mm/page_alloc: delete vm.percpu_pagelist_fraction
[linux-2.6-microblaze.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *  Fast Userspace Mutexes (which I call "Futexes!").
4  *  (C) Rusty Russell, IBM 2002
5  *
6  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8  *
9  *  Removed page pinning, fix privately mapped COW pages and other cleanups
10  *  (C) Copyright 2003, 2004 Jamie Lokier
11  *
12  *  Robust futex support started by Ingo Molnar
13  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15  *
16  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
17  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19  *
20  *  PRIVATE futexes by Eric Dumazet
21  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22  *
23  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24  *  Copyright (C) IBM Corporation, 2009
25  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
26  *
27  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28  *  enough at me, Linus for the original (flawed) idea, Matthew
29  *  Kirkwood for proof-of-concept implementation.
30  *
31  *  "The futexes are also cursed."
32  *  "But they come in a choice of three flavours!"
33  */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46
47 /*
48  * READ this before attempting to hack on futexes!
49  *
50  * Basic futex operation and ordering guarantees
51  * =============================================
52  *
53  * The waiter reads the futex value in user space and calls
54  * futex_wait(). This function computes the hash bucket and acquires
55  * the hash bucket lock. After that it reads the futex user space value
56  * again and verifies that the data has not changed. If it has not changed
57  * it enqueues itself into the hash bucket, releases the hash bucket lock
58  * and schedules.
59  *
60  * The waker side modifies the user space value of the futex and calls
61  * futex_wake(). This function computes the hash bucket and acquires the
62  * hash bucket lock. Then it looks for waiters on that futex in the hash
63  * bucket and wakes them.
64  *
65  * In futex wake up scenarios where no tasks are blocked on a futex, taking
66  * the hb spinlock can be avoided and simply return. In order for this
67  * optimization to work, ordering guarantees must exist so that the waiter
68  * being added to the list is acknowledged when the list is concurrently being
69  * checked by the waker, avoiding scenarios like the following:
70  *
71  * CPU 0                               CPU 1
72  * val = *futex;
73  * sys_futex(WAIT, futex, val);
74  *   futex_wait(futex, val);
75  *   uval = *futex;
76  *                                     *futex = newval;
77  *                                     sys_futex(WAKE, futex);
78  *                                       futex_wake(futex);
79  *                                       if (queue_empty())
80  *                                         return;
81  *   if (uval == val)
82  *      lock(hash_bucket(futex));
83  *      queue();
84  *     unlock(hash_bucket(futex));
85  *     schedule();
86  *
87  * This would cause the waiter on CPU 0 to wait forever because it
88  * missed the transition of the user space value from val to newval
89  * and the waker did not find the waiter in the hash bucket queue.
90  *
91  * The correct serialization ensures that a waiter either observes
92  * the changed user space value before blocking or is woken by a
93  * concurrent waker:
94  *
95  * CPU 0                                 CPU 1
96  * val = *futex;
97  * sys_futex(WAIT, futex, val);
98  *   futex_wait(futex, val);
99  *
100  *   waiters++; (a)
101  *   smp_mb(); (A) <-- paired with -.
102  *                                  |
103  *   lock(hash_bucket(futex));      |
104  *                                  |
105  *   uval = *futex;                 |
106  *                                  |        *futex = newval;
107  *                                  |        sys_futex(WAKE, futex);
108  *                                  |          futex_wake(futex);
109  *                                  |
110  *                                  `--------> smp_mb(); (B)
111  *   if (uval == val)
112  *     queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();                         if (waiters)
115  *                                           lock(hash_bucket(futex));
116  *   else                                    wake_waiters(futex);
117  *     waiters--; (b)                        unlock(hash_bucket(futex));
118  *
119  * Where (A) orders the waiters increment and the futex value read through
120  * atomic operations (see hb_waiters_inc) and where (B) orders the write
121  * to futex and the waiters read (see hb_waiters_pending()).
122  *
123  * This yields the following case (where X:=waiters, Y:=futex):
124  *
125  *      X = Y = 0
126  *
127  *      w[X]=1          w[Y]=1
128  *      MB              MB
129  *      r[Y]=y          r[X]=x
130  *
131  * Which guarantees that x==0 && y==0 is impossible; which translates back into
132  * the guarantee that we cannot both miss the futex variable change and the
133  * enqueue.
134  *
135  * Note that a new waiter is accounted for in (a) even when it is possible that
136  * the wait call can return error, in which case we backtrack from it in (b).
137  * Refer to the comment in queue_lock().
138  *
139  * Similarly, in order to account for waiters being requeued on another
140  * address we always increment the waiters for the destination bucket before
141  * acquiring the lock. It then decrements them again  after releasing it -
142  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143  * will do the additional required waiter count housekeeping. This is done for
144  * double_lock_hb() and double_unlock_hb(), respectively.
145  */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int  __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154  * Futex flags used to encode options to functions and preserve them across
155  * restarts.
156  */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED           0x01
159 #else
160 /*
161  * NOMMU does not have per process address space. Let the compiler optimize
162  * code away.
163  */
164 # define FLAGS_SHARED           0x00
165 #endif
166 #define FLAGS_CLOCKRT           0x02
167 #define FLAGS_HAS_TIMEOUT       0x04
168
169 /*
170  * Priority Inheritance state:
171  */
172 struct futex_pi_state {
173         /*
174          * list of 'owned' pi_state instances - these have to be
175          * cleaned up in do_exit() if the task exits prematurely:
176          */
177         struct list_head list;
178
179         /*
180          * The PI object:
181          */
182         struct rt_mutex pi_mutex;
183
184         struct task_struct *owner;
185         refcount_t refcount;
186
187         union futex_key key;
188 } __randomize_layout;
189
190 /**
191  * struct futex_q - The hashed futex queue entry, one per waiting task
192  * @list:               priority-sorted list of tasks waiting on this futex
193  * @task:               the task waiting on the futex
194  * @lock_ptr:           the hash bucket lock
195  * @key:                the key the futex is hashed on
196  * @pi_state:           optional priority inheritance state
197  * @rt_waiter:          rt_waiter storage for use with requeue_pi
198  * @requeue_pi_key:     the requeue_pi target futex key
199  * @bitset:             bitset for the optional bitmasked wakeup
200  *
201  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
202  * we can wake only the relevant ones (hashed queues may be shared).
203  *
204  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
205  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
206  * The order of wakeup is always to make the first condition true, then
207  * the second.
208  *
209  * PI futexes are typically woken before they are removed from the hash list via
210  * the rt_mutex code. See unqueue_me_pi().
211  */
212 struct futex_q {
213         struct plist_node list;
214
215         struct task_struct *task;
216         spinlock_t *lock_ptr;
217         union futex_key key;
218         struct futex_pi_state *pi_state;
219         struct rt_mutex_waiter *rt_waiter;
220         union futex_key *requeue_pi_key;
221         u32 bitset;
222 } __randomize_layout;
223
224 static const struct futex_q futex_q_init = {
225         /* list gets initialized in queue_me()*/
226         .key = FUTEX_KEY_INIT,
227         .bitset = FUTEX_BITSET_MATCH_ANY
228 };
229
230 /*
231  * Hash buckets are shared by all the futex_keys that hash to the same
232  * location.  Each key may have multiple futex_q structures, one for each task
233  * waiting on a futex.
234  */
235 struct futex_hash_bucket {
236         atomic_t waiters;
237         spinlock_t lock;
238         struct plist_head chain;
239 } ____cacheline_aligned_in_smp;
240
241 /*
242  * The base of the bucket array and its size are always used together
243  * (after initialization only in hash_futex()), so ensure that they
244  * reside in the same cacheline.
245  */
246 static struct {
247         struct futex_hash_bucket *queues;
248         unsigned long            hashsize;
249 } __futex_data __read_mostly __aligned(2*sizeof(long));
250 #define futex_queues   (__futex_data.queues)
251 #define futex_hashsize (__futex_data.hashsize)
252
253
254 /*
255  * Fault injections for futexes.
256  */
257 #ifdef CONFIG_FAIL_FUTEX
258
259 static struct {
260         struct fault_attr attr;
261
262         bool ignore_private;
263 } fail_futex = {
264         .attr = FAULT_ATTR_INITIALIZER,
265         .ignore_private = false,
266 };
267
268 static int __init setup_fail_futex(char *str)
269 {
270         return setup_fault_attr(&fail_futex.attr, str);
271 }
272 __setup("fail_futex=", setup_fail_futex);
273
274 static bool should_fail_futex(bool fshared)
275 {
276         if (fail_futex.ignore_private && !fshared)
277                 return false;
278
279         return should_fail(&fail_futex.attr, 1);
280 }
281
282 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
283
284 static int __init fail_futex_debugfs(void)
285 {
286         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
287         struct dentry *dir;
288
289         dir = fault_create_debugfs_attr("fail_futex", NULL,
290                                         &fail_futex.attr);
291         if (IS_ERR(dir))
292                 return PTR_ERR(dir);
293
294         debugfs_create_bool("ignore-private", mode, dir,
295                             &fail_futex.ignore_private);
296         return 0;
297 }
298
299 late_initcall(fail_futex_debugfs);
300
301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
302
303 #else
304 static inline bool should_fail_futex(bool fshared)
305 {
306         return false;
307 }
308 #endif /* CONFIG_FAIL_FUTEX */
309
310 #ifdef CONFIG_COMPAT
311 static void compat_exit_robust_list(struct task_struct *curr);
312 #endif
313
314 /*
315  * Reflects a new waiter being added to the waitqueue.
316  */
317 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
318 {
319 #ifdef CONFIG_SMP
320         atomic_inc(&hb->waiters);
321         /*
322          * Full barrier (A), see the ordering comment above.
323          */
324         smp_mb__after_atomic();
325 #endif
326 }
327
328 /*
329  * Reflects a waiter being removed from the waitqueue by wakeup
330  * paths.
331  */
332 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
333 {
334 #ifdef CONFIG_SMP
335         atomic_dec(&hb->waiters);
336 #endif
337 }
338
339 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
340 {
341 #ifdef CONFIG_SMP
342         /*
343          * Full barrier (B), see the ordering comment above.
344          */
345         smp_mb();
346         return atomic_read(&hb->waiters);
347 #else
348         return 1;
349 #endif
350 }
351
352 /**
353  * hash_futex - Return the hash bucket in the global hash
354  * @key:        Pointer to the futex key for which the hash is calculated
355  *
356  * We hash on the keys returned from get_futex_key (see below) and return the
357  * corresponding hash bucket in the global hash.
358  */
359 static struct futex_hash_bucket *hash_futex(union futex_key *key)
360 {
361         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
362                           key->both.offset);
363
364         return &futex_queues[hash & (futex_hashsize - 1)];
365 }
366
367
368 /**
369  * match_futex - Check whether two futex keys are equal
370  * @key1:       Pointer to key1
371  * @key2:       Pointer to key2
372  *
373  * Return 1 if two futex_keys are equal, 0 otherwise.
374  */
375 static inline int match_futex(union futex_key *key1, union futex_key *key2)
376 {
377         return (key1 && key2
378                 && key1->both.word == key2->both.word
379                 && key1->both.ptr == key2->both.ptr
380                 && key1->both.offset == key2->both.offset);
381 }
382
383 enum futex_access {
384         FUTEX_READ,
385         FUTEX_WRITE
386 };
387
388 /**
389  * futex_setup_timer - set up the sleeping hrtimer.
390  * @time:       ptr to the given timeout value
391  * @timeout:    the hrtimer_sleeper structure to be set up
392  * @flags:      futex flags
393  * @range_ns:   optional range in ns
394  *
395  * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
396  *         value given
397  */
398 static inline struct hrtimer_sleeper *
399 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
400                   int flags, u64 range_ns)
401 {
402         if (!time)
403                 return NULL;
404
405         hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
406                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
407                                       HRTIMER_MODE_ABS);
408         /*
409          * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
410          * effectively the same as calling hrtimer_set_expires().
411          */
412         hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
413
414         return timeout;
415 }
416
417 /*
418  * Generate a machine wide unique identifier for this inode.
419  *
420  * This relies on u64 not wrapping in the life-time of the machine; which with
421  * 1ns resolution means almost 585 years.
422  *
423  * This further relies on the fact that a well formed program will not unmap
424  * the file while it has a (shared) futex waiting on it. This mapping will have
425  * a file reference which pins the mount and inode.
426  *
427  * If for some reason an inode gets evicted and read back in again, it will get
428  * a new sequence number and will _NOT_ match, even though it is the exact same
429  * file.
430  *
431  * It is important that match_futex() will never have a false-positive, esp.
432  * for PI futexes that can mess up the state. The above argues that false-negatives
433  * are only possible for malformed programs.
434  */
435 static u64 get_inode_sequence_number(struct inode *inode)
436 {
437         static atomic64_t i_seq;
438         u64 old;
439
440         /* Does the inode already have a sequence number? */
441         old = atomic64_read(&inode->i_sequence);
442         if (likely(old))
443                 return old;
444
445         for (;;) {
446                 u64 new = atomic64_add_return(1, &i_seq);
447                 if (WARN_ON_ONCE(!new))
448                         continue;
449
450                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
451                 if (old)
452                         return old;
453                 return new;
454         }
455 }
456
457 /**
458  * get_futex_key() - Get parameters which are the keys for a futex
459  * @uaddr:      virtual address of the futex
460  * @fshared:    false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
461  * @key:        address where result is stored.
462  * @rw:         mapping needs to be read/write (values: FUTEX_READ,
463  *              FUTEX_WRITE)
464  *
465  * Return: a negative error code or 0
466  *
467  * The key words are stored in @key on success.
468  *
469  * For shared mappings (when @fshared), the key is:
470  *
471  *   ( inode->i_sequence, page->index, offset_within_page )
472  *
473  * [ also see get_inode_sequence_number() ]
474  *
475  * For private mappings (or when !@fshared), the key is:
476  *
477  *   ( current->mm, address, 0 )
478  *
479  * This allows (cross process, where applicable) identification of the futex
480  * without keeping the page pinned for the duration of the FUTEX_WAIT.
481  *
482  * lock_page() might sleep, the caller should not hold a spinlock.
483  */
484 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
485                          enum futex_access rw)
486 {
487         unsigned long address = (unsigned long)uaddr;
488         struct mm_struct *mm = current->mm;
489         struct page *page, *tail;
490         struct address_space *mapping;
491         int err, ro = 0;
492
493         /*
494          * The futex address must be "naturally" aligned.
495          */
496         key->both.offset = address % PAGE_SIZE;
497         if (unlikely((address % sizeof(u32)) != 0))
498                 return -EINVAL;
499         address -= key->both.offset;
500
501         if (unlikely(!access_ok(uaddr, sizeof(u32))))
502                 return -EFAULT;
503
504         if (unlikely(should_fail_futex(fshared)))
505                 return -EFAULT;
506
507         /*
508          * PROCESS_PRIVATE futexes are fast.
509          * As the mm cannot disappear under us and the 'key' only needs
510          * virtual address, we dont even have to find the underlying vma.
511          * Note : We do have to check 'uaddr' is a valid user address,
512          *        but access_ok() should be faster than find_vma()
513          */
514         if (!fshared) {
515                 key->private.mm = mm;
516                 key->private.address = address;
517                 return 0;
518         }
519
520 again:
521         /* Ignore any VERIFY_READ mapping (futex common case) */
522         if (unlikely(should_fail_futex(true)))
523                 return -EFAULT;
524
525         err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
526         /*
527          * If write access is not required (eg. FUTEX_WAIT), try
528          * and get read-only access.
529          */
530         if (err == -EFAULT && rw == FUTEX_READ) {
531                 err = get_user_pages_fast(address, 1, 0, &page);
532                 ro = 1;
533         }
534         if (err < 0)
535                 return err;
536         else
537                 err = 0;
538
539         /*
540          * The treatment of mapping from this point on is critical. The page
541          * lock protects many things but in this context the page lock
542          * stabilizes mapping, prevents inode freeing in the shared
543          * file-backed region case and guards against movement to swap cache.
544          *
545          * Strictly speaking the page lock is not needed in all cases being
546          * considered here and page lock forces unnecessarily serialization
547          * From this point on, mapping will be re-verified if necessary and
548          * page lock will be acquired only if it is unavoidable
549          *
550          * Mapping checks require the head page for any compound page so the
551          * head page and mapping is looked up now. For anonymous pages, it
552          * does not matter if the page splits in the future as the key is
553          * based on the address. For filesystem-backed pages, the tail is
554          * required as the index of the page determines the key. For
555          * base pages, there is no tail page and tail == page.
556          */
557         tail = page;
558         page = compound_head(page);
559         mapping = READ_ONCE(page->mapping);
560
561         /*
562          * If page->mapping is NULL, then it cannot be a PageAnon
563          * page; but it might be the ZERO_PAGE or in the gate area or
564          * in a special mapping (all cases which we are happy to fail);
565          * or it may have been a good file page when get_user_pages_fast
566          * found it, but truncated or holepunched or subjected to
567          * invalidate_complete_page2 before we got the page lock (also
568          * cases which we are happy to fail).  And we hold a reference,
569          * so refcount care in invalidate_complete_page's remove_mapping
570          * prevents drop_caches from setting mapping to NULL beneath us.
571          *
572          * The case we do have to guard against is when memory pressure made
573          * shmem_writepage move it from filecache to swapcache beneath us:
574          * an unlikely race, but we do need to retry for page->mapping.
575          */
576         if (unlikely(!mapping)) {
577                 int shmem_swizzled;
578
579                 /*
580                  * Page lock is required to identify which special case above
581                  * applies. If this is really a shmem page then the page lock
582                  * will prevent unexpected transitions.
583                  */
584                 lock_page(page);
585                 shmem_swizzled = PageSwapCache(page) || page->mapping;
586                 unlock_page(page);
587                 put_page(page);
588
589                 if (shmem_swizzled)
590                         goto again;
591
592                 return -EFAULT;
593         }
594
595         /*
596          * Private mappings are handled in a simple way.
597          *
598          * If the futex key is stored on an anonymous page, then the associated
599          * object is the mm which is implicitly pinned by the calling process.
600          *
601          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
602          * it's a read-only handle, it's expected that futexes attach to
603          * the object not the particular process.
604          */
605         if (PageAnon(page)) {
606                 /*
607                  * A RO anonymous page will never change and thus doesn't make
608                  * sense for futex operations.
609                  */
610                 if (unlikely(should_fail_futex(true)) || ro) {
611                         err = -EFAULT;
612                         goto out;
613                 }
614
615                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
616                 key->private.mm = mm;
617                 key->private.address = address;
618
619         } else {
620                 struct inode *inode;
621
622                 /*
623                  * The associated futex object in this case is the inode and
624                  * the page->mapping must be traversed. Ordinarily this should
625                  * be stabilised under page lock but it's not strictly
626                  * necessary in this case as we just want to pin the inode, not
627                  * update the radix tree or anything like that.
628                  *
629                  * The RCU read lock is taken as the inode is finally freed
630                  * under RCU. If the mapping still matches expectations then the
631                  * mapping->host can be safely accessed as being a valid inode.
632                  */
633                 rcu_read_lock();
634
635                 if (READ_ONCE(page->mapping) != mapping) {
636                         rcu_read_unlock();
637                         put_page(page);
638
639                         goto again;
640                 }
641
642                 inode = READ_ONCE(mapping->host);
643                 if (!inode) {
644                         rcu_read_unlock();
645                         put_page(page);
646
647                         goto again;
648                 }
649
650                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
651                 key->shared.i_seq = get_inode_sequence_number(inode);
652                 key->shared.pgoff = page_to_pgoff(tail);
653                 rcu_read_unlock();
654         }
655
656 out:
657         put_page(page);
658         return err;
659 }
660
661 /**
662  * fault_in_user_writeable() - Fault in user address and verify RW access
663  * @uaddr:      pointer to faulting user space address
664  *
665  * Slow path to fixup the fault we just took in the atomic write
666  * access to @uaddr.
667  *
668  * We have no generic implementation of a non-destructive write to the
669  * user address. We know that we faulted in the atomic pagefault
670  * disabled section so we can as well avoid the #PF overhead by
671  * calling get_user_pages() right away.
672  */
673 static int fault_in_user_writeable(u32 __user *uaddr)
674 {
675         struct mm_struct *mm = current->mm;
676         int ret;
677
678         mmap_read_lock(mm);
679         ret = fixup_user_fault(mm, (unsigned long)uaddr,
680                                FAULT_FLAG_WRITE, NULL);
681         mmap_read_unlock(mm);
682
683         return ret < 0 ? ret : 0;
684 }
685
686 /**
687  * futex_top_waiter() - Return the highest priority waiter on a futex
688  * @hb:         the hash bucket the futex_q's reside in
689  * @key:        the futex key (to distinguish it from other futex futex_q's)
690  *
691  * Must be called with the hb lock held.
692  */
693 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
694                                         union futex_key *key)
695 {
696         struct futex_q *this;
697
698         plist_for_each_entry(this, &hb->chain, list) {
699                 if (match_futex(&this->key, key))
700                         return this;
701         }
702         return NULL;
703 }
704
705 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
706                                       u32 uval, u32 newval)
707 {
708         int ret;
709
710         pagefault_disable();
711         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
712         pagefault_enable();
713
714         return ret;
715 }
716
717 static int get_futex_value_locked(u32 *dest, u32 __user *from)
718 {
719         int ret;
720
721         pagefault_disable();
722         ret = __get_user(*dest, from);
723         pagefault_enable();
724
725         return ret ? -EFAULT : 0;
726 }
727
728
729 /*
730  * PI code:
731  */
732 static int refill_pi_state_cache(void)
733 {
734         struct futex_pi_state *pi_state;
735
736         if (likely(current->pi_state_cache))
737                 return 0;
738
739         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
740
741         if (!pi_state)
742                 return -ENOMEM;
743
744         INIT_LIST_HEAD(&pi_state->list);
745         /* pi_mutex gets initialized later */
746         pi_state->owner = NULL;
747         refcount_set(&pi_state->refcount, 1);
748         pi_state->key = FUTEX_KEY_INIT;
749
750         current->pi_state_cache = pi_state;
751
752         return 0;
753 }
754
755 static struct futex_pi_state *alloc_pi_state(void)
756 {
757         struct futex_pi_state *pi_state = current->pi_state_cache;
758
759         WARN_ON(!pi_state);
760         current->pi_state_cache = NULL;
761
762         return pi_state;
763 }
764
765 static void pi_state_update_owner(struct futex_pi_state *pi_state,
766                                   struct task_struct *new_owner)
767 {
768         struct task_struct *old_owner = pi_state->owner;
769
770         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
771
772         if (old_owner) {
773                 raw_spin_lock(&old_owner->pi_lock);
774                 WARN_ON(list_empty(&pi_state->list));
775                 list_del_init(&pi_state->list);
776                 raw_spin_unlock(&old_owner->pi_lock);
777         }
778
779         if (new_owner) {
780                 raw_spin_lock(&new_owner->pi_lock);
781                 WARN_ON(!list_empty(&pi_state->list));
782                 list_add(&pi_state->list, &new_owner->pi_state_list);
783                 pi_state->owner = new_owner;
784                 raw_spin_unlock(&new_owner->pi_lock);
785         }
786 }
787
788 static void get_pi_state(struct futex_pi_state *pi_state)
789 {
790         WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
791 }
792
793 /*
794  * Drops a reference to the pi_state object and frees or caches it
795  * when the last reference is gone.
796  */
797 static void put_pi_state(struct futex_pi_state *pi_state)
798 {
799         if (!pi_state)
800                 return;
801
802         if (!refcount_dec_and_test(&pi_state->refcount))
803                 return;
804
805         /*
806          * If pi_state->owner is NULL, the owner is most probably dying
807          * and has cleaned up the pi_state already
808          */
809         if (pi_state->owner) {
810                 unsigned long flags;
811
812                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
813                 pi_state_update_owner(pi_state, NULL);
814                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
815                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
816         }
817
818         if (current->pi_state_cache) {
819                 kfree(pi_state);
820         } else {
821                 /*
822                  * pi_state->list is already empty.
823                  * clear pi_state->owner.
824                  * refcount is at 0 - put it back to 1.
825                  */
826                 pi_state->owner = NULL;
827                 refcount_set(&pi_state->refcount, 1);
828                 current->pi_state_cache = pi_state;
829         }
830 }
831
832 #ifdef CONFIG_FUTEX_PI
833
834 /*
835  * This task is holding PI mutexes at exit time => bad.
836  * Kernel cleans up PI-state, but userspace is likely hosed.
837  * (Robust-futex cleanup is separate and might save the day for userspace.)
838  */
839 static void exit_pi_state_list(struct task_struct *curr)
840 {
841         struct list_head *next, *head = &curr->pi_state_list;
842         struct futex_pi_state *pi_state;
843         struct futex_hash_bucket *hb;
844         union futex_key key = FUTEX_KEY_INIT;
845
846         if (!futex_cmpxchg_enabled)
847                 return;
848         /*
849          * We are a ZOMBIE and nobody can enqueue itself on
850          * pi_state_list anymore, but we have to be careful
851          * versus waiters unqueueing themselves:
852          */
853         raw_spin_lock_irq(&curr->pi_lock);
854         while (!list_empty(head)) {
855                 next = head->next;
856                 pi_state = list_entry(next, struct futex_pi_state, list);
857                 key = pi_state->key;
858                 hb = hash_futex(&key);
859
860                 /*
861                  * We can race against put_pi_state() removing itself from the
862                  * list (a waiter going away). put_pi_state() will first
863                  * decrement the reference count and then modify the list, so
864                  * its possible to see the list entry but fail this reference
865                  * acquire.
866                  *
867                  * In that case; drop the locks to let put_pi_state() make
868                  * progress and retry the loop.
869                  */
870                 if (!refcount_inc_not_zero(&pi_state->refcount)) {
871                         raw_spin_unlock_irq(&curr->pi_lock);
872                         cpu_relax();
873                         raw_spin_lock_irq(&curr->pi_lock);
874                         continue;
875                 }
876                 raw_spin_unlock_irq(&curr->pi_lock);
877
878                 spin_lock(&hb->lock);
879                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
880                 raw_spin_lock(&curr->pi_lock);
881                 /*
882                  * We dropped the pi-lock, so re-check whether this
883                  * task still owns the PI-state:
884                  */
885                 if (head->next != next) {
886                         /* retain curr->pi_lock for the loop invariant */
887                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
888                         spin_unlock(&hb->lock);
889                         put_pi_state(pi_state);
890                         continue;
891                 }
892
893                 WARN_ON(pi_state->owner != curr);
894                 WARN_ON(list_empty(&pi_state->list));
895                 list_del_init(&pi_state->list);
896                 pi_state->owner = NULL;
897
898                 raw_spin_unlock(&curr->pi_lock);
899                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
900                 spin_unlock(&hb->lock);
901
902                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
903                 put_pi_state(pi_state);
904
905                 raw_spin_lock_irq(&curr->pi_lock);
906         }
907         raw_spin_unlock_irq(&curr->pi_lock);
908 }
909 #else
910 static inline void exit_pi_state_list(struct task_struct *curr) { }
911 #endif
912
913 /*
914  * We need to check the following states:
915  *
916  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
917  *
918  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
919  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
920  *
921  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
922  *
923  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
924  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
925  *
926  * [6]  Found  | Found    | task      | 0         | 1      | Valid
927  *
928  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
929  *
930  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
931  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
932  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
933  *
934  * [1]  Indicates that the kernel can acquire the futex atomically. We
935  *      came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
936  *
937  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
938  *      thread is found then it indicates that the owner TID has died.
939  *
940  * [3]  Invalid. The waiter is queued on a non PI futex
941  *
942  * [4]  Valid state after exit_robust_list(), which sets the user space
943  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
944  *
945  * [5]  The user space value got manipulated between exit_robust_list()
946  *      and exit_pi_state_list()
947  *
948  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
949  *      the pi_state but cannot access the user space value.
950  *
951  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
952  *
953  * [8]  Owner and user space value match
954  *
955  * [9]  There is no transient state which sets the user space TID to 0
956  *      except exit_robust_list(), but this is indicated by the
957  *      FUTEX_OWNER_DIED bit. See [4]
958  *
959  * [10] There is no transient state which leaves owner and user space
960  *      TID out of sync. Except one error case where the kernel is denied
961  *      write access to the user address, see fixup_pi_state_owner().
962  *
963  *
964  * Serialization and lifetime rules:
965  *
966  * hb->lock:
967  *
968  *      hb -> futex_q, relation
969  *      futex_q -> pi_state, relation
970  *
971  *      (cannot be raw because hb can contain arbitrary amount
972  *       of futex_q's)
973  *
974  * pi_mutex->wait_lock:
975  *
976  *      {uval, pi_state}
977  *
978  *      (and pi_mutex 'obviously')
979  *
980  * p->pi_lock:
981  *
982  *      p->pi_state_list -> pi_state->list, relation
983  *      pi_mutex->owner -> pi_state->owner, relation
984  *
985  * pi_state->refcount:
986  *
987  *      pi_state lifetime
988  *
989  *
990  * Lock order:
991  *
992  *   hb->lock
993  *     pi_mutex->wait_lock
994  *       p->pi_lock
995  *
996  */
997
998 /*
999  * Validate that the existing waiter has a pi_state and sanity check
1000  * the pi_state against the user space value. If correct, attach to
1001  * it.
1002  */
1003 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004                               struct futex_pi_state *pi_state,
1005                               struct futex_pi_state **ps)
1006 {
1007         pid_t pid = uval & FUTEX_TID_MASK;
1008         u32 uval2;
1009         int ret;
1010
1011         /*
1012          * Userspace might have messed up non-PI and PI futexes [3]
1013          */
1014         if (unlikely(!pi_state))
1015                 return -EINVAL;
1016
1017         /*
1018          * We get here with hb->lock held, and having found a
1019          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021          * which in turn means that futex_lock_pi() still has a reference on
1022          * our pi_state.
1023          *
1024          * The waiter holding a reference on @pi_state also protects against
1025          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027          * free pi_state before we can take a reference ourselves.
1028          */
1029         WARN_ON(!refcount_read(&pi_state->refcount));
1030
1031         /*
1032          * Now that we have a pi_state, we can acquire wait_lock
1033          * and do the state validation.
1034          */
1035         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037         /*
1038          * Since {uval, pi_state} is serialized by wait_lock, and our current
1039          * uval was read without holding it, it can have changed. Verify it
1040          * still is what we expect it to be, otherwise retry the entire
1041          * operation.
1042          */
1043         if (get_futex_value_locked(&uval2, uaddr))
1044                 goto out_efault;
1045
1046         if (uval != uval2)
1047                 goto out_eagain;
1048
1049         /*
1050          * Handle the owner died case:
1051          */
1052         if (uval & FUTEX_OWNER_DIED) {
1053                 /*
1054                  * exit_pi_state_list sets owner to NULL and wakes the
1055                  * topmost waiter. The task which acquires the
1056                  * pi_state->rt_mutex will fixup owner.
1057                  */
1058                 if (!pi_state->owner) {
1059                         /*
1060                          * No pi state owner, but the user space TID
1061                          * is not 0. Inconsistent state. [5]
1062                          */
1063                         if (pid)
1064                                 goto out_einval;
1065                         /*
1066                          * Take a ref on the state and return success. [4]
1067                          */
1068                         goto out_attach;
1069                 }
1070
1071                 /*
1072                  * If TID is 0, then either the dying owner has not
1073                  * yet executed exit_pi_state_list() or some waiter
1074                  * acquired the rtmutex in the pi state, but did not
1075                  * yet fixup the TID in user space.
1076                  *
1077                  * Take a ref on the state and return success. [6]
1078                  */
1079                 if (!pid)
1080                         goto out_attach;
1081         } else {
1082                 /*
1083                  * If the owner died bit is not set, then the pi_state
1084                  * must have an owner. [7]
1085                  */
1086                 if (!pi_state->owner)
1087                         goto out_einval;
1088         }
1089
1090         /*
1091          * Bail out if user space manipulated the futex value. If pi
1092          * state exists then the owner TID must be the same as the
1093          * user space TID. [9/10]
1094          */
1095         if (pid != task_pid_vnr(pi_state->owner))
1096                 goto out_einval;
1097
1098 out_attach:
1099         get_pi_state(pi_state);
1100         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101         *ps = pi_state;
1102         return 0;
1103
1104 out_einval:
1105         ret = -EINVAL;
1106         goto out_error;
1107
1108 out_eagain:
1109         ret = -EAGAIN;
1110         goto out_error;
1111
1112 out_efault:
1113         ret = -EFAULT;
1114         goto out_error;
1115
1116 out_error:
1117         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118         return ret;
1119 }
1120
1121 /**
1122  * wait_for_owner_exiting - Block until the owner has exited
1123  * @ret: owner's current futex lock status
1124  * @exiting:    Pointer to the exiting task
1125  *
1126  * Caller must hold a refcount on @exiting.
1127  */
1128 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129 {
1130         if (ret != -EBUSY) {
1131                 WARN_ON_ONCE(exiting);
1132                 return;
1133         }
1134
1135         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136                 return;
1137
1138         mutex_lock(&exiting->futex_exit_mutex);
1139         /*
1140          * No point in doing state checking here. If the waiter got here
1141          * while the task was in exec()->exec_futex_release() then it can
1142          * have any FUTEX_STATE_* value when the waiter has acquired the
1143          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144          * already. Highly unlikely and not a problem. Just one more round
1145          * through the futex maze.
1146          */
1147         mutex_unlock(&exiting->futex_exit_mutex);
1148
1149         put_task_struct(exiting);
1150 }
1151
1152 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153                             struct task_struct *tsk)
1154 {
1155         u32 uval2;
1156
1157         /*
1158          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159          * caller that the alleged owner is busy.
1160          */
1161         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1162                 return -EBUSY;
1163
1164         /*
1165          * Reread the user space value to handle the following situation:
1166          *
1167          * CPU0                         CPU1
1168          *
1169          * sys_exit()                   sys_futex()
1170          *  do_exit()                    futex_lock_pi()
1171          *                                futex_lock_pi_atomic()
1172          *   exit_signals(tsk)              No waiters:
1173          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1174          *  mm_release(tsk)                 Set waiter bit
1175          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1176          *      Set owner died              attach_to_pi_owner() {
1177          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1178          *   }                               if (!tsk->flags & PF_EXITING) {
1179          *  ...                                attach();
1180          *  tsk->futex_state =               } else {
1181          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1182          *                                        FUTEX_STATE_DEAD)
1183          *                                       return -EAGAIN;
1184          *                                     return -ESRCH; <--- FAIL
1185          *                                   }
1186          *
1187          * Returning ESRCH unconditionally is wrong here because the
1188          * user space value has been changed by the exiting task.
1189          *
1190          * The same logic applies to the case where the exiting task is
1191          * already gone.
1192          */
1193         if (get_futex_value_locked(&uval2, uaddr))
1194                 return -EFAULT;
1195
1196         /* If the user space value has changed, try again. */
1197         if (uval2 != uval)
1198                 return -EAGAIN;
1199
1200         /*
1201          * The exiting task did not have a robust list, the robust list was
1202          * corrupted or the user space value in *uaddr is simply bogus.
1203          * Give up and tell user space.
1204          */
1205         return -ESRCH;
1206 }
1207
1208 /*
1209  * Lookup the task for the TID provided from user space and attach to
1210  * it after doing proper sanity checks.
1211  */
1212 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1213                               struct futex_pi_state **ps,
1214                               struct task_struct **exiting)
1215 {
1216         pid_t pid = uval & FUTEX_TID_MASK;
1217         struct futex_pi_state *pi_state;
1218         struct task_struct *p;
1219
1220         /*
1221          * We are the first waiter - try to look up the real owner and attach
1222          * the new pi_state to it, but bail out when TID = 0 [1]
1223          *
1224          * The !pid check is paranoid. None of the call sites should end up
1225          * with pid == 0, but better safe than sorry. Let the caller retry
1226          */
1227         if (!pid)
1228                 return -EAGAIN;
1229         p = find_get_task_by_vpid(pid);
1230         if (!p)
1231                 return handle_exit_race(uaddr, uval, NULL);
1232
1233         if (unlikely(p->flags & PF_KTHREAD)) {
1234                 put_task_struct(p);
1235                 return -EPERM;
1236         }
1237
1238         /*
1239          * We need to look at the task state to figure out, whether the
1240          * task is exiting. To protect against the change of the task state
1241          * in futex_exit_release(), we do this protected by p->pi_lock:
1242          */
1243         raw_spin_lock_irq(&p->pi_lock);
1244         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1245                 /*
1246                  * The task is on the way out. When the futex state is
1247                  * FUTEX_STATE_DEAD, we know that the task has finished
1248                  * the cleanup:
1249                  */
1250                 int ret = handle_exit_race(uaddr, uval, p);
1251
1252                 raw_spin_unlock_irq(&p->pi_lock);
1253                 /*
1254                  * If the owner task is between FUTEX_STATE_EXITING and
1255                  * FUTEX_STATE_DEAD then store the task pointer and keep
1256                  * the reference on the task struct. The calling code will
1257                  * drop all locks, wait for the task to reach
1258                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1259                  * required to prevent a live lock when the current task
1260                  * preempted the exiting task between the two states.
1261                  */
1262                 if (ret == -EBUSY)
1263                         *exiting = p;
1264                 else
1265                         put_task_struct(p);
1266                 return ret;
1267         }
1268
1269         /*
1270          * No existing pi state. First waiter. [2]
1271          *
1272          * This creates pi_state, we have hb->lock held, this means nothing can
1273          * observe this state, wait_lock is irrelevant.
1274          */
1275         pi_state = alloc_pi_state();
1276
1277         /*
1278          * Initialize the pi_mutex in locked state and make @p
1279          * the owner of it:
1280          */
1281         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283         /* Store the key for possible exit cleanups: */
1284         pi_state->key = *key;
1285
1286         WARN_ON(!list_empty(&pi_state->list));
1287         list_add(&pi_state->list, &p->pi_state_list);
1288         /*
1289          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290          * because there is no concurrency as the object is not published yet.
1291          */
1292         pi_state->owner = p;
1293         raw_spin_unlock_irq(&p->pi_lock);
1294
1295         put_task_struct(p);
1296
1297         *ps = pi_state;
1298
1299         return 0;
1300 }
1301
1302 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1303                            struct futex_hash_bucket *hb,
1304                            union futex_key *key, struct futex_pi_state **ps,
1305                            struct task_struct **exiting)
1306 {
1307         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1308
1309         /*
1310          * If there is a waiter on that futex, validate it and
1311          * attach to the pi_state when the validation succeeds.
1312          */
1313         if (top_waiter)
1314                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1315
1316         /*
1317          * We are the first waiter - try to look up the owner based on
1318          * @uval and attach to it.
1319          */
1320         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1321 }
1322
1323 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1324 {
1325         int err;
1326         u32 curval;
1327
1328         if (unlikely(should_fail_futex(true)))
1329                 return -EFAULT;
1330
1331         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1332         if (unlikely(err))
1333                 return err;
1334
1335         /* If user space value changed, let the caller retry */
1336         return curval != uval ? -EAGAIN : 0;
1337 }
1338
1339 /**
1340  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1341  * @uaddr:              the pi futex user address
1342  * @hb:                 the pi futex hash bucket
1343  * @key:                the futex key associated with uaddr and hb
1344  * @ps:                 the pi_state pointer where we store the result of the
1345  *                      lookup
1346  * @task:               the task to perform the atomic lock work for.  This will
1347  *                      be "current" except in the case of requeue pi.
1348  * @exiting:            Pointer to store the task pointer of the owner task
1349  *                      which is in the middle of exiting
1350  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1351  *
1352  * Return:
1353  *  -  0 - ready to wait;
1354  *  -  1 - acquired the lock;
1355  *  - <0 - error
1356  *
1357  * The hb->lock and futex_key refs shall be held by the caller.
1358  *
1359  * @exiting is only set when the return value is -EBUSY. If so, this holds
1360  * a refcount on the exiting task on return and the caller needs to drop it
1361  * after waiting for the exit to complete.
1362  */
1363 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1364                                 union futex_key *key,
1365                                 struct futex_pi_state **ps,
1366                                 struct task_struct *task,
1367                                 struct task_struct **exiting,
1368                                 int set_waiters)
1369 {
1370         u32 uval, newval, vpid = task_pid_vnr(task);
1371         struct futex_q *top_waiter;
1372         int ret;
1373
1374         /*
1375          * Read the user space value first so we can validate a few
1376          * things before proceeding further.
1377          */
1378         if (get_futex_value_locked(&uval, uaddr))
1379                 return -EFAULT;
1380
1381         if (unlikely(should_fail_futex(true)))
1382                 return -EFAULT;
1383
1384         /*
1385          * Detect deadlocks.
1386          */
1387         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1388                 return -EDEADLK;
1389
1390         if ((unlikely(should_fail_futex(true))))
1391                 return -EDEADLK;
1392
1393         /*
1394          * Lookup existing state first. If it exists, try to attach to
1395          * its pi_state.
1396          */
1397         top_waiter = futex_top_waiter(hb, key);
1398         if (top_waiter)
1399                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1400
1401         /*
1402          * No waiter and user TID is 0. We are here because the
1403          * waiters or the owner died bit is set or called from
1404          * requeue_cmp_pi or for whatever reason something took the
1405          * syscall.
1406          */
1407         if (!(uval & FUTEX_TID_MASK)) {
1408                 /*
1409                  * We take over the futex. No other waiters and the user space
1410                  * TID is 0. We preserve the owner died bit.
1411                  */
1412                 newval = uval & FUTEX_OWNER_DIED;
1413                 newval |= vpid;
1414
1415                 /* The futex requeue_pi code can enforce the waiters bit */
1416                 if (set_waiters)
1417                         newval |= FUTEX_WAITERS;
1418
1419                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1420                 /* If the take over worked, return 1 */
1421                 return ret < 0 ? ret : 1;
1422         }
1423
1424         /*
1425          * First waiter. Set the waiters bit before attaching ourself to
1426          * the owner. If owner tries to unlock, it will be forced into
1427          * the kernel and blocked on hb->lock.
1428          */
1429         newval = uval | FUTEX_WAITERS;
1430         ret = lock_pi_update_atomic(uaddr, uval, newval);
1431         if (ret)
1432                 return ret;
1433         /*
1434          * If the update of the user space value succeeded, we try to
1435          * attach to the owner. If that fails, no harm done, we only
1436          * set the FUTEX_WAITERS bit in the user space variable.
1437          */
1438         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1439 }
1440
1441 /**
1442  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1443  * @q:  The futex_q to unqueue
1444  *
1445  * The q->lock_ptr must not be NULL and must be held by the caller.
1446  */
1447 static void __unqueue_futex(struct futex_q *q)
1448 {
1449         struct futex_hash_bucket *hb;
1450
1451         if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1452                 return;
1453         lockdep_assert_held(q->lock_ptr);
1454
1455         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1456         plist_del(&q->list, &hb->chain);
1457         hb_waiters_dec(hb);
1458 }
1459
1460 /*
1461  * The hash bucket lock must be held when this is called.
1462  * Afterwards, the futex_q must not be accessed. Callers
1463  * must ensure to later call wake_up_q() for the actual
1464  * wakeups to occur.
1465  */
1466 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1467 {
1468         struct task_struct *p = q->task;
1469
1470         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1471                 return;
1472
1473         get_task_struct(p);
1474         __unqueue_futex(q);
1475         /*
1476          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1477          * is written, without taking any locks. This is possible in the event
1478          * of a spurious wakeup, for example. A memory barrier is required here
1479          * to prevent the following store to lock_ptr from getting ahead of the
1480          * plist_del in __unqueue_futex().
1481          */
1482         smp_store_release(&q->lock_ptr, NULL);
1483
1484         /*
1485          * Queue the task for later wakeup for after we've released
1486          * the hb->lock.
1487          */
1488         wake_q_add_safe(wake_q, p);
1489 }
1490
1491 /*
1492  * Caller must hold a reference on @pi_state.
1493  */
1494 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1495 {
1496         u32 curval, newval;
1497         struct rt_mutex_waiter *top_waiter;
1498         struct task_struct *new_owner;
1499         bool postunlock = false;
1500         DEFINE_WAKE_Q(wake_q);
1501         int ret = 0;
1502
1503         top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1504         if (WARN_ON_ONCE(!top_waiter)) {
1505                 /*
1506                  * As per the comment in futex_unlock_pi() this should not happen.
1507                  *
1508                  * When this happens, give up our locks and try again, giving
1509                  * the futex_lock_pi() instance time to complete, either by
1510                  * waiting on the rtmutex or removing itself from the futex
1511                  * queue.
1512                  */
1513                 ret = -EAGAIN;
1514                 goto out_unlock;
1515         }
1516
1517         new_owner = top_waiter->task;
1518
1519         /*
1520          * We pass it to the next owner. The WAITERS bit is always kept
1521          * enabled while there is PI state around. We cleanup the owner
1522          * died bit, because we are the owner.
1523          */
1524         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1525
1526         if (unlikely(should_fail_futex(true))) {
1527                 ret = -EFAULT;
1528                 goto out_unlock;
1529         }
1530
1531         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1532         if (!ret && (curval != uval)) {
1533                 /*
1534                  * If a unconditional UNLOCK_PI operation (user space did not
1535                  * try the TID->0 transition) raced with a waiter setting the
1536                  * FUTEX_WAITERS flag between get_user() and locking the hash
1537                  * bucket lock, retry the operation.
1538                  */
1539                 if ((FUTEX_TID_MASK & curval) == uval)
1540                         ret = -EAGAIN;
1541                 else
1542                         ret = -EINVAL;
1543         }
1544
1545         if (!ret) {
1546                 /*
1547                  * This is a point of no return; once we modified the uval
1548                  * there is no going back and subsequent operations must
1549                  * not fail.
1550                  */
1551                 pi_state_update_owner(pi_state, new_owner);
1552                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1553         }
1554
1555 out_unlock:
1556         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1557
1558         if (postunlock)
1559                 rt_mutex_postunlock(&wake_q);
1560
1561         return ret;
1562 }
1563
1564 /*
1565  * Express the locking dependencies for lockdep:
1566  */
1567 static inline void
1568 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1569 {
1570         if (hb1 <= hb2) {
1571                 spin_lock(&hb1->lock);
1572                 if (hb1 < hb2)
1573                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1574         } else { /* hb1 > hb2 */
1575                 spin_lock(&hb2->lock);
1576                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1577         }
1578 }
1579
1580 static inline void
1581 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1582 {
1583         spin_unlock(&hb1->lock);
1584         if (hb1 != hb2)
1585                 spin_unlock(&hb2->lock);
1586 }
1587
1588 /*
1589  * Wake up waiters matching bitset queued on this futex (uaddr).
1590  */
1591 static int
1592 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1593 {
1594         struct futex_hash_bucket *hb;
1595         struct futex_q *this, *next;
1596         union futex_key key = FUTEX_KEY_INIT;
1597         int ret;
1598         DEFINE_WAKE_Q(wake_q);
1599
1600         if (!bitset)
1601                 return -EINVAL;
1602
1603         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1604         if (unlikely(ret != 0))
1605                 return ret;
1606
1607         hb = hash_futex(&key);
1608
1609         /* Make sure we really have tasks to wakeup */
1610         if (!hb_waiters_pending(hb))
1611                 return ret;
1612
1613         spin_lock(&hb->lock);
1614
1615         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1616                 if (match_futex (&this->key, &key)) {
1617                         if (this->pi_state || this->rt_waiter) {
1618                                 ret = -EINVAL;
1619                                 break;
1620                         }
1621
1622                         /* Check if one of the bits is set in both bitsets */
1623                         if (!(this->bitset & bitset))
1624                                 continue;
1625
1626                         mark_wake_futex(&wake_q, this);
1627                         if (++ret >= nr_wake)
1628                                 break;
1629                 }
1630         }
1631
1632         spin_unlock(&hb->lock);
1633         wake_up_q(&wake_q);
1634         return ret;
1635 }
1636
1637 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1638 {
1639         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1640         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1641         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1642         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1643         int oldval, ret;
1644
1645         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1646                 if (oparg < 0 || oparg > 31) {
1647                         char comm[sizeof(current->comm)];
1648                         /*
1649                          * kill this print and return -EINVAL when userspace
1650                          * is sane again
1651                          */
1652                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1653                                         get_task_comm(comm, current), oparg);
1654                         oparg &= 31;
1655                 }
1656                 oparg = 1 << oparg;
1657         }
1658
1659         pagefault_disable();
1660         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1661         pagefault_enable();
1662         if (ret)
1663                 return ret;
1664
1665         switch (cmp) {
1666         case FUTEX_OP_CMP_EQ:
1667                 return oldval == cmparg;
1668         case FUTEX_OP_CMP_NE:
1669                 return oldval != cmparg;
1670         case FUTEX_OP_CMP_LT:
1671                 return oldval < cmparg;
1672         case FUTEX_OP_CMP_GE:
1673                 return oldval >= cmparg;
1674         case FUTEX_OP_CMP_LE:
1675                 return oldval <= cmparg;
1676         case FUTEX_OP_CMP_GT:
1677                 return oldval > cmparg;
1678         default:
1679                 return -ENOSYS;
1680         }
1681 }
1682
1683 /*
1684  * Wake up all waiters hashed on the physical page that is mapped
1685  * to this virtual address:
1686  */
1687 static int
1688 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1689               int nr_wake, int nr_wake2, int op)
1690 {
1691         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1692         struct futex_hash_bucket *hb1, *hb2;
1693         struct futex_q *this, *next;
1694         int ret, op_ret;
1695         DEFINE_WAKE_Q(wake_q);
1696
1697 retry:
1698         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1699         if (unlikely(ret != 0))
1700                 return ret;
1701         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1702         if (unlikely(ret != 0))
1703                 return ret;
1704
1705         hb1 = hash_futex(&key1);
1706         hb2 = hash_futex(&key2);
1707
1708 retry_private:
1709         double_lock_hb(hb1, hb2);
1710         op_ret = futex_atomic_op_inuser(op, uaddr2);
1711         if (unlikely(op_ret < 0)) {
1712                 double_unlock_hb(hb1, hb2);
1713
1714                 if (!IS_ENABLED(CONFIG_MMU) ||
1715                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1716                         /*
1717                          * we don't get EFAULT from MMU faults if we don't have
1718                          * an MMU, but we might get them from range checking
1719                          */
1720                         ret = op_ret;
1721                         return ret;
1722                 }
1723
1724                 if (op_ret == -EFAULT) {
1725                         ret = fault_in_user_writeable(uaddr2);
1726                         if (ret)
1727                                 return ret;
1728                 }
1729
1730                 if (!(flags & FLAGS_SHARED)) {
1731                         cond_resched();
1732                         goto retry_private;
1733                 }
1734
1735                 cond_resched();
1736                 goto retry;
1737         }
1738
1739         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1740                 if (match_futex (&this->key, &key1)) {
1741                         if (this->pi_state || this->rt_waiter) {
1742                                 ret = -EINVAL;
1743                                 goto out_unlock;
1744                         }
1745                         mark_wake_futex(&wake_q, this);
1746                         if (++ret >= nr_wake)
1747                                 break;
1748                 }
1749         }
1750
1751         if (op_ret > 0) {
1752                 op_ret = 0;
1753                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1754                         if (match_futex (&this->key, &key2)) {
1755                                 if (this->pi_state || this->rt_waiter) {
1756                                         ret = -EINVAL;
1757                                         goto out_unlock;
1758                                 }
1759                                 mark_wake_futex(&wake_q, this);
1760                                 if (++op_ret >= nr_wake2)
1761                                         break;
1762                         }
1763                 }
1764                 ret += op_ret;
1765         }
1766
1767 out_unlock:
1768         double_unlock_hb(hb1, hb2);
1769         wake_up_q(&wake_q);
1770         return ret;
1771 }
1772
1773 /**
1774  * requeue_futex() - Requeue a futex_q from one hb to another
1775  * @q:          the futex_q to requeue
1776  * @hb1:        the source hash_bucket
1777  * @hb2:        the target hash_bucket
1778  * @key2:       the new key for the requeued futex_q
1779  */
1780 static inline
1781 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1782                    struct futex_hash_bucket *hb2, union futex_key *key2)
1783 {
1784
1785         /*
1786          * If key1 and key2 hash to the same bucket, no need to
1787          * requeue.
1788          */
1789         if (likely(&hb1->chain != &hb2->chain)) {
1790                 plist_del(&q->list, &hb1->chain);
1791                 hb_waiters_dec(hb1);
1792                 hb_waiters_inc(hb2);
1793                 plist_add(&q->list, &hb2->chain);
1794                 q->lock_ptr = &hb2->lock;
1795         }
1796         q->key = *key2;
1797 }
1798
1799 /**
1800  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1801  * @q:          the futex_q
1802  * @key:        the key of the requeue target futex
1803  * @hb:         the hash_bucket of the requeue target futex
1804  *
1805  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1806  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1807  * to the requeue target futex so the waiter can detect the wakeup on the right
1808  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1809  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1810  * to protect access to the pi_state to fixup the owner later.  Must be called
1811  * with both q->lock_ptr and hb->lock held.
1812  */
1813 static inline
1814 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1815                            struct futex_hash_bucket *hb)
1816 {
1817         q->key = *key;
1818
1819         __unqueue_futex(q);
1820
1821         WARN_ON(!q->rt_waiter);
1822         q->rt_waiter = NULL;
1823
1824         q->lock_ptr = &hb->lock;
1825
1826         wake_up_state(q->task, TASK_NORMAL);
1827 }
1828
1829 /**
1830  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1831  * @pifutex:            the user address of the to futex
1832  * @hb1:                the from futex hash bucket, must be locked by the caller
1833  * @hb2:                the to futex hash bucket, must be locked by the caller
1834  * @key1:               the from futex key
1835  * @key2:               the to futex key
1836  * @ps:                 address to store the pi_state pointer
1837  * @exiting:            Pointer to store the task pointer of the owner task
1838  *                      which is in the middle of exiting
1839  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1840  *
1841  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1842  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1843  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1844  * hb1 and hb2 must be held by the caller.
1845  *
1846  * @exiting is only set when the return value is -EBUSY. If so, this holds
1847  * a refcount on the exiting task on return and the caller needs to drop it
1848  * after waiting for the exit to complete.
1849  *
1850  * Return:
1851  *  -  0 - failed to acquire the lock atomically;
1852  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1853  *  - <0 - error
1854  */
1855 static int
1856 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1857                            struct futex_hash_bucket *hb2, union futex_key *key1,
1858                            union futex_key *key2, struct futex_pi_state **ps,
1859                            struct task_struct **exiting, int set_waiters)
1860 {
1861         struct futex_q *top_waiter = NULL;
1862         u32 curval;
1863         int ret, vpid;
1864
1865         if (get_futex_value_locked(&curval, pifutex))
1866                 return -EFAULT;
1867
1868         if (unlikely(should_fail_futex(true)))
1869                 return -EFAULT;
1870
1871         /*
1872          * Find the top_waiter and determine if there are additional waiters.
1873          * If the caller intends to requeue more than 1 waiter to pifutex,
1874          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1875          * as we have means to handle the possible fault.  If not, don't set
1876          * the bit unecessarily as it will force the subsequent unlock to enter
1877          * the kernel.
1878          */
1879         top_waiter = futex_top_waiter(hb1, key1);
1880
1881         /* There are no waiters, nothing for us to do. */
1882         if (!top_waiter)
1883                 return 0;
1884
1885         /* Ensure we requeue to the expected futex. */
1886         if (!match_futex(top_waiter->requeue_pi_key, key2))
1887                 return -EINVAL;
1888
1889         /*
1890          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1891          * the contended case or if set_waiters is 1.  The pi_state is returned
1892          * in ps in contended cases.
1893          */
1894         vpid = task_pid_vnr(top_waiter->task);
1895         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1896                                    exiting, set_waiters);
1897         if (ret == 1) {
1898                 requeue_pi_wake_futex(top_waiter, key2, hb2);
1899                 return vpid;
1900         }
1901         return ret;
1902 }
1903
1904 /**
1905  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1906  * @uaddr1:     source futex user address
1907  * @flags:      futex flags (FLAGS_SHARED, etc.)
1908  * @uaddr2:     target futex user address
1909  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
1910  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1911  * @cmpval:     @uaddr1 expected value (or %NULL)
1912  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1913  *              pi futex (pi to pi requeue is not supported)
1914  *
1915  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1916  * uaddr2 atomically on behalf of the top waiter.
1917  *
1918  * Return:
1919  *  - >=0 - on success, the number of tasks requeued or woken;
1920  *  -  <0 - on error
1921  */
1922 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1923                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
1924                          u32 *cmpval, int requeue_pi)
1925 {
1926         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1927         int task_count = 0, ret;
1928         struct futex_pi_state *pi_state = NULL;
1929         struct futex_hash_bucket *hb1, *hb2;
1930         struct futex_q *this, *next;
1931         DEFINE_WAKE_Q(wake_q);
1932
1933         if (nr_wake < 0 || nr_requeue < 0)
1934                 return -EINVAL;
1935
1936         /*
1937          * When PI not supported: return -ENOSYS if requeue_pi is true,
1938          * consequently the compiler knows requeue_pi is always false past
1939          * this point which will optimize away all the conditional code
1940          * further down.
1941          */
1942         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1943                 return -ENOSYS;
1944
1945         if (requeue_pi) {
1946                 /*
1947                  * Requeue PI only works on two distinct uaddrs. This
1948                  * check is only valid for private futexes. See below.
1949                  */
1950                 if (uaddr1 == uaddr2)
1951                         return -EINVAL;
1952
1953                 /*
1954                  * requeue_pi requires a pi_state, try to allocate it now
1955                  * without any locks in case it fails.
1956                  */
1957                 if (refill_pi_state_cache())
1958                         return -ENOMEM;
1959                 /*
1960                  * requeue_pi must wake as many tasks as it can, up to nr_wake
1961                  * + nr_requeue, since it acquires the rt_mutex prior to
1962                  * returning to userspace, so as to not leave the rt_mutex with
1963                  * waiters and no owner.  However, second and third wake-ups
1964                  * cannot be predicted as they involve race conditions with the
1965                  * first wake and a fault while looking up the pi_state.  Both
1966                  * pthread_cond_signal() and pthread_cond_broadcast() should
1967                  * use nr_wake=1.
1968                  */
1969                 if (nr_wake != 1)
1970                         return -EINVAL;
1971         }
1972
1973 retry:
1974         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1975         if (unlikely(ret != 0))
1976                 return ret;
1977         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1978                             requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1979         if (unlikely(ret != 0))
1980                 return ret;
1981
1982         /*
1983          * The check above which compares uaddrs is not sufficient for
1984          * shared futexes. We need to compare the keys:
1985          */
1986         if (requeue_pi && match_futex(&key1, &key2))
1987                 return -EINVAL;
1988
1989         hb1 = hash_futex(&key1);
1990         hb2 = hash_futex(&key2);
1991
1992 retry_private:
1993         hb_waiters_inc(hb2);
1994         double_lock_hb(hb1, hb2);
1995
1996         if (likely(cmpval != NULL)) {
1997                 u32 curval;
1998
1999                 ret = get_futex_value_locked(&curval, uaddr1);
2000
2001                 if (unlikely(ret)) {
2002                         double_unlock_hb(hb1, hb2);
2003                         hb_waiters_dec(hb2);
2004
2005                         ret = get_user(curval, uaddr1);
2006                         if (ret)
2007                                 return ret;
2008
2009                         if (!(flags & FLAGS_SHARED))
2010                                 goto retry_private;
2011
2012                         goto retry;
2013                 }
2014                 if (curval != *cmpval) {
2015                         ret = -EAGAIN;
2016                         goto out_unlock;
2017                 }
2018         }
2019
2020         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2021                 struct task_struct *exiting = NULL;
2022
2023                 /*
2024                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2025                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2026                  * bit.  We force this here where we are able to easily handle
2027                  * faults rather in the requeue loop below.
2028                  */
2029                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2030                                                  &key2, &pi_state,
2031                                                  &exiting, nr_requeue);
2032
2033                 /*
2034                  * At this point the top_waiter has either taken uaddr2 or is
2035                  * waiting on it.  If the former, then the pi_state will not
2036                  * exist yet, look it up one more time to ensure we have a
2037                  * reference to it. If the lock was taken, ret contains the
2038                  * vpid of the top waiter task.
2039                  * If the lock was not taken, we have pi_state and an initial
2040                  * refcount on it. In case of an error we have nothing.
2041                  */
2042                 if (ret > 0) {
2043                         WARN_ON(pi_state);
2044                         task_count++;
2045                         /*
2046                          * If we acquired the lock, then the user space value
2047                          * of uaddr2 should be vpid. It cannot be changed by
2048                          * the top waiter as it is blocked on hb2 lock if it
2049                          * tries to do so. If something fiddled with it behind
2050                          * our back the pi state lookup might unearth it. So
2051                          * we rather use the known value than rereading and
2052                          * handing potential crap to lookup_pi_state.
2053                          *
2054                          * If that call succeeds then we have pi_state and an
2055                          * initial refcount on it.
2056                          */
2057                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2058                                               &pi_state, &exiting);
2059                 }
2060
2061                 switch (ret) {
2062                 case 0:
2063                         /* We hold a reference on the pi state. */
2064                         break;
2065
2066                         /* If the above failed, then pi_state is NULL */
2067                 case -EFAULT:
2068                         double_unlock_hb(hb1, hb2);
2069                         hb_waiters_dec(hb2);
2070                         ret = fault_in_user_writeable(uaddr2);
2071                         if (!ret)
2072                                 goto retry;
2073                         return ret;
2074                 case -EBUSY:
2075                 case -EAGAIN:
2076                         /*
2077                          * Two reasons for this:
2078                          * - EBUSY: Owner is exiting and we just wait for the
2079                          *   exit to complete.
2080                          * - EAGAIN: The user space value changed.
2081                          */
2082                         double_unlock_hb(hb1, hb2);
2083                         hb_waiters_dec(hb2);
2084                         /*
2085                          * Handle the case where the owner is in the middle of
2086                          * exiting. Wait for the exit to complete otherwise
2087                          * this task might loop forever, aka. live lock.
2088                          */
2089                         wait_for_owner_exiting(ret, exiting);
2090                         cond_resched();
2091                         goto retry;
2092                 default:
2093                         goto out_unlock;
2094                 }
2095         }
2096
2097         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2098                 if (task_count - nr_wake >= nr_requeue)
2099                         break;
2100
2101                 if (!match_futex(&this->key, &key1))
2102                         continue;
2103
2104                 /*
2105                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2106                  * be paired with each other and no other futex ops.
2107                  *
2108                  * We should never be requeueing a futex_q with a pi_state,
2109                  * which is awaiting a futex_unlock_pi().
2110                  */
2111                 if ((requeue_pi && !this->rt_waiter) ||
2112                     (!requeue_pi && this->rt_waiter) ||
2113                     this->pi_state) {
2114                         ret = -EINVAL;
2115                         break;
2116                 }
2117
2118                 /*
2119                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2120                  * lock, we already woke the top_waiter.  If not, it will be
2121                  * woken by futex_unlock_pi().
2122                  */
2123                 if (++task_count <= nr_wake && !requeue_pi) {
2124                         mark_wake_futex(&wake_q, this);
2125                         continue;
2126                 }
2127
2128                 /* Ensure we requeue to the expected futex for requeue_pi. */
2129                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2130                         ret = -EINVAL;
2131                         break;
2132                 }
2133
2134                 /*
2135                  * Requeue nr_requeue waiters and possibly one more in the case
2136                  * of requeue_pi if we couldn't acquire the lock atomically.
2137                  */
2138                 if (requeue_pi) {
2139                         /*
2140                          * Prepare the waiter to take the rt_mutex. Take a
2141                          * refcount on the pi_state and store the pointer in
2142                          * the futex_q object of the waiter.
2143                          */
2144                         get_pi_state(pi_state);
2145                         this->pi_state = pi_state;
2146                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2147                                                         this->rt_waiter,
2148                                                         this->task);
2149                         if (ret == 1) {
2150                                 /*
2151                                  * We got the lock. We do neither drop the
2152                                  * refcount on pi_state nor clear
2153                                  * this->pi_state because the waiter needs the
2154                                  * pi_state for cleaning up the user space
2155                                  * value. It will drop the refcount after
2156                                  * doing so.
2157                                  */
2158                                 requeue_pi_wake_futex(this, &key2, hb2);
2159                                 continue;
2160                         } else if (ret) {
2161                                 /*
2162                                  * rt_mutex_start_proxy_lock() detected a
2163                                  * potential deadlock when we tried to queue
2164                                  * that waiter. Drop the pi_state reference
2165                                  * which we took above and remove the pointer
2166                                  * to the state from the waiters futex_q
2167                                  * object.
2168                                  */
2169                                 this->pi_state = NULL;
2170                                 put_pi_state(pi_state);
2171                                 /*
2172                                  * We stop queueing more waiters and let user
2173                                  * space deal with the mess.
2174                                  */
2175                                 break;
2176                         }
2177                 }
2178                 requeue_futex(this, hb1, hb2, &key2);
2179         }
2180
2181         /*
2182          * We took an extra initial reference to the pi_state either
2183          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2184          * need to drop it here again.
2185          */
2186         put_pi_state(pi_state);
2187
2188 out_unlock:
2189         double_unlock_hb(hb1, hb2);
2190         wake_up_q(&wake_q);
2191         hb_waiters_dec(hb2);
2192         return ret ? ret : task_count;
2193 }
2194
2195 /* The key must be already stored in q->key. */
2196 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2197         __acquires(&hb->lock)
2198 {
2199         struct futex_hash_bucket *hb;
2200
2201         hb = hash_futex(&q->key);
2202
2203         /*
2204          * Increment the counter before taking the lock so that
2205          * a potential waker won't miss a to-be-slept task that is
2206          * waiting for the spinlock. This is safe as all queue_lock()
2207          * users end up calling queue_me(). Similarly, for housekeeping,
2208          * decrement the counter at queue_unlock() when some error has
2209          * occurred and we don't end up adding the task to the list.
2210          */
2211         hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2212
2213         q->lock_ptr = &hb->lock;
2214
2215         spin_lock(&hb->lock);
2216         return hb;
2217 }
2218
2219 static inline void
2220 queue_unlock(struct futex_hash_bucket *hb)
2221         __releases(&hb->lock)
2222 {
2223         spin_unlock(&hb->lock);
2224         hb_waiters_dec(hb);
2225 }
2226
2227 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2228 {
2229         int prio;
2230
2231         /*
2232          * The priority used to register this element is
2233          * - either the real thread-priority for the real-time threads
2234          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2235          * - or MAX_RT_PRIO for non-RT threads.
2236          * Thus, all RT-threads are woken first in priority order, and
2237          * the others are woken last, in FIFO order.
2238          */
2239         prio = min(current->normal_prio, MAX_RT_PRIO);
2240
2241         plist_node_init(&q->list, prio);
2242         plist_add(&q->list, &hb->chain);
2243         q->task = current;
2244 }
2245
2246 /**
2247  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2248  * @q:  The futex_q to enqueue
2249  * @hb: The destination hash bucket
2250  *
2251  * The hb->lock must be held by the caller, and is released here. A call to
2252  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2253  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2254  * or nothing if the unqueue is done as part of the wake process and the unqueue
2255  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2256  * an example).
2257  */
2258 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2259         __releases(&hb->lock)
2260 {
2261         __queue_me(q, hb);
2262         spin_unlock(&hb->lock);
2263 }
2264
2265 /**
2266  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2267  * @q:  The futex_q to unqueue
2268  *
2269  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2270  * be paired with exactly one earlier call to queue_me().
2271  *
2272  * Return:
2273  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2274  *  - 0 - if the futex_q was already removed by the waking thread
2275  */
2276 static int unqueue_me(struct futex_q *q)
2277 {
2278         spinlock_t *lock_ptr;
2279         int ret = 0;
2280
2281         /* In the common case we don't take the spinlock, which is nice. */
2282 retry:
2283         /*
2284          * q->lock_ptr can change between this read and the following spin_lock.
2285          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2286          * optimizing lock_ptr out of the logic below.
2287          */
2288         lock_ptr = READ_ONCE(q->lock_ptr);
2289         if (lock_ptr != NULL) {
2290                 spin_lock(lock_ptr);
2291                 /*
2292                  * q->lock_ptr can change between reading it and
2293                  * spin_lock(), causing us to take the wrong lock.  This
2294                  * corrects the race condition.
2295                  *
2296                  * Reasoning goes like this: if we have the wrong lock,
2297                  * q->lock_ptr must have changed (maybe several times)
2298                  * between reading it and the spin_lock().  It can
2299                  * change again after the spin_lock() but only if it was
2300                  * already changed before the spin_lock().  It cannot,
2301                  * however, change back to the original value.  Therefore
2302                  * we can detect whether we acquired the correct lock.
2303                  */
2304                 if (unlikely(lock_ptr != q->lock_ptr)) {
2305                         spin_unlock(lock_ptr);
2306                         goto retry;
2307                 }
2308                 __unqueue_futex(q);
2309
2310                 BUG_ON(q->pi_state);
2311
2312                 spin_unlock(lock_ptr);
2313                 ret = 1;
2314         }
2315
2316         return ret;
2317 }
2318
2319 /*
2320  * PI futexes can not be requeued and must remove themself from the
2321  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
2322  */
2323 static void unqueue_me_pi(struct futex_q *q)
2324 {
2325         __unqueue_futex(q);
2326
2327         BUG_ON(!q->pi_state);
2328         put_pi_state(q->pi_state);
2329         q->pi_state = NULL;
2330 }
2331
2332 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2333                                   struct task_struct *argowner)
2334 {
2335         struct futex_pi_state *pi_state = q->pi_state;
2336         struct task_struct *oldowner, *newowner;
2337         u32 uval, curval, newval, newtid;
2338         int err = 0;
2339
2340         oldowner = pi_state->owner;
2341
2342         /*
2343          * We are here because either:
2344          *
2345          *  - we stole the lock and pi_state->owner needs updating to reflect
2346          *    that (@argowner == current),
2347          *
2348          * or:
2349          *
2350          *  - someone stole our lock and we need to fix things to point to the
2351          *    new owner (@argowner == NULL).
2352          *
2353          * Either way, we have to replace the TID in the user space variable.
2354          * This must be atomic as we have to preserve the owner died bit here.
2355          *
2356          * Note: We write the user space value _before_ changing the pi_state
2357          * because we can fault here. Imagine swapped out pages or a fork
2358          * that marked all the anonymous memory readonly for cow.
2359          *
2360          * Modifying pi_state _before_ the user space value would leave the
2361          * pi_state in an inconsistent state when we fault here, because we
2362          * need to drop the locks to handle the fault. This might be observed
2363          * in the PID check in lookup_pi_state.
2364          */
2365 retry:
2366         if (!argowner) {
2367                 if (oldowner != current) {
2368                         /*
2369                          * We raced against a concurrent self; things are
2370                          * already fixed up. Nothing to do.
2371                          */
2372                         return 0;
2373                 }
2374
2375                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2376                         /* We got the lock. pi_state is correct. Tell caller. */
2377                         return 1;
2378                 }
2379
2380                 /*
2381                  * The trylock just failed, so either there is an owner or
2382                  * there is a higher priority waiter than this one.
2383                  */
2384                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2385                 /*
2386                  * If the higher priority waiter has not yet taken over the
2387                  * rtmutex then newowner is NULL. We can't return here with
2388                  * that state because it's inconsistent vs. the user space
2389                  * state. So drop the locks and try again. It's a valid
2390                  * situation and not any different from the other retry
2391                  * conditions.
2392                  */
2393                 if (unlikely(!newowner)) {
2394                         err = -EAGAIN;
2395                         goto handle_err;
2396                 }
2397         } else {
2398                 WARN_ON_ONCE(argowner != current);
2399                 if (oldowner == current) {
2400                         /*
2401                          * We raced against a concurrent self; things are
2402                          * already fixed up. Nothing to do.
2403                          */
2404                         return 1;
2405                 }
2406                 newowner = argowner;
2407         }
2408
2409         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2410         /* Owner died? */
2411         if (!pi_state->owner)
2412                 newtid |= FUTEX_OWNER_DIED;
2413
2414         err = get_futex_value_locked(&uval, uaddr);
2415         if (err)
2416                 goto handle_err;
2417
2418         for (;;) {
2419                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2420
2421                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2422                 if (err)
2423                         goto handle_err;
2424
2425                 if (curval == uval)
2426                         break;
2427                 uval = curval;
2428         }
2429
2430         /*
2431          * We fixed up user space. Now we need to fix the pi_state
2432          * itself.
2433          */
2434         pi_state_update_owner(pi_state, newowner);
2435
2436         return argowner == current;
2437
2438         /*
2439          * In order to reschedule or handle a page fault, we need to drop the
2440          * locks here. In the case of a fault, this gives the other task
2441          * (either the highest priority waiter itself or the task which stole
2442          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2443          * are back from handling the fault we need to check the pi_state after
2444          * reacquiring the locks and before trying to do another fixup. When
2445          * the fixup has been done already we simply return.
2446          *
2447          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2448          * drop hb->lock since the caller owns the hb -> futex_q relation.
2449          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2450          */
2451 handle_err:
2452         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2453         spin_unlock(q->lock_ptr);
2454
2455         switch (err) {
2456         case -EFAULT:
2457                 err = fault_in_user_writeable(uaddr);
2458                 break;
2459
2460         case -EAGAIN:
2461                 cond_resched();
2462                 err = 0;
2463                 break;
2464
2465         default:
2466                 WARN_ON_ONCE(1);
2467                 break;
2468         }
2469
2470         spin_lock(q->lock_ptr);
2471         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2472
2473         /*
2474          * Check if someone else fixed it for us:
2475          */
2476         if (pi_state->owner != oldowner)
2477                 return argowner == current;
2478
2479         /* Retry if err was -EAGAIN or the fault in succeeded */
2480         if (!err)
2481                 goto retry;
2482
2483         /*
2484          * fault_in_user_writeable() failed so user state is immutable. At
2485          * best we can make the kernel state consistent but user state will
2486          * be most likely hosed and any subsequent unlock operation will be
2487          * rejected due to PI futex rule [10].
2488          *
2489          * Ensure that the rtmutex owner is also the pi_state owner despite
2490          * the user space value claiming something different. There is no
2491          * point in unlocking the rtmutex if current is the owner as it
2492          * would need to wait until the next waiter has taken the rtmutex
2493          * to guarantee consistent state. Keep it simple. Userspace asked
2494          * for this wreckaged state.
2495          *
2496          * The rtmutex has an owner - either current or some other
2497          * task. See the EAGAIN loop above.
2498          */
2499         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2500
2501         return err;
2502 }
2503
2504 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2505                                 struct task_struct *argowner)
2506 {
2507         struct futex_pi_state *pi_state = q->pi_state;
2508         int ret;
2509
2510         lockdep_assert_held(q->lock_ptr);
2511
2512         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2513         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2514         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2515         return ret;
2516 }
2517
2518 static long futex_wait_restart(struct restart_block *restart);
2519
2520 /**
2521  * fixup_owner() - Post lock pi_state and corner case management
2522  * @uaddr:      user address of the futex
2523  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2524  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2525  *
2526  * After attempting to lock an rt_mutex, this function is called to cleanup
2527  * the pi_state owner as well as handle race conditions that may allow us to
2528  * acquire the lock. Must be called with the hb lock held.
2529  *
2530  * Return:
2531  *  -  1 - success, lock taken;
2532  *  -  0 - success, lock not taken;
2533  *  - <0 - on error (-EFAULT)
2534  */
2535 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2536 {
2537         if (locked) {
2538                 /*
2539                  * Got the lock. We might not be the anticipated owner if we
2540                  * did a lock-steal - fix up the PI-state in that case:
2541                  *
2542                  * Speculative pi_state->owner read (we don't hold wait_lock);
2543                  * since we own the lock pi_state->owner == current is the
2544                  * stable state, anything else needs more attention.
2545                  */
2546                 if (q->pi_state->owner != current)
2547                         return fixup_pi_state_owner(uaddr, q, current);
2548                 return 1;
2549         }
2550
2551         /*
2552          * If we didn't get the lock; check if anybody stole it from us. In
2553          * that case, we need to fix up the uval to point to them instead of
2554          * us, otherwise bad things happen. [10]
2555          *
2556          * Another speculative read; pi_state->owner == current is unstable
2557          * but needs our attention.
2558          */
2559         if (q->pi_state->owner == current)
2560                 return fixup_pi_state_owner(uaddr, q, NULL);
2561
2562         /*
2563          * Paranoia check. If we did not take the lock, then we should not be
2564          * the owner of the rt_mutex. Warn and establish consistent state.
2565          */
2566         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2567                 return fixup_pi_state_owner(uaddr, q, current);
2568
2569         return 0;
2570 }
2571
2572 /**
2573  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2574  * @hb:         the futex hash bucket, must be locked by the caller
2575  * @q:          the futex_q to queue up on
2576  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2577  */
2578 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2579                                 struct hrtimer_sleeper *timeout)
2580 {
2581         /*
2582          * The task state is guaranteed to be set before another task can
2583          * wake it. set_current_state() is implemented using smp_store_mb() and
2584          * queue_me() calls spin_unlock() upon completion, both serializing
2585          * access to the hash list and forcing another memory barrier.
2586          */
2587         set_current_state(TASK_INTERRUPTIBLE);
2588         queue_me(q, hb);
2589
2590         /* Arm the timer */
2591         if (timeout)
2592                 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2593
2594         /*
2595          * If we have been removed from the hash list, then another task
2596          * has tried to wake us, and we can skip the call to schedule().
2597          */
2598         if (likely(!plist_node_empty(&q->list))) {
2599                 /*
2600                  * If the timer has already expired, current will already be
2601                  * flagged for rescheduling. Only call schedule if there
2602                  * is no timeout, or if it has yet to expire.
2603                  */
2604                 if (!timeout || timeout->task)
2605                         freezable_schedule();
2606         }
2607         __set_current_state(TASK_RUNNING);
2608 }
2609
2610 /**
2611  * futex_wait_setup() - Prepare to wait on a futex
2612  * @uaddr:      the futex userspace address
2613  * @val:        the expected value
2614  * @flags:      futex flags (FLAGS_SHARED, etc.)
2615  * @q:          the associated futex_q
2616  * @hb:         storage for hash_bucket pointer to be returned to caller
2617  *
2618  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2619  * compare it with the expected value.  Handle atomic faults internally.
2620  * Return with the hb lock held and a q.key reference on success, and unlocked
2621  * with no q.key reference on failure.
2622  *
2623  * Return:
2624  *  -  0 - uaddr contains val and hb has been locked;
2625  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2626  */
2627 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2628                            struct futex_q *q, struct futex_hash_bucket **hb)
2629 {
2630         u32 uval;
2631         int ret;
2632
2633         /*
2634          * Access the page AFTER the hash-bucket is locked.
2635          * Order is important:
2636          *
2637          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2638          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2639          *
2640          * The basic logical guarantee of a futex is that it blocks ONLY
2641          * if cond(var) is known to be true at the time of blocking, for
2642          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2643          * would open a race condition where we could block indefinitely with
2644          * cond(var) false, which would violate the guarantee.
2645          *
2646          * On the other hand, we insert q and release the hash-bucket only
2647          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2648          * absorb a wakeup if *uaddr does not match the desired values
2649          * while the syscall executes.
2650          */
2651 retry:
2652         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2653         if (unlikely(ret != 0))
2654                 return ret;
2655
2656 retry_private:
2657         *hb = queue_lock(q);
2658
2659         ret = get_futex_value_locked(&uval, uaddr);
2660
2661         if (ret) {
2662                 queue_unlock(*hb);
2663
2664                 ret = get_user(uval, uaddr);
2665                 if (ret)
2666                         return ret;
2667
2668                 if (!(flags & FLAGS_SHARED))
2669                         goto retry_private;
2670
2671                 goto retry;
2672         }
2673
2674         if (uval != val) {
2675                 queue_unlock(*hb);
2676                 ret = -EWOULDBLOCK;
2677         }
2678
2679         return ret;
2680 }
2681
2682 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2683                       ktime_t *abs_time, u32 bitset)
2684 {
2685         struct hrtimer_sleeper timeout, *to;
2686         struct restart_block *restart;
2687         struct futex_hash_bucket *hb;
2688         struct futex_q q = futex_q_init;
2689         int ret;
2690
2691         if (!bitset)
2692                 return -EINVAL;
2693         q.bitset = bitset;
2694
2695         to = futex_setup_timer(abs_time, &timeout, flags,
2696                                current->timer_slack_ns);
2697 retry:
2698         /*
2699          * Prepare to wait on uaddr. On success, holds hb lock and increments
2700          * q.key refs.
2701          */
2702         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2703         if (ret)
2704                 goto out;
2705
2706         /* queue_me and wait for wakeup, timeout, or a signal. */
2707         futex_wait_queue_me(hb, &q, to);
2708
2709         /* If we were woken (and unqueued), we succeeded, whatever. */
2710         ret = 0;
2711         /* unqueue_me() drops q.key ref */
2712         if (!unqueue_me(&q))
2713                 goto out;
2714         ret = -ETIMEDOUT;
2715         if (to && !to->task)
2716                 goto out;
2717
2718         /*
2719          * We expect signal_pending(current), but we might be the
2720          * victim of a spurious wakeup as well.
2721          */
2722         if (!signal_pending(current))
2723                 goto retry;
2724
2725         ret = -ERESTARTSYS;
2726         if (!abs_time)
2727                 goto out;
2728
2729         restart = &current->restart_block;
2730         restart->futex.uaddr = uaddr;
2731         restart->futex.val = val;
2732         restart->futex.time = *abs_time;
2733         restart->futex.bitset = bitset;
2734         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2735
2736         ret = set_restart_fn(restart, futex_wait_restart);
2737
2738 out:
2739         if (to) {
2740                 hrtimer_cancel(&to->timer);
2741                 destroy_hrtimer_on_stack(&to->timer);
2742         }
2743         return ret;
2744 }
2745
2746
2747 static long futex_wait_restart(struct restart_block *restart)
2748 {
2749         u32 __user *uaddr = restart->futex.uaddr;
2750         ktime_t t, *tp = NULL;
2751
2752         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2753                 t = restart->futex.time;
2754                 tp = &t;
2755         }
2756         restart->fn = do_no_restart_syscall;
2757
2758         return (long)futex_wait(uaddr, restart->futex.flags,
2759                                 restart->futex.val, tp, restart->futex.bitset);
2760 }
2761
2762
2763 /*
2764  * Userspace tried a 0 -> TID atomic transition of the futex value
2765  * and failed. The kernel side here does the whole locking operation:
2766  * if there are waiters then it will block as a consequence of relying
2767  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2768  * a 0 value of the futex too.).
2769  *
2770  * Also serves as futex trylock_pi()'ing, and due semantics.
2771  */
2772 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2773                          ktime_t *time, int trylock)
2774 {
2775         struct hrtimer_sleeper timeout, *to;
2776         struct task_struct *exiting = NULL;
2777         struct rt_mutex_waiter rt_waiter;
2778         struct futex_hash_bucket *hb;
2779         struct futex_q q = futex_q_init;
2780         int res, ret;
2781
2782         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2783                 return -ENOSYS;
2784
2785         if (refill_pi_state_cache())
2786                 return -ENOMEM;
2787
2788         to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2789
2790 retry:
2791         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2792         if (unlikely(ret != 0))
2793                 goto out;
2794
2795 retry_private:
2796         hb = queue_lock(&q);
2797
2798         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2799                                    &exiting, 0);
2800         if (unlikely(ret)) {
2801                 /*
2802                  * Atomic work succeeded and we got the lock,
2803                  * or failed. Either way, we do _not_ block.
2804                  */
2805                 switch (ret) {
2806                 case 1:
2807                         /* We got the lock. */
2808                         ret = 0;
2809                         goto out_unlock_put_key;
2810                 case -EFAULT:
2811                         goto uaddr_faulted;
2812                 case -EBUSY:
2813                 case -EAGAIN:
2814                         /*
2815                          * Two reasons for this:
2816                          * - EBUSY: Task is exiting and we just wait for the
2817                          *   exit to complete.
2818                          * - EAGAIN: The user space value changed.
2819                          */
2820                         queue_unlock(hb);
2821                         /*
2822                          * Handle the case where the owner is in the middle of
2823                          * exiting. Wait for the exit to complete otherwise
2824                          * this task might loop forever, aka. live lock.
2825                          */
2826                         wait_for_owner_exiting(ret, exiting);
2827                         cond_resched();
2828                         goto retry;
2829                 default:
2830                         goto out_unlock_put_key;
2831                 }
2832         }
2833
2834         WARN_ON(!q.pi_state);
2835
2836         /*
2837          * Only actually queue now that the atomic ops are done:
2838          */
2839         __queue_me(&q, hb);
2840
2841         if (trylock) {
2842                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2843                 /* Fixup the trylock return value: */
2844                 ret = ret ? 0 : -EWOULDBLOCK;
2845                 goto no_block;
2846         }
2847
2848         rt_mutex_init_waiter(&rt_waiter);
2849
2850         /*
2851          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2852          * hold it while doing rt_mutex_start_proxy(), because then it will
2853          * include hb->lock in the blocking chain, even through we'll not in
2854          * fact hold it while blocking. This will lead it to report -EDEADLK
2855          * and BUG when futex_unlock_pi() interleaves with this.
2856          *
2857          * Therefore acquire wait_lock while holding hb->lock, but drop the
2858          * latter before calling __rt_mutex_start_proxy_lock(). This
2859          * interleaves with futex_unlock_pi() -- which does a similar lock
2860          * handoff -- such that the latter can observe the futex_q::pi_state
2861          * before __rt_mutex_start_proxy_lock() is done.
2862          */
2863         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2864         spin_unlock(q.lock_ptr);
2865         /*
2866          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2867          * such that futex_unlock_pi() is guaranteed to observe the waiter when
2868          * it sees the futex_q::pi_state.
2869          */
2870         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2871         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2872
2873         if (ret) {
2874                 if (ret == 1)
2875                         ret = 0;
2876                 goto cleanup;
2877         }
2878
2879         if (unlikely(to))
2880                 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2881
2882         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2883
2884 cleanup:
2885         spin_lock(q.lock_ptr);
2886         /*
2887          * If we failed to acquire the lock (deadlock/signal/timeout), we must
2888          * first acquire the hb->lock before removing the lock from the
2889          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2890          * lists consistent.
2891          *
2892          * In particular; it is important that futex_unlock_pi() can not
2893          * observe this inconsistency.
2894          */
2895         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2896                 ret = 0;
2897
2898 no_block:
2899         /*
2900          * Fixup the pi_state owner and possibly acquire the lock if we
2901          * haven't already.
2902          */
2903         res = fixup_owner(uaddr, &q, !ret);
2904         /*
2905          * If fixup_owner() returned an error, proprogate that.  If it acquired
2906          * the lock, clear our -ETIMEDOUT or -EINTR.
2907          */
2908         if (res)
2909                 ret = (res < 0) ? res : 0;
2910
2911         unqueue_me_pi(&q);
2912         spin_unlock(q.lock_ptr);
2913         goto out;
2914
2915 out_unlock_put_key:
2916         queue_unlock(hb);
2917
2918 out:
2919         if (to) {
2920                 hrtimer_cancel(&to->timer);
2921                 destroy_hrtimer_on_stack(&to->timer);
2922         }
2923         return ret != -EINTR ? ret : -ERESTARTNOINTR;
2924
2925 uaddr_faulted:
2926         queue_unlock(hb);
2927
2928         ret = fault_in_user_writeable(uaddr);
2929         if (ret)
2930                 goto out;
2931
2932         if (!(flags & FLAGS_SHARED))
2933                 goto retry_private;
2934
2935         goto retry;
2936 }
2937
2938 /*
2939  * Userspace attempted a TID -> 0 atomic transition, and failed.
2940  * This is the in-kernel slowpath: we look up the PI state (if any),
2941  * and do the rt-mutex unlock.
2942  */
2943 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2944 {
2945         u32 curval, uval, vpid = task_pid_vnr(current);
2946         union futex_key key = FUTEX_KEY_INIT;
2947         struct futex_hash_bucket *hb;
2948         struct futex_q *top_waiter;
2949         int ret;
2950
2951         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2952                 return -ENOSYS;
2953
2954 retry:
2955         if (get_user(uval, uaddr))
2956                 return -EFAULT;
2957         /*
2958          * We release only a lock we actually own:
2959          */
2960         if ((uval & FUTEX_TID_MASK) != vpid)
2961                 return -EPERM;
2962
2963         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2964         if (ret)
2965                 return ret;
2966
2967         hb = hash_futex(&key);
2968         spin_lock(&hb->lock);
2969
2970         /*
2971          * Check waiters first. We do not trust user space values at
2972          * all and we at least want to know if user space fiddled
2973          * with the futex value instead of blindly unlocking.
2974          */
2975         top_waiter = futex_top_waiter(hb, &key);
2976         if (top_waiter) {
2977                 struct futex_pi_state *pi_state = top_waiter->pi_state;
2978
2979                 ret = -EINVAL;
2980                 if (!pi_state)
2981                         goto out_unlock;
2982
2983                 /*
2984                  * If current does not own the pi_state then the futex is
2985                  * inconsistent and user space fiddled with the futex value.
2986                  */
2987                 if (pi_state->owner != current)
2988                         goto out_unlock;
2989
2990                 get_pi_state(pi_state);
2991                 /*
2992                  * By taking wait_lock while still holding hb->lock, we ensure
2993                  * there is no point where we hold neither; and therefore
2994                  * wake_futex_pi() must observe a state consistent with what we
2995                  * observed.
2996                  *
2997                  * In particular; this forces __rt_mutex_start_proxy() to
2998                  * complete such that we're guaranteed to observe the
2999                  * rt_waiter. Also see the WARN in wake_futex_pi().
3000                  */
3001                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3002                 spin_unlock(&hb->lock);
3003
3004                 /* drops pi_state->pi_mutex.wait_lock */
3005                 ret = wake_futex_pi(uaddr, uval, pi_state);
3006
3007                 put_pi_state(pi_state);
3008
3009                 /*
3010                  * Success, we're done! No tricky corner cases.
3011                  */
3012                 if (!ret)
3013                         return ret;
3014                 /*
3015                  * The atomic access to the futex value generated a
3016                  * pagefault, so retry the user-access and the wakeup:
3017                  */
3018                 if (ret == -EFAULT)
3019                         goto pi_faulted;
3020                 /*
3021                  * A unconditional UNLOCK_PI op raced against a waiter
3022                  * setting the FUTEX_WAITERS bit. Try again.
3023                  */
3024                 if (ret == -EAGAIN)
3025                         goto pi_retry;
3026                 /*
3027                  * wake_futex_pi has detected invalid state. Tell user
3028                  * space.
3029                  */
3030                 return ret;
3031         }
3032
3033         /*
3034          * We have no kernel internal state, i.e. no waiters in the
3035          * kernel. Waiters which are about to queue themselves are stuck
3036          * on hb->lock. So we can safely ignore them. We do neither
3037          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3038          * owner.
3039          */
3040         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3041                 spin_unlock(&hb->lock);
3042                 switch (ret) {
3043                 case -EFAULT:
3044                         goto pi_faulted;
3045
3046                 case -EAGAIN:
3047                         goto pi_retry;
3048
3049                 default:
3050                         WARN_ON_ONCE(1);
3051                         return ret;
3052                 }
3053         }
3054
3055         /*
3056          * If uval has changed, let user space handle it.
3057          */
3058         ret = (curval == uval) ? 0 : -EAGAIN;
3059
3060 out_unlock:
3061         spin_unlock(&hb->lock);
3062         return ret;
3063
3064 pi_retry:
3065         cond_resched();
3066         goto retry;
3067
3068 pi_faulted:
3069
3070         ret = fault_in_user_writeable(uaddr);
3071         if (!ret)
3072                 goto retry;
3073
3074         return ret;
3075 }
3076
3077 /**
3078  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3079  * @hb:         the hash_bucket futex_q was original enqueued on
3080  * @q:          the futex_q woken while waiting to be requeued
3081  * @key2:       the futex_key of the requeue target futex
3082  * @timeout:    the timeout associated with the wait (NULL if none)
3083  *
3084  * Detect if the task was woken on the initial futex as opposed to the requeue
3085  * target futex.  If so, determine if it was a timeout or a signal that caused
3086  * the wakeup and return the appropriate error code to the caller.  Must be
3087  * called with the hb lock held.
3088  *
3089  * Return:
3090  *  -  0 = no early wakeup detected;
3091  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3092  */
3093 static inline
3094 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3095                                    struct futex_q *q, union futex_key *key2,
3096                                    struct hrtimer_sleeper *timeout)
3097 {
3098         int ret = 0;
3099
3100         /*
3101          * With the hb lock held, we avoid races while we process the wakeup.
3102          * We only need to hold hb (and not hb2) to ensure atomicity as the
3103          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3104          * It can't be requeued from uaddr2 to something else since we don't
3105          * support a PI aware source futex for requeue.
3106          */
3107         if (!match_futex(&q->key, key2)) {
3108                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3109                 /*
3110                  * We were woken prior to requeue by a timeout or a signal.
3111                  * Unqueue the futex_q and determine which it was.
3112                  */
3113                 plist_del(&q->list, &hb->chain);
3114                 hb_waiters_dec(hb);
3115
3116                 /* Handle spurious wakeups gracefully */
3117                 ret = -EWOULDBLOCK;
3118                 if (timeout && !timeout->task)
3119                         ret = -ETIMEDOUT;
3120                 else if (signal_pending(current))
3121                         ret = -ERESTARTNOINTR;
3122         }
3123         return ret;
3124 }
3125
3126 /**
3127  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3128  * @uaddr:      the futex we initially wait on (non-pi)
3129  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3130  *              the same type, no requeueing from private to shared, etc.
3131  * @val:        the expected value of uaddr
3132  * @abs_time:   absolute timeout
3133  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3134  * @uaddr2:     the pi futex we will take prior to returning to user-space
3135  *
3136  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3137  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3138  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3139  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3140  * without one, the pi logic would not know which task to boost/deboost, if
3141  * there was a need to.
3142  *
3143  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3144  * via the following--
3145  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3146  * 2) wakeup on uaddr2 after a requeue
3147  * 3) signal
3148  * 4) timeout
3149  *
3150  * If 3, cleanup and return -ERESTARTNOINTR.
3151  *
3152  * If 2, we may then block on trying to take the rt_mutex and return via:
3153  * 5) successful lock
3154  * 6) signal
3155  * 7) timeout
3156  * 8) other lock acquisition failure
3157  *
3158  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3159  *
3160  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3161  *
3162  * Return:
3163  *  -  0 - On success;
3164  *  - <0 - On error
3165  */
3166 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3167                                  u32 val, ktime_t *abs_time, u32 bitset,
3168                                  u32 __user *uaddr2)
3169 {
3170         struct hrtimer_sleeper timeout, *to;
3171         struct rt_mutex_waiter rt_waiter;
3172         struct futex_hash_bucket *hb;
3173         union futex_key key2 = FUTEX_KEY_INIT;
3174         struct futex_q q = futex_q_init;
3175         int res, ret;
3176
3177         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3178                 return -ENOSYS;
3179
3180         if (uaddr == uaddr2)
3181                 return -EINVAL;
3182
3183         if (!bitset)
3184                 return -EINVAL;
3185
3186         to = futex_setup_timer(abs_time, &timeout, flags,
3187                                current->timer_slack_ns);
3188
3189         /*
3190          * The waiter is allocated on our stack, manipulated by the requeue
3191          * code while we sleep on uaddr.
3192          */
3193         rt_mutex_init_waiter(&rt_waiter);
3194
3195         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3196         if (unlikely(ret != 0))
3197                 goto out;
3198
3199         q.bitset = bitset;
3200         q.rt_waiter = &rt_waiter;
3201         q.requeue_pi_key = &key2;
3202
3203         /*
3204          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3205          * count.
3206          */
3207         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3208         if (ret)
3209                 goto out;
3210
3211         /*
3212          * The check above which compares uaddrs is not sufficient for
3213          * shared futexes. We need to compare the keys:
3214          */
3215         if (match_futex(&q.key, &key2)) {
3216                 queue_unlock(hb);
3217                 ret = -EINVAL;
3218                 goto out;
3219         }
3220
3221         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3222         futex_wait_queue_me(hb, &q, to);
3223
3224         spin_lock(&hb->lock);
3225         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3226         spin_unlock(&hb->lock);
3227         if (ret)
3228                 goto out;
3229
3230         /*
3231          * In order for us to be here, we know our q.key == key2, and since
3232          * we took the hb->lock above, we also know that futex_requeue() has
3233          * completed and we no longer have to concern ourselves with a wakeup
3234          * race with the atomic proxy lock acquisition by the requeue code. The
3235          * futex_requeue dropped our key1 reference and incremented our key2
3236          * reference count.
3237          */
3238
3239         /*
3240          * Check if the requeue code acquired the second futex for us and do
3241          * any pertinent fixup.
3242          */
3243         if (!q.rt_waiter) {
3244                 if (q.pi_state && (q.pi_state->owner != current)) {
3245                         spin_lock(q.lock_ptr);
3246                         ret = fixup_owner(uaddr2, &q, true);
3247                         /*
3248                          * Drop the reference to the pi state which
3249                          * the requeue_pi() code acquired for us.
3250                          */
3251                         put_pi_state(q.pi_state);
3252                         spin_unlock(q.lock_ptr);
3253                         /*
3254                          * Adjust the return value. It's either -EFAULT or
3255                          * success (1) but the caller expects 0 for success.
3256                          */
3257                         ret = ret < 0 ? ret : 0;
3258                 }
3259         } else {
3260                 struct rt_mutex *pi_mutex;
3261
3262                 /*
3263                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3264                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3265                  * the pi_state.
3266                  */
3267                 WARN_ON(!q.pi_state);
3268                 pi_mutex = &q.pi_state->pi_mutex;
3269                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3270
3271                 spin_lock(q.lock_ptr);
3272                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3273                         ret = 0;
3274
3275                 debug_rt_mutex_free_waiter(&rt_waiter);
3276                 /*
3277                  * Fixup the pi_state owner and possibly acquire the lock if we
3278                  * haven't already.
3279                  */
3280                 res = fixup_owner(uaddr2, &q, !ret);
3281                 /*
3282                  * If fixup_owner() returned an error, proprogate that.  If it
3283                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3284                  */
3285                 if (res)
3286                         ret = (res < 0) ? res : 0;
3287
3288                 unqueue_me_pi(&q);
3289                 spin_unlock(q.lock_ptr);
3290         }
3291
3292         if (ret == -EINTR) {
3293                 /*
3294                  * We've already been requeued, but cannot restart by calling
3295                  * futex_lock_pi() directly. We could restart this syscall, but
3296                  * it would detect that the user space "val" changed and return
3297                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3298                  * -EWOULDBLOCK directly.
3299                  */
3300                 ret = -EWOULDBLOCK;
3301         }
3302
3303 out:
3304         if (to) {
3305                 hrtimer_cancel(&to->timer);
3306                 destroy_hrtimer_on_stack(&to->timer);
3307         }
3308         return ret;
3309 }
3310
3311 /*
3312  * Support for robust futexes: the kernel cleans up held futexes at
3313  * thread exit time.
3314  *
3315  * Implementation: user-space maintains a per-thread list of locks it
3316  * is holding. Upon do_exit(), the kernel carefully walks this list,
3317  * and marks all locks that are owned by this thread with the
3318  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3319  * always manipulated with the lock held, so the list is private and
3320  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3321  * field, to allow the kernel to clean up if the thread dies after
3322  * acquiring the lock, but just before it could have added itself to
3323  * the list. There can only be one such pending lock.
3324  */
3325
3326 /**
3327  * sys_set_robust_list() - Set the robust-futex list head of a task
3328  * @head:       pointer to the list-head
3329  * @len:        length of the list-head, as userspace expects
3330  */
3331 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3332                 size_t, len)
3333 {
3334         if (!futex_cmpxchg_enabled)
3335                 return -ENOSYS;
3336         /*
3337          * The kernel knows only one size for now:
3338          */
3339         if (unlikely(len != sizeof(*head)))
3340                 return -EINVAL;
3341
3342         current->robust_list = head;
3343
3344         return 0;
3345 }
3346
3347 /**
3348  * sys_get_robust_list() - Get the robust-futex list head of a task
3349  * @pid:        pid of the process [zero for current task]
3350  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3351  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3352  */
3353 SYSCALL_DEFINE3(get_robust_list, int, pid,
3354                 struct robust_list_head __user * __user *, head_ptr,
3355                 size_t __user *, len_ptr)
3356 {
3357         struct robust_list_head __user *head;
3358         unsigned long ret;
3359         struct task_struct *p;
3360
3361         if (!futex_cmpxchg_enabled)
3362                 return -ENOSYS;
3363
3364         rcu_read_lock();
3365
3366         ret = -ESRCH;
3367         if (!pid)
3368                 p = current;
3369         else {
3370                 p = find_task_by_vpid(pid);
3371                 if (!p)
3372                         goto err_unlock;
3373         }
3374
3375         ret = -EPERM;
3376         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3377                 goto err_unlock;
3378
3379         head = p->robust_list;
3380         rcu_read_unlock();
3381
3382         if (put_user(sizeof(*head), len_ptr))
3383                 return -EFAULT;
3384         return put_user(head, head_ptr);
3385
3386 err_unlock:
3387         rcu_read_unlock();
3388
3389         return ret;
3390 }
3391
3392 /* Constants for the pending_op argument of handle_futex_death */
3393 #define HANDLE_DEATH_PENDING    true
3394 #define HANDLE_DEATH_LIST       false
3395
3396 /*
3397  * Process a futex-list entry, check whether it's owned by the
3398  * dying task, and do notification if so:
3399  */
3400 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3401                               bool pi, bool pending_op)
3402 {
3403         u32 uval, nval, mval;
3404         int err;
3405
3406         /* Futex address must be 32bit aligned */
3407         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3408                 return -1;
3409
3410 retry:
3411         if (get_user(uval, uaddr))
3412                 return -1;
3413
3414         /*
3415          * Special case for regular (non PI) futexes. The unlock path in
3416          * user space has two race scenarios:
3417          *
3418          * 1. The unlock path releases the user space futex value and
3419          *    before it can execute the futex() syscall to wake up
3420          *    waiters it is killed.
3421          *
3422          * 2. A woken up waiter is killed before it can acquire the
3423          *    futex in user space.
3424          *
3425          * In both cases the TID validation below prevents a wakeup of
3426          * potential waiters which can cause these waiters to block
3427          * forever.
3428          *
3429          * In both cases the following conditions are met:
3430          *
3431          *      1) task->robust_list->list_op_pending != NULL
3432          *         @pending_op == true
3433          *      2) User space futex value == 0
3434          *      3) Regular futex: @pi == false
3435          *
3436          * If these conditions are met, it is safe to attempt waking up a
3437          * potential waiter without touching the user space futex value and
3438          * trying to set the OWNER_DIED bit. The user space futex value is
3439          * uncontended and the rest of the user space mutex state is
3440          * consistent, so a woken waiter will just take over the
3441          * uncontended futex. Setting the OWNER_DIED bit would create
3442          * inconsistent state and malfunction of the user space owner died
3443          * handling.
3444          */
3445         if (pending_op && !pi && !uval) {
3446                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3447                 return 0;
3448         }
3449
3450         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3451                 return 0;
3452
3453         /*
3454          * Ok, this dying thread is truly holding a futex
3455          * of interest. Set the OWNER_DIED bit atomically
3456          * via cmpxchg, and if the value had FUTEX_WAITERS
3457          * set, wake up a waiter (if any). (We have to do a
3458          * futex_wake() even if OWNER_DIED is already set -
3459          * to handle the rare but possible case of recursive
3460          * thread-death.) The rest of the cleanup is done in
3461          * userspace.
3462          */
3463         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3464
3465         /*
3466          * We are not holding a lock here, but we want to have
3467          * the pagefault_disable/enable() protection because
3468          * we want to handle the fault gracefully. If the
3469          * access fails we try to fault in the futex with R/W
3470          * verification via get_user_pages. get_user() above
3471          * does not guarantee R/W access. If that fails we
3472          * give up and leave the futex locked.
3473          */
3474         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3475                 switch (err) {
3476                 case -EFAULT:
3477                         if (fault_in_user_writeable(uaddr))
3478                                 return -1;
3479                         goto retry;
3480
3481                 case -EAGAIN:
3482                         cond_resched();
3483                         goto retry;
3484
3485                 default:
3486                         WARN_ON_ONCE(1);
3487                         return err;
3488                 }
3489         }
3490
3491         if (nval != uval)
3492                 goto retry;
3493
3494         /*
3495          * Wake robust non-PI futexes here. The wakeup of
3496          * PI futexes happens in exit_pi_state():
3497          */
3498         if (!pi && (uval & FUTEX_WAITERS))
3499                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3500
3501         return 0;
3502 }
3503
3504 /*
3505  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3506  */
3507 static inline int fetch_robust_entry(struct robust_list __user **entry,
3508                                      struct robust_list __user * __user *head,
3509                                      unsigned int *pi)
3510 {
3511         unsigned long uentry;
3512
3513         if (get_user(uentry, (unsigned long __user *)head))
3514                 return -EFAULT;
3515
3516         *entry = (void __user *)(uentry & ~1UL);
3517         *pi = uentry & 1;
3518
3519         return 0;
3520 }
3521
3522 /*
3523  * Walk curr->robust_list (very carefully, it's a userspace list!)
3524  * and mark any locks found there dead, and notify any waiters.
3525  *
3526  * We silently return on any sign of list-walking problem.
3527  */
3528 static void exit_robust_list(struct task_struct *curr)
3529 {
3530         struct robust_list_head __user *head = curr->robust_list;
3531         struct robust_list __user *entry, *next_entry, *pending;
3532         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3533         unsigned int next_pi;
3534         unsigned long futex_offset;
3535         int rc;
3536
3537         if (!futex_cmpxchg_enabled)
3538                 return;
3539
3540         /*
3541          * Fetch the list head (which was registered earlier, via
3542          * sys_set_robust_list()):
3543          */
3544         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3545                 return;
3546         /*
3547          * Fetch the relative futex offset:
3548          */
3549         if (get_user(futex_offset, &head->futex_offset))
3550                 return;
3551         /*
3552          * Fetch any possibly pending lock-add first, and handle it
3553          * if it exists:
3554          */
3555         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3556                 return;
3557
3558         next_entry = NULL;      /* avoid warning with gcc */
3559         while (entry != &head->list) {
3560                 /*
3561                  * Fetch the next entry in the list before calling
3562                  * handle_futex_death:
3563                  */
3564                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3565                 /*
3566                  * A pending lock might already be on the list, so
3567                  * don't process it twice:
3568                  */
3569                 if (entry != pending) {
3570                         if (handle_futex_death((void __user *)entry + futex_offset,
3571                                                 curr, pi, HANDLE_DEATH_LIST))
3572                                 return;
3573                 }
3574                 if (rc)
3575                         return;
3576                 entry = next_entry;
3577                 pi = next_pi;
3578                 /*
3579                  * Avoid excessively long or circular lists:
3580                  */
3581                 if (!--limit)
3582                         break;
3583
3584                 cond_resched();
3585         }
3586
3587         if (pending) {
3588                 handle_futex_death((void __user *)pending + futex_offset,
3589                                    curr, pip, HANDLE_DEATH_PENDING);
3590         }
3591 }
3592
3593 static void futex_cleanup(struct task_struct *tsk)
3594 {
3595         if (unlikely(tsk->robust_list)) {
3596                 exit_robust_list(tsk);
3597                 tsk->robust_list = NULL;
3598         }
3599
3600 #ifdef CONFIG_COMPAT
3601         if (unlikely(tsk->compat_robust_list)) {
3602                 compat_exit_robust_list(tsk);
3603                 tsk->compat_robust_list = NULL;
3604         }
3605 #endif
3606
3607         if (unlikely(!list_empty(&tsk->pi_state_list)))
3608                 exit_pi_state_list(tsk);
3609 }
3610
3611 /**
3612  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3613  * @tsk:        task to set the state on
3614  *
3615  * Set the futex exit state of the task lockless. The futex waiter code
3616  * observes that state when a task is exiting and loops until the task has
3617  * actually finished the futex cleanup. The worst case for this is that the
3618  * waiter runs through the wait loop until the state becomes visible.
3619  *
3620  * This is called from the recursive fault handling path in do_exit().
3621  *
3622  * This is best effort. Either the futex exit code has run already or
3623  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3624  * take it over. If not, the problem is pushed back to user space. If the
3625  * futex exit code did not run yet, then an already queued waiter might
3626  * block forever, but there is nothing which can be done about that.
3627  */
3628 void futex_exit_recursive(struct task_struct *tsk)
3629 {
3630         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3631         if (tsk->futex_state == FUTEX_STATE_EXITING)
3632                 mutex_unlock(&tsk->futex_exit_mutex);
3633         tsk->futex_state = FUTEX_STATE_DEAD;
3634 }
3635
3636 static void futex_cleanup_begin(struct task_struct *tsk)
3637 {
3638         /*
3639          * Prevent various race issues against a concurrent incoming waiter
3640          * including live locks by forcing the waiter to block on
3641          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3642          * attach_to_pi_owner().
3643          */
3644         mutex_lock(&tsk->futex_exit_mutex);
3645
3646         /*
3647          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3648          *
3649          * This ensures that all subsequent checks of tsk->futex_state in
3650          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3651          * tsk->pi_lock held.
3652          *
3653          * It guarantees also that a pi_state which was queued right before
3654          * the state change under tsk->pi_lock by a concurrent waiter must
3655          * be observed in exit_pi_state_list().
3656          */
3657         raw_spin_lock_irq(&tsk->pi_lock);
3658         tsk->futex_state = FUTEX_STATE_EXITING;
3659         raw_spin_unlock_irq(&tsk->pi_lock);
3660 }
3661
3662 static void futex_cleanup_end(struct task_struct *tsk, int state)
3663 {
3664         /*
3665          * Lockless store. The only side effect is that an observer might
3666          * take another loop until it becomes visible.
3667          */
3668         tsk->futex_state = state;
3669         /*
3670          * Drop the exit protection. This unblocks waiters which observed
3671          * FUTEX_STATE_EXITING to reevaluate the state.
3672          */
3673         mutex_unlock(&tsk->futex_exit_mutex);
3674 }
3675
3676 void futex_exec_release(struct task_struct *tsk)
3677 {
3678         /*
3679          * The state handling is done for consistency, but in the case of
3680          * exec() there is no way to prevent futher damage as the PID stays
3681          * the same. But for the unlikely and arguably buggy case that a
3682          * futex is held on exec(), this provides at least as much state
3683          * consistency protection which is possible.
3684          */
3685         futex_cleanup_begin(tsk);
3686         futex_cleanup(tsk);
3687         /*
3688          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3689          * exec a new binary.
3690          */
3691         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3692 }
3693
3694 void futex_exit_release(struct task_struct *tsk)
3695 {
3696         futex_cleanup_begin(tsk);
3697         futex_cleanup(tsk);
3698         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3699 }
3700
3701 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3702                 u32 __user *uaddr2, u32 val2, u32 val3)
3703 {
3704         int cmd = op & FUTEX_CMD_MASK;
3705         unsigned int flags = 0;
3706
3707         if (!(op & FUTEX_PRIVATE_FLAG))
3708                 flags |= FLAGS_SHARED;
3709
3710         if (op & FUTEX_CLOCK_REALTIME) {
3711                 flags |= FLAGS_CLOCKRT;
3712                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3713                         return -ENOSYS;
3714         }
3715
3716         switch (cmd) {
3717         case FUTEX_LOCK_PI:
3718         case FUTEX_UNLOCK_PI:
3719         case FUTEX_TRYLOCK_PI:
3720         case FUTEX_WAIT_REQUEUE_PI:
3721         case FUTEX_CMP_REQUEUE_PI:
3722                 if (!futex_cmpxchg_enabled)
3723                         return -ENOSYS;
3724         }
3725
3726         switch (cmd) {
3727         case FUTEX_WAIT:
3728                 val3 = FUTEX_BITSET_MATCH_ANY;
3729                 fallthrough;
3730         case FUTEX_WAIT_BITSET:
3731                 return futex_wait(uaddr, flags, val, timeout, val3);
3732         case FUTEX_WAKE:
3733                 val3 = FUTEX_BITSET_MATCH_ANY;
3734                 fallthrough;
3735         case FUTEX_WAKE_BITSET:
3736                 return futex_wake(uaddr, flags, val, val3);
3737         case FUTEX_REQUEUE:
3738                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3739         case FUTEX_CMP_REQUEUE:
3740                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3741         case FUTEX_WAKE_OP:
3742                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3743         case FUTEX_LOCK_PI:
3744                 return futex_lock_pi(uaddr, flags, timeout, 0);
3745         case FUTEX_UNLOCK_PI:
3746                 return futex_unlock_pi(uaddr, flags);
3747         case FUTEX_TRYLOCK_PI:
3748                 return futex_lock_pi(uaddr, flags, NULL, 1);
3749         case FUTEX_WAIT_REQUEUE_PI:
3750                 val3 = FUTEX_BITSET_MATCH_ANY;
3751                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3752                                              uaddr2);
3753         case FUTEX_CMP_REQUEUE_PI:
3754                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3755         }
3756         return -ENOSYS;
3757 }
3758
3759 static __always_inline bool futex_cmd_has_timeout(u32 cmd)
3760 {
3761         switch (cmd) {
3762         case FUTEX_WAIT:
3763         case FUTEX_LOCK_PI:
3764         case FUTEX_WAIT_BITSET:
3765         case FUTEX_WAIT_REQUEUE_PI:
3766                 return true;
3767         }
3768         return false;
3769 }
3770
3771 static __always_inline int
3772 futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
3773 {
3774         if (!timespec64_valid(ts))
3775                 return -EINVAL;
3776
3777         *t = timespec64_to_ktime(*ts);
3778         if (cmd == FUTEX_WAIT)
3779                 *t = ktime_add_safe(ktime_get(), *t);
3780         else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3781                 *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
3782         return 0;
3783 }
3784
3785 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3786                 const struct __kernel_timespec __user *, utime,
3787                 u32 __user *, uaddr2, u32, val3)
3788 {
3789         int ret, cmd = op & FUTEX_CMD_MASK;
3790         ktime_t t, *tp = NULL;
3791         struct timespec64 ts;
3792
3793         if (utime && futex_cmd_has_timeout(cmd)) {
3794                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3795                         return -EFAULT;
3796                 if (get_timespec64(&ts, utime))
3797                         return -EFAULT;
3798                 ret = futex_init_timeout(cmd, op, &ts, &t);
3799                 if (ret)
3800                         return ret;
3801                 tp = &t;
3802         }
3803
3804         return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
3805 }
3806
3807 #ifdef CONFIG_COMPAT
3808 /*
3809  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3810  */
3811 static inline int
3812 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3813                    compat_uptr_t __user *head, unsigned int *pi)
3814 {
3815         if (get_user(*uentry, head))
3816                 return -EFAULT;
3817
3818         *entry = compat_ptr((*uentry) & ~1);
3819         *pi = (unsigned int)(*uentry) & 1;
3820
3821         return 0;
3822 }
3823
3824 static void __user *futex_uaddr(struct robust_list __user *entry,
3825                                 compat_long_t futex_offset)
3826 {
3827         compat_uptr_t base = ptr_to_compat(entry);
3828         void __user *uaddr = compat_ptr(base + futex_offset);
3829
3830         return uaddr;
3831 }
3832
3833 /*
3834  * Walk curr->robust_list (very carefully, it's a userspace list!)
3835  * and mark any locks found there dead, and notify any waiters.
3836  *
3837  * We silently return on any sign of list-walking problem.
3838  */
3839 static void compat_exit_robust_list(struct task_struct *curr)
3840 {
3841         struct compat_robust_list_head __user *head = curr->compat_robust_list;
3842         struct robust_list __user *entry, *next_entry, *pending;
3843         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3844         unsigned int next_pi;
3845         compat_uptr_t uentry, next_uentry, upending;
3846         compat_long_t futex_offset;
3847         int rc;
3848
3849         if (!futex_cmpxchg_enabled)
3850                 return;
3851
3852         /*
3853          * Fetch the list head (which was registered earlier, via
3854          * sys_set_robust_list()):
3855          */
3856         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3857                 return;
3858         /*
3859          * Fetch the relative futex offset:
3860          */
3861         if (get_user(futex_offset, &head->futex_offset))
3862                 return;
3863         /*
3864          * Fetch any possibly pending lock-add first, and handle it
3865          * if it exists:
3866          */
3867         if (compat_fetch_robust_entry(&upending, &pending,
3868                                &head->list_op_pending, &pip))
3869                 return;
3870
3871         next_entry = NULL;      /* avoid warning with gcc */
3872         while (entry != (struct robust_list __user *) &head->list) {
3873                 /*
3874                  * Fetch the next entry in the list before calling
3875                  * handle_futex_death:
3876                  */
3877                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3878                         (compat_uptr_t __user *)&entry->next, &next_pi);
3879                 /*
3880                  * A pending lock might already be on the list, so
3881                  * dont process it twice:
3882                  */
3883                 if (entry != pending) {
3884                         void __user *uaddr = futex_uaddr(entry, futex_offset);
3885
3886                         if (handle_futex_death(uaddr, curr, pi,
3887                                                HANDLE_DEATH_LIST))
3888                                 return;
3889                 }
3890                 if (rc)
3891                         return;
3892                 uentry = next_uentry;
3893                 entry = next_entry;
3894                 pi = next_pi;
3895                 /*
3896                  * Avoid excessively long or circular lists:
3897                  */
3898                 if (!--limit)
3899                         break;
3900
3901                 cond_resched();
3902         }
3903         if (pending) {
3904                 void __user *uaddr = futex_uaddr(pending, futex_offset);
3905
3906                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3907         }
3908 }
3909
3910 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3911                 struct compat_robust_list_head __user *, head,
3912                 compat_size_t, len)
3913 {
3914         if (!futex_cmpxchg_enabled)
3915                 return -ENOSYS;
3916
3917         if (unlikely(len != sizeof(*head)))
3918                 return -EINVAL;
3919
3920         current->compat_robust_list = head;
3921
3922         return 0;
3923 }
3924
3925 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3926                         compat_uptr_t __user *, head_ptr,
3927                         compat_size_t __user *, len_ptr)
3928 {
3929         struct compat_robust_list_head __user *head;
3930         unsigned long ret;
3931         struct task_struct *p;
3932
3933         if (!futex_cmpxchg_enabled)
3934                 return -ENOSYS;
3935
3936         rcu_read_lock();
3937
3938         ret = -ESRCH;
3939         if (!pid)
3940                 p = current;
3941         else {
3942                 p = find_task_by_vpid(pid);
3943                 if (!p)
3944                         goto err_unlock;
3945         }
3946
3947         ret = -EPERM;
3948         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3949                 goto err_unlock;
3950
3951         head = p->compat_robust_list;
3952         rcu_read_unlock();
3953
3954         if (put_user(sizeof(*head), len_ptr))
3955                 return -EFAULT;
3956         return put_user(ptr_to_compat(head), head_ptr);
3957
3958 err_unlock:
3959         rcu_read_unlock();
3960
3961         return ret;
3962 }
3963 #endif /* CONFIG_COMPAT */
3964
3965 #ifdef CONFIG_COMPAT_32BIT_TIME
3966 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3967                 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3968                 u32, val3)
3969 {
3970         int ret, cmd = op & FUTEX_CMD_MASK;
3971         ktime_t t, *tp = NULL;
3972         struct timespec64 ts;
3973
3974         if (utime && futex_cmd_has_timeout(cmd)) {
3975                 if (get_old_timespec32(&ts, utime))
3976                         return -EFAULT;
3977                 ret = futex_init_timeout(cmd, op, &ts, &t);
3978                 if (ret)
3979                         return ret;
3980                 tp = &t;
3981         }
3982
3983         return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
3984 }
3985 #endif /* CONFIG_COMPAT_32BIT_TIME */
3986
3987 static void __init futex_detect_cmpxchg(void)
3988 {
3989 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3990         u32 curval;
3991
3992         /*
3993          * This will fail and we want it. Some arch implementations do
3994          * runtime detection of the futex_atomic_cmpxchg_inatomic()
3995          * functionality. We want to know that before we call in any
3996          * of the complex code paths. Also we want to prevent
3997          * registration of robust lists in that case. NULL is
3998          * guaranteed to fault and we get -EFAULT on functional
3999          * implementation, the non-functional ones will return
4000          * -ENOSYS.
4001          */
4002         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4003                 futex_cmpxchg_enabled = 1;
4004 #endif
4005 }
4006
4007 static int __init futex_init(void)
4008 {
4009         unsigned int futex_shift;
4010         unsigned long i;
4011
4012 #if CONFIG_BASE_SMALL
4013         futex_hashsize = 16;
4014 #else
4015         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4016 #endif
4017
4018         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4019                                                futex_hashsize, 0,
4020                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4021                                                &futex_shift, NULL,
4022                                                futex_hashsize, futex_hashsize);
4023         futex_hashsize = 1UL << futex_shift;
4024
4025         futex_detect_cmpxchg();
4026
4027         for (i = 0; i < futex_hashsize; i++) {
4028                 atomic_set(&futex_queues[i].waiters, 0);
4029                 plist_head_init(&futex_queues[i].chain);
4030                 spin_lock_init(&futex_queues[i].lock);
4031         }
4032
4033         return 0;
4034 }
4035 core_initcall(futex_init);