. */
2322 retry:
2323         /*
2324          * q->lock_ptr can change between this read and the following spin_lock.
2325          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2326          * optimizing lock_ptr out of the logic below.
2327          */
2328         lock_ptr = READ_ONCE(q->lock_ptr);
2329         if (lock_ptr != NULL) {
2330                 spin_lock(lock_ptr);
2331                 /*
2332                  * q->lock_ptr can change between reading it and
2333                  * spin_lock(), causing us to take the wrong lock.  This
2334                  * corrects the race condition.
2335                  *
2336                  * Reasoning goes like this: if we have the wrong lock,
2337                  * q->lock_ptr must have changed (maybe several times)
2338                  * between reading it and the spin_lock().  It can
2339                  * change again after the spin_lock() but only if it was
2340                  * already changed before the spin_lock().  It cannot,
2341                  * however, change back to the original value.  Therefore
2342                  * we can detect whether we acquired the correct lock.
2343                  */
2344                 if (unlikely(lock_ptr != q->lock_ptr)) {
2345                         spin_unlock(lock_ptr);
2346                         goto retry;
2347                 }
2348                 __unqueue_futex(q);
2349
2350                 BUG_ON(q->pi_state);
2351
2352                 spin_unlock(lock_ptr);
2353                 ret = 1;
2354         }
2355
2356         drop_futex_key_refs(&q->key);
2357         return ret;
2358 }
2359
2360 /*
2361  * PI futexes can not be requeued and must remove themself from the
2362  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2363  * and dropped here.
2364  */
2365 static void unqueue_me_pi(struct futex_q *q)
2366         __releases(q->lock_ptr)
2367 {
2368         __unqueue_futex(q);
2369
2370         BUG_ON(!q->pi_state);
2371         put_pi_state(q->pi_state);
2372         q->pi_state = NULL;
2373
2374         spin_unlock(q->lock_ptr);
2375 }
2376
2377 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2378                                 struct task_struct *argowner)
2379 {
2380         struct futex_pi_state *pi_state = q->pi_state;
2381         u32 uval, uninitialized_var(curval), newval;
2382         struct task_struct *oldowner, *newowner;
2383         u32 newtid;
2384         int ret, err = 0;
2385
2386         lockdep_assert_held(q->lock_ptr);
2387
2388         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2389
2390         oldowner = pi_state->owner;
2391
2392         /*
2393          * We are here because either:
2394          *
2395          *  - we stole the lock and pi_state->owner needs updating to reflect
2396          *    that (@argowner == current),
2397          *
2398          * or:
2399          *
2400          *  - someone stole our lock and we need to fix things to point to the
2401          *    new owner (@argowner == NULL).
2402          *
2403          * Either way, we have to replace the TID in the user space variable.
2404          * This must be atomic as we have to preserve the owner died bit here.
2405          *
2406          * Note: We write the user space value _before_ changing the pi_state
2407          * because we can fault here. Imagine swapped out pages or a fork
2408          * that marked all the anonymous memory readonly for cow.
2409          *
2410          * Modifying pi_state _before_ the user space value would leave the
2411          * pi_state in an inconsistent state when we fault here, because we
2412          * need to drop the locks to handle the fault. This might be observed
2413          * in the PID check in lookup_pi_state.
2414          */
2415 retry:
2416         if (!argowner) {
2417                 if (oldowner != current) {
2418                         /*
2419                          * We raced against a concurrent self; things are
2420                          * already fixed up. Nothing to do.
2421                          */
2422                         ret = 0;
2423                         goto out_unlock;
2424                 }
2425
2426                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2427                         /* We got the lock after all, nothing to fix. */
2428                         ret = 0;
2429                         goto out_unlock;
2430                 }
2431
2432                 /*
2433                  * Since we just failed the trylock; there must be an owner.
2434                  */
2435                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2436                 BUG_ON(!newowner);
2437         } else {
2438                 WARN_ON_ONCE(argowner != current);
2439                 if (oldowner == current) {
2440                         /*
2441                          * We raced against a concurrent self; things are
2442                          * already fixed up. Nothing to do.
2443                          */
2444                         ret = 0;
2445                         goto out_unlock;
2446                 }
2447                 newowner = argowner;
2448         }
2449
2450         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2451         /* Owner died? */
2452         if (!pi_state->owner)
2453                 newtid |= FUTEX_OWNER_DIED;
2454
2455         err = get_futex_value_locked(&uval, uaddr);
2456         if (err)
2457                 goto handle_err;
2458
2459         for (;;) {
2460                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2461
2462                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2463                 if (err)
2464                         goto handle_err;
2465
2466                 if (curval == uval)
2467                         break;
2468                 uval = curval;
2469         }
2470
2471         /*
2472          * We fixed up user space. Now we need to fix the pi_state
2473          * itself.
2474          */
2475         if (pi_state->owner != NULL) {
2476                 raw_spin_lock(&pi_state->owner->pi_lock);
2477                 WARN_ON(list_empty(&pi_state->list));
2478                 list_del_init(&pi_state->list);
2479                 raw_spin_unlock(&pi_state->owner->pi_lock);
2480         }
2481
2482         pi_state->owner = newowner;
2483
2484         raw_spin_lock(&newowner->pi_lock);
2485         WARN_ON(!list_empty(&pi_state->list));
2486         list_add(&pi_state->list, &newowner->pi_state_list);
2487         raw_spin_unlock(&newowner->pi_lock);
2488         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2489
2490         return 0;
2491
2492         /*
2493          * In order to reschedule or handle a page fault, we need to drop the
2494          * locks here. In the case of a fault, this gives the other task
2495          * (either the highest priority waiter itself or the task which stole
2496          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2497          * are back from handling the fault we need to check the pi_state after
2498          * reacquiring the locks and before trying to do another fixup. When
2499          * the fixup has been done already we simply return.
2500          *
2501          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2502          * drop hb->lock since the caller owns the hb -> futex_q relation.
2503          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2504          */
2505 handle_err:
2506         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2507         spin_unlock(q->lock_ptr);
2508
2509         switch (err) {
2510         case -EFAULT:
2511                 ret = fault_in_user_writeable(uaddr);
2512                 break;
2513
2514         case -EAGAIN:
2515                 cond_resched();
2516                 ret = 0;
2517                 break;
2518
2519         default:
2520                 WARN_ON_ONCE(1);
2521                 ret = err;
2522                 break;
2523         }
2524
2525         spin_lock(q->lock_ptr);
2526         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2527
2528         /*
2529          * Check if someone else fixed it for us:
2530          */
2531         if (pi_state->owner != oldowner) {
2532                 ret = 0;
2533                 goto out_unlock;
2534         }
2535
2536         if (ret)
2537                 goto out_unlock;
2538
2539         goto retry;
2540
2541 out_unlock:
2542         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2543         return ret;
2544 }
2545
2546 static long futex_wait_restart(struct restart_block *restart);
2547
2548 /**
2549  * fixup_owner() - Post lock pi_state and corner case management
2550  * @uaddr:      user address of the futex
2551  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2552  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2553  *
2554  * After attempting to lock an rt_mutex, this function is called to cleanup
2555  * the pi_state owner as well as handle race conditions that may allow us to
2556  * acquire the lock. Must be called with the hb lock held.
2557  *
2558  * Return:
2559  *  -  1 - success, lock taken;
2560  *  -  0 - success, lock not taken;
2561  *  - <0 - on error (-EFAULT)
2562  */
2563 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2564 {
2565         int ret = 0;
2566
2567         if (locked) {
2568                 /*
2569                  * Got the lock. We might not be the anticipated owner if we
2570                  * did a lock-steal - fix up the PI-state in that case:
2571                  *
2572                  * Speculative pi_state->owner read (we don't hold wait_lock);
2573                  * since we own the lock pi_state->owner == current is the
2574                  * stable state, anything else needs more attention.
2575                  */
2576                 if (q->pi_state->owner != current)
2577                         ret = fixup_pi_state_owner(uaddr, q, current);
2578                 goto out;
2579         }
2580
2581         /*
2582          * If we didn't get the lock; check if anybody stole it from us. In
2583          * that case, we need to fix up the uval to point to them instead of
2584          * us, otherwise bad things happen. [10]
2585          *
2586          * Another speculative read; pi_state->owner == current is unstable
2587          * but needs our attention.
2588          */
2589         if (q->pi_state->owner == current) {
2590                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2591                 goto out;
2592         }
2593
2594         /*
2595          * Paranoia check. If we did not take the lock, then we should not be
2596          * the owner of the rt_mutex.
2597          */
2598         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2599                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2600                                 "pi-state %p\n", ret,
2601                                 q->pi_state->pi_mutex.owner,
2602                                 q->pi_state->owner);
2603         }
2604
2605 out:
2606         return ret ? ret : locked;
2607 }
2608
2609 /**
2610  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2611  * @hb:         the futex hash bucket, must be locked by the caller
2612  * @q:          the futex_q to queue up on
2613  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2614  */
2615 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2616                                 struct hrtimer_sleeper *timeout)
2617 {
2618         /*
2619          * The task state is guaranteed to be set before another task can
2620          * wake it. set_current_state() is implemented using smp_store_mb() and
2621          * queue_me() calls spin_unlock() upon completion, both serializing
2622          * access to the hash list and forcing another memory barrier.
2623          */
2624         set_current_state(TASK_INTERRUPTIBLE);
2625         queue_me(q, hb);
2626
2627         /* Arm the timer */
2628         if (timeout)
2629                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2630
2631         /*
2632          * If we have been removed from the hash list, then another task
2633          * has tried to wake us, and we can skip the call to schedule().
2634          */
2635         if (likely(!plist_node_empty(&q->list))) {
2636                 /*
2637                  * If the timer has already expired, current will already be
2638                  * flagged for rescheduling. Only call schedule if there
2639                  * is no timeout, or if it has yet to expire.
2640                  */
2641                 if (!timeout || timeout->task)
2642                         freezable_schedule();
2643         }
2644         __set_current_state(TASK_RUNNING);
2645 }
2646
2647 /**
2648  * futex_wait_setup() - Prepare to wait on a futex
2649  * @uaddr:      the futex userspace address
2650  * @val:        the expected value
2651  * @flags:      futex flags (FLAGS_SHARED, etc.)
2652  * @q:          the associated futex_q
2653  * @hb:         storage for hash_bucket pointer to be returned to caller
2654  *
2655  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2656  * compare it with the expected value.  Handle atomic faults internally.
2657  * Return with the hb lock held and a q.key reference on success, and unlocked
2658  * with no q.key reference on failure.
2659  *
2660  * Return:
2661  *  -  0 - uaddr contains val and hb has been locked;
2662  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2663  */
2664 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2665                            struct futex_q *q, struct futex_hash_bucket **hb)
2666 {
2667         u32 uval;
2668         int ret;
2669
2670         /*
2671          * Access the page AFTER the hash-bucket is locked.
2672          * Order is important:
2673          *
2674          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2675          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2676          *
2677          * The basic logical guarantee of a futex is that it blocks ONLY
2678          * if cond(var) is known to be true at the time of blocking, for
2679          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2680          * would open a race condition where we could block indefinitely with
2681          * cond(var) false, which would violate the guarantee.
2682          *
2683          * On the other hand, we insert q and release the hash-bucket only
2684          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2685          * absorb a wakeup if *uaddr does not match the desired values
2686          * while the syscall executes.
2687          */
2688 retry:
2689         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2690         if (unlikely(ret != 0))
2691                 return ret;
2692
2693 retry_private:
2694         *hb = queue_lock(q);
2695
2696         ret = get_futex_value_locked(&uval, uaddr);
2697
2698         if (ret) {
2699                 queue_unlock(*hb);
2700
2701                 ret = get_user(uval, uaddr);
2702                 if (ret)
2703                         goto out;
2704
2705                 if (!(flags & FLAGS_SHARED))
2706                         goto retry_private;
2707
2708                 put_futex_key(&q->key);
2709                 goto retry;
2710         }
2711
2712         if (uval != val) {
2713                 queue_unlock(*hb);
2714                 ret = -EWOULDBLOCK;
2715         }
2716
2717 out:
2718         if (ret)
2719                 put_futex_key(&q->key);
2720         return ret;
2721 }
2722
2723 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2724                       ktime_t *abs_time, u32 bitset)
2725 {
2726         struct hrtimer_sleeper timeout, *to;
2727         struct restart_block *restart;
2728         struct futex_hash_bucket *hb;
2729         struct futex_q q = futex_q_init;
2730         int ret;
2731
2732         if (!bitset)
2733                 return -EINVAL;
2734         q.bitset = bitset;
2735
2736         to = futex_setup_timer(abs_time, &timeout, flags,
2737                                current->timer_slack_ns);
2738 retry:
2739         /*
2740          * Prepare to wait on uaddr. On success, holds hb lock and increments
2741          * q.key refs.
2742          */
2743         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2744         if (ret)
2745                 goto out;
2746
2747         /* queue_me and wait for wakeup, timeout, or a signal. */
2748         futex_wait_queue_me(hb, &q, to);
2749
2750         /* If we were woken (and unqueued), we succeeded, whatever. */
2751         ret = 0;
2752         /* unqueue_me() drops q.key ref */
2753         if (!unqueue_me(&q))
2754                 goto out;
2755         ret = -ETIMEDOUT;
2756         if (to && !to->task)
2757                 goto out;
2758
2759         /*
2760          * We expect signal_pending(current), but we might be the
2761          * victim of a spurious wakeup as well.
2762          */
2763         if (!signal_pending(current))
2764                 goto retry;
2765
2766         ret = -ERESTARTSYS;
2767         if (!abs_time)
2768                 goto out;
2769
2770         restart = &current->restart_block;
2771         restart->fn = futex_wait_restart;
2772         restart->futex.uaddr = uaddr;
2773         restart->futex.val = val;
2774         restart->futex.time = *abs_time;
2775         restart->futex.bitset = bitset;
2776         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2777
2778         ret = -ERESTART_RESTARTBLOCK;
2779
2780 out:
2781         if (to) {
2782                 hrtimer_cancel(&to->timer);
2783                 destroy_hrtimer_on_stack(&to->timer);
2784         }
2785         return ret;
2786 }
2787
2788
2789 static long futex_wait_restart(struct restart_block *restart)
2790 {
2791         u32 __user *uaddr = restart->futex.uaddr;
2792         ktime_t t, *tp = NULL;
2793
2794         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2795                 t = restart->futex.time;
2796                 tp = &t;
2797         }
2798         restart->fn = do_no_restart_syscall;
2799
2800         return (long)futex_wait(uaddr, restart->futex.flags,
2801                                 restart->futex.val, tp, restart->futex.bitset);
2802 }
2803
2804
2805 /*
2806  * Userspace tried a 0 -> TID atomic transition of the futex value
2807  * and failed. The kernel side here does the whole locking operation:
2808  * if there are waiters then it will block as a consequence of relying
2809  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2810  * a 0 value of the futex too.).
2811  *
2812  * Also serves as futex trylock_pi()'ing, and due semantics.
2813  */
2814 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2815                          ktime_t *time, int trylock)
2816 {
2817         struct hrtimer_sleeper timeout, *to;
2818         struct futex_pi_state *pi_state = NULL;
2819         struct rt_mutex_waiter rt_waiter;
2820         struct futex_hash_bucket *hb;
2821         struct futex_q q = futex_q_init;
2822         int res, ret;
2823
2824         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2825                 return -ENOSYS;
2826
2827         if (refill_pi_state_cache())
2828                 return -ENOMEM;
2829
2830         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2831
2832 retry:
2833         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2834         if (unlikely(ret != 0))
2835                 goto out;
2836
2837 retry_private:
2838         hb = queue_lock(&q);
2839
2840         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2841         if (unlikely(ret)) {
2842                 /*
2843                  * Atomic work succeeded and we got the lock,
2844                  * or failed. Either way, we do _not_ block.
2845                  */
2846                 switch (ret) {
2847                 case 1:
2848                         /* We got the lock. */
2849                         ret = 0;
2850                         goto out_unlock_put_key;
2851                 case -EFAULT:
2852                         goto uaddr_faulted;
2853                 case -EAGAIN:
2854                         /*
2855                          * Two reasons for this:
2856                          * - Task is exiting and we just wait for the
2857                          *   exit to complete.
2858                          * - The user space value changed.
2859                          */
2860                         queue_unlock(hb);
2861                         put_futex_key(&q.key);
2862                         cond_resched();
2863                         goto retry;
2864                 default:
2865                         goto out_unlock_put_key;
2866                 }
2867         }
2868
2869         WARN_ON(!q.pi_state);
2870
2871         /*
2872          * Only actually queue now that the atomic ops are done:
2873          */
2874         __queue_me(&q, hb);
2875
2876         if (trylock) {
2877                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2878                 /* Fixup the trylock return value: */
2879                 ret = ret ? 0 : -EWOULDBLOCK;
2880                 goto no_block;
2881         }
2882
2883         rt_mutex_init_waiter(&rt_waiter);
2884
2885         /*
2886          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2887          * hold it while doing rt_mutex_start_proxy(), because then it will
2888          * include hb->lock in the blocking chain, even through we'll not in
2889          * fact hold it while blocking. This will lead it to report -EDEADLK
2890          * and BUG when futex_unlock_pi() interleaves with this.
2891          *
2892          * Therefore acquire wait_lock while holding hb->lock, but drop the
2893          * latter before calling __rt_mutex_start_proxy_lock(). This
2894          * interleaves with futex_unlock_pi() -- which does a similar lock
2895          * handoff -- such that the latter can observe the futex_q::pi_state
2896          * before __rt_mutex_start_proxy_lock() is done.
2897          */
2898         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2899         spin_unlock(q.lock_ptr);
2900         /*
2901          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2902          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2903          * it sees the futex_q::pi_state.
2904          */
2905         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2906         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2907
2908         if (ret) {
2909                 if (ret == 1)
2910                         ret = 0;
2911                 goto cleanup;
2912         }
2913
2914         if (unlikely(to))
2915                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2916
2917         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2918
2919 cleanup:
2920         spin_lock(q.lock_ptr);
2921         /*
2922          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2923          * first acquire the hb->lock before removing the lock from the
2924          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2925          * lists consistent.
2926          *
2927          * In particular; it is important that futex_unlock_pi() can not
2928          * observe this inconsistency.
2929          */
2930         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2931                 ret = 0;
2932
2933 no_block:
2934         /*
2935          * Fixup the pi_state owner and possibly acquire the lock if we
2936          * haven't already.
2937          */
2938         res = fixup_owner(uaddr, &q, !ret);
2939         /*
2940          * If fixup_owner() returned an error, proprogate that.  If it acquired
2941          * the lock, clear our -ETIMEDOUT or -EINTR.
2942          */
2943         if (res)
2944                 ret = (res < 0) ? res : 0;
2945
2946         /*
2947          * If fixup_owner() faulted and was unable to handle the fault, unlock
2948          * it and return the fault to userspace.
2949          */
2950         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2951                 pi_state = q.pi_state;
2952                 get_pi_state(pi_state);
2953         }
2954
2955         /* Unqueue and drop the lock */
2956         unqueue_me_pi(&q);
2957
2958         if (pi_state) {
2959                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2960                 put_pi_state(pi_state);
2961         }
2962
2963         goto out_put_key;
2964
2965 out_unlock_put_key:
2966         queue_unlock(hb);
2967
2968 out_put_key:
2969         put_futex_key(&q.key);
2970 out:
2971         if (to) {
2972                 hrtimer_cancel(&to->timer);
2973                 destroy_hrtimer_on_stack(&to->timer);
2974         }
2975         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2976
2977 uaddr_faulted:
2978         queue_unlock(hb);
2979
2980         ret = fault_in_user_writeable(uaddr);
2981         if (ret)
2982                 goto out_put_key;
2983
2984         if (!(flags & FLAGS_SHARED))
2985                 goto retry_private;
2986
2987         put_futex_key(&q.key);
2988         goto retry;
2989 }
2990
2991 /*
2992  * Userspace attempted a TID -> 0 atomic transition, and failed.
2993  * This is the in-kernel slowpath: we look up the PI state (if any),
2994  * and do the rt-mutex unlock.
2995  */
2996 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2997 {
2998         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2999         union futex_key key = FUTEX_KEY_INIT;
3000         struct futex_hash_bucket *hb;
3001         struct futex_q *top_waiter;
3002         int ret;
3003
3004         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3005                 return -ENOSYS;
3006
3007 retry:
3008         if (get_user(uval, uaddr))
3009                 return -EFAULT;
3010         /*
3011          * We release only a lock we actually own:
3012          */
3013         if ((uval & FUTEX_TID_MASK) != vpid)
3014                 return -EPERM;
3015
3016         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3017         if (ret)
3018                 return ret;
3019
3020         hb = hash_futex(&key);
3021         spin_lock(&hb->lock);
3022
3023         /*
3024          * Check waiters first. We do not trust user space values at
3025          * all and we at least want to know if user space fiddled
3026          * with the futex value instead of blindly unlocking.
3027          */
3028         top_waiter = futex_top_waiter(hb, &key);
3029         if (top_waiter) {
3030                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3031
3032                 ret = -EINVAL;
3033                 if (!pi_state)
3034                         goto out_unlock;
3035
3036                 /*
3037                  * If current does not own the pi_state then the futex is
3038                  * inconsistent and user space fiddled with the futex value.
3039                  */
3040                 if (pi_state->owner != current)
3041                         goto out_unlock;
3042
3043                 get_pi_state(pi_state);
3044                 /*
3045                  * By taking wait_lock while still holding hb->lock, we ensure
3046                  * there is no point where we hold neither; and therefore
3047                  * wake_futex_pi() must observe a state consistent with what we
3048                  * observed.
3049                  *
3050                  * In particular; this forces __rt_mutex_start_proxy() to
3051                  * complete such that we're guaranteed to observe the
3052                  * rt_waiter. Also see the WARN in wake_futex_pi().
3053                  */
3054                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3055                 spin_unlock(&hb->lock);
3056
3057                 /* drops pi_state->pi_mutex.wait_lock */
3058                 ret = wake_futex_pi(uaddr, uval, pi_state);
3059
3060                 put_pi_state(pi_state);
3061
3062                 /*
3063                  * Success, we're done! No tricky corner cases.
3064                  */
3065                 if (!ret)
3066                         goto out_putkey;
3067                 /*
3068                  * The atomic access to the futex value generated a
3069                  * pagefault, so retry the user-access and the wakeup:
3070                  */
3071                 if (ret == -EFAULT)
3072                         goto pi_faulted;
3073                 /*
3074                  * A unconditional UNLOCK_PI op raced against a waiter
3075                  * setting the FUTEX_WAITERS bit. Try again.
3076                  */
3077                 if (ret == -EAGAIN)
3078                         goto pi_retry;
3079                 /*
3080                  * wake_futex_pi has detected invalid state. Tell user
3081                  * space.
3082                  */
3083                 goto out_putkey;
3084         }
3085
3086         /*
3087          * We have no kernel internal state, i.e. no waiters in the
3088          * kernel. Waiters which are about to queue themselves are stuck
3089          * on hb->lock. So we can safely ignore them. We do neither
3090          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3091          * owner.
3092          */
3093         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3094                 spin_unlock(&hb->lock);
3095                 switch (ret) {
3096                 case -EFAULT:
3097                         goto pi_faulted;
3098
3099                 case -EAGAIN:
3100                         goto pi_retry;
3101
3102                 default:
3103                         WARN_ON_ONCE(1);
3104                         goto out_putkey;
3105                 }
3106         }
3107
3108         /*
3109          * If uval has changed, let user space handle it.
3110          */
3111         ret = (curval == uval) ? 0 : -EAGAIN;
3112
3113 out_unlock:
3114         spin_unlock(&hb->lock);
3115 out_putkey:
3116         put_futex_key(&key);
3117         return ret;
3118
3119 pi_retry:
3120         put_futex_key(&key);
3121         cond_resched();
3122         goto retry;
3123
3124 pi_faulted:
3125         put_futex_key(&key);
3126
3127         ret = fault_in_user_writeable(uaddr);
3128         if (!ret)
3129                 goto retry;
3130
3131         return ret;
3132 }
3133
3134 /**
3135  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3136  * @hb:         the hash_bucket futex_q was original enqueued on
3137  * @q:          the futex_q woken while waiting to be requeued
3138  * @key2:       the futex_key of the requeue target futex
3139  * @timeout:    the timeout associated with the wait (NULL if none)
3140  *
3141  * Detect if the task was woken on the initial futex as opposed to the requeue
3142  * target futex.  If so, determine if it was a timeout or a signal that caused
3143  * the wakeup and return the appropriate error code to the caller.  Must be
3144  * called with the hb lock held.
3145  *
3146  * Return:
3147  *  -  0 = no early wakeup detected;
3148  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3149  */
3150 static inline
3151 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3152                                    struct futex_q *q, union futex_key *key2,
3153                                    struct hrtimer_sleeper *timeout)
3154 {
3155         int ret = 0;
3156
3157         /*
3158          * With the hb lock held, we avoid races while we process the wakeup.
3159          * We only need to hold hb (and not hb2) to ensure atomicity as the
3160          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3161          * It can't be requeued from uaddr2 to something else since we don't
3162          * support a PI aware source futex for requeue.
3163          */
3164         if (!match_futex(&q->key, key2)) {
3165                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3166                 /*
3167                  * We were woken prior to requeue by a timeout or a signal.
3168                  * Unqueue the futex_q and determine which it was.
3169                  */
3170                 plist_del(&q->list, &hb->chain);
3171                 hb_waiters_dec(hb);
3172
3173                 /* Handle spurious wakeups gracefully */
3174                 ret = -EWOULDBLOCK;
3175                 if (timeout && !timeout->task)
3176                         ret = -ETIMEDOUT;
3177                 else if (signal_pending(current))
3178                         ret = -ERESTARTNOINTR;
3179         }
3180         return ret;
3181 }
3182
3183 /**
3184  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3185  * @uaddr:      the futex we initially wait on (non-pi)
3186  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3187  *              the same type, no requeueing from private to shared, etc.
3188  * @val:        the expected value of uaddr
3189  * @abs_time:   absolute timeout
3190  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3191  * @uaddr2:     the pi futex we will take prior to returning to user-space
3192  *
3193  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3194  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3195  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3196  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3197  * without one, the pi logic would not know which task to boost/deboost, if
3198  * there was a need to.
3199  *
3200  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3201  * via the following--
3202  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3203  * 2) wakeup on uaddr2 after a requeue
3204  * 3) signal
3205  * 4) timeout
3206  *
3207  * If 3, cleanup and return -ERESTARTNOINTR.
3208  *
3209  * If 2, we may then block on trying to take the rt_mutex and return via:
3210  * 5) successful lock
3211  * 6) signal
3212  * 7) timeout
3213  * 8) other lock acquisition failure
3214  *
3215  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3216  *
3217  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3218  *
3219  * Return:
3220  *  -  0 - On success;
3221  *  - <0 - On error
3222  */
3223 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3224                                  u32 val, ktime_t *abs_time, u32 bitset,
3225                                  u32 __user *uaddr2)
3226 {
3227         struct hrtimer_sleeper timeout, *to;
3228         struct futex_pi_state *pi_state = NULL;
3229         struct rt_mutex_waiter rt_waiter;
3230         struct futex_hash_bucket *hb;
3231         union futex_key key2 = FUTEX_KEY_INIT;
3232         struct futex_q q = futex_q_init;
3233         int res, ret;
3234
3235         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3236                 return -ENOSYS;
3237
3238         if (uaddr == uaddr2)
3239                 return -EINVAL;
3240
3241         if (!bitset)
3242                 return -EINVAL;
3243
3244         to = futex_setup_timer(abs_time, &timeout, flags,
3245                                current->timer_slack_ns);
3246
3247         /*
3248          * The waiter is allocated on our stack, manipulated by the requeue
3249          * code while we sleep on uaddr.
3250          */
3251         rt_mutex_init_waiter(&rt_waiter);
3252
3253         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3254         if (unlikely(ret != 0))
3255                 goto out;
3256
3257         q.bitset = bitset;
3258         q.rt_waiter = &rt_waiter;
3259         q.requeue_pi_key = &key2;
3260
3261         /*
3262          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3263          * count.
3264          */
3265         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3266         if (ret)
3267                 goto out_key2;
3268
3269         /*
3270          * The check above which compares uaddrs is not sufficient for
3271          * shared futexes. We need to compare the keys:
3272          */
3273         if (match_futex(&q.key, &key2)) {
3274                 queue_unlock(hb);
3275                 ret = -EINVAL;
3276                 goto out_put_keys;
3277         }
3278
3279         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3280         futex_wait_queue_me(hb, &q, to);
3281
3282         spin_lock(&hb->lock);
3283         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3284         spin_unlock(&hb->lock);
3285         if (ret)
3286                 goto out_put_keys;
3287
3288         /*
3289          * In order for us to be here, we know our q.key == key2, and since
3290          * we took the hb->lock above, we also know that futex_requeue() has
3291          * completed and we no longer have to concern ourselves with a wakeup
3292          * race with the atomic proxy lock acquisition by the requeue code. The
3293          * futex_requeue dropped our key1 reference and incremented our key2
3294          * reference count.
3295          */
3296
3297         /* Check if the requeue code acquired the second futex for us. */
3298         if (!q.rt_waiter) {
3299                 /*
3300                  * Got the lock. We might not be the anticipated owner if we
3301                  * did a lock-steal - fix up the PI-state in that case.
3302                  */
3303                 if (q.pi_state && (q.pi_state->owner != current)) {
3304                         spin_lock(q.lock_ptr);
3305                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3306                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3307                                 pi_state = q.pi_state;
3308                                 get_pi_state(pi_state);
3309                         }
3310                         /*
3311                          * Drop the reference to the pi state which
3312                          * the requeue_pi() code acquired for us.
3313                          */
3314                         put_pi_state(q.pi_state);
3315                         spin_unlock(q.lock_ptr);
3316                 }
3317         } else {
3318                 struct rt_mutex *pi_mutex;
3319
3320                 /*
3321                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3322                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3323                  * the pi_state.
3324                  */
3325                 WARN_ON(!q.pi_state);
3326                 pi_mutex = &q.pi_state->pi_mutex;
3327                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3328
3329                 spin_lock(q.lock_ptr);
3330                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3331                         ret = 0;
3332
3333                 debug_rt_mutex_free_waiter(&rt_waiter);
3334                 /*
3335                  * Fixup the pi_state owner and possibly acquire the lock if we
3336                  * haven't already.
3337                  */
3338                 res = fixup_owner(uaddr2, &q, !ret);
3339                 /*
3340                  * If fixup_owner() returned an error, proprogate that.  If it
3341                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3342                  */
3343                 if (res)
3344                         ret = (res < 0) ? res : 0;
3345
3346                 /*
3347                  * If fixup_pi_state_owner() faulted and was unable to handle
3348                  * the fault, unlock the rt_mutex and return the fault to
3349                  * userspace.
3350                  */
3351                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3352                         pi_state = q.pi_state;
3353                         get_pi_state(pi_state);
3354                 }
3355
3356                 /* Unqueue and drop the lock. */
3357                 unqueue_me_pi(&q);
3358         }
3359
3360         if (pi_state) {
3361                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3362                 put_pi_state(pi_state);
3363         }
3364
3365         if (ret == -EINTR) {
3366                 /*
3367                  * We've already been requeued, but cannot restart by calling
3368                  * futex_lock_pi() directly. We could restart this syscall, but
3369                  * it would detect that the user space "val" changed and return
3370                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3371                  * -EWOULDBLOCK directly.
3372                  */
3373                 ret = -EWOULDBLOCK;
3374         }
3375
3376 out_put_keys:
3377         put_futex_key(&q.key);
3378 out_key2:
3379         put_futex_key(&key2);
3380
3381 out:
3382         if (to) {
3383                 hrtimer_cancel(&to->timer);
3384                 destroy_hrtimer_on_stack(&to->timer);
3385         }
3386         return ret;
3387 }
3388
3389 /*
3390  * Support for robust futexes: the kernel cleans up held futexes at
3391  * thread exit time.
3392  *
3393  * Implementation: user-space maintains a per-thread list of locks it
3394  * is holding. Upon do_exit(), the kernel carefully walks this list,
3395  * and marks all locks that are owned by this thread with the
3396  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3397  * always manipulated with the lock held, so the list is private and
3398  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3399  * field, to allow the kernel to clean up if the thread dies after
3400  * acquiring the lock, but just before it could have added itself to
3401  * the list. There can only be one such pending lock.
3402  */
3403
3404 /**
3405  * sys_set_robust_list() - Set the robust-futex list head of a task
3406  * @head:       pointer to the list-head
3407  * @len:        length of the list-head, as userspace expects
3408  */
3409 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3410                 size_t, len)
3411 {
3412         if (!futex_cmpxchg_enabled)
3413                 return -ENOSYS;
3414         /*
3415          * The kernel knows only one size for now:
3416          */
3417         if (unlikely(len != sizeof(*head)))
3418                 return -EINVAL;
3419
3420         current->robust_list = head;
3421
3422         return 0;
3423 }
3424
3425 /**
3426  * sys_get_robust_list() - Get the robust-futex list head of a task
3427  * @pid:        pid of the process [zero for current task]
3428  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3429  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3430  */
3431 SYSCALL_DEFINE3(get_robust_list, int, pid,
3432                 struct robust_list_head __user * __user *, head_ptr,
3433                 size_t __user *, len_ptr)
3434 {
3435         struct robust_list_head __user *head;
3436         unsigned long ret;
3437         struct task_struct *p;
3438
3439         if (!futex_cmpxchg_enabled)
3440                 return -ENOSYS;
3441
3442         rcu_read_lock();
3443
3444         ret = -ESRCH;
3445         if (!pid)
3446                 p = current;
3447         else {
3448                 p = find_task_by_vpid(pid);
3449                 if (!p)
3450                         goto err_unlock;
3451         }
3452
3453         ret = -EPERM;
3454         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3455                 goto err_unlock;
3456
3457         head = p->robust_list;
3458         rcu_read_unlock();
3459
3460         if (put_user(sizeof(*head), len_ptr))
3461                 return -EFAULT;
3462         return put_user(head, head_ptr);
3463
3464 err_unlock:
3465         rcu_read_unlock();
3466
3467         return ret;
3468 }
3469
3470 /*
3471  * Process a futex-list entry, check whether it's owned by the
3472  * dying task, and do notification if so:
3473  */
3474 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3475 {
3476         u32 uval, uninitialized_var(nval), mval;
3477         int err;
3478
3479         /* Futex address must be 32bit aligned */
3480         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3481                 return -1;
3482
3483 retry:
3484         if (get_user(uval, uaddr))
3485                 return -1;
3486
3487         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3488                 return 0;
3489
3490         /*
3491          * Ok, this dying thread is truly holding a futex
3492          * of interest. Set the OWNER_DIED bit atomically
3493          * via cmpxchg, and if the value had FUTEX_WAITERS
3494          * set, wake up a waiter (if any). (We have to do a
3495          * futex_wake() even if OWNER_DIED is already set -
3496          * to handle the rare but possible case of recursive
3497          * thread-death.) The rest of the cleanup is done in
3498          * userspace.
3499          */
3500         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3501
3502         /*
3503          * We are not holding a lock here, but we want to have
3504          * the pagefault_disable/enable() protection because
3505          * we want to handle the fault gracefully. If the
3506          * access fails we try to fault in the futex with R/W
3507          * verification via get_user_pages. get_user() above
3508          * does not guarantee R/W access. If that fails we
3509          * give up and leave the futex locked.
3510          */
3511         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3512                 switch (err) {
3513                 case -EFAULT:
3514                         if (fault_in_user_writeable(uaddr))
3515                                 return -1;
3516                         goto retry;
3517
3518                 case -EAGAIN:
3519                         cond_resched();
3520                         goto retry;
3521
3522                 default:
3523                         WARN_ON_ONCE(1);
3524                         return err;
3525                 }
3526         }
3527
3528         if (nval != uval)
3529                 goto retry;
3530
3531         /*
3532          * Wake robust non-PI futexes here. The wakeup of
3533          * PI futexes happens in exit_pi_state():
3534          */
3535         if (!pi && (uval & FUTEX_WAITERS))
3536                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3537
3538         return 0;
3539 }
3540
3541 /*
3542  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3543  */
3544 static inline int fetch_robust_entry(struct robust_list __user **entry,
3545                                      struct robust_list __user * __user *head,
3546                                      unsigned int *pi)
3547 {
3548         unsigned long uentry;
3549
3550         if (get_user(uentry, (unsigned long __user *)head))
3551                 return -EFAULT;
3552
3553         *entry = (void __user *)(uentry & ~1UL);
3554         *pi = uentry & 1;
3555
3556         return 0;
3557 }
3558
3559 /*
3560  * Walk curr->robust_list (very carefully, it's a userspace list!)
3561  * and mark any locks found there dead, and notify any waiters.
3562  *
3563  * We silently return on any sign of list-walking problem.
3564  */
3565 void exit_robust_list(struct task_struct *curr)
3566 {
3567         struct robust_list_head __user *head = curr->robust_list;
3568         struct robust_list __user *entry, *next_entry, *pending;
3569         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3570         unsigned int uninitialized_var(next_pi);
3571         unsigned long futex_offset;
3572         int rc;
3573
3574         if (!futex_cmpxchg_enabled)
3575                 return;
3576
3577         /*
3578          * Fetch the list head (which was registered earlier, via
3579          * sys_set_robust_list()):
3580          */
3581         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3582                 return;
3583         /*
3584          * Fetch the relative futex offset:
3585          */
3586         if (get_user(futex_offset, &head->futex_offset))
3587                 return;
3588         /*
3589          * Fetch any possibly pending lock-add first, and handle it
3590          * if it exists:
3591          */
3592         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3593                 return;
3594
3595         next_entry = NULL;      /* avoid warning with gcc */
3596         while (entry != &head->list) {
3597                 /*
3598                  * Fetch the next entry in the list before calling
3599                  * handle_futex_death:
3600                  */
3601                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3602                 /*
3603                  * A pending lock might already be on the list, so
3604                  * don't process it twice:
3605                  */
3606                 if (entry != pending)
3607                         if (handle_futex_death((void __user *)entry + futex_offset,
3608                                                 curr, pi))
3609                                 return;
3610                 if (rc)
3611                         return;
3612                 entry = next_entry;
3613                 pi = next_pi;
3614                 /*
3615                  * Avoid excessively long or circular lists:
3616                  */
3617                 if (!--limit)
3618                         break;
3619
3620                 cond_resched();
3621         }
3622
3623         if (pending)
3624                 handle_futex_death((void __user *)pending + futex_offset,
3625                                    curr, pip);
3626 }
3627
3628 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3629                 u32 __user *uaddr2, u32 val2, u32 val3)
3630 {
3631         int cmd = op & FUTEX_CMD_MASK;
3632         unsigned int flags = 0;
3633
3634         if (!(op & FUTEX_PRIVATE_FLAG))
3635                 flags |= FLAGS_SHARED;
3636
3637         if (op & FUTEX_CLOCK_REALTIME) {
3638                 flags |= FLAGS_CLOCKRT;
3639                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3640                     cmd != FUTEX_WAIT_REQUEUE_PI)
3641                         return -ENOSYS;
3642         }
3643
3644         switch (cmd) {
3645         case FUTEX_LOCK_PI:
3646         case FUTEX_UNLOCK_PI:
3647         case FUTEX_TRYLOCK_PI:
3648         case FUTEX_WAIT_REQUEUE_PI:
3649         case FUTEX_CMP_REQUEUE_PI:
3650                 if (!futex_cmpxchg_enabled)
3651                         return -ENOSYS;
3652         }
3653
3654         switch (cmd) {
3655         case FUTEX_WAIT:
3656                 val3 = FUTEX_BITSET_MATCH_ANY;
3657                 /* fall through */
3658         case FUTEX_WAIT_BITSET:
3659                 return futex_wait(uaddr, flags, val, timeout, val3);
3660         case FUTEX_WAKE:
3661                 val3 = FUTEX_BITSET_MATCH_ANY;
3662                 /* fall through */
3663         case FUTEX_WAKE_BITSET:
3664                 return futex_wake(uaddr, flags, val, val3);
3665         case FUTEX_REQUEUE:
3666                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3667         case FUTEX_CMP_REQUEUE:
3668                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3669         case FUTEX_WAKE_OP:
3670                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3671         case FUTEX_LOCK_PI:
3672                 return futex_lock_pi(uaddr, flags, timeout, 0);
3673         case FUTEX_UNLOCK_PI:
3674                 return futex_unlock_pi(uaddr, flags);
3675         case FUTEX_TRYLOCK_PI:
3676                 return futex_lock_pi(uaddr, flags, NULL, 1);
3677         case FUTEX_WAIT_REQUEUE_PI:
3678                 val3 = FUTEX_BITSET_MATCH_ANY;
3679                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3680                                              uaddr2);
3681         case FUTEX_CMP_REQUEUE_PI:
3682                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3683         }
3684         return -ENOSYS;
3685 }
3686
3687
3688 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3689                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3690                 u32, val3)
3691 {
3692         struct timespec64 ts;
3693         ktime_t t, *tp = NULL;
3694         u32 val2 = 0;
3695         int cmd = op & FUTEX_CMD_MASK;
3696
3697         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3698                       cmd == FUTEX_WAIT_BITSET ||
3699                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3700                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3701                         return -EFAULT;
3702                 if (get_timespec64(&ts, utime))
3703                         return -EFAULT;
3704                 if (!timespec64_valid(&ts))
3705                         return -EINVAL;
3706
3707                 t = timespec64_to_ktime(ts);
3708                 if (cmd == FUTEX_WAIT)
3709                         t = ktime_add_safe(ktime_get(), t);
3710                 tp = &t;
3711         }
3712         /*
3713          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3714          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3715          */
3716         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3717             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3718                 val2 = (u32) (unsigned long) utime;
3719
3720         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3721 }
3722
3723 #ifdef CONFIG_COMPAT
3724 /*
3725  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3726  */
3727 static inline int
3728 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3729                    compat_uptr_t __user *head, unsigned int *pi)
3730 {
3731         if (get_user(*uentry, head))
3732                 return -EFAULT;
3733
3734         *entry = compat_ptr((*uentry) & ~1);
3735         *pi = (unsigned int)(*uentry) & 1;
3736
3737         return 0;
3738 }
3739
3740 static void __user *futex_uaddr(struct robust_list __user *entry,
3741                                 compat_long_t futex_offset)
3742 {
3743         compat_uptr_t base = ptr_to_compat(entry);
3744         void __user *uaddr = compat_ptr(base + futex_offset);
3745
3746         return uaddr;
3747 }
3748
3749 /*
3750  * Walk curr->robust_list (very carefully, it's a userspace list!)
3751  * and mark any locks found there dead, and notify any waiters.
3752  *
3753  * We silently return on any sign of list-walking problem.
3754  */
3755 void compat_exit_robust_list(struct task_struct *curr)
3756 {
3757         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3758         struct robust_list __user *entry, *next_entry, *pending;
3759         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3760         unsigned int uninitialized_var(next_pi);
3761         compat_uptr_t uentry, next_uentry, upending;
3762         compat_long_t futex_offset;
3763         int rc;
3764
3765         if (!futex_cmpxchg_enabled)
3766                 return;
3767
3768         /*
3769          * Fetch the list head (which was registered earlier, via
3770          * sys_set_robust_list()):
3771          */
3772         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3773                 return;
3774         /*
3775          * Fetch the relative futex offset:
3776          */
3777         if (get_user(futex_offset, &head->futex_offset))
3778                 return;
3779         /*
3780          * Fetch any possibly pending lock-add first, and handle it
3781          * if it exists:
3782          */
3783         if (compat_fetch_robust_entry(&upending, &pending,
3784                                &head->list_op_pending, &pip))
3785                 return;
3786
3787         next_entry = NULL;      /* avoid warning with gcc */
3788         while (entry != (struct robust_list __user *) &head->list) {
3789                 /*
3790                  * Fetch the next entry in the list before calling
3791                  * handle_futex_death:
3792                  */
3793                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3794                         (compat_uptr_t __user *)&entry->next, &next_pi);
3795                 /*
3796                  * A pending lock might already be on the list, so
3797                  * dont process it twice:
3798                  */
3799                 if (entry != pending) {
3800                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3801
3802                         if (handle_futex_death(uaddr, curr, pi))
3803                                 return;
3804                 }
3805                 if (rc)
3806                         return;
3807                 uentry = next_uentry;
3808                 entry = next_entry;
3809                 pi = next_pi;
3810                 /*
3811                  * Avoid excessively long or circular lists:
3812                  */
3813                 if (!--limit)
3814                         break;
3815
3816                 cond_resched();
3817         }
3818         if (pending) {
3819                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3820
3821                 handle_futex_death(uaddr, curr, pip);
3822         }
3823 }
3824
3825 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3826                 struct compat_robust_list_head __user *, head,
3827                 compat_size_t, len)
3828 {
3829         if (!futex_cmpxchg_enabled)
3830                 return -ENOSYS;
3831
3832         if (unlikely(len != sizeof(*head)))
3833                 return -EINVAL;
3834
3835         current->compat_robust_list = head;
3836
3837         return 0;
3838 }
3839
3840 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3841                         compat_uptr_t __user *, head_ptr,
3842                         compat_size_t __user *, len_ptr)
3843 {
3844         struct compat_robust_list_head __user *head;
3845         unsigned long ret;
3846         struct task_struct *p;
3847
3848         if (!futex_cmpxchg_enabled)
3849                 return -ENOSYS;
3850
3851         rcu_read_lock();
3852
3853         ret = -ESRCH;
3854         if (!pid)
3855                 p = current;
3856         else {
3857                 p = find_task_by_vpid(pid);
3858                 if (!p)
3859                         goto err_unlock;
3860         }
3861
3862         ret = -EPERM;
3863         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3864                 goto err_unlock;
3865
3866         head = p->compat_robust_list;
3867         rcu_read_unlock();
3868
3869         if (put_user(sizeof(*head), len_ptr))
3870                 return -EFAULT;
3871         return put_user(ptr_to_compat(head), head_ptr);
3872
3873 err_unlock:
3874         rcu_read_unlock();
3875
3876         return ret;
3877 }
3878 #endif /* CONFIG_COMPAT */
3879
3880 #ifdef CONFIG_COMPAT_32BIT_TIME
3881 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3882                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3883                 u32, val3)
3884 {
3885         struct timespec64 ts;
3886         ktime_t t, *tp = NULL;
3887         int val2 = 0;
3888         int cmd = op & FUTEX_CMD_MASK;
3889
3890         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3891                       cmd == FUTEX_WAIT_BITSET ||
3892                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3893                 if (get_old_timespec32(&ts, utime))
3894                         return -EFAULT;
3895                 if (!timespec64_valid(&ts))
3896                         return -EINVAL;
3897
3898                 t = timespec64_to_ktime(ts);
3899                 if (cmd == FUTEX_WAIT)
3900                         t = ktime_add_safe(ktime_get(), t);
3901                 tp = &t;
3902         }
3903         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3904             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3905                 val2 = (int) (unsigned long) utime;
3906
3907         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3908 }
3909 #endif /* CONFIG_COMPAT_32BIT_TIME */
3910
3911 static void __init futex_detect_cmpxchg(void)
3912 {
3913 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3914         u32 curval;
3915
3916         /*
3917          * This will fail and we want it. Some arch implementations do
3918          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3919          * functionality. We want to know that before we call in any
3920          * of the complex code paths. Also we want to prevent
3921          * registration of robust lists in that case. NULL is
3922          * guaranteed to fault and we get -EFAULT on functional
3923          * implementation, the non-functional ones will return
3924          * -ENOSYS.
3925          */
3926         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3927                 futex_cmpxchg_enabled = 1;
3928 #endif
3929 }
3930
3931 static int __init futex_init(void)
3932 {
3933         unsigned int futex_shift;
3934         unsigned long i;
3935
3936 #if CONFIG_BASE_SMALL
3937         futex_hashsize = 16;
3938 #else
3939         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3940 #endif
3941
3942         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3943                                                futex_hashsize, 0,
3944                                                futex_hashsize < 256 ? HASH_SMALL : 0,
3945                                                &futex_shift, NULL,
3946                                                futex_hashsize, futex_hashsize);
3947         futex_hashsize = 1UL << futex_shift;
3948
3949         futex_detect_cmpxchg();
3950
3951         for (i = 0; i < futex_hashsize; i++) {
3952                 atomic_set(&futex_queues[i].waiters, 0);
3953                 plist_head_init(&futex_queues[i].chain);
3954                 spin_lock_init(&futex_queues[i].lock);
3955         }
3956
3957         return 0;
3958 }
3959 core_initcall(futex_init);