futex: Replace PF_EXITPIDONE with a state
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65  * READ this before attempting to hack on futexes!
66  *
67  * Basic futex operation and ordering guarantees
68  * =============================================
69  *
70  * The waiter reads the futex value in user space and calls
71  * futex_wait(). This function computes the hash bucket and acquires
72  * the hash bucket lock. After that it reads the futex user space value
73  * again and verifies that the data has not changed. If it has not changed
74  * it enqueues itself into the hash bucket, releases the hash bucket lock
75  * and schedules.
76  *
77  * The waker side modifies the user space value of the futex and calls
78  * futex_wake(). This function computes the hash bucket and acquires the
79  * hash bucket lock. Then it looks for waiters on that futex in the hash
80  * bucket and wakes them.
81  *
82  * In futex wake up scenarios where no tasks are blocked on a futex, taking
83  * the hb spinlock can be avoided and simply return. In order for this
84  * optimization to work, ordering guarantees must exist so that the waiter
85  * being added to the list is acknowledged when the list is concurrently being
86  * checked by the waker, avoiding scenarios like the following:
87  *
88  * CPU 0                               CPU 1
89  * val = *futex;
90  * sys_futex(WAIT, futex, val);
91  *   futex_wait(futex, val);
92  *   uval = *futex;
93  *                                     *futex = newval;
94  *                                     sys_futex(WAKE, futex);
95  *                                       futex_wake(futex);
96  *                                       if (queue_empty())
97  *                                         return;
98  *   if (uval == val)
99  *      lock(hash_bucket(futex));
100  *      queue();
101  *     unlock(hash_bucket(futex));
102  *     schedule();
103  *
104  * This would cause the waiter on CPU 0 to wait forever because it
105  * missed the transition of the user space value from val to newval
106  * and the waker did not find the waiter in the hash bucket queue.
107  *
108  * The correct serialization ensures that a waiter either observes
109  * the changed user space value before blocking or is woken by a
110  * concurrent waker:
111  *
112  * CPU 0                                 CPU 1
113  * val = *futex;
114  * sys_futex(WAIT, futex, val);
115  *   futex_wait(futex, val);
116  *
117  *   waiters++; (a)
118  *   smp_mb(); (A) <-- paired with -.
119  *                                  |
120  *   lock(hash_bucket(futex));      |
121  *                                  |
122  *   uval = *futex;                 |
123  *                                  |        *futex = newval;
124  *                                  |        sys_futex(WAKE, futex);
125  *                                  |          futex_wake(futex);
126  *                                  |
127  *                                  `--------> smp_mb(); (B)
128  *   if (uval == val)
129  *     queue();
130  *     unlock(hash_bucket(futex));
131  *     schedule();                         if (waiters)
132  *                                           lock(hash_bucket(futex));
133  *   else                                    wake_waiters(futex);
134  *     waiters--; (b)                        unlock(hash_bucket(futex));
135  *
136  * Where (A) orders the waiters increment and the futex value read through
137  * atomic operations (see hb_waiters_inc) and where (B) orders the write
138  * to futex and the waiters read -- this is done by the barriers for both
139  * shared and private futexes in get_futex_key_refs().
140  *
141  * This yields the following case (where X:=waiters, Y:=futex):
142  *
143  *      X = Y = 0
144  *
145  *      w[X]=1          w[Y]=1
146  *      MB              MB
147  *      r[Y]=y          r[X]=x
148  *
149  * Which guarantees that x==0 && y==0 is impossible; which translates back into
150  * the guarantee that we cannot both miss the futex variable change and the
151  * enqueue.
152  *
153  * Note that a new waiter is accounted for in (a) even when it is possible that
154  * the wait call can return error, in which case we backtrack from it in (b).
155  * Refer to the comment in queue_lock().
156  *
157  * Similarly, in order to account for waiters being requeued on another
158  * address we always increment the waiters for the destination bucket before
159  * acquiring the lock. It then decrements them again  after releasing it -
160  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161  * will do the additional required waiter count housekeeping. This is done for
162  * double_lock_hb() and double_unlock_hb(), respectively.
163  */
164
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
167 #else
168 static int  __read_mostly futex_cmpxchg_enabled;
169 #endif
170
171 /*
172  * Futex flags used to encode options to functions and preserve them across
173  * restarts.
174  */
175 #ifdef CONFIG_MMU
176 # define FLAGS_SHARED           0x01
177 #else
178 /*
179  * NOMMU does not have per process address space. Let the compiler optimize
180  * code away.
181  */
182 # define FLAGS_SHARED           0x00
183 #endif
184 #define FLAGS_CLOCKRT           0x02
185 #define FLAGS_HAS_TIMEOUT       0x04
186
187 /*
188  * Priority Inheritance state:
189  */
190 struct futex_pi_state {
191         /*
192          * list of 'owned' pi_state instances - these have to be
193          * cleaned up in do_exit() if the task exits prematurely:
194          */
195         struct list_head list;
196
197         /*
198          * The PI object:
199          */
200         struct rt_mutex pi_mutex;
201
202         struct task_struct *owner;
203         refcount_t refcount;
204
205         union futex_key key;
206 } __randomize_layout;
207
208 /**
209  * struct futex_q - The hashed futex queue entry, one per waiting task
210  * @list:               priority-sorted list of tasks waiting on this futex
211  * @task:               the task waiting on the futex
212  * @lock_ptr:           the hash bucket lock
213  * @key:                the key the futex is hashed on
214  * @pi_state:           optional priority inheritance state
215  * @rt_waiter:          rt_waiter storage for use with requeue_pi
216  * @requeue_pi_key:     the requeue_pi target futex key
217  * @bitset:             bitset for the optional bitmasked wakeup
218  *
219  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220  * we can wake only the relevant ones (hashed queues may be shared).
221  *
222  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224  * The order of wakeup is always to make the first condition true, then
225  * the second.
226  *
227  * PI futexes are typically woken before they are removed from the hash list via
228  * the rt_mutex code. See unqueue_me_pi().
229  */
230 struct futex_q {
231         struct plist_node list;
232
233         struct task_struct *task;
234         spinlock_t *lock_ptr;
235         union futex_key key;
236         struct futex_pi_state *pi_state;
237         struct rt_mutex_waiter *rt_waiter;
238         union futex_key *requeue_pi_key;
239         u32 bitset;
240 } __randomize_layout;
241
242 static const struct futex_q futex_q_init = {
243         /* list gets initialized in queue_me()*/
244         .key = FUTEX_KEY_INIT,
245         .bitset = FUTEX_BITSET_MATCH_ANY
246 };
247
248 /*
249  * Hash buckets are shared by all the futex_keys that hash to the same
250  * location.  Each key may have multiple futex_q structures, one for each task
251  * waiting on a futex.
252  */
253 struct futex_hash_bucket {
254         atomic_t waiters;
255         spinlock_t lock;
256         struct plist_head chain;
257 } ____cacheline_aligned_in_smp;
258
259 /*
260  * The base of the bucket array and its size are always used together
261  * (after initialization only in hash_futex()), so ensure that they
262  * reside in the same cacheline.
263  */
264 static struct {
265         struct futex_hash_bucket *queues;
266         unsigned long            hashsize;
267 } __futex_data __read_mostly __aligned(2*sizeof(long));
268 #define futex_queues   (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
270
271
272 /*
273  * Fault injections for futexes.
274  */
275 #ifdef CONFIG_FAIL_FUTEX
276
277 static struct {
278         struct fault_attr attr;
279
280         bool ignore_private;
281 } fail_futex = {
282         .attr = FAULT_ATTR_INITIALIZER,
283         .ignore_private = false,
284 };
285
286 static int __init setup_fail_futex(char *str)
287 {
288         return setup_fault_attr(&fail_futex.attr, str);
289 }
290 __setup("fail_futex=", setup_fail_futex);
291
292 static bool should_fail_futex(bool fshared)
293 {
294         if (fail_futex.ignore_private && !fshared)
295                 return false;
296
297         return should_fail(&fail_futex.attr, 1);
298 }
299
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302 static int __init fail_futex_debugfs(void)
303 {
304         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305         struct dentry *dir;
306
307         dir = fault_create_debugfs_attr("fail_futex", NULL,
308                                         &fail_futex.attr);
309         if (IS_ERR(dir))
310                 return PTR_ERR(dir);
311
312         debugfs_create_bool("ignore-private", mode, dir,
313                             &fail_futex.ignore_private);
314         return 0;
315 }
316
317 late_initcall(fail_futex_debugfs);
318
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321 #else
322 static inline bool should_fail_futex(bool fshared)
323 {
324         return false;
325 }
326 #endif /* CONFIG_FAIL_FUTEX */
327
328 #ifdef CONFIG_COMPAT
329 static void compat_exit_robust_list(struct task_struct *curr);
330 #else
331 static inline void compat_exit_robust_list(struct task_struct *curr) { }
332 #endif
333
334 static inline void futex_get_mm(union futex_key *key)
335 {
336         mmgrab(key->private.mm);
337         /*
338          * Ensure futex_get_mm() implies a full barrier such that
339          * get_futex_key() implies a full barrier. This is relied upon
340          * as smp_mb(); (B), see the ordering comment above.
341          */
342         smp_mb__after_atomic();
343 }
344
345 /*
346  * Reflects a new waiter being added to the waitqueue.
347  */
348 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
349 {
350 #ifdef CONFIG_SMP
351         atomic_inc(&hb->waiters);
352         /*
353          * Full barrier (A), see the ordering comment above.
354          */
355         smp_mb__after_atomic();
356 #endif
357 }
358
359 /*
360  * Reflects a waiter being removed from the waitqueue by wakeup
361  * paths.
362  */
363 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364 {
365 #ifdef CONFIG_SMP
366         atomic_dec(&hb->waiters);
367 #endif
368 }
369
370 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373         return atomic_read(&hb->waiters);
374 #else
375         return 1;
376 #endif
377 }
378
379 /**
380  * hash_futex - Return the hash bucket in the global hash
381  * @key:        Pointer to the futex key for which the hash is calculated
382  *
383  * We hash on the keys returned from get_futex_key (see below) and return the
384  * corresponding hash bucket in the global hash.
385  */
386 static struct futex_hash_bucket *hash_futex(union futex_key *key)
387 {
388         u32 hash = jhash2((u32*)&key->both.word,
389                           (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
390                           key->both.offset);
391         return &futex_queues[hash & (futex_hashsize - 1)];
392 }
393
394
395 /**
396  * match_futex - Check whether two futex keys are equal
397  * @key1:       Pointer to key1
398  * @key2:       Pointer to key2
399  *
400  * Return 1 if two futex_keys are equal, 0 otherwise.
401  */
402 static inline int match_futex(union futex_key *key1, union futex_key *key2)
403 {
404         return (key1 && key2
405                 && key1->both.word == key2->both.word
406                 && key1->both.ptr == key2->both.ptr
407                 && key1->both.offset == key2->both.offset);
408 }
409
410 /*
411  * Take a reference to the resource addressed by a key.
412  * Can be called while holding spinlocks.
413  *
414  */
415 static void get_futex_key_refs(union futex_key *key)
416 {
417         if (!key->both.ptr)
418                 return;
419
420         /*
421          * On MMU less systems futexes are always "private" as there is no per
422          * process address space. We need the smp wmb nevertheless - yes,
423          * arch/blackfin has MMU less SMP ...
424          */
425         if (!IS_ENABLED(CONFIG_MMU)) {
426                 smp_mb(); /* explicit smp_mb(); (B) */
427                 return;
428         }
429
430         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431         case FUT_OFF_INODE:
432                 ihold(key->shared.inode); /* implies smp_mb(); (B) */
433                 break;
434         case FUT_OFF_MMSHARED:
435                 futex_get_mm(key); /* implies smp_mb(); (B) */
436                 break;
437         default:
438                 /*
439                  * Private futexes do not hold reference on an inode or
440                  * mm, therefore the only purpose of calling get_futex_key_refs
441                  * is because we need the barrier for the lockless waiter check.
442                  */
443                 smp_mb(); /* explicit smp_mb(); (B) */
444         }
445 }
446
447 /*
448  * Drop a reference to the resource addressed by a key.
449  * The hash bucket spinlock must not be held. This is
450  * a no-op for private futexes, see comment in the get
451  * counterpart.
452  */
453 static void drop_futex_key_refs(union futex_key *key)
454 {
455         if (!key->both.ptr) {
456                 /* If we're here then we tried to put a key we failed to get */
457                 WARN_ON_ONCE(1);
458                 return;
459         }
460
461         if (!IS_ENABLED(CONFIG_MMU))
462                 return;
463
464         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465         case FUT_OFF_INODE:
466                 iput(key->shared.inode);
467                 break;
468         case FUT_OFF_MMSHARED:
469                 mmdrop(key->private.mm);
470                 break;
471         }
472 }
473
474 enum futex_access {
475         FUTEX_READ,
476         FUTEX_WRITE
477 };
478
479 /**
480  * futex_setup_timer - set up the sleeping hrtimer.
481  * @time:       ptr to the given timeout value
482  * @timeout:    the hrtimer_sleeper structure to be set up
483  * @flags:      futex flags
484  * @range_ns:   optional range in ns
485  *
486  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
487  *         value given
488  */
489 static inline struct hrtimer_sleeper *
490 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
491                   int flags, u64 range_ns)
492 {
493         if (!time)
494                 return NULL;
495
496         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
497                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
498                                       HRTIMER_MODE_ABS);
499         /*
500          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
501          * effectively the same as calling hrtimer_set_expires().
502          */
503         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
504
505         return timeout;
506 }
507
508 /**
509  * get_futex_key() - Get parameters which are the keys for a futex
510  * @uaddr:      virtual address of the futex
511  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
512  * @key:        address where result is stored.
513  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
514  *              FUTEX_WRITE)
515  *
516  * Return: a negative error code or 0
517  *
518  * The key words are stored in @key on success.
519  *
520  * For shared mappings, it's (page->index, file_inode(vma->vm_file),
521  * offset_within_page).  For private mappings, it's (uaddr, current->mm).
522  * We can usually work out the index without swapping in the page.
523  *
524  * lock_page() might sleep, the caller should not hold a spinlock.
525  */
526 static int
527 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
528 {
529         unsigned long address = (unsigned long)uaddr;
530         struct mm_struct *mm = current->mm;
531         struct page *page, *tail;
532         struct address_space *mapping;
533         int err, ro = 0;
534
535         /*
536          * The futex address must be "naturally" aligned.
537          */
538         key->both.offset = address % PAGE_SIZE;
539         if (unlikely((address % sizeof(u32)) != 0))
540                 return -EINVAL;
541         address -= key->both.offset;
542
543         if (unlikely(!access_ok(uaddr, sizeof(u32))))
544                 return -EFAULT;
545
546         if (unlikely(should_fail_futex(fshared)))
547                 return -EFAULT;
548
549         /*
550          * PROCESS_PRIVATE futexes are fast.
551          * As the mm cannot disappear under us and the 'key' only needs
552          * virtual address, we dont even have to find the underlying vma.
553          * Note : We do have to check 'uaddr' is a valid user address,
554          *        but access_ok() should be faster than find_vma()
555          */
556         if (!fshared) {
557                 key->private.mm = mm;
558                 key->private.address = address;
559                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
560                 return 0;
561         }
562
563 again:
564         /* Ignore any VERIFY_READ mapping (futex common case) */
565         if (unlikely(should_fail_futex(fshared)))
566                 return -EFAULT;
567
568         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
569         /*
570          * If write access is not required (eg. FUTEX_WAIT), try
571          * and get read-only access.
572          */
573         if (err == -EFAULT && rw == FUTEX_READ) {
574                 err = get_user_pages_fast(address, 1, 0, &page);
575                 ro = 1;
576         }
577         if (err < 0)
578                 return err;
579         else
580                 err = 0;
581
582         /*
583          * The treatment of mapping from this point on is critical. The page
584          * lock protects many things but in this context the page lock
585          * stabilizes mapping, prevents inode freeing in the shared
586          * file-backed region case and guards against movement to swap cache.
587          *
588          * Strictly speaking the page lock is not needed in all cases being
589          * considered here and page lock forces unnecessarily serialization
590          * From this point on, mapping will be re-verified if necessary and
591          * page lock will be acquired only if it is unavoidable
592          *
593          * Mapping checks require the head page for any compound page so the
594          * head page and mapping is looked up now. For anonymous pages, it
595          * does not matter if the page splits in the future as the key is
596          * based on the address. For filesystem-backed pages, the tail is
597          * required as the index of the page determines the key. For
598          * base pages, there is no tail page and tail == page.
599          */
600         tail = page;
601         page = compound_head(page);
602         mapping = READ_ONCE(page->mapping);
603
604         /*
605          * If page->mapping is NULL, then it cannot be a PageAnon
606          * page; but it might be the ZERO_PAGE or in the gate area or
607          * in a special mapping (all cases which we are happy to fail);
608          * or it may have been a good file page when get_user_pages_fast
609          * found it, but truncated or holepunched or subjected to
610          * invalidate_complete_page2 before we got the page lock (also
611          * cases which we are happy to fail).  And we hold a reference,
612          * so refcount care in invalidate_complete_page's remove_mapping
613          * prevents drop_caches from setting mapping to NULL beneath us.
614          *
615          * The case we do have to guard against is when memory pressure made
616          * shmem_writepage move it from filecache to swapcache beneath us:
617          * an unlikely race, but we do need to retry for page->mapping.
618          */
619         if (unlikely(!mapping)) {
620                 int shmem_swizzled;
621
622                 /*
623                  * Page lock is required to identify which special case above
624                  * applies. If this is really a shmem page then the page lock
625                  * will prevent unexpected transitions.
626                  */
627                 lock_page(page);
628                 shmem_swizzled = PageSwapCache(page) || page->mapping;
629                 unlock_page(page);
630                 put_page(page);
631
632                 if (shmem_swizzled)
633                         goto again;
634
635                 return -EFAULT;
636         }
637
638         /*
639          * Private mappings are handled in a simple way.
640          *
641          * If the futex key is stored on an anonymous page, then the associated
642          * object is the mm which is implicitly pinned by the calling process.
643          *
644          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
645          * it's a read-only handle, it's expected that futexes attach to
646          * the object not the particular process.
647          */
648         if (PageAnon(page)) {
649                 /*
650                  * A RO anonymous page will never change and thus doesn't make
651                  * sense for futex operations.
652                  */
653                 if (unlikely(should_fail_futex(fshared)) || ro) {
654                         err = -EFAULT;
655                         goto out;
656                 }
657
658                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
659                 key->private.mm = mm;
660                 key->private.address = address;
661
662                 get_futex_key_refs(key); /* implies smp_mb(); (B) */
663
664         } else {
665                 struct inode *inode;
666
667                 /*
668                  * The associated futex object in this case is the inode and
669                  * the page->mapping must be traversed. Ordinarily this should
670                  * be stabilised under page lock but it's not strictly
671                  * necessary in this case as we just want to pin the inode, not
672                  * update the radix tree or anything like that.
673                  *
674                  * The RCU read lock is taken as the inode is finally freed
675                  * under RCU. If the mapping still matches expectations then the
676                  * mapping->host can be safely accessed as being a valid inode.
677                  */
678                 rcu_read_lock();
679
680                 if (READ_ONCE(page->mapping) != mapping) {
681                         rcu_read_unlock();
682                         put_page(page);
683
684                         goto again;
685                 }
686
687                 inode = READ_ONCE(mapping->host);
688                 if (!inode) {
689                         rcu_read_unlock();
690                         put_page(page);
691
692                         goto again;
693                 }
694
695                 /*
696                  * Take a reference unless it is about to be freed. Previously
697                  * this reference was taken by ihold under the page lock
698                  * pinning the inode in place so i_lock was unnecessary. The
699                  * only way for this check to fail is if the inode was
700                  * truncated in parallel which is almost certainly an
701                  * application bug. In such a case, just retry.
702                  *
703                  * We are not calling into get_futex_key_refs() in file-backed
704                  * cases, therefore a successful atomic_inc return below will
705                  * guarantee that get_futex_key() will still imply smp_mb(); (B).
706                  */
707                 if (!atomic_inc_not_zero(&inode->i_count)) {
708                         rcu_read_unlock();
709                         put_page(page);
710
711                         goto again;
712                 }
713
714                 /* Should be impossible but lets be paranoid for now */
715                 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
716                         err = -EFAULT;
717                         rcu_read_unlock();
718                         iput(inode);
719
720                         goto out;
721                 }
722
723                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
724                 key->shared.inode = inode;
725                 key->shared.pgoff = basepage_index(tail);
726                 rcu_read_unlock();
727         }
728
729 out:
730         put_page(page);
731         return err;
732 }
733
734 static inline void put_futex_key(union futex_key *key)
735 {
736         drop_futex_key_refs(key);
737 }
738
739 /**
740  * fault_in_user_writeable() - Fault in user address and verify RW access
741  * @uaddr:      pointer to faulting user space address
742  *
743  * Slow path to fixup the fault we just took in the atomic write
744  * access to @uaddr.
745  *
746  * We have no generic implementation of a non-destructive write to the
747  * user address. We know that we faulted in the atomic pagefault
748  * disabled section so we can as well avoid the #PF overhead by
749  * calling get_user_pages() right away.
750  */
751 static int fault_in_user_writeable(u32 __user *uaddr)
752 {
753         struct mm_struct *mm = current->mm;
754         int ret;
755
756         down_read(&mm->mmap_sem);
757         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
758                                FAULT_FLAG_WRITE, NULL);
759         up_read(&mm->mmap_sem);
760
761         return ret < 0 ? ret : 0;
762 }
763
764 /**
765  * futex_top_waiter() - Return the highest priority waiter on a futex
766  * @hb:         the hash bucket the futex_q's reside in
767  * @key:        the futex key (to distinguish it from other futex futex_q's)
768  *
769  * Must be called with the hb lock held.
770  */
771 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
772                                         union futex_key *key)
773 {
774         struct futex_q *this;
775
776         plist_for_each_entry(this, &hb->chain, list) {
777                 if (match_futex(&this->key, key))
778                         return this;
779         }
780         return NULL;
781 }
782
783 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
784                                       u32 uval, u32 newval)
785 {
786         int ret;
787
788         pagefault_disable();
789         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
790         pagefault_enable();
791
792         return ret;
793 }
794
795 static int get_futex_value_locked(u32 *dest, u32 __user *from)
796 {
797         int ret;
798
799         pagefault_disable();
800         ret = __get_user(*dest, from);
801         pagefault_enable();
802
803         return ret ? -EFAULT : 0;
804 }
805
806
807 /*
808  * PI code:
809  */
810 static int refill_pi_state_cache(void)
811 {
812         struct futex_pi_state *pi_state;
813
814         if (likely(current->pi_state_cache))
815                 return 0;
816
817         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
818
819         if (!pi_state)
820                 return -ENOMEM;
821
822         INIT_LIST_HEAD(&pi_state->list);
823         /* pi_mutex gets initialized later */
824         pi_state->owner = NULL;
825         refcount_set(&pi_state->refcount, 1);
826         pi_state->key = FUTEX_KEY_INIT;
827
828         current->pi_state_cache = pi_state;
829
830         return 0;
831 }
832
833 static struct futex_pi_state *alloc_pi_state(void)
834 {
835         struct futex_pi_state *pi_state = current->pi_state_cache;
836
837         WARN_ON(!pi_state);
838         current->pi_state_cache = NULL;
839
840         return pi_state;
841 }
842
843 static void get_pi_state(struct futex_pi_state *pi_state)
844 {
845         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
846 }
847
848 /*
849  * Drops a reference to the pi_state object and frees or caches it
850  * when the last reference is gone.
851  */
852 static void put_pi_state(struct futex_pi_state *pi_state)
853 {
854         if (!pi_state)
855                 return;
856
857         if (!refcount_dec_and_test(&pi_state->refcount))
858                 return;
859
860         /*
861          * If pi_state->owner is NULL, the owner is most probably dying
862          * and has cleaned up the pi_state already
863          */
864         if (pi_state->owner) {
865                 struct task_struct *owner;
866
867                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
868                 owner = pi_state->owner;
869                 if (owner) {
870                         raw_spin_lock(&owner->pi_lock);
871                         list_del_init(&pi_state->list);
872                         raw_spin_unlock(&owner->pi_lock);
873                 }
874                 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
875                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
876         }
877
878         if (current->pi_state_cache) {
879                 kfree(pi_state);
880         } else {
881                 /*
882                  * pi_state->list is already empty.
883                  * clear pi_state->owner.
884                  * refcount is at 0 - put it back to 1.
885                  */
886                 pi_state->owner = NULL;
887                 refcount_set(&pi_state->refcount, 1);
888                 current->pi_state_cache = pi_state;
889         }
890 }
891
892 #ifdef CONFIG_FUTEX_PI
893
894 /*
895  * This task is holding PI mutexes at exit time => bad.
896  * Kernel cleans up PI-state, but userspace is likely hosed.
897  * (Robust-futex cleanup is separate and might save the day for userspace.)
898  */
899 static void exit_pi_state_list(struct task_struct *curr)
900 {
901         struct list_head *next, *head = &curr->pi_state_list;
902         struct futex_pi_state *pi_state;
903         struct futex_hash_bucket *hb;
904         union futex_key key = FUTEX_KEY_INIT;
905
906         if (!futex_cmpxchg_enabled)
907                 return;
908         /*
909          * We are a ZOMBIE and nobody can enqueue itself on
910          * pi_state_list anymore, but we have to be careful
911          * versus waiters unqueueing themselves:
912          */
913         raw_spin_lock_irq(&curr->pi_lock);
914         while (!list_empty(head)) {
915                 next = head->next;
916                 pi_state = list_entry(next, struct futex_pi_state, list);
917                 key = pi_state->key;
918                 hb = hash_futex(&key);
919
920                 /*
921                  * We can race against put_pi_state() removing itself from the
922                  * list (a waiter going away). put_pi_state() will first
923                  * decrement the reference count and then modify the list, so
924                  * its possible to see the list entry but fail this reference
925                  * acquire.
926                  *
927                  * In that case; drop the locks to let put_pi_state() make
928                  * progress and retry the loop.
929                  */
930                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
931                         raw_spin_unlock_irq(&curr->pi_lock);
932                         cpu_relax();
933                         raw_spin_lock_irq(&curr->pi_lock);
934                         continue;
935                 }
936                 raw_spin_unlock_irq(&curr->pi_lock);
937
938                 spin_lock(&hb->lock);
939                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
940                 raw_spin_lock(&curr->pi_lock);
941                 /*
942                  * We dropped the pi-lock, so re-check whether this
943                  * task still owns the PI-state:
944                  */
945                 if (head->next != next) {
946                         /* retain curr->pi_lock for the loop invariant */
947                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
948                         spin_unlock(&hb->lock);
949                         put_pi_state(pi_state);
950                         continue;
951                 }
952
953                 WARN_ON(pi_state->owner != curr);
954                 WARN_ON(list_empty(&pi_state->list));
955                 list_del_init(&pi_state->list);
956                 pi_state->owner = NULL;
957
958                 raw_spin_unlock(&curr->pi_lock);
959                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
960                 spin_unlock(&hb->lock);
961
962                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
963                 put_pi_state(pi_state);
964
965                 raw_spin_lock_irq(&curr->pi_lock);
966         }
967         raw_spin_unlock_irq(&curr->pi_lock);
968 }
969 #else
970 static inline void exit_pi_state_list(struct task_struct *curr) { }
971 #endif
972
973 /*
974  * We need to check the following states:
975  *
976  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
977  *
978  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
979  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
980  *
981  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
982  *
983  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
984  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
985  *
986  * [6]  Found  | Found    | task      | 0         | 1      | Valid
987  *
988  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
989  *
990  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
991  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
992  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
993  *
994  * [1]  Indicates that the kernel can acquire the futex atomically. We
995  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
996  *
997  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
998  *      thread is found then it indicates that the owner TID has died.
999  *
1000  * [3]  Invalid. The waiter is queued on a non PI futex
1001  *
1002  * [4]  Valid state after exit_robust_list(), which sets the user space
1003  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004  *
1005  * [5]  The user space value got manipulated between exit_robust_list()
1006  *      and exit_pi_state_list()
1007  *
1008  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1009  *      the pi_state but cannot access the user space value.
1010  *
1011  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012  *
1013  * [8]  Owner and user space value match
1014  *
1015  * [9]  There is no transient state which sets the user space TID to 0
1016  *      except exit_robust_list(), but this is indicated by the
1017  *      FUTEX_OWNER_DIED bit. See [4]
1018  *
1019  * [10] There is no transient state which leaves owner and user space
1020  *      TID out of sync.
1021  *
1022  *
1023  * Serialization and lifetime rules:
1024  *
1025  * hb->lock:
1026  *
1027  *      hb -> futex_q, relation
1028  *      futex_q -> pi_state, relation
1029  *
1030  *      (cannot be raw because hb can contain arbitrary amount
1031  *       of futex_q's)
1032  *
1033  * pi_mutex->wait_lock:
1034  *
1035  *      {uval, pi_state}
1036  *
1037  *      (and pi_mutex 'obviously')
1038  *
1039  * p->pi_lock:
1040  *
1041  *      p->pi_state_list -> pi_state->list, relation
1042  *
1043  * pi_state->refcount:
1044  *
1045  *      pi_state lifetime
1046  *
1047  *
1048  * Lock order:
1049  *
1050  *   hb->lock
1051  *     pi_mutex->wait_lock
1052  *       p->pi_lock
1053  *
1054  */
1055
1056 /*
1057  * Validate that the existing waiter has a pi_state and sanity check
1058  * the pi_state against the user space value. If correct, attach to
1059  * it.
1060  */
1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062                               struct futex_pi_state *pi_state,
1063                               struct futex_pi_state **ps)
1064 {
1065         pid_t pid = uval & FUTEX_TID_MASK;
1066         u32 uval2;
1067         int ret;
1068
1069         /*
1070          * Userspace might have messed up non-PI and PI futexes [3]
1071          */
1072         if (unlikely(!pi_state))
1073                 return -EINVAL;
1074
1075         /*
1076          * We get here with hb->lock held, and having found a
1077          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079          * which in turn means that futex_lock_pi() still has a reference on
1080          * our pi_state.
1081          *
1082          * The waiter holding a reference on @pi_state also protects against
1083          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085          * free pi_state before we can take a reference ourselves.
1086          */
1087         WARN_ON(!refcount_read(&pi_state->refcount));
1088
1089         /*
1090          * Now that we have a pi_state, we can acquire wait_lock
1091          * and do the state validation.
1092          */
1093         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095         /*
1096          * Since {uval, pi_state} is serialized by wait_lock, and our current
1097          * uval was read without holding it, it can have changed. Verify it
1098          * still is what we expect it to be, otherwise retry the entire
1099          * operation.
1100          */
1101         if (get_futex_value_locked(&uval2, uaddr))
1102                 goto out_efault;
1103
1104         if (uval != uval2)
1105                 goto out_eagain;
1106
1107         /*
1108          * Handle the owner died case:
1109          */
1110         if (uval & FUTEX_OWNER_DIED) {
1111                 /*
1112                  * exit_pi_state_list sets owner to NULL and wakes the
1113                  * topmost waiter. The task which acquires the
1114                  * pi_state->rt_mutex will fixup owner.
1115                  */
1116                 if (!pi_state->owner) {
1117                         /*
1118                          * No pi state owner, but the user space TID
1119                          * is not 0. Inconsistent state. [5]
1120                          */
1121                         if (pid)
1122                                 goto out_einval;
1123                         /*
1124                          * Take a ref on the state and return success. [4]
1125                          */
1126                         goto out_attach;
1127                 }
1128
1129                 /*
1130                  * If TID is 0, then either the dying owner has not
1131                  * yet executed exit_pi_state_list() or some waiter
1132                  * acquired the rtmutex in the pi state, but did not
1133                  * yet fixup the TID in user space.
1134                  *
1135                  * Take a ref on the state and return success. [6]
1136                  */
1137                 if (!pid)
1138                         goto out_attach;
1139         } else {
1140                 /*
1141                  * If the owner died bit is not set, then the pi_state
1142                  * must have an owner. [7]
1143                  */
1144                 if (!pi_state->owner)
1145                         goto out_einval;
1146         }
1147
1148         /*
1149          * Bail out if user space manipulated the futex value. If pi
1150          * state exists then the owner TID must be the same as the
1151          * user space TID. [9/10]
1152          */
1153         if (pid != task_pid_vnr(pi_state->owner))
1154                 goto out_einval;
1155
1156 out_attach:
1157         get_pi_state(pi_state);
1158         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159         *ps = pi_state;
1160         return 0;
1161
1162 out_einval:
1163         ret = -EINVAL;
1164         goto out_error;
1165
1166 out_eagain:
1167         ret = -EAGAIN;
1168         goto out_error;
1169
1170 out_efault:
1171         ret = -EFAULT;
1172         goto out_error;
1173
1174 out_error:
1175         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176         return ret;
1177 }
1178
1179 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1180                             struct task_struct *tsk)
1181 {
1182         u32 uval2;
1183
1184         /*
1185          * If the futex exit state is not yet FUTEX_STATE_DEAD, wait
1186          * for it to finish.
1187          */
1188         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1189                 return -EAGAIN;
1190
1191         /*
1192          * Reread the user space value to handle the following situation:
1193          *
1194          * CPU0                         CPU1
1195          *
1196          * sys_exit()                   sys_futex()
1197          *  do_exit()                    futex_lock_pi()
1198          *                                futex_lock_pi_atomic()
1199          *   exit_signals(tsk)              No waiters:
1200          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1201          *  mm_release(tsk)                 Set waiter bit
1202          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1203          *      Set owner died              attach_to_pi_owner() {
1204          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1205          *   }                               if (!tsk->flags & PF_EXITING) {
1206          *  ...                                attach();
1207          *  tsk->futex_state =               } else {
1208          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1209          *                                        FUTEX_STATE_DEAD)
1210          *                                       return -EAGAIN;
1211          *                                     return -ESRCH; <--- FAIL
1212          *                                   }
1213          *
1214          * Returning ESRCH unconditionally is wrong here because the
1215          * user space value has been changed by the exiting task.
1216          *
1217          * The same logic applies to the case where the exiting task is
1218          * already gone.
1219          */
1220         if (get_futex_value_locked(&uval2, uaddr))
1221                 return -EFAULT;
1222
1223         /* If the user space value has changed, try again. */
1224         if (uval2 != uval)
1225                 return -EAGAIN;
1226
1227         /*
1228          * The exiting task did not have a robust list, the robust list was
1229          * corrupted or the user space value in *uaddr is simply bogus.
1230          * Give up and tell user space.
1231          */
1232         return -ESRCH;
1233 }
1234
1235 /*
1236  * Lookup the task for the TID provided from user space and attach to
1237  * it after doing proper sanity checks.
1238  */
1239 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1240                               struct futex_pi_state **ps)
1241 {
1242         pid_t pid = uval & FUTEX_TID_MASK;
1243         struct futex_pi_state *pi_state;
1244         struct task_struct *p;
1245
1246         /*
1247          * We are the first waiter - try to look up the real owner and attach
1248          * the new pi_state to it, but bail out when TID = 0 [1]
1249          *
1250          * The !pid check is paranoid. None of the call sites should end up
1251          * with pid == 0, but better safe than sorry. Let the caller retry
1252          */
1253         if (!pid)
1254                 return -EAGAIN;
1255         p = find_get_task_by_vpid(pid);
1256         if (!p)
1257                 return handle_exit_race(uaddr, uval, NULL);
1258
1259         if (unlikely(p->flags & PF_KTHREAD)) {
1260                 put_task_struct(p);
1261                 return -EPERM;
1262         }
1263
1264         /*
1265          * We need to look at the task state to figure out, whether the
1266          * task is exiting. To protect against the change of the task state
1267          * in futex_exit_release(), we do this protected by p->pi_lock:
1268          */
1269         raw_spin_lock_irq(&p->pi_lock);
1270         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1271                 /*
1272                  * The task is on the way out. When the futex state is
1273                  * FUTEX_STATE_DEAD, we know that the task has finished
1274                  * the cleanup:
1275                  */
1276                 int ret = handle_exit_race(uaddr, uval, p);
1277
1278                 raw_spin_unlock_irq(&p->pi_lock);
1279                 put_task_struct(p);
1280                 return ret;
1281         }
1282
1283         /*
1284          * No existing pi state. First waiter. [2]
1285          *
1286          * This creates pi_state, we have hb->lock held, this means nothing can
1287          * observe this state, wait_lock is irrelevant.
1288          */
1289         pi_state = alloc_pi_state();
1290
1291         /*
1292          * Initialize the pi_mutex in locked state and make @p
1293          * the owner of it:
1294          */
1295         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1296
1297         /* Store the key for possible exit cleanups: */
1298         pi_state->key = *key;
1299
1300         WARN_ON(!list_empty(&pi_state->list));
1301         list_add(&pi_state->list, &p->pi_state_list);
1302         /*
1303          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1304          * because there is no concurrency as the object is not published yet.
1305          */
1306         pi_state->owner = p;
1307         raw_spin_unlock_irq(&p->pi_lock);
1308
1309         put_task_struct(p);
1310
1311         *ps = pi_state;
1312
1313         return 0;
1314 }
1315
1316 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1317                            struct futex_hash_bucket *hb,
1318                            union futex_key *key, struct futex_pi_state **ps)
1319 {
1320         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1321
1322         /*
1323          * If there is a waiter on that futex, validate it and
1324          * attach to the pi_state when the validation succeeds.
1325          */
1326         if (top_waiter)
1327                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1328
1329         /*
1330          * We are the first waiter - try to look up the owner based on
1331          * @uval and attach to it.
1332          */
1333         return attach_to_pi_owner(uaddr, uval, key, ps);
1334 }
1335
1336 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1337 {
1338         int err;
1339         u32 uninitialized_var(curval);
1340
1341         if (unlikely(should_fail_futex(true)))
1342                 return -EFAULT;
1343
1344         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1345         if (unlikely(err))
1346                 return err;
1347
1348         /* If user space value changed, let the caller retry */
1349         return curval != uval ? -EAGAIN : 0;
1350 }
1351
1352 /**
1353  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1354  * @uaddr:              the pi futex user address
1355  * @hb:                 the pi futex hash bucket
1356  * @key:                the futex key associated with uaddr and hb
1357  * @ps:                 the pi_state pointer where we store the result of the
1358  *                      lookup
1359  * @task:               the task to perform the atomic lock work for.  This will
1360  *                      be "current" except in the case of requeue pi.
1361  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1362  *
1363  * Return:
1364  *  -  0 - ready to wait;
1365  *  -  1 - acquired the lock;
1366  *  - <0 - error
1367  *
1368  * The hb->lock and futex_key refs shall be held by the caller.
1369  */
1370 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1371                                 union futex_key *key,
1372                                 struct futex_pi_state **ps,
1373                                 struct task_struct *task, int set_waiters)
1374 {
1375         u32 uval, newval, vpid = task_pid_vnr(task);
1376         struct futex_q *top_waiter;
1377         int ret;
1378
1379         /*
1380          * Read the user space value first so we can validate a few
1381          * things before proceeding further.
1382          */
1383         if (get_futex_value_locked(&uval, uaddr))
1384                 return -EFAULT;
1385
1386         if (unlikely(should_fail_futex(true)))
1387                 return -EFAULT;
1388
1389         /*
1390          * Detect deadlocks.
1391          */
1392         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1393                 return -EDEADLK;
1394
1395         if ((unlikely(should_fail_futex(true))))
1396                 return -EDEADLK;
1397
1398         /*
1399          * Lookup existing state first. If it exists, try to attach to
1400          * its pi_state.
1401          */
1402         top_waiter = futex_top_waiter(hb, key);
1403         if (top_waiter)
1404                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1405
1406         /*
1407          * No waiter and user TID is 0. We are here because the
1408          * waiters or the owner died bit is set or called from
1409          * requeue_cmp_pi or for whatever reason something took the
1410          * syscall.
1411          */
1412         if (!(uval & FUTEX_TID_MASK)) {
1413                 /*
1414                  * We take over the futex. No other waiters and the user space
1415                  * TID is 0. We preserve the owner died bit.
1416                  */
1417                 newval = uval & FUTEX_OWNER_DIED;
1418                 newval |= vpid;
1419
1420                 /* The futex requeue_pi code can enforce the waiters bit */
1421                 if (set_waiters)
1422                         newval |= FUTEX_WAITERS;
1423
1424                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1425                 /* If the take over worked, return 1 */
1426                 return ret < 0 ? ret : 1;
1427         }
1428
1429         /*
1430          * First waiter. Set the waiters bit before attaching ourself to
1431          * the owner. If owner tries to unlock, it will be forced into
1432          * the kernel and blocked on hb->lock.
1433          */
1434         newval = uval | FUTEX_WAITERS;
1435         ret = lock_pi_update_atomic(uaddr, uval, newval);
1436         if (ret)
1437                 return ret;
1438         /*
1439          * If the update of the user space value succeeded, we try to
1440          * attach to the owner. If that fails, no harm done, we only
1441          * set the FUTEX_WAITERS bit in the user space variable.
1442          */
1443         return attach_to_pi_owner(uaddr, newval, key, ps);
1444 }
1445
1446 /**
1447  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1448  * @q:  The futex_q to unqueue
1449  *
1450  * The q->lock_ptr must not be NULL and must be held by the caller.
1451  */
1452 static void __unqueue_futex(struct futex_q *q)
1453 {
1454         struct futex_hash_bucket *hb;
1455
1456         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1457                 return;
1458         lockdep_assert_held(q->lock_ptr);
1459
1460         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1461         plist_del(&q->list, &hb->chain);
1462         hb_waiters_dec(hb);
1463 }
1464
1465 /*
1466  * The hash bucket lock must be held when this is called.
1467  * Afterwards, the futex_q must not be accessed. Callers
1468  * must ensure to later call wake_up_q() for the actual
1469  * wakeups to occur.
1470  */
1471 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1472 {
1473         struct task_struct *p = q->task;
1474
1475         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1476                 return;
1477
1478         get_task_struct(p);
1479         __unqueue_futex(q);
1480         /*
1481          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1482          * is written, without taking any locks. This is possible in the event
1483          * of a spurious wakeup, for example. A memory barrier is required here
1484          * to prevent the following store to lock_ptr from getting ahead of the
1485          * plist_del in __unqueue_futex().
1486          */
1487         smp_store_release(&q->lock_ptr, NULL);
1488
1489         /*
1490          * Queue the task for later wakeup for after we've released
1491          * the hb->lock.
1492          */
1493         wake_q_add_safe(wake_q, p);
1494 }
1495
1496 /*
1497  * Caller must hold a reference on @pi_state.
1498  */
1499 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1500 {
1501         u32 uninitialized_var(curval), newval;
1502         struct task_struct *new_owner;
1503         bool postunlock = false;
1504         DEFINE_WAKE_Q(wake_q);
1505         int ret = 0;
1506
1507         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1508         if (WARN_ON_ONCE(!new_owner)) {
1509                 /*
1510                  * As per the comment in futex_unlock_pi() this should not happen.
1511                  *
1512                  * When this happens, give up our locks and try again, giving
1513                  * the futex_lock_pi() instance time to complete, either by
1514                  * waiting on the rtmutex or removing itself from the futex
1515                  * queue.
1516                  */
1517                 ret = -EAGAIN;
1518                 goto out_unlock;
1519         }
1520
1521         /*
1522          * We pass it to the next owner. The WAITERS bit is always kept
1523          * enabled while there is PI state around. We cleanup the owner
1524          * died bit, because we are the owner.
1525          */
1526         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1527
1528         if (unlikely(should_fail_futex(true)))
1529                 ret = -EFAULT;
1530
1531         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1532         if (!ret && (curval != uval)) {
1533                 /*
1534                  * If a unconditional UNLOCK_PI operation (user space did not
1535                  * try the TID->0 transition) raced with a waiter setting the
1536                  * FUTEX_WAITERS flag between get_user() and locking the hash
1537                  * bucket lock, retry the operation.
1538                  */
1539                 if ((FUTEX_TID_MASK & curval) == uval)
1540                         ret = -EAGAIN;
1541                 else
1542                         ret = -EINVAL;
1543         }
1544
1545         if (ret)
1546                 goto out_unlock;
1547
1548         /*
1549          * This is a point of no return; once we modify the uval there is no
1550          * going back and subsequent operations must not fail.
1551          */
1552
1553         raw_spin_lock(&pi_state->owner->pi_lock);
1554         WARN_ON(list_empty(&pi_state->list));
1555         list_del_init(&pi_state->list);
1556         raw_spin_unlock(&pi_state->owner->pi_lock);
1557
1558         raw_spin_lock(&new_owner->pi_lock);
1559         WARN_ON(!list_empty(&pi_state->list));
1560         list_add(&pi_state->list, &new_owner->pi_state_list);
1561         pi_state->owner = new_owner;
1562         raw_spin_unlock(&new_owner->pi_lock);
1563
1564         postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1565
1566 out_unlock:
1567         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1568
1569         if (postunlock)
1570                 rt_mutex_postunlock(&wake_q);
1571
1572         return ret;
1573 }
1574
1575 /*
1576  * Express the locking dependencies for lockdep:
1577  */
1578 static inline void
1579 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1580 {
1581         if (hb1 <= hb2) {
1582                 spin_lock(&hb1->lock);
1583                 if (hb1 < hb2)
1584                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1585         } else { /* hb1 > hb2 */
1586                 spin_lock(&hb2->lock);
1587                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1588         }
1589 }
1590
1591 static inline void
1592 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1593 {
1594         spin_unlock(&hb1->lock);
1595         if (hb1 != hb2)
1596                 spin_unlock(&hb2->lock);
1597 }
1598
1599 /*
1600  * Wake up waiters matching bitset queued on this futex (uaddr).
1601  */
1602 static int
1603 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1604 {
1605         struct futex_hash_bucket *hb;
1606         struct futex_q *this, *next;
1607         union futex_key key = FUTEX_KEY_INIT;
1608         int ret;
1609         DEFINE_WAKE_Q(wake_q);
1610
1611         if (!bitset)
1612                 return -EINVAL;
1613
1614         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1615         if (unlikely(ret != 0))
1616                 goto out;
1617
1618         hb = hash_futex(&key);
1619
1620         /* Make sure we really have tasks to wakeup */
1621         if (!hb_waiters_pending(hb))
1622                 goto out_put_key;
1623
1624         spin_lock(&hb->lock);
1625
1626         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1627                 if (match_futex (&this->key, &key)) {
1628                         if (this->pi_state || this->rt_waiter) {
1629                                 ret = -EINVAL;
1630                                 break;
1631                         }
1632
1633                         /* Check if one of the bits is set in both bitsets */
1634                         if (!(this->bitset & bitset))
1635                                 continue;
1636
1637                         mark_wake_futex(&wake_q, this);
1638                         if (++ret >= nr_wake)
1639                                 break;
1640                 }
1641         }
1642
1643         spin_unlock(&hb->lock);
1644         wake_up_q(&wake_q);
1645 out_put_key:
1646         put_futex_key(&key);
1647 out:
1648         return ret;
1649 }
1650
1651 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1652 {
1653         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1654         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1655         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1656         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1657         int oldval, ret;
1658
1659         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1660                 if (oparg < 0 || oparg > 31) {
1661                         char comm[sizeof(current->comm)];
1662                         /*
1663                          * kill this print and return -EINVAL when userspace
1664                          * is sane again
1665                          */
1666                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1667                                         get_task_comm(comm, current), oparg);
1668                         oparg &= 31;
1669                 }
1670                 oparg = 1 << oparg;
1671         }
1672
1673         if (!access_ok(uaddr, sizeof(u32)))
1674                 return -EFAULT;
1675
1676         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1677         if (ret)
1678                 return ret;
1679
1680         switch (cmp) {
1681         case FUTEX_OP_CMP_EQ:
1682                 return oldval == cmparg;
1683         case FUTEX_OP_CMP_NE:
1684                 return oldval != cmparg;
1685         case FUTEX_OP_CMP_LT:
1686                 return oldval < cmparg;
1687         case FUTEX_OP_CMP_GE:
1688                 return oldval >= cmparg;
1689         case FUTEX_OP_CMP_LE:
1690                 return oldval <= cmparg;
1691         case FUTEX_OP_CMP_GT:
1692                 return oldval > cmparg;
1693         default:
1694                 return -ENOSYS;
1695         }
1696 }
1697
1698 /*
1699  * Wake up all waiters hashed on the physical page that is mapped
1700  * to this virtual address:
1701  */
1702 static int
1703 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1704               int nr_wake, int nr_wake2, int op)
1705 {
1706         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1707         struct futex_hash_bucket *hb1, *hb2;
1708         struct futex_q *this, *next;
1709         int ret, op_ret;
1710         DEFINE_WAKE_Q(wake_q);
1711
1712 retry:
1713         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1714         if (unlikely(ret != 0))
1715                 goto out;
1716         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1717         if (unlikely(ret != 0))
1718                 goto out_put_key1;
1719
1720         hb1 = hash_futex(&key1);
1721         hb2 = hash_futex(&key2);
1722
1723 retry_private:
1724         double_lock_hb(hb1, hb2);
1725         op_ret = futex_atomic_op_inuser(op, uaddr2);
1726         if (unlikely(op_ret < 0)) {
1727                 double_unlock_hb(hb1, hb2);
1728
1729                 if (!IS_ENABLED(CONFIG_MMU) ||
1730                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1731                         /*
1732                          * we don't get EFAULT from MMU faults if we don't have
1733                          * an MMU, but we might get them from range checking
1734                          */
1735                         ret = op_ret;
1736                         goto out_put_keys;
1737                 }
1738
1739                 if (op_ret == -EFAULT) {
1740                         ret = fault_in_user_writeable(uaddr2);
1741                         if (ret)
1742                                 goto out_put_keys;
1743                 }
1744
1745                 if (!(flags & FLAGS_SHARED)) {
1746                         cond_resched();
1747                         goto retry_private;
1748                 }
1749
1750                 put_futex_key(&key2);
1751                 put_futex_key(&key1);
1752                 cond_resched();
1753                 goto retry;
1754         }
1755
1756         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1757                 if (match_futex (&this->key, &key1)) {
1758                         if (this->pi_state || this->rt_waiter) {
1759                                 ret = -EINVAL;
1760                                 goto out_unlock;
1761                         }
1762                         mark_wake_futex(&wake_q, this);
1763                         if (++ret >= nr_wake)
1764                                 break;
1765                 }
1766         }
1767
1768         if (op_ret > 0) {
1769                 op_ret = 0;
1770                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1771                         if (match_futex (&this->key, &key2)) {
1772                                 if (this->pi_state || this->rt_waiter) {
1773                                         ret = -EINVAL;
1774                                         goto out_unlock;
1775                                 }
1776                                 mark_wake_futex(&wake_q, this);
1777                                 if (++op_ret >= nr_wake2)
1778                                         break;
1779                         }
1780                 }
1781                 ret += op_ret;
1782         }
1783
1784 out_unlock:
1785         double_unlock_hb(hb1, hb2);
1786         wake_up_q(&wake_q);
1787 out_put_keys:
1788         put_futex_key(&key2);
1789 out_put_key1:
1790         put_futex_key(&key1);
1791 out:
1792         return ret;
1793 }
1794
1795 /**
1796  * requeue_futex() - Requeue a futex_q from one hb to another
1797  * @q:          the futex_q to requeue
1798  * @hb1:        the source hash_bucket
1799  * @hb2:        the target hash_bucket
1800  * @key2:       the new key for the requeued futex_q
1801  */
1802 static inline
1803 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1804                    struct futex_hash_bucket *hb2, union futex_key *key2)
1805 {
1806
1807         /*
1808          * If key1 and key2 hash to the same bucket, no need to
1809          * requeue.
1810          */
1811         if (likely(&hb1->chain != &hb2->chain)) {
1812                 plist_del(&q->list, &hb1->chain);
1813                 hb_waiters_dec(hb1);
1814                 hb_waiters_inc(hb2);
1815                 plist_add(&q->list, &hb2->chain);
1816                 q->lock_ptr = &hb2->lock;
1817         }
1818         get_futex_key_refs(key2);
1819         q->key = *key2;
1820 }
1821
1822 /**
1823  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1824  * @q:          the futex_q
1825  * @key:        the key of the requeue target futex
1826  * @hb:         the hash_bucket of the requeue target futex
1827  *
1828  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1829  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1830  * to the requeue target futex so the waiter can detect the wakeup on the right
1831  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1832  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1833  * to protect access to the pi_state to fixup the owner later.  Must be called
1834  * with both q->lock_ptr and hb->lock held.
1835  */
1836 static inline
1837 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1838                            struct futex_hash_bucket *hb)
1839 {
1840         get_futex_key_refs(key);
1841         q->key = *key;
1842
1843         __unqueue_futex(q);
1844
1845         WARN_ON(!q->rt_waiter);
1846         q->rt_waiter = NULL;
1847
1848         q->lock_ptr = &hb->lock;
1849
1850         wake_up_state(q->task, TASK_NORMAL);
1851 }
1852
1853 /**
1854  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1855  * @pifutex:            the user address of the to futex
1856  * @hb1:                the from futex hash bucket, must be locked by the caller
1857  * @hb2:                the to futex hash bucket, must be locked by the caller
1858  * @key1:               the from futex key
1859  * @key2:               the to futex key
1860  * @ps:                 address to store the pi_state pointer
1861  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1862  *
1863  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1864  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1865  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1866  * hb1 and hb2 must be held by the caller.
1867  *
1868  * Return:
1869  *  -  0 - failed to acquire the lock atomically;
1870  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1871  *  - <0 - error
1872  */
1873 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1874                                  struct futex_hash_bucket *hb1,
1875                                  struct futex_hash_bucket *hb2,
1876                                  union futex_key *key1, union futex_key *key2,
1877                                  struct futex_pi_state **ps, int set_waiters)
1878 {
1879         struct futex_q *top_waiter = NULL;
1880         u32 curval;
1881         int ret, vpid;
1882
1883         if (get_futex_value_locked(&curval, pifutex))
1884                 return -EFAULT;
1885
1886         if (unlikely(should_fail_futex(true)))
1887                 return -EFAULT;
1888
1889         /*
1890          * Find the top_waiter and determine if there are additional waiters.
1891          * If the caller intends to requeue more than 1 waiter to pifutex,
1892          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1893          * as we have means to handle the possible fault.  If not, don't set
1894          * the bit unecessarily as it will force the subsequent unlock to enter
1895          * the kernel.
1896          */
1897         top_waiter = futex_top_waiter(hb1, key1);
1898
1899         /* There are no waiters, nothing for us to do. */
1900         if (!top_waiter)
1901                 return 0;
1902
1903         /* Ensure we requeue to the expected futex. */
1904         if (!match_futex(top_waiter->requeue_pi_key, key2))
1905                 return -EINVAL;
1906
1907         /*
1908          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1909          * the contended case or if set_waiters is 1.  The pi_state is returned
1910          * in ps in contended cases.
1911          */
1912         vpid = task_pid_vnr(top_waiter->task);
1913         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1914                                    set_waiters);
1915         if (ret == 1) {
1916                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1917                 return vpid;
1918         }
1919         return ret;
1920 }
1921
1922 /**
1923  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1924  * @uaddr1:     source futex user address
1925  * @flags:      futex flags (FLAGS_SHARED, etc.)
1926  * @uaddr2:     target futex user address
1927  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1928  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1929  * @cmpval:     @uaddr1 expected value (or %NULL)
1930  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1931  *              pi futex (pi to pi requeue is not supported)
1932  *
1933  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1934  * uaddr2 atomically on behalf of the top waiter.
1935  *
1936  * Return:
1937  *  - >=0 - on success, the number of tasks requeued or woken;
1938  *  -  <0 - on error
1939  */
1940 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1941                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1942                          u32 *cmpval, int requeue_pi)
1943 {
1944         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1945         int drop_count = 0, task_count = 0, ret;
1946         struct futex_pi_state *pi_state = NULL;
1947         struct futex_hash_bucket *hb1, *hb2;
1948         struct futex_q *this, *next;
1949         DEFINE_WAKE_Q(wake_q);
1950
1951         if (nr_wake < 0 || nr_requeue < 0)
1952                 return -EINVAL;
1953
1954         /*
1955          * When PI not supported: return -ENOSYS if requeue_pi is true,
1956          * consequently the compiler knows requeue_pi is always false past
1957          * this point which will optimize away all the conditional code
1958          * further down.
1959          */
1960         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1961                 return -ENOSYS;
1962
1963         if (requeue_pi) {
1964                 /*
1965                  * Requeue PI only works on two distinct uaddrs. This
1966                  * check is only valid for private futexes. See below.
1967                  */
1968                 if (uaddr1 == uaddr2)
1969                         return -EINVAL;
1970
1971                 /*
1972                  * requeue_pi requires a pi_state, try to allocate it now
1973                  * without any locks in case it fails.
1974                  */
1975                 if (refill_pi_state_cache())
1976                         return -ENOMEM;
1977                 /*
1978                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1979                  * + nr_requeue, since it acquires the rt_mutex prior to
1980                  * returning to userspace, so as to not leave the rt_mutex with
1981                  * waiters and no owner.  However, second and third wake-ups
1982                  * cannot be predicted as they involve race conditions with the
1983                  * first wake and a fault while looking up the pi_state.  Both
1984                  * pthread_cond_signal() and pthread_cond_broadcast() should
1985                  * use nr_wake=1.
1986                  */
1987                 if (nr_wake != 1)
1988                         return -EINVAL;
1989         }
1990
1991 retry:
1992         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1993         if (unlikely(ret != 0))
1994                 goto out;
1995         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1996                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1997         if (unlikely(ret != 0))
1998                 goto out_put_key1;
1999
2000         /*
2001          * The check above which compares uaddrs is not sufficient for
2002          * shared futexes. We need to compare the keys:
2003          */
2004         if (requeue_pi && match_futex(&key1, &key2)) {
2005                 ret = -EINVAL;
2006                 goto out_put_keys;
2007         }
2008
2009         hb1 = hash_futex(&key1);
2010         hb2 = hash_futex(&key2);
2011
2012 retry_private:
2013         hb_waiters_inc(hb2);
2014         double_lock_hb(hb1, hb2);
2015
2016         if (likely(cmpval != NULL)) {
2017                 u32 curval;
2018
2019                 ret = get_futex_value_locked(&curval, uaddr1);
2020
2021                 if (unlikely(ret)) {
2022                         double_unlock_hb(hb1, hb2);
2023                         hb_waiters_dec(hb2);
2024
2025                         ret = get_user(curval, uaddr1);
2026                         if (ret)
2027                                 goto out_put_keys;
2028
2029                         if (!(flags & FLAGS_SHARED))
2030                                 goto retry_private;
2031
2032                         put_futex_key(&key2);
2033                         put_futex_key(&key1);
2034                         goto retry;
2035                 }
2036                 if (curval != *cmpval) {
2037                         ret = -EAGAIN;
2038                         goto out_unlock;
2039                 }
2040         }
2041
2042         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2043                 /*
2044                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2045                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2046                  * bit.  We force this here where we are able to easily handle
2047                  * faults rather in the requeue loop below.
2048                  */
2049                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2050                                                  &key2, &pi_state, nr_requeue);
2051
2052                 /*
2053                  * At this point the top_waiter has either taken uaddr2 or is
2054                  * waiting on it.  If the former, then the pi_state will not
2055                  * exist yet, look it up one more time to ensure we have a
2056                  * reference to it. If the lock was taken, ret contains the
2057                  * vpid of the top waiter task.
2058                  * If the lock was not taken, we have pi_state and an initial
2059                  * refcount on it. In case of an error we have nothing.
2060                  */
2061                 if (ret > 0) {
2062                         WARN_ON(pi_state);
2063                         drop_count++;
2064                         task_count++;
2065                         /*
2066                          * If we acquired the lock, then the user space value
2067                          * of uaddr2 should be vpid. It cannot be changed by
2068                          * the top waiter as it is blocked on hb2 lock if it
2069                          * tries to do so. If something fiddled with it behind
2070                          * our back the pi state lookup might unearth it. So
2071                          * we rather use the known value than rereading and
2072                          * handing potential crap to lookup_pi_state.
2073                          *
2074                          * If that call succeeds then we have pi_state and an
2075                          * initial refcount on it.
2076                          */
2077                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2078                 }
2079
2080                 switch (ret) {
2081                 case 0:
2082                         /* We hold a reference on the pi state. */
2083                         break;
2084
2085                         /* If the above failed, then pi_state is NULL */
2086                 case -EFAULT:
2087                         double_unlock_hb(hb1, hb2);
2088                         hb_waiters_dec(hb2);
2089                         put_futex_key(&key2);
2090                         put_futex_key(&key1);
2091                         ret = fault_in_user_writeable(uaddr2);
2092                         if (!ret)
2093                                 goto retry;
2094                         goto out;
2095                 case -EAGAIN:
2096                         /*
2097                          * Two reasons for this:
2098                          * - Owner is exiting and we just wait for the
2099                          *   exit to complete.
2100                          * - The user space value changed.
2101                          */
2102                         double_unlock_hb(hb1, hb2);
2103                         hb_waiters_dec(hb2);
2104                         put_futex_key(&key2);
2105                         put_futex_key(&key1);
2106                         cond_resched();
2107                         goto retry;
2108                 default:
2109                         goto out_unlock;
2110                 }
2111         }
2112
2113         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2114                 if (task_count - nr_wake >= nr_requeue)
2115                         break;
2116
2117                 if (!match_futex(&this->key, &key1))
2118                         continue;
2119
2120                 /*
2121                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2122                  * be paired with each other and no other futex ops.
2123                  *
2124                  * We should never be requeueing a futex_q with a pi_state,
2125                  * which is awaiting a futex_unlock_pi().
2126                  */
2127                 if ((requeue_pi && !this->rt_waiter) ||
2128                     (!requeue_pi && this->rt_waiter) ||
2129                     this->pi_state) {
2130                         ret = -EINVAL;
2131                         break;
2132                 }
2133
2134                 /*
2135                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2136                  * lock, we already woke the top_waiter.  If not, it will be
2137                  * woken by futex_unlock_pi().
2138                  */
2139                 if (++task_count <= nr_wake && !requeue_pi) {
2140                         mark_wake_futex(&wake_q, this);
2141                         continue;
2142                 }
2143
2144                 /* Ensure we requeue to the expected futex for requeue_pi. */
2145                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2146                         ret = -EINVAL;
2147                         break;
2148                 }
2149
2150                 /*
2151                  * Requeue nr_requeue waiters and possibly one more in the case
2152                  * of requeue_pi if we couldn't acquire the lock atomically.
2153                  */
2154                 if (requeue_pi) {
2155                         /*
2156                          * Prepare the waiter to take the rt_mutex. Take a
2157                          * refcount on the pi_state and store the pointer in
2158                          * the futex_q object of the waiter.
2159                          */
2160                         get_pi_state(pi_state);
2161                         this->pi_state = pi_state;
2162                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2163                                                         this->rt_waiter,
2164                                                         this->task);
2165                         if (ret == 1) {
2166                                 /*
2167                                  * We got the lock. We do neither drop the
2168                                  * refcount on pi_state nor clear
2169                                  * this->pi_state because the waiter needs the
2170                                  * pi_state for cleaning up the user space
2171                                  * value. It will drop the refcount after
2172                                  * doing so.
2173                                  */
2174                                 requeue_pi_wake_futex(this, &key2, hb2);
2175                                 drop_count++;
2176                                 continue;
2177                         } else if (ret) {
2178                                 /*
2179                                  * rt_mutex_start_proxy_lock() detected a
2180                                  * potential deadlock when we tried to queue
2181                                  * that waiter. Drop the pi_state reference
2182                                  * which we took above and remove the pointer
2183                                  * to the state from the waiters futex_q
2184                                  * object.
2185                                  */
2186                                 this->pi_state = NULL;
2187                                 put_pi_state(pi_state);
2188                                 /*
2189                                  * We stop queueing more waiters and let user
2190                                  * space deal with the mess.
2191                                  */
2192                                 break;
2193                         }
2194                 }
2195                 requeue_futex(this, hb1, hb2, &key2);
2196                 drop_count++;
2197         }
2198
2199         /*
2200          * We took an extra initial reference to the pi_state either
2201          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2202          * need to drop it here again.
2203          */
2204         put_pi_state(pi_state);
2205
2206 out_unlock:
2207         double_unlock_hb(hb1, hb2);
2208         wake_up_q(&wake_q);
2209         hb_waiters_dec(hb2);
2210
2211         /*
2212          * drop_futex_key_refs() must be called outside the spinlocks. During
2213          * the requeue we moved futex_q's from the hash bucket at key1 to the
2214          * one at key2 and updated their key pointer.  We no longer need to
2215          * hold the references to key1.
2216          */
2217         while (--drop_count >= 0)
2218                 drop_futex_key_refs(&key1);
2219
2220 out_put_keys:
2221         put_futex_key(&key2);
2222 out_put_key1:
2223         put_futex_key(&key1);
2224 out:
2225         return ret ? ret : task_count;
2226 }
2227
2228 /* The key must be already stored in q->key. */
2229 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2230         __acquires(&hb->lock)
2231 {
2232         struct futex_hash_bucket *hb;
2233
2234         hb = hash_futex(&q->key);
2235
2236         /*
2237          * Increment the counter before taking the lock so that
2238          * a potential waker won't miss a to-be-slept task that is
2239          * waiting for the spinlock. This is safe as all queue_lock()
2240          * users end up calling queue_me(). Similarly, for housekeeping,
2241          * decrement the counter at queue_unlock() when some error has
2242          * occurred and we don't end up adding the task to the list.
2243          */
2244         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2245
2246         q->lock_ptr = &hb->lock;
2247
2248         spin_lock(&hb->lock);
2249         return hb;
2250 }
2251
2252 static inline void
2253 queue_unlock(struct futex_hash_bucket *hb)
2254         __releases(&hb->lock)
2255 {
2256         spin_unlock(&hb->lock);
2257         hb_waiters_dec(hb);
2258 }
2259
2260 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2261 {
2262         int prio;
2263
2264         /*
2265          * The priority used to register this element is
2266          * - either the real thread-priority for the real-time threads
2267          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2268          * - or MAX_RT_PRIO for non-RT threads.
2269          * Thus, all RT-threads are woken first in priority order, and
2270          * the others are woken last, in FIFO order.
2271          */
2272         prio = min(current->normal_prio, MAX_RT_PRIO);
2273
2274         plist_node_init(&q->list, prio);
2275         plist_add(&q->list, &hb->chain);
2276         q->task = current;
2277 }
2278
2279 /**
2280  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2281  * @q:  The futex_q to enqueue
2282  * @hb: The destination hash bucket
2283  *
2284  * The hb->lock must be held by the caller, and is released here. A call to
2285  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2286  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2287  * or nothing if the unqueue is done as part of the wake process and the unqueue
2288  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2289  * an example).
2290  */
2291 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2292         __releases(&hb->lock)
2293 {
2294         __queue_me(q, hb);
2295         spin_unlock(&hb->lock);
2296 }
2297
2298 /**
2299  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2300  * @q:  The futex_q to unqueue
2301  *
2302  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2303  * be paired with exactly one earlier call to queue_me().
2304  *
2305  * Return:
2306  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2307  *  - 0 - if the futex_q was already removed by the waking thread
2308  */
2309 static int unqueue_me(struct futex_q *q)
2310 {
2311         spinlock_t *lock_ptr;
2312         int ret = 0;
2313
2314         /* In the common case we don't take the spinlock, which is nice. */
2315 retry:
2316         /*
2317          * q->lock_ptr can change between this read and the following spin_lock.
2318          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2319          * optimizing lock_ptr out of the logic below.
2320          */
2321         lock_ptr = READ_ONCE(q->lock_ptr);
2322         if (lock_ptr != NULL) {
2323                 spin_lock(lock_ptr);
2324                 /*
2325                  * q->lock_ptr can change between reading it and
2326                  * spin_lock(), causing us to take the wrong lock.  This
2327                  * corrects the race condition.
2328                  *
2329                  * Reasoning goes like this: if we have the wrong lock,
2330                  * q->lock_ptr must have changed (maybe several times)
2331                  * between reading it and the spin_lock().  It can
2332                  * change again after the spin_lock() but only if it was
2333                  * already changed before the spin_lock().  It cannot,
2334                  * however, change back to the original value.  Therefore
2335                  * we can detect whether we acquired the correct lock.
2336                  */
2337                 if (unlikely(lock_ptr != q->lock_ptr)) {
2338                         spin_unlock(lock_ptr);
2339                         goto retry;
2340                 }
2341                 __unqueue_futex(q);
2342
2343                 BUG_ON(q->pi_state);
2344
2345                 spin_unlock(lock_ptr);
2346                 ret = 1;
2347         }
2348
2349         drop_futex_key_refs(&q->key);
2350         return ret;
2351 }
2352
2353 /*
2354  * PI futexes can not be requeued and must remove themself from the
2355  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2356  * and dropped here.
2357  */
2358 static void unqueue_me_pi(struct futex_q *q)
2359         __releases(q->lock_ptr)
2360 {
2361         __unqueue_futex(q);
2362
2363         BUG_ON(!q->pi_state);
2364         put_pi_state(q->pi_state);
2365         q->pi_state = NULL;
2366
2367         spin_unlock(q->lock_ptr);
2368 }
2369
2370 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2371                                 struct task_struct *argowner)
2372 {
2373         struct futex_pi_state *pi_state = q->pi_state;
2374         u32 uval, uninitialized_var(curval), newval;
2375         struct task_struct *oldowner, *newowner;
2376         u32 newtid;
2377         int ret, err = 0;
2378
2379         lockdep_assert_held(q->lock_ptr);
2380
2381         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2382
2383         oldowner = pi_state->owner;
2384
2385         /*
2386          * We are here because either:
2387          *
2388          *  - we stole the lock and pi_state->owner needs updating to reflect
2389          *    that (@argowner == current),
2390          *
2391          * or:
2392          *
2393          *  - someone stole our lock and we need to fix things to point to the
2394          *    new owner (@argowner == NULL).
2395          *
2396          * Either way, we have to replace the TID in the user space variable.
2397          * This must be atomic as we have to preserve the owner died bit here.
2398          *
2399          * Note: We write the user space value _before_ changing the pi_state
2400          * because we can fault here. Imagine swapped out pages or a fork
2401          * that marked all the anonymous memory readonly for cow.
2402          *
2403          * Modifying pi_state _before_ the user space value would leave the
2404          * pi_state in an inconsistent state when we fault here, because we
2405          * need to drop the locks to handle the fault. This might be observed
2406          * in the PID check in lookup_pi_state.
2407          */
2408 retry:
2409         if (!argowner) {
2410                 if (oldowner != current) {
2411                         /*
2412                          * We raced against a concurrent self; things are
2413                          * already fixed up. Nothing to do.
2414                          */
2415                         ret = 0;
2416                         goto out_unlock;
2417                 }
2418
2419                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2420                         /* We got the lock after all, nothing to fix. */
2421                         ret = 0;
2422                         goto out_unlock;
2423                 }
2424
2425                 /*
2426                  * Since we just failed the trylock; there must be an owner.
2427                  */
2428                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2429                 BUG_ON(!newowner);
2430         } else {
2431                 WARN_ON_ONCE(argowner != current);
2432                 if (oldowner == current) {
2433                         /*
2434                          * We raced against a concurrent self; things are
2435                          * already fixed up. Nothing to do.
2436                          */
2437                         ret = 0;
2438                         goto out_unlock;
2439                 }
2440                 newowner = argowner;
2441         }
2442
2443         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2444         /* Owner died? */
2445         if (!pi_state->owner)
2446                 newtid |= FUTEX_OWNER_DIED;
2447
2448         err = get_futex_value_locked(&uval, uaddr);
2449         if (err)
2450                 goto handle_err;
2451
2452         for (;;) {
2453                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2454
2455                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2456                 if (err)
2457                         goto handle_err;
2458
2459                 if (curval == uval)
2460                         break;
2461                 uval = curval;
2462         }
2463
2464         /*
2465          * We fixed up user space. Now we need to fix the pi_state
2466          * itself.
2467          */
2468         if (pi_state->owner != NULL) {
2469                 raw_spin_lock(&pi_state->owner->pi_lock);
2470                 WARN_ON(list_empty(&pi_state->list));
2471                 list_del_init(&pi_state->list);
2472                 raw_spin_unlock(&pi_state->owner->pi_lock);
2473         }
2474
2475         pi_state->owner = newowner;
2476
2477         raw_spin_lock(&newowner->pi_lock);
2478         WARN_ON(!list_empty(&pi_state->list));
2479         list_add(&pi_state->list, &newowner->pi_state_list);
2480         raw_spin_unlock(&newowner->pi_lock);
2481         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2482
2483         return 0;
2484
2485         /*
2486          * In order to reschedule or handle a page fault, we need to drop the
2487          * locks here. In the case of a fault, this gives the other task
2488          * (either the highest priority waiter itself or the task which stole
2489          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2490          * are back from handling the fault we need to check the pi_state after
2491          * reacquiring the locks and before trying to do another fixup. When
2492          * the fixup has been done already we simply return.
2493          *
2494          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2495          * drop hb->lock since the caller owns the hb -> futex_q relation.
2496          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2497          */
2498 handle_err:
2499         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2500         spin_unlock(q->lock_ptr);
2501
2502         switch (err) {
2503         case -EFAULT:
2504                 ret = fault_in_user_writeable(uaddr);
2505                 break;
2506
2507         case -EAGAIN:
2508                 cond_resched();
2509                 ret = 0;
2510                 break;
2511
2512         default:
2513                 WARN_ON_ONCE(1);
2514                 ret = err;
2515                 break;
2516         }
2517
2518         spin_lock(q->lock_ptr);
2519         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2520
2521         /*
2522          * Check if someone else fixed it for us:
2523          */
2524         if (pi_state->owner != oldowner) {
2525                 ret = 0;
2526                 goto out_unlock;
2527         }
2528
2529         if (ret)
2530                 goto out_unlock;
2531
2532         goto retry;
2533
2534 out_unlock:
2535         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2536         return ret;
2537 }
2538
2539 static long futex_wait_restart(struct restart_block *restart);
2540
2541 /**
2542  * fixup_owner() - Post lock pi_state and corner case management
2543  * @uaddr:      user address of the futex
2544  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2545  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2546  *
2547  * After attempting to lock an rt_mutex, this function is called to cleanup
2548  * the pi_state owner as well as handle race conditions that may allow us to
2549  * acquire the lock. Must be called with the hb lock held.
2550  *
2551  * Return:
2552  *  -  1 - success, lock taken;
2553  *  -  0 - success, lock not taken;
2554  *  - <0 - on error (-EFAULT)
2555  */
2556 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2557 {
2558         int ret = 0;
2559
2560         if (locked) {
2561                 /*
2562                  * Got the lock. We might not be the anticipated owner if we
2563                  * did a lock-steal - fix up the PI-state in that case:
2564                  *
2565                  * Speculative pi_state->owner read (we don't hold wait_lock);
2566                  * since we own the lock pi_state->owner == current is the
2567                  * stable state, anything else needs more attention.
2568                  */
2569                 if (q->pi_state->owner != current)
2570                         ret = fixup_pi_state_owner(uaddr, q, current);
2571                 goto out;
2572         }
2573
2574         /*
2575          * If we didn't get the lock; check if anybody stole it from us. In
2576          * that case, we need to fix up the uval to point to them instead of
2577          * us, otherwise bad things happen. [10]
2578          *
2579          * Another speculative read; pi_state->owner == current is unstable
2580          * but needs our attention.
2581          */
2582         if (q->pi_state->owner == current) {
2583                 ret = fixup_pi_state_owner(uaddr, q, NULL);
2584                 goto out;
2585         }
2586
2587         /*
2588          * Paranoia check. If we did not take the lock, then we should not be
2589          * the owner of the rt_mutex.
2590          */
2591         if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2592                 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2593                                 "pi-state %p\n", ret,
2594                                 q->pi_state->pi_mutex.owner,
2595                                 q->pi_state->owner);
2596         }
2597
2598 out:
2599         return ret ? ret : locked;
2600 }
2601
2602 /**
2603  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2604  * @hb:         the futex hash bucket, must be locked by the caller
2605  * @q:          the futex_q to queue up on
2606  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2607  */
2608 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2609                                 struct hrtimer_sleeper *timeout)
2610 {
2611         /*
2612          * The task state is guaranteed to be set before another task can
2613          * wake it. set_current_state() is implemented using smp_store_mb() and
2614          * queue_me() calls spin_unlock() upon completion, both serializing
2615          * access to the hash list and forcing another memory barrier.
2616          */
2617         set_current_state(TASK_INTERRUPTIBLE);
2618         queue_me(q, hb);
2619
2620         /* Arm the timer */
2621         if (timeout)
2622                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2623
2624         /*
2625          * If we have been removed from the hash list, then another task
2626          * has tried to wake us, and we can skip the call to schedule().
2627          */
2628         if (likely(!plist_node_empty(&q->list))) {
2629                 /*
2630                  * If the timer has already expired, current will already be
2631                  * flagged for rescheduling. Only call schedule if there
2632                  * is no timeout, or if it has yet to expire.
2633                  */
2634                 if (!timeout || timeout->task)
2635                         freezable_schedule();
2636         }
2637         __set_current_state(TASK_RUNNING);
2638 }
2639
2640 /**
2641  * futex_wait_setup() - Prepare to wait on a futex
2642  * @uaddr:      the futex userspace address
2643  * @val:        the expected value
2644  * @flags:      futex flags (FLAGS_SHARED, etc.)
2645  * @q:          the associated futex_q
2646  * @hb:         storage for hash_bucket pointer to be returned to caller
2647  *
2648  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2649  * compare it with the expected value.  Handle atomic faults internally.
2650  * Return with the hb lock held and a q.key reference on success, and unlocked
2651  * with no q.key reference on failure.
2652  *
2653  * Return:
2654  *  -  0 - uaddr contains val and hb has been locked;
2655  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2656  */
2657 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2658                            struct futex_q *q, struct futex_hash_bucket **hb)
2659 {
2660         u32 uval;
2661         int ret;
2662
2663         /*
2664          * Access the page AFTER the hash-bucket is locked.
2665          * Order is important:
2666          *
2667          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2668          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2669          *
2670          * The basic logical guarantee of a futex is that it blocks ONLY
2671          * if cond(var) is known to be true at the time of blocking, for
2672          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2673          * would open a race condition where we could block indefinitely with
2674          * cond(var) false, which would violate the guarantee.
2675          *
2676          * On the other hand, we insert q and release the hash-bucket only
2677          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2678          * absorb a wakeup if *uaddr does not match the desired values
2679          * while the syscall executes.
2680          */
2681 retry:
2682         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2683         if (unlikely(ret != 0))
2684                 return ret;
2685
2686 retry_private:
2687         *hb = queue_lock(q);
2688
2689         ret = get_futex_value_locked(&uval, uaddr);
2690
2691         if (ret) {
2692                 queue_unlock(*hb);
2693
2694                 ret = get_user(uval, uaddr);
2695                 if (ret)
2696                         goto out;
2697
2698                 if (!(flags & FLAGS_SHARED))
2699                         goto retry_private;
2700
2701                 put_futex_key(&q->key);
2702                 goto retry;
2703         }
2704
2705         if (uval != val) {
2706                 queue_unlock(*hb);
2707                 ret = -EWOULDBLOCK;
2708         }
2709
2710 out:
2711         if (ret)
2712                 put_futex_key(&q->key);
2713         return ret;
2714 }
2715
2716 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2717                       ktime_t *abs_time, u32 bitset)
2718 {
2719         struct hrtimer_sleeper timeout, *to;
2720         struct restart_block *restart;
2721         struct futex_hash_bucket *hb;
2722         struct futex_q q = futex_q_init;
2723         int ret;
2724
2725         if (!bitset)
2726                 return -EINVAL;
2727         q.bitset = bitset;
2728
2729         to = futex_setup_timer(abs_time, &timeout, flags,
2730                                current->timer_slack_ns);
2731 retry:
2732         /*
2733          * Prepare to wait on uaddr. On success, holds hb lock and increments
2734          * q.key refs.
2735          */
2736         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2737         if (ret)
2738                 goto out;
2739
2740         /* queue_me and wait for wakeup, timeout, or a signal. */
2741         futex_wait_queue_me(hb, &q, to);
2742
2743         /* If we were woken (and unqueued), we succeeded, whatever. */
2744         ret = 0;
2745         /* unqueue_me() drops q.key ref */
2746         if (!unqueue_me(&q))
2747                 goto out;
2748         ret = -ETIMEDOUT;
2749         if (to && !to->task)
2750                 goto out;
2751
2752         /*
2753          * We expect signal_pending(current), but we might be the
2754          * victim of a spurious wakeup as well.
2755          */
2756         if (!signal_pending(current))
2757                 goto retry;
2758
2759         ret = -ERESTARTSYS;
2760         if (!abs_time)
2761                 goto out;
2762
2763         restart = &current->restart_block;
2764         restart->fn = futex_wait_restart;
2765         restart->futex.uaddr = uaddr;
2766         restart->futex.val = val;
2767         restart->futex.time = *abs_time;
2768         restart->futex.bitset = bitset;
2769         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2770
2771         ret = -ERESTART_RESTARTBLOCK;
2772
2773 out:
2774         if (to) {
2775                 hrtimer_cancel(&to->timer);
2776                 destroy_hrtimer_on_stack(&to->timer);
2777         }
2778         return ret;
2779 }
2780
2781
2782 static long futex_wait_restart(struct restart_block *restart)
2783 {
2784         u32 __user *uaddr = restart->futex.uaddr;
2785         ktime_t t, *tp = NULL;
2786
2787         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2788                 t = restart->futex.time;
2789                 tp = &t;
2790         }
2791         restart->fn = do_no_restart_syscall;
2792
2793         return (long)futex_wait(uaddr, restart->futex.flags,
2794                                 restart->futex.val, tp, restart->futex.bitset);
2795 }
2796
2797
2798 /*
2799  * Userspace tried a 0 -> TID atomic transition of the futex value
2800  * and failed. The kernel side here does the whole locking operation:
2801  * if there are waiters then it will block as a consequence of relying
2802  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2803  * a 0 value of the futex too.).
2804  *
2805  * Also serves as futex trylock_pi()'ing, and due semantics.
2806  */
2807 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2808                          ktime_t *time, int trylock)
2809 {
2810         struct hrtimer_sleeper timeout, *to;
2811         struct futex_pi_state *pi_state = NULL;
2812         struct rt_mutex_waiter rt_waiter;
2813         struct futex_hash_bucket *hb;
2814         struct futex_q q = futex_q_init;
2815         int res, ret;
2816
2817         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2818                 return -ENOSYS;
2819
2820         if (refill_pi_state_cache())
2821                 return -ENOMEM;
2822
2823         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2824
2825 retry:
2826         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2827         if (unlikely(ret != 0))
2828                 goto out;
2829
2830 retry_private:
2831         hb = queue_lock(&q);
2832
2833         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2834         if (unlikely(ret)) {
2835                 /*
2836                  * Atomic work succeeded and we got the lock,
2837                  * or failed. Either way, we do _not_ block.
2838                  */
2839                 switch (ret) {
2840                 case 1:
2841                         /* We got the lock. */
2842                         ret = 0;
2843                         goto out_unlock_put_key;
2844                 case -EFAULT:
2845                         goto uaddr_faulted;
2846                 case -EAGAIN:
2847                         /*
2848                          * Two reasons for this:
2849                          * - Task is exiting and we just wait for the
2850                          *   exit to complete.
2851                          * - The user space value changed.
2852                          */
2853                         queue_unlock(hb);
2854                         put_futex_key(&q.key);
2855                         cond_resched();
2856                         goto retry;
2857                 default:
2858                         goto out_unlock_put_key;
2859                 }
2860         }
2861
2862         WARN_ON(!q.pi_state);
2863
2864         /*
2865          * Only actually queue now that the atomic ops are done:
2866          */
2867         __queue_me(&q, hb);
2868
2869         if (trylock) {
2870                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2871                 /* Fixup the trylock return value: */
2872                 ret = ret ? 0 : -EWOULDBLOCK;
2873                 goto no_block;
2874         }
2875
2876         rt_mutex_init_waiter(&rt_waiter);
2877
2878         /*
2879          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2880          * hold it while doing rt_mutex_start_proxy(), because then it will
2881          * include hb->lock in the blocking chain, even through we'll not in
2882          * fact hold it while blocking. This will lead it to report -EDEADLK
2883          * and BUG when futex_unlock_pi() interleaves with this.
2884          *
2885          * Therefore acquire wait_lock while holding hb->lock, but drop the
2886          * latter before calling __rt_mutex_start_proxy_lock(). This
2887          * interleaves with futex_unlock_pi() -- which does a similar lock
2888          * handoff -- such that the latter can observe the futex_q::pi_state
2889          * before __rt_mutex_start_proxy_lock() is done.
2890          */
2891         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2892         spin_unlock(q.lock_ptr);
2893         /*
2894          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2895          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2896          * it sees the futex_q::pi_state.
2897          */
2898         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2899         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2900
2901         if (ret) {
2902                 if (ret == 1)
2903                         ret = 0;
2904                 goto cleanup;
2905         }
2906
2907         if (unlikely(to))
2908                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2909
2910         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2911
2912 cleanup:
2913         spin_lock(q.lock_ptr);
2914         /*
2915          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2916          * first acquire the hb->lock before removing the lock from the
2917          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2918          * lists consistent.
2919          *
2920          * In particular; it is important that futex_unlock_pi() can not
2921          * observe this inconsistency.
2922          */
2923         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2924                 ret = 0;
2925
2926 no_block:
2927         /*
2928          * Fixup the pi_state owner and possibly acquire the lock if we
2929          * haven't already.
2930          */
2931         res = fixup_owner(uaddr, &q, !ret);
2932         /*
2933          * If fixup_owner() returned an error, proprogate that.  If it acquired
2934          * the lock, clear our -ETIMEDOUT or -EINTR.
2935          */
2936         if (res)
2937                 ret = (res < 0) ? res : 0;
2938
2939         /*
2940          * If fixup_owner() faulted and was unable to handle the fault, unlock
2941          * it and return the fault to userspace.
2942          */
2943         if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2944                 pi_state = q.pi_state;
2945                 get_pi_state(pi_state);
2946         }
2947
2948         /* Unqueue and drop the lock */
2949         unqueue_me_pi(&q);
2950
2951         if (pi_state) {
2952                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2953                 put_pi_state(pi_state);
2954         }
2955
2956         goto out_put_key;
2957
2958 out_unlock_put_key:
2959         queue_unlock(hb);
2960
2961 out_put_key:
2962         put_futex_key(&q.key);
2963 out:
2964         if (to) {
2965                 hrtimer_cancel(&to->timer);
2966                 destroy_hrtimer_on_stack(&to->timer);
2967         }
2968         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2969
2970 uaddr_faulted:
2971         queue_unlock(hb);
2972
2973         ret = fault_in_user_writeable(uaddr);
2974         if (ret)
2975                 goto out_put_key;
2976
2977         if (!(flags & FLAGS_SHARED))
2978                 goto retry_private;
2979
2980         put_futex_key(&q.key);
2981         goto retry;
2982 }
2983
2984 /*
2985  * Userspace attempted a TID -> 0 atomic transition, and failed.
2986  * This is the in-kernel slowpath: we look up the PI state (if any),
2987  * and do the rt-mutex unlock.
2988  */
2989 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2990 {
2991         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2992         union futex_key key = FUTEX_KEY_INIT;
2993         struct futex_hash_bucket *hb;
2994         struct futex_q *top_waiter;
2995         int ret;
2996
2997         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2998                 return -ENOSYS;
2999
3000 retry:
3001         if (get_user(uval, uaddr))
3002                 return -EFAULT;
3003         /*
3004          * We release only a lock we actually own:
3005          */
3006         if ((uval & FUTEX_TID_MASK) != vpid)
3007                 return -EPERM;
3008
3009         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3010         if (ret)
3011                 return ret;
3012
3013         hb = hash_futex(&key);
3014         spin_lock(&hb->lock);
3015
3016         /*
3017          * Check waiters first. We do not trust user space values at
3018          * all and we at least want to know if user space fiddled
3019          * with the futex value instead of blindly unlocking.
3020          */
3021         top_waiter = futex_top_waiter(hb, &key);
3022         if (top_waiter) {
3023                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3024
3025                 ret = -EINVAL;
3026                 if (!pi_state)
3027                         goto out_unlock;
3028
3029                 /*
3030                  * If current does not own the pi_state then the futex is
3031                  * inconsistent and user space fiddled with the futex value.
3032                  */
3033                 if (pi_state->owner != current)
3034                         goto out_unlock;
3035
3036                 get_pi_state(pi_state);
3037                 /*
3038                  * By taking wait_lock while still holding hb->lock, we ensure
3039                  * there is no point where we hold neither; and therefore
3040                  * wake_futex_pi() must observe a state consistent with what we
3041                  * observed.
3042                  *
3043                  * In particular; this forces __rt_mutex_start_proxy() to
3044                  * complete such that we're guaranteed to observe the
3045                  * rt_waiter. Also see the WARN in wake_futex_pi().
3046                  */
3047                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3048                 spin_unlock(&hb->lock);
3049
3050                 /* drops pi_state->pi_mutex.wait_lock */
3051                 ret = wake_futex_pi(uaddr, uval, pi_state);
3052
3053                 put_pi_state(pi_state);
3054
3055                 /*
3056                  * Success, we're done! No tricky corner cases.
3057                  */
3058                 if (!ret)
3059                         goto out_putkey;
3060                 /*
3061                  * The atomic access to the futex value generated a
3062                  * pagefault, so retry the user-access and the wakeup:
3063                  */
3064                 if (ret == -EFAULT)
3065                         goto pi_faulted;
3066                 /*
3067                  * A unconditional UNLOCK_PI op raced against a waiter
3068                  * setting the FUTEX_WAITERS bit. Try again.
3069                  */
3070                 if (ret == -EAGAIN)
3071                         goto pi_retry;
3072                 /*
3073                  * wake_futex_pi has detected invalid state. Tell user
3074                  * space.
3075                  */
3076                 goto out_putkey;
3077         }
3078
3079         /*
3080          * We have no kernel internal state, i.e. no waiters in the
3081          * kernel. Waiters which are about to queue themselves are stuck
3082          * on hb->lock. So we can safely ignore them. We do neither
3083          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3084          * owner.
3085          */
3086         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3087                 spin_unlock(&hb->lock);
3088                 switch (ret) {
3089                 case -EFAULT:
3090                         goto pi_faulted;
3091
3092                 case -EAGAIN:
3093                         goto pi_retry;
3094
3095                 default:
3096                         WARN_ON_ONCE(1);
3097                         goto out_putkey;
3098                 }
3099         }
3100
3101         /*
3102          * If uval has changed, let user space handle it.
3103          */
3104         ret = (curval == uval) ? 0 : -EAGAIN;
3105
3106 out_unlock:
3107         spin_unlock(&hb->lock);
3108 out_putkey:
3109         put_futex_key(&key);
3110         return ret;
3111
3112 pi_retry:
3113         put_futex_key(&key);
3114         cond_resched();
3115         goto retry;
3116
3117 pi_faulted:
3118         put_futex_key(&key);
3119
3120         ret = fault_in_user_writeable(uaddr);
3121         if (!ret)
3122                 goto retry;
3123
3124         return ret;
3125 }
3126
3127 /**
3128  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3129  * @hb:         the hash_bucket futex_q was original enqueued on
3130  * @q:          the futex_q woken while waiting to be requeued
3131  * @key2:       the futex_key of the requeue target futex
3132  * @timeout:    the timeout associated with the wait (NULL if none)
3133  *
3134  * Detect if the task was woken on the initial futex as opposed to the requeue
3135  * target futex.  If so, determine if it was a timeout or a signal that caused
3136  * the wakeup and return the appropriate error code to the caller.  Must be
3137  * called with the hb lock held.
3138  *
3139  * Return:
3140  *  -  0 = no early wakeup detected;
3141  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3142  */
3143 static inline
3144 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3145                                    struct futex_q *q, union futex_key *key2,
3146                                    struct hrtimer_sleeper *timeout)
3147 {
3148         int ret = 0;
3149
3150         /*
3151          * With the hb lock held, we avoid races while we process the wakeup.
3152          * We only need to hold hb (and not hb2) to ensure atomicity as the
3153          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3154          * It can't be requeued from uaddr2 to something else since we don't
3155          * support a PI aware source futex for requeue.
3156          */
3157         if (!match_futex(&q->key, key2)) {
3158                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3159                 /*
3160                  * We were woken prior to requeue by a timeout or a signal.
3161                  * Unqueue the futex_q and determine which it was.
3162                  */
3163                 plist_del(&q->list, &hb->chain);
3164                 hb_waiters_dec(hb);
3165
3166                 /* Handle spurious wakeups gracefully */
3167                 ret = -EWOULDBLOCK;
3168                 if (timeout && !timeout->task)
3169                         ret = -ETIMEDOUT;
3170                 else if (signal_pending(current))
3171                         ret = -ERESTARTNOINTR;
3172         }
3173         return ret;
3174 }
3175
3176 /**
3177  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3178  * @uaddr:      the futex we initially wait on (non-pi)
3179  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3180  *              the same type, no requeueing from private to shared, etc.
3181  * @val:        the expected value of uaddr
3182  * @abs_time:   absolute timeout
3183  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3184  * @uaddr2:     the pi futex we will take prior to returning to user-space
3185  *
3186  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3187  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3188  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3189  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3190  * without one, the pi logic would not know which task to boost/deboost, if
3191  * there was a need to.
3192  *
3193  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3194  * via the following--
3195  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3196  * 2) wakeup on uaddr2 after a requeue
3197  * 3) signal
3198  * 4) timeout
3199  *
3200  * If 3, cleanup and return -ERESTARTNOINTR.
3201  *
3202  * If 2, we may then block on trying to take the rt_mutex and return via:
3203  * 5) successful lock
3204  * 6) signal
3205  * 7) timeout
3206  * 8) other lock acquisition failure
3207  *
3208  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3209  *
3210  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3211  *
3212  * Return:
3213  *  -  0 - On success;
3214  *  - <0 - On error
3215  */
3216 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3217                                  u32 val, ktime_t *abs_time, u32 bitset,
3218                                  u32 __user *uaddr2)
3219 {
3220         struct hrtimer_sleeper timeout, *to;
3221         struct futex_pi_state *pi_state = NULL;
3222         struct rt_mutex_waiter rt_waiter;
3223         struct futex_hash_bucket *hb;
3224         union futex_key key2 = FUTEX_KEY_INIT;
3225         struct futex_q q = futex_q_init;
3226         int res, ret;
3227
3228         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3229                 return -ENOSYS;
3230
3231         if (uaddr == uaddr2)
3232                 return -EINVAL;
3233
3234         if (!bitset)
3235                 return -EINVAL;
3236
3237         to = futex_setup_timer(abs_time, &timeout, flags,
3238                                current->timer_slack_ns);
3239
3240         /*
3241          * The waiter is allocated on our stack, manipulated by the requeue
3242          * code while we sleep on uaddr.
3243          */
3244         rt_mutex_init_waiter(&rt_waiter);
3245
3246         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3247         if (unlikely(ret != 0))
3248                 goto out;
3249
3250         q.bitset = bitset;
3251         q.rt_waiter = &rt_waiter;
3252         q.requeue_pi_key = &key2;
3253
3254         /*
3255          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3256          * count.
3257          */
3258         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3259         if (ret)
3260                 goto out_key2;
3261
3262         /*
3263          * The check above which compares uaddrs is not sufficient for
3264          * shared futexes. We need to compare the keys:
3265          */
3266         if (match_futex(&q.key, &key2)) {
3267                 queue_unlock(hb);
3268                 ret = -EINVAL;
3269                 goto out_put_keys;
3270         }
3271
3272         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3273         futex_wait_queue_me(hb, &q, to);
3274
3275         spin_lock(&hb->lock);
3276         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3277         spin_unlock(&hb->lock);
3278         if (ret)
3279                 goto out_put_keys;
3280
3281         /*
3282          * In order for us to be here, we know our q.key == key2, and since
3283          * we took the hb->lock above, we also know that futex_requeue() has
3284          * completed and we no longer have to concern ourselves with a wakeup
3285          * race with the atomic proxy lock acquisition by the requeue code. The
3286          * futex_requeue dropped our key1 reference and incremented our key2
3287          * reference count.
3288          */
3289
3290         /* Check if the requeue code acquired the second futex for us. */
3291         if (!q.rt_waiter) {
3292                 /*
3293                  * Got the lock. We might not be the anticipated owner if we
3294                  * did a lock-steal - fix up the PI-state in that case.
3295                  */
3296                 if (q.pi_state && (q.pi_state->owner != current)) {
3297                         spin_lock(q.lock_ptr);
3298                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3299                         if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3300                                 pi_state = q.pi_state;
3301                                 get_pi_state(pi_state);
3302                         }
3303                         /*
3304                          * Drop the reference to the pi state which
3305                          * the requeue_pi() code acquired for us.
3306                          */
3307                         put_pi_state(q.pi_state);
3308                         spin_unlock(q.lock_ptr);
3309                 }
3310         } else {
3311                 struct rt_mutex *pi_mutex;
3312
3313                 /*
3314                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3315                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3316                  * the pi_state.
3317                  */
3318                 WARN_ON(!q.pi_state);
3319                 pi_mutex = &q.pi_state->pi_mutex;
3320                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3321
3322                 spin_lock(q.lock_ptr);
3323                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3324                         ret = 0;
3325
3326                 debug_rt_mutex_free_waiter(&rt_waiter);
3327                 /*
3328                  * Fixup the pi_state owner and possibly acquire the lock if we
3329                  * haven't already.
3330                  */
3331                 res = fixup_owner(uaddr2, &q, !ret);
3332                 /*
3333                  * If fixup_owner() returned an error, proprogate that.  If it
3334                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3335                  */
3336                 if (res)
3337                         ret = (res < 0) ? res : 0;
3338
3339                 /*
3340                  * If fixup_pi_state_owner() faulted and was unable to handle
3341                  * the fault, unlock the rt_mutex and return the fault to
3342                  * userspace.
3343                  */
3344                 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3345                         pi_state = q.pi_state;
3346                         get_pi_state(pi_state);
3347                 }
3348
3349                 /* Unqueue and drop the lock. */
3350                 unqueue_me_pi(&q);
3351         }
3352
3353         if (pi_state) {
3354                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3355                 put_pi_state(pi_state);
3356         }
3357
3358         if (ret == -EINTR) {
3359                 /*
3360                  * We've already been requeued, but cannot restart by calling
3361                  * futex_lock_pi() directly. We could restart this syscall, but
3362                  * it would detect that the user space "val" changed and return
3363                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3364                  * -EWOULDBLOCK directly.
3365                  */
3366                 ret = -EWOULDBLOCK;
3367         }
3368
3369 out_put_keys:
3370         put_futex_key(&q.key);
3371 out_key2:
3372         put_futex_key(&key2);
3373
3374 out:
3375         if (to) {
3376                 hrtimer_cancel(&to->timer);
3377                 destroy_hrtimer_on_stack(&to->timer);
3378         }
3379         return ret;
3380 }
3381
3382 /*
3383  * Support for robust futexes: the kernel cleans up held futexes at
3384  * thread exit time.
3385  *
3386  * Implementation: user-space maintains a per-thread list of locks it
3387  * is holding. Upon do_exit(), the kernel carefully walks this list,
3388  * and marks all locks that are owned by this thread with the
3389  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3390  * always manipulated with the lock held, so the list is private and
3391  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3392  * field, to allow the kernel to clean up if the thread dies after
3393  * acquiring the lock, but just before it could have added itself to
3394  * the list. There can only be one such pending lock.
3395  */
3396
3397 /**
3398  * sys_set_robust_list() - Set the robust-futex list head of a task
3399  * @head:       pointer to the list-head
3400  * @len:        length of the list-head, as userspace expects
3401  */
3402 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3403                 size_t, len)
3404 {
3405         if (!futex_cmpxchg_enabled)
3406                 return -ENOSYS;
3407         /*
3408          * The kernel knows only one size for now:
3409          */
3410         if (unlikely(len != sizeof(*head)))
3411                 return -EINVAL;
3412
3413         current->robust_list = head;
3414
3415         return 0;
3416 }
3417
3418 /**
3419  * sys_get_robust_list() - Get the robust-futex list head of a task
3420  * @pid:        pid of the process [zero for current task]
3421  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3422  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3423  */
3424 SYSCALL_DEFINE3(get_robust_list, int, pid,
3425                 struct robust_list_head __user * __user *, head_ptr,
3426                 size_t __user *, len_ptr)
3427 {
3428         struct robust_list_head __user *head;
3429         unsigned long ret;
3430         struct task_struct *p;
3431
3432         if (!futex_cmpxchg_enabled)
3433                 return -ENOSYS;
3434
3435         rcu_read_lock();
3436
3437         ret = -ESRCH;
3438         if (!pid)
3439                 p = current;
3440         else {
3441                 p = find_task_by_vpid(pid);
3442                 if (!p)
3443                         goto err_unlock;
3444         }
3445
3446         ret = -EPERM;
3447         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3448                 goto err_unlock;
3449
3450         head = p->robust_list;
3451         rcu_read_unlock();
3452
3453         if (put_user(sizeof(*head), len_ptr))
3454                 return -EFAULT;
3455         return put_user(head, head_ptr);
3456
3457 err_unlock:
3458         rcu_read_unlock();
3459
3460         return ret;
3461 }
3462
3463 /* Constants for the pending_op argument of handle_futex_death */
3464 #define HANDLE_DEATH_PENDING    true
3465 #define HANDLE_DEATH_LIST       false
3466
3467 /*
3468  * Process a futex-list entry, check whether it's owned by the
3469  * dying task, and do notification if so:
3470  */
3471 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3472                               bool pi, bool pending_op)
3473 {
3474         u32 uval, uninitialized_var(nval), mval;
3475         int err;
3476
3477         /* Futex address must be 32bit aligned */
3478         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3479                 return -1;
3480
3481 retry:
3482         if (get_user(uval, uaddr))
3483                 return -1;
3484
3485         /*
3486          * Special case for regular (non PI) futexes. The unlock path in
3487          * user space has two race scenarios:
3488          *
3489          * 1. The unlock path releases the user space futex value and
3490          *    before it can execute the futex() syscall to wake up
3491          *    waiters it is killed.
3492          *
3493          * 2. A woken up waiter is killed before it can acquire the
3494          *    futex in user space.
3495          *
3496          * In both cases the TID validation below prevents a wakeup of
3497          * potential waiters which can cause these waiters to block
3498          * forever.
3499          *
3500          * In both cases the following conditions are met:
3501          *
3502          *      1) task->robust_list->list_op_pending != NULL
3503          *         @pending_op == true
3504          *      2) User space futex value == 0
3505          *      3) Regular futex: @pi == false
3506          *
3507          * If these conditions are met, it is safe to attempt waking up a
3508          * potential waiter without touching the user space futex value and
3509          * trying to set the OWNER_DIED bit. The user space futex value is
3510          * uncontended and the rest of the user space mutex state is
3511          * consistent, so a woken waiter will just take over the
3512          * uncontended futex. Setting the OWNER_DIED bit would create
3513          * inconsistent state and malfunction of the user space owner died
3514          * handling.
3515          */
3516         if (pending_op && !pi && !uval) {
3517                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3518                 return 0;
3519         }
3520
3521         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3522                 return 0;
3523
3524         /*
3525          * Ok, this dying thread is truly holding a futex
3526          * of interest. Set the OWNER_DIED bit atomically
3527          * via cmpxchg, and if the value had FUTEX_WAITERS
3528          * set, wake up a waiter (if any). (We have to do a
3529          * futex_wake() even if OWNER_DIED is already set -
3530          * to handle the rare but possible case of recursive
3531          * thread-death.) The rest of the cleanup is done in
3532          * userspace.
3533          */
3534         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3535
3536         /*
3537          * We are not holding a lock here, but we want to have
3538          * the pagefault_disable/enable() protection because
3539          * we want to handle the fault gracefully. If the
3540          * access fails we try to fault in the futex with R/W
3541          * verification via get_user_pages. get_user() above
3542          * does not guarantee R/W access. If that fails we
3543          * give up and leave the futex locked.
3544          */
3545         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3546                 switch (err) {
3547                 case -EFAULT:
3548                         if (fault_in_user_writeable(uaddr))
3549                                 return -1;
3550                         goto retry;
3551
3552                 case -EAGAIN:
3553                         cond_resched();
3554                         goto retry;
3555
3556                 default:
3557                         WARN_ON_ONCE(1);
3558                         return err;
3559                 }
3560         }
3561
3562         if (nval != uval)
3563                 goto retry;
3564
3565         /*
3566          * Wake robust non-PI futexes here. The wakeup of
3567          * PI futexes happens in exit_pi_state():
3568          */
3569         if (!pi && (uval & FUTEX_WAITERS))
3570                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3571
3572         return 0;
3573 }
3574
3575 /*
3576  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3577  */
3578 static inline int fetch_robust_entry(struct robust_list __user **entry,
3579                                      struct robust_list __user * __user *head,
3580                                      unsigned int *pi)
3581 {
3582         unsigned long uentry;
3583
3584         if (get_user(uentry, (unsigned long __user *)head))
3585                 return -EFAULT;
3586
3587         *entry = (void __user *)(uentry & ~1UL);
3588         *pi = uentry & 1;
3589
3590         return 0;
3591 }
3592
3593 /*
3594  * Walk curr->robust_list (very carefully, it's a userspace list!)
3595  * and mark any locks found there dead, and notify any waiters.
3596  *
3597  * We silently return on any sign of list-walking problem.
3598  */
3599 static void exit_robust_list(struct task_struct *curr)
3600 {
3601         struct robust_list_head __user *head = curr->robust_list;
3602         struct robust_list __user *entry, *next_entry, *pending;
3603         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3604         unsigned int uninitialized_var(next_pi);
3605         unsigned long futex_offset;
3606         int rc;
3607
3608         if (!futex_cmpxchg_enabled)
3609                 return;
3610
3611         /*
3612          * Fetch the list head (which was registered earlier, via
3613          * sys_set_robust_list()):
3614          */
3615         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3616                 return;
3617         /*
3618          * Fetch the relative futex offset:
3619          */
3620         if (get_user(futex_offset, &head->futex_offset))
3621                 return;
3622         /*
3623          * Fetch any possibly pending lock-add first, and handle it
3624          * if it exists:
3625          */
3626         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3627                 return;
3628
3629         next_entry = NULL;      /* avoid warning with gcc */
3630         while (entry != &head->list) {
3631                 /*
3632                  * Fetch the next entry in the list before calling
3633                  * handle_futex_death:
3634                  */
3635                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3636                 /*
3637                  * A pending lock might already be on the list, so
3638                  * don't process it twice:
3639                  */
3640                 if (entry != pending) {
3641                         if (handle_futex_death((void __user *)entry + futex_offset,
3642                                                 curr, pi, HANDLE_DEATH_LIST))
3643                                 return;
3644                 }
3645                 if (rc)
3646                         return;
3647                 entry = next_entry;
3648                 pi = next_pi;
3649                 /*
3650                  * Avoid excessively long or circular lists:
3651                  */
3652                 if (!--limit)
3653                         break;
3654
3655                 cond_resched();
3656         }
3657
3658         if (pending) {
3659                 handle_futex_death((void __user *)pending + futex_offset,
3660                                    curr, pip, HANDLE_DEATH_PENDING);
3661         }
3662 }
3663
3664 void futex_mm_release(struct task_struct *tsk)
3665 {
3666         if (unlikely(tsk->robust_list)) {
3667                 exit_robust_list(tsk);
3668                 tsk->robust_list = NULL;
3669         }
3670
3671 #ifdef CONFIG_COMPAT
3672         if (unlikely(tsk->compat_robust_list)) {
3673                 compat_exit_robust_list(tsk);
3674                 tsk->compat_robust_list = NULL;
3675         }
3676 #endif
3677
3678         if (unlikely(!list_empty(&tsk->pi_state_list)))
3679                 exit_pi_state_list(tsk);
3680 }
3681
3682 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3683                 u32 __user *uaddr2, u32 val2, u32 val3)
3684 {
3685         int cmd = op & FUTEX_CMD_MASK;
3686         unsigned int flags = 0;
3687
3688         if (!(op & FUTEX_PRIVATE_FLAG))
3689                 flags |= FLAGS_SHARED;
3690
3691         if (op & FUTEX_CLOCK_REALTIME) {
3692                 flags |= FLAGS_CLOCKRT;
3693                 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3694                     cmd != FUTEX_WAIT_REQUEUE_PI)
3695                         return -ENOSYS;
3696         }
3697
3698         switch (cmd) {
3699         case FUTEX_LOCK_PI:
3700         case FUTEX_UNLOCK_PI:
3701         case FUTEX_TRYLOCK_PI:
3702         case FUTEX_WAIT_REQUEUE_PI:
3703         case FUTEX_CMP_REQUEUE_PI:
3704                 if (!futex_cmpxchg_enabled)
3705                         return -ENOSYS;
3706         }
3707
3708         switch (cmd) {
3709         case FUTEX_WAIT:
3710                 val3 = FUTEX_BITSET_MATCH_ANY;
3711                 /* fall through */
3712         case FUTEX_WAIT_BITSET:
3713                 return futex_wait(uaddr, flags, val, timeout, val3);
3714         case FUTEX_WAKE:
3715                 val3 = FUTEX_BITSET_MATCH_ANY;
3716                 /* fall through */
3717         case FUTEX_WAKE_BITSET:
3718                 return futex_wake(uaddr, flags, val, val3);
3719         case FUTEX_REQUEUE:
3720                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3721         case FUTEX_CMP_REQUEUE:
3722                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3723         case FUTEX_WAKE_OP:
3724                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3725         case FUTEX_LOCK_PI:
3726                 return futex_lock_pi(uaddr, flags, timeout, 0);
3727         case FUTEX_UNLOCK_PI:
3728                 return futex_unlock_pi(uaddr, flags);
3729         case FUTEX_TRYLOCK_PI:
3730                 return futex_lock_pi(uaddr, flags, NULL, 1);
3731         case FUTEX_WAIT_REQUEUE_PI:
3732                 val3 = FUTEX_BITSET_MATCH_ANY;
3733                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3734                                              uaddr2);
3735         case FUTEX_CMP_REQUEUE_PI:
3736                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3737         }
3738         return -ENOSYS;
3739 }
3740
3741
3742 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3743                 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3744                 u32, val3)
3745 {
3746         struct timespec64 ts;
3747         ktime_t t, *tp = NULL;
3748         u32 val2 = 0;
3749         int cmd = op & FUTEX_CMD_MASK;
3750
3751         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3752                       cmd == FUTEX_WAIT_BITSET ||
3753                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3754                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3755                         return -EFAULT;
3756                 if (get_timespec64(&ts, utime))
3757                         return -EFAULT;
3758                 if (!timespec64_valid(&ts))
3759                         return -EINVAL;
3760
3761                 t = timespec64_to_ktime(ts);
3762                 if (cmd == FUTEX_WAIT)
3763                         t = ktime_add_safe(ktime_get(), t);
3764                 tp = &t;
3765         }
3766         /*
3767          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3768          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3769          */
3770         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3771             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3772                 val2 = (u32) (unsigned long) utime;
3773
3774         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3775 }
3776
3777 #ifdef CONFIG_COMPAT
3778 /*
3779  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3780  */
3781 static inline int
3782 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3783                    compat_uptr_t __user *head, unsigned int *pi)
3784 {
3785         if (get_user(*uentry, head))
3786                 return -EFAULT;
3787
3788         *entry = compat_ptr((*uentry) & ~1);
3789         *pi = (unsigned int)(*uentry) & 1;
3790
3791         return 0;
3792 }
3793
3794 static void __user *futex_uaddr(struct robust_list __user *entry,
3795                                 compat_long_t futex_offset)
3796 {
3797         compat_uptr_t base = ptr_to_compat(entry);
3798         void __user *uaddr = compat_ptr(base + futex_offset);
3799
3800         return uaddr;
3801 }
3802
3803 /*
3804  * Walk curr->robust_list (very carefully, it's a userspace list!)
3805  * and mark any locks found there dead, and notify any waiters.
3806  *
3807  * We silently return on any sign of list-walking problem.
3808  */
3809 static void compat_exit_robust_list(struct task_struct *curr)
3810 {
3811         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3812         struct robust_list __user *entry, *next_entry, *pending;
3813         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3814         unsigned int uninitialized_var(next_pi);
3815         compat_uptr_t uentry, next_uentry, upending;
3816         compat_long_t futex_offset;
3817         int rc;
3818
3819         if (!futex_cmpxchg_enabled)
3820                 return;
3821
3822         /*
3823          * Fetch the list head (which was registered earlier, via
3824          * sys_set_robust_list()):
3825          */
3826         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3827                 return;
3828         /*
3829          * Fetch the relative futex offset:
3830          */
3831         if (get_user(futex_offset, &head->futex_offset))
3832                 return;
3833         /*
3834          * Fetch any possibly pending lock-add first, and handle it
3835          * if it exists:
3836          */
3837         if (compat_fetch_robust_entry(&upending, &pending,
3838                                &head->list_op_pending, &pip))
3839                 return;
3840
3841         next_entry = NULL;      /* avoid warning with gcc */
3842         while (entry != (struct robust_list __user *) &head->list) {
3843                 /*
3844                  * Fetch the next entry in the list before calling
3845                  * handle_futex_death:
3846                  */
3847                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3848                         (compat_uptr_t __user *)&entry->next, &next_pi);
3849                 /*
3850                  * A pending lock might already be on the list, so
3851                  * dont process it twice:
3852                  */
3853                 if (entry != pending) {
3854                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3855
3856                         if (handle_futex_death(uaddr, curr, pi,
3857                                                HANDLE_DEATH_LIST))
3858                                 return;
3859                 }
3860                 if (rc)
3861                         return;
3862                 uentry = next_uentry;
3863                 entry = next_entry;
3864                 pi = next_pi;
3865                 /*
3866                  * Avoid excessively long or circular lists:
3867                  */
3868                 if (!--limit)
3869                         break;
3870
3871                 cond_resched();
3872         }
3873         if (pending) {
3874                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3875
3876                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3877         }
3878 }
3879
3880 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3881                 struct compat_robust_list_head __user *, head,
3882                 compat_size_t, len)
3883 {
3884         if (!futex_cmpxchg_enabled)
3885                 return -ENOSYS;
3886
3887         if (unlikely(len != sizeof(*head)))
3888                 return -EINVAL;
3889
3890         current->compat_robust_list = head;
3891
3892         return 0;
3893 }
3894
3895 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3896                         compat_uptr_t __user *, head_ptr,
3897                         compat_size_t __user *, len_ptr)
3898 {
3899         struct compat_robust_list_head __user *head;
3900         unsigned long ret;
3901         struct task_struct *p;
3902
3903         if (!futex_cmpxchg_enabled)
3904                 return -ENOSYS;
3905
3906         rcu_read_lock();
3907
3908         ret = -ESRCH;
3909         if (!pid)
3910                 p = current;
3911         else {
3912                 p = find_task_by_vpid(pid);
3913                 if (!p)
3914                         goto err_unlock;
3915         }
3916
3917         ret = -EPERM;
3918         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3919                 goto err_unlock;
3920
3921         head = p->compat_robust_list;
3922         rcu_read_unlock();
3923
3924         if (put_user(sizeof(*head), len_ptr))
3925                 return -EFAULT;
3926         return put_user(ptr_to_compat(head), head_ptr);
3927
3928 err_unlock:
3929         rcu_read_unlock();
3930
3931         return ret;
3932 }
3933 #endif /* CONFIG_COMPAT */
3934
3935 #ifdef CONFIG_COMPAT_32BIT_TIME
3936 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3937                 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3938                 u32, val3)
3939 {
3940         struct timespec64 ts;
3941         ktime_t t, *tp = NULL;
3942         int val2 = 0;
3943         int cmd = op & FUTEX_CMD_MASK;
3944
3945         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3946                       cmd == FUTEX_WAIT_BITSET ||
3947                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3948                 if (get_old_timespec32(&ts, utime))
3949                         return -EFAULT;
3950                 if (!timespec64_valid(&ts))
3951                         return -EINVAL;
3952
3953                 t = timespec64_to_ktime(ts);
3954                 if (cmd == FUTEX_WAIT)
3955                         t = ktime_add_safe(ktime_get(), t);
3956                 tp = &t;
3957         }
3958         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3959             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3960                 val2 = (int) (unsigned long) utime;
3961
3962         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3963 }
3964 #endif /* CONFIG_COMPAT_32BIT_TIME */
3965
3966 static void __init futex_detect_cmpxchg(void)
3967 {
3968 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3969         u32 curval;
3970
3971         /*
3972          * This will fail and we want it. Some arch implementations do
3973          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3974          * functionality. We want to know that before we call in any
3975          * of the complex code paths. Also we want to prevent
3976          * registration of robust lists in that case. NULL is
3977          * guaranteed to fault and we get -EFAULT on functional
3978          * implementation, the non-functional ones will return
3979          * -ENOSYS.
3980          */
3981         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3982                 futex_cmpxchg_enabled = 1;
3983 #endif
3984 }
3985
3986 static int __init futex_init(void)
3987 {
3988         unsigned int futex_shift;
3989         unsigned long i;
3990
3991 #if CONFIG_BASE_SMALL
3992         futex_hashsize = 16;
3993 #else
3994         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3995 #endif
3996
3997         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3998                                                futex_hashsize, 0,
3999                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4000                                                &futex_shift, NULL,
4001                                                futex_hashsize, futex_hashsize);
4002         futex_hashsize = 1UL << futex_shift;
4003
4004         futex_detect_cmpxchg();
4005
4006         for (i = 0; i < futex_hashsize; i++) {
4007                 atomic_set(&futex_queues[i].waiters, 0);
4008                 plist_head_init(&futex_queues[i].chain);
4009                 spin_lock_init(&futex_queues[i].lock);
4010         }
4011
4012         return 0;
4013 }
4014 core_initcall(futex_init);