Merge tag 'char-misc-6.2-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-microblaze.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/blkdev.h>
53 #include <linux/task_work.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/kmsan.h>
64 #include <linux/random.h>
65 #include <linux/rcuwait.h>
66 #include <linux/compat.h>
67 #include <linux/io_uring.h>
68 #include <linux/kprobes.h>
69 #include <linux/rethook.h>
70 #include <linux/sysfs.h>
71
72 #include <linux/uaccess.h>
73 #include <asm/unistd.h>
74 #include <asm/mmu_context.h>
75
76 /*
77  * The default value should be high enough to not crash a system that randomly
78  * crashes its kernel from time to time, but low enough to at least not permit
79  * overflowing 32-bit refcounts or the ldsem writer count.
80  */
81 static unsigned int oops_limit = 10000;
82
83 #ifdef CONFIG_SYSCTL
84 static struct ctl_table kern_exit_table[] = {
85         {
86                 .procname       = "oops_limit",
87                 .data           = &oops_limit,
88                 .maxlen         = sizeof(oops_limit),
89                 .mode           = 0644,
90                 .proc_handler   = proc_douintvec,
91         },
92         { }
93 };
94
95 static __init int kernel_exit_sysctls_init(void)
96 {
97         register_sysctl_init("kernel", kern_exit_table);
98         return 0;
99 }
100 late_initcall(kernel_exit_sysctls_init);
101 #endif
102
103 static atomic_t oops_count = ATOMIC_INIT(0);
104
105 #ifdef CONFIG_SYSFS
106 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
107                                char *page)
108 {
109         return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
110 }
111
112 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
113
114 static __init int kernel_exit_sysfs_init(void)
115 {
116         sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
117         return 0;
118 }
119 late_initcall(kernel_exit_sysfs_init);
120 #endif
121
122 static void __unhash_process(struct task_struct *p, bool group_dead)
123 {
124         nr_threads--;
125         detach_pid(p, PIDTYPE_PID);
126         if (group_dead) {
127                 detach_pid(p, PIDTYPE_TGID);
128                 detach_pid(p, PIDTYPE_PGID);
129                 detach_pid(p, PIDTYPE_SID);
130
131                 list_del_rcu(&p->tasks);
132                 list_del_init(&p->sibling);
133                 __this_cpu_dec(process_counts);
134         }
135         list_del_rcu(&p->thread_group);
136         list_del_rcu(&p->thread_node);
137 }
138
139 /*
140  * This function expects the tasklist_lock write-locked.
141  */
142 static void __exit_signal(struct task_struct *tsk)
143 {
144         struct signal_struct *sig = tsk->signal;
145         bool group_dead = thread_group_leader(tsk);
146         struct sighand_struct *sighand;
147         struct tty_struct *tty;
148         u64 utime, stime;
149
150         sighand = rcu_dereference_check(tsk->sighand,
151                                         lockdep_tasklist_lock_is_held());
152         spin_lock(&sighand->siglock);
153
154 #ifdef CONFIG_POSIX_TIMERS
155         posix_cpu_timers_exit(tsk);
156         if (group_dead)
157                 posix_cpu_timers_exit_group(tsk);
158 #endif
159
160         if (group_dead) {
161                 tty = sig->tty;
162                 sig->tty = NULL;
163         } else {
164                 /*
165                  * If there is any task waiting for the group exit
166                  * then notify it:
167                  */
168                 if (sig->notify_count > 0 && !--sig->notify_count)
169                         wake_up_process(sig->group_exec_task);
170
171                 if (tsk == sig->curr_target)
172                         sig->curr_target = next_thread(tsk);
173         }
174
175         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
176                               sizeof(unsigned long long));
177
178         /*
179          * Accumulate here the counters for all threads as they die. We could
180          * skip the group leader because it is the last user of signal_struct,
181          * but we want to avoid the race with thread_group_cputime() which can
182          * see the empty ->thread_head list.
183          */
184         task_cputime(tsk, &utime, &stime);
185         write_seqlock(&sig->stats_lock);
186         sig->utime += utime;
187         sig->stime += stime;
188         sig->gtime += task_gtime(tsk);
189         sig->min_flt += tsk->min_flt;
190         sig->maj_flt += tsk->maj_flt;
191         sig->nvcsw += tsk->nvcsw;
192         sig->nivcsw += tsk->nivcsw;
193         sig->inblock += task_io_get_inblock(tsk);
194         sig->oublock += task_io_get_oublock(tsk);
195         task_io_accounting_add(&sig->ioac, &tsk->ioac);
196         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
197         sig->nr_threads--;
198         __unhash_process(tsk, group_dead);
199         write_sequnlock(&sig->stats_lock);
200
201         /*
202          * Do this under ->siglock, we can race with another thread
203          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
204          */
205         flush_sigqueue(&tsk->pending);
206         tsk->sighand = NULL;
207         spin_unlock(&sighand->siglock);
208
209         __cleanup_sighand(sighand);
210         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
211         if (group_dead) {
212                 flush_sigqueue(&sig->shared_pending);
213                 tty_kref_put(tty);
214         }
215 }
216
217 static void delayed_put_task_struct(struct rcu_head *rhp)
218 {
219         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220
221         kprobe_flush_task(tsk);
222         rethook_flush_task(tsk);
223         perf_event_delayed_put(tsk);
224         trace_sched_process_free(tsk);
225         put_task_struct(tsk);
226 }
227
228 void put_task_struct_rcu_user(struct task_struct *task)
229 {
230         if (refcount_dec_and_test(&task->rcu_users))
231                 call_rcu(&task->rcu, delayed_put_task_struct);
232 }
233
234 void __weak release_thread(struct task_struct *dead_task)
235 {
236 }
237
238 void release_task(struct task_struct *p)
239 {
240         struct task_struct *leader;
241         struct pid *thread_pid;
242         int zap_leader;
243 repeat:
244         /* don't need to get the RCU readlock here - the process is dead and
245          * can't be modifying its own credentials. But shut RCU-lockdep up */
246         rcu_read_lock();
247         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
248         rcu_read_unlock();
249
250         cgroup_release(p);
251
252         write_lock_irq(&tasklist_lock);
253         ptrace_release_task(p);
254         thread_pid = get_pid(p->thread_pid);
255         __exit_signal(p);
256
257         /*
258          * If we are the last non-leader member of the thread
259          * group, and the leader is zombie, then notify the
260          * group leader's parent process. (if it wants notification.)
261          */
262         zap_leader = 0;
263         leader = p->group_leader;
264         if (leader != p && thread_group_empty(leader)
265                         && leader->exit_state == EXIT_ZOMBIE) {
266                 /*
267                  * If we were the last child thread and the leader has
268                  * exited already, and the leader's parent ignores SIGCHLD,
269                  * then we are the one who should release the leader.
270                  */
271                 zap_leader = do_notify_parent(leader, leader->exit_signal);
272                 if (zap_leader)
273                         leader->exit_state = EXIT_DEAD;
274         }
275
276         write_unlock_irq(&tasklist_lock);
277         seccomp_filter_release(p);
278         proc_flush_pid(thread_pid);
279         put_pid(thread_pid);
280         release_thread(p);
281         put_task_struct_rcu_user(p);
282
283         p = leader;
284         if (unlikely(zap_leader))
285                 goto repeat;
286 }
287
288 int rcuwait_wake_up(struct rcuwait *w)
289 {
290         int ret = 0;
291         struct task_struct *task;
292
293         rcu_read_lock();
294
295         /*
296          * Order condition vs @task, such that everything prior to the load
297          * of @task is visible. This is the condition as to why the user called
298          * rcuwait_wake() in the first place. Pairs with set_current_state()
299          * barrier (A) in rcuwait_wait_event().
300          *
301          *    WAIT                WAKE
302          *    [S] tsk = current   [S] cond = true
303          *        MB (A)              MB (B)
304          *    [L] cond            [L] tsk
305          */
306         smp_mb(); /* (B) */
307
308         task = rcu_dereference(w->task);
309         if (task)
310                 ret = wake_up_process(task);
311         rcu_read_unlock();
312
313         return ret;
314 }
315 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
316
317 /*
318  * Determine if a process group is "orphaned", according to the POSIX
319  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
320  * by terminal-generated stop signals.  Newly orphaned process groups are
321  * to receive a SIGHUP and a SIGCONT.
322  *
323  * "I ask you, have you ever known what it is to be an orphan?"
324  */
325 static int will_become_orphaned_pgrp(struct pid *pgrp,
326                                         struct task_struct *ignored_task)
327 {
328         struct task_struct *p;
329
330         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
331                 if ((p == ignored_task) ||
332                     (p->exit_state && thread_group_empty(p)) ||
333                     is_global_init(p->real_parent))
334                         continue;
335
336                 if (task_pgrp(p->real_parent) != pgrp &&
337                     task_session(p->real_parent) == task_session(p))
338                         return 0;
339         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
340
341         return 1;
342 }
343
344 int is_current_pgrp_orphaned(void)
345 {
346         int retval;
347
348         read_lock(&tasklist_lock);
349         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
350         read_unlock(&tasklist_lock);
351
352         return retval;
353 }
354
355 static bool has_stopped_jobs(struct pid *pgrp)
356 {
357         struct task_struct *p;
358
359         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
360                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
361                         return true;
362         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
363
364         return false;
365 }
366
367 /*
368  * Check to see if any process groups have become orphaned as
369  * a result of our exiting, and if they have any stopped jobs,
370  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
371  */
372 static void
373 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
374 {
375         struct pid *pgrp = task_pgrp(tsk);
376         struct task_struct *ignored_task = tsk;
377
378         if (!parent)
379                 /* exit: our father is in a different pgrp than
380                  * we are and we were the only connection outside.
381                  */
382                 parent = tsk->real_parent;
383         else
384                 /* reparent: our child is in a different pgrp than
385                  * we are, and it was the only connection outside.
386                  */
387                 ignored_task = NULL;
388
389         if (task_pgrp(parent) != pgrp &&
390             task_session(parent) == task_session(tsk) &&
391             will_become_orphaned_pgrp(pgrp, ignored_task) &&
392             has_stopped_jobs(pgrp)) {
393                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
394                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
395         }
396 }
397
398 static void coredump_task_exit(struct task_struct *tsk)
399 {
400         struct core_state *core_state;
401
402         /*
403          * Serialize with any possible pending coredump.
404          * We must hold siglock around checking core_state
405          * and setting PF_POSTCOREDUMP.  The core-inducing thread
406          * will increment ->nr_threads for each thread in the
407          * group without PF_POSTCOREDUMP set.
408          */
409         spin_lock_irq(&tsk->sighand->siglock);
410         tsk->flags |= PF_POSTCOREDUMP;
411         core_state = tsk->signal->core_state;
412         spin_unlock_irq(&tsk->sighand->siglock);
413         if (core_state) {
414                 struct core_thread self;
415
416                 self.task = current;
417                 if (self.task->flags & PF_SIGNALED)
418                         self.next = xchg(&core_state->dumper.next, &self);
419                 else
420                         self.task = NULL;
421                 /*
422                  * Implies mb(), the result of xchg() must be visible
423                  * to core_state->dumper.
424                  */
425                 if (atomic_dec_and_test(&core_state->nr_threads))
426                         complete(&core_state->startup);
427
428                 for (;;) {
429                         set_current_state(TASK_UNINTERRUPTIBLE|TASK_FREEZABLE);
430                         if (!self.task) /* see coredump_finish() */
431                                 break;
432                         schedule();
433                 }
434                 __set_current_state(TASK_RUNNING);
435         }
436 }
437
438 #ifdef CONFIG_MEMCG
439 /*
440  * A task is exiting.   If it owned this mm, find a new owner for the mm.
441  */
442 void mm_update_next_owner(struct mm_struct *mm)
443 {
444         struct task_struct *c, *g, *p = current;
445
446 retry:
447         /*
448          * If the exiting or execing task is not the owner, it's
449          * someone else's problem.
450          */
451         if (mm->owner != p)
452                 return;
453         /*
454          * The current owner is exiting/execing and there are no other
455          * candidates.  Do not leave the mm pointing to a possibly
456          * freed task structure.
457          */
458         if (atomic_read(&mm->mm_users) <= 1) {
459                 WRITE_ONCE(mm->owner, NULL);
460                 return;
461         }
462
463         read_lock(&tasklist_lock);
464         /*
465          * Search in the children
466          */
467         list_for_each_entry(c, &p->children, sibling) {
468                 if (c->mm == mm)
469                         goto assign_new_owner;
470         }
471
472         /*
473          * Search in the siblings
474          */
475         list_for_each_entry(c, &p->real_parent->children, sibling) {
476                 if (c->mm == mm)
477                         goto assign_new_owner;
478         }
479
480         /*
481          * Search through everything else, we should not get here often.
482          */
483         for_each_process(g) {
484                 if (g->flags & PF_KTHREAD)
485                         continue;
486                 for_each_thread(g, c) {
487                         if (c->mm == mm)
488                                 goto assign_new_owner;
489                         if (c->mm)
490                                 break;
491                 }
492         }
493         read_unlock(&tasklist_lock);
494         /*
495          * We found no owner yet mm_users > 1: this implies that we are
496          * most likely racing with swapoff (try_to_unuse()) or /proc or
497          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
498          */
499         WRITE_ONCE(mm->owner, NULL);
500         return;
501
502 assign_new_owner:
503         BUG_ON(c == p);
504         get_task_struct(c);
505         /*
506          * The task_lock protects c->mm from changing.
507          * We always want mm->owner->mm == mm
508          */
509         task_lock(c);
510         /*
511          * Delay read_unlock() till we have the task_lock()
512          * to ensure that c does not slip away underneath us
513          */
514         read_unlock(&tasklist_lock);
515         if (c->mm != mm) {
516                 task_unlock(c);
517                 put_task_struct(c);
518                 goto retry;
519         }
520         WRITE_ONCE(mm->owner, c);
521         lru_gen_migrate_mm(mm);
522         task_unlock(c);
523         put_task_struct(c);
524 }
525 #endif /* CONFIG_MEMCG */
526
527 /*
528  * Turn us into a lazy TLB process if we
529  * aren't already..
530  */
531 static void exit_mm(void)
532 {
533         struct mm_struct *mm = current->mm;
534
535         exit_mm_release(current, mm);
536         if (!mm)
537                 return;
538         sync_mm_rss(mm);
539         mmap_read_lock(mm);
540         mmgrab(mm);
541         BUG_ON(mm != current->active_mm);
542         /* more a memory barrier than a real lock */
543         task_lock(current);
544         /*
545          * When a thread stops operating on an address space, the loop
546          * in membarrier_private_expedited() may not observe that
547          * tsk->mm, and the loop in membarrier_global_expedited() may
548          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
549          * rq->membarrier_state, so those would not issue an IPI.
550          * Membarrier requires a memory barrier after accessing
551          * user-space memory, before clearing tsk->mm or the
552          * rq->membarrier_state.
553          */
554         smp_mb__after_spinlock();
555         local_irq_disable();
556         current->mm = NULL;
557         membarrier_update_current_mm(NULL);
558         enter_lazy_tlb(mm, current);
559         local_irq_enable();
560         task_unlock(current);
561         mmap_read_unlock(mm);
562         mm_update_next_owner(mm);
563         mmput(mm);
564         if (test_thread_flag(TIF_MEMDIE))
565                 exit_oom_victim();
566 }
567
568 static struct task_struct *find_alive_thread(struct task_struct *p)
569 {
570         struct task_struct *t;
571
572         for_each_thread(p, t) {
573                 if (!(t->flags & PF_EXITING))
574                         return t;
575         }
576         return NULL;
577 }
578
579 static struct task_struct *find_child_reaper(struct task_struct *father,
580                                                 struct list_head *dead)
581         __releases(&tasklist_lock)
582         __acquires(&tasklist_lock)
583 {
584         struct pid_namespace *pid_ns = task_active_pid_ns(father);
585         struct task_struct *reaper = pid_ns->child_reaper;
586         struct task_struct *p, *n;
587
588         if (likely(reaper != father))
589                 return reaper;
590
591         reaper = find_alive_thread(father);
592         if (reaper) {
593                 pid_ns->child_reaper = reaper;
594                 return reaper;
595         }
596
597         write_unlock_irq(&tasklist_lock);
598
599         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
600                 list_del_init(&p->ptrace_entry);
601                 release_task(p);
602         }
603
604         zap_pid_ns_processes(pid_ns);
605         write_lock_irq(&tasklist_lock);
606
607         return father;
608 }
609
610 /*
611  * When we die, we re-parent all our children, and try to:
612  * 1. give them to another thread in our thread group, if such a member exists
613  * 2. give it to the first ancestor process which prctl'd itself as a
614  *    child_subreaper for its children (like a service manager)
615  * 3. give it to the init process (PID 1) in our pid namespace
616  */
617 static struct task_struct *find_new_reaper(struct task_struct *father,
618                                            struct task_struct *child_reaper)
619 {
620         struct task_struct *thread, *reaper;
621
622         thread = find_alive_thread(father);
623         if (thread)
624                 return thread;
625
626         if (father->signal->has_child_subreaper) {
627                 unsigned int ns_level = task_pid(father)->level;
628                 /*
629                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
630                  * We can't check reaper != child_reaper to ensure we do not
631                  * cross the namespaces, the exiting parent could be injected
632                  * by setns() + fork().
633                  * We check pid->level, this is slightly more efficient than
634                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
635                  */
636                 for (reaper = father->real_parent;
637                      task_pid(reaper)->level == ns_level;
638                      reaper = reaper->real_parent) {
639                         if (reaper == &init_task)
640                                 break;
641                         if (!reaper->signal->is_child_subreaper)
642                                 continue;
643                         thread = find_alive_thread(reaper);
644                         if (thread)
645                                 return thread;
646                 }
647         }
648
649         return child_reaper;
650 }
651
652 /*
653 * Any that need to be release_task'd are put on the @dead list.
654  */
655 static void reparent_leader(struct task_struct *father, struct task_struct *p,
656                                 struct list_head *dead)
657 {
658         if (unlikely(p->exit_state == EXIT_DEAD))
659                 return;
660
661         /* We don't want people slaying init. */
662         p->exit_signal = SIGCHLD;
663
664         /* If it has exited notify the new parent about this child's death. */
665         if (!p->ptrace &&
666             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
667                 if (do_notify_parent(p, p->exit_signal)) {
668                         p->exit_state = EXIT_DEAD;
669                         list_add(&p->ptrace_entry, dead);
670                 }
671         }
672
673         kill_orphaned_pgrp(p, father);
674 }
675
676 /*
677  * This does two things:
678  *
679  * A.  Make init inherit all the child processes
680  * B.  Check to see if any process groups have become orphaned
681  *      as a result of our exiting, and if they have any stopped
682  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
683  */
684 static void forget_original_parent(struct task_struct *father,
685                                         struct list_head *dead)
686 {
687         struct task_struct *p, *t, *reaper;
688
689         if (unlikely(!list_empty(&father->ptraced)))
690                 exit_ptrace(father, dead);
691
692         /* Can drop and reacquire tasklist_lock */
693         reaper = find_child_reaper(father, dead);
694         if (list_empty(&father->children))
695                 return;
696
697         reaper = find_new_reaper(father, reaper);
698         list_for_each_entry(p, &father->children, sibling) {
699                 for_each_thread(p, t) {
700                         RCU_INIT_POINTER(t->real_parent, reaper);
701                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
702                         if (likely(!t->ptrace))
703                                 t->parent = t->real_parent;
704                         if (t->pdeath_signal)
705                                 group_send_sig_info(t->pdeath_signal,
706                                                     SEND_SIG_NOINFO, t,
707                                                     PIDTYPE_TGID);
708                 }
709                 /*
710                  * If this is a threaded reparent there is no need to
711                  * notify anyone anything has happened.
712                  */
713                 if (!same_thread_group(reaper, father))
714                         reparent_leader(father, p, dead);
715         }
716         list_splice_tail_init(&father->children, &reaper->children);
717 }
718
719 /*
720  * Send signals to all our closest relatives so that they know
721  * to properly mourn us..
722  */
723 static void exit_notify(struct task_struct *tsk, int group_dead)
724 {
725         bool autoreap;
726         struct task_struct *p, *n;
727         LIST_HEAD(dead);
728
729         write_lock_irq(&tasklist_lock);
730         forget_original_parent(tsk, &dead);
731
732         if (group_dead)
733                 kill_orphaned_pgrp(tsk->group_leader, NULL);
734
735         tsk->exit_state = EXIT_ZOMBIE;
736         if (unlikely(tsk->ptrace)) {
737                 int sig = thread_group_leader(tsk) &&
738                                 thread_group_empty(tsk) &&
739                                 !ptrace_reparented(tsk) ?
740                         tsk->exit_signal : SIGCHLD;
741                 autoreap = do_notify_parent(tsk, sig);
742         } else if (thread_group_leader(tsk)) {
743                 autoreap = thread_group_empty(tsk) &&
744                         do_notify_parent(tsk, tsk->exit_signal);
745         } else {
746                 autoreap = true;
747         }
748
749         if (autoreap) {
750                 tsk->exit_state = EXIT_DEAD;
751                 list_add(&tsk->ptrace_entry, &dead);
752         }
753
754         /* mt-exec, de_thread() is waiting for group leader */
755         if (unlikely(tsk->signal->notify_count < 0))
756                 wake_up_process(tsk->signal->group_exec_task);
757         write_unlock_irq(&tasklist_lock);
758
759         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
760                 list_del_init(&p->ptrace_entry);
761                 release_task(p);
762         }
763 }
764
765 #ifdef CONFIG_DEBUG_STACK_USAGE
766 static void check_stack_usage(void)
767 {
768         static DEFINE_SPINLOCK(low_water_lock);
769         static int lowest_to_date = THREAD_SIZE;
770         unsigned long free;
771
772         free = stack_not_used(current);
773
774         if (free >= lowest_to_date)
775                 return;
776
777         spin_lock(&low_water_lock);
778         if (free < lowest_to_date) {
779                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
780                         current->comm, task_pid_nr(current), free);
781                 lowest_to_date = free;
782         }
783         spin_unlock(&low_water_lock);
784 }
785 #else
786 static inline void check_stack_usage(void) {}
787 #endif
788
789 static void synchronize_group_exit(struct task_struct *tsk, long code)
790 {
791         struct sighand_struct *sighand = tsk->sighand;
792         struct signal_struct *signal = tsk->signal;
793
794         spin_lock_irq(&sighand->siglock);
795         signal->quick_threads--;
796         if ((signal->quick_threads == 0) &&
797             !(signal->flags & SIGNAL_GROUP_EXIT)) {
798                 signal->flags = SIGNAL_GROUP_EXIT;
799                 signal->group_exit_code = code;
800                 signal->group_stop_count = 0;
801         }
802         spin_unlock_irq(&sighand->siglock);
803 }
804
805 void __noreturn do_exit(long code)
806 {
807         struct task_struct *tsk = current;
808         int group_dead;
809
810         synchronize_group_exit(tsk, code);
811
812         WARN_ON(tsk->plug);
813
814         kcov_task_exit(tsk);
815         kmsan_task_exit(tsk);
816
817         coredump_task_exit(tsk);
818         ptrace_event(PTRACE_EVENT_EXIT, code);
819
820         validate_creds_for_do_exit(tsk);
821
822         io_uring_files_cancel();
823         exit_signals(tsk);  /* sets PF_EXITING */
824
825         /* sync mm's RSS info before statistics gathering */
826         if (tsk->mm)
827                 sync_mm_rss(tsk->mm);
828         acct_update_integrals(tsk);
829         group_dead = atomic_dec_and_test(&tsk->signal->live);
830         if (group_dead) {
831                 /*
832                  * If the last thread of global init has exited, panic
833                  * immediately to get a useable coredump.
834                  */
835                 if (unlikely(is_global_init(tsk)))
836                         panic("Attempted to kill init! exitcode=0x%08x\n",
837                                 tsk->signal->group_exit_code ?: (int)code);
838
839 #ifdef CONFIG_POSIX_TIMERS
840                 hrtimer_cancel(&tsk->signal->real_timer);
841                 exit_itimers(tsk);
842 #endif
843                 if (tsk->mm)
844                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
845         }
846         acct_collect(code, group_dead);
847         if (group_dead)
848                 tty_audit_exit();
849         audit_free(tsk);
850
851         tsk->exit_code = code;
852         taskstats_exit(tsk, group_dead);
853
854         exit_mm();
855
856         if (group_dead)
857                 acct_process();
858         trace_sched_process_exit(tsk);
859
860         exit_sem(tsk);
861         exit_shm(tsk);
862         exit_files(tsk);
863         exit_fs(tsk);
864         if (group_dead)
865                 disassociate_ctty(1);
866         exit_task_namespaces(tsk);
867         exit_task_work(tsk);
868         exit_thread(tsk);
869
870         /*
871          * Flush inherited counters to the parent - before the parent
872          * gets woken up by child-exit notifications.
873          *
874          * because of cgroup mode, must be called before cgroup_exit()
875          */
876         perf_event_exit_task(tsk);
877
878         sched_autogroup_exit_task(tsk);
879         cgroup_exit(tsk);
880
881         /*
882          * FIXME: do that only when needed, using sched_exit tracepoint
883          */
884         flush_ptrace_hw_breakpoint(tsk);
885
886         exit_tasks_rcu_start();
887         exit_notify(tsk, group_dead);
888         proc_exit_connector(tsk);
889         mpol_put_task_policy(tsk);
890 #ifdef CONFIG_FUTEX
891         if (unlikely(current->pi_state_cache))
892                 kfree(current->pi_state_cache);
893 #endif
894         /*
895          * Make sure we are holding no locks:
896          */
897         debug_check_no_locks_held();
898
899         if (tsk->io_context)
900                 exit_io_context(tsk);
901
902         if (tsk->splice_pipe)
903                 free_pipe_info(tsk->splice_pipe);
904
905         if (tsk->task_frag.page)
906                 put_page(tsk->task_frag.page);
907
908         validate_creds_for_do_exit(tsk);
909         exit_task_stack_account(tsk);
910
911         check_stack_usage();
912         preempt_disable();
913         if (tsk->nr_dirtied)
914                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
915         exit_rcu();
916         exit_tasks_rcu_finish();
917
918         lockdep_free_task(tsk);
919         do_task_dead();
920 }
921
922 void __noreturn make_task_dead(int signr)
923 {
924         /*
925          * Take the task off the cpu after something catastrophic has
926          * happened.
927          *
928          * We can get here from a kernel oops, sometimes with preemption off.
929          * Start by checking for critical errors.
930          * Then fix up important state like USER_DS and preemption.
931          * Then do everything else.
932          */
933         struct task_struct *tsk = current;
934
935         if (unlikely(in_interrupt()))
936                 panic("Aiee, killing interrupt handler!");
937         if (unlikely(!tsk->pid))
938                 panic("Attempted to kill the idle task!");
939
940         if (unlikely(in_atomic())) {
941                 pr_info("note: %s[%d] exited with preempt_count %d\n",
942                         current->comm, task_pid_nr(current),
943                         preempt_count());
944                 preempt_count_set(PREEMPT_ENABLED);
945         }
946
947         /*
948          * Every time the system oopses, if the oops happens while a reference
949          * to an object was held, the reference leaks.
950          * If the oops doesn't also leak memory, repeated oopsing can cause
951          * reference counters to wrap around (if they're not using refcount_t).
952          * This means that repeated oopsing can make unexploitable-looking bugs
953          * exploitable through repeated oopsing.
954          * To make sure this can't happen, place an upper bound on how often the
955          * kernel may oops without panic().
956          */
957         if (atomic_inc_return(&oops_count) >= READ_ONCE(oops_limit) && oops_limit)
958                 panic("Oopsed too often (kernel.oops_limit is %d)", oops_limit);
959
960         /*
961          * We're taking recursive faults here in make_task_dead. Safest is to just
962          * leave this task alone and wait for reboot.
963          */
964         if (unlikely(tsk->flags & PF_EXITING)) {
965                 pr_alert("Fixing recursive fault but reboot is needed!\n");
966                 futex_exit_recursive(tsk);
967                 tsk->exit_state = EXIT_DEAD;
968                 refcount_inc(&tsk->rcu_users);
969                 do_task_dead();
970         }
971
972         do_exit(signr);
973 }
974
975 SYSCALL_DEFINE1(exit, int, error_code)
976 {
977         do_exit((error_code&0xff)<<8);
978 }
979
980 /*
981  * Take down every thread in the group.  This is called by fatal signals
982  * as well as by sys_exit_group (below).
983  */
984 void __noreturn
985 do_group_exit(int exit_code)
986 {
987         struct signal_struct *sig = current->signal;
988
989         if (sig->flags & SIGNAL_GROUP_EXIT)
990                 exit_code = sig->group_exit_code;
991         else if (sig->group_exec_task)
992                 exit_code = 0;
993         else {
994                 struct sighand_struct *const sighand = current->sighand;
995
996                 spin_lock_irq(&sighand->siglock);
997                 if (sig->flags & SIGNAL_GROUP_EXIT)
998                         /* Another thread got here before we took the lock.  */
999                         exit_code = sig->group_exit_code;
1000                 else if (sig->group_exec_task)
1001                         exit_code = 0;
1002                 else {
1003                         sig->group_exit_code = exit_code;
1004                         sig->flags = SIGNAL_GROUP_EXIT;
1005                         zap_other_threads(current);
1006                 }
1007                 spin_unlock_irq(&sighand->siglock);
1008         }
1009
1010         do_exit(exit_code);
1011         /* NOTREACHED */
1012 }
1013
1014 /*
1015  * this kills every thread in the thread group. Note that any externally
1016  * wait4()-ing process will get the correct exit code - even if this
1017  * thread is not the thread group leader.
1018  */
1019 SYSCALL_DEFINE1(exit_group, int, error_code)
1020 {
1021         do_group_exit((error_code & 0xff) << 8);
1022         /* NOTREACHED */
1023         return 0;
1024 }
1025
1026 struct waitid_info {
1027         pid_t pid;
1028         uid_t uid;
1029         int status;
1030         int cause;
1031 };
1032
1033 struct wait_opts {
1034         enum pid_type           wo_type;
1035         int                     wo_flags;
1036         struct pid              *wo_pid;
1037
1038         struct waitid_info      *wo_info;
1039         int                     wo_stat;
1040         struct rusage           *wo_rusage;
1041
1042         wait_queue_entry_t              child_wait;
1043         int                     notask_error;
1044 };
1045
1046 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1047 {
1048         return  wo->wo_type == PIDTYPE_MAX ||
1049                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
1050 }
1051
1052 static int
1053 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1054 {
1055         if (!eligible_pid(wo, p))
1056                 return 0;
1057
1058         /*
1059          * Wait for all children (clone and not) if __WALL is set or
1060          * if it is traced by us.
1061          */
1062         if (ptrace || (wo->wo_flags & __WALL))
1063                 return 1;
1064
1065         /*
1066          * Otherwise, wait for clone children *only* if __WCLONE is set;
1067          * otherwise, wait for non-clone children *only*.
1068          *
1069          * Note: a "clone" child here is one that reports to its parent
1070          * using a signal other than SIGCHLD, or a non-leader thread which
1071          * we can only see if it is traced by us.
1072          */
1073         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1074                 return 0;
1075
1076         return 1;
1077 }
1078
1079 /*
1080  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1081  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1082  * the lock and this task is uninteresting.  If we return nonzero, we have
1083  * released the lock and the system call should return.
1084  */
1085 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1086 {
1087         int state, status;
1088         pid_t pid = task_pid_vnr(p);
1089         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1090         struct waitid_info *infop;
1091
1092         if (!likely(wo->wo_flags & WEXITED))
1093                 return 0;
1094
1095         if (unlikely(wo->wo_flags & WNOWAIT)) {
1096                 status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1097                         ? p->signal->group_exit_code : p->exit_code;
1098                 get_task_struct(p);
1099                 read_unlock(&tasklist_lock);
1100                 sched_annotate_sleep();
1101                 if (wo->wo_rusage)
1102                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1103                 put_task_struct(p);
1104                 goto out_info;
1105         }
1106         /*
1107          * Move the task's state to DEAD/TRACE, only one thread can do this.
1108          */
1109         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1110                 EXIT_TRACE : EXIT_DEAD;
1111         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1112                 return 0;
1113         /*
1114          * We own this thread, nobody else can reap it.
1115          */
1116         read_unlock(&tasklist_lock);
1117         sched_annotate_sleep();
1118
1119         /*
1120          * Check thread_group_leader() to exclude the traced sub-threads.
1121          */
1122         if (state == EXIT_DEAD && thread_group_leader(p)) {
1123                 struct signal_struct *sig = p->signal;
1124                 struct signal_struct *psig = current->signal;
1125                 unsigned long maxrss;
1126                 u64 tgutime, tgstime;
1127
1128                 /*
1129                  * The resource counters for the group leader are in its
1130                  * own task_struct.  Those for dead threads in the group
1131                  * are in its signal_struct, as are those for the child
1132                  * processes it has previously reaped.  All these
1133                  * accumulate in the parent's signal_struct c* fields.
1134                  *
1135                  * We don't bother to take a lock here to protect these
1136                  * p->signal fields because the whole thread group is dead
1137                  * and nobody can change them.
1138                  *
1139                  * psig->stats_lock also protects us from our sub-threads
1140                  * which can reap other children at the same time. Until
1141                  * we change k_getrusage()-like users to rely on this lock
1142                  * we have to take ->siglock as well.
1143                  *
1144                  * We use thread_group_cputime_adjusted() to get times for
1145                  * the thread group, which consolidates times for all threads
1146                  * in the group including the group leader.
1147                  */
1148                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1149                 spin_lock_irq(&current->sighand->siglock);
1150                 write_seqlock(&psig->stats_lock);
1151                 psig->cutime += tgutime + sig->cutime;
1152                 psig->cstime += tgstime + sig->cstime;
1153                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1154                 psig->cmin_flt +=
1155                         p->min_flt + sig->min_flt + sig->cmin_flt;
1156                 psig->cmaj_flt +=
1157                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1158                 psig->cnvcsw +=
1159                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1160                 psig->cnivcsw +=
1161                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1162                 psig->cinblock +=
1163                         task_io_get_inblock(p) +
1164                         sig->inblock + sig->cinblock;
1165                 psig->coublock +=
1166                         task_io_get_oublock(p) +
1167                         sig->oublock + sig->coublock;
1168                 maxrss = max(sig->maxrss, sig->cmaxrss);
1169                 if (psig->cmaxrss < maxrss)
1170                         psig->cmaxrss = maxrss;
1171                 task_io_accounting_add(&psig->ioac, &p->ioac);
1172                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1173                 write_sequnlock(&psig->stats_lock);
1174                 spin_unlock_irq(&current->sighand->siglock);
1175         }
1176
1177         if (wo->wo_rusage)
1178                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1179         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1180                 ? p->signal->group_exit_code : p->exit_code;
1181         wo->wo_stat = status;
1182
1183         if (state == EXIT_TRACE) {
1184                 write_lock_irq(&tasklist_lock);
1185                 /* We dropped tasklist, ptracer could die and untrace */
1186                 ptrace_unlink(p);
1187
1188                 /* If parent wants a zombie, don't release it now */
1189                 state = EXIT_ZOMBIE;
1190                 if (do_notify_parent(p, p->exit_signal))
1191                         state = EXIT_DEAD;
1192                 p->exit_state = state;
1193                 write_unlock_irq(&tasklist_lock);
1194         }
1195         if (state == EXIT_DEAD)
1196                 release_task(p);
1197
1198 out_info:
1199         infop = wo->wo_info;
1200         if (infop) {
1201                 if ((status & 0x7f) == 0) {
1202                         infop->cause = CLD_EXITED;
1203                         infop->status = status >> 8;
1204                 } else {
1205                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1206                         infop->status = status & 0x7f;
1207                 }
1208                 infop->pid = pid;
1209                 infop->uid = uid;
1210         }
1211
1212         return pid;
1213 }
1214
1215 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1216 {
1217         if (ptrace) {
1218                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1219                         return &p->exit_code;
1220         } else {
1221                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1222                         return &p->signal->group_exit_code;
1223         }
1224         return NULL;
1225 }
1226
1227 /**
1228  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1229  * @wo: wait options
1230  * @ptrace: is the wait for ptrace
1231  * @p: task to wait for
1232  *
1233  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1234  *
1235  * CONTEXT:
1236  * read_lock(&tasklist_lock), which is released if return value is
1237  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1238  *
1239  * RETURNS:
1240  * 0 if wait condition didn't exist and search for other wait conditions
1241  * should continue.  Non-zero return, -errno on failure and @p's pid on
1242  * success, implies that tasklist_lock is released and wait condition
1243  * search should terminate.
1244  */
1245 static int wait_task_stopped(struct wait_opts *wo,
1246                                 int ptrace, struct task_struct *p)
1247 {
1248         struct waitid_info *infop;
1249         int exit_code, *p_code, why;
1250         uid_t uid = 0; /* unneeded, required by compiler */
1251         pid_t pid;
1252
1253         /*
1254          * Traditionally we see ptrace'd stopped tasks regardless of options.
1255          */
1256         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1257                 return 0;
1258
1259         if (!task_stopped_code(p, ptrace))
1260                 return 0;
1261
1262         exit_code = 0;
1263         spin_lock_irq(&p->sighand->siglock);
1264
1265         p_code = task_stopped_code(p, ptrace);
1266         if (unlikely(!p_code))
1267                 goto unlock_sig;
1268
1269         exit_code = *p_code;
1270         if (!exit_code)
1271                 goto unlock_sig;
1272
1273         if (!unlikely(wo->wo_flags & WNOWAIT))
1274                 *p_code = 0;
1275
1276         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1277 unlock_sig:
1278         spin_unlock_irq(&p->sighand->siglock);
1279         if (!exit_code)
1280                 return 0;
1281
1282         /*
1283          * Now we are pretty sure this task is interesting.
1284          * Make sure it doesn't get reaped out from under us while we
1285          * give up the lock and then examine it below.  We don't want to
1286          * keep holding onto the tasklist_lock while we call getrusage and
1287          * possibly take page faults for user memory.
1288          */
1289         get_task_struct(p);
1290         pid = task_pid_vnr(p);
1291         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1292         read_unlock(&tasklist_lock);
1293         sched_annotate_sleep();
1294         if (wo->wo_rusage)
1295                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1296         put_task_struct(p);
1297
1298         if (likely(!(wo->wo_flags & WNOWAIT)))
1299                 wo->wo_stat = (exit_code << 8) | 0x7f;
1300
1301         infop = wo->wo_info;
1302         if (infop) {
1303                 infop->cause = why;
1304                 infop->status = exit_code;
1305                 infop->pid = pid;
1306                 infop->uid = uid;
1307         }
1308         return pid;
1309 }
1310
1311 /*
1312  * Handle do_wait work for one task in a live, non-stopped state.
1313  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1314  * the lock and this task is uninteresting.  If we return nonzero, we have
1315  * released the lock and the system call should return.
1316  */
1317 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1318 {
1319         struct waitid_info *infop;
1320         pid_t pid;
1321         uid_t uid;
1322
1323         if (!unlikely(wo->wo_flags & WCONTINUED))
1324                 return 0;
1325
1326         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1327                 return 0;
1328
1329         spin_lock_irq(&p->sighand->siglock);
1330         /* Re-check with the lock held.  */
1331         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1332                 spin_unlock_irq(&p->sighand->siglock);
1333                 return 0;
1334         }
1335         if (!unlikely(wo->wo_flags & WNOWAIT))
1336                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1337         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1338         spin_unlock_irq(&p->sighand->siglock);
1339
1340         pid = task_pid_vnr(p);
1341         get_task_struct(p);
1342         read_unlock(&tasklist_lock);
1343         sched_annotate_sleep();
1344         if (wo->wo_rusage)
1345                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1346         put_task_struct(p);
1347
1348         infop = wo->wo_info;
1349         if (!infop) {
1350                 wo->wo_stat = 0xffff;
1351         } else {
1352                 infop->cause = CLD_CONTINUED;
1353                 infop->pid = pid;
1354                 infop->uid = uid;
1355                 infop->status = SIGCONT;
1356         }
1357         return pid;
1358 }
1359
1360 /*
1361  * Consider @p for a wait by @parent.
1362  *
1363  * -ECHILD should be in ->notask_error before the first call.
1364  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1365  * Returns zero if the search for a child should continue;
1366  * then ->notask_error is 0 if @p is an eligible child,
1367  * or still -ECHILD.
1368  */
1369 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1370                                 struct task_struct *p)
1371 {
1372         /*
1373          * We can race with wait_task_zombie() from another thread.
1374          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1375          * can't confuse the checks below.
1376          */
1377         int exit_state = READ_ONCE(p->exit_state);
1378         int ret;
1379
1380         if (unlikely(exit_state == EXIT_DEAD))
1381                 return 0;
1382
1383         ret = eligible_child(wo, ptrace, p);
1384         if (!ret)
1385                 return ret;
1386
1387         if (unlikely(exit_state == EXIT_TRACE)) {
1388                 /*
1389                  * ptrace == 0 means we are the natural parent. In this case
1390                  * we should clear notask_error, debugger will notify us.
1391                  */
1392                 if (likely(!ptrace))
1393                         wo->notask_error = 0;
1394                 return 0;
1395         }
1396
1397         if (likely(!ptrace) && unlikely(p->ptrace)) {
1398                 /*
1399                  * If it is traced by its real parent's group, just pretend
1400                  * the caller is ptrace_do_wait() and reap this child if it
1401                  * is zombie.
1402                  *
1403                  * This also hides group stop state from real parent; otherwise
1404                  * a single stop can be reported twice as group and ptrace stop.
1405                  * If a ptracer wants to distinguish these two events for its
1406                  * own children it should create a separate process which takes
1407                  * the role of real parent.
1408                  */
1409                 if (!ptrace_reparented(p))
1410                         ptrace = 1;
1411         }
1412
1413         /* slay zombie? */
1414         if (exit_state == EXIT_ZOMBIE) {
1415                 /* we don't reap group leaders with subthreads */
1416                 if (!delay_group_leader(p)) {
1417                         /*
1418                          * A zombie ptracee is only visible to its ptracer.
1419                          * Notification and reaping will be cascaded to the
1420                          * real parent when the ptracer detaches.
1421                          */
1422                         if (unlikely(ptrace) || likely(!p->ptrace))
1423                                 return wait_task_zombie(wo, p);
1424                 }
1425
1426                 /*
1427                  * Allow access to stopped/continued state via zombie by
1428                  * falling through.  Clearing of notask_error is complex.
1429                  *
1430                  * When !@ptrace:
1431                  *
1432                  * If WEXITED is set, notask_error should naturally be
1433                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1434                  * so, if there are live subthreads, there are events to
1435                  * wait for.  If all subthreads are dead, it's still safe
1436                  * to clear - this function will be called again in finite
1437                  * amount time once all the subthreads are released and
1438                  * will then return without clearing.
1439                  *
1440                  * When @ptrace:
1441                  *
1442                  * Stopped state is per-task and thus can't change once the
1443                  * target task dies.  Only continued and exited can happen.
1444                  * Clear notask_error if WCONTINUED | WEXITED.
1445                  */
1446                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1447                         wo->notask_error = 0;
1448         } else {
1449                 /*
1450                  * @p is alive and it's gonna stop, continue or exit, so
1451                  * there always is something to wait for.
1452                  */
1453                 wo->notask_error = 0;
1454         }
1455
1456         /*
1457          * Wait for stopped.  Depending on @ptrace, different stopped state
1458          * is used and the two don't interact with each other.
1459          */
1460         ret = wait_task_stopped(wo, ptrace, p);
1461         if (ret)
1462                 return ret;
1463
1464         /*
1465          * Wait for continued.  There's only one continued state and the
1466          * ptracer can consume it which can confuse the real parent.  Don't
1467          * use WCONTINUED from ptracer.  You don't need or want it.
1468          */
1469         return wait_task_continued(wo, p);
1470 }
1471
1472 /*
1473  * Do the work of do_wait() for one thread in the group, @tsk.
1474  *
1475  * -ECHILD should be in ->notask_error before the first call.
1476  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1477  * Returns zero if the search for a child should continue; then
1478  * ->notask_error is 0 if there were any eligible children,
1479  * or still -ECHILD.
1480  */
1481 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1482 {
1483         struct task_struct *p;
1484
1485         list_for_each_entry(p, &tsk->children, sibling) {
1486                 int ret = wait_consider_task(wo, 0, p);
1487
1488                 if (ret)
1489                         return ret;
1490         }
1491
1492         return 0;
1493 }
1494
1495 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1496 {
1497         struct task_struct *p;
1498
1499         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1500                 int ret = wait_consider_task(wo, 1, p);
1501
1502                 if (ret)
1503                         return ret;
1504         }
1505
1506         return 0;
1507 }
1508
1509 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1510                                 int sync, void *key)
1511 {
1512         struct wait_opts *wo = container_of(wait, struct wait_opts,
1513                                                 child_wait);
1514         struct task_struct *p = key;
1515
1516         if (!eligible_pid(wo, p))
1517                 return 0;
1518
1519         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1520                 return 0;
1521
1522         return default_wake_function(wait, mode, sync, key);
1523 }
1524
1525 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1526 {
1527         __wake_up_sync_key(&parent->signal->wait_chldexit,
1528                            TASK_INTERRUPTIBLE, p);
1529 }
1530
1531 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1532                                  struct task_struct *target)
1533 {
1534         struct task_struct *parent =
1535                 !ptrace ? target->real_parent : target->parent;
1536
1537         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1538                                      same_thread_group(current, parent));
1539 }
1540
1541 /*
1542  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1543  * and tracee lists to find the target task.
1544  */
1545 static int do_wait_pid(struct wait_opts *wo)
1546 {
1547         bool ptrace;
1548         struct task_struct *target;
1549         int retval;
1550
1551         ptrace = false;
1552         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1553         if (target && is_effectively_child(wo, ptrace, target)) {
1554                 retval = wait_consider_task(wo, ptrace, target);
1555                 if (retval)
1556                         return retval;
1557         }
1558
1559         ptrace = true;
1560         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1561         if (target && target->ptrace &&
1562             is_effectively_child(wo, ptrace, target)) {
1563                 retval = wait_consider_task(wo, ptrace, target);
1564                 if (retval)
1565                         return retval;
1566         }
1567
1568         return 0;
1569 }
1570
1571 static long do_wait(struct wait_opts *wo)
1572 {
1573         int retval;
1574
1575         trace_sched_process_wait(wo->wo_pid);
1576
1577         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1578         wo->child_wait.private = current;
1579         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1580 repeat:
1581         /*
1582          * If there is nothing that can match our criteria, just get out.
1583          * We will clear ->notask_error to zero if we see any child that
1584          * might later match our criteria, even if we are not able to reap
1585          * it yet.
1586          */
1587         wo->notask_error = -ECHILD;
1588         if ((wo->wo_type < PIDTYPE_MAX) &&
1589            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1590                 goto notask;
1591
1592         set_current_state(TASK_INTERRUPTIBLE);
1593         read_lock(&tasklist_lock);
1594
1595         if (wo->wo_type == PIDTYPE_PID) {
1596                 retval = do_wait_pid(wo);
1597                 if (retval)
1598                         goto end;
1599         } else {
1600                 struct task_struct *tsk = current;
1601
1602                 do {
1603                         retval = do_wait_thread(wo, tsk);
1604                         if (retval)
1605                                 goto end;
1606
1607                         retval = ptrace_do_wait(wo, tsk);
1608                         if (retval)
1609                                 goto end;
1610
1611                         if (wo->wo_flags & __WNOTHREAD)
1612                                 break;
1613                 } while_each_thread(current, tsk);
1614         }
1615         read_unlock(&tasklist_lock);
1616
1617 notask:
1618         retval = wo->notask_error;
1619         if (!retval && !(wo->wo_flags & WNOHANG)) {
1620                 retval = -ERESTARTSYS;
1621                 if (!signal_pending(current)) {
1622                         schedule();
1623                         goto repeat;
1624                 }
1625         }
1626 end:
1627         __set_current_state(TASK_RUNNING);
1628         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1629         return retval;
1630 }
1631
1632 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1633                           int options, struct rusage *ru)
1634 {
1635         struct wait_opts wo;
1636         struct pid *pid = NULL;
1637         enum pid_type type;
1638         long ret;
1639         unsigned int f_flags = 0;
1640
1641         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1642                         __WNOTHREAD|__WCLONE|__WALL))
1643                 return -EINVAL;
1644         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1645                 return -EINVAL;
1646
1647         switch (which) {
1648         case P_ALL:
1649                 type = PIDTYPE_MAX;
1650                 break;
1651         case P_PID:
1652                 type = PIDTYPE_PID;
1653                 if (upid <= 0)
1654                         return -EINVAL;
1655
1656                 pid = find_get_pid(upid);
1657                 break;
1658         case P_PGID:
1659                 type = PIDTYPE_PGID;
1660                 if (upid < 0)
1661                         return -EINVAL;
1662
1663                 if (upid)
1664                         pid = find_get_pid(upid);
1665                 else
1666                         pid = get_task_pid(current, PIDTYPE_PGID);
1667                 break;
1668         case P_PIDFD:
1669                 type = PIDTYPE_PID;
1670                 if (upid < 0)
1671                         return -EINVAL;
1672
1673                 pid = pidfd_get_pid(upid, &f_flags);
1674                 if (IS_ERR(pid))
1675                         return PTR_ERR(pid);
1676
1677                 break;
1678         default:
1679                 return -EINVAL;
1680         }
1681
1682         wo.wo_type      = type;
1683         wo.wo_pid       = pid;
1684         wo.wo_flags     = options;
1685         wo.wo_info      = infop;
1686         wo.wo_rusage    = ru;
1687         if (f_flags & O_NONBLOCK)
1688                 wo.wo_flags |= WNOHANG;
1689
1690         ret = do_wait(&wo);
1691         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1692                 ret = -EAGAIN;
1693
1694         put_pid(pid);
1695         return ret;
1696 }
1697
1698 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1699                 infop, int, options, struct rusage __user *, ru)
1700 {
1701         struct rusage r;
1702         struct waitid_info info = {.status = 0};
1703         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1704         int signo = 0;
1705
1706         if (err > 0) {
1707                 signo = SIGCHLD;
1708                 err = 0;
1709                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1710                         return -EFAULT;
1711         }
1712         if (!infop)
1713                 return err;
1714
1715         if (!user_write_access_begin(infop, sizeof(*infop)))
1716                 return -EFAULT;
1717
1718         unsafe_put_user(signo, &infop->si_signo, Efault);
1719         unsafe_put_user(0, &infop->si_errno, Efault);
1720         unsafe_put_user(info.cause, &infop->si_code, Efault);
1721         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1722         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1723         unsafe_put_user(info.status, &infop->si_status, Efault);
1724         user_write_access_end();
1725         return err;
1726 Efault:
1727         user_write_access_end();
1728         return -EFAULT;
1729 }
1730
1731 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1732                   struct rusage *ru)
1733 {
1734         struct wait_opts wo;
1735         struct pid *pid = NULL;
1736         enum pid_type type;
1737         long ret;
1738
1739         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1740                         __WNOTHREAD|__WCLONE|__WALL))
1741                 return -EINVAL;
1742
1743         /* -INT_MIN is not defined */
1744         if (upid == INT_MIN)
1745                 return -ESRCH;
1746
1747         if (upid == -1)
1748                 type = PIDTYPE_MAX;
1749         else if (upid < 0) {
1750                 type = PIDTYPE_PGID;
1751                 pid = find_get_pid(-upid);
1752         } else if (upid == 0) {
1753                 type = PIDTYPE_PGID;
1754                 pid = get_task_pid(current, PIDTYPE_PGID);
1755         } else /* upid > 0 */ {
1756                 type = PIDTYPE_PID;
1757                 pid = find_get_pid(upid);
1758         }
1759
1760         wo.wo_type      = type;
1761         wo.wo_pid       = pid;
1762         wo.wo_flags     = options | WEXITED;
1763         wo.wo_info      = NULL;
1764         wo.wo_stat      = 0;
1765         wo.wo_rusage    = ru;
1766         ret = do_wait(&wo);
1767         put_pid(pid);
1768         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1769                 ret = -EFAULT;
1770
1771         return ret;
1772 }
1773
1774 int kernel_wait(pid_t pid, int *stat)
1775 {
1776         struct wait_opts wo = {
1777                 .wo_type        = PIDTYPE_PID,
1778                 .wo_pid         = find_get_pid(pid),
1779                 .wo_flags       = WEXITED,
1780         };
1781         int ret;
1782
1783         ret = do_wait(&wo);
1784         if (ret > 0 && wo.wo_stat)
1785                 *stat = wo.wo_stat;
1786         put_pid(wo.wo_pid);
1787         return ret;
1788 }
1789
1790 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1791                 int, options, struct rusage __user *, ru)
1792 {
1793         struct rusage r;
1794         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1795
1796         if (err > 0) {
1797                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1798                         return -EFAULT;
1799         }
1800         return err;
1801 }
1802
1803 #ifdef __ARCH_WANT_SYS_WAITPID
1804
1805 /*
1806  * sys_waitpid() remains for compatibility. waitpid() should be
1807  * implemented by calling sys_wait4() from libc.a.
1808  */
1809 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1810 {
1811         return kernel_wait4(pid, stat_addr, options, NULL);
1812 }
1813
1814 #endif
1815
1816 #ifdef CONFIG_COMPAT
1817 COMPAT_SYSCALL_DEFINE4(wait4,
1818         compat_pid_t, pid,
1819         compat_uint_t __user *, stat_addr,
1820         int, options,
1821         struct compat_rusage __user *, ru)
1822 {
1823         struct rusage r;
1824         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1825         if (err > 0) {
1826                 if (ru && put_compat_rusage(&r, ru))
1827                         return -EFAULT;
1828         }
1829         return err;
1830 }
1831
1832 COMPAT_SYSCALL_DEFINE5(waitid,
1833                 int, which, compat_pid_t, pid,
1834                 struct compat_siginfo __user *, infop, int, options,
1835                 struct compat_rusage __user *, uru)
1836 {
1837         struct rusage ru;
1838         struct waitid_info info = {.status = 0};
1839         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1840         int signo = 0;
1841         if (err > 0) {
1842                 signo = SIGCHLD;
1843                 err = 0;
1844                 if (uru) {
1845                         /* kernel_waitid() overwrites everything in ru */
1846                         if (COMPAT_USE_64BIT_TIME)
1847                                 err = copy_to_user(uru, &ru, sizeof(ru));
1848                         else
1849                                 err = put_compat_rusage(&ru, uru);
1850                         if (err)
1851                                 return -EFAULT;
1852                 }
1853         }
1854
1855         if (!infop)
1856                 return err;
1857
1858         if (!user_write_access_begin(infop, sizeof(*infop)))
1859                 return -EFAULT;
1860
1861         unsafe_put_user(signo, &infop->si_signo, Efault);
1862         unsafe_put_user(0, &infop->si_errno, Efault);
1863         unsafe_put_user(info.cause, &infop->si_code, Efault);
1864         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1865         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1866         unsafe_put_user(info.status, &infop->si_status, Efault);
1867         user_write_access_end();
1868         return err;
1869 Efault:
1870         user_write_access_end();
1871         return -EFAULT;
1872 }
1873 #endif
1874
1875 /**
1876  * thread_group_exited - check that a thread group has exited
1877  * @pid: tgid of thread group to be checked.
1878  *
1879  * Test if the thread group represented by tgid has exited (all
1880  * threads are zombies, dead or completely gone).
1881  *
1882  * Return: true if the thread group has exited. false otherwise.
1883  */
1884 bool thread_group_exited(struct pid *pid)
1885 {
1886         struct task_struct *task;
1887         bool exited;
1888
1889         rcu_read_lock();
1890         task = pid_task(pid, PIDTYPE_PID);
1891         exited = !task ||
1892                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1893         rcu_read_unlock();
1894
1895         return exited;
1896 }
1897 EXPORT_SYMBOL(thread_group_exited);
1898
1899 __weak void abort(void)
1900 {
1901         BUG();
1902
1903         /* if that doesn't kill us, halt */
1904         panic("Oops failed to kill thread");
1905 }
1906 EXPORT_SYMBOL(abort);