Merge tag 'audit-pr-20200803' of git://git.kernel.org/pub/scm/linux/kernel/git/pcmoor...
[linux-2.6-microblaze.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;      /* Handle normal Linux uptimes. */
124 int nr_threads;                 /* The idle threads do not count.. */
125
126 static int max_threads;         /* tunable limit on nr_threads */
127
128 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
129
130 static const char * const resident_page_types[] = {
131         NAMED_ARRAY_INDEX(MM_FILEPAGES),
132         NAMED_ARRAY_INDEX(MM_ANONPAGES),
133         NAMED_ARRAY_INDEX(MM_SWAPENTS),
134         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144         return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148
149 int nr_processes(void)
150 {
151         int cpu;
152         int total = 0;
153
154         for_each_possible_cpu(cpu)
155                 total += per_cpu(process_counts, cpu);
156
157         return total;
158 }
159
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174         kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197         int i;
198
199         for (i = 0; i < NR_CACHED_STACKS; i++) {
200                 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202                 if (!vm_stack)
203                         continue;
204
205                 vfree(vm_stack->addr);
206                 cached_vm_stacks[i] = NULL;
207         }
208
209         return 0;
210 }
211 #endif
212
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216         void *stack;
217         int i;
218
219         for (i = 0; i < NR_CACHED_STACKS; i++) {
220                 struct vm_struct *s;
221
222                 s = this_cpu_xchg(cached_stacks[i], NULL);
223
224                 if (!s)
225                         continue;
226
227                 /* Clear the KASAN shadow of the stack. */
228                 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229
230                 /* Clear stale pointers from reused stack. */
231                 memset(s->addr, 0, THREAD_SIZE);
232
233                 tsk->stack_vm_area = s;
234                 tsk->stack = s->addr;
235                 return s->addr;
236         }
237
238         /*
239          * Allocated stacks are cached and later reused by new threads,
240          * so memcg accounting is performed manually on assigning/releasing
241          * stacks to tasks. Drop __GFP_ACCOUNT.
242          */
243         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244                                      VMALLOC_START, VMALLOC_END,
245                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
246                                      PAGE_KERNEL,
247                                      0, node, __builtin_return_address(0));
248
249         /*
250          * We can't call find_vm_area() in interrupt context, and
251          * free_thread_stack() can be called in interrupt context,
252          * so cache the vm_struct.
253          */
254         if (stack) {
255                 tsk->stack_vm_area = find_vm_area(stack);
256                 tsk->stack = stack;
257         }
258         return stack;
259 #else
260         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261                                              THREAD_SIZE_ORDER);
262
263         if (likely(page)) {
264                 tsk->stack = page_address(page);
265                 return tsk->stack;
266         }
267         return NULL;
268 #endif
269 }
270
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274         struct vm_struct *vm = task_stack_vm_area(tsk);
275
276         if (vm) {
277                 int i;
278
279                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280                         mod_memcg_page_state(vm->pages[i],
281                                              MEMCG_KERNEL_STACK_KB,
282                                              -(int)(PAGE_SIZE / 1024));
283
284                         memcg_kmem_uncharge_page(vm->pages[i], 0);
285                 }
286
287                 for (i = 0; i < NR_CACHED_STACKS; i++) {
288                         if (this_cpu_cmpxchg(cached_stacks[i],
289                                         NULL, tsk->stack_vm_area) != NULL)
290                                 continue;
291
292                         return;
293                 }
294
295                 vfree_atomic(tsk->stack);
296                 return;
297         }
298 #endif
299
300         __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
301 }
302 # else
303 static struct kmem_cache *thread_stack_cache;
304
305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
306                                                   int node)
307 {
308         unsigned long *stack;
309         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310         tsk->stack = stack;
311         return stack;
312 }
313
314 static void free_thread_stack(struct task_struct *tsk)
315 {
316         kmem_cache_free(thread_stack_cache, tsk->stack);
317 }
318
319 void thread_stack_cache_init(void)
320 {
321         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
323                                         THREAD_SIZE, NULL);
324         BUG_ON(thread_stack_cache == NULL);
325 }
326 # endif
327 #endif
328
329 /* SLAB cache for signal_struct structures (tsk->signal) */
330 static struct kmem_cache *signal_cachep;
331
332 /* SLAB cache for sighand_struct structures (tsk->sighand) */
333 struct kmem_cache *sighand_cachep;
334
335 /* SLAB cache for files_struct structures (tsk->files) */
336 struct kmem_cache *files_cachep;
337
338 /* SLAB cache for fs_struct structures (tsk->fs) */
339 struct kmem_cache *fs_cachep;
340
341 /* SLAB cache for vm_area_struct structures */
342 static struct kmem_cache *vm_area_cachep;
343
344 /* SLAB cache for mm_struct structures (tsk->mm) */
345 static struct kmem_cache *mm_cachep;
346
347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
348 {
349         struct vm_area_struct *vma;
350
351         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352         if (vma)
353                 vma_init(vma, mm);
354         return vma;
355 }
356
357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358 {
359         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360
361         if (new) {
362                 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
363                 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
364                 /*
365                  * orig->shared.rb may be modified concurrently, but the clone
366                  * will be reinitialized.
367                  */
368                 *new = data_race(*orig);
369                 INIT_LIST_HEAD(&new->anon_vma_chain);
370                 new->vm_next = new->vm_prev = NULL;
371         }
372         return new;
373 }
374
375 void vm_area_free(struct vm_area_struct *vma)
376 {
377         kmem_cache_free(vm_area_cachep, vma);
378 }
379
380 static void account_kernel_stack(struct task_struct *tsk, int account)
381 {
382         void *stack = task_stack_page(tsk);
383         struct vm_struct *vm = task_stack_vm_area(tsk);
384
385         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
386
387         if (vm) {
388                 int i;
389
390                 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
391
392                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
393                         mod_zone_page_state(page_zone(vm->pages[i]),
394                                             NR_KERNEL_STACK_KB,
395                                             PAGE_SIZE / 1024 * account);
396                 }
397         } else {
398                 /*
399                  * All stack pages are in the same zone and belong to the
400                  * same memcg.
401                  */
402                 struct page *first_page = virt_to_page(stack);
403
404                 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
405                                     THREAD_SIZE / 1024 * account);
406
407                 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
408                                     account * (THREAD_SIZE / 1024));
409         }
410 }
411
412 static int memcg_charge_kernel_stack(struct task_struct *tsk)
413 {
414 #ifdef CONFIG_VMAP_STACK
415         struct vm_struct *vm = task_stack_vm_area(tsk);
416         int ret;
417
418         if (vm) {
419                 int i;
420
421                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
422                         /*
423                          * If memcg_kmem_charge_page() fails, page->mem_cgroup
424                          * pointer is NULL, and both memcg_kmem_uncharge_page()
425                          * and mod_memcg_page_state() in free_thread_stack()
426                          * will ignore this page. So it's safe.
427                          */
428                         ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
429                                                      0);
430                         if (ret)
431                                 return ret;
432
433                         mod_memcg_page_state(vm->pages[i],
434                                              MEMCG_KERNEL_STACK_KB,
435                                              PAGE_SIZE / 1024);
436                 }
437         }
438 #endif
439         return 0;
440 }
441
442 static void release_task_stack(struct task_struct *tsk)
443 {
444         if (WARN_ON(tsk->state != TASK_DEAD))
445                 return;  /* Better to leak the stack than to free prematurely */
446
447         account_kernel_stack(tsk, -1);
448         free_thread_stack(tsk);
449         tsk->stack = NULL;
450 #ifdef CONFIG_VMAP_STACK
451         tsk->stack_vm_area = NULL;
452 #endif
453 }
454
455 #ifdef CONFIG_THREAD_INFO_IN_TASK
456 void put_task_stack(struct task_struct *tsk)
457 {
458         if (refcount_dec_and_test(&tsk->stack_refcount))
459                 release_task_stack(tsk);
460 }
461 #endif
462
463 void free_task(struct task_struct *tsk)
464 {
465         scs_release(tsk);
466
467 #ifndef CONFIG_THREAD_INFO_IN_TASK
468         /*
469          * The task is finally done with both the stack and thread_info,
470          * so free both.
471          */
472         release_task_stack(tsk);
473 #else
474         /*
475          * If the task had a separate stack allocation, it should be gone
476          * by now.
477          */
478         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
479 #endif
480         rt_mutex_debug_task_free(tsk);
481         ftrace_graph_exit_task(tsk);
482         arch_release_task_struct(tsk);
483         if (tsk->flags & PF_KTHREAD)
484                 free_kthread_struct(tsk);
485         free_task_struct(tsk);
486 }
487 EXPORT_SYMBOL(free_task);
488
489 #ifdef CONFIG_MMU
490 static __latent_entropy int dup_mmap(struct mm_struct *mm,
491                                         struct mm_struct *oldmm)
492 {
493         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
494         struct rb_node **rb_link, *rb_parent;
495         int retval;
496         unsigned long charge;
497         LIST_HEAD(uf);
498
499         uprobe_start_dup_mmap();
500         if (mmap_write_lock_killable(oldmm)) {
501                 retval = -EINTR;
502                 goto fail_uprobe_end;
503         }
504         flush_cache_dup_mm(oldmm);
505         uprobe_dup_mmap(oldmm, mm);
506         /*
507          * Not linked in yet - no deadlock potential:
508          */
509         mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
510
511         /* No ordering required: file already has been exposed. */
512         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
513
514         mm->total_vm = oldmm->total_vm;
515         mm->data_vm = oldmm->data_vm;
516         mm->exec_vm = oldmm->exec_vm;
517         mm->stack_vm = oldmm->stack_vm;
518
519         rb_link = &mm->mm_rb.rb_node;
520         rb_parent = NULL;
521         pprev = &mm->mmap;
522         retval = ksm_fork(mm, oldmm);
523         if (retval)
524                 goto out;
525         retval = khugepaged_fork(mm, oldmm);
526         if (retval)
527                 goto out;
528
529         prev = NULL;
530         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
531                 struct file *file;
532
533                 if (mpnt->vm_flags & VM_DONTCOPY) {
534                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
535                         continue;
536                 }
537                 charge = 0;
538                 /*
539                  * Don't duplicate many vmas if we've been oom-killed (for
540                  * example)
541                  */
542                 if (fatal_signal_pending(current)) {
543                         retval = -EINTR;
544                         goto out;
545                 }
546                 if (mpnt->vm_flags & VM_ACCOUNT) {
547                         unsigned long len = vma_pages(mpnt);
548
549                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
550                                 goto fail_nomem;
551                         charge = len;
552                 }
553                 tmp = vm_area_dup(mpnt);
554                 if (!tmp)
555                         goto fail_nomem;
556                 retval = vma_dup_policy(mpnt, tmp);
557                 if (retval)
558                         goto fail_nomem_policy;
559                 tmp->vm_mm = mm;
560                 retval = dup_userfaultfd(tmp, &uf);
561                 if (retval)
562                         goto fail_nomem_anon_vma_fork;
563                 if (tmp->vm_flags & VM_WIPEONFORK) {
564                         /*
565                          * VM_WIPEONFORK gets a clean slate in the child.
566                          * Don't prepare anon_vma until fault since we don't
567                          * copy page for current vma.
568                          */
569                         tmp->anon_vma = NULL;
570                 } else if (anon_vma_fork(tmp, mpnt))
571                         goto fail_nomem_anon_vma_fork;
572                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
573                 file = tmp->vm_file;
574                 if (file) {
575                         struct inode *inode = file_inode(file);
576                         struct address_space *mapping = file->f_mapping;
577
578                         get_file(file);
579                         if (tmp->vm_flags & VM_DENYWRITE)
580                                 atomic_dec(&inode->i_writecount);
581                         i_mmap_lock_write(mapping);
582                         if (tmp->vm_flags & VM_SHARED)
583                                 atomic_inc(&mapping->i_mmap_writable);
584                         flush_dcache_mmap_lock(mapping);
585                         /* insert tmp into the share list, just after mpnt */
586                         vma_interval_tree_insert_after(tmp, mpnt,
587                                         &mapping->i_mmap);
588                         flush_dcache_mmap_unlock(mapping);
589                         i_mmap_unlock_write(mapping);
590                 }
591
592                 /*
593                  * Clear hugetlb-related page reserves for children. This only
594                  * affects MAP_PRIVATE mappings. Faults generated by the child
595                  * are not guaranteed to succeed, even if read-only
596                  */
597                 if (is_vm_hugetlb_page(tmp))
598                         reset_vma_resv_huge_pages(tmp);
599
600                 /*
601                  * Link in the new vma and copy the page table entries.
602                  */
603                 *pprev = tmp;
604                 pprev = &tmp->vm_next;
605                 tmp->vm_prev = prev;
606                 prev = tmp;
607
608                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
609                 rb_link = &tmp->vm_rb.rb_right;
610                 rb_parent = &tmp->vm_rb;
611
612                 mm->map_count++;
613                 if (!(tmp->vm_flags & VM_WIPEONFORK))
614                         retval = copy_page_range(mm, oldmm, mpnt);
615
616                 if (tmp->vm_ops && tmp->vm_ops->open)
617                         tmp->vm_ops->open(tmp);
618
619                 if (retval)
620                         goto out;
621         }
622         /* a new mm has just been created */
623         retval = arch_dup_mmap(oldmm, mm);
624 out:
625         mmap_write_unlock(mm);
626         flush_tlb_mm(oldmm);
627         mmap_write_unlock(oldmm);
628         dup_userfaultfd_complete(&uf);
629 fail_uprobe_end:
630         uprobe_end_dup_mmap();
631         return retval;
632 fail_nomem_anon_vma_fork:
633         mpol_put(vma_policy(tmp));
634 fail_nomem_policy:
635         vm_area_free(tmp);
636 fail_nomem:
637         retval = -ENOMEM;
638         vm_unacct_memory(charge);
639         goto out;
640 }
641
642 static inline int mm_alloc_pgd(struct mm_struct *mm)
643 {
644         mm->pgd = pgd_alloc(mm);
645         if (unlikely(!mm->pgd))
646                 return -ENOMEM;
647         return 0;
648 }
649
650 static inline void mm_free_pgd(struct mm_struct *mm)
651 {
652         pgd_free(mm, mm->pgd);
653 }
654 #else
655 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
656 {
657         mmap_write_lock(oldmm);
658         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
659         mmap_write_unlock(oldmm);
660         return 0;
661 }
662 #define mm_alloc_pgd(mm)        (0)
663 #define mm_free_pgd(mm)
664 #endif /* CONFIG_MMU */
665
666 static void check_mm(struct mm_struct *mm)
667 {
668         int i;
669
670         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
671                          "Please make sure 'struct resident_page_types[]' is updated as well");
672
673         for (i = 0; i < NR_MM_COUNTERS; i++) {
674                 long x = atomic_long_read(&mm->rss_stat.count[i]);
675
676                 if (unlikely(x))
677                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
678                                  mm, resident_page_types[i], x);
679         }
680
681         if (mm_pgtables_bytes(mm))
682                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
683                                 mm_pgtables_bytes(mm));
684
685 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
686         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
687 #endif
688 }
689
690 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
691 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
692
693 /*
694  * Called when the last reference to the mm
695  * is dropped: either by a lazy thread or by
696  * mmput. Free the page directory and the mm.
697  */
698 void __mmdrop(struct mm_struct *mm)
699 {
700         BUG_ON(mm == &init_mm);
701         WARN_ON_ONCE(mm == current->mm);
702         WARN_ON_ONCE(mm == current->active_mm);
703         mm_free_pgd(mm);
704         destroy_context(mm);
705         mmu_notifier_subscriptions_destroy(mm);
706         check_mm(mm);
707         put_user_ns(mm->user_ns);
708         free_mm(mm);
709 }
710 EXPORT_SYMBOL_GPL(__mmdrop);
711
712 static void mmdrop_async_fn(struct work_struct *work)
713 {
714         struct mm_struct *mm;
715
716         mm = container_of(work, struct mm_struct, async_put_work);
717         __mmdrop(mm);
718 }
719
720 static void mmdrop_async(struct mm_struct *mm)
721 {
722         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
723                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
724                 schedule_work(&mm->async_put_work);
725         }
726 }
727
728 static inline void free_signal_struct(struct signal_struct *sig)
729 {
730         taskstats_tgid_free(sig);
731         sched_autogroup_exit(sig);
732         /*
733          * __mmdrop is not safe to call from softirq context on x86 due to
734          * pgd_dtor so postpone it to the async context
735          */
736         if (sig->oom_mm)
737                 mmdrop_async(sig->oom_mm);
738         kmem_cache_free(signal_cachep, sig);
739 }
740
741 static inline void put_signal_struct(struct signal_struct *sig)
742 {
743         if (refcount_dec_and_test(&sig->sigcnt))
744                 free_signal_struct(sig);
745 }
746
747 void __put_task_struct(struct task_struct *tsk)
748 {
749         WARN_ON(!tsk->exit_state);
750         WARN_ON(refcount_read(&tsk->usage));
751         WARN_ON(tsk == current);
752
753         cgroup_free(tsk);
754         task_numa_free(tsk, true);
755         security_task_free(tsk);
756         exit_creds(tsk);
757         delayacct_tsk_free(tsk);
758         put_signal_struct(tsk->signal);
759
760         if (!profile_handoff_task(tsk))
761                 free_task(tsk);
762 }
763 EXPORT_SYMBOL_GPL(__put_task_struct);
764
765 void __init __weak arch_task_cache_init(void) { }
766
767 /*
768  * set_max_threads
769  */
770 static void set_max_threads(unsigned int max_threads_suggested)
771 {
772         u64 threads;
773         unsigned long nr_pages = totalram_pages();
774
775         /*
776          * The number of threads shall be limited such that the thread
777          * structures may only consume a small part of the available memory.
778          */
779         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
780                 threads = MAX_THREADS;
781         else
782                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
783                                     (u64) THREAD_SIZE * 8UL);
784
785         if (threads > max_threads_suggested)
786                 threads = max_threads_suggested;
787
788         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
789 }
790
791 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
792 /* Initialized by the architecture: */
793 int arch_task_struct_size __read_mostly;
794 #endif
795
796 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
797 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
798 {
799         /* Fetch thread_struct whitelist for the architecture. */
800         arch_thread_struct_whitelist(offset, size);
801
802         /*
803          * Handle zero-sized whitelist or empty thread_struct, otherwise
804          * adjust offset to position of thread_struct in task_struct.
805          */
806         if (unlikely(*size == 0))
807                 *offset = 0;
808         else
809                 *offset += offsetof(struct task_struct, thread);
810 }
811 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
812
813 void __init fork_init(void)
814 {
815         int i;
816 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
817 #ifndef ARCH_MIN_TASKALIGN
818 #define ARCH_MIN_TASKALIGN      0
819 #endif
820         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
821         unsigned long useroffset, usersize;
822
823         /* create a slab on which task_structs can be allocated */
824         task_struct_whitelist(&useroffset, &usersize);
825         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
826                         arch_task_struct_size, align,
827                         SLAB_PANIC|SLAB_ACCOUNT,
828                         useroffset, usersize, NULL);
829 #endif
830
831         /* do the arch specific task caches init */
832         arch_task_cache_init();
833
834         set_max_threads(MAX_THREADS);
835
836         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
837         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
838         init_task.signal->rlim[RLIMIT_SIGPENDING] =
839                 init_task.signal->rlim[RLIMIT_NPROC];
840
841         for (i = 0; i < UCOUNT_COUNTS; i++) {
842                 init_user_ns.ucount_max[i] = max_threads/2;
843         }
844
845 #ifdef CONFIG_VMAP_STACK
846         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
847                           NULL, free_vm_stack_cache);
848 #endif
849
850         scs_init();
851
852         lockdep_init_task(&init_task);
853         uprobes_init();
854 }
855
856 int __weak arch_dup_task_struct(struct task_struct *dst,
857                                                struct task_struct *src)
858 {
859         *dst = *src;
860         return 0;
861 }
862
863 void set_task_stack_end_magic(struct task_struct *tsk)
864 {
865         unsigned long *stackend;
866
867         stackend = end_of_stack(tsk);
868         *stackend = STACK_END_MAGIC;    /* for overflow detection */
869 }
870
871 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
872 {
873         struct task_struct *tsk;
874         unsigned long *stack;
875         struct vm_struct *stack_vm_area __maybe_unused;
876         int err;
877
878         if (node == NUMA_NO_NODE)
879                 node = tsk_fork_get_node(orig);
880         tsk = alloc_task_struct_node(node);
881         if (!tsk)
882                 return NULL;
883
884         stack = alloc_thread_stack_node(tsk, node);
885         if (!stack)
886                 goto free_tsk;
887
888         if (memcg_charge_kernel_stack(tsk))
889                 goto free_stack;
890
891         stack_vm_area = task_stack_vm_area(tsk);
892
893         err = arch_dup_task_struct(tsk, orig);
894
895         /*
896          * arch_dup_task_struct() clobbers the stack-related fields.  Make
897          * sure they're properly initialized before using any stack-related
898          * functions again.
899          */
900         tsk->stack = stack;
901 #ifdef CONFIG_VMAP_STACK
902         tsk->stack_vm_area = stack_vm_area;
903 #endif
904 #ifdef CONFIG_THREAD_INFO_IN_TASK
905         refcount_set(&tsk->stack_refcount, 1);
906 #endif
907
908         if (err)
909                 goto free_stack;
910
911         err = scs_prepare(tsk, node);
912         if (err)
913                 goto free_stack;
914
915 #ifdef CONFIG_SECCOMP
916         /*
917          * We must handle setting up seccomp filters once we're under
918          * the sighand lock in case orig has changed between now and
919          * then. Until then, filter must be NULL to avoid messing up
920          * the usage counts on the error path calling free_task.
921          */
922         tsk->seccomp.filter = NULL;
923 #endif
924
925         setup_thread_stack(tsk, orig);
926         clear_user_return_notifier(tsk);
927         clear_tsk_need_resched(tsk);
928         set_task_stack_end_magic(tsk);
929
930 #ifdef CONFIG_STACKPROTECTOR
931         tsk->stack_canary = get_random_canary();
932 #endif
933         if (orig->cpus_ptr == &orig->cpus_mask)
934                 tsk->cpus_ptr = &tsk->cpus_mask;
935
936         /*
937          * One for the user space visible state that goes away when reaped.
938          * One for the scheduler.
939          */
940         refcount_set(&tsk->rcu_users, 2);
941         /* One for the rcu users */
942         refcount_set(&tsk->usage, 1);
943 #ifdef CONFIG_BLK_DEV_IO_TRACE
944         tsk->btrace_seq = 0;
945 #endif
946         tsk->splice_pipe = NULL;
947         tsk->task_frag.page = NULL;
948         tsk->wake_q.next = NULL;
949
950         account_kernel_stack(tsk, 1);
951
952         kcov_task_init(tsk);
953
954 #ifdef CONFIG_FAULT_INJECTION
955         tsk->fail_nth = 0;
956 #endif
957
958 #ifdef CONFIG_BLK_CGROUP
959         tsk->throttle_queue = NULL;
960         tsk->use_memdelay = 0;
961 #endif
962
963 #ifdef CONFIG_MEMCG
964         tsk->active_memcg = NULL;
965 #endif
966         return tsk;
967
968 free_stack:
969         free_thread_stack(tsk);
970 free_tsk:
971         free_task_struct(tsk);
972         return NULL;
973 }
974
975 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
976
977 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
978
979 static int __init coredump_filter_setup(char *s)
980 {
981         default_dump_filter =
982                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
983                 MMF_DUMP_FILTER_MASK;
984         return 1;
985 }
986
987 __setup("coredump_filter=", coredump_filter_setup);
988
989 #include <linux/init_task.h>
990
991 static void mm_init_aio(struct mm_struct *mm)
992 {
993 #ifdef CONFIG_AIO
994         spin_lock_init(&mm->ioctx_lock);
995         mm->ioctx_table = NULL;
996 #endif
997 }
998
999 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1000                                            struct task_struct *p)
1001 {
1002 #ifdef CONFIG_MEMCG
1003         if (mm->owner == p)
1004                 WRITE_ONCE(mm->owner, NULL);
1005 #endif
1006 }
1007
1008 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1009 {
1010 #ifdef CONFIG_MEMCG
1011         mm->owner = p;
1012 #endif
1013 }
1014
1015 static void mm_init_uprobes_state(struct mm_struct *mm)
1016 {
1017 #ifdef CONFIG_UPROBES
1018         mm->uprobes_state.xol_area = NULL;
1019 #endif
1020 }
1021
1022 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1023         struct user_namespace *user_ns)
1024 {
1025         mm->mmap = NULL;
1026         mm->mm_rb = RB_ROOT;
1027         mm->vmacache_seqnum = 0;
1028         atomic_set(&mm->mm_users, 1);
1029         atomic_set(&mm->mm_count, 1);
1030         mmap_init_lock(mm);
1031         INIT_LIST_HEAD(&mm->mmlist);
1032         mm->core_state = NULL;
1033         mm_pgtables_bytes_init(mm);
1034         mm->map_count = 0;
1035         mm->locked_vm = 0;
1036         atomic64_set(&mm->pinned_vm, 0);
1037         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1038         spin_lock_init(&mm->page_table_lock);
1039         spin_lock_init(&mm->arg_lock);
1040         mm_init_cpumask(mm);
1041         mm_init_aio(mm);
1042         mm_init_owner(mm, p);
1043         RCU_INIT_POINTER(mm->exe_file, NULL);
1044         mmu_notifier_subscriptions_init(mm);
1045         init_tlb_flush_pending(mm);
1046 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1047         mm->pmd_huge_pte = NULL;
1048 #endif
1049         mm_init_uprobes_state(mm);
1050
1051         if (current->mm) {
1052                 mm->flags = current->mm->flags & MMF_INIT_MASK;
1053                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1054         } else {
1055                 mm->flags = default_dump_filter;
1056                 mm->def_flags = 0;
1057         }
1058
1059         if (mm_alloc_pgd(mm))
1060                 goto fail_nopgd;
1061
1062         if (init_new_context(p, mm))
1063                 goto fail_nocontext;
1064
1065         mm->user_ns = get_user_ns(user_ns);
1066         return mm;
1067
1068 fail_nocontext:
1069         mm_free_pgd(mm);
1070 fail_nopgd:
1071         free_mm(mm);
1072         return NULL;
1073 }
1074
1075 /*
1076  * Allocate and initialize an mm_struct.
1077  */
1078 struct mm_struct *mm_alloc(void)
1079 {
1080         struct mm_struct *mm;
1081
1082         mm = allocate_mm();
1083         if (!mm)
1084                 return NULL;
1085
1086         memset(mm, 0, sizeof(*mm));
1087         return mm_init(mm, current, current_user_ns());
1088 }
1089
1090 static inline void __mmput(struct mm_struct *mm)
1091 {
1092         VM_BUG_ON(atomic_read(&mm->mm_users));
1093
1094         uprobe_clear_state(mm);
1095         exit_aio(mm);
1096         ksm_exit(mm);
1097         khugepaged_exit(mm); /* must run before exit_mmap */
1098         exit_mmap(mm);
1099         mm_put_huge_zero_page(mm);
1100         set_mm_exe_file(mm, NULL);
1101         if (!list_empty(&mm->mmlist)) {
1102                 spin_lock(&mmlist_lock);
1103                 list_del(&mm->mmlist);
1104                 spin_unlock(&mmlist_lock);
1105         }
1106         if (mm->binfmt)
1107                 module_put(mm->binfmt->module);
1108         mmdrop(mm);
1109 }
1110
1111 /*
1112  * Decrement the use count and release all resources for an mm.
1113  */
1114 void mmput(struct mm_struct *mm)
1115 {
1116         might_sleep();
1117
1118         if (atomic_dec_and_test(&mm->mm_users))
1119                 __mmput(mm);
1120 }
1121 EXPORT_SYMBOL_GPL(mmput);
1122
1123 #ifdef CONFIG_MMU
1124 static void mmput_async_fn(struct work_struct *work)
1125 {
1126         struct mm_struct *mm = container_of(work, struct mm_struct,
1127                                             async_put_work);
1128
1129         __mmput(mm);
1130 }
1131
1132 void mmput_async(struct mm_struct *mm)
1133 {
1134         if (atomic_dec_and_test(&mm->mm_users)) {
1135                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1136                 schedule_work(&mm->async_put_work);
1137         }
1138 }
1139 #endif
1140
1141 /**
1142  * set_mm_exe_file - change a reference to the mm's executable file
1143  *
1144  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1145  *
1146  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1147  * invocations: in mmput() nobody alive left, in execve task is single
1148  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1149  * mm->exe_file, but does so without using set_mm_exe_file() in order
1150  * to do avoid the need for any locks.
1151  */
1152 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1153 {
1154         struct file *old_exe_file;
1155
1156         /*
1157          * It is safe to dereference the exe_file without RCU as
1158          * this function is only called if nobody else can access
1159          * this mm -- see comment above for justification.
1160          */
1161         old_exe_file = rcu_dereference_raw(mm->exe_file);
1162
1163         if (new_exe_file)
1164                 get_file(new_exe_file);
1165         rcu_assign_pointer(mm->exe_file, new_exe_file);
1166         if (old_exe_file)
1167                 fput(old_exe_file);
1168 }
1169
1170 /**
1171  * get_mm_exe_file - acquire a reference to the mm's executable file
1172  *
1173  * Returns %NULL if mm has no associated executable file.
1174  * User must release file via fput().
1175  */
1176 struct file *get_mm_exe_file(struct mm_struct *mm)
1177 {
1178         struct file *exe_file;
1179
1180         rcu_read_lock();
1181         exe_file = rcu_dereference(mm->exe_file);
1182         if (exe_file && !get_file_rcu(exe_file))
1183                 exe_file = NULL;
1184         rcu_read_unlock();
1185         return exe_file;
1186 }
1187 EXPORT_SYMBOL(get_mm_exe_file);
1188
1189 /**
1190  * get_task_exe_file - acquire a reference to the task's executable file
1191  *
1192  * Returns %NULL if task's mm (if any) has no associated executable file or
1193  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1194  * User must release file via fput().
1195  */
1196 struct file *get_task_exe_file(struct task_struct *task)
1197 {
1198         struct file *exe_file = NULL;
1199         struct mm_struct *mm;
1200
1201         task_lock(task);
1202         mm = task->mm;
1203         if (mm) {
1204                 if (!(task->flags & PF_KTHREAD))
1205                         exe_file = get_mm_exe_file(mm);
1206         }
1207         task_unlock(task);
1208         return exe_file;
1209 }
1210 EXPORT_SYMBOL(get_task_exe_file);
1211
1212 /**
1213  * get_task_mm - acquire a reference to the task's mm
1214  *
1215  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1216  * this kernel workthread has transiently adopted a user mm with use_mm,
1217  * to do its AIO) is not set and if so returns a reference to it, after
1218  * bumping up the use count.  User must release the mm via mmput()
1219  * after use.  Typically used by /proc and ptrace.
1220  */
1221 struct mm_struct *get_task_mm(struct task_struct *task)
1222 {
1223         struct mm_struct *mm;
1224
1225         task_lock(task);
1226         mm = task->mm;
1227         if (mm) {
1228                 if (task->flags & PF_KTHREAD)
1229                         mm = NULL;
1230                 else
1231                         mmget(mm);
1232         }
1233         task_unlock(task);
1234         return mm;
1235 }
1236 EXPORT_SYMBOL_GPL(get_task_mm);
1237
1238 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1239 {
1240         struct mm_struct *mm;
1241         int err;
1242
1243         err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1244         if (err)
1245                 return ERR_PTR(err);
1246
1247         mm = get_task_mm(task);
1248         if (mm && mm != current->mm &&
1249                         !ptrace_may_access(task, mode)) {
1250                 mmput(mm);
1251                 mm = ERR_PTR(-EACCES);
1252         }
1253         mutex_unlock(&task->signal->exec_update_mutex);
1254
1255         return mm;
1256 }
1257
1258 static void complete_vfork_done(struct task_struct *tsk)
1259 {
1260         struct completion *vfork;
1261
1262         task_lock(tsk);
1263         vfork = tsk->vfork_done;
1264         if (likely(vfork)) {
1265                 tsk->vfork_done = NULL;
1266                 complete(vfork);
1267         }
1268         task_unlock(tsk);
1269 }
1270
1271 static int wait_for_vfork_done(struct task_struct *child,
1272                                 struct completion *vfork)
1273 {
1274         int killed;
1275
1276         freezer_do_not_count();
1277         cgroup_enter_frozen();
1278         killed = wait_for_completion_killable(vfork);
1279         cgroup_leave_frozen(false);
1280         freezer_count();
1281
1282         if (killed) {
1283                 task_lock(child);
1284                 child->vfork_done = NULL;
1285                 task_unlock(child);
1286         }
1287
1288         put_task_struct(child);
1289         return killed;
1290 }
1291
1292 /* Please note the differences between mmput and mm_release.
1293  * mmput is called whenever we stop holding onto a mm_struct,
1294  * error success whatever.
1295  *
1296  * mm_release is called after a mm_struct has been removed
1297  * from the current process.
1298  *
1299  * This difference is important for error handling, when we
1300  * only half set up a mm_struct for a new process and need to restore
1301  * the old one.  Because we mmput the new mm_struct before
1302  * restoring the old one. . .
1303  * Eric Biederman 10 January 1998
1304  */
1305 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1306 {
1307         uprobe_free_utask(tsk);
1308
1309         /* Get rid of any cached register state */
1310         deactivate_mm(tsk, mm);
1311
1312         /*
1313          * Signal userspace if we're not exiting with a core dump
1314          * because we want to leave the value intact for debugging
1315          * purposes.
1316          */
1317         if (tsk->clear_child_tid) {
1318                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1319                     atomic_read(&mm->mm_users) > 1) {
1320                         /*
1321                          * We don't check the error code - if userspace has
1322                          * not set up a proper pointer then tough luck.
1323                          */
1324                         put_user(0, tsk->clear_child_tid);
1325                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1326                                         1, NULL, NULL, 0, 0);
1327                 }
1328                 tsk->clear_child_tid = NULL;
1329         }
1330
1331         /*
1332          * All done, finally we can wake up parent and return this mm to him.
1333          * Also kthread_stop() uses this completion for synchronization.
1334          */
1335         if (tsk->vfork_done)
1336                 complete_vfork_done(tsk);
1337 }
1338
1339 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1340 {
1341         futex_exit_release(tsk);
1342         mm_release(tsk, mm);
1343 }
1344
1345 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1346 {
1347         futex_exec_release(tsk);
1348         mm_release(tsk, mm);
1349 }
1350
1351 /**
1352  * dup_mm() - duplicates an existing mm structure
1353  * @tsk: the task_struct with which the new mm will be associated.
1354  * @oldmm: the mm to duplicate.
1355  *
1356  * Allocates a new mm structure and duplicates the provided @oldmm structure
1357  * content into it.
1358  *
1359  * Return: the duplicated mm or NULL on failure.
1360  */
1361 static struct mm_struct *dup_mm(struct task_struct *tsk,
1362                                 struct mm_struct *oldmm)
1363 {
1364         struct mm_struct *mm;
1365         int err;
1366
1367         mm = allocate_mm();
1368         if (!mm)
1369                 goto fail_nomem;
1370
1371         memcpy(mm, oldmm, sizeof(*mm));
1372
1373         if (!mm_init(mm, tsk, mm->user_ns))
1374                 goto fail_nomem;
1375
1376         err = dup_mmap(mm, oldmm);
1377         if (err)
1378                 goto free_pt;
1379
1380         mm->hiwater_rss = get_mm_rss(mm);
1381         mm->hiwater_vm = mm->total_vm;
1382
1383         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1384                 goto free_pt;
1385
1386         return mm;
1387
1388 free_pt:
1389         /* don't put binfmt in mmput, we haven't got module yet */
1390         mm->binfmt = NULL;
1391         mm_init_owner(mm, NULL);
1392         mmput(mm);
1393
1394 fail_nomem:
1395         return NULL;
1396 }
1397
1398 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1399 {
1400         struct mm_struct *mm, *oldmm;
1401         int retval;
1402
1403         tsk->min_flt = tsk->maj_flt = 0;
1404         tsk->nvcsw = tsk->nivcsw = 0;
1405 #ifdef CONFIG_DETECT_HUNG_TASK
1406         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1407         tsk->last_switch_time = 0;
1408 #endif
1409
1410         tsk->mm = NULL;
1411         tsk->active_mm = NULL;
1412
1413         /*
1414          * Are we cloning a kernel thread?
1415          *
1416          * We need to steal a active VM for that..
1417          */
1418         oldmm = current->mm;
1419         if (!oldmm)
1420                 return 0;
1421
1422         /* initialize the new vmacache entries */
1423         vmacache_flush(tsk);
1424
1425         if (clone_flags & CLONE_VM) {
1426                 mmget(oldmm);
1427                 mm = oldmm;
1428                 goto good_mm;
1429         }
1430
1431         retval = -ENOMEM;
1432         mm = dup_mm(tsk, current->mm);
1433         if (!mm)
1434                 goto fail_nomem;
1435
1436 good_mm:
1437         tsk->mm = mm;
1438         tsk->active_mm = mm;
1439         return 0;
1440
1441 fail_nomem:
1442         return retval;
1443 }
1444
1445 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1446 {
1447         struct fs_struct *fs = current->fs;
1448         if (clone_flags & CLONE_FS) {
1449                 /* tsk->fs is already what we want */
1450                 spin_lock(&fs->lock);
1451                 if (fs->in_exec) {
1452                         spin_unlock(&fs->lock);
1453                         return -EAGAIN;
1454                 }
1455                 fs->users++;
1456                 spin_unlock(&fs->lock);
1457                 return 0;
1458         }
1459         tsk->fs = copy_fs_struct(fs);
1460         if (!tsk->fs)
1461                 return -ENOMEM;
1462         return 0;
1463 }
1464
1465 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1466 {
1467         struct files_struct *oldf, *newf;
1468         int error = 0;
1469
1470         /*
1471          * A background process may not have any files ...
1472          */
1473         oldf = current->files;
1474         if (!oldf)
1475                 goto out;
1476
1477         if (clone_flags & CLONE_FILES) {
1478                 atomic_inc(&oldf->count);
1479                 goto out;
1480         }
1481
1482         newf = dup_fd(oldf, &error);
1483         if (!newf)
1484                 goto out;
1485
1486         tsk->files = newf;
1487         error = 0;
1488 out:
1489         return error;
1490 }
1491
1492 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1493 {
1494 #ifdef CONFIG_BLOCK
1495         struct io_context *ioc = current->io_context;
1496         struct io_context *new_ioc;
1497
1498         if (!ioc)
1499                 return 0;
1500         /*
1501          * Share io context with parent, if CLONE_IO is set
1502          */
1503         if (clone_flags & CLONE_IO) {
1504                 ioc_task_link(ioc);
1505                 tsk->io_context = ioc;
1506         } else if (ioprio_valid(ioc->ioprio)) {
1507                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1508                 if (unlikely(!new_ioc))
1509                         return -ENOMEM;
1510
1511                 new_ioc->ioprio = ioc->ioprio;
1512                 put_io_context(new_ioc);
1513         }
1514 #endif
1515         return 0;
1516 }
1517
1518 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1519 {
1520         struct sighand_struct *sig;
1521
1522         if (clone_flags & CLONE_SIGHAND) {
1523                 refcount_inc(&current->sighand->count);
1524                 return 0;
1525         }
1526         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1527         RCU_INIT_POINTER(tsk->sighand, sig);
1528         if (!sig)
1529                 return -ENOMEM;
1530
1531         refcount_set(&sig->count, 1);
1532         spin_lock_irq(&current->sighand->siglock);
1533         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1534         spin_unlock_irq(&current->sighand->siglock);
1535
1536         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1537         if (clone_flags & CLONE_CLEAR_SIGHAND)
1538                 flush_signal_handlers(tsk, 0);
1539
1540         return 0;
1541 }
1542
1543 void __cleanup_sighand(struct sighand_struct *sighand)
1544 {
1545         if (refcount_dec_and_test(&sighand->count)) {
1546                 signalfd_cleanup(sighand);
1547                 /*
1548                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1549                  * without an RCU grace period, see __lock_task_sighand().
1550                  */
1551                 kmem_cache_free(sighand_cachep, sighand);
1552         }
1553 }
1554
1555 /*
1556  * Initialize POSIX timer handling for a thread group.
1557  */
1558 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1559 {
1560         struct posix_cputimers *pct = &sig->posix_cputimers;
1561         unsigned long cpu_limit;
1562
1563         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1564         posix_cputimers_group_init(pct, cpu_limit);
1565 }
1566
1567 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1568 {
1569         struct signal_struct *sig;
1570
1571         if (clone_flags & CLONE_THREAD)
1572                 return 0;
1573
1574         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1575         tsk->signal = sig;
1576         if (!sig)
1577                 return -ENOMEM;
1578
1579         sig->nr_threads = 1;
1580         atomic_set(&sig->live, 1);
1581         refcount_set(&sig->sigcnt, 1);
1582
1583         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1584         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1585         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1586
1587         init_waitqueue_head(&sig->wait_chldexit);
1588         sig->curr_target = tsk;
1589         init_sigpending(&sig->shared_pending);
1590         INIT_HLIST_HEAD(&sig->multiprocess);
1591         seqlock_init(&sig->stats_lock);
1592         prev_cputime_init(&sig->prev_cputime);
1593
1594 #ifdef CONFIG_POSIX_TIMERS
1595         INIT_LIST_HEAD(&sig->posix_timers);
1596         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1597         sig->real_timer.function = it_real_fn;
1598 #endif
1599
1600         task_lock(current->group_leader);
1601         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1602         task_unlock(current->group_leader);
1603
1604         posix_cpu_timers_init_group(sig);
1605
1606         tty_audit_fork(sig);
1607         sched_autogroup_fork(sig);
1608
1609         sig->oom_score_adj = current->signal->oom_score_adj;
1610         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1611
1612         mutex_init(&sig->cred_guard_mutex);
1613         mutex_init(&sig->exec_update_mutex);
1614
1615         return 0;
1616 }
1617
1618 static void copy_seccomp(struct task_struct *p)
1619 {
1620 #ifdef CONFIG_SECCOMP
1621         /*
1622          * Must be called with sighand->lock held, which is common to
1623          * all threads in the group. Holding cred_guard_mutex is not
1624          * needed because this new task is not yet running and cannot
1625          * be racing exec.
1626          */
1627         assert_spin_locked(&current->sighand->siglock);
1628
1629         /* Ref-count the new filter user, and assign it. */
1630         get_seccomp_filter(current);
1631         p->seccomp = current->seccomp;
1632
1633         /*
1634          * Explicitly enable no_new_privs here in case it got set
1635          * between the task_struct being duplicated and holding the
1636          * sighand lock. The seccomp state and nnp must be in sync.
1637          */
1638         if (task_no_new_privs(current))
1639                 task_set_no_new_privs(p);
1640
1641         /*
1642          * If the parent gained a seccomp mode after copying thread
1643          * flags and between before we held the sighand lock, we have
1644          * to manually enable the seccomp thread flag here.
1645          */
1646         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1647                 set_tsk_thread_flag(p, TIF_SECCOMP);
1648 #endif
1649 }
1650
1651 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1652 {
1653         current->clear_child_tid = tidptr;
1654
1655         return task_pid_vnr(current);
1656 }
1657
1658 static void rt_mutex_init_task(struct task_struct *p)
1659 {
1660         raw_spin_lock_init(&p->pi_lock);
1661 #ifdef CONFIG_RT_MUTEXES
1662         p->pi_waiters = RB_ROOT_CACHED;
1663         p->pi_top_task = NULL;
1664         p->pi_blocked_on = NULL;
1665 #endif
1666 }
1667
1668 static inline void init_task_pid_links(struct task_struct *task)
1669 {
1670         enum pid_type type;
1671
1672         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1673                 INIT_HLIST_NODE(&task->pid_links[type]);
1674         }
1675 }
1676
1677 static inline void
1678 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1679 {
1680         if (type == PIDTYPE_PID)
1681                 task->thread_pid = pid;
1682         else
1683                 task->signal->pids[type] = pid;
1684 }
1685
1686 static inline void rcu_copy_process(struct task_struct *p)
1687 {
1688 #ifdef CONFIG_PREEMPT_RCU
1689         p->rcu_read_lock_nesting = 0;
1690         p->rcu_read_unlock_special.s = 0;
1691         p->rcu_blocked_node = NULL;
1692         INIT_LIST_HEAD(&p->rcu_node_entry);
1693 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1694 #ifdef CONFIG_TASKS_RCU
1695         p->rcu_tasks_holdout = false;
1696         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1697         p->rcu_tasks_idle_cpu = -1;
1698 #endif /* #ifdef CONFIG_TASKS_RCU */
1699 #ifdef CONFIG_TASKS_TRACE_RCU
1700         p->trc_reader_nesting = 0;
1701         p->trc_reader_special.s = 0;
1702         INIT_LIST_HEAD(&p->trc_holdout_list);
1703 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1704 }
1705
1706 struct pid *pidfd_pid(const struct file *file)
1707 {
1708         if (file->f_op == &pidfd_fops)
1709                 return file->private_data;
1710
1711         return ERR_PTR(-EBADF);
1712 }
1713
1714 static int pidfd_release(struct inode *inode, struct file *file)
1715 {
1716         struct pid *pid = file->private_data;
1717
1718         file->private_data = NULL;
1719         put_pid(pid);
1720         return 0;
1721 }
1722
1723 #ifdef CONFIG_PROC_FS
1724 /**
1725  * pidfd_show_fdinfo - print information about a pidfd
1726  * @m: proc fdinfo file
1727  * @f: file referencing a pidfd
1728  *
1729  * Pid:
1730  * This function will print the pid that a given pidfd refers to in the
1731  * pid namespace of the procfs instance.
1732  * If the pid namespace of the process is not a descendant of the pid
1733  * namespace of the procfs instance 0 will be shown as its pid. This is
1734  * similar to calling getppid() on a process whose parent is outside of
1735  * its pid namespace.
1736  *
1737  * NSpid:
1738  * If pid namespaces are supported then this function will also print
1739  * the pid of a given pidfd refers to for all descendant pid namespaces
1740  * starting from the current pid namespace of the instance, i.e. the
1741  * Pid field and the first entry in the NSpid field will be identical.
1742  * If the pid namespace of the process is not a descendant of the pid
1743  * namespace of the procfs instance 0 will be shown as its first NSpid
1744  * entry and no others will be shown.
1745  * Note that this differs from the Pid and NSpid fields in
1746  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1747  * the  pid namespace of the procfs instance. The difference becomes
1748  * obvious when sending around a pidfd between pid namespaces from a
1749  * different branch of the tree, i.e. where no ancestoral relation is
1750  * present between the pid namespaces:
1751  * - create two new pid namespaces ns1 and ns2 in the initial pid
1752  *   namespace (also take care to create new mount namespaces in the
1753  *   new pid namespace and mount procfs)
1754  * - create a process with a pidfd in ns1
1755  * - send pidfd from ns1 to ns2
1756  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1757  *   have exactly one entry, which is 0
1758  */
1759 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1760 {
1761         struct pid *pid = f->private_data;
1762         struct pid_namespace *ns;
1763         pid_t nr = -1;
1764
1765         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1766                 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1767                 nr = pid_nr_ns(pid, ns);
1768         }
1769
1770         seq_put_decimal_ll(m, "Pid:\t", nr);
1771
1772 #ifdef CONFIG_PID_NS
1773         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1774         if (nr > 0) {
1775                 int i;
1776
1777                 /* If nr is non-zero it means that 'pid' is valid and that
1778                  * ns, i.e. the pid namespace associated with the procfs
1779                  * instance, is in the pid namespace hierarchy of pid.
1780                  * Start at one below the already printed level.
1781                  */
1782                 for (i = ns->level + 1; i <= pid->level; i++)
1783                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1784         }
1785 #endif
1786         seq_putc(m, '\n');
1787 }
1788 #endif
1789
1790 /*
1791  * Poll support for process exit notification.
1792  */
1793 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1794 {
1795         struct task_struct *task;
1796         struct pid *pid = file->private_data;
1797         __poll_t poll_flags = 0;
1798
1799         poll_wait(file, &pid->wait_pidfd, pts);
1800
1801         rcu_read_lock();
1802         task = pid_task(pid, PIDTYPE_PID);
1803         /*
1804          * Inform pollers only when the whole thread group exits.
1805          * If the thread group leader exits before all other threads in the
1806          * group, then poll(2) should block, similar to the wait(2) family.
1807          */
1808         if (!task || (task->exit_state && thread_group_empty(task)))
1809                 poll_flags = EPOLLIN | EPOLLRDNORM;
1810         rcu_read_unlock();
1811
1812         return poll_flags;
1813 }
1814
1815 const struct file_operations pidfd_fops = {
1816         .release = pidfd_release,
1817         .poll = pidfd_poll,
1818 #ifdef CONFIG_PROC_FS
1819         .show_fdinfo = pidfd_show_fdinfo,
1820 #endif
1821 };
1822
1823 static void __delayed_free_task(struct rcu_head *rhp)
1824 {
1825         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1826
1827         free_task(tsk);
1828 }
1829
1830 static __always_inline void delayed_free_task(struct task_struct *tsk)
1831 {
1832         if (IS_ENABLED(CONFIG_MEMCG))
1833                 call_rcu(&tsk->rcu, __delayed_free_task);
1834         else
1835                 free_task(tsk);
1836 }
1837
1838 /*
1839  * This creates a new process as a copy of the old one,
1840  * but does not actually start it yet.
1841  *
1842  * It copies the registers, and all the appropriate
1843  * parts of the process environment (as per the clone
1844  * flags). The actual kick-off is left to the caller.
1845  */
1846 static __latent_entropy struct task_struct *copy_process(
1847                                         struct pid *pid,
1848                                         int trace,
1849                                         int node,
1850                                         struct kernel_clone_args *args)
1851 {
1852         int pidfd = -1, retval;
1853         struct task_struct *p;
1854         struct multiprocess_signals delayed;
1855         struct file *pidfile = NULL;
1856         u64 clone_flags = args->flags;
1857         struct nsproxy *nsp = current->nsproxy;
1858
1859         /*
1860          * Don't allow sharing the root directory with processes in a different
1861          * namespace
1862          */
1863         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1864                 return ERR_PTR(-EINVAL);
1865
1866         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1867                 return ERR_PTR(-EINVAL);
1868
1869         /*
1870          * Thread groups must share signals as well, and detached threads
1871          * can only be started up within the thread group.
1872          */
1873         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1874                 return ERR_PTR(-EINVAL);
1875
1876         /*
1877          * Shared signal handlers imply shared VM. By way of the above,
1878          * thread groups also imply shared VM. Blocking this case allows
1879          * for various simplifications in other code.
1880          */
1881         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1882                 return ERR_PTR(-EINVAL);
1883
1884         /*
1885          * Siblings of global init remain as zombies on exit since they are
1886          * not reaped by their parent (swapper). To solve this and to avoid
1887          * multi-rooted process trees, prevent global and container-inits
1888          * from creating siblings.
1889          */
1890         if ((clone_flags & CLONE_PARENT) &&
1891                                 current->signal->flags & SIGNAL_UNKILLABLE)
1892                 return ERR_PTR(-EINVAL);
1893
1894         /*
1895          * If the new process will be in a different pid or user namespace
1896          * do not allow it to share a thread group with the forking task.
1897          */
1898         if (clone_flags & CLONE_THREAD) {
1899                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1900                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1901                         return ERR_PTR(-EINVAL);
1902         }
1903
1904         /*
1905          * If the new process will be in a different time namespace
1906          * do not allow it to share VM or a thread group with the forking task.
1907          */
1908         if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1909                 if (nsp->time_ns != nsp->time_ns_for_children)
1910                         return ERR_PTR(-EINVAL);
1911         }
1912
1913         if (clone_flags & CLONE_PIDFD) {
1914                 /*
1915                  * - CLONE_DETACHED is blocked so that we can potentially
1916                  *   reuse it later for CLONE_PIDFD.
1917                  * - CLONE_THREAD is blocked until someone really needs it.
1918                  */
1919                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1920                         return ERR_PTR(-EINVAL);
1921         }
1922
1923         /*
1924          * Force any signals received before this point to be delivered
1925          * before the fork happens.  Collect up signals sent to multiple
1926          * processes that happen during the fork and delay them so that
1927          * they appear to happen after the fork.
1928          */
1929         sigemptyset(&delayed.signal);
1930         INIT_HLIST_NODE(&delayed.node);
1931
1932         spin_lock_irq(&current->sighand->siglock);
1933         if (!(clone_flags & CLONE_THREAD))
1934                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1935         recalc_sigpending();
1936         spin_unlock_irq(&current->sighand->siglock);
1937         retval = -ERESTARTNOINTR;
1938         if (signal_pending(current))
1939                 goto fork_out;
1940
1941         retval = -ENOMEM;
1942         p = dup_task_struct(current, node);
1943         if (!p)
1944                 goto fork_out;
1945
1946         /*
1947          * This _must_ happen before we call free_task(), i.e. before we jump
1948          * to any of the bad_fork_* labels. This is to avoid freeing
1949          * p->set_child_tid which is (ab)used as a kthread's data pointer for
1950          * kernel threads (PF_KTHREAD).
1951          */
1952         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1953         /*
1954          * Clear TID on mm_release()?
1955          */
1956         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1957
1958         ftrace_graph_init_task(p);
1959
1960         rt_mutex_init_task(p);
1961
1962         lockdep_assert_irqs_enabled();
1963 #ifdef CONFIG_PROVE_LOCKING
1964         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1965 #endif
1966         retval = -EAGAIN;
1967         if (atomic_read(&p->real_cred->user->processes) >=
1968                         task_rlimit(p, RLIMIT_NPROC)) {
1969                 if (p->real_cred->user != INIT_USER &&
1970                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1971                         goto bad_fork_free;
1972         }
1973         current->flags &= ~PF_NPROC_EXCEEDED;
1974
1975         retval = copy_creds(p, clone_flags);
1976         if (retval < 0)
1977                 goto bad_fork_free;
1978
1979         /*
1980          * If multiple threads are within copy_process(), then this check
1981          * triggers too late. This doesn't hurt, the check is only there
1982          * to stop root fork bombs.
1983          */
1984         retval = -EAGAIN;
1985         if (data_race(nr_threads >= max_threads))
1986                 goto bad_fork_cleanup_count;
1987
1988         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1989         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1990         p->flags |= PF_FORKNOEXEC;
1991         INIT_LIST_HEAD(&p->children);
1992         INIT_LIST_HEAD(&p->sibling);
1993         rcu_copy_process(p);
1994         p->vfork_done = NULL;
1995         spin_lock_init(&p->alloc_lock);
1996
1997         init_sigpending(&p->pending);
1998
1999         p->utime = p->stime = p->gtime = 0;
2000 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2001         p->utimescaled = p->stimescaled = 0;
2002 #endif
2003         prev_cputime_init(&p->prev_cputime);
2004
2005 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2006         seqcount_init(&p->vtime.seqcount);
2007         p->vtime.starttime = 0;
2008         p->vtime.state = VTIME_INACTIVE;
2009 #endif
2010
2011 #if defined(SPLIT_RSS_COUNTING)
2012         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2013 #endif
2014
2015         p->default_timer_slack_ns = current->timer_slack_ns;
2016
2017 #ifdef CONFIG_PSI
2018         p->psi_flags = 0;
2019 #endif
2020
2021         task_io_accounting_init(&p->ioac);
2022         acct_clear_integrals(p);
2023
2024         posix_cputimers_init(&p->posix_cputimers);
2025
2026         p->io_context = NULL;
2027         audit_set_context(p, NULL);
2028         cgroup_fork(p);
2029 #ifdef CONFIG_NUMA
2030         p->mempolicy = mpol_dup(p->mempolicy);
2031         if (IS_ERR(p->mempolicy)) {
2032                 retval = PTR_ERR(p->mempolicy);
2033                 p->mempolicy = NULL;
2034                 goto bad_fork_cleanup_threadgroup_lock;
2035         }
2036 #endif
2037 #ifdef CONFIG_CPUSETS
2038         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2039         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2040         seqcount_init(&p->mems_allowed_seq);
2041 #endif
2042 #ifdef CONFIG_TRACE_IRQFLAGS
2043         memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2044         p->irqtrace.hardirq_disable_ip  = _THIS_IP_;
2045         p->irqtrace.softirq_enable_ip   = _THIS_IP_;
2046         p->softirqs_enabled             = 1;
2047         p->softirq_context              = 0;
2048 #endif
2049
2050         p->pagefault_disabled = 0;
2051
2052 #ifdef CONFIG_LOCKDEP
2053         lockdep_init_task(p);
2054 #endif
2055
2056 #ifdef CONFIG_DEBUG_MUTEXES
2057         p->blocked_on = NULL; /* not blocked yet */
2058 #endif
2059 #ifdef CONFIG_BCACHE
2060         p->sequential_io        = 0;
2061         p->sequential_io_avg    = 0;
2062 #endif
2063
2064         /* Perform scheduler related setup. Assign this task to a CPU. */
2065         retval = sched_fork(clone_flags, p);
2066         if (retval)
2067                 goto bad_fork_cleanup_policy;
2068
2069         retval = perf_event_init_task(p);
2070         if (retval)
2071                 goto bad_fork_cleanup_policy;
2072         retval = audit_alloc(p);
2073         if (retval)
2074                 goto bad_fork_cleanup_perf;
2075         /* copy all the process information */
2076         shm_init_task(p);
2077         retval = security_task_alloc(p, clone_flags);
2078         if (retval)
2079                 goto bad_fork_cleanup_audit;
2080         retval = copy_semundo(clone_flags, p);
2081         if (retval)
2082                 goto bad_fork_cleanup_security;
2083         retval = copy_files(clone_flags, p);
2084         if (retval)
2085                 goto bad_fork_cleanup_semundo;
2086         retval = copy_fs(clone_flags, p);
2087         if (retval)
2088                 goto bad_fork_cleanup_files;
2089         retval = copy_sighand(clone_flags, p);
2090         if (retval)
2091                 goto bad_fork_cleanup_fs;
2092         retval = copy_signal(clone_flags, p);
2093         if (retval)
2094                 goto bad_fork_cleanup_sighand;
2095         retval = copy_mm(clone_flags, p);
2096         if (retval)
2097                 goto bad_fork_cleanup_signal;
2098         retval = copy_namespaces(clone_flags, p);
2099         if (retval)
2100                 goto bad_fork_cleanup_mm;
2101         retval = copy_io(clone_flags, p);
2102         if (retval)
2103                 goto bad_fork_cleanup_namespaces;
2104         retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2105                                  args->tls);
2106         if (retval)
2107                 goto bad_fork_cleanup_io;
2108
2109         stackleak_task_init(p);
2110
2111         if (pid != &init_struct_pid) {
2112                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2113                                 args->set_tid_size);
2114                 if (IS_ERR(pid)) {
2115                         retval = PTR_ERR(pid);
2116                         goto bad_fork_cleanup_thread;
2117                 }
2118         }
2119
2120         /*
2121          * This has to happen after we've potentially unshared the file
2122          * descriptor table (so that the pidfd doesn't leak into the child
2123          * if the fd table isn't shared).
2124          */
2125         if (clone_flags & CLONE_PIDFD) {
2126                 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2127                 if (retval < 0)
2128                         goto bad_fork_free_pid;
2129
2130                 pidfd = retval;
2131
2132                 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2133                                               O_RDWR | O_CLOEXEC);
2134                 if (IS_ERR(pidfile)) {
2135                         put_unused_fd(pidfd);
2136                         retval = PTR_ERR(pidfile);
2137                         goto bad_fork_free_pid;
2138                 }
2139                 get_pid(pid);   /* held by pidfile now */
2140
2141                 retval = put_user(pidfd, args->pidfd);
2142                 if (retval)
2143                         goto bad_fork_put_pidfd;
2144         }
2145
2146 #ifdef CONFIG_BLOCK
2147         p->plug = NULL;
2148 #endif
2149         futex_init_task(p);
2150
2151         /*
2152          * sigaltstack should be cleared when sharing the same VM
2153          */
2154         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2155                 sas_ss_reset(p);
2156
2157         /*
2158          * Syscall tracing and stepping should be turned off in the
2159          * child regardless of CLONE_PTRACE.
2160          */
2161         user_disable_single_step(p);
2162         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2163 #ifdef TIF_SYSCALL_EMU
2164         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2165 #endif
2166         clear_tsk_latency_tracing(p);
2167
2168         /* ok, now we should be set up.. */
2169         p->pid = pid_nr(pid);
2170         if (clone_flags & CLONE_THREAD) {
2171                 p->exit_signal = -1;
2172                 p->group_leader = current->group_leader;
2173                 p->tgid = current->tgid;
2174         } else {
2175                 if (clone_flags & CLONE_PARENT)
2176                         p->exit_signal = current->group_leader->exit_signal;
2177                 else
2178                         p->exit_signal = args->exit_signal;
2179                 p->group_leader = p;
2180                 p->tgid = p->pid;
2181         }
2182
2183         p->nr_dirtied = 0;
2184         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2185         p->dirty_paused_when = 0;
2186
2187         p->pdeath_signal = 0;
2188         INIT_LIST_HEAD(&p->thread_group);
2189         p->task_works = NULL;
2190
2191         /*
2192          * Ensure that the cgroup subsystem policies allow the new process to be
2193          * forked. It should be noted the the new process's css_set can be changed
2194          * between here and cgroup_post_fork() if an organisation operation is in
2195          * progress.
2196          */
2197         retval = cgroup_can_fork(p, args);
2198         if (retval)
2199                 goto bad_fork_put_pidfd;
2200
2201         /*
2202          * From this point on we must avoid any synchronous user-space
2203          * communication until we take the tasklist-lock. In particular, we do
2204          * not want user-space to be able to predict the process start-time by
2205          * stalling fork(2) after we recorded the start_time but before it is
2206          * visible to the system.
2207          */
2208
2209         p->start_time = ktime_get_ns();
2210         p->start_boottime = ktime_get_boottime_ns();
2211
2212         /*
2213          * Make it visible to the rest of the system, but dont wake it up yet.
2214          * Need tasklist lock for parent etc handling!
2215          */
2216         write_lock_irq(&tasklist_lock);
2217
2218         /* CLONE_PARENT re-uses the old parent */
2219         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2220                 p->real_parent = current->real_parent;
2221                 p->parent_exec_id = current->parent_exec_id;
2222         } else {
2223                 p->real_parent = current;
2224                 p->parent_exec_id = current->self_exec_id;
2225         }
2226
2227         klp_copy_process(p);
2228
2229         spin_lock(&current->sighand->siglock);
2230
2231         /*
2232          * Copy seccomp details explicitly here, in case they were changed
2233          * before holding sighand lock.
2234          */
2235         copy_seccomp(p);
2236
2237         rseq_fork(p, clone_flags);
2238
2239         /* Don't start children in a dying pid namespace */
2240         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2241                 retval = -ENOMEM;
2242                 goto bad_fork_cancel_cgroup;
2243         }
2244
2245         /* Let kill terminate clone/fork in the middle */
2246         if (fatal_signal_pending(current)) {
2247                 retval = -EINTR;
2248                 goto bad_fork_cancel_cgroup;
2249         }
2250
2251         /* past the last point of failure */
2252         if (pidfile)
2253                 fd_install(pidfd, pidfile);
2254
2255         init_task_pid_links(p);
2256         if (likely(p->pid)) {
2257                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2258
2259                 init_task_pid(p, PIDTYPE_PID, pid);
2260                 if (thread_group_leader(p)) {
2261                         init_task_pid(p, PIDTYPE_TGID, pid);
2262                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2263                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2264
2265                         if (is_child_reaper(pid)) {
2266                                 ns_of_pid(pid)->child_reaper = p;
2267                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2268                         }
2269                         p->signal->shared_pending.signal = delayed.signal;
2270                         p->signal->tty = tty_kref_get(current->signal->tty);
2271                         /*
2272                          * Inherit has_child_subreaper flag under the same
2273                          * tasklist_lock with adding child to the process tree
2274                          * for propagate_has_child_subreaper optimization.
2275                          */
2276                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2277                                                          p->real_parent->signal->is_child_subreaper;
2278                         list_add_tail(&p->sibling, &p->real_parent->children);
2279                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2280                         attach_pid(p, PIDTYPE_TGID);
2281                         attach_pid(p, PIDTYPE_PGID);
2282                         attach_pid(p, PIDTYPE_SID);
2283                         __this_cpu_inc(process_counts);
2284                 } else {
2285                         current->signal->nr_threads++;
2286                         atomic_inc(&current->signal->live);
2287                         refcount_inc(&current->signal->sigcnt);
2288                         task_join_group_stop(p);
2289                         list_add_tail_rcu(&p->thread_group,
2290                                           &p->group_leader->thread_group);
2291                         list_add_tail_rcu(&p->thread_node,
2292                                           &p->signal->thread_head);
2293                 }
2294                 attach_pid(p, PIDTYPE_PID);
2295                 nr_threads++;
2296         }
2297         total_forks++;
2298         hlist_del_init(&delayed.node);
2299         spin_unlock(&current->sighand->siglock);
2300         syscall_tracepoint_update(p);
2301         write_unlock_irq(&tasklist_lock);
2302
2303         proc_fork_connector(p);
2304         sched_post_fork(p);
2305         cgroup_post_fork(p, args);
2306         perf_event_fork(p);
2307
2308         trace_task_newtask(p, clone_flags);
2309         uprobe_copy_process(p, clone_flags);
2310
2311         return p;
2312
2313 bad_fork_cancel_cgroup:
2314         spin_unlock(&current->sighand->siglock);
2315         write_unlock_irq(&tasklist_lock);
2316         cgroup_cancel_fork(p, args);
2317 bad_fork_put_pidfd:
2318         if (clone_flags & CLONE_PIDFD) {
2319                 fput(pidfile);
2320                 put_unused_fd(pidfd);
2321         }
2322 bad_fork_free_pid:
2323         if (pid != &init_struct_pid)
2324                 free_pid(pid);
2325 bad_fork_cleanup_thread:
2326         exit_thread(p);
2327 bad_fork_cleanup_io:
2328         if (p->io_context)
2329                 exit_io_context(p);
2330 bad_fork_cleanup_namespaces:
2331         exit_task_namespaces(p);
2332 bad_fork_cleanup_mm:
2333         if (p->mm) {
2334                 mm_clear_owner(p->mm, p);
2335                 mmput(p->mm);
2336         }
2337 bad_fork_cleanup_signal:
2338         if (!(clone_flags & CLONE_THREAD))
2339                 free_signal_struct(p->signal);
2340 bad_fork_cleanup_sighand:
2341         __cleanup_sighand(p->sighand);
2342 bad_fork_cleanup_fs:
2343         exit_fs(p); /* blocking */
2344 bad_fork_cleanup_files:
2345         exit_files(p); /* blocking */
2346 bad_fork_cleanup_semundo:
2347         exit_sem(p);
2348 bad_fork_cleanup_security:
2349         security_task_free(p);
2350 bad_fork_cleanup_audit:
2351         audit_free(p);
2352 bad_fork_cleanup_perf:
2353         perf_event_free_task(p);
2354 bad_fork_cleanup_policy:
2355         lockdep_free_task(p);
2356 #ifdef CONFIG_NUMA
2357         mpol_put(p->mempolicy);
2358 bad_fork_cleanup_threadgroup_lock:
2359 #endif
2360         delayacct_tsk_free(p);
2361 bad_fork_cleanup_count:
2362         atomic_dec(&p->cred->user->processes);
2363         exit_creds(p);
2364 bad_fork_free:
2365         p->state = TASK_DEAD;
2366         put_task_stack(p);
2367         delayed_free_task(p);
2368 fork_out:
2369         spin_lock_irq(&current->sighand->siglock);
2370         hlist_del_init(&delayed.node);
2371         spin_unlock_irq(&current->sighand->siglock);
2372         return ERR_PTR(retval);
2373 }
2374
2375 static inline void init_idle_pids(struct task_struct *idle)
2376 {
2377         enum pid_type type;
2378
2379         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2380                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2381                 init_task_pid(idle, type, &init_struct_pid);
2382         }
2383 }
2384
2385 struct task_struct *fork_idle(int cpu)
2386 {
2387         struct task_struct *task;
2388         struct kernel_clone_args args = {
2389                 .flags = CLONE_VM,
2390         };
2391
2392         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2393         if (!IS_ERR(task)) {
2394                 init_idle_pids(task);
2395                 init_idle(task, cpu);
2396         }
2397
2398         return task;
2399 }
2400
2401 struct mm_struct *copy_init_mm(void)
2402 {
2403         return dup_mm(NULL, &init_mm);
2404 }
2405
2406 /*
2407  *  Ok, this is the main fork-routine.
2408  *
2409  * It copies the process, and if successful kick-starts
2410  * it and waits for it to finish using the VM if required.
2411  *
2412  * args->exit_signal is expected to be checked for sanity by the caller.
2413  */
2414 long _do_fork(struct kernel_clone_args *args)
2415 {
2416         u64 clone_flags = args->flags;
2417         struct completion vfork;
2418         struct pid *pid;
2419         struct task_struct *p;
2420         int trace = 0;
2421         long nr;
2422
2423         /*
2424          * Determine whether and which event to report to ptracer.  When
2425          * called from kernel_thread or CLONE_UNTRACED is explicitly
2426          * requested, no event is reported; otherwise, report if the event
2427          * for the type of forking is enabled.
2428          */
2429         if (!(clone_flags & CLONE_UNTRACED)) {
2430                 if (clone_flags & CLONE_VFORK)
2431                         trace = PTRACE_EVENT_VFORK;
2432                 else if (args->exit_signal != SIGCHLD)
2433                         trace = PTRACE_EVENT_CLONE;
2434                 else
2435                         trace = PTRACE_EVENT_FORK;
2436
2437                 if (likely(!ptrace_event_enabled(current, trace)))
2438                         trace = 0;
2439         }
2440
2441         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2442         add_latent_entropy();
2443
2444         if (IS_ERR(p))
2445                 return PTR_ERR(p);
2446
2447         /*
2448          * Do this prior waking up the new thread - the thread pointer
2449          * might get invalid after that point, if the thread exits quickly.
2450          */
2451         trace_sched_process_fork(current, p);
2452
2453         pid = get_task_pid(p, PIDTYPE_PID);
2454         nr = pid_vnr(pid);
2455
2456         if (clone_flags & CLONE_PARENT_SETTID)
2457                 put_user(nr, args->parent_tid);
2458
2459         if (clone_flags & CLONE_VFORK) {
2460                 p->vfork_done = &vfork;
2461                 init_completion(&vfork);
2462                 get_task_struct(p);
2463         }
2464
2465         wake_up_new_task(p);
2466
2467         /* forking complete and child started to run, tell ptracer */
2468         if (unlikely(trace))
2469                 ptrace_event_pid(trace, pid);
2470
2471         if (clone_flags & CLONE_VFORK) {
2472                 if (!wait_for_vfork_done(p, &vfork))
2473                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2474         }
2475
2476         put_pid(pid);
2477         return nr;
2478 }
2479
2480 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2481 {
2482         /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2483         if ((kargs->flags & CLONE_PIDFD) &&
2484             (kargs->flags & CLONE_PARENT_SETTID))
2485                 return false;
2486
2487         return true;
2488 }
2489
2490 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2491 /* For compatibility with architectures that call do_fork directly rather than
2492  * using the syscall entry points below. */
2493 long do_fork(unsigned long clone_flags,
2494               unsigned long stack_start,
2495               unsigned long stack_size,
2496               int __user *parent_tidptr,
2497               int __user *child_tidptr)
2498 {
2499         struct kernel_clone_args args = {
2500                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2501                 .pidfd          = parent_tidptr,
2502                 .child_tid      = child_tidptr,
2503                 .parent_tid     = parent_tidptr,
2504                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2505                 .stack          = stack_start,
2506                 .stack_size     = stack_size,
2507         };
2508
2509         if (!legacy_clone_args_valid(&args))
2510                 return -EINVAL;
2511
2512         return _do_fork(&args);
2513 }
2514 #endif
2515
2516 /*
2517  * Create a kernel thread.
2518  */
2519 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2520 {
2521         struct kernel_clone_args args = {
2522                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2523                                     CLONE_UNTRACED) & ~CSIGNAL),
2524                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2525                 .stack          = (unsigned long)fn,
2526                 .stack_size     = (unsigned long)arg,
2527         };
2528
2529         return _do_fork(&args);
2530 }
2531
2532 #ifdef __ARCH_WANT_SYS_FORK
2533 SYSCALL_DEFINE0(fork)
2534 {
2535 #ifdef CONFIG_MMU
2536         struct kernel_clone_args args = {
2537                 .exit_signal = SIGCHLD,
2538         };
2539
2540         return _do_fork(&args);
2541 #else
2542         /* can not support in nommu mode */
2543         return -EINVAL;
2544 #endif
2545 }
2546 #endif
2547
2548 #ifdef __ARCH_WANT_SYS_VFORK
2549 SYSCALL_DEFINE0(vfork)
2550 {
2551         struct kernel_clone_args args = {
2552                 .flags          = CLONE_VFORK | CLONE_VM,
2553                 .exit_signal    = SIGCHLD,
2554         };
2555
2556         return _do_fork(&args);
2557 }
2558 #endif
2559
2560 #ifdef __ARCH_WANT_SYS_CLONE
2561 #ifdef CONFIG_CLONE_BACKWARDS
2562 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2563                  int __user *, parent_tidptr,
2564                  unsigned long, tls,
2565                  int __user *, child_tidptr)
2566 #elif defined(CONFIG_CLONE_BACKWARDS2)
2567 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2568                  int __user *, parent_tidptr,
2569                  int __user *, child_tidptr,
2570                  unsigned long, tls)
2571 #elif defined(CONFIG_CLONE_BACKWARDS3)
2572 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2573                 int, stack_size,
2574                 int __user *, parent_tidptr,
2575                 int __user *, child_tidptr,
2576                 unsigned long, tls)
2577 #else
2578 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2579                  int __user *, parent_tidptr,
2580                  int __user *, child_tidptr,
2581                  unsigned long, tls)
2582 #endif
2583 {
2584         struct kernel_clone_args args = {
2585                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2586                 .pidfd          = parent_tidptr,
2587                 .child_tid      = child_tidptr,
2588                 .parent_tid     = parent_tidptr,
2589                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2590                 .stack          = newsp,
2591                 .tls            = tls,
2592         };
2593
2594         if (!legacy_clone_args_valid(&args))
2595                 return -EINVAL;
2596
2597         return _do_fork(&args);
2598 }
2599 #endif
2600
2601 #ifdef __ARCH_WANT_SYS_CLONE3
2602
2603 /*
2604  * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2605  * the registers containing the syscall arguments for clone. This doesn't work
2606  * with clone3 since the TLS value is passed in clone_args instead.
2607  */
2608 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2609 #error clone3 requires copy_thread_tls support in arch
2610 #endif
2611
2612 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2613                                               struct clone_args __user *uargs,
2614                                               size_t usize)
2615 {
2616         int err;
2617         struct clone_args args;
2618         pid_t *kset_tid = kargs->set_tid;
2619
2620         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2621                      CLONE_ARGS_SIZE_VER0);
2622         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2623                      CLONE_ARGS_SIZE_VER1);
2624         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2625                      CLONE_ARGS_SIZE_VER2);
2626         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2627
2628         if (unlikely(usize > PAGE_SIZE))
2629                 return -E2BIG;
2630         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2631                 return -EINVAL;
2632
2633         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2634         if (err)
2635                 return err;
2636
2637         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2638                 return -EINVAL;
2639
2640         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2641                 return -EINVAL;
2642
2643         if (unlikely(args.set_tid && args.set_tid_size == 0))
2644                 return -EINVAL;
2645
2646         /*
2647          * Verify that higher 32bits of exit_signal are unset and that
2648          * it is a valid signal
2649          */
2650         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2651                      !valid_signal(args.exit_signal)))
2652                 return -EINVAL;
2653
2654         if ((args.flags & CLONE_INTO_CGROUP) &&
2655             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2656                 return -EINVAL;
2657
2658         *kargs = (struct kernel_clone_args){
2659                 .flags          = args.flags,
2660                 .pidfd          = u64_to_user_ptr(args.pidfd),
2661                 .child_tid      = u64_to_user_ptr(args.child_tid),
2662                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2663                 .exit_signal    = args.exit_signal,
2664                 .stack          = args.stack,
2665                 .stack_size     = args.stack_size,
2666                 .tls            = args.tls,
2667                 .set_tid_size   = args.set_tid_size,
2668                 .cgroup         = args.cgroup,
2669         };
2670
2671         if (args.set_tid &&
2672                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2673                         (kargs->set_tid_size * sizeof(pid_t))))
2674                 return -EFAULT;
2675
2676         kargs->set_tid = kset_tid;
2677
2678         return 0;
2679 }
2680
2681 /**
2682  * clone3_stack_valid - check and prepare stack
2683  * @kargs: kernel clone args
2684  *
2685  * Verify that the stack arguments userspace gave us are sane.
2686  * In addition, set the stack direction for userspace since it's easy for us to
2687  * determine.
2688  */
2689 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2690 {
2691         if (kargs->stack == 0) {
2692                 if (kargs->stack_size > 0)
2693                         return false;
2694         } else {
2695                 if (kargs->stack_size == 0)
2696                         return false;
2697
2698                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2699                         return false;
2700
2701 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2702                 kargs->stack += kargs->stack_size;
2703 #endif
2704         }
2705
2706         return true;
2707 }
2708
2709 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2710 {
2711         /* Verify that no unknown flags are passed along. */
2712         if (kargs->flags &
2713             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2714                 return false;
2715
2716         /*
2717          * - make the CLONE_DETACHED bit reuseable for clone3
2718          * - make the CSIGNAL bits reuseable for clone3
2719          */
2720         if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2721                 return false;
2722
2723         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2724             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2725                 return false;
2726
2727         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2728             kargs->exit_signal)
2729                 return false;
2730
2731         if (!clone3_stack_valid(kargs))
2732                 return false;
2733
2734         return true;
2735 }
2736
2737 /**
2738  * clone3 - create a new process with specific properties
2739  * @uargs: argument structure
2740  * @size:  size of @uargs
2741  *
2742  * clone3() is the extensible successor to clone()/clone2().
2743  * It takes a struct as argument that is versioned by its size.
2744  *
2745  * Return: On success, a positive PID for the child process.
2746  *         On error, a negative errno number.
2747  */
2748 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2749 {
2750         int err;
2751
2752         struct kernel_clone_args kargs;
2753         pid_t set_tid[MAX_PID_NS_LEVEL];
2754
2755         kargs.set_tid = set_tid;
2756
2757         err = copy_clone_args_from_user(&kargs, uargs, size);
2758         if (err)
2759                 return err;
2760
2761         if (!clone3_args_valid(&kargs))
2762                 return -EINVAL;
2763
2764         return _do_fork(&kargs);
2765 }
2766 #endif
2767
2768 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2769 {
2770         struct task_struct *leader, *parent, *child;
2771         int res;
2772
2773         read_lock(&tasklist_lock);
2774         leader = top = top->group_leader;
2775 down:
2776         for_each_thread(leader, parent) {
2777                 list_for_each_entry(child, &parent->children, sibling) {
2778                         res = visitor(child, data);
2779                         if (res) {
2780                                 if (res < 0)
2781                                         goto out;
2782                                 leader = child;
2783                                 goto down;
2784                         }
2785 up:
2786                         ;
2787                 }
2788         }
2789
2790         if (leader != top) {
2791                 child = leader;
2792                 parent = child->real_parent;
2793                 leader = parent->group_leader;
2794                 goto up;
2795         }
2796 out:
2797         read_unlock(&tasklist_lock);
2798 }
2799
2800 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2801 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2802 #endif
2803
2804 static void sighand_ctor(void *data)
2805 {
2806         struct sighand_struct *sighand = data;
2807
2808         spin_lock_init(&sighand->siglock);
2809         init_waitqueue_head(&sighand->signalfd_wqh);
2810 }
2811
2812 void __init proc_caches_init(void)
2813 {
2814         unsigned int mm_size;
2815
2816         sighand_cachep = kmem_cache_create("sighand_cache",
2817                         sizeof(struct sighand_struct), 0,
2818                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2819                         SLAB_ACCOUNT, sighand_ctor);
2820         signal_cachep = kmem_cache_create("signal_cache",
2821                         sizeof(struct signal_struct), 0,
2822                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2823                         NULL);
2824         files_cachep = kmem_cache_create("files_cache",
2825                         sizeof(struct files_struct), 0,
2826                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2827                         NULL);
2828         fs_cachep = kmem_cache_create("fs_cache",
2829                         sizeof(struct fs_struct), 0,
2830                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2831                         NULL);
2832
2833         /*
2834          * The mm_cpumask is located at the end of mm_struct, and is
2835          * dynamically sized based on the maximum CPU number this system
2836          * can have, taking hotplug into account (nr_cpu_ids).
2837          */
2838         mm_size = sizeof(struct mm_struct) + cpumask_size();
2839
2840         mm_cachep = kmem_cache_create_usercopy("mm_struct",
2841                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2842                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2843                         offsetof(struct mm_struct, saved_auxv),
2844                         sizeof_field(struct mm_struct, saved_auxv),
2845                         NULL);
2846         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2847         mmap_init();
2848         nsproxy_cache_init();
2849 }
2850
2851 /*
2852  * Check constraints on flags passed to the unshare system call.
2853  */
2854 static int check_unshare_flags(unsigned long unshare_flags)
2855 {
2856         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2857                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2858                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2859                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2860                                 CLONE_NEWTIME))
2861                 return -EINVAL;
2862         /*
2863          * Not implemented, but pretend it works if there is nothing
2864          * to unshare.  Note that unsharing the address space or the
2865          * signal handlers also need to unshare the signal queues (aka
2866          * CLONE_THREAD).
2867          */
2868         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2869                 if (!thread_group_empty(current))
2870                         return -EINVAL;
2871         }
2872         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2873                 if (refcount_read(&current->sighand->count) > 1)
2874                         return -EINVAL;
2875         }
2876         if (unshare_flags & CLONE_VM) {
2877                 if (!current_is_single_threaded())
2878                         return -EINVAL;
2879         }
2880
2881         return 0;
2882 }
2883
2884 /*
2885  * Unshare the filesystem structure if it is being shared
2886  */
2887 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2888 {
2889         struct fs_struct *fs = current->fs;
2890
2891         if (!(unshare_flags & CLONE_FS) || !fs)
2892                 return 0;
2893
2894         /* don't need lock here; in the worst case we'll do useless copy */
2895         if (fs->users == 1)
2896                 return 0;
2897
2898         *new_fsp = copy_fs_struct(fs);
2899         if (!*new_fsp)
2900                 return -ENOMEM;
2901
2902         return 0;
2903 }
2904
2905 /*
2906  * Unshare file descriptor table if it is being shared
2907  */
2908 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2909 {
2910         struct files_struct *fd = current->files;
2911         int error = 0;
2912
2913         if ((unshare_flags & CLONE_FILES) &&
2914             (fd && atomic_read(&fd->count) > 1)) {
2915                 *new_fdp = dup_fd(fd, &error);
2916                 if (!*new_fdp)
2917                         return error;
2918         }
2919
2920         return 0;
2921 }
2922
2923 /*
2924  * unshare allows a process to 'unshare' part of the process
2925  * context which was originally shared using clone.  copy_*
2926  * functions used by do_fork() cannot be used here directly
2927  * because they modify an inactive task_struct that is being
2928  * constructed. Here we are modifying the current, active,
2929  * task_struct.
2930  */
2931 int ksys_unshare(unsigned long unshare_flags)
2932 {
2933         struct fs_struct *fs, *new_fs = NULL;
2934         struct files_struct *fd, *new_fd = NULL;
2935         struct cred *new_cred = NULL;
2936         struct nsproxy *new_nsproxy = NULL;
2937         int do_sysvsem = 0;
2938         int err;
2939
2940         /*
2941          * If unsharing a user namespace must also unshare the thread group
2942          * and unshare the filesystem root and working directories.
2943          */
2944         if (unshare_flags & CLONE_NEWUSER)
2945                 unshare_flags |= CLONE_THREAD | CLONE_FS;
2946         /*
2947          * If unsharing vm, must also unshare signal handlers.
2948          */
2949         if (unshare_flags & CLONE_VM)
2950                 unshare_flags |= CLONE_SIGHAND;
2951         /*
2952          * If unsharing a signal handlers, must also unshare the signal queues.
2953          */
2954         if (unshare_flags & CLONE_SIGHAND)
2955                 unshare_flags |= CLONE_THREAD;
2956         /*
2957          * If unsharing namespace, must also unshare filesystem information.
2958          */
2959         if (unshare_flags & CLONE_NEWNS)
2960                 unshare_flags |= CLONE_FS;
2961
2962         err = check_unshare_flags(unshare_flags);
2963         if (err)
2964                 goto bad_unshare_out;
2965         /*
2966          * CLONE_NEWIPC must also detach from the undolist: after switching
2967          * to a new ipc namespace, the semaphore arrays from the old
2968          * namespace are unreachable.
2969          */
2970         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2971                 do_sysvsem = 1;
2972         err = unshare_fs(unshare_flags, &new_fs);
2973         if (err)
2974                 goto bad_unshare_out;
2975         err = unshare_fd(unshare_flags, &new_fd);
2976         if (err)
2977                 goto bad_unshare_cleanup_fs;
2978         err = unshare_userns(unshare_flags, &new_cred);
2979         if (err)
2980                 goto bad_unshare_cleanup_fd;
2981         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2982                                          new_cred, new_fs);
2983         if (err)
2984                 goto bad_unshare_cleanup_cred;
2985
2986         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2987                 if (do_sysvsem) {
2988                         /*
2989                          * CLONE_SYSVSEM is equivalent to sys_exit().
2990                          */
2991                         exit_sem(current);
2992                 }
2993                 if (unshare_flags & CLONE_NEWIPC) {
2994                         /* Orphan segments in old ns (see sem above). */
2995                         exit_shm(current);
2996                         shm_init_task(current);
2997                 }
2998
2999                 if (new_nsproxy)
3000                         switch_task_namespaces(current, new_nsproxy);
3001
3002                 task_lock(current);
3003
3004                 if (new_fs) {
3005                         fs = current->fs;
3006                         spin_lock(&fs->lock);
3007                         current->fs = new_fs;
3008                         if (--fs->users)
3009                                 new_fs = NULL;
3010                         else
3011                                 new_fs = fs;
3012                         spin_unlock(&fs->lock);
3013                 }
3014
3015                 if (new_fd) {
3016                         fd = current->files;
3017                         current->files = new_fd;
3018                         new_fd = fd;
3019                 }
3020
3021                 task_unlock(current);
3022
3023                 if (new_cred) {
3024                         /* Install the new user namespace */
3025                         commit_creds(new_cred);
3026                         new_cred = NULL;
3027                 }
3028         }
3029
3030         perf_event_namespaces(current);
3031
3032 bad_unshare_cleanup_cred:
3033         if (new_cred)
3034                 put_cred(new_cred);
3035 bad_unshare_cleanup_fd:
3036         if (new_fd)
3037                 put_files_struct(new_fd);
3038
3039 bad_unshare_cleanup_fs:
3040         if (new_fs)
3041                 free_fs_struct(new_fs);
3042
3043 bad_unshare_out:
3044         return err;
3045 }
3046
3047 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3048 {
3049         return ksys_unshare(unshare_flags);
3050 }
3051
3052 /*
3053  *      Helper to unshare the files of the current task.
3054  *      We don't want to expose copy_files internals to
3055  *      the exec layer of the kernel.
3056  */
3057
3058 int unshare_files(struct files_struct **displaced)
3059 {
3060         struct task_struct *task = current;
3061         struct files_struct *copy = NULL;
3062         int error;
3063
3064         error = unshare_fd(CLONE_FILES, &copy);
3065         if (error || !copy) {
3066                 *displaced = NULL;
3067                 return error;
3068         }
3069         *displaced = task->files;
3070         task_lock(task);
3071         task->files = copy;
3072         task_unlock(task);
3073         return 0;
3074 }
3075
3076 int sysctl_max_threads(struct ctl_table *table, int write,
3077                        void __user *buffer, size_t *lenp, loff_t *ppos)
3078 {
3079         struct ctl_table t;
3080         int ret;
3081         int threads = max_threads;
3082         int min = 1;
3083         int max = MAX_THREADS;
3084
3085         t = *table;
3086         t.data = &threads;
3087         t.extra1 = &min;
3088         t.extra2 = &max;
3089
3090         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3091         if (ret || !write)
3092                 return ret;
3093
3094         max_threads = threads;
3095
3096         return 0;
3097 }