Merge branch 'next-general' of git://git.kernel.org:/pub/scm/linux/kernel/git/jmorris...
[linux-2.6-microblaze.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/pgtable.h>
70 #include <asm/mmu_context.h>
71
72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74         nr_threads--;
75         detach_pid(p, PIDTYPE_PID);
76         if (group_dead) {
77                 detach_pid(p, PIDTYPE_TGID);
78                 detach_pid(p, PIDTYPE_PGID);
79                 detach_pid(p, PIDTYPE_SID);
80
81                 list_del_rcu(&p->tasks);
82                 list_del_init(&p->sibling);
83                 __this_cpu_dec(process_counts);
84         }
85         list_del_rcu(&p->thread_group);
86         list_del_rcu(&p->thread_node);
87 }
88
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
92 static void __exit_signal(struct task_struct *tsk)
93 {
94         struct signal_struct *sig = tsk->signal;
95         bool group_dead = thread_group_leader(tsk);
96         struct sighand_struct *sighand;
97         struct tty_struct *uninitialized_var(tty);
98         u64 utime, stime;
99
100         sighand = rcu_dereference_check(tsk->sighand,
101                                         lockdep_tasklist_lock_is_held());
102         spin_lock(&sighand->siglock);
103
104 #ifdef CONFIG_POSIX_TIMERS
105         posix_cpu_timers_exit(tsk);
106         if (group_dead)
107                 posix_cpu_timers_exit_group(tsk);
108 #endif
109
110         if (group_dead) {
111                 tty = sig->tty;
112                 sig->tty = NULL;
113         } else {
114                 /*
115                  * If there is any task waiting for the group exit
116                  * then notify it:
117                  */
118                 if (sig->notify_count > 0 && !--sig->notify_count)
119                         wake_up_process(sig->group_exit_task);
120
121                 if (tsk == sig->curr_target)
122                         sig->curr_target = next_thread(tsk);
123         }
124
125         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126                               sizeof(unsigned long long));
127
128         /*
129          * Accumulate here the counters for all threads as they die. We could
130          * skip the group leader because it is the last user of signal_struct,
131          * but we want to avoid the race with thread_group_cputime() which can
132          * see the empty ->thread_head list.
133          */
134         task_cputime(tsk, &utime, &stime);
135         write_seqlock(&sig->stats_lock);
136         sig->utime += utime;
137         sig->stime += stime;
138         sig->gtime += task_gtime(tsk);
139         sig->min_flt += tsk->min_flt;
140         sig->maj_flt += tsk->maj_flt;
141         sig->nvcsw += tsk->nvcsw;
142         sig->nivcsw += tsk->nivcsw;
143         sig->inblock += task_io_get_inblock(tsk);
144         sig->oublock += task_io_get_oublock(tsk);
145         task_io_accounting_add(&sig->ioac, &tsk->ioac);
146         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147         sig->nr_threads--;
148         __unhash_process(tsk, group_dead);
149         write_sequnlock(&sig->stats_lock);
150
151         /*
152          * Do this under ->siglock, we can race with another thread
153          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154          */
155         flush_sigqueue(&tsk->pending);
156         tsk->sighand = NULL;
157         spin_unlock(&sighand->siglock);
158
159         __cleanup_sighand(sighand);
160         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161         if (group_dead) {
162                 flush_sigqueue(&sig->shared_pending);
163                 tty_kref_put(tty);
164         }
165 }
166
167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170
171         perf_event_delayed_put(tsk);
172         trace_sched_process_free(tsk);
173         put_task_struct(tsk);
174 }
175
176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178         if (refcount_dec_and_test(&task->rcu_users))
179                 call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181
182 void release_task(struct task_struct *p)
183 {
184         struct task_struct *leader;
185         int zap_leader;
186 repeat:
187         /* don't need to get the RCU readlock here - the process is dead and
188          * can't be modifying its own credentials. But shut RCU-lockdep up */
189         rcu_read_lock();
190         atomic_dec(&__task_cred(p)->user->processes);
191         rcu_read_unlock();
192
193         proc_flush_task(p);
194         cgroup_release(p);
195
196         write_lock_irq(&tasklist_lock);
197         ptrace_release_task(p);
198         __exit_signal(p);
199
200         /*
201          * If we are the last non-leader member of the thread
202          * group, and the leader is zombie, then notify the
203          * group leader's parent process. (if it wants notification.)
204          */
205         zap_leader = 0;
206         leader = p->group_leader;
207         if (leader != p && thread_group_empty(leader)
208                         && leader->exit_state == EXIT_ZOMBIE) {
209                 /*
210                  * If we were the last child thread and the leader has
211                  * exited already, and the leader's parent ignores SIGCHLD,
212                  * then we are the one who should release the leader.
213                  */
214                 zap_leader = do_notify_parent(leader, leader->exit_signal);
215                 if (zap_leader)
216                         leader->exit_state = EXIT_DEAD;
217         }
218
219         write_unlock_irq(&tasklist_lock);
220         release_thread(p);
221         put_task_struct_rcu_user(p);
222
223         p = leader;
224         if (unlikely(zap_leader))
225                 goto repeat;
226 }
227
228 void rcuwait_wake_up(struct rcuwait *w)
229 {
230         struct task_struct *task;
231
232         rcu_read_lock();
233
234         /*
235          * Order condition vs @task, such that everything prior to the load
236          * of @task is visible. This is the condition as to why the user called
237          * rcuwait_trywake() in the first place. Pairs with set_current_state()
238          * barrier (A) in rcuwait_wait_event().
239          *
240          *    WAIT                WAKE
241          *    [S] tsk = current   [S] cond = true
242          *        MB (A)              MB (B)
243          *    [L] cond            [L] tsk
244          */
245         smp_mb(); /* (B) */
246
247         task = rcu_dereference(w->task);
248         if (task)
249                 wake_up_process(task);
250         rcu_read_unlock();
251 }
252 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
253
254 /*
255  * Determine if a process group is "orphaned", according to the POSIX
256  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
257  * by terminal-generated stop signals.  Newly orphaned process groups are
258  * to receive a SIGHUP and a SIGCONT.
259  *
260  * "I ask you, have you ever known what it is to be an orphan?"
261  */
262 static int will_become_orphaned_pgrp(struct pid *pgrp,
263                                         struct task_struct *ignored_task)
264 {
265         struct task_struct *p;
266
267         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
268                 if ((p == ignored_task) ||
269                     (p->exit_state && thread_group_empty(p)) ||
270                     is_global_init(p->real_parent))
271                         continue;
272
273                 if (task_pgrp(p->real_parent) != pgrp &&
274                     task_session(p->real_parent) == task_session(p))
275                         return 0;
276         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
277
278         return 1;
279 }
280
281 int is_current_pgrp_orphaned(void)
282 {
283         int retval;
284
285         read_lock(&tasklist_lock);
286         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
287         read_unlock(&tasklist_lock);
288
289         return retval;
290 }
291
292 static bool has_stopped_jobs(struct pid *pgrp)
293 {
294         struct task_struct *p;
295
296         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
297                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
298                         return true;
299         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
300
301         return false;
302 }
303
304 /*
305  * Check to see if any process groups have become orphaned as
306  * a result of our exiting, and if they have any stopped jobs,
307  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
308  */
309 static void
310 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
311 {
312         struct pid *pgrp = task_pgrp(tsk);
313         struct task_struct *ignored_task = tsk;
314
315         if (!parent)
316                 /* exit: our father is in a different pgrp than
317                  * we are and we were the only connection outside.
318                  */
319                 parent = tsk->real_parent;
320         else
321                 /* reparent: our child is in a different pgrp than
322                  * we are, and it was the only connection outside.
323                  */
324                 ignored_task = NULL;
325
326         if (task_pgrp(parent) != pgrp &&
327             task_session(parent) == task_session(tsk) &&
328             will_become_orphaned_pgrp(pgrp, ignored_task) &&
329             has_stopped_jobs(pgrp)) {
330                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
331                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
332         }
333 }
334
335 #ifdef CONFIG_MEMCG
336 /*
337  * A task is exiting.   If it owned this mm, find a new owner for the mm.
338  */
339 void mm_update_next_owner(struct mm_struct *mm)
340 {
341         struct task_struct *c, *g, *p = current;
342
343 retry:
344         /*
345          * If the exiting or execing task is not the owner, it's
346          * someone else's problem.
347          */
348         if (mm->owner != p)
349                 return;
350         /*
351          * The current owner is exiting/execing and there are no other
352          * candidates.  Do not leave the mm pointing to a possibly
353          * freed task structure.
354          */
355         if (atomic_read(&mm->mm_users) <= 1) {
356                 WRITE_ONCE(mm->owner, NULL);
357                 return;
358         }
359
360         read_lock(&tasklist_lock);
361         /*
362          * Search in the children
363          */
364         list_for_each_entry(c, &p->children, sibling) {
365                 if (c->mm == mm)
366                         goto assign_new_owner;
367         }
368
369         /*
370          * Search in the siblings
371          */
372         list_for_each_entry(c, &p->real_parent->children, sibling) {
373                 if (c->mm == mm)
374                         goto assign_new_owner;
375         }
376
377         /*
378          * Search through everything else, we should not get here often.
379          */
380         for_each_process(g) {
381                 if (g->flags & PF_KTHREAD)
382                         continue;
383                 for_each_thread(g, c) {
384                         if (c->mm == mm)
385                                 goto assign_new_owner;
386                         if (c->mm)
387                                 break;
388                 }
389         }
390         read_unlock(&tasklist_lock);
391         /*
392          * We found no owner yet mm_users > 1: this implies that we are
393          * most likely racing with swapoff (try_to_unuse()) or /proc or
394          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
395          */
396         WRITE_ONCE(mm->owner, NULL);
397         return;
398
399 assign_new_owner:
400         BUG_ON(c == p);
401         get_task_struct(c);
402         /*
403          * The task_lock protects c->mm from changing.
404          * We always want mm->owner->mm == mm
405          */
406         task_lock(c);
407         /*
408          * Delay read_unlock() till we have the task_lock()
409          * to ensure that c does not slip away underneath us
410          */
411         read_unlock(&tasklist_lock);
412         if (c->mm != mm) {
413                 task_unlock(c);
414                 put_task_struct(c);
415                 goto retry;
416         }
417         WRITE_ONCE(mm->owner, c);
418         task_unlock(c);
419         put_task_struct(c);
420 }
421 #endif /* CONFIG_MEMCG */
422
423 /*
424  * Turn us into a lazy TLB process if we
425  * aren't already..
426  */
427 static void exit_mm(void)
428 {
429         struct mm_struct *mm = current->mm;
430         struct core_state *core_state;
431
432         exit_mm_release(current, mm);
433         if (!mm)
434                 return;
435         sync_mm_rss(mm);
436         /*
437          * Serialize with any possible pending coredump.
438          * We must hold mmap_sem around checking core_state
439          * and clearing tsk->mm.  The core-inducing thread
440          * will increment ->nr_threads for each thread in the
441          * group with ->mm != NULL.
442          */
443         down_read(&mm->mmap_sem);
444         core_state = mm->core_state;
445         if (core_state) {
446                 struct core_thread self;
447
448                 up_read(&mm->mmap_sem);
449
450                 self.task = current;
451                 self.next = xchg(&core_state->dumper.next, &self);
452                 /*
453                  * Implies mb(), the result of xchg() must be visible
454                  * to core_state->dumper.
455                  */
456                 if (atomic_dec_and_test(&core_state->nr_threads))
457                         complete(&core_state->startup);
458
459                 for (;;) {
460                         set_current_state(TASK_UNINTERRUPTIBLE);
461                         if (!self.task) /* see coredump_finish() */
462                                 break;
463                         freezable_schedule();
464                 }
465                 __set_current_state(TASK_RUNNING);
466                 down_read(&mm->mmap_sem);
467         }
468         mmgrab(mm);
469         BUG_ON(mm != current->active_mm);
470         /* more a memory barrier than a real lock */
471         task_lock(current);
472         current->mm = NULL;
473         up_read(&mm->mmap_sem);
474         enter_lazy_tlb(mm, current);
475         task_unlock(current);
476         mm_update_next_owner(mm);
477         mmput(mm);
478         if (test_thread_flag(TIF_MEMDIE))
479                 exit_oom_victim();
480 }
481
482 static struct task_struct *find_alive_thread(struct task_struct *p)
483 {
484         struct task_struct *t;
485
486         for_each_thread(p, t) {
487                 if (!(t->flags & PF_EXITING))
488                         return t;
489         }
490         return NULL;
491 }
492
493 static struct task_struct *find_child_reaper(struct task_struct *father,
494                                                 struct list_head *dead)
495         __releases(&tasklist_lock)
496         __acquires(&tasklist_lock)
497 {
498         struct pid_namespace *pid_ns = task_active_pid_ns(father);
499         struct task_struct *reaper = pid_ns->child_reaper;
500         struct task_struct *p, *n;
501
502         if (likely(reaper != father))
503                 return reaper;
504
505         reaper = find_alive_thread(father);
506         if (reaper) {
507                 pid_ns->child_reaper = reaper;
508                 return reaper;
509         }
510
511         write_unlock_irq(&tasklist_lock);
512
513         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
514                 list_del_init(&p->ptrace_entry);
515                 release_task(p);
516         }
517
518         zap_pid_ns_processes(pid_ns);
519         write_lock_irq(&tasklist_lock);
520
521         return father;
522 }
523
524 /*
525  * When we die, we re-parent all our children, and try to:
526  * 1. give them to another thread in our thread group, if such a member exists
527  * 2. give it to the first ancestor process which prctl'd itself as a
528  *    child_subreaper for its children (like a service manager)
529  * 3. give it to the init process (PID 1) in our pid namespace
530  */
531 static struct task_struct *find_new_reaper(struct task_struct *father,
532                                            struct task_struct *child_reaper)
533 {
534         struct task_struct *thread, *reaper;
535
536         thread = find_alive_thread(father);
537         if (thread)
538                 return thread;
539
540         if (father->signal->has_child_subreaper) {
541                 unsigned int ns_level = task_pid(father)->level;
542                 /*
543                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
544                  * We can't check reaper != child_reaper to ensure we do not
545                  * cross the namespaces, the exiting parent could be injected
546                  * by setns() + fork().
547                  * We check pid->level, this is slightly more efficient than
548                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
549                  */
550                 for (reaper = father->real_parent;
551                      task_pid(reaper)->level == ns_level;
552                      reaper = reaper->real_parent) {
553                         if (reaper == &init_task)
554                                 break;
555                         if (!reaper->signal->is_child_subreaper)
556                                 continue;
557                         thread = find_alive_thread(reaper);
558                         if (thread)
559                                 return thread;
560                 }
561         }
562
563         return child_reaper;
564 }
565
566 /*
567 * Any that need to be release_task'd are put on the @dead list.
568  */
569 static void reparent_leader(struct task_struct *father, struct task_struct *p,
570                                 struct list_head *dead)
571 {
572         if (unlikely(p->exit_state == EXIT_DEAD))
573                 return;
574
575         /* We don't want people slaying init. */
576         p->exit_signal = SIGCHLD;
577
578         /* If it has exited notify the new parent about this child's death. */
579         if (!p->ptrace &&
580             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
581                 if (do_notify_parent(p, p->exit_signal)) {
582                         p->exit_state = EXIT_DEAD;
583                         list_add(&p->ptrace_entry, dead);
584                 }
585         }
586
587         kill_orphaned_pgrp(p, father);
588 }
589
590 /*
591  * This does two things:
592  *
593  * A.  Make init inherit all the child processes
594  * B.  Check to see if any process groups have become orphaned
595  *      as a result of our exiting, and if they have any stopped
596  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
597  */
598 static void forget_original_parent(struct task_struct *father,
599                                         struct list_head *dead)
600 {
601         struct task_struct *p, *t, *reaper;
602
603         if (unlikely(!list_empty(&father->ptraced)))
604                 exit_ptrace(father, dead);
605
606         /* Can drop and reacquire tasklist_lock */
607         reaper = find_child_reaper(father, dead);
608         if (list_empty(&father->children))
609                 return;
610
611         reaper = find_new_reaper(father, reaper);
612         list_for_each_entry(p, &father->children, sibling) {
613                 for_each_thread(p, t) {
614                         RCU_INIT_POINTER(t->real_parent, reaper);
615                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
616                         if (likely(!t->ptrace))
617                                 t->parent = t->real_parent;
618                         if (t->pdeath_signal)
619                                 group_send_sig_info(t->pdeath_signal,
620                                                     SEND_SIG_NOINFO, t,
621                                                     PIDTYPE_TGID);
622                 }
623                 /*
624                  * If this is a threaded reparent there is no need to
625                  * notify anyone anything has happened.
626                  */
627                 if (!same_thread_group(reaper, father))
628                         reparent_leader(father, p, dead);
629         }
630         list_splice_tail_init(&father->children, &reaper->children);
631 }
632
633 /*
634  * Send signals to all our closest relatives so that they know
635  * to properly mourn us..
636  */
637 static void exit_notify(struct task_struct *tsk, int group_dead)
638 {
639         bool autoreap;
640         struct task_struct *p, *n;
641         LIST_HEAD(dead);
642
643         write_lock_irq(&tasklist_lock);
644         forget_original_parent(tsk, &dead);
645
646         if (group_dead)
647                 kill_orphaned_pgrp(tsk->group_leader, NULL);
648
649         tsk->exit_state = EXIT_ZOMBIE;
650         if (unlikely(tsk->ptrace)) {
651                 int sig = thread_group_leader(tsk) &&
652                                 thread_group_empty(tsk) &&
653                                 !ptrace_reparented(tsk) ?
654                         tsk->exit_signal : SIGCHLD;
655                 autoreap = do_notify_parent(tsk, sig);
656         } else if (thread_group_leader(tsk)) {
657                 autoreap = thread_group_empty(tsk) &&
658                         do_notify_parent(tsk, tsk->exit_signal);
659         } else {
660                 autoreap = true;
661         }
662
663         if (autoreap) {
664                 tsk->exit_state = EXIT_DEAD;
665                 list_add(&tsk->ptrace_entry, &dead);
666         }
667
668         /* mt-exec, de_thread() is waiting for group leader */
669         if (unlikely(tsk->signal->notify_count < 0))
670                 wake_up_process(tsk->signal->group_exit_task);
671         write_unlock_irq(&tasklist_lock);
672
673         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
674                 list_del_init(&p->ptrace_entry);
675                 release_task(p);
676         }
677 }
678
679 #ifdef CONFIG_DEBUG_STACK_USAGE
680 static void check_stack_usage(void)
681 {
682         static DEFINE_SPINLOCK(low_water_lock);
683         static int lowest_to_date = THREAD_SIZE;
684         unsigned long free;
685
686         free = stack_not_used(current);
687
688         if (free >= lowest_to_date)
689                 return;
690
691         spin_lock(&low_water_lock);
692         if (free < lowest_to_date) {
693                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
694                         current->comm, task_pid_nr(current), free);
695                 lowest_to_date = free;
696         }
697         spin_unlock(&low_water_lock);
698 }
699 #else
700 static inline void check_stack_usage(void) {}
701 #endif
702
703 void __noreturn do_exit(long code)
704 {
705         struct task_struct *tsk = current;
706         int group_dead;
707
708         profile_task_exit(tsk);
709         kcov_task_exit(tsk);
710
711         WARN_ON(blk_needs_flush_plug(tsk));
712
713         if (unlikely(in_interrupt()))
714                 panic("Aiee, killing interrupt handler!");
715         if (unlikely(!tsk->pid))
716                 panic("Attempted to kill the idle task!");
717
718         /*
719          * If do_exit is called because this processes oopsed, it's possible
720          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
721          * continuing. Amongst other possible reasons, this is to prevent
722          * mm_release()->clear_child_tid() from writing to a user-controlled
723          * kernel address.
724          */
725         set_fs(USER_DS);
726
727         ptrace_event(PTRACE_EVENT_EXIT, code);
728
729         validate_creds_for_do_exit(tsk);
730
731         /*
732          * We're taking recursive faults here in do_exit. Safest is to just
733          * leave this task alone and wait for reboot.
734          */
735         if (unlikely(tsk->flags & PF_EXITING)) {
736                 pr_alert("Fixing recursive fault but reboot is needed!\n");
737                 futex_exit_recursive(tsk);
738                 set_current_state(TASK_UNINTERRUPTIBLE);
739                 schedule();
740         }
741
742         exit_signals(tsk);  /* sets PF_EXITING */
743
744         if (unlikely(in_atomic())) {
745                 pr_info("note: %s[%d] exited with preempt_count %d\n",
746                         current->comm, task_pid_nr(current),
747                         preempt_count());
748                 preempt_count_set(PREEMPT_ENABLED);
749         }
750
751         /* sync mm's RSS info before statistics gathering */
752         if (tsk->mm)
753                 sync_mm_rss(tsk->mm);
754         acct_update_integrals(tsk);
755         group_dead = atomic_dec_and_test(&tsk->signal->live);
756         if (group_dead) {
757                 /*
758                  * If the last thread of global init has exited, panic
759                  * immediately to get a useable coredump.
760                  */
761                 if (unlikely(is_global_init(tsk)))
762                         panic("Attempted to kill init! exitcode=0x%08x\n",
763                                 tsk->signal->group_exit_code ?: (int)code);
764
765 #ifdef CONFIG_POSIX_TIMERS
766                 hrtimer_cancel(&tsk->signal->real_timer);
767                 exit_itimers(tsk->signal);
768 #endif
769                 if (tsk->mm)
770                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
771         }
772         acct_collect(code, group_dead);
773         if (group_dead)
774                 tty_audit_exit();
775         audit_free(tsk);
776
777         tsk->exit_code = code;
778         taskstats_exit(tsk, group_dead);
779
780         exit_mm();
781
782         if (group_dead)
783                 acct_process();
784         trace_sched_process_exit(tsk);
785
786         exit_sem(tsk);
787         exit_shm(tsk);
788         exit_files(tsk);
789         exit_fs(tsk);
790         if (group_dead)
791                 disassociate_ctty(1);
792         exit_task_namespaces(tsk);
793         exit_task_work(tsk);
794         exit_thread(tsk);
795         exit_umh(tsk);
796
797         /*
798          * Flush inherited counters to the parent - before the parent
799          * gets woken up by child-exit notifications.
800          *
801          * because of cgroup mode, must be called before cgroup_exit()
802          */
803         perf_event_exit_task(tsk);
804
805         sched_autogroup_exit_task(tsk);
806         cgroup_exit(tsk);
807
808         /*
809          * FIXME: do that only when needed, using sched_exit tracepoint
810          */
811         flush_ptrace_hw_breakpoint(tsk);
812
813         exit_tasks_rcu_start();
814         exit_notify(tsk, group_dead);
815         proc_exit_connector(tsk);
816         mpol_put_task_policy(tsk);
817 #ifdef CONFIG_FUTEX
818         if (unlikely(current->pi_state_cache))
819                 kfree(current->pi_state_cache);
820 #endif
821         /*
822          * Make sure we are holding no locks:
823          */
824         debug_check_no_locks_held();
825
826         if (tsk->io_context)
827                 exit_io_context(tsk);
828
829         if (tsk->splice_pipe)
830                 free_pipe_info(tsk->splice_pipe);
831
832         if (tsk->task_frag.page)
833                 put_page(tsk->task_frag.page);
834
835         validate_creds_for_do_exit(tsk);
836
837         check_stack_usage();
838         preempt_disable();
839         if (tsk->nr_dirtied)
840                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
841         exit_rcu();
842         exit_tasks_rcu_finish();
843
844         lockdep_free_task(tsk);
845         do_task_dead();
846 }
847 EXPORT_SYMBOL_GPL(do_exit);
848
849 void complete_and_exit(struct completion *comp, long code)
850 {
851         if (comp)
852                 complete(comp);
853
854         do_exit(code);
855 }
856 EXPORT_SYMBOL(complete_and_exit);
857
858 SYSCALL_DEFINE1(exit, int, error_code)
859 {
860         do_exit((error_code&0xff)<<8);
861 }
862
863 /*
864  * Take down every thread in the group.  This is called by fatal signals
865  * as well as by sys_exit_group (below).
866  */
867 void
868 do_group_exit(int exit_code)
869 {
870         struct signal_struct *sig = current->signal;
871
872         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
873
874         if (signal_group_exit(sig))
875                 exit_code = sig->group_exit_code;
876         else if (!thread_group_empty(current)) {
877                 struct sighand_struct *const sighand = current->sighand;
878
879                 spin_lock_irq(&sighand->siglock);
880                 if (signal_group_exit(sig))
881                         /* Another thread got here before we took the lock.  */
882                         exit_code = sig->group_exit_code;
883                 else {
884                         sig->group_exit_code = exit_code;
885                         sig->flags = SIGNAL_GROUP_EXIT;
886                         zap_other_threads(current);
887                 }
888                 spin_unlock_irq(&sighand->siglock);
889         }
890
891         do_exit(exit_code);
892         /* NOTREACHED */
893 }
894
895 /*
896  * this kills every thread in the thread group. Note that any externally
897  * wait4()-ing process will get the correct exit code - even if this
898  * thread is not the thread group leader.
899  */
900 SYSCALL_DEFINE1(exit_group, int, error_code)
901 {
902         do_group_exit((error_code & 0xff) << 8);
903         /* NOTREACHED */
904         return 0;
905 }
906
907 struct waitid_info {
908         pid_t pid;
909         uid_t uid;
910         int status;
911         int cause;
912 };
913
914 struct wait_opts {
915         enum pid_type           wo_type;
916         int                     wo_flags;
917         struct pid              *wo_pid;
918
919         struct waitid_info      *wo_info;
920         int                     wo_stat;
921         struct rusage           *wo_rusage;
922
923         wait_queue_entry_t              child_wait;
924         int                     notask_error;
925 };
926
927 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
928 {
929         return  wo->wo_type == PIDTYPE_MAX ||
930                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
931 }
932
933 static int
934 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
935 {
936         if (!eligible_pid(wo, p))
937                 return 0;
938
939         /*
940          * Wait for all children (clone and not) if __WALL is set or
941          * if it is traced by us.
942          */
943         if (ptrace || (wo->wo_flags & __WALL))
944                 return 1;
945
946         /*
947          * Otherwise, wait for clone children *only* if __WCLONE is set;
948          * otherwise, wait for non-clone children *only*.
949          *
950          * Note: a "clone" child here is one that reports to its parent
951          * using a signal other than SIGCHLD, or a non-leader thread which
952          * we can only see if it is traced by us.
953          */
954         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
955                 return 0;
956
957         return 1;
958 }
959
960 /*
961  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
962  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
963  * the lock and this task is uninteresting.  If we return nonzero, we have
964  * released the lock and the system call should return.
965  */
966 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
967 {
968         int state, status;
969         pid_t pid = task_pid_vnr(p);
970         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
971         struct waitid_info *infop;
972
973         if (!likely(wo->wo_flags & WEXITED))
974                 return 0;
975
976         if (unlikely(wo->wo_flags & WNOWAIT)) {
977                 status = p->exit_code;
978                 get_task_struct(p);
979                 read_unlock(&tasklist_lock);
980                 sched_annotate_sleep();
981                 if (wo->wo_rusage)
982                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
983                 put_task_struct(p);
984                 goto out_info;
985         }
986         /*
987          * Move the task's state to DEAD/TRACE, only one thread can do this.
988          */
989         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
990                 EXIT_TRACE : EXIT_DEAD;
991         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
992                 return 0;
993         /*
994          * We own this thread, nobody else can reap it.
995          */
996         read_unlock(&tasklist_lock);
997         sched_annotate_sleep();
998
999         /*
1000          * Check thread_group_leader() to exclude the traced sub-threads.
1001          */
1002         if (state == EXIT_DEAD && thread_group_leader(p)) {
1003                 struct signal_struct *sig = p->signal;
1004                 struct signal_struct *psig = current->signal;
1005                 unsigned long maxrss;
1006                 u64 tgutime, tgstime;
1007
1008                 /*
1009                  * The resource counters for the group leader are in its
1010                  * own task_struct.  Those for dead threads in the group
1011                  * are in its signal_struct, as are those for the child
1012                  * processes it has previously reaped.  All these
1013                  * accumulate in the parent's signal_struct c* fields.
1014                  *
1015                  * We don't bother to take a lock here to protect these
1016                  * p->signal fields because the whole thread group is dead
1017                  * and nobody can change them.
1018                  *
1019                  * psig->stats_lock also protects us from our sub-theads
1020                  * which can reap other children at the same time. Until
1021                  * we change k_getrusage()-like users to rely on this lock
1022                  * we have to take ->siglock as well.
1023                  *
1024                  * We use thread_group_cputime_adjusted() to get times for
1025                  * the thread group, which consolidates times for all threads
1026                  * in the group including the group leader.
1027                  */
1028                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1029                 spin_lock_irq(&current->sighand->siglock);
1030                 write_seqlock(&psig->stats_lock);
1031                 psig->cutime += tgutime + sig->cutime;
1032                 psig->cstime += tgstime + sig->cstime;
1033                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1034                 psig->cmin_flt +=
1035                         p->min_flt + sig->min_flt + sig->cmin_flt;
1036                 psig->cmaj_flt +=
1037                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1038                 psig->cnvcsw +=
1039                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1040                 psig->cnivcsw +=
1041                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1042                 psig->cinblock +=
1043                         task_io_get_inblock(p) +
1044                         sig->inblock + sig->cinblock;
1045                 psig->coublock +=
1046                         task_io_get_oublock(p) +
1047                         sig->oublock + sig->coublock;
1048                 maxrss = max(sig->maxrss, sig->cmaxrss);
1049                 if (psig->cmaxrss < maxrss)
1050                         psig->cmaxrss = maxrss;
1051                 task_io_accounting_add(&psig->ioac, &p->ioac);
1052                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1053                 write_sequnlock(&psig->stats_lock);
1054                 spin_unlock_irq(&current->sighand->siglock);
1055         }
1056
1057         if (wo->wo_rusage)
1058                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1059         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1060                 ? p->signal->group_exit_code : p->exit_code;
1061         wo->wo_stat = status;
1062
1063         if (state == EXIT_TRACE) {
1064                 write_lock_irq(&tasklist_lock);
1065                 /* We dropped tasklist, ptracer could die and untrace */
1066                 ptrace_unlink(p);
1067
1068                 /* If parent wants a zombie, don't release it now */
1069                 state = EXIT_ZOMBIE;
1070                 if (do_notify_parent(p, p->exit_signal))
1071                         state = EXIT_DEAD;
1072                 p->exit_state = state;
1073                 write_unlock_irq(&tasklist_lock);
1074         }
1075         if (state == EXIT_DEAD)
1076                 release_task(p);
1077
1078 out_info:
1079         infop = wo->wo_info;
1080         if (infop) {
1081                 if ((status & 0x7f) == 0) {
1082                         infop->cause = CLD_EXITED;
1083                         infop->status = status >> 8;
1084                 } else {
1085                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1086                         infop->status = status & 0x7f;
1087                 }
1088                 infop->pid = pid;
1089                 infop->uid = uid;
1090         }
1091
1092         return pid;
1093 }
1094
1095 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1096 {
1097         if (ptrace) {
1098                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1099                         return &p->exit_code;
1100         } else {
1101                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1102                         return &p->signal->group_exit_code;
1103         }
1104         return NULL;
1105 }
1106
1107 /**
1108  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1109  * @wo: wait options
1110  * @ptrace: is the wait for ptrace
1111  * @p: task to wait for
1112  *
1113  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1114  *
1115  * CONTEXT:
1116  * read_lock(&tasklist_lock), which is released if return value is
1117  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1118  *
1119  * RETURNS:
1120  * 0 if wait condition didn't exist and search for other wait conditions
1121  * should continue.  Non-zero return, -errno on failure and @p's pid on
1122  * success, implies that tasklist_lock is released and wait condition
1123  * search should terminate.
1124  */
1125 static int wait_task_stopped(struct wait_opts *wo,
1126                                 int ptrace, struct task_struct *p)
1127 {
1128         struct waitid_info *infop;
1129         int exit_code, *p_code, why;
1130         uid_t uid = 0; /* unneeded, required by compiler */
1131         pid_t pid;
1132
1133         /*
1134          * Traditionally we see ptrace'd stopped tasks regardless of options.
1135          */
1136         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1137                 return 0;
1138
1139         if (!task_stopped_code(p, ptrace))
1140                 return 0;
1141
1142         exit_code = 0;
1143         spin_lock_irq(&p->sighand->siglock);
1144
1145         p_code = task_stopped_code(p, ptrace);
1146         if (unlikely(!p_code))
1147                 goto unlock_sig;
1148
1149         exit_code = *p_code;
1150         if (!exit_code)
1151                 goto unlock_sig;
1152
1153         if (!unlikely(wo->wo_flags & WNOWAIT))
1154                 *p_code = 0;
1155
1156         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1157 unlock_sig:
1158         spin_unlock_irq(&p->sighand->siglock);
1159         if (!exit_code)
1160                 return 0;
1161
1162         /*
1163          * Now we are pretty sure this task is interesting.
1164          * Make sure it doesn't get reaped out from under us while we
1165          * give up the lock and then examine it below.  We don't want to
1166          * keep holding onto the tasklist_lock while we call getrusage and
1167          * possibly take page faults for user memory.
1168          */
1169         get_task_struct(p);
1170         pid = task_pid_vnr(p);
1171         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1172         read_unlock(&tasklist_lock);
1173         sched_annotate_sleep();
1174         if (wo->wo_rusage)
1175                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1176         put_task_struct(p);
1177
1178         if (likely(!(wo->wo_flags & WNOWAIT)))
1179                 wo->wo_stat = (exit_code << 8) | 0x7f;
1180
1181         infop = wo->wo_info;
1182         if (infop) {
1183                 infop->cause = why;
1184                 infop->status = exit_code;
1185                 infop->pid = pid;
1186                 infop->uid = uid;
1187         }
1188         return pid;
1189 }
1190
1191 /*
1192  * Handle do_wait work for one task in a live, non-stopped state.
1193  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1194  * the lock and this task is uninteresting.  If we return nonzero, we have
1195  * released the lock and the system call should return.
1196  */
1197 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1198 {
1199         struct waitid_info *infop;
1200         pid_t pid;
1201         uid_t uid;
1202
1203         if (!unlikely(wo->wo_flags & WCONTINUED))
1204                 return 0;
1205
1206         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1207                 return 0;
1208
1209         spin_lock_irq(&p->sighand->siglock);
1210         /* Re-check with the lock held.  */
1211         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1212                 spin_unlock_irq(&p->sighand->siglock);
1213                 return 0;
1214         }
1215         if (!unlikely(wo->wo_flags & WNOWAIT))
1216                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1217         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1218         spin_unlock_irq(&p->sighand->siglock);
1219
1220         pid = task_pid_vnr(p);
1221         get_task_struct(p);
1222         read_unlock(&tasklist_lock);
1223         sched_annotate_sleep();
1224         if (wo->wo_rusage)
1225                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1226         put_task_struct(p);
1227
1228         infop = wo->wo_info;
1229         if (!infop) {
1230                 wo->wo_stat = 0xffff;
1231         } else {
1232                 infop->cause = CLD_CONTINUED;
1233                 infop->pid = pid;
1234                 infop->uid = uid;
1235                 infop->status = SIGCONT;
1236         }
1237         return pid;
1238 }
1239
1240 /*
1241  * Consider @p for a wait by @parent.
1242  *
1243  * -ECHILD should be in ->notask_error before the first call.
1244  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1245  * Returns zero if the search for a child should continue;
1246  * then ->notask_error is 0 if @p is an eligible child,
1247  * or still -ECHILD.
1248  */
1249 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1250                                 struct task_struct *p)
1251 {
1252         /*
1253          * We can race with wait_task_zombie() from another thread.
1254          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1255          * can't confuse the checks below.
1256          */
1257         int exit_state = READ_ONCE(p->exit_state);
1258         int ret;
1259
1260         if (unlikely(exit_state == EXIT_DEAD))
1261                 return 0;
1262
1263         ret = eligible_child(wo, ptrace, p);
1264         if (!ret)
1265                 return ret;
1266
1267         if (unlikely(exit_state == EXIT_TRACE)) {
1268                 /*
1269                  * ptrace == 0 means we are the natural parent. In this case
1270                  * we should clear notask_error, debugger will notify us.
1271                  */
1272                 if (likely(!ptrace))
1273                         wo->notask_error = 0;
1274                 return 0;
1275         }
1276
1277         if (likely(!ptrace) && unlikely(p->ptrace)) {
1278                 /*
1279                  * If it is traced by its real parent's group, just pretend
1280                  * the caller is ptrace_do_wait() and reap this child if it
1281                  * is zombie.
1282                  *
1283                  * This also hides group stop state from real parent; otherwise
1284                  * a single stop can be reported twice as group and ptrace stop.
1285                  * If a ptracer wants to distinguish these two events for its
1286                  * own children it should create a separate process which takes
1287                  * the role of real parent.
1288                  */
1289                 if (!ptrace_reparented(p))
1290                         ptrace = 1;
1291         }
1292
1293         /* slay zombie? */
1294         if (exit_state == EXIT_ZOMBIE) {
1295                 /* we don't reap group leaders with subthreads */
1296                 if (!delay_group_leader(p)) {
1297                         /*
1298                          * A zombie ptracee is only visible to its ptracer.
1299                          * Notification and reaping will be cascaded to the
1300                          * real parent when the ptracer detaches.
1301                          */
1302                         if (unlikely(ptrace) || likely(!p->ptrace))
1303                                 return wait_task_zombie(wo, p);
1304                 }
1305
1306                 /*
1307                  * Allow access to stopped/continued state via zombie by
1308                  * falling through.  Clearing of notask_error is complex.
1309                  *
1310                  * When !@ptrace:
1311                  *
1312                  * If WEXITED is set, notask_error should naturally be
1313                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1314                  * so, if there are live subthreads, there are events to
1315                  * wait for.  If all subthreads are dead, it's still safe
1316                  * to clear - this function will be called again in finite
1317                  * amount time once all the subthreads are released and
1318                  * will then return without clearing.
1319                  *
1320                  * When @ptrace:
1321                  *
1322                  * Stopped state is per-task and thus can't change once the
1323                  * target task dies.  Only continued and exited can happen.
1324                  * Clear notask_error if WCONTINUED | WEXITED.
1325                  */
1326                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1327                         wo->notask_error = 0;
1328         } else {
1329                 /*
1330                  * @p is alive and it's gonna stop, continue or exit, so
1331                  * there always is something to wait for.
1332                  */
1333                 wo->notask_error = 0;
1334         }
1335
1336         /*
1337          * Wait for stopped.  Depending on @ptrace, different stopped state
1338          * is used and the two don't interact with each other.
1339          */
1340         ret = wait_task_stopped(wo, ptrace, p);
1341         if (ret)
1342                 return ret;
1343
1344         /*
1345          * Wait for continued.  There's only one continued state and the
1346          * ptracer can consume it which can confuse the real parent.  Don't
1347          * use WCONTINUED from ptracer.  You don't need or want it.
1348          */
1349         return wait_task_continued(wo, p);
1350 }
1351
1352 /*
1353  * Do the work of do_wait() for one thread in the group, @tsk.
1354  *
1355  * -ECHILD should be in ->notask_error before the first call.
1356  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1357  * Returns zero if the search for a child should continue; then
1358  * ->notask_error is 0 if there were any eligible children,
1359  * or still -ECHILD.
1360  */
1361 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1362 {
1363         struct task_struct *p;
1364
1365         list_for_each_entry(p, &tsk->children, sibling) {
1366                 int ret = wait_consider_task(wo, 0, p);
1367
1368                 if (ret)
1369                         return ret;
1370         }
1371
1372         return 0;
1373 }
1374
1375 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1376 {
1377         struct task_struct *p;
1378
1379         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1380                 int ret = wait_consider_task(wo, 1, p);
1381
1382                 if (ret)
1383                         return ret;
1384         }
1385
1386         return 0;
1387 }
1388
1389 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1390                                 int sync, void *key)
1391 {
1392         struct wait_opts *wo = container_of(wait, struct wait_opts,
1393                                                 child_wait);
1394         struct task_struct *p = key;
1395
1396         if (!eligible_pid(wo, p))
1397                 return 0;
1398
1399         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1400                 return 0;
1401
1402         return default_wake_function(wait, mode, sync, key);
1403 }
1404
1405 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1406 {
1407         __wake_up_sync_key(&parent->signal->wait_chldexit,
1408                            TASK_INTERRUPTIBLE, p);
1409 }
1410
1411 static long do_wait(struct wait_opts *wo)
1412 {
1413         struct task_struct *tsk;
1414         int retval;
1415
1416         trace_sched_process_wait(wo->wo_pid);
1417
1418         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1419         wo->child_wait.private = current;
1420         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1421 repeat:
1422         /*
1423          * If there is nothing that can match our criteria, just get out.
1424          * We will clear ->notask_error to zero if we see any child that
1425          * might later match our criteria, even if we are not able to reap
1426          * it yet.
1427          */
1428         wo->notask_error = -ECHILD;
1429         if ((wo->wo_type < PIDTYPE_MAX) &&
1430            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1431                 goto notask;
1432
1433         set_current_state(TASK_INTERRUPTIBLE);
1434         read_lock(&tasklist_lock);
1435         tsk = current;
1436         do {
1437                 retval = do_wait_thread(wo, tsk);
1438                 if (retval)
1439                         goto end;
1440
1441                 retval = ptrace_do_wait(wo, tsk);
1442                 if (retval)
1443                         goto end;
1444
1445                 if (wo->wo_flags & __WNOTHREAD)
1446                         break;
1447         } while_each_thread(current, tsk);
1448         read_unlock(&tasklist_lock);
1449
1450 notask:
1451         retval = wo->notask_error;
1452         if (!retval && !(wo->wo_flags & WNOHANG)) {
1453                 retval = -ERESTARTSYS;
1454                 if (!signal_pending(current)) {
1455                         schedule();
1456                         goto repeat;
1457                 }
1458         }
1459 end:
1460         __set_current_state(TASK_RUNNING);
1461         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1462         return retval;
1463 }
1464
1465 static struct pid *pidfd_get_pid(unsigned int fd)
1466 {
1467         struct fd f;
1468         struct pid *pid;
1469
1470         f = fdget(fd);
1471         if (!f.file)
1472                 return ERR_PTR(-EBADF);
1473
1474         pid = pidfd_pid(f.file);
1475         if (!IS_ERR(pid))
1476                 get_pid(pid);
1477
1478         fdput(f);
1479         return pid;
1480 }
1481
1482 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1483                           int options, struct rusage *ru)
1484 {
1485         struct wait_opts wo;
1486         struct pid *pid = NULL;
1487         enum pid_type type;
1488         long ret;
1489
1490         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1491                         __WNOTHREAD|__WCLONE|__WALL))
1492                 return -EINVAL;
1493         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1494                 return -EINVAL;
1495
1496         switch (which) {
1497         case P_ALL:
1498                 type = PIDTYPE_MAX;
1499                 break;
1500         case P_PID:
1501                 type = PIDTYPE_PID;
1502                 if (upid <= 0)
1503                         return -EINVAL;
1504
1505                 pid = find_get_pid(upid);
1506                 break;
1507         case P_PGID:
1508                 type = PIDTYPE_PGID;
1509                 if (upid < 0)
1510                         return -EINVAL;
1511
1512                 if (upid)
1513                         pid = find_get_pid(upid);
1514                 else
1515                         pid = get_task_pid(current, PIDTYPE_PGID);
1516                 break;
1517         case P_PIDFD:
1518                 type = PIDTYPE_PID;
1519                 if (upid < 0)
1520                         return -EINVAL;
1521
1522                 pid = pidfd_get_pid(upid);
1523                 if (IS_ERR(pid))
1524                         return PTR_ERR(pid);
1525                 break;
1526         default:
1527                 return -EINVAL;
1528         }
1529
1530         wo.wo_type      = type;
1531         wo.wo_pid       = pid;
1532         wo.wo_flags     = options;
1533         wo.wo_info      = infop;
1534         wo.wo_rusage    = ru;
1535         ret = do_wait(&wo);
1536
1537         put_pid(pid);
1538         return ret;
1539 }
1540
1541 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1542                 infop, int, options, struct rusage __user *, ru)
1543 {
1544         struct rusage r;
1545         struct waitid_info info = {.status = 0};
1546         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1547         int signo = 0;
1548
1549         if (err > 0) {
1550                 signo = SIGCHLD;
1551                 err = 0;
1552                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1553                         return -EFAULT;
1554         }
1555         if (!infop)
1556                 return err;
1557
1558         if (!user_access_begin(infop, sizeof(*infop)))
1559                 return -EFAULT;
1560
1561         unsafe_put_user(signo, &infop->si_signo, Efault);
1562         unsafe_put_user(0, &infop->si_errno, Efault);
1563         unsafe_put_user(info.cause, &infop->si_code, Efault);
1564         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1565         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1566         unsafe_put_user(info.status, &infop->si_status, Efault);
1567         user_access_end();
1568         return err;
1569 Efault:
1570         user_access_end();
1571         return -EFAULT;
1572 }
1573
1574 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1575                   struct rusage *ru)
1576 {
1577         struct wait_opts wo;
1578         struct pid *pid = NULL;
1579         enum pid_type type;
1580         long ret;
1581
1582         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1583                         __WNOTHREAD|__WCLONE|__WALL))
1584                 return -EINVAL;
1585
1586         /* -INT_MIN is not defined */
1587         if (upid == INT_MIN)
1588                 return -ESRCH;
1589
1590         if (upid == -1)
1591                 type = PIDTYPE_MAX;
1592         else if (upid < 0) {
1593                 type = PIDTYPE_PGID;
1594                 pid = find_get_pid(-upid);
1595         } else if (upid == 0) {
1596                 type = PIDTYPE_PGID;
1597                 pid = get_task_pid(current, PIDTYPE_PGID);
1598         } else /* upid > 0 */ {
1599                 type = PIDTYPE_PID;
1600                 pid = find_get_pid(upid);
1601         }
1602
1603         wo.wo_type      = type;
1604         wo.wo_pid       = pid;
1605         wo.wo_flags     = options | WEXITED;
1606         wo.wo_info      = NULL;
1607         wo.wo_stat      = 0;
1608         wo.wo_rusage    = ru;
1609         ret = do_wait(&wo);
1610         put_pid(pid);
1611         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1612                 ret = -EFAULT;
1613
1614         return ret;
1615 }
1616
1617 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1618                 int, options, struct rusage __user *, ru)
1619 {
1620         struct rusage r;
1621         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1622
1623         if (err > 0) {
1624                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1625                         return -EFAULT;
1626         }
1627         return err;
1628 }
1629
1630 #ifdef __ARCH_WANT_SYS_WAITPID
1631
1632 /*
1633  * sys_waitpid() remains for compatibility. waitpid() should be
1634  * implemented by calling sys_wait4() from libc.a.
1635  */
1636 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1637 {
1638         return kernel_wait4(pid, stat_addr, options, NULL);
1639 }
1640
1641 #endif
1642
1643 #ifdef CONFIG_COMPAT
1644 COMPAT_SYSCALL_DEFINE4(wait4,
1645         compat_pid_t, pid,
1646         compat_uint_t __user *, stat_addr,
1647         int, options,
1648         struct compat_rusage __user *, ru)
1649 {
1650         struct rusage r;
1651         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1652         if (err > 0) {
1653                 if (ru && put_compat_rusage(&r, ru))
1654                         return -EFAULT;
1655         }
1656         return err;
1657 }
1658
1659 COMPAT_SYSCALL_DEFINE5(waitid,
1660                 int, which, compat_pid_t, pid,
1661                 struct compat_siginfo __user *, infop, int, options,
1662                 struct compat_rusage __user *, uru)
1663 {
1664         struct rusage ru;
1665         struct waitid_info info = {.status = 0};
1666         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1667         int signo = 0;
1668         if (err > 0) {
1669                 signo = SIGCHLD;
1670                 err = 0;
1671                 if (uru) {
1672                         /* kernel_waitid() overwrites everything in ru */
1673                         if (COMPAT_USE_64BIT_TIME)
1674                                 err = copy_to_user(uru, &ru, sizeof(ru));
1675                         else
1676                                 err = put_compat_rusage(&ru, uru);
1677                         if (err)
1678                                 return -EFAULT;
1679                 }
1680         }
1681
1682         if (!infop)
1683                 return err;
1684
1685         if (!user_access_begin(infop, sizeof(*infop)))
1686                 return -EFAULT;
1687
1688         unsafe_put_user(signo, &infop->si_signo, Efault);
1689         unsafe_put_user(0, &infop->si_errno, Efault);
1690         unsafe_put_user(info.cause, &infop->si_code, Efault);
1691         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1692         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1693         unsafe_put_user(info.status, &infop->si_status, Efault);
1694         user_access_end();
1695         return err;
1696 Efault:
1697         user_access_end();
1698         return -EFAULT;
1699 }
1700 #endif
1701
1702 __weak void abort(void)
1703 {
1704         BUG();
1705
1706         /* if that doesn't kill us, halt */
1707         panic("Oops failed to kill thread");
1708 }
1709 EXPORT_SYMBOL(abort);