1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992 Linus Torvalds
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100 #include <linux/sched/mm.h>
102 #include <asm/pgalloc.h>
103 #include <linux/uaccess.h>
104 #include <asm/mmu_context.h>
105 #include <asm/cacheflush.h>
106 #include <asm/tlbflush.h>
108 #include <trace/events/sched.h>
110 #define CREATE_TRACE_POINTS
111 #include <trace/events/task.h>
114 * Minimum number of threads to boot the kernel
116 #define MIN_THREADS 20
119 * Maximum number of threads
121 #define MAX_THREADS FUTEX_TID_MASK
124 * Protected counters by write_lock_irq(&tasklist_lock)
126 unsigned long total_forks; /* Handle normal Linux uptimes. */
127 int nr_threads; /* The idle threads do not count.. */
129 static int max_threads; /* tunable limit on nr_threads */
131 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
133 static const char * const resident_page_types[] = {
134 NAMED_ARRAY_INDEX(MM_FILEPAGES),
135 NAMED_ARRAY_INDEX(MM_ANONPAGES),
136 NAMED_ARRAY_INDEX(MM_SWAPENTS),
137 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
140 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
142 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
144 #ifdef CONFIG_PROVE_RCU
145 int lockdep_tasklist_lock_is_held(void)
147 return lockdep_is_held(&tasklist_lock);
149 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
150 #endif /* #ifdef CONFIG_PROVE_RCU */
152 int nr_processes(void)
157 for_each_possible_cpu(cpu)
158 total += per_cpu(process_counts, cpu);
163 void __weak arch_release_task_struct(struct task_struct *tsk)
167 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
168 static struct kmem_cache *task_struct_cachep;
170 static inline struct task_struct *alloc_task_struct_node(int node)
172 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
175 static inline void free_task_struct(struct task_struct *tsk)
177 kmem_cache_free(task_struct_cachep, tsk);
181 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
184 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
185 * kmemcache based allocator.
187 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
189 # ifdef CONFIG_VMAP_STACK
191 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
192 * flush. Try to minimize the number of calls by caching stacks.
194 #define NR_CACHED_STACKS 2
195 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
199 struct vm_struct *stack_vm_area;
202 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
206 for (i = 0; i < NR_CACHED_STACKS; i++) {
207 if (this_cpu_cmpxchg(cached_stacks[i], NULL, vm) != NULL)
214 static void thread_stack_free_rcu(struct rcu_head *rh)
216 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
218 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
224 static void thread_stack_delayed_free(struct task_struct *tsk)
226 struct vm_stack *vm_stack = tsk->stack;
228 vm_stack->stack_vm_area = tsk->stack_vm_area;
229 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
232 static int free_vm_stack_cache(unsigned int cpu)
234 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
237 for (i = 0; i < NR_CACHED_STACKS; i++) {
238 struct vm_struct *vm_stack = cached_vm_stacks[i];
243 vfree(vm_stack->addr);
244 cached_vm_stacks[i] = NULL;
250 static int memcg_charge_kernel_stack(struct vm_struct *vm)
255 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
256 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
258 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
259 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 * If memcg_kmem_charge_page() fails, page's memory cgroup pointer is
267 * NULL, and memcg_kmem_uncharge_page() in free_thread_stack() will
270 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
271 memcg_kmem_uncharge_page(vm->pages[i], 0);
275 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
277 struct vm_struct *vm;
281 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 s = this_cpu_xchg(cached_stacks[i], NULL);
289 /* Reset stack metadata. */
290 kasan_unpoison_range(s->addr, THREAD_SIZE);
292 stack = kasan_reset_tag(s->addr);
294 /* Clear stale pointers from reused stack. */
295 memset(stack, 0, THREAD_SIZE);
297 if (memcg_charge_kernel_stack(s)) {
302 tsk->stack_vm_area = s;
308 * Allocated stacks are cached and later reused by new threads,
309 * so memcg accounting is performed manually on assigning/releasing
310 * stacks to tasks. Drop __GFP_ACCOUNT.
312 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
313 VMALLOC_START, VMALLOC_END,
314 THREADINFO_GFP & ~__GFP_ACCOUNT,
316 0, node, __builtin_return_address(0));
320 vm = find_vm_area(stack);
321 if (memcg_charge_kernel_stack(vm)) {
326 * We can't call find_vm_area() in interrupt context, and
327 * free_thread_stack() can be called in interrupt context,
328 * so cache the vm_struct.
330 tsk->stack_vm_area = vm;
331 stack = kasan_reset_tag(stack);
336 static void free_thread_stack(struct task_struct *tsk)
338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339 thread_stack_delayed_free(tsk);
342 tsk->stack_vm_area = NULL;
345 # else /* !CONFIG_VMAP_STACK */
347 static void thread_stack_free_rcu(struct rcu_head *rh)
349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
352 static void thread_stack_delayed_free(struct task_struct *tsk)
354 struct rcu_head *rh = tsk->stack;
356 call_rcu(rh, thread_stack_free_rcu);
359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
361 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
365 tsk->stack = kasan_reset_tag(page_address(page));
371 static void free_thread_stack(struct task_struct *tsk)
373 thread_stack_delayed_free(tsk);
377 # endif /* CONFIG_VMAP_STACK */
378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
380 static struct kmem_cache *thread_stack_cache;
382 static void thread_stack_free_rcu(struct rcu_head *rh)
384 kmem_cache_free(thread_stack_cache, rh);
387 static void thread_stack_delayed_free(struct task_struct *tsk)
389 struct rcu_head *rh = tsk->stack;
391 call_rcu(rh, thread_stack_free_rcu);
394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
396 unsigned long *stack;
397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
398 stack = kasan_reset_tag(stack);
400 return stack ? 0 : -ENOMEM;
403 static void free_thread_stack(struct task_struct *tsk)
405 thread_stack_delayed_free(tsk);
409 void thread_stack_cache_init(void)
411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412 THREAD_SIZE, THREAD_SIZE, 0, 0,
414 BUG_ON(thread_stack_cache == NULL);
417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
418 #else /* CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
420 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
422 unsigned long *stack;
424 stack = arch_alloc_thread_stack_node(tsk, node);
426 return stack ? 0 : -ENOMEM;
429 static void free_thread_stack(struct task_struct *tsk)
431 arch_free_thread_stack(tsk);
435 #endif /* !CONFIG_ARCH_THREAD_STACK_ALLOCATOR */
437 /* SLAB cache for signal_struct structures (tsk->signal) */
438 static struct kmem_cache *signal_cachep;
440 /* SLAB cache for sighand_struct structures (tsk->sighand) */
441 struct kmem_cache *sighand_cachep;
443 /* SLAB cache for files_struct structures (tsk->files) */
444 struct kmem_cache *files_cachep;
446 /* SLAB cache for fs_struct structures (tsk->fs) */
447 struct kmem_cache *fs_cachep;
449 /* SLAB cache for vm_area_struct structures */
450 static struct kmem_cache *vm_area_cachep;
452 /* SLAB cache for mm_struct structures (tsk->mm) */
453 static struct kmem_cache *mm_cachep;
455 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
457 struct vm_area_struct *vma;
459 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
465 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
467 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
470 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
471 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
473 * orig->shared.rb may be modified concurrently, but the clone
474 * will be reinitialized.
476 *new = data_race(*orig);
477 INIT_LIST_HEAD(&new->anon_vma_chain);
478 new->vm_next = new->vm_prev = NULL;
479 dup_anon_vma_name(orig, new);
484 void vm_area_free(struct vm_area_struct *vma)
486 free_anon_vma_name(vma);
487 kmem_cache_free(vm_area_cachep, vma);
490 static void account_kernel_stack(struct task_struct *tsk, int account)
492 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
493 struct vm_struct *vm = task_stack_vm_area(tsk);
496 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
497 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
498 account * (PAGE_SIZE / 1024));
500 void *stack = task_stack_page(tsk);
502 /* All stack pages are in the same node. */
503 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
504 account * (THREAD_SIZE / 1024));
508 void exit_task_stack_account(struct task_struct *tsk)
510 account_kernel_stack(tsk, -1);
512 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
513 struct vm_struct *vm;
516 vm = task_stack_vm_area(tsk);
517 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
518 memcg_kmem_uncharge_page(vm->pages[i], 0);
522 static void release_task_stack(struct task_struct *tsk)
524 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
525 return; /* Better to leak the stack than to free prematurely */
527 free_thread_stack(tsk);
530 #ifdef CONFIG_THREAD_INFO_IN_TASK
531 void put_task_stack(struct task_struct *tsk)
533 if (refcount_dec_and_test(&tsk->stack_refcount))
534 release_task_stack(tsk);
538 void free_task(struct task_struct *tsk)
540 release_user_cpus_ptr(tsk);
543 #ifndef CONFIG_THREAD_INFO_IN_TASK
545 * The task is finally done with both the stack and thread_info,
548 release_task_stack(tsk);
551 * If the task had a separate stack allocation, it should be gone
554 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
556 rt_mutex_debug_task_free(tsk);
557 ftrace_graph_exit_task(tsk);
558 arch_release_task_struct(tsk);
559 if (tsk->flags & PF_KTHREAD)
560 free_kthread_struct(tsk);
561 free_task_struct(tsk);
563 EXPORT_SYMBOL(free_task);
565 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
567 struct file *exe_file;
569 exe_file = get_mm_exe_file(oldmm);
570 RCU_INIT_POINTER(mm->exe_file, exe_file);
572 * We depend on the oldmm having properly denied write access to the
575 if (exe_file && deny_write_access(exe_file))
576 pr_warn_once("deny_write_access() failed in %s\n", __func__);
580 static __latent_entropy int dup_mmap(struct mm_struct *mm,
581 struct mm_struct *oldmm)
583 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
584 struct rb_node **rb_link, *rb_parent;
586 unsigned long charge;
589 uprobe_start_dup_mmap();
590 if (mmap_write_lock_killable(oldmm)) {
592 goto fail_uprobe_end;
594 flush_cache_dup_mm(oldmm);
595 uprobe_dup_mmap(oldmm, mm);
597 * Not linked in yet - no deadlock potential:
599 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
601 /* No ordering required: file already has been exposed. */
602 dup_mm_exe_file(mm, oldmm);
604 mm->total_vm = oldmm->total_vm;
605 mm->data_vm = oldmm->data_vm;
606 mm->exec_vm = oldmm->exec_vm;
607 mm->stack_vm = oldmm->stack_vm;
609 rb_link = &mm->mm_rb.rb_node;
612 retval = ksm_fork(mm, oldmm);
615 retval = khugepaged_fork(mm, oldmm);
620 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
623 if (mpnt->vm_flags & VM_DONTCOPY) {
624 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
629 * Don't duplicate many vmas if we've been oom-killed (for
632 if (fatal_signal_pending(current)) {
636 if (mpnt->vm_flags & VM_ACCOUNT) {
637 unsigned long len = vma_pages(mpnt);
639 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
643 tmp = vm_area_dup(mpnt);
646 retval = vma_dup_policy(mpnt, tmp);
648 goto fail_nomem_policy;
650 retval = dup_userfaultfd(tmp, &uf);
652 goto fail_nomem_anon_vma_fork;
653 if (tmp->vm_flags & VM_WIPEONFORK) {
655 * VM_WIPEONFORK gets a clean slate in the child.
656 * Don't prepare anon_vma until fault since we don't
657 * copy page for current vma.
659 tmp->anon_vma = NULL;
660 } else if (anon_vma_fork(tmp, mpnt))
661 goto fail_nomem_anon_vma_fork;
662 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
665 struct address_space *mapping = file->f_mapping;
668 i_mmap_lock_write(mapping);
669 if (tmp->vm_flags & VM_SHARED)
670 mapping_allow_writable(mapping);
671 flush_dcache_mmap_lock(mapping);
672 /* insert tmp into the share list, just after mpnt */
673 vma_interval_tree_insert_after(tmp, mpnt,
675 flush_dcache_mmap_unlock(mapping);
676 i_mmap_unlock_write(mapping);
680 * Clear hugetlb-related page reserves for children. This only
681 * affects MAP_PRIVATE mappings. Faults generated by the child
682 * are not guaranteed to succeed, even if read-only
684 if (is_vm_hugetlb_page(tmp))
685 reset_vma_resv_huge_pages(tmp);
688 * Link in the new vma and copy the page table entries.
691 pprev = &tmp->vm_next;
695 __vma_link_rb(mm, tmp, rb_link, rb_parent);
696 rb_link = &tmp->vm_rb.rb_right;
697 rb_parent = &tmp->vm_rb;
700 if (!(tmp->vm_flags & VM_WIPEONFORK))
701 retval = copy_page_range(tmp, mpnt);
703 if (tmp->vm_ops && tmp->vm_ops->open)
704 tmp->vm_ops->open(tmp);
709 /* a new mm has just been created */
710 retval = arch_dup_mmap(oldmm, mm);
712 mmap_write_unlock(mm);
714 mmap_write_unlock(oldmm);
715 dup_userfaultfd_complete(&uf);
717 uprobe_end_dup_mmap();
719 fail_nomem_anon_vma_fork:
720 mpol_put(vma_policy(tmp));
725 vm_unacct_memory(charge);
729 static inline int mm_alloc_pgd(struct mm_struct *mm)
731 mm->pgd = pgd_alloc(mm);
732 if (unlikely(!mm->pgd))
737 static inline void mm_free_pgd(struct mm_struct *mm)
739 pgd_free(mm, mm->pgd);
742 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
744 mmap_write_lock(oldmm);
745 dup_mm_exe_file(mm, oldmm);
746 mmap_write_unlock(oldmm);
749 #define mm_alloc_pgd(mm) (0)
750 #define mm_free_pgd(mm)
751 #endif /* CONFIG_MMU */
753 static void check_mm(struct mm_struct *mm)
757 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
758 "Please make sure 'struct resident_page_types[]' is updated as well");
760 for (i = 0; i < NR_MM_COUNTERS; i++) {
761 long x = atomic_long_read(&mm->rss_stat.count[i]);
764 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
765 mm, resident_page_types[i], x);
768 if (mm_pgtables_bytes(mm))
769 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
770 mm_pgtables_bytes(mm));
772 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
773 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
777 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
778 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
781 * Called when the last reference to the mm
782 * is dropped: either by a lazy thread or by
783 * mmput. Free the page directory and the mm.
785 void __mmdrop(struct mm_struct *mm)
787 BUG_ON(mm == &init_mm);
788 WARN_ON_ONCE(mm == current->mm);
789 WARN_ON_ONCE(mm == current->active_mm);
792 mmu_notifier_subscriptions_destroy(mm);
794 put_user_ns(mm->user_ns);
798 EXPORT_SYMBOL_GPL(__mmdrop);
800 static void mmdrop_async_fn(struct work_struct *work)
802 struct mm_struct *mm;
804 mm = container_of(work, struct mm_struct, async_put_work);
808 static void mmdrop_async(struct mm_struct *mm)
810 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
811 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
812 schedule_work(&mm->async_put_work);
816 static inline void free_signal_struct(struct signal_struct *sig)
818 taskstats_tgid_free(sig);
819 sched_autogroup_exit(sig);
821 * __mmdrop is not safe to call from softirq context on x86 due to
822 * pgd_dtor so postpone it to the async context
825 mmdrop_async(sig->oom_mm);
826 kmem_cache_free(signal_cachep, sig);
829 static inline void put_signal_struct(struct signal_struct *sig)
831 if (refcount_dec_and_test(&sig->sigcnt))
832 free_signal_struct(sig);
835 void __put_task_struct(struct task_struct *tsk)
837 WARN_ON(!tsk->exit_state);
838 WARN_ON(refcount_read(&tsk->usage));
839 WARN_ON(tsk == current);
843 task_numa_free(tsk, true);
844 security_task_free(tsk);
845 bpf_task_storage_free(tsk);
847 delayacct_tsk_free(tsk);
848 put_signal_struct(tsk->signal);
849 sched_core_free(tsk);
852 EXPORT_SYMBOL_GPL(__put_task_struct);
854 void __init __weak arch_task_cache_init(void) { }
859 static void set_max_threads(unsigned int max_threads_suggested)
862 unsigned long nr_pages = totalram_pages();
865 * The number of threads shall be limited such that the thread
866 * structures may only consume a small part of the available memory.
868 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
869 threads = MAX_THREADS;
871 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
872 (u64) THREAD_SIZE * 8UL);
874 if (threads > max_threads_suggested)
875 threads = max_threads_suggested;
877 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
880 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
881 /* Initialized by the architecture: */
882 int arch_task_struct_size __read_mostly;
885 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
886 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
888 /* Fetch thread_struct whitelist for the architecture. */
889 arch_thread_struct_whitelist(offset, size);
892 * Handle zero-sized whitelist or empty thread_struct, otherwise
893 * adjust offset to position of thread_struct in task_struct.
895 if (unlikely(*size == 0))
898 *offset += offsetof(struct task_struct, thread);
900 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
902 void __init fork_init(void)
905 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
906 #ifndef ARCH_MIN_TASKALIGN
907 #define ARCH_MIN_TASKALIGN 0
909 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
910 unsigned long useroffset, usersize;
912 /* create a slab on which task_structs can be allocated */
913 task_struct_whitelist(&useroffset, &usersize);
914 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
915 arch_task_struct_size, align,
916 SLAB_PANIC|SLAB_ACCOUNT,
917 useroffset, usersize, NULL);
920 /* do the arch specific task caches init */
921 arch_task_cache_init();
923 set_max_threads(MAX_THREADS);
925 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
926 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
927 init_task.signal->rlim[RLIMIT_SIGPENDING] =
928 init_task.signal->rlim[RLIMIT_NPROC];
930 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
931 init_user_ns.ucount_max[i] = max_threads/2;
933 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
934 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
935 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
936 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
938 #ifdef CONFIG_VMAP_STACK
939 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
940 NULL, free_vm_stack_cache);
945 lockdep_init_task(&init_task);
949 int __weak arch_dup_task_struct(struct task_struct *dst,
950 struct task_struct *src)
956 void set_task_stack_end_magic(struct task_struct *tsk)
958 unsigned long *stackend;
960 stackend = end_of_stack(tsk);
961 *stackend = STACK_END_MAGIC; /* for overflow detection */
964 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
966 struct task_struct *tsk;
969 if (node == NUMA_NO_NODE)
970 node = tsk_fork_get_node(orig);
971 tsk = alloc_task_struct_node(node);
975 err = arch_dup_task_struct(tsk, orig);
979 err = alloc_thread_stack_node(tsk, node);
983 #ifdef CONFIG_THREAD_INFO_IN_TASK
984 refcount_set(&tsk->stack_refcount, 1);
986 account_kernel_stack(tsk, 1);
988 err = scs_prepare(tsk, node);
992 #ifdef CONFIG_SECCOMP
994 * We must handle setting up seccomp filters once we're under
995 * the sighand lock in case orig has changed between now and
996 * then. Until then, filter must be NULL to avoid messing up
997 * the usage counts on the error path calling free_task.
999 tsk->seccomp.filter = NULL;
1002 setup_thread_stack(tsk, orig);
1003 clear_user_return_notifier(tsk);
1004 clear_tsk_need_resched(tsk);
1005 set_task_stack_end_magic(tsk);
1006 clear_syscall_work_syscall_user_dispatch(tsk);
1008 #ifdef CONFIG_STACKPROTECTOR
1009 tsk->stack_canary = get_random_canary();
1011 if (orig->cpus_ptr == &orig->cpus_mask)
1012 tsk->cpus_ptr = &tsk->cpus_mask;
1013 dup_user_cpus_ptr(tsk, orig, node);
1016 * One for the user space visible state that goes away when reaped.
1017 * One for the scheduler.
1019 refcount_set(&tsk->rcu_users, 2);
1020 /* One for the rcu users */
1021 refcount_set(&tsk->usage, 1);
1022 #ifdef CONFIG_BLK_DEV_IO_TRACE
1023 tsk->btrace_seq = 0;
1025 tsk->splice_pipe = NULL;
1026 tsk->task_frag.page = NULL;
1027 tsk->wake_q.next = NULL;
1028 tsk->worker_private = NULL;
1030 kcov_task_init(tsk);
1031 kmap_local_fork(tsk);
1033 #ifdef CONFIG_FAULT_INJECTION
1037 #ifdef CONFIG_BLK_CGROUP
1038 tsk->throttle_queue = NULL;
1039 tsk->use_memdelay = 0;
1042 #ifdef CONFIG_IOMMU_SVA
1043 tsk->pasid_activated = 0;
1047 tsk->active_memcg = NULL;
1050 #ifdef CONFIG_CPU_SUP_INTEL
1051 tsk->reported_split_lock = 0;
1057 exit_task_stack_account(tsk);
1058 free_thread_stack(tsk);
1060 free_task_struct(tsk);
1064 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1066 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1068 static int __init coredump_filter_setup(char *s)
1070 default_dump_filter =
1071 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1072 MMF_DUMP_FILTER_MASK;
1076 __setup("coredump_filter=", coredump_filter_setup);
1078 #include <linux/init_task.h>
1080 static void mm_init_aio(struct mm_struct *mm)
1083 spin_lock_init(&mm->ioctx_lock);
1084 mm->ioctx_table = NULL;
1088 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1089 struct task_struct *p)
1093 WRITE_ONCE(mm->owner, NULL);
1097 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1104 static void mm_init_uprobes_state(struct mm_struct *mm)
1106 #ifdef CONFIG_UPROBES
1107 mm->uprobes_state.xol_area = NULL;
1111 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1112 struct user_namespace *user_ns)
1115 mm->mm_rb = RB_ROOT;
1116 mm->vmacache_seqnum = 0;
1117 atomic_set(&mm->mm_users, 1);
1118 atomic_set(&mm->mm_count, 1);
1119 seqcount_init(&mm->write_protect_seq);
1121 INIT_LIST_HEAD(&mm->mmlist);
1122 mm_pgtables_bytes_init(mm);
1125 atomic64_set(&mm->pinned_vm, 0);
1126 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1127 spin_lock_init(&mm->page_table_lock);
1128 spin_lock_init(&mm->arg_lock);
1129 mm_init_cpumask(mm);
1131 mm_init_owner(mm, p);
1133 RCU_INIT_POINTER(mm->exe_file, NULL);
1134 mmu_notifier_subscriptions_init(mm);
1135 init_tlb_flush_pending(mm);
1136 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1137 mm->pmd_huge_pte = NULL;
1139 mm_init_uprobes_state(mm);
1140 hugetlb_count_init(mm);
1143 mm->flags = current->mm->flags & MMF_INIT_MASK;
1144 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1146 mm->flags = default_dump_filter;
1150 if (mm_alloc_pgd(mm))
1153 if (init_new_context(p, mm))
1154 goto fail_nocontext;
1156 mm->user_ns = get_user_ns(user_ns);
1167 * Allocate and initialize an mm_struct.
1169 struct mm_struct *mm_alloc(void)
1171 struct mm_struct *mm;
1177 memset(mm, 0, sizeof(*mm));
1178 return mm_init(mm, current, current_user_ns());
1181 static inline void __mmput(struct mm_struct *mm)
1183 VM_BUG_ON(atomic_read(&mm->mm_users));
1185 uprobe_clear_state(mm);
1188 khugepaged_exit(mm); /* must run before exit_mmap */
1190 mm_put_huge_zero_page(mm);
1191 set_mm_exe_file(mm, NULL);
1192 if (!list_empty(&mm->mmlist)) {
1193 spin_lock(&mmlist_lock);
1194 list_del(&mm->mmlist);
1195 spin_unlock(&mmlist_lock);
1198 module_put(mm->binfmt->module);
1203 * Decrement the use count and release all resources for an mm.
1205 void mmput(struct mm_struct *mm)
1209 if (atomic_dec_and_test(&mm->mm_users))
1212 EXPORT_SYMBOL_GPL(mmput);
1215 static void mmput_async_fn(struct work_struct *work)
1217 struct mm_struct *mm = container_of(work, struct mm_struct,
1223 void mmput_async(struct mm_struct *mm)
1225 if (atomic_dec_and_test(&mm->mm_users)) {
1226 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1227 schedule_work(&mm->async_put_work);
1233 * set_mm_exe_file - change a reference to the mm's executable file
1235 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1237 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1238 * invocations: in mmput() nobody alive left, in execve task is single
1241 * Can only fail if new_exe_file != NULL.
1243 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1245 struct file *old_exe_file;
1248 * It is safe to dereference the exe_file without RCU as
1249 * this function is only called if nobody else can access
1250 * this mm -- see comment above for justification.
1252 old_exe_file = rcu_dereference_raw(mm->exe_file);
1256 * We expect the caller (i.e., sys_execve) to already denied
1257 * write access, so this is unlikely to fail.
1259 if (unlikely(deny_write_access(new_exe_file)))
1261 get_file(new_exe_file);
1263 rcu_assign_pointer(mm->exe_file, new_exe_file);
1265 allow_write_access(old_exe_file);
1272 * replace_mm_exe_file - replace a reference to the mm's executable file
1274 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1275 * dealing with concurrent invocation and without grabbing the mmap lock in
1278 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1280 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1282 struct vm_area_struct *vma;
1283 struct file *old_exe_file;
1286 /* Forbid mm->exe_file change if old file still mapped. */
1287 old_exe_file = get_mm_exe_file(mm);
1290 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1293 if (path_equal(&vma->vm_file->f_path,
1294 &old_exe_file->f_path))
1297 mmap_read_unlock(mm);
1303 /* set the new file, lockless */
1304 ret = deny_write_access(new_exe_file);
1307 get_file(new_exe_file);
1309 old_exe_file = xchg(&mm->exe_file, new_exe_file);
1312 * Don't race with dup_mmap() getting the file and disallowing
1313 * write access while someone might open the file writable.
1316 allow_write_access(old_exe_file);
1318 mmap_read_unlock(mm);
1324 * get_mm_exe_file - acquire a reference to the mm's executable file
1326 * Returns %NULL if mm has no associated executable file.
1327 * User must release file via fput().
1329 struct file *get_mm_exe_file(struct mm_struct *mm)
1331 struct file *exe_file;
1334 exe_file = rcu_dereference(mm->exe_file);
1335 if (exe_file && !get_file_rcu(exe_file))
1342 * get_task_exe_file - acquire a reference to the task's executable file
1344 * Returns %NULL if task's mm (if any) has no associated executable file or
1345 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1346 * User must release file via fput().
1348 struct file *get_task_exe_file(struct task_struct *task)
1350 struct file *exe_file = NULL;
1351 struct mm_struct *mm;
1356 if (!(task->flags & PF_KTHREAD))
1357 exe_file = get_mm_exe_file(mm);
1364 * get_task_mm - acquire a reference to the task's mm
1366 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1367 * this kernel workthread has transiently adopted a user mm with use_mm,
1368 * to do its AIO) is not set and if so returns a reference to it, after
1369 * bumping up the use count. User must release the mm via mmput()
1370 * after use. Typically used by /proc and ptrace.
1372 struct mm_struct *get_task_mm(struct task_struct *task)
1374 struct mm_struct *mm;
1379 if (task->flags & PF_KTHREAD)
1387 EXPORT_SYMBOL_GPL(get_task_mm);
1389 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1391 struct mm_struct *mm;
1394 err = down_read_killable(&task->signal->exec_update_lock);
1396 return ERR_PTR(err);
1398 mm = get_task_mm(task);
1399 if (mm && mm != current->mm &&
1400 !ptrace_may_access(task, mode)) {
1402 mm = ERR_PTR(-EACCES);
1404 up_read(&task->signal->exec_update_lock);
1409 static void complete_vfork_done(struct task_struct *tsk)
1411 struct completion *vfork;
1414 vfork = tsk->vfork_done;
1415 if (likely(vfork)) {
1416 tsk->vfork_done = NULL;
1422 static int wait_for_vfork_done(struct task_struct *child,
1423 struct completion *vfork)
1427 freezer_do_not_count();
1428 cgroup_enter_frozen();
1429 killed = wait_for_completion_killable(vfork);
1430 cgroup_leave_frozen(false);
1435 child->vfork_done = NULL;
1439 put_task_struct(child);
1443 /* Please note the differences between mmput and mm_release.
1444 * mmput is called whenever we stop holding onto a mm_struct,
1445 * error success whatever.
1447 * mm_release is called after a mm_struct has been removed
1448 * from the current process.
1450 * This difference is important for error handling, when we
1451 * only half set up a mm_struct for a new process and need to restore
1452 * the old one. Because we mmput the new mm_struct before
1453 * restoring the old one. . .
1454 * Eric Biederman 10 January 1998
1456 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1458 uprobe_free_utask(tsk);
1460 /* Get rid of any cached register state */
1461 deactivate_mm(tsk, mm);
1464 * Signal userspace if we're not exiting with a core dump
1465 * because we want to leave the value intact for debugging
1468 if (tsk->clear_child_tid) {
1469 if (atomic_read(&mm->mm_users) > 1) {
1471 * We don't check the error code - if userspace has
1472 * not set up a proper pointer then tough luck.
1474 put_user(0, tsk->clear_child_tid);
1475 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1476 1, NULL, NULL, 0, 0);
1478 tsk->clear_child_tid = NULL;
1482 * All done, finally we can wake up parent and return this mm to him.
1483 * Also kthread_stop() uses this completion for synchronization.
1485 if (tsk->vfork_done)
1486 complete_vfork_done(tsk);
1489 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1491 futex_exit_release(tsk);
1492 mm_release(tsk, mm);
1495 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1497 futex_exec_release(tsk);
1498 mm_release(tsk, mm);
1502 * dup_mm() - duplicates an existing mm structure
1503 * @tsk: the task_struct with which the new mm will be associated.
1504 * @oldmm: the mm to duplicate.
1506 * Allocates a new mm structure and duplicates the provided @oldmm structure
1509 * Return: the duplicated mm or NULL on failure.
1511 static struct mm_struct *dup_mm(struct task_struct *tsk,
1512 struct mm_struct *oldmm)
1514 struct mm_struct *mm;
1521 memcpy(mm, oldmm, sizeof(*mm));
1523 if (!mm_init(mm, tsk, mm->user_ns))
1526 err = dup_mmap(mm, oldmm);
1530 mm->hiwater_rss = get_mm_rss(mm);
1531 mm->hiwater_vm = mm->total_vm;
1533 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1539 /* don't put binfmt in mmput, we haven't got module yet */
1541 mm_init_owner(mm, NULL);
1548 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1550 struct mm_struct *mm, *oldmm;
1552 tsk->min_flt = tsk->maj_flt = 0;
1553 tsk->nvcsw = tsk->nivcsw = 0;
1554 #ifdef CONFIG_DETECT_HUNG_TASK
1555 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1556 tsk->last_switch_time = 0;
1560 tsk->active_mm = NULL;
1563 * Are we cloning a kernel thread?
1565 * We need to steal a active VM for that..
1567 oldmm = current->mm;
1571 /* initialize the new vmacache entries */
1572 vmacache_flush(tsk);
1574 if (clone_flags & CLONE_VM) {
1578 mm = dup_mm(tsk, current->mm);
1584 tsk->active_mm = mm;
1588 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1590 struct fs_struct *fs = current->fs;
1591 if (clone_flags & CLONE_FS) {
1592 /* tsk->fs is already what we want */
1593 spin_lock(&fs->lock);
1595 spin_unlock(&fs->lock);
1599 spin_unlock(&fs->lock);
1602 tsk->fs = copy_fs_struct(fs);
1608 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1610 struct files_struct *oldf, *newf;
1614 * A background process may not have any files ...
1616 oldf = current->files;
1620 if (clone_flags & CLONE_FILES) {
1621 atomic_inc(&oldf->count);
1625 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1635 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1637 struct sighand_struct *sig;
1639 if (clone_flags & CLONE_SIGHAND) {
1640 refcount_inc(¤t->sighand->count);
1643 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1644 RCU_INIT_POINTER(tsk->sighand, sig);
1648 refcount_set(&sig->count, 1);
1649 spin_lock_irq(¤t->sighand->siglock);
1650 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1651 spin_unlock_irq(¤t->sighand->siglock);
1653 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1654 if (clone_flags & CLONE_CLEAR_SIGHAND)
1655 flush_signal_handlers(tsk, 0);
1660 void __cleanup_sighand(struct sighand_struct *sighand)
1662 if (refcount_dec_and_test(&sighand->count)) {
1663 signalfd_cleanup(sighand);
1665 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1666 * without an RCU grace period, see __lock_task_sighand().
1668 kmem_cache_free(sighand_cachep, sighand);
1673 * Initialize POSIX timer handling for a thread group.
1675 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1677 struct posix_cputimers *pct = &sig->posix_cputimers;
1678 unsigned long cpu_limit;
1680 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1681 posix_cputimers_group_init(pct, cpu_limit);
1684 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1686 struct signal_struct *sig;
1688 if (clone_flags & CLONE_THREAD)
1691 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1696 sig->nr_threads = 1;
1697 atomic_set(&sig->live, 1);
1698 refcount_set(&sig->sigcnt, 1);
1700 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1701 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1702 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1704 init_waitqueue_head(&sig->wait_chldexit);
1705 sig->curr_target = tsk;
1706 init_sigpending(&sig->shared_pending);
1707 INIT_HLIST_HEAD(&sig->multiprocess);
1708 seqlock_init(&sig->stats_lock);
1709 prev_cputime_init(&sig->prev_cputime);
1711 #ifdef CONFIG_POSIX_TIMERS
1712 INIT_LIST_HEAD(&sig->posix_timers);
1713 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1714 sig->real_timer.function = it_real_fn;
1717 task_lock(current->group_leader);
1718 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1719 task_unlock(current->group_leader);
1721 posix_cpu_timers_init_group(sig);
1723 tty_audit_fork(sig);
1724 sched_autogroup_fork(sig);
1726 sig->oom_score_adj = current->signal->oom_score_adj;
1727 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1729 mutex_init(&sig->cred_guard_mutex);
1730 init_rwsem(&sig->exec_update_lock);
1735 static void copy_seccomp(struct task_struct *p)
1737 #ifdef CONFIG_SECCOMP
1739 * Must be called with sighand->lock held, which is common to
1740 * all threads in the group. Holding cred_guard_mutex is not
1741 * needed because this new task is not yet running and cannot
1744 assert_spin_locked(¤t->sighand->siglock);
1746 /* Ref-count the new filter user, and assign it. */
1747 get_seccomp_filter(current);
1748 p->seccomp = current->seccomp;
1751 * Explicitly enable no_new_privs here in case it got set
1752 * between the task_struct being duplicated and holding the
1753 * sighand lock. The seccomp state and nnp must be in sync.
1755 if (task_no_new_privs(current))
1756 task_set_no_new_privs(p);
1759 * If the parent gained a seccomp mode after copying thread
1760 * flags and between before we held the sighand lock, we have
1761 * to manually enable the seccomp thread flag here.
1763 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1764 set_task_syscall_work(p, SECCOMP);
1768 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1770 current->clear_child_tid = tidptr;
1772 return task_pid_vnr(current);
1775 static void rt_mutex_init_task(struct task_struct *p)
1777 raw_spin_lock_init(&p->pi_lock);
1778 #ifdef CONFIG_RT_MUTEXES
1779 p->pi_waiters = RB_ROOT_CACHED;
1780 p->pi_top_task = NULL;
1781 p->pi_blocked_on = NULL;
1785 static inline void init_task_pid_links(struct task_struct *task)
1789 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1790 INIT_HLIST_NODE(&task->pid_links[type]);
1794 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1796 if (type == PIDTYPE_PID)
1797 task->thread_pid = pid;
1799 task->signal->pids[type] = pid;
1802 static inline void rcu_copy_process(struct task_struct *p)
1804 #ifdef CONFIG_PREEMPT_RCU
1805 p->rcu_read_lock_nesting = 0;
1806 p->rcu_read_unlock_special.s = 0;
1807 p->rcu_blocked_node = NULL;
1808 INIT_LIST_HEAD(&p->rcu_node_entry);
1809 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1810 #ifdef CONFIG_TASKS_RCU
1811 p->rcu_tasks_holdout = false;
1812 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1813 p->rcu_tasks_idle_cpu = -1;
1814 #endif /* #ifdef CONFIG_TASKS_RCU */
1815 #ifdef CONFIG_TASKS_TRACE_RCU
1816 p->trc_reader_nesting = 0;
1817 p->trc_reader_special.s = 0;
1818 INIT_LIST_HEAD(&p->trc_holdout_list);
1819 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1822 struct pid *pidfd_pid(const struct file *file)
1824 if (file->f_op == &pidfd_fops)
1825 return file->private_data;
1827 return ERR_PTR(-EBADF);
1830 static int pidfd_release(struct inode *inode, struct file *file)
1832 struct pid *pid = file->private_data;
1834 file->private_data = NULL;
1839 #ifdef CONFIG_PROC_FS
1841 * pidfd_show_fdinfo - print information about a pidfd
1842 * @m: proc fdinfo file
1843 * @f: file referencing a pidfd
1846 * This function will print the pid that a given pidfd refers to in the
1847 * pid namespace of the procfs instance.
1848 * If the pid namespace of the process is not a descendant of the pid
1849 * namespace of the procfs instance 0 will be shown as its pid. This is
1850 * similar to calling getppid() on a process whose parent is outside of
1851 * its pid namespace.
1854 * If pid namespaces are supported then this function will also print
1855 * the pid of a given pidfd refers to for all descendant pid namespaces
1856 * starting from the current pid namespace of the instance, i.e. the
1857 * Pid field and the first entry in the NSpid field will be identical.
1858 * If the pid namespace of the process is not a descendant of the pid
1859 * namespace of the procfs instance 0 will be shown as its first NSpid
1860 * entry and no others will be shown.
1861 * Note that this differs from the Pid and NSpid fields in
1862 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1863 * the pid namespace of the procfs instance. The difference becomes
1864 * obvious when sending around a pidfd between pid namespaces from a
1865 * different branch of the tree, i.e. where no ancestral relation is
1866 * present between the pid namespaces:
1867 * - create two new pid namespaces ns1 and ns2 in the initial pid
1868 * namespace (also take care to create new mount namespaces in the
1869 * new pid namespace and mount procfs)
1870 * - create a process with a pidfd in ns1
1871 * - send pidfd from ns1 to ns2
1872 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1873 * have exactly one entry, which is 0
1875 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1877 struct pid *pid = f->private_data;
1878 struct pid_namespace *ns;
1881 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1882 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1883 nr = pid_nr_ns(pid, ns);
1886 seq_put_decimal_ll(m, "Pid:\t", nr);
1888 #ifdef CONFIG_PID_NS
1889 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1893 /* If nr is non-zero it means that 'pid' is valid and that
1894 * ns, i.e. the pid namespace associated with the procfs
1895 * instance, is in the pid namespace hierarchy of pid.
1896 * Start at one below the already printed level.
1898 for (i = ns->level + 1; i <= pid->level; i++)
1899 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1907 * Poll support for process exit notification.
1909 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1911 struct pid *pid = file->private_data;
1912 __poll_t poll_flags = 0;
1914 poll_wait(file, &pid->wait_pidfd, pts);
1917 * Inform pollers only when the whole thread group exits.
1918 * If the thread group leader exits before all other threads in the
1919 * group, then poll(2) should block, similar to the wait(2) family.
1921 if (thread_group_exited(pid))
1922 poll_flags = EPOLLIN | EPOLLRDNORM;
1927 const struct file_operations pidfd_fops = {
1928 .release = pidfd_release,
1930 #ifdef CONFIG_PROC_FS
1931 .show_fdinfo = pidfd_show_fdinfo,
1935 static void __delayed_free_task(struct rcu_head *rhp)
1937 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1942 static __always_inline void delayed_free_task(struct task_struct *tsk)
1944 if (IS_ENABLED(CONFIG_MEMCG))
1945 call_rcu(&tsk->rcu, __delayed_free_task);
1950 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1952 /* Skip if kernel thread */
1956 /* Skip if spawning a thread or using vfork */
1957 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1960 /* We need to synchronize with __set_oom_adj */
1961 mutex_lock(&oom_adj_mutex);
1962 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1963 /* Update the values in case they were changed after copy_signal */
1964 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1965 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1966 mutex_unlock(&oom_adj_mutex);
1970 * This creates a new process as a copy of the old one,
1971 * but does not actually start it yet.
1973 * It copies the registers, and all the appropriate
1974 * parts of the process environment (as per the clone
1975 * flags). The actual kick-off is left to the caller.
1977 static __latent_entropy struct task_struct *copy_process(
1981 struct kernel_clone_args *args)
1983 int pidfd = -1, retval;
1984 struct task_struct *p;
1985 struct multiprocess_signals delayed;
1986 struct file *pidfile = NULL;
1987 u64 clone_flags = args->flags;
1988 struct nsproxy *nsp = current->nsproxy;
1991 * Don't allow sharing the root directory with processes in a different
1994 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1995 return ERR_PTR(-EINVAL);
1997 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1998 return ERR_PTR(-EINVAL);
2001 * Thread groups must share signals as well, and detached threads
2002 * can only be started up within the thread group.
2004 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2005 return ERR_PTR(-EINVAL);
2008 * Shared signal handlers imply shared VM. By way of the above,
2009 * thread groups also imply shared VM. Blocking this case allows
2010 * for various simplifications in other code.
2012 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2013 return ERR_PTR(-EINVAL);
2016 * Siblings of global init remain as zombies on exit since they are
2017 * not reaped by their parent (swapper). To solve this and to avoid
2018 * multi-rooted process trees, prevent global and container-inits
2019 * from creating siblings.
2021 if ((clone_flags & CLONE_PARENT) &&
2022 current->signal->flags & SIGNAL_UNKILLABLE)
2023 return ERR_PTR(-EINVAL);
2026 * If the new process will be in a different pid or user namespace
2027 * do not allow it to share a thread group with the forking task.
2029 if (clone_flags & CLONE_THREAD) {
2030 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2031 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2032 return ERR_PTR(-EINVAL);
2036 * If the new process will be in a different time namespace
2037 * do not allow it to share VM or a thread group with the forking task.
2039 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
2040 if (nsp->time_ns != nsp->time_ns_for_children)
2041 return ERR_PTR(-EINVAL);
2044 if (clone_flags & CLONE_PIDFD) {
2046 * - CLONE_DETACHED is blocked so that we can potentially
2047 * reuse it later for CLONE_PIDFD.
2048 * - CLONE_THREAD is blocked until someone really needs it.
2050 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2051 return ERR_PTR(-EINVAL);
2055 * Force any signals received before this point to be delivered
2056 * before the fork happens. Collect up signals sent to multiple
2057 * processes that happen during the fork and delay them so that
2058 * they appear to happen after the fork.
2060 sigemptyset(&delayed.signal);
2061 INIT_HLIST_NODE(&delayed.node);
2063 spin_lock_irq(¤t->sighand->siglock);
2064 if (!(clone_flags & CLONE_THREAD))
2065 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2066 recalc_sigpending();
2067 spin_unlock_irq(¤t->sighand->siglock);
2068 retval = -ERESTARTNOINTR;
2069 if (task_sigpending(current))
2073 p = dup_task_struct(current, node);
2076 if (args->io_thread) {
2078 * Mark us an IO worker, and block any signal that isn't
2081 p->flags |= PF_IO_WORKER;
2082 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2085 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2087 * Clear TID on mm_release()?
2089 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2091 ftrace_graph_init_task(p);
2093 rt_mutex_init_task(p);
2095 lockdep_assert_irqs_enabled();
2096 #ifdef CONFIG_PROVE_LOCKING
2097 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2099 retval = copy_creds(p, clone_flags);
2104 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2105 if (p->real_cred->user != INIT_USER &&
2106 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2107 goto bad_fork_cleanup_count;
2109 current->flags &= ~PF_NPROC_EXCEEDED;
2112 * If multiple threads are within copy_process(), then this check
2113 * triggers too late. This doesn't hurt, the check is only there
2114 * to stop root fork bombs.
2117 if (data_race(nr_threads >= max_threads))
2118 goto bad_fork_cleanup_count;
2120 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2121 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2122 p->flags |= PF_FORKNOEXEC;
2123 INIT_LIST_HEAD(&p->children);
2124 INIT_LIST_HEAD(&p->sibling);
2125 rcu_copy_process(p);
2126 p->vfork_done = NULL;
2127 spin_lock_init(&p->alloc_lock);
2129 init_sigpending(&p->pending);
2131 p->utime = p->stime = p->gtime = 0;
2132 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2133 p->utimescaled = p->stimescaled = 0;
2135 prev_cputime_init(&p->prev_cputime);
2137 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2138 seqcount_init(&p->vtime.seqcount);
2139 p->vtime.starttime = 0;
2140 p->vtime.state = VTIME_INACTIVE;
2143 #ifdef CONFIG_IO_URING
2147 #if defined(SPLIT_RSS_COUNTING)
2148 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2151 p->default_timer_slack_ns = current->timer_slack_ns;
2157 task_io_accounting_init(&p->ioac);
2158 acct_clear_integrals(p);
2160 posix_cputimers_init(&p->posix_cputimers);
2162 p->io_context = NULL;
2163 audit_set_context(p, NULL);
2165 if (p->flags & PF_KTHREAD) {
2166 if (!set_kthread_struct(p))
2167 goto bad_fork_cleanup_delayacct;
2170 p->mempolicy = mpol_dup(p->mempolicy);
2171 if (IS_ERR(p->mempolicy)) {
2172 retval = PTR_ERR(p->mempolicy);
2173 p->mempolicy = NULL;
2174 goto bad_fork_cleanup_delayacct;
2177 #ifdef CONFIG_CPUSETS
2178 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2179 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2180 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2182 #ifdef CONFIG_TRACE_IRQFLAGS
2183 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2184 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2185 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2186 p->softirqs_enabled = 1;
2187 p->softirq_context = 0;
2190 p->pagefault_disabled = 0;
2192 #ifdef CONFIG_LOCKDEP
2193 lockdep_init_task(p);
2196 #ifdef CONFIG_DEBUG_MUTEXES
2197 p->blocked_on = NULL; /* not blocked yet */
2199 #ifdef CONFIG_BCACHE
2200 p->sequential_io = 0;
2201 p->sequential_io_avg = 0;
2203 #ifdef CONFIG_BPF_SYSCALL
2204 RCU_INIT_POINTER(p->bpf_storage, NULL);
2208 /* Perform scheduler related setup. Assign this task to a CPU. */
2209 retval = sched_fork(clone_flags, p);
2211 goto bad_fork_cleanup_policy;
2213 retval = perf_event_init_task(p, clone_flags);
2215 goto bad_fork_cleanup_policy;
2216 retval = audit_alloc(p);
2218 goto bad_fork_cleanup_perf;
2219 /* copy all the process information */
2221 retval = security_task_alloc(p, clone_flags);
2223 goto bad_fork_cleanup_audit;
2224 retval = copy_semundo(clone_flags, p);
2226 goto bad_fork_cleanup_security;
2227 retval = copy_files(clone_flags, p);
2229 goto bad_fork_cleanup_semundo;
2230 retval = copy_fs(clone_flags, p);
2232 goto bad_fork_cleanup_files;
2233 retval = copy_sighand(clone_flags, p);
2235 goto bad_fork_cleanup_fs;
2236 retval = copy_signal(clone_flags, p);
2238 goto bad_fork_cleanup_sighand;
2239 retval = copy_mm(clone_flags, p);
2241 goto bad_fork_cleanup_signal;
2242 retval = copy_namespaces(clone_flags, p);
2244 goto bad_fork_cleanup_mm;
2245 retval = copy_io(clone_flags, p);
2247 goto bad_fork_cleanup_namespaces;
2248 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2250 goto bad_fork_cleanup_io;
2252 stackleak_task_init(p);
2254 if (pid != &init_struct_pid) {
2255 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2256 args->set_tid_size);
2258 retval = PTR_ERR(pid);
2259 goto bad_fork_cleanup_thread;
2264 * This has to happen after we've potentially unshared the file
2265 * descriptor table (so that the pidfd doesn't leak into the child
2266 * if the fd table isn't shared).
2268 if (clone_flags & CLONE_PIDFD) {
2269 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2271 goto bad_fork_free_pid;
2275 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2276 O_RDWR | O_CLOEXEC);
2277 if (IS_ERR(pidfile)) {
2278 put_unused_fd(pidfd);
2279 retval = PTR_ERR(pidfile);
2280 goto bad_fork_free_pid;
2282 get_pid(pid); /* held by pidfile now */
2284 retval = put_user(pidfd, args->pidfd);
2286 goto bad_fork_put_pidfd;
2295 * sigaltstack should be cleared when sharing the same VM
2297 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2301 * Syscall tracing and stepping should be turned off in the
2302 * child regardless of CLONE_PTRACE.
2304 user_disable_single_step(p);
2305 clear_task_syscall_work(p, SYSCALL_TRACE);
2306 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2307 clear_task_syscall_work(p, SYSCALL_EMU);
2309 clear_tsk_latency_tracing(p);
2311 /* ok, now we should be set up.. */
2312 p->pid = pid_nr(pid);
2313 if (clone_flags & CLONE_THREAD) {
2314 p->group_leader = current->group_leader;
2315 p->tgid = current->tgid;
2317 p->group_leader = p;
2322 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2323 p->dirty_paused_when = 0;
2325 p->pdeath_signal = 0;
2326 INIT_LIST_HEAD(&p->thread_group);
2327 p->task_works = NULL;
2328 clear_posix_cputimers_work(p);
2330 #ifdef CONFIG_KRETPROBES
2331 p->kretprobe_instances.first = NULL;
2333 #ifdef CONFIG_RETHOOK
2334 p->rethooks.first = NULL;
2338 * Ensure that the cgroup subsystem policies allow the new process to be
2339 * forked. It should be noted that the new process's css_set can be changed
2340 * between here and cgroup_post_fork() if an organisation operation is in
2343 retval = cgroup_can_fork(p, args);
2345 goto bad_fork_put_pidfd;
2348 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2349 * the new task on the correct runqueue. All this *before* the task
2352 * This isn't part of ->can_fork() because while the re-cloning is
2353 * cgroup specific, it unconditionally needs to place the task on a
2356 sched_cgroup_fork(p, args);
2359 * From this point on we must avoid any synchronous user-space
2360 * communication until we take the tasklist-lock. In particular, we do
2361 * not want user-space to be able to predict the process start-time by
2362 * stalling fork(2) after we recorded the start_time but before it is
2363 * visible to the system.
2366 p->start_time = ktime_get_ns();
2367 p->start_boottime = ktime_get_boottime_ns();
2370 * Make it visible to the rest of the system, but dont wake it up yet.
2371 * Need tasklist lock for parent etc handling!
2373 write_lock_irq(&tasklist_lock);
2375 /* CLONE_PARENT re-uses the old parent */
2376 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2377 p->real_parent = current->real_parent;
2378 p->parent_exec_id = current->parent_exec_id;
2379 if (clone_flags & CLONE_THREAD)
2380 p->exit_signal = -1;
2382 p->exit_signal = current->group_leader->exit_signal;
2384 p->real_parent = current;
2385 p->parent_exec_id = current->self_exec_id;
2386 p->exit_signal = args->exit_signal;
2389 klp_copy_process(p);
2393 spin_lock(¤t->sighand->siglock);
2396 * Copy seccomp details explicitly here, in case they were changed
2397 * before holding sighand lock.
2401 rseq_fork(p, clone_flags);
2403 /* Don't start children in a dying pid namespace */
2404 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2406 goto bad_fork_cancel_cgroup;
2409 /* Let kill terminate clone/fork in the middle */
2410 if (fatal_signal_pending(current)) {
2412 goto bad_fork_cancel_cgroup;
2415 init_task_pid_links(p);
2416 if (likely(p->pid)) {
2417 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2419 init_task_pid(p, PIDTYPE_PID, pid);
2420 if (thread_group_leader(p)) {
2421 init_task_pid(p, PIDTYPE_TGID, pid);
2422 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2423 init_task_pid(p, PIDTYPE_SID, task_session(current));
2425 if (is_child_reaper(pid)) {
2426 ns_of_pid(pid)->child_reaper = p;
2427 p->signal->flags |= SIGNAL_UNKILLABLE;
2429 p->signal->shared_pending.signal = delayed.signal;
2430 p->signal->tty = tty_kref_get(current->signal->tty);
2432 * Inherit has_child_subreaper flag under the same
2433 * tasklist_lock with adding child to the process tree
2434 * for propagate_has_child_subreaper optimization.
2436 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2437 p->real_parent->signal->is_child_subreaper;
2438 list_add_tail(&p->sibling, &p->real_parent->children);
2439 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2440 attach_pid(p, PIDTYPE_TGID);
2441 attach_pid(p, PIDTYPE_PGID);
2442 attach_pid(p, PIDTYPE_SID);
2443 __this_cpu_inc(process_counts);
2445 current->signal->nr_threads++;
2446 atomic_inc(¤t->signal->live);
2447 refcount_inc(¤t->signal->sigcnt);
2448 task_join_group_stop(p);
2449 list_add_tail_rcu(&p->thread_group,
2450 &p->group_leader->thread_group);
2451 list_add_tail_rcu(&p->thread_node,
2452 &p->signal->thread_head);
2454 attach_pid(p, PIDTYPE_PID);
2458 hlist_del_init(&delayed.node);
2459 spin_unlock(¤t->sighand->siglock);
2460 syscall_tracepoint_update(p);
2461 write_unlock_irq(&tasklist_lock);
2464 fd_install(pidfd, pidfile);
2466 proc_fork_connector(p);
2468 cgroup_post_fork(p, args);
2471 trace_task_newtask(p, clone_flags);
2472 uprobe_copy_process(p, clone_flags);
2474 copy_oom_score_adj(clone_flags, p);
2478 bad_fork_cancel_cgroup:
2480 spin_unlock(¤t->sighand->siglock);
2481 write_unlock_irq(&tasklist_lock);
2482 cgroup_cancel_fork(p, args);
2484 if (clone_flags & CLONE_PIDFD) {
2486 put_unused_fd(pidfd);
2489 if (pid != &init_struct_pid)
2491 bad_fork_cleanup_thread:
2493 bad_fork_cleanup_io:
2496 bad_fork_cleanup_namespaces:
2497 exit_task_namespaces(p);
2498 bad_fork_cleanup_mm:
2500 mm_clear_owner(p->mm, p);
2503 bad_fork_cleanup_signal:
2504 if (!(clone_flags & CLONE_THREAD))
2505 free_signal_struct(p->signal);
2506 bad_fork_cleanup_sighand:
2507 __cleanup_sighand(p->sighand);
2508 bad_fork_cleanup_fs:
2509 exit_fs(p); /* blocking */
2510 bad_fork_cleanup_files:
2511 exit_files(p); /* blocking */
2512 bad_fork_cleanup_semundo:
2514 bad_fork_cleanup_security:
2515 security_task_free(p);
2516 bad_fork_cleanup_audit:
2518 bad_fork_cleanup_perf:
2519 perf_event_free_task(p);
2520 bad_fork_cleanup_policy:
2521 lockdep_free_task(p);
2523 mpol_put(p->mempolicy);
2525 bad_fork_cleanup_delayacct:
2526 delayacct_tsk_free(p);
2527 bad_fork_cleanup_count:
2528 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2531 WRITE_ONCE(p->__state, TASK_DEAD);
2532 exit_task_stack_account(p);
2534 delayed_free_task(p);
2536 spin_lock_irq(¤t->sighand->siglock);
2537 hlist_del_init(&delayed.node);
2538 spin_unlock_irq(¤t->sighand->siglock);
2539 return ERR_PTR(retval);
2542 static inline void init_idle_pids(struct task_struct *idle)
2546 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2547 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2548 init_task_pid(idle, type, &init_struct_pid);
2552 struct task_struct * __init fork_idle(int cpu)
2554 struct task_struct *task;
2555 struct kernel_clone_args args = {
2559 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2560 if (!IS_ERR(task)) {
2561 init_idle_pids(task);
2562 init_idle(task, cpu);
2568 struct mm_struct *copy_init_mm(void)
2570 return dup_mm(NULL, &init_mm);
2574 * This is like kernel_clone(), but shaved down and tailored to just
2575 * creating io_uring workers. It returns a created task, or an error pointer.
2576 * The returned task is inactive, and the caller must fire it up through
2577 * wake_up_new_task(p). All signals are blocked in the created task.
2579 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2581 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2583 struct kernel_clone_args args = {
2584 .flags = ((lower_32_bits(flags) | CLONE_VM |
2585 CLONE_UNTRACED) & ~CSIGNAL),
2586 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2587 .stack = (unsigned long)fn,
2588 .stack_size = (unsigned long)arg,
2592 return copy_process(NULL, 0, node, &args);
2596 * Ok, this is the main fork-routine.
2598 * It copies the process, and if successful kick-starts
2599 * it and waits for it to finish using the VM if required.
2601 * args->exit_signal is expected to be checked for sanity by the caller.
2603 pid_t kernel_clone(struct kernel_clone_args *args)
2605 u64 clone_flags = args->flags;
2606 struct completion vfork;
2608 struct task_struct *p;
2613 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2614 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2615 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2616 * field in struct clone_args and it still doesn't make sense to have
2617 * them both point at the same memory location. Performing this check
2618 * here has the advantage that we don't need to have a separate helper
2619 * to check for legacy clone().
2621 if ((args->flags & CLONE_PIDFD) &&
2622 (args->flags & CLONE_PARENT_SETTID) &&
2623 (args->pidfd == args->parent_tid))
2627 * Determine whether and which event to report to ptracer. When
2628 * called from kernel_thread or CLONE_UNTRACED is explicitly
2629 * requested, no event is reported; otherwise, report if the event
2630 * for the type of forking is enabled.
2632 if (!(clone_flags & CLONE_UNTRACED)) {
2633 if (clone_flags & CLONE_VFORK)
2634 trace = PTRACE_EVENT_VFORK;
2635 else if (args->exit_signal != SIGCHLD)
2636 trace = PTRACE_EVENT_CLONE;
2638 trace = PTRACE_EVENT_FORK;
2640 if (likely(!ptrace_event_enabled(current, trace)))
2644 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2645 add_latent_entropy();
2651 * Do this prior waking up the new thread - the thread pointer
2652 * might get invalid after that point, if the thread exits quickly.
2654 trace_sched_process_fork(current, p);
2656 pid = get_task_pid(p, PIDTYPE_PID);
2659 if (clone_flags & CLONE_PARENT_SETTID)
2660 put_user(nr, args->parent_tid);
2662 if (clone_flags & CLONE_VFORK) {
2663 p->vfork_done = &vfork;
2664 init_completion(&vfork);
2668 wake_up_new_task(p);
2670 /* forking complete and child started to run, tell ptracer */
2671 if (unlikely(trace))
2672 ptrace_event_pid(trace, pid);
2674 if (clone_flags & CLONE_VFORK) {
2675 if (!wait_for_vfork_done(p, &vfork))
2676 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2684 * Create a kernel thread.
2686 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2688 struct kernel_clone_args args = {
2689 .flags = ((lower_32_bits(flags) | CLONE_VM |
2690 CLONE_UNTRACED) & ~CSIGNAL),
2691 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2692 .stack = (unsigned long)fn,
2693 .stack_size = (unsigned long)arg,
2696 return kernel_clone(&args);
2699 #ifdef __ARCH_WANT_SYS_FORK
2700 SYSCALL_DEFINE0(fork)
2703 struct kernel_clone_args args = {
2704 .exit_signal = SIGCHLD,
2707 return kernel_clone(&args);
2709 /* can not support in nommu mode */
2715 #ifdef __ARCH_WANT_SYS_VFORK
2716 SYSCALL_DEFINE0(vfork)
2718 struct kernel_clone_args args = {
2719 .flags = CLONE_VFORK | CLONE_VM,
2720 .exit_signal = SIGCHLD,
2723 return kernel_clone(&args);
2727 #ifdef __ARCH_WANT_SYS_CLONE
2728 #ifdef CONFIG_CLONE_BACKWARDS
2729 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2730 int __user *, parent_tidptr,
2732 int __user *, child_tidptr)
2733 #elif defined(CONFIG_CLONE_BACKWARDS2)
2734 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2735 int __user *, parent_tidptr,
2736 int __user *, child_tidptr,
2738 #elif defined(CONFIG_CLONE_BACKWARDS3)
2739 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2741 int __user *, parent_tidptr,
2742 int __user *, child_tidptr,
2745 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2746 int __user *, parent_tidptr,
2747 int __user *, child_tidptr,
2751 struct kernel_clone_args args = {
2752 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2753 .pidfd = parent_tidptr,
2754 .child_tid = child_tidptr,
2755 .parent_tid = parent_tidptr,
2756 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2761 return kernel_clone(&args);
2765 #ifdef __ARCH_WANT_SYS_CLONE3
2767 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2768 struct clone_args __user *uargs,
2772 struct clone_args args;
2773 pid_t *kset_tid = kargs->set_tid;
2775 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2776 CLONE_ARGS_SIZE_VER0);
2777 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2778 CLONE_ARGS_SIZE_VER1);
2779 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2780 CLONE_ARGS_SIZE_VER2);
2781 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2783 if (unlikely(usize > PAGE_SIZE))
2785 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2788 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2792 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2795 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2798 if (unlikely(args.set_tid && args.set_tid_size == 0))
2802 * Verify that higher 32bits of exit_signal are unset and that
2803 * it is a valid signal
2805 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2806 !valid_signal(args.exit_signal)))
2809 if ((args.flags & CLONE_INTO_CGROUP) &&
2810 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2813 *kargs = (struct kernel_clone_args){
2814 .flags = args.flags,
2815 .pidfd = u64_to_user_ptr(args.pidfd),
2816 .child_tid = u64_to_user_ptr(args.child_tid),
2817 .parent_tid = u64_to_user_ptr(args.parent_tid),
2818 .exit_signal = args.exit_signal,
2819 .stack = args.stack,
2820 .stack_size = args.stack_size,
2822 .set_tid_size = args.set_tid_size,
2823 .cgroup = args.cgroup,
2827 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2828 (kargs->set_tid_size * sizeof(pid_t))))
2831 kargs->set_tid = kset_tid;
2837 * clone3_stack_valid - check and prepare stack
2838 * @kargs: kernel clone args
2840 * Verify that the stack arguments userspace gave us are sane.
2841 * In addition, set the stack direction for userspace since it's easy for us to
2844 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2846 if (kargs->stack == 0) {
2847 if (kargs->stack_size > 0)
2850 if (kargs->stack_size == 0)
2853 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2856 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2857 kargs->stack += kargs->stack_size;
2864 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2866 /* Verify that no unknown flags are passed along. */
2868 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2872 * - make the CLONE_DETACHED bit reusable for clone3
2873 * - make the CSIGNAL bits reusable for clone3
2875 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2878 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2879 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2882 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2886 if (!clone3_stack_valid(kargs))
2893 * clone3 - create a new process with specific properties
2894 * @uargs: argument structure
2895 * @size: size of @uargs
2897 * clone3() is the extensible successor to clone()/clone2().
2898 * It takes a struct as argument that is versioned by its size.
2900 * Return: On success, a positive PID for the child process.
2901 * On error, a negative errno number.
2903 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2907 struct kernel_clone_args kargs;
2908 pid_t set_tid[MAX_PID_NS_LEVEL];
2910 kargs.set_tid = set_tid;
2912 err = copy_clone_args_from_user(&kargs, uargs, size);
2916 if (!clone3_args_valid(&kargs))
2919 return kernel_clone(&kargs);
2923 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2925 struct task_struct *leader, *parent, *child;
2928 read_lock(&tasklist_lock);
2929 leader = top = top->group_leader;
2931 for_each_thread(leader, parent) {
2932 list_for_each_entry(child, &parent->children, sibling) {
2933 res = visitor(child, data);
2945 if (leader != top) {
2947 parent = child->real_parent;
2948 leader = parent->group_leader;
2952 read_unlock(&tasklist_lock);
2955 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2956 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2959 static void sighand_ctor(void *data)
2961 struct sighand_struct *sighand = data;
2963 spin_lock_init(&sighand->siglock);
2964 init_waitqueue_head(&sighand->signalfd_wqh);
2967 void __init proc_caches_init(void)
2969 unsigned int mm_size;
2971 sighand_cachep = kmem_cache_create("sighand_cache",
2972 sizeof(struct sighand_struct), 0,
2973 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2974 SLAB_ACCOUNT, sighand_ctor);
2975 signal_cachep = kmem_cache_create("signal_cache",
2976 sizeof(struct signal_struct), 0,
2977 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2979 files_cachep = kmem_cache_create("files_cache",
2980 sizeof(struct files_struct), 0,
2981 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2983 fs_cachep = kmem_cache_create("fs_cache",
2984 sizeof(struct fs_struct), 0,
2985 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2989 * The mm_cpumask is located at the end of mm_struct, and is
2990 * dynamically sized based on the maximum CPU number this system
2991 * can have, taking hotplug into account (nr_cpu_ids).
2993 mm_size = sizeof(struct mm_struct) + cpumask_size();
2995 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2996 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2997 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2998 offsetof(struct mm_struct, saved_auxv),
2999 sizeof_field(struct mm_struct, saved_auxv),
3001 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
3003 nsproxy_cache_init();
3007 * Check constraints on flags passed to the unshare system call.
3009 static int check_unshare_flags(unsigned long unshare_flags)
3011 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3012 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3013 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3014 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3018 * Not implemented, but pretend it works if there is nothing
3019 * to unshare. Note that unsharing the address space or the
3020 * signal handlers also need to unshare the signal queues (aka
3023 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3024 if (!thread_group_empty(current))
3027 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3028 if (refcount_read(¤t->sighand->count) > 1)
3031 if (unshare_flags & CLONE_VM) {
3032 if (!current_is_single_threaded())
3040 * Unshare the filesystem structure if it is being shared
3042 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3044 struct fs_struct *fs = current->fs;
3046 if (!(unshare_flags & CLONE_FS) || !fs)
3049 /* don't need lock here; in the worst case we'll do useless copy */
3053 *new_fsp = copy_fs_struct(fs);
3061 * Unshare file descriptor table if it is being shared
3063 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3064 struct files_struct **new_fdp)
3066 struct files_struct *fd = current->files;
3069 if ((unshare_flags & CLONE_FILES) &&
3070 (fd && atomic_read(&fd->count) > 1)) {
3071 *new_fdp = dup_fd(fd, max_fds, &error);
3080 * unshare allows a process to 'unshare' part of the process
3081 * context which was originally shared using clone. copy_*
3082 * functions used by kernel_clone() cannot be used here directly
3083 * because they modify an inactive task_struct that is being
3084 * constructed. Here we are modifying the current, active,
3087 int ksys_unshare(unsigned long unshare_flags)
3089 struct fs_struct *fs, *new_fs = NULL;
3090 struct files_struct *new_fd = NULL;
3091 struct cred *new_cred = NULL;
3092 struct nsproxy *new_nsproxy = NULL;
3097 * If unsharing a user namespace must also unshare the thread group
3098 * and unshare the filesystem root and working directories.
3100 if (unshare_flags & CLONE_NEWUSER)
3101 unshare_flags |= CLONE_THREAD | CLONE_FS;
3103 * If unsharing vm, must also unshare signal handlers.
3105 if (unshare_flags & CLONE_VM)
3106 unshare_flags |= CLONE_SIGHAND;
3108 * If unsharing a signal handlers, must also unshare the signal queues.
3110 if (unshare_flags & CLONE_SIGHAND)
3111 unshare_flags |= CLONE_THREAD;
3113 * If unsharing namespace, must also unshare filesystem information.
3115 if (unshare_flags & CLONE_NEWNS)
3116 unshare_flags |= CLONE_FS;
3118 err = check_unshare_flags(unshare_flags);
3120 goto bad_unshare_out;
3122 * CLONE_NEWIPC must also detach from the undolist: after switching
3123 * to a new ipc namespace, the semaphore arrays from the old
3124 * namespace are unreachable.
3126 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3128 err = unshare_fs(unshare_flags, &new_fs);
3130 goto bad_unshare_out;
3131 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3133 goto bad_unshare_cleanup_fs;
3134 err = unshare_userns(unshare_flags, &new_cred);
3136 goto bad_unshare_cleanup_fd;
3137 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3140 goto bad_unshare_cleanup_cred;
3143 err = set_cred_ucounts(new_cred);
3145 goto bad_unshare_cleanup_cred;
3148 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3151 * CLONE_SYSVSEM is equivalent to sys_exit().
3155 if (unshare_flags & CLONE_NEWIPC) {
3156 /* Orphan segments in old ns (see sem above). */
3158 shm_init_task(current);
3162 switch_task_namespaces(current, new_nsproxy);
3168 spin_lock(&fs->lock);
3169 current->fs = new_fs;
3174 spin_unlock(&fs->lock);
3178 swap(current->files, new_fd);
3180 task_unlock(current);
3183 /* Install the new user namespace */
3184 commit_creds(new_cred);
3189 perf_event_namespaces(current);
3191 bad_unshare_cleanup_cred:
3194 bad_unshare_cleanup_fd:
3196 put_files_struct(new_fd);
3198 bad_unshare_cleanup_fs:
3200 free_fs_struct(new_fs);
3206 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3208 return ksys_unshare(unshare_flags);
3212 * Helper to unshare the files of the current task.
3213 * We don't want to expose copy_files internals to
3214 * the exec layer of the kernel.
3217 int unshare_files(void)
3219 struct task_struct *task = current;
3220 struct files_struct *old, *copy = NULL;
3223 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3231 put_files_struct(old);
3235 int sysctl_max_threads(struct ctl_table *table, int write,
3236 void *buffer, size_t *lenp, loff_t *ppos)
3240 int threads = max_threads;
3242 int max = MAX_THREADS;
3249 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3253 max_threads = threads;