Merge tag 'x86-fpu-2020-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-microblaze.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109
110 /*
111  * Minimum number of threads to boot the kernel
112  */
113 #define MIN_THREADS 20
114
115 /*
116  * Maximum number of threads
117  */
118 #define MAX_THREADS FUTEX_TID_MASK
119
120 /*
121  * Protected counters by write_lock_irq(&tasklist_lock)
122  */
123 unsigned long total_forks;      /* Handle normal Linux uptimes. */
124 int nr_threads;                 /* The idle threads do not count.. */
125
126 static int max_threads;         /* tunable limit on nr_threads */
127
128 #define NAMED_ARRAY_INDEX(x)    [x] = __stringify(x)
129
130 static const char * const resident_page_types[] = {
131         NAMED_ARRAY_INDEX(MM_FILEPAGES),
132         NAMED_ARRAY_INDEX(MM_ANONPAGES),
133         NAMED_ARRAY_INDEX(MM_SWAPENTS),
134         NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
140
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144         return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148
149 int nr_processes(void)
150 {
151         int cpu;
152         int total = 0;
153
154         for_each_possible_cpu(cpu)
155                 total += per_cpu(process_counts, cpu);
156
157         return total;
158 }
159
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169         return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174         kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179
180 /*
181  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182  * kmemcache based allocator.
183  */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185
186 #ifdef CONFIG_VMAP_STACK
187 /*
188  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189  * flush.  Try to minimize the number of calls by caching stacks.
190  */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196         struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197         int i;
198
199         for (i = 0; i < NR_CACHED_STACKS; i++) {
200                 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202                 if (!vm_stack)
203                         continue;
204
205                 vfree(vm_stack->addr);
206                 cached_vm_stacks[i] = NULL;
207         }
208
209         return 0;
210 }
211 #endif
212
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216         void *stack;
217         int i;
218
219         for (i = 0; i < NR_CACHED_STACKS; i++) {
220                 struct vm_struct *s;
221
222                 s = this_cpu_xchg(cached_stacks[i], NULL);
223
224                 if (!s)
225                         continue;
226
227                 /* Clear the KASAN shadow of the stack. */
228                 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
229
230                 /* Clear stale pointers from reused stack. */
231                 memset(s->addr, 0, THREAD_SIZE);
232
233                 tsk->stack_vm_area = s;
234                 tsk->stack = s->addr;
235                 return s->addr;
236         }
237
238         /*
239          * Allocated stacks are cached and later reused by new threads,
240          * so memcg accounting is performed manually on assigning/releasing
241          * stacks to tasks. Drop __GFP_ACCOUNT.
242          */
243         stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
244                                      VMALLOC_START, VMALLOC_END,
245                                      THREADINFO_GFP & ~__GFP_ACCOUNT,
246                                      PAGE_KERNEL,
247                                      0, node, __builtin_return_address(0));
248
249         /*
250          * We can't call find_vm_area() in interrupt context, and
251          * free_thread_stack() can be called in interrupt context,
252          * so cache the vm_struct.
253          */
254         if (stack) {
255                 tsk->stack_vm_area = find_vm_area(stack);
256                 tsk->stack = stack;
257         }
258         return stack;
259 #else
260         struct page *page = alloc_pages_node(node, THREADINFO_GFP,
261                                              THREAD_SIZE_ORDER);
262
263         if (likely(page)) {
264                 tsk->stack = page_address(page);
265                 return tsk->stack;
266         }
267         return NULL;
268 #endif
269 }
270
271 static inline void free_thread_stack(struct task_struct *tsk)
272 {
273 #ifdef CONFIG_VMAP_STACK
274         struct vm_struct *vm = task_stack_vm_area(tsk);
275
276         if (vm) {
277                 int i;
278
279                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
280                         mod_memcg_page_state(vm->pages[i],
281                                              MEMCG_KERNEL_STACK_KB,
282                                              -(int)(PAGE_SIZE / 1024));
283
284                         memcg_kmem_uncharge_page(vm->pages[i], 0);
285                 }
286
287                 for (i = 0; i < NR_CACHED_STACKS; i++) {
288                         if (this_cpu_cmpxchg(cached_stacks[i],
289                                         NULL, tsk->stack_vm_area) != NULL)
290                                 continue;
291
292                         return;
293                 }
294
295                 vfree_atomic(tsk->stack);
296                 return;
297         }
298 #endif
299
300         __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
301 }
302 # else
303 static struct kmem_cache *thread_stack_cache;
304
305 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
306                                                   int node)
307 {
308         unsigned long *stack;
309         stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
310         tsk->stack = stack;
311         return stack;
312 }
313
314 static void free_thread_stack(struct task_struct *tsk)
315 {
316         kmem_cache_free(thread_stack_cache, tsk->stack);
317 }
318
319 void thread_stack_cache_init(void)
320 {
321         thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
322                                         THREAD_SIZE, THREAD_SIZE, 0, 0,
323                                         THREAD_SIZE, NULL);
324         BUG_ON(thread_stack_cache == NULL);
325 }
326 # endif
327 #endif
328
329 /* SLAB cache for signal_struct structures (tsk->signal) */
330 static struct kmem_cache *signal_cachep;
331
332 /* SLAB cache for sighand_struct structures (tsk->sighand) */
333 struct kmem_cache *sighand_cachep;
334
335 /* SLAB cache for files_struct structures (tsk->files) */
336 struct kmem_cache *files_cachep;
337
338 /* SLAB cache for fs_struct structures (tsk->fs) */
339 struct kmem_cache *fs_cachep;
340
341 /* SLAB cache for vm_area_struct structures */
342 static struct kmem_cache *vm_area_cachep;
343
344 /* SLAB cache for mm_struct structures (tsk->mm) */
345 static struct kmem_cache *mm_cachep;
346
347 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
348 {
349         struct vm_area_struct *vma;
350
351         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
352         if (vma)
353                 vma_init(vma, mm);
354         return vma;
355 }
356
357 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
358 {
359         struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
360
361         if (new) {
362                 *new = *orig;
363                 INIT_LIST_HEAD(&new->anon_vma_chain);
364                 new->vm_next = new->vm_prev = NULL;
365         }
366         return new;
367 }
368
369 void vm_area_free(struct vm_area_struct *vma)
370 {
371         kmem_cache_free(vm_area_cachep, vma);
372 }
373
374 static void account_kernel_stack(struct task_struct *tsk, int account)
375 {
376         void *stack = task_stack_page(tsk);
377         struct vm_struct *vm = task_stack_vm_area(tsk);
378
379         BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
380
381         if (vm) {
382                 int i;
383
384                 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
385
386                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
387                         mod_zone_page_state(page_zone(vm->pages[i]),
388                                             NR_KERNEL_STACK_KB,
389                                             PAGE_SIZE / 1024 * account);
390                 }
391         } else {
392                 /*
393                  * All stack pages are in the same zone and belong to the
394                  * same memcg.
395                  */
396                 struct page *first_page = virt_to_page(stack);
397
398                 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
399                                     THREAD_SIZE / 1024 * account);
400
401                 mod_memcg_obj_state(stack, MEMCG_KERNEL_STACK_KB,
402                                     account * (THREAD_SIZE / 1024));
403         }
404 }
405
406 static int memcg_charge_kernel_stack(struct task_struct *tsk)
407 {
408 #ifdef CONFIG_VMAP_STACK
409         struct vm_struct *vm = task_stack_vm_area(tsk);
410         int ret;
411
412         if (vm) {
413                 int i;
414
415                 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
416                         /*
417                          * If memcg_kmem_charge_page() fails, page->mem_cgroup
418                          * pointer is NULL, and both memcg_kmem_uncharge_page()
419                          * and mod_memcg_page_state() in free_thread_stack()
420                          * will ignore this page. So it's safe.
421                          */
422                         ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
423                                                      0);
424                         if (ret)
425                                 return ret;
426
427                         mod_memcg_page_state(vm->pages[i],
428                                              MEMCG_KERNEL_STACK_KB,
429                                              PAGE_SIZE / 1024);
430                 }
431         }
432 #endif
433         return 0;
434 }
435
436 static void release_task_stack(struct task_struct *tsk)
437 {
438         if (WARN_ON(tsk->state != TASK_DEAD))
439                 return;  /* Better to leak the stack than to free prematurely */
440
441         account_kernel_stack(tsk, -1);
442         free_thread_stack(tsk);
443         tsk->stack = NULL;
444 #ifdef CONFIG_VMAP_STACK
445         tsk->stack_vm_area = NULL;
446 #endif
447 }
448
449 #ifdef CONFIG_THREAD_INFO_IN_TASK
450 void put_task_stack(struct task_struct *tsk)
451 {
452         if (refcount_dec_and_test(&tsk->stack_refcount))
453                 release_task_stack(tsk);
454 }
455 #endif
456
457 void free_task(struct task_struct *tsk)
458 {
459 #ifndef CONFIG_THREAD_INFO_IN_TASK
460         /*
461          * The task is finally done with both the stack and thread_info,
462          * so free both.
463          */
464         release_task_stack(tsk);
465 #else
466         /*
467          * If the task had a separate stack allocation, it should be gone
468          * by now.
469          */
470         WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
471 #endif
472         rt_mutex_debug_task_free(tsk);
473         ftrace_graph_exit_task(tsk);
474         put_seccomp_filter(tsk);
475         arch_release_task_struct(tsk);
476         if (tsk->flags & PF_KTHREAD)
477                 free_kthread_struct(tsk);
478         free_task_struct(tsk);
479 }
480 EXPORT_SYMBOL(free_task);
481
482 #ifdef CONFIG_MMU
483 static __latent_entropy int dup_mmap(struct mm_struct *mm,
484                                         struct mm_struct *oldmm)
485 {
486         struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
487         struct rb_node **rb_link, *rb_parent;
488         int retval;
489         unsigned long charge;
490         LIST_HEAD(uf);
491
492         uprobe_start_dup_mmap();
493         if (down_write_killable(&oldmm->mmap_sem)) {
494                 retval = -EINTR;
495                 goto fail_uprobe_end;
496         }
497         flush_cache_dup_mm(oldmm);
498         uprobe_dup_mmap(oldmm, mm);
499         /*
500          * Not linked in yet - no deadlock potential:
501          */
502         down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
503
504         /* No ordering required: file already has been exposed. */
505         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
506
507         mm->total_vm = oldmm->total_vm;
508         mm->data_vm = oldmm->data_vm;
509         mm->exec_vm = oldmm->exec_vm;
510         mm->stack_vm = oldmm->stack_vm;
511
512         rb_link = &mm->mm_rb.rb_node;
513         rb_parent = NULL;
514         pprev = &mm->mmap;
515         retval = ksm_fork(mm, oldmm);
516         if (retval)
517                 goto out;
518         retval = khugepaged_fork(mm, oldmm);
519         if (retval)
520                 goto out;
521
522         prev = NULL;
523         for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
524                 struct file *file;
525
526                 if (mpnt->vm_flags & VM_DONTCOPY) {
527                         vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
528                         continue;
529                 }
530                 charge = 0;
531                 /*
532                  * Don't duplicate many vmas if we've been oom-killed (for
533                  * example)
534                  */
535                 if (fatal_signal_pending(current)) {
536                         retval = -EINTR;
537                         goto out;
538                 }
539                 if (mpnt->vm_flags & VM_ACCOUNT) {
540                         unsigned long len = vma_pages(mpnt);
541
542                         if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
543                                 goto fail_nomem;
544                         charge = len;
545                 }
546                 tmp = vm_area_dup(mpnt);
547                 if (!tmp)
548                         goto fail_nomem;
549                 retval = vma_dup_policy(mpnt, tmp);
550                 if (retval)
551                         goto fail_nomem_policy;
552                 tmp->vm_mm = mm;
553                 retval = dup_userfaultfd(tmp, &uf);
554                 if (retval)
555                         goto fail_nomem_anon_vma_fork;
556                 if (tmp->vm_flags & VM_WIPEONFORK) {
557                         /*
558                          * VM_WIPEONFORK gets a clean slate in the child.
559                          * Don't prepare anon_vma until fault since we don't
560                          * copy page for current vma.
561                          */
562                         tmp->anon_vma = NULL;
563                 } else if (anon_vma_fork(tmp, mpnt))
564                         goto fail_nomem_anon_vma_fork;
565                 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
566                 file = tmp->vm_file;
567                 if (file) {
568                         struct inode *inode = file_inode(file);
569                         struct address_space *mapping = file->f_mapping;
570
571                         get_file(file);
572                         if (tmp->vm_flags & VM_DENYWRITE)
573                                 atomic_dec(&inode->i_writecount);
574                         i_mmap_lock_write(mapping);
575                         if (tmp->vm_flags & VM_SHARED)
576                                 atomic_inc(&mapping->i_mmap_writable);
577                         flush_dcache_mmap_lock(mapping);
578                         /* insert tmp into the share list, just after mpnt */
579                         vma_interval_tree_insert_after(tmp, mpnt,
580                                         &mapping->i_mmap);
581                         flush_dcache_mmap_unlock(mapping);
582                         i_mmap_unlock_write(mapping);
583                 }
584
585                 /*
586                  * Clear hugetlb-related page reserves for children. This only
587                  * affects MAP_PRIVATE mappings. Faults generated by the child
588                  * are not guaranteed to succeed, even if read-only
589                  */
590                 if (is_vm_hugetlb_page(tmp))
591                         reset_vma_resv_huge_pages(tmp);
592
593                 /*
594                  * Link in the new vma and copy the page table entries.
595                  */
596                 *pprev = tmp;
597                 pprev = &tmp->vm_next;
598                 tmp->vm_prev = prev;
599                 prev = tmp;
600
601                 __vma_link_rb(mm, tmp, rb_link, rb_parent);
602                 rb_link = &tmp->vm_rb.rb_right;
603                 rb_parent = &tmp->vm_rb;
604
605                 mm->map_count++;
606                 if (!(tmp->vm_flags & VM_WIPEONFORK))
607                         retval = copy_page_range(mm, oldmm, mpnt);
608
609                 if (tmp->vm_ops && tmp->vm_ops->open)
610                         tmp->vm_ops->open(tmp);
611
612                 if (retval)
613                         goto out;
614         }
615         /* a new mm has just been created */
616         retval = arch_dup_mmap(oldmm, mm);
617 out:
618         up_write(&mm->mmap_sem);
619         flush_tlb_mm(oldmm);
620         up_write(&oldmm->mmap_sem);
621         dup_userfaultfd_complete(&uf);
622 fail_uprobe_end:
623         uprobe_end_dup_mmap();
624         return retval;
625 fail_nomem_anon_vma_fork:
626         mpol_put(vma_policy(tmp));
627 fail_nomem_policy:
628         vm_area_free(tmp);
629 fail_nomem:
630         retval = -ENOMEM;
631         vm_unacct_memory(charge);
632         goto out;
633 }
634
635 static inline int mm_alloc_pgd(struct mm_struct *mm)
636 {
637         mm->pgd = pgd_alloc(mm);
638         if (unlikely(!mm->pgd))
639                 return -ENOMEM;
640         return 0;
641 }
642
643 static inline void mm_free_pgd(struct mm_struct *mm)
644 {
645         pgd_free(mm, mm->pgd);
646 }
647 #else
648 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
649 {
650         down_write(&oldmm->mmap_sem);
651         RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
652         up_write(&oldmm->mmap_sem);
653         return 0;
654 }
655 #define mm_alloc_pgd(mm)        (0)
656 #define mm_free_pgd(mm)
657 #endif /* CONFIG_MMU */
658
659 static void check_mm(struct mm_struct *mm)
660 {
661         int i;
662
663         BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
664                          "Please make sure 'struct resident_page_types[]' is updated as well");
665
666         for (i = 0; i < NR_MM_COUNTERS; i++) {
667                 long x = atomic_long_read(&mm->rss_stat.count[i]);
668
669                 if (unlikely(x))
670                         pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
671                                  mm, resident_page_types[i], x);
672         }
673
674         if (mm_pgtables_bytes(mm))
675                 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
676                                 mm_pgtables_bytes(mm));
677
678 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
679         VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
680 #endif
681 }
682
683 #define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
684 #define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
685
686 /*
687  * Called when the last reference to the mm
688  * is dropped: either by a lazy thread or by
689  * mmput. Free the page directory and the mm.
690  */
691 void __mmdrop(struct mm_struct *mm)
692 {
693         BUG_ON(mm == &init_mm);
694         WARN_ON_ONCE(mm == current->mm);
695         WARN_ON_ONCE(mm == current->active_mm);
696         mm_free_pgd(mm);
697         destroy_context(mm);
698         mmu_notifier_subscriptions_destroy(mm);
699         check_mm(mm);
700         put_user_ns(mm->user_ns);
701         free_mm(mm);
702 }
703 EXPORT_SYMBOL_GPL(__mmdrop);
704
705 static void mmdrop_async_fn(struct work_struct *work)
706 {
707         struct mm_struct *mm;
708
709         mm = container_of(work, struct mm_struct, async_put_work);
710         __mmdrop(mm);
711 }
712
713 static void mmdrop_async(struct mm_struct *mm)
714 {
715         if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
716                 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
717                 schedule_work(&mm->async_put_work);
718         }
719 }
720
721 static inline void free_signal_struct(struct signal_struct *sig)
722 {
723         taskstats_tgid_free(sig);
724         sched_autogroup_exit(sig);
725         /*
726          * __mmdrop is not safe to call from softirq context on x86 due to
727          * pgd_dtor so postpone it to the async context
728          */
729         if (sig->oom_mm)
730                 mmdrop_async(sig->oom_mm);
731         kmem_cache_free(signal_cachep, sig);
732 }
733
734 static inline void put_signal_struct(struct signal_struct *sig)
735 {
736         if (refcount_dec_and_test(&sig->sigcnt))
737                 free_signal_struct(sig);
738 }
739
740 void __put_task_struct(struct task_struct *tsk)
741 {
742         WARN_ON(!tsk->exit_state);
743         WARN_ON(refcount_read(&tsk->usage));
744         WARN_ON(tsk == current);
745
746         cgroup_free(tsk);
747         task_numa_free(tsk, true);
748         security_task_free(tsk);
749         exit_creds(tsk);
750         delayacct_tsk_free(tsk);
751         put_signal_struct(tsk->signal);
752
753         if (!profile_handoff_task(tsk))
754                 free_task(tsk);
755 }
756 EXPORT_SYMBOL_GPL(__put_task_struct);
757
758 void __init __weak arch_task_cache_init(void) { }
759
760 /*
761  * set_max_threads
762  */
763 static void set_max_threads(unsigned int max_threads_suggested)
764 {
765         u64 threads;
766         unsigned long nr_pages = totalram_pages();
767
768         /*
769          * The number of threads shall be limited such that the thread
770          * structures may only consume a small part of the available memory.
771          */
772         if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
773                 threads = MAX_THREADS;
774         else
775                 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
776                                     (u64) THREAD_SIZE * 8UL);
777
778         if (threads > max_threads_suggested)
779                 threads = max_threads_suggested;
780
781         max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
782 }
783
784 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
785 /* Initialized by the architecture: */
786 int arch_task_struct_size __read_mostly;
787 #endif
788
789 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
790 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
791 {
792         /* Fetch thread_struct whitelist for the architecture. */
793         arch_thread_struct_whitelist(offset, size);
794
795         /*
796          * Handle zero-sized whitelist or empty thread_struct, otherwise
797          * adjust offset to position of thread_struct in task_struct.
798          */
799         if (unlikely(*size == 0))
800                 *offset = 0;
801         else
802                 *offset += offsetof(struct task_struct, thread);
803 }
804 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
805
806 void __init fork_init(void)
807 {
808         int i;
809 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
810 #ifndef ARCH_MIN_TASKALIGN
811 #define ARCH_MIN_TASKALIGN      0
812 #endif
813         int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
814         unsigned long useroffset, usersize;
815
816         /* create a slab on which task_structs can be allocated */
817         task_struct_whitelist(&useroffset, &usersize);
818         task_struct_cachep = kmem_cache_create_usercopy("task_struct",
819                         arch_task_struct_size, align,
820                         SLAB_PANIC|SLAB_ACCOUNT,
821                         useroffset, usersize, NULL);
822 #endif
823
824         /* do the arch specific task caches init */
825         arch_task_cache_init();
826
827         set_max_threads(MAX_THREADS);
828
829         init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
830         init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
831         init_task.signal->rlim[RLIMIT_SIGPENDING] =
832                 init_task.signal->rlim[RLIMIT_NPROC];
833
834         for (i = 0; i < UCOUNT_COUNTS; i++) {
835                 init_user_ns.ucount_max[i] = max_threads/2;
836         }
837
838 #ifdef CONFIG_VMAP_STACK
839         cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
840                           NULL, free_vm_stack_cache);
841 #endif
842
843         lockdep_init_task(&init_task);
844         uprobes_init();
845 }
846
847 int __weak arch_dup_task_struct(struct task_struct *dst,
848                                                struct task_struct *src)
849 {
850         *dst = *src;
851         return 0;
852 }
853
854 void set_task_stack_end_magic(struct task_struct *tsk)
855 {
856         unsigned long *stackend;
857
858         stackend = end_of_stack(tsk);
859         *stackend = STACK_END_MAGIC;    /* for overflow detection */
860 }
861
862 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
863 {
864         struct task_struct *tsk;
865         unsigned long *stack;
866         struct vm_struct *stack_vm_area __maybe_unused;
867         int err;
868
869         if (node == NUMA_NO_NODE)
870                 node = tsk_fork_get_node(orig);
871         tsk = alloc_task_struct_node(node);
872         if (!tsk)
873                 return NULL;
874
875         stack = alloc_thread_stack_node(tsk, node);
876         if (!stack)
877                 goto free_tsk;
878
879         if (memcg_charge_kernel_stack(tsk))
880                 goto free_stack;
881
882         stack_vm_area = task_stack_vm_area(tsk);
883
884         err = arch_dup_task_struct(tsk, orig);
885
886         /*
887          * arch_dup_task_struct() clobbers the stack-related fields.  Make
888          * sure they're properly initialized before using any stack-related
889          * functions again.
890          */
891         tsk->stack = stack;
892 #ifdef CONFIG_VMAP_STACK
893         tsk->stack_vm_area = stack_vm_area;
894 #endif
895 #ifdef CONFIG_THREAD_INFO_IN_TASK
896         refcount_set(&tsk->stack_refcount, 1);
897 #endif
898
899         if (err)
900                 goto free_stack;
901
902 #ifdef CONFIG_SECCOMP
903         /*
904          * We must handle setting up seccomp filters once we're under
905          * the sighand lock in case orig has changed between now and
906          * then. Until then, filter must be NULL to avoid messing up
907          * the usage counts on the error path calling free_task.
908          */
909         tsk->seccomp.filter = NULL;
910 #endif
911
912         setup_thread_stack(tsk, orig);
913         clear_user_return_notifier(tsk);
914         clear_tsk_need_resched(tsk);
915         set_task_stack_end_magic(tsk);
916
917 #ifdef CONFIG_STACKPROTECTOR
918         tsk->stack_canary = get_random_canary();
919 #endif
920         if (orig->cpus_ptr == &orig->cpus_mask)
921                 tsk->cpus_ptr = &tsk->cpus_mask;
922
923         /*
924          * One for the user space visible state that goes away when reaped.
925          * One for the scheduler.
926          */
927         refcount_set(&tsk->rcu_users, 2);
928         /* One for the rcu users */
929         refcount_set(&tsk->usage, 1);
930 #ifdef CONFIG_BLK_DEV_IO_TRACE
931         tsk->btrace_seq = 0;
932 #endif
933         tsk->splice_pipe = NULL;
934         tsk->task_frag.page = NULL;
935         tsk->wake_q.next = NULL;
936
937         account_kernel_stack(tsk, 1);
938
939         kcov_task_init(tsk);
940
941 #ifdef CONFIG_FAULT_INJECTION
942         tsk->fail_nth = 0;
943 #endif
944
945 #ifdef CONFIG_BLK_CGROUP
946         tsk->throttle_queue = NULL;
947         tsk->use_memdelay = 0;
948 #endif
949
950 #ifdef CONFIG_MEMCG
951         tsk->active_memcg = NULL;
952 #endif
953         return tsk;
954
955 free_stack:
956         free_thread_stack(tsk);
957 free_tsk:
958         free_task_struct(tsk);
959         return NULL;
960 }
961
962 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
963
964 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
965
966 static int __init coredump_filter_setup(char *s)
967 {
968         default_dump_filter =
969                 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
970                 MMF_DUMP_FILTER_MASK;
971         return 1;
972 }
973
974 __setup("coredump_filter=", coredump_filter_setup);
975
976 #include <linux/init_task.h>
977
978 static void mm_init_aio(struct mm_struct *mm)
979 {
980 #ifdef CONFIG_AIO
981         spin_lock_init(&mm->ioctx_lock);
982         mm->ioctx_table = NULL;
983 #endif
984 }
985
986 static __always_inline void mm_clear_owner(struct mm_struct *mm,
987                                            struct task_struct *p)
988 {
989 #ifdef CONFIG_MEMCG
990         if (mm->owner == p)
991                 WRITE_ONCE(mm->owner, NULL);
992 #endif
993 }
994
995 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
996 {
997 #ifdef CONFIG_MEMCG
998         mm->owner = p;
999 #endif
1000 }
1001
1002 static void mm_init_uprobes_state(struct mm_struct *mm)
1003 {
1004 #ifdef CONFIG_UPROBES
1005         mm->uprobes_state.xol_area = NULL;
1006 #endif
1007 }
1008
1009 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1010         struct user_namespace *user_ns)
1011 {
1012         mm->mmap = NULL;
1013         mm->mm_rb = RB_ROOT;
1014         mm->vmacache_seqnum = 0;
1015         atomic_set(&mm->mm_users, 1);
1016         atomic_set(&mm->mm_count, 1);
1017         init_rwsem(&mm->mmap_sem);
1018         INIT_LIST_HEAD(&mm->mmlist);
1019         mm->core_state = NULL;
1020         mm_pgtables_bytes_init(mm);
1021         mm->map_count = 0;
1022         mm->locked_vm = 0;
1023         atomic64_set(&mm->pinned_vm, 0);
1024         memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1025         spin_lock_init(&mm->page_table_lock);
1026         spin_lock_init(&mm->arg_lock);
1027         mm_init_cpumask(mm);
1028         mm_init_aio(mm);
1029         mm_init_owner(mm, p);
1030         RCU_INIT_POINTER(mm->exe_file, NULL);
1031         mmu_notifier_subscriptions_init(mm);
1032         init_tlb_flush_pending(mm);
1033 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1034         mm->pmd_huge_pte = NULL;
1035 #endif
1036         mm_init_uprobes_state(mm);
1037
1038         if (current->mm) {
1039                 mm->flags = current->mm->flags & MMF_INIT_MASK;
1040                 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1041         } else {
1042                 mm->flags = default_dump_filter;
1043                 mm->def_flags = 0;
1044         }
1045
1046         if (mm_alloc_pgd(mm))
1047                 goto fail_nopgd;
1048
1049         if (init_new_context(p, mm))
1050                 goto fail_nocontext;
1051
1052         mm->user_ns = get_user_ns(user_ns);
1053         return mm;
1054
1055 fail_nocontext:
1056         mm_free_pgd(mm);
1057 fail_nopgd:
1058         free_mm(mm);
1059         return NULL;
1060 }
1061
1062 /*
1063  * Allocate and initialize an mm_struct.
1064  */
1065 struct mm_struct *mm_alloc(void)
1066 {
1067         struct mm_struct *mm;
1068
1069         mm = allocate_mm();
1070         if (!mm)
1071                 return NULL;
1072
1073         memset(mm, 0, sizeof(*mm));
1074         return mm_init(mm, current, current_user_ns());
1075 }
1076
1077 static inline void __mmput(struct mm_struct *mm)
1078 {
1079         VM_BUG_ON(atomic_read(&mm->mm_users));
1080
1081         uprobe_clear_state(mm);
1082         exit_aio(mm);
1083         ksm_exit(mm);
1084         khugepaged_exit(mm); /* must run before exit_mmap */
1085         exit_mmap(mm);
1086         mm_put_huge_zero_page(mm);
1087         set_mm_exe_file(mm, NULL);
1088         if (!list_empty(&mm->mmlist)) {
1089                 spin_lock(&mmlist_lock);
1090                 list_del(&mm->mmlist);
1091                 spin_unlock(&mmlist_lock);
1092         }
1093         if (mm->binfmt)
1094                 module_put(mm->binfmt->module);
1095         mmdrop(mm);
1096 }
1097
1098 /*
1099  * Decrement the use count and release all resources for an mm.
1100  */
1101 void mmput(struct mm_struct *mm)
1102 {
1103         might_sleep();
1104
1105         if (atomic_dec_and_test(&mm->mm_users))
1106                 __mmput(mm);
1107 }
1108 EXPORT_SYMBOL_GPL(mmput);
1109
1110 #ifdef CONFIG_MMU
1111 static void mmput_async_fn(struct work_struct *work)
1112 {
1113         struct mm_struct *mm = container_of(work, struct mm_struct,
1114                                             async_put_work);
1115
1116         __mmput(mm);
1117 }
1118
1119 void mmput_async(struct mm_struct *mm)
1120 {
1121         if (atomic_dec_and_test(&mm->mm_users)) {
1122                 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1123                 schedule_work(&mm->async_put_work);
1124         }
1125 }
1126 #endif
1127
1128 /**
1129  * set_mm_exe_file - change a reference to the mm's executable file
1130  *
1131  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1132  *
1133  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1134  * invocations: in mmput() nobody alive left, in execve task is single
1135  * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1136  * mm->exe_file, but does so without using set_mm_exe_file() in order
1137  * to do avoid the need for any locks.
1138  */
1139 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1140 {
1141         struct file *old_exe_file;
1142
1143         /*
1144          * It is safe to dereference the exe_file without RCU as
1145          * this function is only called if nobody else can access
1146          * this mm -- see comment above for justification.
1147          */
1148         old_exe_file = rcu_dereference_raw(mm->exe_file);
1149
1150         if (new_exe_file)
1151                 get_file(new_exe_file);
1152         rcu_assign_pointer(mm->exe_file, new_exe_file);
1153         if (old_exe_file)
1154                 fput(old_exe_file);
1155 }
1156
1157 /**
1158  * get_mm_exe_file - acquire a reference to the mm's executable file
1159  *
1160  * Returns %NULL if mm has no associated executable file.
1161  * User must release file via fput().
1162  */
1163 struct file *get_mm_exe_file(struct mm_struct *mm)
1164 {
1165         struct file *exe_file;
1166
1167         rcu_read_lock();
1168         exe_file = rcu_dereference(mm->exe_file);
1169         if (exe_file && !get_file_rcu(exe_file))
1170                 exe_file = NULL;
1171         rcu_read_unlock();
1172         return exe_file;
1173 }
1174 EXPORT_SYMBOL(get_mm_exe_file);
1175
1176 /**
1177  * get_task_exe_file - acquire a reference to the task's executable file
1178  *
1179  * Returns %NULL if task's mm (if any) has no associated executable file or
1180  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1181  * User must release file via fput().
1182  */
1183 struct file *get_task_exe_file(struct task_struct *task)
1184 {
1185         struct file *exe_file = NULL;
1186         struct mm_struct *mm;
1187
1188         task_lock(task);
1189         mm = task->mm;
1190         if (mm) {
1191                 if (!(task->flags & PF_KTHREAD))
1192                         exe_file = get_mm_exe_file(mm);
1193         }
1194         task_unlock(task);
1195         return exe_file;
1196 }
1197 EXPORT_SYMBOL(get_task_exe_file);
1198
1199 /**
1200  * get_task_mm - acquire a reference to the task's mm
1201  *
1202  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1203  * this kernel workthread has transiently adopted a user mm with use_mm,
1204  * to do its AIO) is not set and if so returns a reference to it, after
1205  * bumping up the use count.  User must release the mm via mmput()
1206  * after use.  Typically used by /proc and ptrace.
1207  */
1208 struct mm_struct *get_task_mm(struct task_struct *task)
1209 {
1210         struct mm_struct *mm;
1211
1212         task_lock(task);
1213         mm = task->mm;
1214         if (mm) {
1215                 if (task->flags & PF_KTHREAD)
1216                         mm = NULL;
1217                 else
1218                         mmget(mm);
1219         }
1220         task_unlock(task);
1221         return mm;
1222 }
1223 EXPORT_SYMBOL_GPL(get_task_mm);
1224
1225 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1226 {
1227         struct mm_struct *mm;
1228         int err;
1229
1230         err =  mutex_lock_killable(&task->signal->exec_update_mutex);
1231         if (err)
1232                 return ERR_PTR(err);
1233
1234         mm = get_task_mm(task);
1235         if (mm && mm != current->mm &&
1236                         !ptrace_may_access(task, mode)) {
1237                 mmput(mm);
1238                 mm = ERR_PTR(-EACCES);
1239         }
1240         mutex_unlock(&task->signal->exec_update_mutex);
1241
1242         return mm;
1243 }
1244
1245 static void complete_vfork_done(struct task_struct *tsk)
1246 {
1247         struct completion *vfork;
1248
1249         task_lock(tsk);
1250         vfork = tsk->vfork_done;
1251         if (likely(vfork)) {
1252                 tsk->vfork_done = NULL;
1253                 complete(vfork);
1254         }
1255         task_unlock(tsk);
1256 }
1257
1258 static int wait_for_vfork_done(struct task_struct *child,
1259                                 struct completion *vfork)
1260 {
1261         int killed;
1262
1263         freezer_do_not_count();
1264         cgroup_enter_frozen();
1265         killed = wait_for_completion_killable(vfork);
1266         cgroup_leave_frozen(false);
1267         freezer_count();
1268
1269         if (killed) {
1270                 task_lock(child);
1271                 child->vfork_done = NULL;
1272                 task_unlock(child);
1273         }
1274
1275         put_task_struct(child);
1276         return killed;
1277 }
1278
1279 /* Please note the differences between mmput and mm_release.
1280  * mmput is called whenever we stop holding onto a mm_struct,
1281  * error success whatever.
1282  *
1283  * mm_release is called after a mm_struct has been removed
1284  * from the current process.
1285  *
1286  * This difference is important for error handling, when we
1287  * only half set up a mm_struct for a new process and need to restore
1288  * the old one.  Because we mmput the new mm_struct before
1289  * restoring the old one. . .
1290  * Eric Biederman 10 January 1998
1291  */
1292 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1293 {
1294         uprobe_free_utask(tsk);
1295
1296         /* Get rid of any cached register state */
1297         deactivate_mm(tsk, mm);
1298
1299         /*
1300          * Signal userspace if we're not exiting with a core dump
1301          * because we want to leave the value intact for debugging
1302          * purposes.
1303          */
1304         if (tsk->clear_child_tid) {
1305                 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1306                     atomic_read(&mm->mm_users) > 1) {
1307                         /*
1308                          * We don't check the error code - if userspace has
1309                          * not set up a proper pointer then tough luck.
1310                          */
1311                         put_user(0, tsk->clear_child_tid);
1312                         do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1313                                         1, NULL, NULL, 0, 0);
1314                 }
1315                 tsk->clear_child_tid = NULL;
1316         }
1317
1318         /*
1319          * All done, finally we can wake up parent and return this mm to him.
1320          * Also kthread_stop() uses this completion for synchronization.
1321          */
1322         if (tsk->vfork_done)
1323                 complete_vfork_done(tsk);
1324 }
1325
1326 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1327 {
1328         futex_exit_release(tsk);
1329         mm_release(tsk, mm);
1330 }
1331
1332 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1333 {
1334         futex_exec_release(tsk);
1335         mm_release(tsk, mm);
1336 }
1337
1338 /**
1339  * dup_mm() - duplicates an existing mm structure
1340  * @tsk: the task_struct with which the new mm will be associated.
1341  * @oldmm: the mm to duplicate.
1342  *
1343  * Allocates a new mm structure and duplicates the provided @oldmm structure
1344  * content into it.
1345  *
1346  * Return: the duplicated mm or NULL on failure.
1347  */
1348 static struct mm_struct *dup_mm(struct task_struct *tsk,
1349                                 struct mm_struct *oldmm)
1350 {
1351         struct mm_struct *mm;
1352         int err;
1353
1354         mm = allocate_mm();
1355         if (!mm)
1356                 goto fail_nomem;
1357
1358         memcpy(mm, oldmm, sizeof(*mm));
1359
1360         if (!mm_init(mm, tsk, mm->user_ns))
1361                 goto fail_nomem;
1362
1363         err = dup_mmap(mm, oldmm);
1364         if (err)
1365                 goto free_pt;
1366
1367         mm->hiwater_rss = get_mm_rss(mm);
1368         mm->hiwater_vm = mm->total_vm;
1369
1370         if (mm->binfmt && !try_module_get(mm->binfmt->module))
1371                 goto free_pt;
1372
1373         return mm;
1374
1375 free_pt:
1376         /* don't put binfmt in mmput, we haven't got module yet */
1377         mm->binfmt = NULL;
1378         mm_init_owner(mm, NULL);
1379         mmput(mm);
1380
1381 fail_nomem:
1382         return NULL;
1383 }
1384
1385 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1386 {
1387         struct mm_struct *mm, *oldmm;
1388         int retval;
1389
1390         tsk->min_flt = tsk->maj_flt = 0;
1391         tsk->nvcsw = tsk->nivcsw = 0;
1392 #ifdef CONFIG_DETECT_HUNG_TASK
1393         tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1394         tsk->last_switch_time = 0;
1395 #endif
1396
1397         tsk->mm = NULL;
1398         tsk->active_mm = NULL;
1399
1400         /*
1401          * Are we cloning a kernel thread?
1402          *
1403          * We need to steal a active VM for that..
1404          */
1405         oldmm = current->mm;
1406         if (!oldmm)
1407                 return 0;
1408
1409         /* initialize the new vmacache entries */
1410         vmacache_flush(tsk);
1411
1412         if (clone_flags & CLONE_VM) {
1413                 mmget(oldmm);
1414                 mm = oldmm;
1415                 goto good_mm;
1416         }
1417
1418         retval = -ENOMEM;
1419         mm = dup_mm(tsk, current->mm);
1420         if (!mm)
1421                 goto fail_nomem;
1422
1423 good_mm:
1424         tsk->mm = mm;
1425         tsk->active_mm = mm;
1426         return 0;
1427
1428 fail_nomem:
1429         return retval;
1430 }
1431
1432 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1433 {
1434         struct fs_struct *fs = current->fs;
1435         if (clone_flags & CLONE_FS) {
1436                 /* tsk->fs is already what we want */
1437                 spin_lock(&fs->lock);
1438                 if (fs->in_exec) {
1439                         spin_unlock(&fs->lock);
1440                         return -EAGAIN;
1441                 }
1442                 fs->users++;
1443                 spin_unlock(&fs->lock);
1444                 return 0;
1445         }
1446         tsk->fs = copy_fs_struct(fs);
1447         if (!tsk->fs)
1448                 return -ENOMEM;
1449         return 0;
1450 }
1451
1452 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1453 {
1454         struct files_struct *oldf, *newf;
1455         int error = 0;
1456
1457         /*
1458          * A background process may not have any files ...
1459          */
1460         oldf = current->files;
1461         if (!oldf)
1462                 goto out;
1463
1464         if (clone_flags & CLONE_FILES) {
1465                 atomic_inc(&oldf->count);
1466                 goto out;
1467         }
1468
1469         newf = dup_fd(oldf, &error);
1470         if (!newf)
1471                 goto out;
1472
1473         tsk->files = newf;
1474         error = 0;
1475 out:
1476         return error;
1477 }
1478
1479 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1480 {
1481 #ifdef CONFIG_BLOCK
1482         struct io_context *ioc = current->io_context;
1483         struct io_context *new_ioc;
1484
1485         if (!ioc)
1486                 return 0;
1487         /*
1488          * Share io context with parent, if CLONE_IO is set
1489          */
1490         if (clone_flags & CLONE_IO) {
1491                 ioc_task_link(ioc);
1492                 tsk->io_context = ioc;
1493         } else if (ioprio_valid(ioc->ioprio)) {
1494                 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1495                 if (unlikely(!new_ioc))
1496                         return -ENOMEM;
1497
1498                 new_ioc->ioprio = ioc->ioprio;
1499                 put_io_context(new_ioc);
1500         }
1501 #endif
1502         return 0;
1503 }
1504
1505 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1506 {
1507         struct sighand_struct *sig;
1508
1509         if (clone_flags & CLONE_SIGHAND) {
1510                 refcount_inc(&current->sighand->count);
1511                 return 0;
1512         }
1513         sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1514         RCU_INIT_POINTER(tsk->sighand, sig);
1515         if (!sig)
1516                 return -ENOMEM;
1517
1518         refcount_set(&sig->count, 1);
1519         spin_lock_irq(&current->sighand->siglock);
1520         memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1521         spin_unlock_irq(&current->sighand->siglock);
1522
1523         /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1524         if (clone_flags & CLONE_CLEAR_SIGHAND)
1525                 flush_signal_handlers(tsk, 0);
1526
1527         return 0;
1528 }
1529
1530 void __cleanup_sighand(struct sighand_struct *sighand)
1531 {
1532         if (refcount_dec_and_test(&sighand->count)) {
1533                 signalfd_cleanup(sighand);
1534                 /*
1535                  * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1536                  * without an RCU grace period, see __lock_task_sighand().
1537                  */
1538                 kmem_cache_free(sighand_cachep, sighand);
1539         }
1540 }
1541
1542 /*
1543  * Initialize POSIX timer handling for a thread group.
1544  */
1545 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1546 {
1547         struct posix_cputimers *pct = &sig->posix_cputimers;
1548         unsigned long cpu_limit;
1549
1550         cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1551         posix_cputimers_group_init(pct, cpu_limit);
1552 }
1553
1554 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1555 {
1556         struct signal_struct *sig;
1557
1558         if (clone_flags & CLONE_THREAD)
1559                 return 0;
1560
1561         sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1562         tsk->signal = sig;
1563         if (!sig)
1564                 return -ENOMEM;
1565
1566         sig->nr_threads = 1;
1567         atomic_set(&sig->live, 1);
1568         refcount_set(&sig->sigcnt, 1);
1569
1570         /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1571         sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1572         tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1573
1574         init_waitqueue_head(&sig->wait_chldexit);
1575         sig->curr_target = tsk;
1576         init_sigpending(&sig->shared_pending);
1577         INIT_HLIST_HEAD(&sig->multiprocess);
1578         seqlock_init(&sig->stats_lock);
1579         prev_cputime_init(&sig->prev_cputime);
1580
1581 #ifdef CONFIG_POSIX_TIMERS
1582         INIT_LIST_HEAD(&sig->posix_timers);
1583         hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1584         sig->real_timer.function = it_real_fn;
1585 #endif
1586
1587         task_lock(current->group_leader);
1588         memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1589         task_unlock(current->group_leader);
1590
1591         posix_cpu_timers_init_group(sig);
1592
1593         tty_audit_fork(sig);
1594         sched_autogroup_fork(sig);
1595
1596         sig->oom_score_adj = current->signal->oom_score_adj;
1597         sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1598
1599         mutex_init(&sig->cred_guard_mutex);
1600         mutex_init(&sig->exec_update_mutex);
1601
1602         return 0;
1603 }
1604
1605 static void copy_seccomp(struct task_struct *p)
1606 {
1607 #ifdef CONFIG_SECCOMP
1608         /*
1609          * Must be called with sighand->lock held, which is common to
1610          * all threads in the group. Holding cred_guard_mutex is not
1611          * needed because this new task is not yet running and cannot
1612          * be racing exec.
1613          */
1614         assert_spin_locked(&current->sighand->siglock);
1615
1616         /* Ref-count the new filter user, and assign it. */
1617         get_seccomp_filter(current);
1618         p->seccomp = current->seccomp;
1619
1620         /*
1621          * Explicitly enable no_new_privs here in case it got set
1622          * between the task_struct being duplicated and holding the
1623          * sighand lock. The seccomp state and nnp must be in sync.
1624          */
1625         if (task_no_new_privs(current))
1626                 task_set_no_new_privs(p);
1627
1628         /*
1629          * If the parent gained a seccomp mode after copying thread
1630          * flags and between before we held the sighand lock, we have
1631          * to manually enable the seccomp thread flag here.
1632          */
1633         if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1634                 set_tsk_thread_flag(p, TIF_SECCOMP);
1635 #endif
1636 }
1637
1638 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1639 {
1640         current->clear_child_tid = tidptr;
1641
1642         return task_pid_vnr(current);
1643 }
1644
1645 static void rt_mutex_init_task(struct task_struct *p)
1646 {
1647         raw_spin_lock_init(&p->pi_lock);
1648 #ifdef CONFIG_RT_MUTEXES
1649         p->pi_waiters = RB_ROOT_CACHED;
1650         p->pi_top_task = NULL;
1651         p->pi_blocked_on = NULL;
1652 #endif
1653 }
1654
1655 static inline void init_task_pid_links(struct task_struct *task)
1656 {
1657         enum pid_type type;
1658
1659         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1660                 INIT_HLIST_NODE(&task->pid_links[type]);
1661         }
1662 }
1663
1664 static inline void
1665 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1666 {
1667         if (type == PIDTYPE_PID)
1668                 task->thread_pid = pid;
1669         else
1670                 task->signal->pids[type] = pid;
1671 }
1672
1673 static inline void rcu_copy_process(struct task_struct *p)
1674 {
1675 #ifdef CONFIG_PREEMPT_RCU
1676         p->rcu_read_lock_nesting = 0;
1677         p->rcu_read_unlock_special.s = 0;
1678         p->rcu_blocked_node = NULL;
1679         INIT_LIST_HEAD(&p->rcu_node_entry);
1680 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1681 #ifdef CONFIG_TASKS_RCU
1682         p->rcu_tasks_holdout = false;
1683         INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1684         p->rcu_tasks_idle_cpu = -1;
1685 #endif /* #ifdef CONFIG_TASKS_RCU */
1686 #ifdef CONFIG_TASKS_TRACE_RCU
1687         p->trc_reader_nesting = 0;
1688         p->trc_reader_special.s = 0;
1689         INIT_LIST_HEAD(&p->trc_holdout_list);
1690 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1691 }
1692
1693 struct pid *pidfd_pid(const struct file *file)
1694 {
1695         if (file->f_op == &pidfd_fops)
1696                 return file->private_data;
1697
1698         return ERR_PTR(-EBADF);
1699 }
1700
1701 static int pidfd_release(struct inode *inode, struct file *file)
1702 {
1703         struct pid *pid = file->private_data;
1704
1705         file->private_data = NULL;
1706         put_pid(pid);
1707         return 0;
1708 }
1709
1710 #ifdef CONFIG_PROC_FS
1711 /**
1712  * pidfd_show_fdinfo - print information about a pidfd
1713  * @m: proc fdinfo file
1714  * @f: file referencing a pidfd
1715  *
1716  * Pid:
1717  * This function will print the pid that a given pidfd refers to in the
1718  * pid namespace of the procfs instance.
1719  * If the pid namespace of the process is not a descendant of the pid
1720  * namespace of the procfs instance 0 will be shown as its pid. This is
1721  * similar to calling getppid() on a process whose parent is outside of
1722  * its pid namespace.
1723  *
1724  * NSpid:
1725  * If pid namespaces are supported then this function will also print
1726  * the pid of a given pidfd refers to for all descendant pid namespaces
1727  * starting from the current pid namespace of the instance, i.e. the
1728  * Pid field and the first entry in the NSpid field will be identical.
1729  * If the pid namespace of the process is not a descendant of the pid
1730  * namespace of the procfs instance 0 will be shown as its first NSpid
1731  * entry and no others will be shown.
1732  * Note that this differs from the Pid and NSpid fields in
1733  * /proc/<pid>/status where Pid and NSpid are always shown relative to
1734  * the  pid namespace of the procfs instance. The difference becomes
1735  * obvious when sending around a pidfd between pid namespaces from a
1736  * different branch of the tree, i.e. where no ancestoral relation is
1737  * present between the pid namespaces:
1738  * - create two new pid namespaces ns1 and ns2 in the initial pid
1739  *   namespace (also take care to create new mount namespaces in the
1740  *   new pid namespace and mount procfs)
1741  * - create a process with a pidfd in ns1
1742  * - send pidfd from ns1 to ns2
1743  * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1744  *   have exactly one entry, which is 0
1745  */
1746 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1747 {
1748         struct pid *pid = f->private_data;
1749         struct pid_namespace *ns;
1750         pid_t nr = -1;
1751
1752         if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1753                 ns = proc_pid_ns(file_inode(m->file));
1754                 nr = pid_nr_ns(pid, ns);
1755         }
1756
1757         seq_put_decimal_ll(m, "Pid:\t", nr);
1758
1759 #ifdef CONFIG_PID_NS
1760         seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1761         if (nr > 0) {
1762                 int i;
1763
1764                 /* If nr is non-zero it means that 'pid' is valid and that
1765                  * ns, i.e. the pid namespace associated with the procfs
1766                  * instance, is in the pid namespace hierarchy of pid.
1767                  * Start at one below the already printed level.
1768                  */
1769                 for (i = ns->level + 1; i <= pid->level; i++)
1770                         seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1771         }
1772 #endif
1773         seq_putc(m, '\n');
1774 }
1775 #endif
1776
1777 /*
1778  * Poll support for process exit notification.
1779  */
1780 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1781 {
1782         struct task_struct *task;
1783         struct pid *pid = file->private_data;
1784         __poll_t poll_flags = 0;
1785
1786         poll_wait(file, &pid->wait_pidfd, pts);
1787
1788         rcu_read_lock();
1789         task = pid_task(pid, PIDTYPE_PID);
1790         /*
1791          * Inform pollers only when the whole thread group exits.
1792          * If the thread group leader exits before all other threads in the
1793          * group, then poll(2) should block, similar to the wait(2) family.
1794          */
1795         if (!task || (task->exit_state && thread_group_empty(task)))
1796                 poll_flags = EPOLLIN | EPOLLRDNORM;
1797         rcu_read_unlock();
1798
1799         return poll_flags;
1800 }
1801
1802 const struct file_operations pidfd_fops = {
1803         .release = pidfd_release,
1804         .poll = pidfd_poll,
1805 #ifdef CONFIG_PROC_FS
1806         .show_fdinfo = pidfd_show_fdinfo,
1807 #endif
1808 };
1809
1810 static void __delayed_free_task(struct rcu_head *rhp)
1811 {
1812         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1813
1814         free_task(tsk);
1815 }
1816
1817 static __always_inline void delayed_free_task(struct task_struct *tsk)
1818 {
1819         if (IS_ENABLED(CONFIG_MEMCG))
1820                 call_rcu(&tsk->rcu, __delayed_free_task);
1821         else
1822                 free_task(tsk);
1823 }
1824
1825 /*
1826  * This creates a new process as a copy of the old one,
1827  * but does not actually start it yet.
1828  *
1829  * It copies the registers, and all the appropriate
1830  * parts of the process environment (as per the clone
1831  * flags). The actual kick-off is left to the caller.
1832  */
1833 static __latent_entropy struct task_struct *copy_process(
1834                                         struct pid *pid,
1835                                         int trace,
1836                                         int node,
1837                                         struct kernel_clone_args *args)
1838 {
1839         int pidfd = -1, retval;
1840         struct task_struct *p;
1841         struct multiprocess_signals delayed;
1842         struct file *pidfile = NULL;
1843         u64 clone_flags = args->flags;
1844         struct nsproxy *nsp = current->nsproxy;
1845
1846         /*
1847          * Don't allow sharing the root directory with processes in a different
1848          * namespace
1849          */
1850         if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1851                 return ERR_PTR(-EINVAL);
1852
1853         if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1854                 return ERR_PTR(-EINVAL);
1855
1856         /*
1857          * Thread groups must share signals as well, and detached threads
1858          * can only be started up within the thread group.
1859          */
1860         if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1861                 return ERR_PTR(-EINVAL);
1862
1863         /*
1864          * Shared signal handlers imply shared VM. By way of the above,
1865          * thread groups also imply shared VM. Blocking this case allows
1866          * for various simplifications in other code.
1867          */
1868         if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1869                 return ERR_PTR(-EINVAL);
1870
1871         /*
1872          * Siblings of global init remain as zombies on exit since they are
1873          * not reaped by their parent (swapper). To solve this and to avoid
1874          * multi-rooted process trees, prevent global and container-inits
1875          * from creating siblings.
1876          */
1877         if ((clone_flags & CLONE_PARENT) &&
1878                                 current->signal->flags & SIGNAL_UNKILLABLE)
1879                 return ERR_PTR(-EINVAL);
1880
1881         /*
1882          * If the new process will be in a different pid or user namespace
1883          * do not allow it to share a thread group with the forking task.
1884          */
1885         if (clone_flags & CLONE_THREAD) {
1886                 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1887                     (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1888                         return ERR_PTR(-EINVAL);
1889         }
1890
1891         /*
1892          * If the new process will be in a different time namespace
1893          * do not allow it to share VM or a thread group with the forking task.
1894          */
1895         if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1896                 if (nsp->time_ns != nsp->time_ns_for_children)
1897                         return ERR_PTR(-EINVAL);
1898         }
1899
1900         if (clone_flags & CLONE_PIDFD) {
1901                 /*
1902                  * - CLONE_DETACHED is blocked so that we can potentially
1903                  *   reuse it later for CLONE_PIDFD.
1904                  * - CLONE_THREAD is blocked until someone really needs it.
1905                  */
1906                 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1907                         return ERR_PTR(-EINVAL);
1908         }
1909
1910         /*
1911          * Force any signals received before this point to be delivered
1912          * before the fork happens.  Collect up signals sent to multiple
1913          * processes that happen during the fork and delay them so that
1914          * they appear to happen after the fork.
1915          */
1916         sigemptyset(&delayed.signal);
1917         INIT_HLIST_NODE(&delayed.node);
1918
1919         spin_lock_irq(&current->sighand->siglock);
1920         if (!(clone_flags & CLONE_THREAD))
1921                 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1922         recalc_sigpending();
1923         spin_unlock_irq(&current->sighand->siglock);
1924         retval = -ERESTARTNOINTR;
1925         if (signal_pending(current))
1926                 goto fork_out;
1927
1928         retval = -ENOMEM;
1929         p = dup_task_struct(current, node);
1930         if (!p)
1931                 goto fork_out;
1932
1933         /*
1934          * This _must_ happen before we call free_task(), i.e. before we jump
1935          * to any of the bad_fork_* labels. This is to avoid freeing
1936          * p->set_child_tid which is (ab)used as a kthread's data pointer for
1937          * kernel threads (PF_KTHREAD).
1938          */
1939         p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1940         /*
1941          * Clear TID on mm_release()?
1942          */
1943         p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1944
1945         ftrace_graph_init_task(p);
1946
1947         rt_mutex_init_task(p);
1948
1949 #ifdef CONFIG_PROVE_LOCKING
1950         DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1951         DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1952 #endif
1953         retval = -EAGAIN;
1954         if (atomic_read(&p->real_cred->user->processes) >=
1955                         task_rlimit(p, RLIMIT_NPROC)) {
1956                 if (p->real_cred->user != INIT_USER &&
1957                     !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1958                         goto bad_fork_free;
1959         }
1960         current->flags &= ~PF_NPROC_EXCEEDED;
1961
1962         retval = copy_creds(p, clone_flags);
1963         if (retval < 0)
1964                 goto bad_fork_free;
1965
1966         /*
1967          * If multiple threads are within copy_process(), then this check
1968          * triggers too late. This doesn't hurt, the check is only there
1969          * to stop root fork bombs.
1970          */
1971         retval = -EAGAIN;
1972         if (nr_threads >= max_threads)
1973                 goto bad_fork_cleanup_count;
1974
1975         delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1976         p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1977         p->flags |= PF_FORKNOEXEC;
1978         INIT_LIST_HEAD(&p->children);
1979         INIT_LIST_HEAD(&p->sibling);
1980         rcu_copy_process(p);
1981         p->vfork_done = NULL;
1982         spin_lock_init(&p->alloc_lock);
1983
1984         init_sigpending(&p->pending);
1985
1986         p->utime = p->stime = p->gtime = 0;
1987 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1988         p->utimescaled = p->stimescaled = 0;
1989 #endif
1990         prev_cputime_init(&p->prev_cputime);
1991
1992 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1993         seqcount_init(&p->vtime.seqcount);
1994         p->vtime.starttime = 0;
1995         p->vtime.state = VTIME_INACTIVE;
1996 #endif
1997
1998 #if defined(SPLIT_RSS_COUNTING)
1999         memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2000 #endif
2001
2002         p->default_timer_slack_ns = current->timer_slack_ns;
2003
2004 #ifdef CONFIG_PSI
2005         p->psi_flags = 0;
2006 #endif
2007
2008         task_io_accounting_init(&p->ioac);
2009         acct_clear_integrals(p);
2010
2011         posix_cputimers_init(&p->posix_cputimers);
2012
2013         p->io_context = NULL;
2014         audit_set_context(p, NULL);
2015         cgroup_fork(p);
2016 #ifdef CONFIG_NUMA
2017         p->mempolicy = mpol_dup(p->mempolicy);
2018         if (IS_ERR(p->mempolicy)) {
2019                 retval = PTR_ERR(p->mempolicy);
2020                 p->mempolicy = NULL;
2021                 goto bad_fork_cleanup_threadgroup_lock;
2022         }
2023 #endif
2024 #ifdef CONFIG_CPUSETS
2025         p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2026         p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2027         seqcount_init(&p->mems_allowed_seq);
2028 #endif
2029 #ifdef CONFIG_TRACE_IRQFLAGS
2030         p->irq_events = 0;
2031         p->hardirqs_enabled = 0;
2032         p->hardirq_enable_ip = 0;
2033         p->hardirq_enable_event = 0;
2034         p->hardirq_disable_ip = _THIS_IP_;
2035         p->hardirq_disable_event = 0;
2036         p->softirqs_enabled = 1;
2037         p->softirq_enable_ip = _THIS_IP_;
2038         p->softirq_enable_event = 0;
2039         p->softirq_disable_ip = 0;
2040         p->softirq_disable_event = 0;
2041         p->hardirq_context = 0;
2042         p->softirq_context = 0;
2043 #endif
2044
2045         p->pagefault_disabled = 0;
2046
2047 #ifdef CONFIG_LOCKDEP
2048         lockdep_init_task(p);
2049 #endif
2050
2051 #ifdef CONFIG_DEBUG_MUTEXES
2052         p->blocked_on = NULL; /* not blocked yet */
2053 #endif
2054 #ifdef CONFIG_BCACHE
2055         p->sequential_io        = 0;
2056         p->sequential_io_avg    = 0;
2057 #endif
2058
2059         /* Perform scheduler related setup. Assign this task to a CPU. */
2060         retval = sched_fork(clone_flags, p);
2061         if (retval)
2062                 goto bad_fork_cleanup_policy;
2063
2064         retval = perf_event_init_task(p);
2065         if (retval)
2066                 goto bad_fork_cleanup_policy;
2067         retval = audit_alloc(p);
2068         if (retval)
2069                 goto bad_fork_cleanup_perf;
2070         /* copy all the process information */
2071         shm_init_task(p);
2072         retval = security_task_alloc(p, clone_flags);
2073         if (retval)
2074                 goto bad_fork_cleanup_audit;
2075         retval = copy_semundo(clone_flags, p);
2076         if (retval)
2077                 goto bad_fork_cleanup_security;
2078         retval = copy_files(clone_flags, p);
2079         if (retval)
2080                 goto bad_fork_cleanup_semundo;
2081         retval = copy_fs(clone_flags, p);
2082         if (retval)
2083                 goto bad_fork_cleanup_files;
2084         retval = copy_sighand(clone_flags, p);
2085         if (retval)
2086                 goto bad_fork_cleanup_fs;
2087         retval = copy_signal(clone_flags, p);
2088         if (retval)
2089                 goto bad_fork_cleanup_sighand;
2090         retval = copy_mm(clone_flags, p);
2091         if (retval)
2092                 goto bad_fork_cleanup_signal;
2093         retval = copy_namespaces(clone_flags, p);
2094         if (retval)
2095                 goto bad_fork_cleanup_mm;
2096         retval = copy_io(clone_flags, p);
2097         if (retval)
2098                 goto bad_fork_cleanup_namespaces;
2099         retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2100                                  args->tls);
2101         if (retval)
2102                 goto bad_fork_cleanup_io;
2103
2104         stackleak_task_init(p);
2105
2106         if (pid != &init_struct_pid) {
2107                 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2108                                 args->set_tid_size);
2109                 if (IS_ERR(pid)) {
2110                         retval = PTR_ERR(pid);
2111                         goto bad_fork_cleanup_thread;
2112                 }
2113         }
2114
2115         /*
2116          * This has to happen after we've potentially unshared the file
2117          * descriptor table (so that the pidfd doesn't leak into the child
2118          * if the fd table isn't shared).
2119          */
2120         if (clone_flags & CLONE_PIDFD) {
2121                 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2122                 if (retval < 0)
2123                         goto bad_fork_free_pid;
2124
2125                 pidfd = retval;
2126
2127                 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2128                                               O_RDWR | O_CLOEXEC);
2129                 if (IS_ERR(pidfile)) {
2130                         put_unused_fd(pidfd);
2131                         retval = PTR_ERR(pidfile);
2132                         goto bad_fork_free_pid;
2133                 }
2134                 get_pid(pid);   /* held by pidfile now */
2135
2136                 retval = put_user(pidfd, args->pidfd);
2137                 if (retval)
2138                         goto bad_fork_put_pidfd;
2139         }
2140
2141 #ifdef CONFIG_BLOCK
2142         p->plug = NULL;
2143 #endif
2144         futex_init_task(p);
2145
2146         /*
2147          * sigaltstack should be cleared when sharing the same VM
2148          */
2149         if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2150                 sas_ss_reset(p);
2151
2152         /*
2153          * Syscall tracing and stepping should be turned off in the
2154          * child regardless of CLONE_PTRACE.
2155          */
2156         user_disable_single_step(p);
2157         clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2158 #ifdef TIF_SYSCALL_EMU
2159         clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2160 #endif
2161         clear_tsk_latency_tracing(p);
2162
2163         /* ok, now we should be set up.. */
2164         p->pid = pid_nr(pid);
2165         if (clone_flags & CLONE_THREAD) {
2166                 p->exit_signal = -1;
2167                 p->group_leader = current->group_leader;
2168                 p->tgid = current->tgid;
2169         } else {
2170                 if (clone_flags & CLONE_PARENT)
2171                         p->exit_signal = current->group_leader->exit_signal;
2172                 else
2173                         p->exit_signal = args->exit_signal;
2174                 p->group_leader = p;
2175                 p->tgid = p->pid;
2176         }
2177
2178         p->nr_dirtied = 0;
2179         p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2180         p->dirty_paused_when = 0;
2181
2182         p->pdeath_signal = 0;
2183         INIT_LIST_HEAD(&p->thread_group);
2184         p->task_works = NULL;
2185
2186         /*
2187          * Ensure that the cgroup subsystem policies allow the new process to be
2188          * forked. It should be noted the the new process's css_set can be changed
2189          * between here and cgroup_post_fork() if an organisation operation is in
2190          * progress.
2191          */
2192         retval = cgroup_can_fork(p, args);
2193         if (retval)
2194                 goto bad_fork_put_pidfd;
2195
2196         /*
2197          * From this point on we must avoid any synchronous user-space
2198          * communication until we take the tasklist-lock. In particular, we do
2199          * not want user-space to be able to predict the process start-time by
2200          * stalling fork(2) after we recorded the start_time but before it is
2201          * visible to the system.
2202          */
2203
2204         p->start_time = ktime_get_ns();
2205         p->start_boottime = ktime_get_boottime_ns();
2206
2207         /*
2208          * Make it visible to the rest of the system, but dont wake it up yet.
2209          * Need tasklist lock for parent etc handling!
2210          */
2211         write_lock_irq(&tasklist_lock);
2212
2213         /* CLONE_PARENT re-uses the old parent */
2214         if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2215                 p->real_parent = current->real_parent;
2216                 p->parent_exec_id = current->parent_exec_id;
2217         } else {
2218                 p->real_parent = current;
2219                 p->parent_exec_id = current->self_exec_id;
2220         }
2221
2222         klp_copy_process(p);
2223
2224         spin_lock(&current->sighand->siglock);
2225
2226         /*
2227          * Copy seccomp details explicitly here, in case they were changed
2228          * before holding sighand lock.
2229          */
2230         copy_seccomp(p);
2231
2232         rseq_fork(p, clone_flags);
2233
2234         /* Don't start children in a dying pid namespace */
2235         if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2236                 retval = -ENOMEM;
2237                 goto bad_fork_cancel_cgroup;
2238         }
2239
2240         /* Let kill terminate clone/fork in the middle */
2241         if (fatal_signal_pending(current)) {
2242                 retval = -EINTR;
2243                 goto bad_fork_cancel_cgroup;
2244         }
2245
2246         /* past the last point of failure */
2247         if (pidfile)
2248                 fd_install(pidfd, pidfile);
2249
2250         init_task_pid_links(p);
2251         if (likely(p->pid)) {
2252                 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2253
2254                 init_task_pid(p, PIDTYPE_PID, pid);
2255                 if (thread_group_leader(p)) {
2256                         init_task_pid(p, PIDTYPE_TGID, pid);
2257                         init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2258                         init_task_pid(p, PIDTYPE_SID, task_session(current));
2259
2260                         if (is_child_reaper(pid)) {
2261                                 ns_of_pid(pid)->child_reaper = p;
2262                                 p->signal->flags |= SIGNAL_UNKILLABLE;
2263                         }
2264                         p->signal->shared_pending.signal = delayed.signal;
2265                         p->signal->tty = tty_kref_get(current->signal->tty);
2266                         /*
2267                          * Inherit has_child_subreaper flag under the same
2268                          * tasklist_lock with adding child to the process tree
2269                          * for propagate_has_child_subreaper optimization.
2270                          */
2271                         p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2272                                                          p->real_parent->signal->is_child_subreaper;
2273                         list_add_tail(&p->sibling, &p->real_parent->children);
2274                         list_add_tail_rcu(&p->tasks, &init_task.tasks);
2275                         attach_pid(p, PIDTYPE_TGID);
2276                         attach_pid(p, PIDTYPE_PGID);
2277                         attach_pid(p, PIDTYPE_SID);
2278                         __this_cpu_inc(process_counts);
2279                 } else {
2280                         current->signal->nr_threads++;
2281                         atomic_inc(&current->signal->live);
2282                         refcount_inc(&current->signal->sigcnt);
2283                         task_join_group_stop(p);
2284                         list_add_tail_rcu(&p->thread_group,
2285                                           &p->group_leader->thread_group);
2286                         list_add_tail_rcu(&p->thread_node,
2287                                           &p->signal->thread_head);
2288                 }
2289                 attach_pid(p, PIDTYPE_PID);
2290                 nr_threads++;
2291         }
2292         total_forks++;
2293         hlist_del_init(&delayed.node);
2294         spin_unlock(&current->sighand->siglock);
2295         syscall_tracepoint_update(p);
2296         write_unlock_irq(&tasklist_lock);
2297
2298         proc_fork_connector(p);
2299         cgroup_post_fork(p, args);
2300         perf_event_fork(p);
2301
2302         trace_task_newtask(p, clone_flags);
2303         uprobe_copy_process(p, clone_flags);
2304
2305         return p;
2306
2307 bad_fork_cancel_cgroup:
2308         spin_unlock(&current->sighand->siglock);
2309         write_unlock_irq(&tasklist_lock);
2310         cgroup_cancel_fork(p, args);
2311 bad_fork_put_pidfd:
2312         if (clone_flags & CLONE_PIDFD) {
2313                 fput(pidfile);
2314                 put_unused_fd(pidfd);
2315         }
2316 bad_fork_free_pid:
2317         if (pid != &init_struct_pid)
2318                 free_pid(pid);
2319 bad_fork_cleanup_thread:
2320         exit_thread(p);
2321 bad_fork_cleanup_io:
2322         if (p->io_context)
2323                 exit_io_context(p);
2324 bad_fork_cleanup_namespaces:
2325         exit_task_namespaces(p);
2326 bad_fork_cleanup_mm:
2327         if (p->mm) {
2328                 mm_clear_owner(p->mm, p);
2329                 mmput(p->mm);
2330         }
2331 bad_fork_cleanup_signal:
2332         if (!(clone_flags & CLONE_THREAD))
2333                 free_signal_struct(p->signal);
2334 bad_fork_cleanup_sighand:
2335         __cleanup_sighand(p->sighand);
2336 bad_fork_cleanup_fs:
2337         exit_fs(p); /* blocking */
2338 bad_fork_cleanup_files:
2339         exit_files(p); /* blocking */
2340 bad_fork_cleanup_semundo:
2341         exit_sem(p);
2342 bad_fork_cleanup_security:
2343         security_task_free(p);
2344 bad_fork_cleanup_audit:
2345         audit_free(p);
2346 bad_fork_cleanup_perf:
2347         perf_event_free_task(p);
2348 bad_fork_cleanup_policy:
2349         lockdep_free_task(p);
2350 #ifdef CONFIG_NUMA
2351         mpol_put(p->mempolicy);
2352 bad_fork_cleanup_threadgroup_lock:
2353 #endif
2354         delayacct_tsk_free(p);
2355 bad_fork_cleanup_count:
2356         atomic_dec(&p->cred->user->processes);
2357         exit_creds(p);
2358 bad_fork_free:
2359         p->state = TASK_DEAD;
2360         put_task_stack(p);
2361         delayed_free_task(p);
2362 fork_out:
2363         spin_lock_irq(&current->sighand->siglock);
2364         hlist_del_init(&delayed.node);
2365         spin_unlock_irq(&current->sighand->siglock);
2366         return ERR_PTR(retval);
2367 }
2368
2369 static inline void init_idle_pids(struct task_struct *idle)
2370 {
2371         enum pid_type type;
2372
2373         for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2374                 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2375                 init_task_pid(idle, type, &init_struct_pid);
2376         }
2377 }
2378
2379 struct task_struct *fork_idle(int cpu)
2380 {
2381         struct task_struct *task;
2382         struct kernel_clone_args args = {
2383                 .flags = CLONE_VM,
2384         };
2385
2386         task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2387         if (!IS_ERR(task)) {
2388                 init_idle_pids(task);
2389                 init_idle(task, cpu);
2390         }
2391
2392         return task;
2393 }
2394
2395 struct mm_struct *copy_init_mm(void)
2396 {
2397         return dup_mm(NULL, &init_mm);
2398 }
2399
2400 /*
2401  *  Ok, this is the main fork-routine.
2402  *
2403  * It copies the process, and if successful kick-starts
2404  * it and waits for it to finish using the VM if required.
2405  *
2406  * args->exit_signal is expected to be checked for sanity by the caller.
2407  */
2408 long _do_fork(struct kernel_clone_args *args)
2409 {
2410         u64 clone_flags = args->flags;
2411         struct completion vfork;
2412         struct pid *pid;
2413         struct task_struct *p;
2414         int trace = 0;
2415         long nr;
2416
2417         /*
2418          * Determine whether and which event to report to ptracer.  When
2419          * called from kernel_thread or CLONE_UNTRACED is explicitly
2420          * requested, no event is reported; otherwise, report if the event
2421          * for the type of forking is enabled.
2422          */
2423         if (!(clone_flags & CLONE_UNTRACED)) {
2424                 if (clone_flags & CLONE_VFORK)
2425                         trace = PTRACE_EVENT_VFORK;
2426                 else if (args->exit_signal != SIGCHLD)
2427                         trace = PTRACE_EVENT_CLONE;
2428                 else
2429                         trace = PTRACE_EVENT_FORK;
2430
2431                 if (likely(!ptrace_event_enabled(current, trace)))
2432                         trace = 0;
2433         }
2434
2435         p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2436         add_latent_entropy();
2437
2438         if (IS_ERR(p))
2439                 return PTR_ERR(p);
2440
2441         /*
2442          * Do this prior waking up the new thread - the thread pointer
2443          * might get invalid after that point, if the thread exits quickly.
2444          */
2445         trace_sched_process_fork(current, p);
2446
2447         pid = get_task_pid(p, PIDTYPE_PID);
2448         nr = pid_vnr(pid);
2449
2450         if (clone_flags & CLONE_PARENT_SETTID)
2451                 put_user(nr, args->parent_tid);
2452
2453         if (clone_flags & CLONE_VFORK) {
2454                 p->vfork_done = &vfork;
2455                 init_completion(&vfork);
2456                 get_task_struct(p);
2457         }
2458
2459         wake_up_new_task(p);
2460
2461         /* forking complete and child started to run, tell ptracer */
2462         if (unlikely(trace))
2463                 ptrace_event_pid(trace, pid);
2464
2465         if (clone_flags & CLONE_VFORK) {
2466                 if (!wait_for_vfork_done(p, &vfork))
2467                         ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2468         }
2469
2470         put_pid(pid);
2471         return nr;
2472 }
2473
2474 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2475 {
2476         /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2477         if ((kargs->flags & CLONE_PIDFD) &&
2478             (kargs->flags & CLONE_PARENT_SETTID))
2479                 return false;
2480
2481         return true;
2482 }
2483
2484 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2485 /* For compatibility with architectures that call do_fork directly rather than
2486  * using the syscall entry points below. */
2487 long do_fork(unsigned long clone_flags,
2488               unsigned long stack_start,
2489               unsigned long stack_size,
2490               int __user *parent_tidptr,
2491               int __user *child_tidptr)
2492 {
2493         struct kernel_clone_args args = {
2494                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2495                 .pidfd          = parent_tidptr,
2496                 .child_tid      = child_tidptr,
2497                 .parent_tid     = parent_tidptr,
2498                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2499                 .stack          = stack_start,
2500                 .stack_size     = stack_size,
2501         };
2502
2503         if (!legacy_clone_args_valid(&args))
2504                 return -EINVAL;
2505
2506         return _do_fork(&args);
2507 }
2508 #endif
2509
2510 /*
2511  * Create a kernel thread.
2512  */
2513 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2514 {
2515         struct kernel_clone_args args = {
2516                 .flags          = ((lower_32_bits(flags) | CLONE_VM |
2517                                     CLONE_UNTRACED) & ~CSIGNAL),
2518                 .exit_signal    = (lower_32_bits(flags) & CSIGNAL),
2519                 .stack          = (unsigned long)fn,
2520                 .stack_size     = (unsigned long)arg,
2521         };
2522
2523         return _do_fork(&args);
2524 }
2525
2526 #ifdef __ARCH_WANT_SYS_FORK
2527 SYSCALL_DEFINE0(fork)
2528 {
2529 #ifdef CONFIG_MMU
2530         struct kernel_clone_args args = {
2531                 .exit_signal = SIGCHLD,
2532         };
2533
2534         return _do_fork(&args);
2535 #else
2536         /* can not support in nommu mode */
2537         return -EINVAL;
2538 #endif
2539 }
2540 #endif
2541
2542 #ifdef __ARCH_WANT_SYS_VFORK
2543 SYSCALL_DEFINE0(vfork)
2544 {
2545         struct kernel_clone_args args = {
2546                 .flags          = CLONE_VFORK | CLONE_VM,
2547                 .exit_signal    = SIGCHLD,
2548         };
2549
2550         return _do_fork(&args);
2551 }
2552 #endif
2553
2554 #ifdef __ARCH_WANT_SYS_CLONE
2555 #ifdef CONFIG_CLONE_BACKWARDS
2556 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2557                  int __user *, parent_tidptr,
2558                  unsigned long, tls,
2559                  int __user *, child_tidptr)
2560 #elif defined(CONFIG_CLONE_BACKWARDS2)
2561 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2562                  int __user *, parent_tidptr,
2563                  int __user *, child_tidptr,
2564                  unsigned long, tls)
2565 #elif defined(CONFIG_CLONE_BACKWARDS3)
2566 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2567                 int, stack_size,
2568                 int __user *, parent_tidptr,
2569                 int __user *, child_tidptr,
2570                 unsigned long, tls)
2571 #else
2572 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2573                  int __user *, parent_tidptr,
2574                  int __user *, child_tidptr,
2575                  unsigned long, tls)
2576 #endif
2577 {
2578         struct kernel_clone_args args = {
2579                 .flags          = (lower_32_bits(clone_flags) & ~CSIGNAL),
2580                 .pidfd          = parent_tidptr,
2581                 .child_tid      = child_tidptr,
2582                 .parent_tid     = parent_tidptr,
2583                 .exit_signal    = (lower_32_bits(clone_flags) & CSIGNAL),
2584                 .stack          = newsp,
2585                 .tls            = tls,
2586         };
2587
2588         if (!legacy_clone_args_valid(&args))
2589                 return -EINVAL;
2590
2591         return _do_fork(&args);
2592 }
2593 #endif
2594
2595 #ifdef __ARCH_WANT_SYS_CLONE3
2596
2597 /*
2598  * copy_thread implementations handle CLONE_SETTLS by reading the TLS value from
2599  * the registers containing the syscall arguments for clone. This doesn't work
2600  * with clone3 since the TLS value is passed in clone_args instead.
2601  */
2602 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2603 #error clone3 requires copy_thread_tls support in arch
2604 #endif
2605
2606 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2607                                               struct clone_args __user *uargs,
2608                                               size_t usize)
2609 {
2610         int err;
2611         struct clone_args args;
2612         pid_t *kset_tid = kargs->set_tid;
2613
2614         BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2615                      CLONE_ARGS_SIZE_VER0);
2616         BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2617                      CLONE_ARGS_SIZE_VER1);
2618         BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2619                      CLONE_ARGS_SIZE_VER2);
2620         BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2621
2622         if (unlikely(usize > PAGE_SIZE))
2623                 return -E2BIG;
2624         if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2625                 return -EINVAL;
2626
2627         err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2628         if (err)
2629                 return err;
2630
2631         if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2632                 return -EINVAL;
2633
2634         if (unlikely(!args.set_tid && args.set_tid_size > 0))
2635                 return -EINVAL;
2636
2637         if (unlikely(args.set_tid && args.set_tid_size == 0))
2638                 return -EINVAL;
2639
2640         /*
2641          * Verify that higher 32bits of exit_signal are unset and that
2642          * it is a valid signal
2643          */
2644         if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2645                      !valid_signal(args.exit_signal)))
2646                 return -EINVAL;
2647
2648         if ((args.flags & CLONE_INTO_CGROUP) &&
2649             (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2650                 return -EINVAL;
2651
2652         *kargs = (struct kernel_clone_args){
2653                 .flags          = args.flags,
2654                 .pidfd          = u64_to_user_ptr(args.pidfd),
2655                 .child_tid      = u64_to_user_ptr(args.child_tid),
2656                 .parent_tid     = u64_to_user_ptr(args.parent_tid),
2657                 .exit_signal    = args.exit_signal,
2658                 .stack          = args.stack,
2659                 .stack_size     = args.stack_size,
2660                 .tls            = args.tls,
2661                 .set_tid_size   = args.set_tid_size,
2662                 .cgroup         = args.cgroup,
2663         };
2664
2665         if (args.set_tid &&
2666                 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2667                         (kargs->set_tid_size * sizeof(pid_t))))
2668                 return -EFAULT;
2669
2670         kargs->set_tid = kset_tid;
2671
2672         return 0;
2673 }
2674
2675 /**
2676  * clone3_stack_valid - check and prepare stack
2677  * @kargs: kernel clone args
2678  *
2679  * Verify that the stack arguments userspace gave us are sane.
2680  * In addition, set the stack direction for userspace since it's easy for us to
2681  * determine.
2682  */
2683 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2684 {
2685         if (kargs->stack == 0) {
2686                 if (kargs->stack_size > 0)
2687                         return false;
2688         } else {
2689                 if (kargs->stack_size == 0)
2690                         return false;
2691
2692                 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2693                         return false;
2694
2695 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2696                 kargs->stack += kargs->stack_size;
2697 #endif
2698         }
2699
2700         return true;
2701 }
2702
2703 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2704 {
2705         /* Verify that no unknown flags are passed along. */
2706         if (kargs->flags &
2707             ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2708                 return false;
2709
2710         /*
2711          * - make the CLONE_DETACHED bit reuseable for clone3
2712          * - make the CSIGNAL bits reuseable for clone3
2713          */
2714         if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2715                 return false;
2716
2717         if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2718             (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2719                 return false;
2720
2721         if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2722             kargs->exit_signal)
2723                 return false;
2724
2725         if (!clone3_stack_valid(kargs))
2726                 return false;
2727
2728         return true;
2729 }
2730
2731 /**
2732  * clone3 - create a new process with specific properties
2733  * @uargs: argument structure
2734  * @size:  size of @uargs
2735  *
2736  * clone3() is the extensible successor to clone()/clone2().
2737  * It takes a struct as argument that is versioned by its size.
2738  *
2739  * Return: On success, a positive PID for the child process.
2740  *         On error, a negative errno number.
2741  */
2742 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2743 {
2744         int err;
2745
2746         struct kernel_clone_args kargs;
2747         pid_t set_tid[MAX_PID_NS_LEVEL];
2748
2749         kargs.set_tid = set_tid;
2750
2751         err = copy_clone_args_from_user(&kargs, uargs, size);
2752         if (err)
2753                 return err;
2754
2755         if (!clone3_args_valid(&kargs))
2756                 return -EINVAL;
2757
2758         return _do_fork(&kargs);
2759 }
2760 #endif
2761
2762 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2763 {
2764         struct task_struct *leader, *parent, *child;
2765         int res;
2766
2767         read_lock(&tasklist_lock);
2768         leader = top = top->group_leader;
2769 down:
2770         for_each_thread(leader, parent) {
2771                 list_for_each_entry(child, &parent->children, sibling) {
2772                         res = visitor(child, data);
2773                         if (res) {
2774                                 if (res < 0)
2775                                         goto out;
2776                                 leader = child;
2777                                 goto down;
2778                         }
2779 up:
2780                         ;
2781                 }
2782         }
2783
2784         if (leader != top) {
2785                 child = leader;
2786                 parent = child->real_parent;
2787                 leader = parent->group_leader;
2788                 goto up;
2789         }
2790 out:
2791         read_unlock(&tasklist_lock);
2792 }
2793
2794 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2795 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2796 #endif
2797
2798 static void sighand_ctor(void *data)
2799 {
2800         struct sighand_struct *sighand = data;
2801
2802         spin_lock_init(&sighand->siglock);
2803         init_waitqueue_head(&sighand->signalfd_wqh);
2804 }
2805
2806 void __init proc_caches_init(void)
2807 {
2808         unsigned int mm_size;
2809
2810         sighand_cachep = kmem_cache_create("sighand_cache",
2811                         sizeof(struct sighand_struct), 0,
2812                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2813                         SLAB_ACCOUNT, sighand_ctor);
2814         signal_cachep = kmem_cache_create("signal_cache",
2815                         sizeof(struct signal_struct), 0,
2816                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2817                         NULL);
2818         files_cachep = kmem_cache_create("files_cache",
2819                         sizeof(struct files_struct), 0,
2820                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2821                         NULL);
2822         fs_cachep = kmem_cache_create("fs_cache",
2823                         sizeof(struct fs_struct), 0,
2824                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2825                         NULL);
2826
2827         /*
2828          * The mm_cpumask is located at the end of mm_struct, and is
2829          * dynamically sized based on the maximum CPU number this system
2830          * can have, taking hotplug into account (nr_cpu_ids).
2831          */
2832         mm_size = sizeof(struct mm_struct) + cpumask_size();
2833
2834         mm_cachep = kmem_cache_create_usercopy("mm_struct",
2835                         mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2836                         SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2837                         offsetof(struct mm_struct, saved_auxv),
2838                         sizeof_field(struct mm_struct, saved_auxv),
2839                         NULL);
2840         vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2841         mmap_init();
2842         nsproxy_cache_init();
2843 }
2844
2845 /*
2846  * Check constraints on flags passed to the unshare system call.
2847  */
2848 static int check_unshare_flags(unsigned long unshare_flags)
2849 {
2850         if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2851                                 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2852                                 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2853                                 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2854                                 CLONE_NEWTIME))
2855                 return -EINVAL;
2856         /*
2857          * Not implemented, but pretend it works if there is nothing
2858          * to unshare.  Note that unsharing the address space or the
2859          * signal handlers also need to unshare the signal queues (aka
2860          * CLONE_THREAD).
2861          */
2862         if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2863                 if (!thread_group_empty(current))
2864                         return -EINVAL;
2865         }
2866         if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2867                 if (refcount_read(&current->sighand->count) > 1)
2868                         return -EINVAL;
2869         }
2870         if (unshare_flags & CLONE_VM) {
2871                 if (!current_is_single_threaded())
2872                         return -EINVAL;
2873         }
2874
2875         return 0;
2876 }
2877
2878 /*
2879  * Unshare the filesystem structure if it is being shared
2880  */
2881 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2882 {
2883         struct fs_struct *fs = current->fs;
2884
2885         if (!(unshare_flags & CLONE_FS) || !fs)
2886                 return 0;
2887
2888         /* don't need lock here; in the worst case we'll do useless copy */
2889         if (fs->users == 1)
2890                 return 0;
2891
2892         *new_fsp = copy_fs_struct(fs);
2893         if (!*new_fsp)
2894                 return -ENOMEM;
2895
2896         return 0;
2897 }
2898
2899 /*
2900  * Unshare file descriptor table if it is being shared
2901  */
2902 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2903 {
2904         struct files_struct *fd = current->files;
2905         int error = 0;
2906
2907         if ((unshare_flags & CLONE_FILES) &&
2908             (fd && atomic_read(&fd->count) > 1)) {
2909                 *new_fdp = dup_fd(fd, &error);
2910                 if (!*new_fdp)
2911                         return error;
2912         }
2913
2914         return 0;
2915 }
2916
2917 /*
2918  * unshare allows a process to 'unshare' part of the process
2919  * context which was originally shared using clone.  copy_*
2920  * functions used by do_fork() cannot be used here directly
2921  * because they modify an inactive task_struct that is being
2922  * constructed. Here we are modifying the current, active,
2923  * task_struct.
2924  */
2925 int ksys_unshare(unsigned long unshare_flags)
2926 {
2927         struct fs_struct *fs, *new_fs = NULL;
2928         struct files_struct *fd, *new_fd = NULL;
2929         struct cred *new_cred = NULL;
2930         struct nsproxy *new_nsproxy = NULL;
2931         int do_sysvsem = 0;
2932         int err;
2933
2934         /*
2935          * If unsharing a user namespace must also unshare the thread group
2936          * and unshare the filesystem root and working directories.
2937          */
2938         if (unshare_flags & CLONE_NEWUSER)
2939                 unshare_flags |= CLONE_THREAD | CLONE_FS;
2940         /*
2941          * If unsharing vm, must also unshare signal handlers.
2942          */
2943         if (unshare_flags & CLONE_VM)
2944                 unshare_flags |= CLONE_SIGHAND;
2945         /*
2946          * If unsharing a signal handlers, must also unshare the signal queues.
2947          */
2948         if (unshare_flags & CLONE_SIGHAND)
2949                 unshare_flags |= CLONE_THREAD;
2950         /*
2951          * If unsharing namespace, must also unshare filesystem information.
2952          */
2953         if (unshare_flags & CLONE_NEWNS)
2954                 unshare_flags |= CLONE_FS;
2955
2956         err = check_unshare_flags(unshare_flags);
2957         if (err)
2958                 goto bad_unshare_out;
2959         /*
2960          * CLONE_NEWIPC must also detach from the undolist: after switching
2961          * to a new ipc namespace, the semaphore arrays from the old
2962          * namespace are unreachable.
2963          */
2964         if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2965                 do_sysvsem = 1;
2966         err = unshare_fs(unshare_flags, &new_fs);
2967         if (err)
2968                 goto bad_unshare_out;
2969         err = unshare_fd(unshare_flags, &new_fd);
2970         if (err)
2971                 goto bad_unshare_cleanup_fs;
2972         err = unshare_userns(unshare_flags, &new_cred);
2973         if (err)
2974                 goto bad_unshare_cleanup_fd;
2975         err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2976                                          new_cred, new_fs);
2977         if (err)
2978                 goto bad_unshare_cleanup_cred;
2979
2980         if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2981                 if (do_sysvsem) {
2982                         /*
2983                          * CLONE_SYSVSEM is equivalent to sys_exit().
2984                          */
2985                         exit_sem(current);
2986                 }
2987                 if (unshare_flags & CLONE_NEWIPC) {
2988                         /* Orphan segments in old ns (see sem above). */
2989                         exit_shm(current);
2990                         shm_init_task(current);
2991                 }
2992
2993                 if (new_nsproxy)
2994                         switch_task_namespaces(current, new_nsproxy);
2995
2996                 task_lock(current);
2997
2998                 if (new_fs) {
2999                         fs = current->fs;
3000                         spin_lock(&fs->lock);
3001                         current->fs = new_fs;
3002                         if (--fs->users)
3003                                 new_fs = NULL;
3004                         else
3005                                 new_fs = fs;
3006                         spin_unlock(&fs->lock);
3007                 }
3008
3009                 if (new_fd) {
3010                         fd = current->files;
3011                         current->files = new_fd;
3012                         new_fd = fd;
3013                 }
3014
3015                 task_unlock(current);
3016
3017                 if (new_cred) {
3018                         /* Install the new user namespace */
3019                         commit_creds(new_cred);
3020                         new_cred = NULL;
3021                 }
3022         }
3023
3024         perf_event_namespaces(current);
3025
3026 bad_unshare_cleanup_cred:
3027         if (new_cred)
3028                 put_cred(new_cred);
3029 bad_unshare_cleanup_fd:
3030         if (new_fd)
3031                 put_files_struct(new_fd);
3032
3033 bad_unshare_cleanup_fs:
3034         if (new_fs)
3035                 free_fs_struct(new_fs);
3036
3037 bad_unshare_out:
3038         return err;
3039 }
3040
3041 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3042 {
3043         return ksys_unshare(unshare_flags);
3044 }
3045
3046 /*
3047  *      Helper to unshare the files of the current task.
3048  *      We don't want to expose copy_files internals to
3049  *      the exec layer of the kernel.
3050  */
3051
3052 int unshare_files(struct files_struct **displaced)
3053 {
3054         struct task_struct *task = current;
3055         struct files_struct *copy = NULL;
3056         int error;
3057
3058         error = unshare_fd(CLONE_FILES, &copy);
3059         if (error || !copy) {
3060                 *displaced = NULL;
3061                 return error;
3062         }
3063         *displaced = task->files;
3064         task_lock(task);
3065         task->files = copy;
3066         task_unlock(task);
3067         return 0;
3068 }
3069
3070 int sysctl_max_threads(struct ctl_table *table, int write,
3071                        void __user *buffer, size_t *lenp, loff_t *ppos)
3072 {
3073         struct ctl_table t;
3074         int ret;
3075         int threads = max_threads;
3076         int min = 1;
3077         int max = MAX_THREADS;
3078
3079         t = *table;
3080         t.data = &threads;
3081         t.extra1 = &min;
3082         t.extra2 = &max;
3083
3084         ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3085         if (ret || !write)
3086                 return ret;
3087
3088         max_threads = threads;
3089
3090         return 0;
3091 }