Merge tag 'nfsd-6.2-5' of git://git.kernel.org/pub/scm/linux/kernel/git/cel/linux
[linux-2.6-microblaze.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/unistd.h>
74 #include <asm/mmu_context.h>
75
76 /*
77  * The default value should be high enough to not crash a system that randomly
78  * crashes its kernel from time to time, but low enough to at least not permit
79  * overflowing 32-bit refcounts or the ldsem writer count.
80  */
81 static unsigned int oops_limit = 10000;
82
83 #ifdef CONFIG_SYSCTL
84 static struct ctl_table kern_exit_table[] = {
85         {
86                 .procname       = "oops_limit",
87                 .data           = &oops_limit,
88                 .maxlen         = sizeof(oops_limit),
89                 .mode           = 0644,
90                 .proc_handler   = proc_douintvec,
91         },
92         { }
93 };
94
95 static __init int kernel_exit_sysctls_init(void)
96 {
97         register_sysctl_init("kernel", kern_exit_table);
98         return 0;
99 }
100 late_initcall(kernel_exit_sysctls_init);
101 #endif
102
103 static atomic_t oops_count = ATOMIC_INIT(0);
104
105 #ifdef CONFIG_SYSFS
106 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
107                                char *page)
108 {
109         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
110 }
111
112 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
113
114 static __init int kernel_exit_sysfs_init(void)
115 {
116         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
117         return 0;
118 }
119 late_initcall(kernel_exit_sysfs_init);
120 #endif
121
122 static void __unhash_process(struct task_struct *p, bool group_dead)
123 {
124         nr_threads--;
125         detach_pid(p, PIDTYPE_PID);
126         if (group_dead) {
127                 detach_pid(p, PIDTYPE_TGID);
128                 detach_pid(p, PIDTYPE_PGID);
129                 detach_pid(p, PIDTYPE_SID);
130
131                 list_del_rcu(&p->tasks);
132                 list_del_init(&p->sibling);
133                 __this_cpu_dec(process_counts);
134         }
135         list_del_rcu(&p->thread_group);
136         list_del_rcu(&p->thread_node);
137 }
138
139 /*
140  * This function expects the tasklist_lock write-locked.
141  */
142 static void __exit_signal(struct task_struct *tsk)
143 {
144         struct signal_struct *sig = tsk->signal;
145         bool group_dead = thread_group_leader(tsk);
146         struct sighand_struct *sighand;
147         struct tty_struct *tty;
148         u64 utime, stime;
149
150         sighand = rcu_dereference_check(tsk->sighand,
151                                         lockdep_tasklist_lock_is_held());
152         spin_lock(&sighand->siglock);
153
154 #ifdef CONFIG_POSIX_TIMERS
155         posix_cpu_timers_exit(tsk);
156         if (group_dead)
157                 posix_cpu_timers_exit_group(tsk);
158 #endif
159
160         if (group_dead) {
161                 tty = sig->tty;
162                 sig->tty = NULL;
163         } else {
164                 /*
165                  * If there is any task waiting for the group exit
166                  * then notify it:
167                  */
168                 if (sig->notify_count > 0 && !--sig->notify_count)
169                         wake_up_process(sig->group_exec_task);
170
171                 if (tsk == sig->curr_target)
172                         sig->curr_target = next_thread(tsk);
173         }
174
175         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
176                               sizeof(unsigned long long));
177
178         /*
179          * Accumulate here the counters for all threads as they die. We could
180          * skip the group leader because it is the last user of signal_struct,
181          * but we want to avoid the race with thread_group_cputime() which can
182          * see the empty ->thread_head list.
183          */
184         task_cputime(tsk, &utime, &stime);
185         write_seqlock(&sig->stats_lock);
186         sig->utime += utime;
187         sig->stime += stime;
188         sig->gtime += task_gtime(tsk);
189         sig->min_flt += tsk->min_flt;
190         sig->maj_flt += tsk->maj_flt;
191         sig->nvcsw += tsk->nvcsw;
192         sig->nivcsw += tsk->nivcsw;
193         sig->inblock += task_io_get_inblock(tsk);
194         sig->oublock += task_io_get_oublock(tsk);
195         task_io_accounting_add(&sig->ioac, &tsk->ioac);
196         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
197         sig->nr_threads--;
198         __unhash_process(tsk, group_dead);
199         write_sequnlock(&sig->stats_lock);
200
201         /*
202          * Do this under ->siglock, we can race with another thread
203          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
204          */
205         flush_sigqueue(&tsk->pending);
206         tsk->sighand = NULL;
207         spin_unlock(&sighand->siglock);
208
209         __cleanup_sighand(sighand);
210         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
211         if (group_dead) {
212                 flush_sigqueue(&sig->shared_pending);
213                 tty_kref_put(tty);
214         }
215 }
216
217 static void delayed_put_task_struct(struct rcu_head *rhp)
218 {
219         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220
221         kprobe_flush_task(tsk);
222         rethook_flush_task(tsk);
223         perf_event_delayed_put(tsk);
224         trace_sched_process_free(tsk);
225         put_task_struct(tsk);
226 }
227
228 void put_task_struct_rcu_user(struct task_struct *task)
229 {
230         if (refcount_dec_and_test(&task->rcu_users))
231                 call_rcu(&task->rcu, delayed_put_task_struct);
232 }
233
234 void __weak release_thread(struct task_struct *dead_task)
235 {
236 }
237
238 void release_task(struct task_struct *p)
239 {
240         struct task_struct *leader;
241         struct pid *thread_pid;
242         int zap_leader;
243 repeat:
244         /* don't need to get the RCU readlock here - the process is dead and
245          * can't be modifying its own credentials. But shut RCU-lockdep up */
246         rcu_read_lock();
247         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
248         rcu_read_unlock();
249
250         cgroup_release(p);
251
252         write_lock_irq(&tasklist_lock);
253         ptrace_release_task(p);
254         thread_pid = get_pid(p->thread_pid);
255         __exit_signal(p);
256
257         /*
258          * If we are the last non-leader member of the thread
259          * group, and the leader is zombie, then notify the
260          * group leader's parent process. (if it wants notification.)
261          */
262         zap_leader = 0;
263         leader = p->group_leader;
264         if (leader != p && thread_group_empty(leader)
265                         && leader->exit_state == EXIT_ZOMBIE) {
266                 /*
267                  * If we were the last child thread and the leader has
268                  * exited already, and the leader's parent ignores SIGCHLD,
269                  * then we are the one who should release the leader.
270                  */
271                 zap_leader = do_notify_parent(leader, leader->exit_signal);
272                 if (zap_leader)
273                         leader->exit_state = EXIT_DEAD;
274         }
275
276         write_unlock_irq(&tasklist_lock);
277         seccomp_filter_release(p);
278         proc_flush_pid(thread_pid);
279         put_pid(thread_pid);
280         release_thread(p);
281         put_task_struct_rcu_user(p);
282
283         p = leader;
284         if (unlikely(zap_leader))
285                 goto repeat;
286 }
287
288 int rcuwait_wake_up(struct rcuwait *w)
289 {
290         int ret = 0;
291         struct task_struct *task;
292
293         rcu_read_lock();
294
295         /*
296          * Order condition vs @task, such that everything prior to the load
297          * of @task is visible. This is the condition as to why the user called
298          * rcuwait_wake() in the first place. Pairs with set_current_state()
299          * barrier (A) in rcuwait_wait_event().
300          *
301          *    WAIT                WAKE
302          *    [S] tsk = current   [S] cond = true
303          *        MB (A)              MB (B)
304          *    [L] cond            [L] tsk
305          */
306         smp_mb(); /* (B) */
307
308         task = rcu_dereference(w->task);
309         if (task)
310                 ret = wake_up_process(task);
311         rcu_read_unlock();
312
313         return ret;
314 }
315 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
316
317 /*
318  * Determine if a process group is "orphaned", according to the POSIX
319  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
320  * by terminal-generated stop signals.  Newly orphaned process groups are
321  * to receive a SIGHUP and a SIGCONT.
322  *
323  * "I ask you, have you ever known what it is to be an orphan?"
324  */
325 static int will_become_orphaned_pgrp(struct pid *pgrp,
326                                         struct task_struct *ignored_task)
327 {
328         struct task_struct *p;
329
330         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
331                 if ((p == ignored_task) ||
332                     (p->exit_state && thread_group_empty(p)) ||
333                     is_global_init(p->real_parent))
334                         continue;
335
336                 if (task_pgrp(p->real_parent) != pgrp &&
337                     task_session(p->real_parent) == task_session(p))
338                         return 0;
339         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
340
341         return 1;
342 }
343
344 int is_current_pgrp_orphaned(void)
345 {
346         int retval;
347
348         read_lock(&tasklist_lock);
349         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
350         read_unlock(&tasklist_lock);
351
352         return retval;
353 }
354
355 static bool has_stopped_jobs(struct pid *pgrp)
356 {
357         struct task_struct *p;
358
359         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
360                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
361                         return true;
362         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
363
364         return false;
365 }
366
367 /*
368  * Check to see if any process groups have become orphaned as
369  * a result of our exiting, and if they have any stopped jobs,
370  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
371  */
372 static void
373 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
374 {
375         struct pid *pgrp = task_pgrp(tsk);
376         struct task_struct *ignored_task = tsk;
377
378         if (!parent)
379                 /* exit: our father is in a different pgrp than
380                  * we are and we were the only connection outside.
381                  */
382                 parent = tsk->real_parent;
383         else
384                 /* reparent: our child is in a different pgrp than
385                  * we are, and it was the only connection outside.
386                  */
387                 ignored_task = NULL;
388
389         if (task_pgrp(parent) != pgrp &&
390             task_session(parent) == task_session(tsk) &&
391             will_become_orphaned_pgrp(pgrp, ignored_task) &&
392             has_stopped_jobs(pgrp)) {
393                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
394                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
395         }
396 }
397
398 static void coredump_task_exit(struct task_struct *tsk)
399 {
400         struct core_state *core_state;
401
402         /*
403          * Serialize with any possible pending coredump.
404          * We must hold siglock around checking core_state
405          * and setting PF_POSTCOREDUMP.  The core-inducing thread
406          * will increment ->nr_threads for each thread in the
407          * group without PF_POSTCOREDUMP set.
408          */
409         spin_lock_irq(&tsk->sighand->siglock);
410         tsk->flags |= PF_POSTCOREDUMP;
411         core_state = tsk->signal->core_state;
412         spin_unlock_irq(&tsk->sighand->siglock);
413         if (core_state) {
414                 struct core_thread self;
415
416                 self.task = current;
417                 if (self.task->flags & PF_SIGNALED)
418                         self.next = xchg(&core_state->dumper.next, &self);
419                 else
420                         self.task = NULL;
421                 /*
422                  * Implies mb(), the result of xchg() must be visible
423                  * to core_state->dumper.
424                  */
425                 if (atomic_dec_and_test(&core_state->nr_threads))
426                         complete(&core_state->startup);
427
428                 for (;;) {
429                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
430                         if (!self.task) /* see coredump_finish() */
431                                 break;
432                         schedule();
433                 }
434                 __set_current_state(TASK_RUNNING);
435         }
436 }
437
438 #ifdef CONFIG_MEMCG
439 /*
440  * A task is exiting.   If it owned this mm, find a new owner for the mm.
441  */
442 void mm_update_next_owner(struct mm_struct *mm)
443 {
444         struct task_struct *c, *g, *p = current;
445
446 retry:
447         /*
448          * If the exiting or execing task is not the owner, it's
449          * someone else's problem.
450          */
451         if (mm->owner != p)
452                 return;
453         /*
454          * The current owner is exiting/execing and there are no other
455          * candidates.  Do not leave the mm pointing to a possibly
456          * freed task structure.
457          */
458         if (atomic_read(&mm->mm_users) <= 1) {
459                 WRITE_ONCE(mm->owner, NULL);
460                 return;
461         }
462
463         read_lock(&tasklist_lock);
464         /*
465          * Search in the children
466          */
467         list_for_each_entry(c, &p->children, sibling) {
468                 if (c->mm == mm)
469                         goto assign_new_owner;
470         }
471
472         /*
473          * Search in the siblings
474          */
475         list_for_each_entry(c, &p->real_parent->children, sibling) {
476                 if (c->mm == mm)
477                         goto assign_new_owner;
478         }
479
480         /*
481          * Search through everything else, we should not get here often.
482          */
483         for_each_process(g) {
484                 if (g->flags & PF_KTHREAD)
485                         continue;
486                 for_each_thread(g, c) {
487                         if (c->mm == mm)
488                                 goto assign_new_owner;
489                         if (c->mm)
490                                 break;
491                 }
492         }
493         read_unlock(&tasklist_lock);
494         /*
495          * We found no owner yet mm_users > 1: this implies that we are
496          * most likely racing with swapoff (try_to_unuse()) or /proc or
497          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
498          */
499         WRITE_ONCE(mm->owner, NULL);
500         return;
501
502 assign_new_owner:
503         BUG_ON(c == p);
504         get_task_struct(c);
505         /*
506          * The task_lock protects c->mm from changing.
507          * We always want mm->owner->mm == mm
508          */
509         task_lock(c);
510         /*
511          * Delay read_unlock() till we have the task_lock()
512          * to ensure that c does not slip away underneath us
513          */
514         read_unlock(&tasklist_lock);
515         if (c->mm != mm) {
516                 task_unlock(c);
517                 put_task_struct(c);
518                 goto retry;
519         }
520         WRITE_ONCE(mm->owner, c);
521         lru_gen_migrate_mm(mm);
522         task_unlock(c);
523         put_task_struct(c);
524 }
525 #endif /* CONFIG_MEMCG */
526
527 /*
528  * Turn us into a lazy TLB process if we
529  * aren't already..
530  */
531 static void exit_mm(void)
532 {
533         struct mm_struct *mm = current->mm;
534
535         exit_mm_release(current, mm);
536         if (!mm)
537                 return;
538         sync_mm_rss(mm);
539         mmap_read_lock(mm);
540         mmgrab(mm);
541         BUG_ON(mm != current->active_mm);
542         /* more a memory barrier than a real lock */
543         task_lock(current);
544         /*
545          * When a thread stops operating on an address space, the loop
546          * in membarrier_private_expedited() may not observe that
547          * tsk->mm, and the loop in membarrier_global_expedited() may
548          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
549          * rq->membarrier_state, so those would not issue an IPI.
550          * Membarrier requires a memory barrier after accessing
551          * user-space memory, before clearing tsk->mm or the
552          * rq->membarrier_state.
553          */
554         smp_mb__after_spinlock();
555         local_irq_disable();
556         current->mm = NULL;
557         membarrier_update_current_mm(NULL);
558         enter_lazy_tlb(mm, current);
559         local_irq_enable();
560         task_unlock(current);
561         mmap_read_unlock(mm);
562         mm_update_next_owner(mm);
563         mmput(mm);
564         if (test_thread_flag(TIF_MEMDIE))
565                 exit_oom_victim();
566 }
567
568 static struct task_struct *find_alive_thread(struct task_struct *p)
569 {
570         struct task_struct *t;
571
572         for_each_thread(p, t) {
573                 if (!(t->flags & PF_EXITING))
574                         return t;
575         }
576         return NULL;
577 }
578
579 static struct task_struct *find_child_reaper(struct task_struct *father,
580                                                 struct list_head *dead)
581         __releases(&tasklist_lock)
582         __acquires(&tasklist_lock)
583 {
584         struct pid_namespace *pid_ns = task_active_pid_ns(father);
585         struct task_struct *reaper = pid_ns->child_reaper;
586         struct task_struct *p, *n;
587
588         if (likely(reaper != father))
589                 return reaper;
590
591         reaper = find_alive_thread(father);
592         if (reaper) {
593                 pid_ns->child_reaper = reaper;
594                 return reaper;
595         }
596
597         write_unlock_irq(&tasklist_lock);
598
599         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
600                 list_del_init(&p->ptrace_entry);
601                 release_task(p);
602         }
603
604         zap_pid_ns_processes(pid_ns);
605         write_lock_irq(&tasklist_lock);
606
607         return father;
608 }
609
610 /*
611  * When we die, we re-parent all our children, and try to:
612  * 1. give them to another thread in our thread group, if such a member exists
613  * 2. give it to the first ancestor process which prctl'd itself as a
614  *    child_subreaper for its children (like a service manager)
615  * 3. give it to the init process (PID 1) in our pid namespace
616  */
617 static struct task_struct *find_new_reaper(struct task_struct *father,
618                                            struct task_struct *child_reaper)
619 {
620         struct task_struct *thread, *reaper;
621
622         thread = find_alive_thread(father);
623         if (thread)
624                 return thread;
625
626         if (father->signal->has_child_subreaper) {
627                 unsigned int ns_level = task_pid(father)->level;
628                 /*
629                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
630                  * We can't check reaper != child_reaper to ensure we do not
631                  * cross the namespaces, the exiting parent could be injected
632                  * by setns() + fork().
633                  * We check pid->level, this is slightly more efficient than
634                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
635                  */
636                 for (reaper = father->real_parent;
637                      task_pid(reaper)->level == ns_level;
638                      reaper = reaper->real_parent) {
639                         if (reaper == &init_task)
640                                 break;
641                         if (!reaper->signal->is_child_subreaper)
642                                 continue;
643                         thread = find_alive_thread(reaper);
644                         if (thread)
645                                 return thread;
646                 }
647         }
648
649         return child_reaper;
650 }
651
652 /*
653 * Any that need to be release_task'd are put on the @dead list.
654  */
655 static void reparent_leader(struct task_struct *father, struct task_struct *p,
656                                 struct list_head *dead)
657 {
658         if (unlikely(p->exit_state == EXIT_DEAD))
659                 return;
660
661         /* We don't want people slaying init. */
662         p->exit_signal = SIGCHLD;
663
664         /* If it has exited notify the new parent about this child's death. */
665         if (!p->ptrace &&
666             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
667                 if (do_notify_parent(p, p->exit_signal)) {
668                         p->exit_state = EXIT_DEAD;
669                         list_add(&p->ptrace_entry, dead);
670                 }
671         }
672
673         kill_orphaned_pgrp(p, father);
674 }
675
676 /*
677  * This does two things:
678  *
679  * A.  Make init inherit all the child processes
680  * B.  Check to see if any process groups have become orphaned
681  *      as a result of our exiting, and if they have any stopped
682  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
683  */
684 static void forget_original_parent(struct task_struct *father,
685                                         struct list_head *dead)
686 {
687         struct task_struct *p, *t, *reaper;
688
689         if (unlikely(!list_empty(&father->ptraced)))
690                 exit_ptrace(father, dead);
691
692         /* Can drop and reacquire tasklist_lock */
693         reaper = find_child_reaper(father, dead);
694         if (list_empty(&father->children))
695                 return;
696
697         reaper = find_new_reaper(father, reaper);
698         list_for_each_entry(p, &father->children, sibling) {
699                 for_each_thread(p, t) {
700                         RCU_INIT_POINTER(t->real_parent, reaper);
701                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
702                         if (likely(!t->ptrace))
703                                 t->parent = t->real_parent;
704                         if (t->pdeath_signal)
705                                 group_send_sig_info(t->pdeath_signal,
706                                                     SEND_SIG_NOINFO, t,
707                                                     PIDTYPE_TGID);
708                 }
709                 /*
710                  * If this is a threaded reparent there is no need to
711                  * notify anyone anything has happened.
712                  */
713                 if (!same_thread_group(reaper, father))
714                         reparent_leader(father, p, dead);
715         }
716         list_splice_tail_init(&father->children, &reaper->children);
717 }
718
719 /*
720  * Send signals to all our closest relatives so that they know
721  * to properly mourn us..
722  */
723 static void exit_notify(struct task_struct *tsk, int group_dead)
724 {
725         bool autoreap;
726         struct task_struct *p, *n;
727         LIST_HEAD(dead);
728
729         write_lock_irq(&tasklist_lock);
730         forget_original_parent(tsk, &dead);
731
732         if (group_dead)
733                 kill_orphaned_pgrp(tsk->group_leader, NULL);
734
735         tsk->exit_state = EXIT_ZOMBIE;
736         if (unlikely(tsk->ptrace)) {
737                 int sig = thread_group_leader(tsk) &&
738                                 thread_group_empty(tsk) &&
739                                 !ptrace_reparented(tsk) ?
740                         tsk->exit_signal : SIGCHLD;
741                 autoreap = do_notify_parent(tsk, sig);
742         } else if (thread_group_leader(tsk)) {
743                 autoreap = thread_group_empty(tsk) &&
744                         do_notify_parent(tsk, tsk->exit_signal);
745         } else {
746                 autoreap = true;
747         }
748
749         if (autoreap) {
750                 tsk->exit_state = EXIT_DEAD;
751                 list_add(&tsk->ptrace_entry, &dead);
752         }
753
754         /* mt-exec, de_thread() is waiting for group leader */
755         if (unlikely(tsk->signal->notify_count < 0))
756                 wake_up_process(tsk->signal->group_exec_task);
757         write_unlock_irq(&tasklist_lock);
758
759         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
760                 list_del_init(&p->ptrace_entry);
761                 release_task(p);
762         }
763 }
764
765 #ifdef CONFIG_DEBUG_STACK_USAGE
766 static void check_stack_usage(void)
767 {
768         static DEFINE_SPINLOCK(low_water_lock);
769         static int lowest_to_date = THREAD_SIZE;
770         unsigned long free;
771
772         free = stack_not_used(current);
773
774         if (free >= lowest_to_date)
775                 return;
776
777         spin_lock(&low_water_lock);
778         if (free < lowest_to_date) {
779                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
780                         current->comm, task_pid_nr(current), free);
781                 lowest_to_date = free;
782         }
783         spin_unlock(&low_water_lock);
784 }
785 #else
786 static inline void check_stack_usage(void) {}
787 #endif
788
789 static void synchronize_group_exit(struct task_struct *tsk, long code)
790 {
791         struct sighand_struct *sighand = tsk->sighand;
792         struct signal_struct *signal = tsk->signal;
793
794         spin_lock_irq(&sighand->siglock);
795         signal->quick_threads--;
796         if ((signal->quick_threads == 0) &&
797             !(signal->flags & SIGNAL_GROUP_EXIT)) {
798                 signal->flags = SIGNAL_GROUP_EXIT;
799                 signal->group_exit_code = code;
800                 signal->group_stop_count = 0;
801         }
802         spin_unlock_irq(&sighand->siglock);
803 }
804
805 void __noreturn do_exit(long code)
806 {
807         struct task_struct *tsk = current;
808         int group_dead;
809
810         synchronize_group_exit(tsk, code);
811
812         WARN_ON(tsk->plug);
813
814         kcov_task_exit(tsk);
815         kmsan_task_exit(tsk);
816
817         coredump_task_exit(tsk);
818         ptrace_event(PTRACE_EVENT_EXIT, code);
819
820         validate_creds_for_do_exit(tsk);
821
822         io_uring_files_cancel();
823         exit_signals(tsk);  /* sets PF_EXITING */
824
825         /* sync mm's RSS info before statistics gathering */
826         if (tsk->mm)
827                 sync_mm_rss(tsk->mm);
828         acct_update_integrals(tsk);
829         group_dead = atomic_dec_and_test(&tsk->signal->live);
830         if (group_dead) {
831                 /*
832                  * If the last thread of global init has exited, panic
833                  * immediately to get a useable coredump.
834                  */
835                 if (unlikely(is_global_init(tsk)))
836                         panic("Attempted to kill init! exitcode=0x%08x\n",
837                                 tsk->signal->group_exit_code ?: (int)code);
838
839 #ifdef CONFIG_POSIX_TIMERS
840                 hrtimer_cancel(&tsk->signal->real_timer);
841                 exit_itimers(tsk);
842 #endif
843                 if (tsk->mm)
844                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
845         }
846         acct_collect(code, group_dead);
847         if (group_dead)
848                 tty_audit_exit();
849         audit_free(tsk);
850
851         tsk->exit_code = code;
852         taskstats_exit(tsk, group_dead);
853
854         exit_mm();
855
856         if (group_dead)
857                 acct_process();
858         trace_sched_process_exit(tsk);
859
860         exit_sem(tsk);
861         exit_shm(tsk);
862         exit_files(tsk);
863         exit_fs(tsk);
864         if (group_dead)
865                 disassociate_ctty(1);
866         exit_task_namespaces(tsk);
867         exit_task_work(tsk);
868         exit_thread(tsk);
869
870         /*
871          * Flush inherited counters to the parent - before the parent
872          * gets woken up by child-exit notifications.
873          *
874          * because of cgroup mode, must be called before cgroup_exit()
875          */
876         perf_event_exit_task(tsk);
877
878         sched_autogroup_exit_task(tsk);
879         cgroup_exit(tsk);
880
881         /*
882          * FIXME: do that only when needed, using sched_exit tracepoint
883          */
884         flush_ptrace_hw_breakpoint(tsk);
885
886         exit_tasks_rcu_start();
887         exit_notify(tsk, group_dead);
888         proc_exit_connector(tsk);
889         mpol_put_task_policy(tsk);
890 #ifdef CONFIG_FUTEX
891         if (unlikely(current->pi_state_cache))
892                 kfree(current->pi_state_cache);
893 #endif
894         /*
895          * Make sure we are holding no locks:
896          */
897         debug_check_no_locks_held();
898
899         if (tsk->io_context)
900                 exit_io_context(tsk);
901
902         if (tsk->splice_pipe)
903                 free_pipe_info(tsk->splice_pipe);
904
905         if (tsk->task_frag.page)
906                 put_page(tsk->task_frag.page);
907
908         validate_creds_for_do_exit(tsk);
909         exit_task_stack_account(tsk);
910
911         check_stack_usage();
912         preempt_disable();
913         if (tsk->nr_dirtied)
914                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
915         exit_rcu();
916         exit_tasks_rcu_finish();
917
918         lockdep_free_task(tsk);
919         do_task_dead();
920 }
921
922 void __noreturn make_task_dead(int signr)
923 {
924         /*
925          * Take the task off the cpu after something catastrophic has
926          * happened.
927          *
928          * We can get here from a kernel oops, sometimes with preemption off.
929          * Start by checking for critical errors.
930          * Then fix up important state like USER_DS and preemption.
931          * Then do everything else.
932          */
933         struct task_struct *tsk = current;
934         unsigned int limit;
935
936         if (unlikely(in_interrupt()))
937                 panic("Aiee, killing interrupt handler!");
938         if (unlikely(!tsk->pid))
939                 panic("Attempted to kill the idle task!");
940
941         if (unlikely(in_atomic())) {
942                 pr_info("note: %s[%d] exited with preempt_count %d\n",
943                         current->comm, task_pid_nr(current),
944                         preempt_count());
945                 preempt_count_set(PREEMPT_ENABLED);
946         }
947
948         /*
949          * Every time the system oopses, if the oops happens while a reference
950          * to an object was held, the reference leaks.
951          * If the oops doesn't also leak memory, repeated oopsing can cause
952          * reference counters to wrap around (if they're not using refcount_t).
953          * This means that repeated oopsing can make unexploitable-looking bugs
954          * exploitable through repeated oopsing.
955          * To make sure this can't happen, place an upper bound on how often the
956          * kernel may oops without panic().
957          */
958         limit = READ_ONCE(oops_limit);
959         if (atomic_inc_return(&oops_count) >= limit && limit)
960                 panic("Oopsed too often (kernel.oops_limit is %d)", limit);
961
962         /*
963          * We're taking recursive faults here in make_task_dead. Safest is to just
964          * leave this task alone and wait for reboot.
965          */
966         if (unlikely(tsk->flags & PF_EXITING)) {
967                 pr_alert("Fixing recursive fault but reboot is needed!\n");
968                 futex_exit_recursive(tsk);
969                 tsk->exit_state = EXIT_DEAD;
970                 refcount_inc(&tsk->rcu_users);
971                 do_task_dead();
972         }
973
974         do_exit(signr);
975 }
976
977 SYSCALL_DEFINE1(exit, int, error_code)
978 {
979         do_exit((error_code&0xff)<<8);
980 }
981
982 /*
983  * Take down every thread in the group.  This is called by fatal signals
984  * as well as by sys_exit_group (below).
985  */
986 void __noreturn
987 do_group_exit(int exit_code)
988 {
989         struct signal_struct *sig = current->signal;
990
991         if (sig->flags & SIGNAL_GROUP_EXIT)
992                 exit_code = sig->group_exit_code;
993         else if (sig->group_exec_task)
994                 exit_code = 0;
995         else {
996                 struct sighand_struct *const sighand = current->sighand;
997
998                 spin_lock_irq(&sighand->siglock);
999                 if (sig->flags & SIGNAL_GROUP_EXIT)
1000                         /* Another thread got here before we took the lock.  */
1001                         exit_code = sig->group_exit_code;
1002                 else if (sig->group_exec_task)
1003                         exit_code = 0;
1004                 else {
1005                         sig->group_exit_code = exit_code;
1006                         sig->flags = SIGNAL_GROUP_EXIT;
1007                         zap_other_threads(current);
1008                 }
1009                 spin_unlock_irq(&sighand->siglock);
1010         }
1011
1012         do_exit(exit_code);
1013         /* NOTREACHED */
1014 }
1015
1016 /*
1017  * this kills every thread in the thread group. Note that any externally
1018  * wait4()-ing process will get the correct exit code - even if this
1019  * thread is not the thread group leader.
1020  */
1021 SYSCALL_DEFINE1(exit_group, int, error_code)
1022 {
1023         do_group_exit((error_code & 0xff) << 8);
1024         /* NOTREACHED */
1025         return 0;
1026 }
1027
1028 struct waitid_info {
1029         pid_t pid;
1030         uid_t uid;
1031         int status;
1032         int cause;
1033 };
1034
1035 struct wait_opts {
1036         enum pid_type           wo_type;
1037         int                     wo_flags;
1038         struct pid              *wo_pid;
1039
1040         struct waitid_info      *wo_info;
1041         int                     wo_stat;
1042         struct rusage           *wo_rusage;
1043
1044         wait_queue_entry_t              child_wait;
1045         int                     notask_error;
1046 };
1047
1048 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1049 {
1050         return  wo->wo_type == PIDTYPE_MAX ||
1051                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1052 }
1053
1054 static int
1055 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1056 {
1057         if (!eligible_pid(wo, p))
1058                 return 0;
1059
1060         /*
1061          * Wait for all children (clone and not) if __WALL is set or
1062          * if it is traced by us.
1063          */
1064         if (ptrace || (wo->wo_flags & __WALL))
1065                 return 1;
1066
1067         /*
1068          * Otherwise, wait for clone children *only* if __WCLONE is set;
1069          * otherwise, wait for non-clone children *only*.
1070          *
1071          * Note: a "clone" child here is one that reports to its parent
1072          * using a signal other than SIGCHLD, or a non-leader thread which
1073          * we can only see if it is traced by us.
1074          */
1075         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1076                 return 0;
1077
1078         return 1;
1079 }
1080
1081 /*
1082  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1083  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1084  * the lock and this task is uninteresting.  If we return nonzero, we have
1085  * released the lock and the system call should return.
1086  */
1087 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1088 {
1089         int state, status;
1090         pid_t pid = task_pid_vnr(p);
1091         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1092         struct waitid_info *infop;
1093
1094         if (!likely(wo->wo_flags & WEXITED))
1095                 return 0;
1096
1097         if (unlikely(wo->wo_flags & WNOWAIT)) {
1098                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1099                         ? p->signal->group_exit_code : p->exit_code;
1100                 get_task_struct(p);
1101                 read_unlock(&tasklist_lock);
1102                 sched_annotate_sleep();
1103                 if (wo->wo_rusage)
1104                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1105                 put_task_struct(p);
1106                 goto out_info;
1107         }
1108         /*
1109          * Move the task's state to DEAD/TRACE, only one thread can do this.
1110          */
1111         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1112                 EXIT_TRACE : EXIT_DEAD;
1113         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1114                 return 0;
1115         /*
1116          * We own this thread, nobody else can reap it.
1117          */
1118         read_unlock(&tasklist_lock);
1119         sched_annotate_sleep();
1120
1121         /*
1122          * Check thread_group_leader() to exclude the traced sub-threads.
1123          */
1124         if (state == EXIT_DEAD && thread_group_leader(p)) {
1125                 struct signal_struct *sig = p->signal;
1126                 struct signal_struct *psig = current->signal;
1127                 unsigned long maxrss;
1128                 u64 tgutime, tgstime;
1129
1130                 /*
1131                  * The resource counters for the group leader are in its
1132                  * own task_struct.  Those for dead threads in the group
1133                  * are in its signal_struct, as are those for the child
1134                  * processes it has previously reaped.  All these
1135                  * accumulate in the parent's signal_struct c* fields.
1136                  *
1137                  * We don't bother to take a lock here to protect these
1138                  * p->signal fields because the whole thread group is dead
1139                  * and nobody can change them.
1140                  *
1141                  * psig->stats_lock also protects us from our sub-threads
1142                  * which can reap other children at the same time. Until
1143                  * we change k_getrusage()-like users to rely on this lock
1144                  * we have to take ->siglock as well.
1145                  *
1146                  * We use thread_group_cputime_adjusted() to get times for
1147                  * the thread group, which consolidates times for all threads
1148                  * in the group including the group leader.
1149                  */
1150                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1151                 spin_lock_irq(&current->sighand->siglock);
1152                 write_seqlock(&psig->stats_lock);
1153                 psig->cutime += tgutime + sig->cutime;
1154                 psig->cstime += tgstime + sig->cstime;
1155                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1156                 psig->cmin_flt +=
1157                         p->min_flt + sig->min_flt + sig->cmin_flt;
1158                 psig->cmaj_flt +=
1159                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1160                 psig->cnvcsw +=
1161                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1162                 psig->cnivcsw +=
1163                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1164                 psig->cinblock +=
1165                         task_io_get_inblock(p) +
1166                         sig->inblock + sig->cinblock;
1167                 psig->coublock +=
1168                         task_io_get_oublock(p) +
1169                         sig->oublock + sig->coublock;
1170                 maxrss = max(sig->maxrss, sig->cmaxrss);
1171                 if (psig->cmaxrss < maxrss)
1172                         psig->cmaxrss = maxrss;
1173                 task_io_accounting_add(&psig->ioac, &p->ioac);
1174                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1175                 write_sequnlock(&psig->stats_lock);
1176                 spin_unlock_irq(&current->sighand->siglock);
1177         }
1178
1179         if (wo->wo_rusage)
1180                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1181         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1182                 ? p->signal->group_exit_code : p->exit_code;
1183         wo->wo_stat = status;
1184
1185         if (state == EXIT_TRACE) {
1186                 write_lock_irq(&tasklist_lock);
1187                 /* We dropped tasklist, ptracer could die and untrace */
1188                 ptrace_unlink(p);
1189
1190                 /* If parent wants a zombie, don't release it now */
1191                 state = EXIT_ZOMBIE;
1192                 if (do_notify_parent(p, p->exit_signal))
1193                         state = EXIT_DEAD;
1194                 p->exit_state = state;
1195                 write_unlock_irq(&tasklist_lock);
1196         }
1197         if (state == EXIT_DEAD)
1198                 release_task(p);
1199
1200 out_info:
1201         infop = wo->wo_info;
1202         if (infop) {
1203                 if ((status & 0x7f) == 0) {
1204                         infop->cause = CLD_EXITED;
1205                         infop->status = status >> 8;
1206                 } else {
1207                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1208                         infop->status = status & 0x7f;
1209                 }
1210                 infop->pid = pid;
1211                 infop->uid = uid;
1212         }
1213
1214         return pid;
1215 }
1216
1217 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1218 {
1219         if (ptrace) {
1220                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1221                         return &p->exit_code;
1222         } else {
1223                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1224                         return &p->signal->group_exit_code;
1225         }
1226         return NULL;
1227 }
1228
1229 /**
1230  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1231  * @wo: wait options
1232  * @ptrace: is the wait for ptrace
1233  * @p: task to wait for
1234  *
1235  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1236  *
1237  * CONTEXT:
1238  * read_lock(&tasklist_lock), which is released if return value is
1239  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1240  *
1241  * RETURNS:
1242  * 0 if wait condition didn't exist and search for other wait conditions
1243  * should continue.  Non-zero return, -errno on failure and @p's pid on
1244  * success, implies that tasklist_lock is released and wait condition
1245  * search should terminate.
1246  */
1247 static int wait_task_stopped(struct wait_opts *wo,
1248                                 int ptrace, struct task_struct *p)
1249 {
1250         struct waitid_info *infop;
1251         int exit_code, *p_code, why;
1252         uid_t uid = 0; /* unneeded, required by compiler */
1253         pid_t pid;
1254
1255         /*
1256          * Traditionally we see ptrace'd stopped tasks regardless of options.
1257          */
1258         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1259                 return 0;
1260
1261         if (!task_stopped_code(p, ptrace))
1262                 return 0;
1263
1264         exit_code = 0;
1265         spin_lock_irq(&p->sighand->siglock);
1266
1267         p_code = task_stopped_code(p, ptrace);
1268         if (unlikely(!p_code))
1269                 goto unlock_sig;
1270
1271         exit_code = *p_code;
1272         if (!exit_code)
1273                 goto unlock_sig;
1274
1275         if (!unlikely(wo->wo_flags & WNOWAIT))
1276                 *p_code = 0;
1277
1278         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1279 unlock_sig:
1280         spin_unlock_irq(&p->sighand->siglock);
1281         if (!exit_code)
1282                 return 0;
1283
1284         /*
1285          * Now we are pretty sure this task is interesting.
1286          * Make sure it doesn't get reaped out from under us while we
1287          * give up the lock and then examine it below.  We don't want to
1288          * keep holding onto the tasklist_lock while we call getrusage and
1289          * possibly take page faults for user memory.
1290          */
1291         get_task_struct(p);
1292         pid = task_pid_vnr(p);
1293         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1294         read_unlock(&tasklist_lock);
1295         sched_annotate_sleep();
1296         if (wo->wo_rusage)
1297                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1298         put_task_struct(p);
1299
1300         if (likely(!(wo->wo_flags & WNOWAIT)))
1301                 wo->wo_stat = (exit_code << 8) | 0x7f;
1302
1303         infop = wo->wo_info;
1304         if (infop) {
1305                 infop->cause = why;
1306                 infop->status = exit_code;
1307                 infop->pid = pid;
1308                 infop->uid = uid;
1309         }
1310         return pid;
1311 }
1312
1313 /*
1314  * Handle do_wait work for one task in a live, non-stopped state.
1315  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1316  * the lock and this task is uninteresting.  If we return nonzero, we have
1317  * released the lock and the system call should return.
1318  */
1319 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1320 {
1321         struct waitid_info *infop;
1322         pid_t pid;
1323         uid_t uid;
1324
1325         if (!unlikely(wo->wo_flags & WCONTINUED))
1326                 return 0;
1327
1328         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1329                 return 0;
1330
1331         spin_lock_irq(&p->sighand->siglock);
1332         /* Re-check with the lock held.  */
1333         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1334                 spin_unlock_irq(&p->sighand->siglock);
1335                 return 0;
1336         }
1337         if (!unlikely(wo->wo_flags & WNOWAIT))
1338                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1339         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1340         spin_unlock_irq(&p->sighand->siglock);
1341
1342         pid = task_pid_vnr(p);
1343         get_task_struct(p);
1344         read_unlock(&tasklist_lock);
1345         sched_annotate_sleep();
1346         if (wo->wo_rusage)
1347                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1348         put_task_struct(p);
1349
1350         infop = wo->wo_info;
1351         if (!infop) {
1352                 wo->wo_stat = 0xffff;
1353         } else {
1354                 infop->cause = CLD_CONTINUED;
1355                 infop->pid = pid;
1356                 infop->uid = uid;
1357                 infop->status = SIGCONT;
1358         }
1359         return pid;
1360 }
1361
1362 /*
1363  * Consider @p for a wait by @parent.
1364  *
1365  * -ECHILD should be in ->notask_error before the first call.
1366  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1367  * Returns zero if the search for a child should continue;
1368  * then ->notask_error is 0 if @p is an eligible child,
1369  * or still -ECHILD.
1370  */
1371 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1372                                 struct task_struct *p)
1373 {
1374         /*
1375          * We can race with wait_task_zombie() from another thread.
1376          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1377          * can't confuse the checks below.
1378          */
1379         int exit_state = READ_ONCE(p->exit_state);
1380         int ret;
1381
1382         if (unlikely(exit_state == EXIT_DEAD))
1383                 return 0;
1384
1385         ret = eligible_child(wo, ptrace, p);
1386         if (!ret)
1387                 return ret;
1388
1389         if (unlikely(exit_state == EXIT_TRACE)) {
1390                 /*
1391                  * ptrace == 0 means we are the natural parent. In this case
1392                  * we should clear notask_error, debugger will notify us.
1393                  */
1394                 if (likely(!ptrace))
1395                         wo->notask_error = 0;
1396                 return 0;
1397         }
1398
1399         if (likely(!ptrace) && unlikely(p->ptrace)) {
1400                 /*
1401                  * If it is traced by its real parent's group, just pretend
1402                  * the caller is ptrace_do_wait() and reap this child if it
1403                  * is zombie.
1404                  *
1405                  * This also hides group stop state from real parent; otherwise
1406                  * a single stop can be reported twice as group and ptrace stop.
1407                  * If a ptracer wants to distinguish these two events for its
1408                  * own children it should create a separate process which takes
1409                  * the role of real parent.
1410                  */
1411                 if (!ptrace_reparented(p))
1412                         ptrace = 1;
1413         }
1414
1415         /* slay zombie? */
1416         if (exit_state == EXIT_ZOMBIE) {
1417                 /* we don't reap group leaders with subthreads */
1418                 if (!delay_group_leader(p)) {
1419                         /*
1420                          * A zombie ptracee is only visible to its ptracer.
1421                          * Notification and reaping will be cascaded to the
1422                          * real parent when the ptracer detaches.
1423                          */
1424                         if (unlikely(ptrace) || likely(!p->ptrace))
1425                                 return wait_task_zombie(wo, p);
1426                 }
1427
1428                 /*
1429                  * Allow access to stopped/continued state via zombie by
1430                  * falling through.  Clearing of notask_error is complex.
1431                  *
1432                  * When !@ptrace:
1433                  *
1434                  * If WEXITED is set, notask_error should naturally be
1435                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1436                  * so, if there are live subthreads, there are events to
1437                  * wait for.  If all subthreads are dead, it's still safe
1438                  * to clear - this function will be called again in finite
1439                  * amount time once all the subthreads are released and
1440                  * will then return without clearing.
1441                  *
1442                  * When @ptrace:
1443                  *
1444                  * Stopped state is per-task and thus can't change once the
1445                  * target task dies.  Only continued and exited can happen.
1446                  * Clear notask_error if WCONTINUED | WEXITED.
1447                  */
1448                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1449                         wo->notask_error = 0;
1450         } else {
1451                 /*
1452                  * @p is alive and it's gonna stop, continue or exit, so
1453                  * there always is something to wait for.
1454                  */
1455                 wo->notask_error = 0;
1456         }
1457
1458         /*
1459          * Wait for stopped.  Depending on @ptrace, different stopped state
1460          * is used and the two don't interact with each other.
1461          */
1462         ret = wait_task_stopped(wo, ptrace, p);
1463         if (ret)
1464                 return ret;
1465
1466         /*
1467          * Wait for continued.  There's only one continued state and the
1468          * ptracer can consume it which can confuse the real parent.  Don't
1469          * use WCONTINUED from ptracer.  You don't need or want it.
1470          */
1471         return wait_task_continued(wo, p);
1472 }
1473
1474 /*
1475  * Do the work of do_wait() for one thread in the group, @tsk.
1476  *
1477  * -ECHILD should be in ->notask_error before the first call.
1478  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1479  * Returns zero if the search for a child should continue; then
1480  * ->notask_error is 0 if there were any eligible children,
1481  * or still -ECHILD.
1482  */
1483 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1484 {
1485         struct task_struct *p;
1486
1487         list_for_each_entry(p, &tsk->children, sibling) {
1488                 int ret = wait_consider_task(wo, 0, p);
1489
1490                 if (ret)
1491                         return ret;
1492         }
1493
1494         return 0;
1495 }
1496
1497 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1498 {
1499         struct task_struct *p;
1500
1501         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1502                 int ret = wait_consider_task(wo, 1, p);
1503
1504                 if (ret)
1505                         return ret;
1506         }
1507
1508         return 0;
1509 }
1510
1511 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1512                                 int sync, void *key)
1513 {
1514         struct wait_opts *wo = container_of(wait, struct wait_opts,
1515                                                 child_wait);
1516         struct task_struct *p = key;
1517
1518         if (!eligible_pid(wo, p))
1519                 return 0;
1520
1521         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1522                 return 0;
1523
1524         return default_wake_function(wait, mode, sync, key);
1525 }
1526
1527 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1528 {
1529         __wake_up_sync_key(&parent->signal->wait_chldexit,
1530                            TASK_INTERRUPTIBLE, p);
1531 }
1532
1533 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1534                                  struct task_struct *target)
1535 {
1536         struct task_struct *parent =
1537                 !ptrace ? target->real_parent : target->parent;
1538
1539         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1540                                      same_thread_group(current, parent));
1541 }
1542
1543 /*
1544  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1545  * and tracee lists to find the target task.
1546  */
1547 static int do_wait_pid(struct wait_opts *wo)
1548 {
1549         bool ptrace;
1550         struct task_struct *target;
1551         int retval;
1552
1553         ptrace = false;
1554         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1555         if (target && is_effectively_child(wo, ptrace, target)) {
1556                 retval = wait_consider_task(wo, ptrace, target);
1557                 if (retval)
1558                         return retval;
1559         }
1560
1561         ptrace = true;
1562         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1563         if (target && target->ptrace &&
1564             is_effectively_child(wo, ptrace, target)) {
1565                 retval = wait_consider_task(wo, ptrace, target);
1566                 if (retval)
1567                         return retval;
1568         }
1569
1570         return 0;
1571 }
1572
1573 static long do_wait(struct wait_opts *wo)
1574 {
1575         int retval;
1576
1577         trace_sched_process_wait(wo->wo_pid);
1578
1579         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1580         wo->child_wait.private = current;
1581         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1582 repeat:
1583         /*
1584          * If there is nothing that can match our criteria, just get out.
1585          * We will clear ->notask_error to zero if we see any child that
1586          * might later match our criteria, even if we are not able to reap
1587          * it yet.
1588          */
1589         wo->notask_error = -ECHILD;
1590         if ((wo->wo_type < PIDTYPE_MAX) &&
1591            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1592                 goto notask;
1593
1594         set_current_state(TASK_INTERRUPTIBLE);
1595         read_lock(&tasklist_lock);
1596
1597         if (wo->wo_type == PIDTYPE_PID) {
1598                 retval = do_wait_pid(wo);
1599                 if (retval)
1600                         goto end;
1601         } else {
1602                 struct task_struct *tsk = current;
1603
1604                 do {
1605                         retval = do_wait_thread(wo, tsk);
1606                         if (retval)
1607                                 goto end;
1608
1609                         retval = ptrace_do_wait(wo, tsk);
1610                         if (retval)
1611                                 goto end;
1612
1613                         if (wo->wo_flags & __WNOTHREAD)
1614                                 break;
1615                 } while_each_thread(current, tsk);
1616         }
1617         read_unlock(&tasklist_lock);
1618
1619 notask:
1620         retval = wo->notask_error;
1621         if (!retval && !(wo->wo_flags & WNOHANG)) {
1622                 retval = -ERESTARTSYS;
1623                 if (!signal_pending(current)) {
1624                         schedule();
1625                         goto repeat;
1626                 }
1627         }
1628 end:
1629         __set_current_state(TASK_RUNNING);
1630         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1631         return retval;
1632 }
1633
1634 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1635                           int options, struct rusage *ru)
1636 {
1637         struct wait_opts wo;
1638         struct pid *pid = NULL;
1639         enum pid_type type;
1640         long ret;
1641         unsigned int f_flags = 0;
1642
1643         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1644                         __WNOTHREAD|__WCLONE|__WALL))
1645                 return -EINVAL;
1646         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1647                 return -EINVAL;
1648
1649         switch (which) {
1650         case P_ALL:
1651                 type = PIDTYPE_MAX;
1652                 break;
1653         case P_PID:
1654                 type = PIDTYPE_PID;
1655                 if (upid <= 0)
1656                         return -EINVAL;
1657
1658                 pid = find_get_pid(upid);
1659                 break;
1660         case P_PGID:
1661                 type = PIDTYPE_PGID;
1662                 if (upid < 0)
1663                         return -EINVAL;
1664
1665                 if (upid)
1666                         pid = find_get_pid(upid);
1667                 else
1668                         pid = get_task_pid(current, PIDTYPE_PGID);
1669                 break;
1670         case P_PIDFD:
1671                 type = PIDTYPE_PID;
1672                 if (upid < 0)
1673                         return -EINVAL;
1674
1675                 pid = pidfd_get_pid(upid, &f_flags);
1676                 if (IS_ERR(pid))
1677                         return PTR_ERR(pid);
1678
1679                 break;
1680         default:
1681                 return -EINVAL;
1682         }
1683
1684         wo.wo_type      = type;
1685         wo.wo_pid       = pid;
1686         wo.wo_flags     = options;
1687         wo.wo_info      = infop;
1688         wo.wo_rusage    = ru;
1689         if (f_flags & O_NONBLOCK)
1690                 wo.wo_flags |= WNOHANG;
1691
1692         ret = do_wait(&wo);
1693         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1694                 ret = -EAGAIN;
1695
1696         put_pid(pid);
1697         return ret;
1698 }
1699
1700 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1701                 infop, int, options, struct rusage __user *, ru)
1702 {
1703         struct rusage r;
1704         struct waitid_info info = {.status = 0};
1705         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1706         int signo = 0;
1707
1708         if (err > 0) {
1709                 signo = SIGCHLD;
1710                 err = 0;
1711                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1712                         return -EFAULT;
1713         }
1714         if (!infop)
1715                 return err;
1716
1717         if (!user_write_access_begin(infop, sizeof(*infop)))
1718                 return -EFAULT;
1719
1720         unsafe_put_user(signo, &infop->si_signo, Efault);
1721         unsafe_put_user(0, &infop->si_errno, Efault);
1722         unsafe_put_user(info.cause, &infop->si_code, Efault);
1723         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1724         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1725         unsafe_put_user(info.status, &infop->si_status, Efault);
1726         user_write_access_end();
1727         return err;
1728 Efault:
1729         user_write_access_end();
1730         return -EFAULT;
1731 }
1732
1733 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1734                   struct rusage *ru)
1735 {
1736         struct wait_opts wo;
1737         struct pid *pid = NULL;
1738         enum pid_type type;
1739         long ret;
1740
1741         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1742                         __WNOTHREAD|__WCLONE|__WALL))
1743                 return -EINVAL;
1744
1745         /* -INT_MIN is not defined */
1746         if (upid == INT_MIN)
1747                 return -ESRCH;
1748
1749         if (upid == -1)
1750                 type = PIDTYPE_MAX;
1751         else if (upid < 0) {
1752                 type = PIDTYPE_PGID;
1753                 pid = find_get_pid(-upid);
1754         } else if (upid == 0) {
1755                 type = PIDTYPE_PGID;
1756                 pid = get_task_pid(current, PIDTYPE_PGID);
1757         } else /* upid > 0 */ {
1758                 type = PIDTYPE_PID;
1759                 pid = find_get_pid(upid);
1760         }
1761
1762         wo.wo_type      = type;
1763         wo.wo_pid       = pid;
1764         wo.wo_flags     = options | WEXITED;
1765         wo.wo_info      = NULL;
1766         wo.wo_stat      = 0;
1767         wo.wo_rusage    = ru;
1768         ret = do_wait(&wo);
1769         put_pid(pid);
1770         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1771                 ret = -EFAULT;
1772
1773         return ret;
1774 }
1775
1776 int kernel_wait(pid_t pid, int *stat)
1777 {
1778         struct wait_opts wo = {
1779                 .wo_type        = PIDTYPE_PID,
1780                 .wo_pid         = find_get_pid(pid),
1781                 .wo_flags       = WEXITED,
1782         };
1783         int ret;
1784
1785         ret = do_wait(&wo);
1786         if (ret > 0 && wo.wo_stat)
1787                 *stat = wo.wo_stat;
1788         put_pid(wo.wo_pid);
1789         return ret;
1790 }
1791
1792 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1793                 int, options, struct rusage __user *, ru)
1794 {
1795         struct rusage r;
1796         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1797
1798         if (err > 0) {
1799                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1800                         return -EFAULT;
1801         }
1802         return err;
1803 }
1804
1805 #ifdef __ARCH_WANT_SYS_WAITPID
1806
1807 /*
1808  * sys_waitpid() remains for compatibility. waitpid() should be
1809  * implemented by calling sys_wait4() from libc.a.
1810  */
1811 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1812 {
1813         return kernel_wait4(pid, stat_addr, options, NULL);
1814 }
1815
1816 #endif
1817
1818 #ifdef CONFIG_COMPAT
1819 COMPAT_SYSCALL_DEFINE4(wait4,
1820         compat_pid_t, pid,
1821         compat_uint_t __user *, stat_addr,
1822         int, options,
1823         struct compat_rusage __user *, ru)
1824 {
1825         struct rusage r;
1826         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1827         if (err > 0) {
1828                 if (ru && put_compat_rusage(&r, ru))
1829                         return -EFAULT;
1830         }
1831         return err;
1832 }
1833
1834 COMPAT_SYSCALL_DEFINE5(waitid,
1835                 int, which, compat_pid_t, pid,
1836                 struct compat_siginfo __user *, infop, int, options,
1837                 struct compat_rusage __user *, uru)
1838 {
1839         struct rusage ru;
1840         struct waitid_info info = {.status = 0};
1841         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1842         int signo = 0;
1843         if (err > 0) {
1844                 signo = SIGCHLD;
1845                 err = 0;
1846                 if (uru) {
1847                         /* kernel_waitid() overwrites everything in ru */
1848                         if (COMPAT_USE_64BIT_TIME)
1849                                 err = copy_to_user(uru, &ru, sizeof(ru));
1850                         else
1851                                 err = put_compat_rusage(&ru, uru);
1852                         if (err)
1853                                 return -EFAULT;
1854                 }
1855         }
1856
1857         if (!infop)
1858                 return err;
1859
1860         if (!user_write_access_begin(infop, sizeof(*infop)))
1861                 return -EFAULT;
1862
1863         unsafe_put_user(signo, &infop->si_signo, Efault);
1864         unsafe_put_user(0, &infop->si_errno, Efault);
1865         unsafe_put_user(info.cause, &infop->si_code, Efault);
1866         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1867         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1868         unsafe_put_user(info.status, &infop->si_status, Efault);
1869         user_write_access_end();
1870         return err;
1871 Efault:
1872         user_write_access_end();
1873         return -EFAULT;
1874 }
1875 #endif
1876
1877 /**
1878  * thread_group_exited - check that a thread group has exited
1879  * @pid: tgid of thread group to be checked.
1880  *
1881  * Test if the thread group represented by tgid has exited (all
1882  * threads are zombies, dead or completely gone).
1883  *
1884  * Return: true if the thread group has exited. false otherwise.
1885  */
1886 bool thread_group_exited(struct pid *pid)
1887 {
1888         struct task_struct *task;
1889         bool exited;
1890
1891         rcu_read_lock();
1892         task = pid_task(pid, PIDTYPE_PID);
1893         exited = !task ||
1894                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1895         rcu_read_unlock();
1896
1897         return exited;
1898 }
1899 EXPORT_SYMBOL(thread_group_exited);
1900
1901 __weak void abort(void)
1902 {
1903         BUG();
1904
1905         /* if that doesn't kill us, halt */
1906         panic("Oops failed to kill thread");
1907 }
1908 EXPORT_SYMBOL(abort);