Merge tag 'for-5.16/passthrough-flag-2021-10-29' of git://git.kernel.dk/linux-block
[linux-2.6-microblaze.git] / kernel / exit.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/task_io_accounting_ops.h>
52 #include <linux/tracehook.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/random.h>
63 #include <linux/rcuwait.h>
64 #include <linux/compat.h>
65 #include <linux/io_uring.h>
66
67 #include <linux/uaccess.h>
68 #include <asm/unistd.h>
69 #include <asm/mmu_context.h>
70
71 static void __unhash_process(struct task_struct *p, bool group_dead)
72 {
73         nr_threads--;
74         detach_pid(p, PIDTYPE_PID);
75         if (group_dead) {
76                 detach_pid(p, PIDTYPE_TGID);
77                 detach_pid(p, PIDTYPE_PGID);
78                 detach_pid(p, PIDTYPE_SID);
79
80                 list_del_rcu(&p->tasks);
81                 list_del_init(&p->sibling);
82                 __this_cpu_dec(process_counts);
83         }
84         list_del_rcu(&p->thread_group);
85         list_del_rcu(&p->thread_node);
86 }
87
88 /*
89  * This function expects the tasklist_lock write-locked.
90  */
91 static void __exit_signal(struct task_struct *tsk)
92 {
93         struct signal_struct *sig = tsk->signal;
94         bool group_dead = thread_group_leader(tsk);
95         struct sighand_struct *sighand;
96         struct tty_struct *tty;
97         u64 utime, stime;
98
99         sighand = rcu_dereference_check(tsk->sighand,
100                                         lockdep_tasklist_lock_is_held());
101         spin_lock(&sighand->siglock);
102
103 #ifdef CONFIG_POSIX_TIMERS
104         posix_cpu_timers_exit(tsk);
105         if (group_dead)
106                 posix_cpu_timers_exit_group(tsk);
107 #endif
108
109         if (group_dead) {
110                 tty = sig->tty;
111                 sig->tty = NULL;
112         } else {
113                 /*
114                  * If there is any task waiting for the group exit
115                  * then notify it:
116                  */
117                 if (sig->notify_count > 0 && !--sig->notify_count)
118                         wake_up_process(sig->group_exit_task);
119
120                 if (tsk == sig->curr_target)
121                         sig->curr_target = next_thread(tsk);
122         }
123
124         add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
125                               sizeof(unsigned long long));
126
127         /*
128          * Accumulate here the counters for all threads as they die. We could
129          * skip the group leader because it is the last user of signal_struct,
130          * but we want to avoid the race with thread_group_cputime() which can
131          * see the empty ->thread_head list.
132          */
133         task_cputime(tsk, &utime, &stime);
134         write_seqlock(&sig->stats_lock);
135         sig->utime += utime;
136         sig->stime += stime;
137         sig->gtime += task_gtime(tsk);
138         sig->min_flt += tsk->min_flt;
139         sig->maj_flt += tsk->maj_flt;
140         sig->nvcsw += tsk->nvcsw;
141         sig->nivcsw += tsk->nivcsw;
142         sig->inblock += task_io_get_inblock(tsk);
143         sig->oublock += task_io_get_oublock(tsk);
144         task_io_accounting_add(&sig->ioac, &tsk->ioac);
145         sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
146         sig->nr_threads--;
147         __unhash_process(tsk, group_dead);
148         write_sequnlock(&sig->stats_lock);
149
150         /*
151          * Do this under ->siglock, we can race with another thread
152          * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
153          */
154         flush_sigqueue(&tsk->pending);
155         tsk->sighand = NULL;
156         spin_unlock(&sighand->siglock);
157
158         __cleanup_sighand(sighand);
159         clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
160         if (group_dead) {
161                 flush_sigqueue(&sig->shared_pending);
162                 tty_kref_put(tty);
163         }
164 }
165
166 static void delayed_put_task_struct(struct rcu_head *rhp)
167 {
168         struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
169
170         perf_event_delayed_put(tsk);
171         trace_sched_process_free(tsk);
172         put_task_struct(tsk);
173 }
174
175 void put_task_struct_rcu_user(struct task_struct *task)
176 {
177         if (refcount_dec_and_test(&task->rcu_users))
178                 call_rcu(&task->rcu, delayed_put_task_struct);
179 }
180
181 void release_task(struct task_struct *p)
182 {
183         struct task_struct *leader;
184         struct pid *thread_pid;
185         int zap_leader;
186 repeat:
187         /* don't need to get the RCU readlock here - the process is dead and
188          * can't be modifying its own credentials. But shut RCU-lockdep up */
189         rcu_read_lock();
190         dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
191         rcu_read_unlock();
192
193         cgroup_release(p);
194
195         write_lock_irq(&tasklist_lock);
196         ptrace_release_task(p);
197         thread_pid = get_pid(p->thread_pid);
198         __exit_signal(p);
199
200         /*
201          * If we are the last non-leader member of the thread
202          * group, and the leader is zombie, then notify the
203          * group leader's parent process. (if it wants notification.)
204          */
205         zap_leader = 0;
206         leader = p->group_leader;
207         if (leader != p && thread_group_empty(leader)
208                         && leader->exit_state == EXIT_ZOMBIE) {
209                 /*
210                  * If we were the last child thread and the leader has
211                  * exited already, and the leader's parent ignores SIGCHLD,
212                  * then we are the one who should release the leader.
213                  */
214                 zap_leader = do_notify_parent(leader, leader->exit_signal);
215                 if (zap_leader)
216                         leader->exit_state = EXIT_DEAD;
217         }
218
219         write_unlock_irq(&tasklist_lock);
220         seccomp_filter_release(p);
221         proc_flush_pid(thread_pid);
222         put_pid(thread_pid);
223         release_thread(p);
224         put_task_struct_rcu_user(p);
225
226         p = leader;
227         if (unlikely(zap_leader))
228                 goto repeat;
229 }
230
231 int rcuwait_wake_up(struct rcuwait *w)
232 {
233         int ret = 0;
234         struct task_struct *task;
235
236         rcu_read_lock();
237
238         /*
239          * Order condition vs @task, such that everything prior to the load
240          * of @task is visible. This is the condition as to why the user called
241          * rcuwait_wake() in the first place. Pairs with set_current_state()
242          * barrier (A) in rcuwait_wait_event().
243          *
244          *    WAIT                WAKE
245          *    [S] tsk = current   [S] cond = true
246          *        MB (A)              MB (B)
247          *    [L] cond            [L] tsk
248          */
249         smp_mb(); /* (B) */
250
251         task = rcu_dereference(w->task);
252         if (task)
253                 ret = wake_up_process(task);
254         rcu_read_unlock();
255
256         return ret;
257 }
258 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
259
260 /*
261  * Determine if a process group is "orphaned", according to the POSIX
262  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
263  * by terminal-generated stop signals.  Newly orphaned process groups are
264  * to receive a SIGHUP and a SIGCONT.
265  *
266  * "I ask you, have you ever known what it is to be an orphan?"
267  */
268 static int will_become_orphaned_pgrp(struct pid *pgrp,
269                                         struct task_struct *ignored_task)
270 {
271         struct task_struct *p;
272
273         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
274                 if ((p == ignored_task) ||
275                     (p->exit_state && thread_group_empty(p)) ||
276                     is_global_init(p->real_parent))
277                         continue;
278
279                 if (task_pgrp(p->real_parent) != pgrp &&
280                     task_session(p->real_parent) == task_session(p))
281                         return 0;
282         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
283
284         return 1;
285 }
286
287 int is_current_pgrp_orphaned(void)
288 {
289         int retval;
290
291         read_lock(&tasklist_lock);
292         retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
293         read_unlock(&tasklist_lock);
294
295         return retval;
296 }
297
298 static bool has_stopped_jobs(struct pid *pgrp)
299 {
300         struct task_struct *p;
301
302         do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
303                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
304                         return true;
305         } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
306
307         return false;
308 }
309
310 /*
311  * Check to see if any process groups have become orphaned as
312  * a result of our exiting, and if they have any stopped jobs,
313  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
314  */
315 static void
316 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
317 {
318         struct pid *pgrp = task_pgrp(tsk);
319         struct task_struct *ignored_task = tsk;
320
321         if (!parent)
322                 /* exit: our father is in a different pgrp than
323                  * we are and we were the only connection outside.
324                  */
325                 parent = tsk->real_parent;
326         else
327                 /* reparent: our child is in a different pgrp than
328                  * we are, and it was the only connection outside.
329                  */
330                 ignored_task = NULL;
331
332         if (task_pgrp(parent) != pgrp &&
333             task_session(parent) == task_session(tsk) &&
334             will_become_orphaned_pgrp(pgrp, ignored_task) &&
335             has_stopped_jobs(pgrp)) {
336                 __kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
337                 __kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
338         }
339 }
340
341 #ifdef CONFIG_MEMCG
342 /*
343  * A task is exiting.   If it owned this mm, find a new owner for the mm.
344  */
345 void mm_update_next_owner(struct mm_struct *mm)
346 {
347         struct task_struct *c, *g, *p = current;
348
349 retry:
350         /*
351          * If the exiting or execing task is not the owner, it's
352          * someone else's problem.
353          */
354         if (mm->owner != p)
355                 return;
356         /*
357          * The current owner is exiting/execing and there are no other
358          * candidates.  Do not leave the mm pointing to a possibly
359          * freed task structure.
360          */
361         if (atomic_read(&mm->mm_users) <= 1) {
362                 WRITE_ONCE(mm->owner, NULL);
363                 return;
364         }
365
366         read_lock(&tasklist_lock);
367         /*
368          * Search in the children
369          */
370         list_for_each_entry(c, &p->children, sibling) {
371                 if (c->mm == mm)
372                         goto assign_new_owner;
373         }
374
375         /*
376          * Search in the siblings
377          */
378         list_for_each_entry(c, &p->real_parent->children, sibling) {
379                 if (c->mm == mm)
380                         goto assign_new_owner;
381         }
382
383         /*
384          * Search through everything else, we should not get here often.
385          */
386         for_each_process(g) {
387                 if (g->flags & PF_KTHREAD)
388                         continue;
389                 for_each_thread(g, c) {
390                         if (c->mm == mm)
391                                 goto assign_new_owner;
392                         if (c->mm)
393                                 break;
394                 }
395         }
396         read_unlock(&tasklist_lock);
397         /*
398          * We found no owner yet mm_users > 1: this implies that we are
399          * most likely racing with swapoff (try_to_unuse()) or /proc or
400          * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
401          */
402         WRITE_ONCE(mm->owner, NULL);
403         return;
404
405 assign_new_owner:
406         BUG_ON(c == p);
407         get_task_struct(c);
408         /*
409          * The task_lock protects c->mm from changing.
410          * We always want mm->owner->mm == mm
411          */
412         task_lock(c);
413         /*
414          * Delay read_unlock() till we have the task_lock()
415          * to ensure that c does not slip away underneath us
416          */
417         read_unlock(&tasklist_lock);
418         if (c->mm != mm) {
419                 task_unlock(c);
420                 put_task_struct(c);
421                 goto retry;
422         }
423         WRITE_ONCE(mm->owner, c);
424         task_unlock(c);
425         put_task_struct(c);
426 }
427 #endif /* CONFIG_MEMCG */
428
429 /*
430  * Turn us into a lazy TLB process if we
431  * aren't already..
432  */
433 static void exit_mm(void)
434 {
435         struct mm_struct *mm = current->mm;
436         struct core_state *core_state;
437
438         exit_mm_release(current, mm);
439         if (!mm)
440                 return;
441         sync_mm_rss(mm);
442         /*
443          * Serialize with any possible pending coredump.
444          * We must hold mmap_lock around checking core_state
445          * and clearing tsk->mm.  The core-inducing thread
446          * will increment ->nr_threads for each thread in the
447          * group with ->mm != NULL.
448          */
449         mmap_read_lock(mm);
450         core_state = mm->core_state;
451         if (core_state) {
452                 struct core_thread self;
453
454                 mmap_read_unlock(mm);
455
456                 self.task = current;
457                 if (self.task->flags & PF_SIGNALED)
458                         self.next = xchg(&core_state->dumper.next, &self);
459                 else
460                         self.task = NULL;
461                 /*
462                  * Implies mb(), the result of xchg() must be visible
463                  * to core_state->dumper.
464                  */
465                 if (atomic_dec_and_test(&core_state->nr_threads))
466                         complete(&core_state->startup);
467
468                 for (;;) {
469                         set_current_state(TASK_UNINTERRUPTIBLE);
470                         if (!self.task) /* see coredump_finish() */
471                                 break;
472                         freezable_schedule();
473                 }
474                 __set_current_state(TASK_RUNNING);
475                 mmap_read_lock(mm);
476         }
477         mmgrab(mm);
478         BUG_ON(mm != current->active_mm);
479         /* more a memory barrier than a real lock */
480         task_lock(current);
481         /*
482          * When a thread stops operating on an address space, the loop
483          * in membarrier_private_expedited() may not observe that
484          * tsk->mm, and the loop in membarrier_global_expedited() may
485          * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
486          * rq->membarrier_state, so those would not issue an IPI.
487          * Membarrier requires a memory barrier after accessing
488          * user-space memory, before clearing tsk->mm or the
489          * rq->membarrier_state.
490          */
491         smp_mb__after_spinlock();
492         local_irq_disable();
493         current->mm = NULL;
494         membarrier_update_current_mm(NULL);
495         enter_lazy_tlb(mm, current);
496         local_irq_enable();
497         task_unlock(current);
498         mmap_read_unlock(mm);
499         mm_update_next_owner(mm);
500         mmput(mm);
501         if (test_thread_flag(TIF_MEMDIE))
502                 exit_oom_victim();
503 }
504
505 static struct task_struct *find_alive_thread(struct task_struct *p)
506 {
507         struct task_struct *t;
508
509         for_each_thread(p, t) {
510                 if (!(t->flags & PF_EXITING))
511                         return t;
512         }
513         return NULL;
514 }
515
516 static struct task_struct *find_child_reaper(struct task_struct *father,
517                                                 struct list_head *dead)
518         __releases(&tasklist_lock)
519         __acquires(&tasklist_lock)
520 {
521         struct pid_namespace *pid_ns = task_active_pid_ns(father);
522         struct task_struct *reaper = pid_ns->child_reaper;
523         struct task_struct *p, *n;
524
525         if (likely(reaper != father))
526                 return reaper;
527
528         reaper = find_alive_thread(father);
529         if (reaper) {
530                 pid_ns->child_reaper = reaper;
531                 return reaper;
532         }
533
534         write_unlock_irq(&tasklist_lock);
535
536         list_for_each_entry_safe(p, n, dead, ptrace_entry) {
537                 list_del_init(&p->ptrace_entry);
538                 release_task(p);
539         }
540
541         zap_pid_ns_processes(pid_ns);
542         write_lock_irq(&tasklist_lock);
543
544         return father;
545 }
546
547 /*
548  * When we die, we re-parent all our children, and try to:
549  * 1. give them to another thread in our thread group, if such a member exists
550  * 2. give it to the first ancestor process which prctl'd itself as a
551  *    child_subreaper for its children (like a service manager)
552  * 3. give it to the init process (PID 1) in our pid namespace
553  */
554 static struct task_struct *find_new_reaper(struct task_struct *father,
555                                            struct task_struct *child_reaper)
556 {
557         struct task_struct *thread, *reaper;
558
559         thread = find_alive_thread(father);
560         if (thread)
561                 return thread;
562
563         if (father->signal->has_child_subreaper) {
564                 unsigned int ns_level = task_pid(father)->level;
565                 /*
566                  * Find the first ->is_child_subreaper ancestor in our pid_ns.
567                  * We can't check reaper != child_reaper to ensure we do not
568                  * cross the namespaces, the exiting parent could be injected
569                  * by setns() + fork().
570                  * We check pid->level, this is slightly more efficient than
571                  * task_active_pid_ns(reaper) != task_active_pid_ns(father).
572                  */
573                 for (reaper = father->real_parent;
574                      task_pid(reaper)->level == ns_level;
575                      reaper = reaper->real_parent) {
576                         if (reaper == &init_task)
577                                 break;
578                         if (!reaper->signal->is_child_subreaper)
579                                 continue;
580                         thread = find_alive_thread(reaper);
581                         if (thread)
582                                 return thread;
583                 }
584         }
585
586         return child_reaper;
587 }
588
589 /*
590 * Any that need to be release_task'd are put on the @dead list.
591  */
592 static void reparent_leader(struct task_struct *father, struct task_struct *p,
593                                 struct list_head *dead)
594 {
595         if (unlikely(p->exit_state == EXIT_DEAD))
596                 return;
597
598         /* We don't want people slaying init. */
599         p->exit_signal = SIGCHLD;
600
601         /* If it has exited notify the new parent about this child's death. */
602         if (!p->ptrace &&
603             p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
604                 if (do_notify_parent(p, p->exit_signal)) {
605                         p->exit_state = EXIT_DEAD;
606                         list_add(&p->ptrace_entry, dead);
607                 }
608         }
609
610         kill_orphaned_pgrp(p, father);
611 }
612
613 /*
614  * This does two things:
615  *
616  * A.  Make init inherit all the child processes
617  * B.  Check to see if any process groups have become orphaned
618  *      as a result of our exiting, and if they have any stopped
619  *      jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
620  */
621 static void forget_original_parent(struct task_struct *father,
622                                         struct list_head *dead)
623 {
624         struct task_struct *p, *t, *reaper;
625
626         if (unlikely(!list_empty(&father->ptraced)))
627                 exit_ptrace(father, dead);
628
629         /* Can drop and reacquire tasklist_lock */
630         reaper = find_child_reaper(father, dead);
631         if (list_empty(&father->children))
632                 return;
633
634         reaper = find_new_reaper(father, reaper);
635         list_for_each_entry(p, &father->children, sibling) {
636                 for_each_thread(p, t) {
637                         RCU_INIT_POINTER(t->real_parent, reaper);
638                         BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
639                         if (likely(!t->ptrace))
640                                 t->parent = t->real_parent;
641                         if (t->pdeath_signal)
642                                 group_send_sig_info(t->pdeath_signal,
643                                                     SEND_SIG_NOINFO, t,
644                                                     PIDTYPE_TGID);
645                 }
646                 /*
647                  * If this is a threaded reparent there is no need to
648                  * notify anyone anything has happened.
649                  */
650                 if (!same_thread_group(reaper, father))
651                         reparent_leader(father, p, dead);
652         }
653         list_splice_tail_init(&father->children, &reaper->children);
654 }
655
656 /*
657  * Send signals to all our closest relatives so that they know
658  * to properly mourn us..
659  */
660 static void exit_notify(struct task_struct *tsk, int group_dead)
661 {
662         bool autoreap;
663         struct task_struct *p, *n;
664         LIST_HEAD(dead);
665
666         write_lock_irq(&tasklist_lock);
667         forget_original_parent(tsk, &dead);
668
669         if (group_dead)
670                 kill_orphaned_pgrp(tsk->group_leader, NULL);
671
672         tsk->exit_state = EXIT_ZOMBIE;
673         if (unlikely(tsk->ptrace)) {
674                 int sig = thread_group_leader(tsk) &&
675                                 thread_group_empty(tsk) &&
676                                 !ptrace_reparented(tsk) ?
677                         tsk->exit_signal : SIGCHLD;
678                 autoreap = do_notify_parent(tsk, sig);
679         } else if (thread_group_leader(tsk)) {
680                 autoreap = thread_group_empty(tsk) &&
681                         do_notify_parent(tsk, tsk->exit_signal);
682         } else {
683                 autoreap = true;
684         }
685
686         if (autoreap) {
687                 tsk->exit_state = EXIT_DEAD;
688                 list_add(&tsk->ptrace_entry, &dead);
689         }
690
691         /* mt-exec, de_thread() is waiting for group leader */
692         if (unlikely(tsk->signal->notify_count < 0))
693                 wake_up_process(tsk->signal->group_exit_task);
694         write_unlock_irq(&tasklist_lock);
695
696         list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
697                 list_del_init(&p->ptrace_entry);
698                 release_task(p);
699         }
700 }
701
702 #ifdef CONFIG_DEBUG_STACK_USAGE
703 static void check_stack_usage(void)
704 {
705         static DEFINE_SPINLOCK(low_water_lock);
706         static int lowest_to_date = THREAD_SIZE;
707         unsigned long free;
708
709         free = stack_not_used(current);
710
711         if (free >= lowest_to_date)
712                 return;
713
714         spin_lock(&low_water_lock);
715         if (free < lowest_to_date) {
716                 pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
717                         current->comm, task_pid_nr(current), free);
718                 lowest_to_date = free;
719         }
720         spin_unlock(&low_water_lock);
721 }
722 #else
723 static inline void check_stack_usage(void) {}
724 #endif
725
726 void __noreturn do_exit(long code)
727 {
728         struct task_struct *tsk = current;
729         int group_dead;
730
731         /*
732          * We can get here from a kernel oops, sometimes with preemption off.
733          * Start by checking for critical errors.
734          * Then fix up important state like USER_DS and preemption.
735          * Then do everything else.
736          */
737
738         WARN_ON(blk_needs_flush_plug(tsk));
739
740         if (unlikely(in_interrupt()))
741                 panic("Aiee, killing interrupt handler!");
742         if (unlikely(!tsk->pid))
743                 panic("Attempted to kill the idle task!");
744
745         /*
746          * If do_exit is called because this processes oopsed, it's possible
747          * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
748          * continuing. Amongst other possible reasons, this is to prevent
749          * mm_release()->clear_child_tid() from writing to a user-controlled
750          * kernel address.
751          */
752         force_uaccess_begin();
753
754         if (unlikely(in_atomic())) {
755                 pr_info("note: %s[%d] exited with preempt_count %d\n",
756                         current->comm, task_pid_nr(current),
757                         preempt_count());
758                 preempt_count_set(PREEMPT_ENABLED);
759         }
760
761         profile_task_exit(tsk);
762         kcov_task_exit(tsk);
763
764         ptrace_event(PTRACE_EVENT_EXIT, code);
765
766         validate_creds_for_do_exit(tsk);
767
768         /*
769          * We're taking recursive faults here in do_exit. Safest is to just
770          * leave this task alone and wait for reboot.
771          */
772         if (unlikely(tsk->flags & PF_EXITING)) {
773                 pr_alert("Fixing recursive fault but reboot is needed!\n");
774                 futex_exit_recursive(tsk);
775                 set_current_state(TASK_UNINTERRUPTIBLE);
776                 schedule();
777         }
778
779         io_uring_files_cancel();
780         exit_signals(tsk);  /* sets PF_EXITING */
781
782         /* sync mm's RSS info before statistics gathering */
783         if (tsk->mm)
784                 sync_mm_rss(tsk->mm);
785         acct_update_integrals(tsk);
786         group_dead = atomic_dec_and_test(&tsk->signal->live);
787         if (group_dead) {
788                 /*
789                  * If the last thread of global init has exited, panic
790                  * immediately to get a useable coredump.
791                  */
792                 if (unlikely(is_global_init(tsk)))
793                         panic("Attempted to kill init! exitcode=0x%08x\n",
794                                 tsk->signal->group_exit_code ?: (int)code);
795
796 #ifdef CONFIG_POSIX_TIMERS
797                 hrtimer_cancel(&tsk->signal->real_timer);
798                 exit_itimers(tsk->signal);
799 #endif
800                 if (tsk->mm)
801                         setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
802         }
803         acct_collect(code, group_dead);
804         if (group_dead)
805                 tty_audit_exit();
806         audit_free(tsk);
807
808         tsk->exit_code = code;
809         taskstats_exit(tsk, group_dead);
810
811         exit_mm();
812
813         if (group_dead)
814                 acct_process();
815         trace_sched_process_exit(tsk);
816
817         exit_sem(tsk);
818         exit_shm(tsk);
819         exit_files(tsk);
820         exit_fs(tsk);
821         if (group_dead)
822                 disassociate_ctty(1);
823         exit_task_namespaces(tsk);
824         exit_task_work(tsk);
825         exit_thread(tsk);
826
827         /*
828          * Flush inherited counters to the parent - before the parent
829          * gets woken up by child-exit notifications.
830          *
831          * because of cgroup mode, must be called before cgroup_exit()
832          */
833         perf_event_exit_task(tsk);
834
835         sched_autogroup_exit_task(tsk);
836         cgroup_exit(tsk);
837
838         /*
839          * FIXME: do that only when needed, using sched_exit tracepoint
840          */
841         flush_ptrace_hw_breakpoint(tsk);
842
843         exit_tasks_rcu_start();
844         exit_notify(tsk, group_dead);
845         proc_exit_connector(tsk);
846         mpol_put_task_policy(tsk);
847 #ifdef CONFIG_FUTEX
848         if (unlikely(current->pi_state_cache))
849                 kfree(current->pi_state_cache);
850 #endif
851         /*
852          * Make sure we are holding no locks:
853          */
854         debug_check_no_locks_held();
855
856         if (tsk->io_context)
857                 exit_io_context(tsk);
858
859         if (tsk->splice_pipe)
860                 free_pipe_info(tsk->splice_pipe);
861
862         if (tsk->task_frag.page)
863                 put_page(tsk->task_frag.page);
864
865         validate_creds_for_do_exit(tsk);
866
867         check_stack_usage();
868         preempt_disable();
869         if (tsk->nr_dirtied)
870                 __this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
871         exit_rcu();
872         exit_tasks_rcu_finish();
873
874         lockdep_free_task(tsk);
875         do_task_dead();
876 }
877 EXPORT_SYMBOL_GPL(do_exit);
878
879 void complete_and_exit(struct completion *comp, long code)
880 {
881         if (comp)
882                 complete(comp);
883
884         do_exit(code);
885 }
886 EXPORT_SYMBOL(complete_and_exit);
887
888 SYSCALL_DEFINE1(exit, int, error_code)
889 {
890         do_exit((error_code&0xff)<<8);
891 }
892
893 /*
894  * Take down every thread in the group.  This is called by fatal signals
895  * as well as by sys_exit_group (below).
896  */
897 void
898 do_group_exit(int exit_code)
899 {
900         struct signal_struct *sig = current->signal;
901
902         BUG_ON(exit_code & 0x80); /* core dumps don't get here */
903
904         if (signal_group_exit(sig))
905                 exit_code = sig->group_exit_code;
906         else if (!thread_group_empty(current)) {
907                 struct sighand_struct *const sighand = current->sighand;
908
909                 spin_lock_irq(&sighand->siglock);
910                 if (signal_group_exit(sig))
911                         /* Another thread got here before we took the lock.  */
912                         exit_code = sig->group_exit_code;
913                 else {
914                         sig->group_exit_code = exit_code;
915                         sig->flags = SIGNAL_GROUP_EXIT;
916                         zap_other_threads(current);
917                 }
918                 spin_unlock_irq(&sighand->siglock);
919         }
920
921         do_exit(exit_code);
922         /* NOTREACHED */
923 }
924
925 /*
926  * this kills every thread in the thread group. Note that any externally
927  * wait4()-ing process will get the correct exit code - even if this
928  * thread is not the thread group leader.
929  */
930 SYSCALL_DEFINE1(exit_group, int, error_code)
931 {
932         do_group_exit((error_code & 0xff) << 8);
933         /* NOTREACHED */
934         return 0;
935 }
936
937 struct waitid_info {
938         pid_t pid;
939         uid_t uid;
940         int status;
941         int cause;
942 };
943
944 struct wait_opts {
945         enum pid_type           wo_type;
946         int                     wo_flags;
947         struct pid              *wo_pid;
948
949         struct waitid_info      *wo_info;
950         int                     wo_stat;
951         struct rusage           *wo_rusage;
952
953         wait_queue_entry_t              child_wait;
954         int                     notask_error;
955 };
956
957 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
958 {
959         return  wo->wo_type == PIDTYPE_MAX ||
960                 task_pid_type(p, wo->wo_type) == wo->wo_pid;
961 }
962
963 static int
964 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
965 {
966         if (!eligible_pid(wo, p))
967                 return 0;
968
969         /*
970          * Wait for all children (clone and not) if __WALL is set or
971          * if it is traced by us.
972          */
973         if (ptrace || (wo->wo_flags & __WALL))
974                 return 1;
975
976         /*
977          * Otherwise, wait for clone children *only* if __WCLONE is set;
978          * otherwise, wait for non-clone children *only*.
979          *
980          * Note: a "clone" child here is one that reports to its parent
981          * using a signal other than SIGCHLD, or a non-leader thread which
982          * we can only see if it is traced by us.
983          */
984         if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
985                 return 0;
986
987         return 1;
988 }
989
990 /*
991  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
992  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
993  * the lock and this task is uninteresting.  If we return nonzero, we have
994  * released the lock and the system call should return.
995  */
996 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
997 {
998         int state, status;
999         pid_t pid = task_pid_vnr(p);
1000         uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1001         struct waitid_info *infop;
1002
1003         if (!likely(wo->wo_flags & WEXITED))
1004                 return 0;
1005
1006         if (unlikely(wo->wo_flags & WNOWAIT)) {
1007                 status = p->exit_code;
1008                 get_task_struct(p);
1009                 read_unlock(&tasklist_lock);
1010                 sched_annotate_sleep();
1011                 if (wo->wo_rusage)
1012                         getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1013                 put_task_struct(p);
1014                 goto out_info;
1015         }
1016         /*
1017          * Move the task's state to DEAD/TRACE, only one thread can do this.
1018          */
1019         state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1020                 EXIT_TRACE : EXIT_DEAD;
1021         if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1022                 return 0;
1023         /*
1024          * We own this thread, nobody else can reap it.
1025          */
1026         read_unlock(&tasklist_lock);
1027         sched_annotate_sleep();
1028
1029         /*
1030          * Check thread_group_leader() to exclude the traced sub-threads.
1031          */
1032         if (state == EXIT_DEAD && thread_group_leader(p)) {
1033                 struct signal_struct *sig = p->signal;
1034                 struct signal_struct *psig = current->signal;
1035                 unsigned long maxrss;
1036                 u64 tgutime, tgstime;
1037
1038                 /*
1039                  * The resource counters for the group leader are in its
1040                  * own task_struct.  Those for dead threads in the group
1041                  * are in its signal_struct, as are those for the child
1042                  * processes it has previously reaped.  All these
1043                  * accumulate in the parent's signal_struct c* fields.
1044                  *
1045                  * We don't bother to take a lock here to protect these
1046                  * p->signal fields because the whole thread group is dead
1047                  * and nobody can change them.
1048                  *
1049                  * psig->stats_lock also protects us from our sub-theads
1050                  * which can reap other children at the same time. Until
1051                  * we change k_getrusage()-like users to rely on this lock
1052                  * we have to take ->siglock as well.
1053                  *
1054                  * We use thread_group_cputime_adjusted() to get times for
1055                  * the thread group, which consolidates times for all threads
1056                  * in the group including the group leader.
1057                  */
1058                 thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1059                 spin_lock_irq(&current->sighand->siglock);
1060                 write_seqlock(&psig->stats_lock);
1061                 psig->cutime += tgutime + sig->cutime;
1062                 psig->cstime += tgstime + sig->cstime;
1063                 psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1064                 psig->cmin_flt +=
1065                         p->min_flt + sig->min_flt + sig->cmin_flt;
1066                 psig->cmaj_flt +=
1067                         p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1068                 psig->cnvcsw +=
1069                         p->nvcsw + sig->nvcsw + sig->cnvcsw;
1070                 psig->cnivcsw +=
1071                         p->nivcsw + sig->nivcsw + sig->cnivcsw;
1072                 psig->cinblock +=
1073                         task_io_get_inblock(p) +
1074                         sig->inblock + sig->cinblock;
1075                 psig->coublock +=
1076                         task_io_get_oublock(p) +
1077                         sig->oublock + sig->coublock;
1078                 maxrss = max(sig->maxrss, sig->cmaxrss);
1079                 if (psig->cmaxrss < maxrss)
1080                         psig->cmaxrss = maxrss;
1081                 task_io_accounting_add(&psig->ioac, &p->ioac);
1082                 task_io_accounting_add(&psig->ioac, &sig->ioac);
1083                 write_sequnlock(&psig->stats_lock);
1084                 spin_unlock_irq(&current->sighand->siglock);
1085         }
1086
1087         if (wo->wo_rusage)
1088                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1089         status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1090                 ? p->signal->group_exit_code : p->exit_code;
1091         wo->wo_stat = status;
1092
1093         if (state == EXIT_TRACE) {
1094                 write_lock_irq(&tasklist_lock);
1095                 /* We dropped tasklist, ptracer could die and untrace */
1096                 ptrace_unlink(p);
1097
1098                 /* If parent wants a zombie, don't release it now */
1099                 state = EXIT_ZOMBIE;
1100                 if (do_notify_parent(p, p->exit_signal))
1101                         state = EXIT_DEAD;
1102                 p->exit_state = state;
1103                 write_unlock_irq(&tasklist_lock);
1104         }
1105         if (state == EXIT_DEAD)
1106                 release_task(p);
1107
1108 out_info:
1109         infop = wo->wo_info;
1110         if (infop) {
1111                 if ((status & 0x7f) == 0) {
1112                         infop->cause = CLD_EXITED;
1113                         infop->status = status >> 8;
1114                 } else {
1115                         infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1116                         infop->status = status & 0x7f;
1117                 }
1118                 infop->pid = pid;
1119                 infop->uid = uid;
1120         }
1121
1122         return pid;
1123 }
1124
1125 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1126 {
1127         if (ptrace) {
1128                 if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1129                         return &p->exit_code;
1130         } else {
1131                 if (p->signal->flags & SIGNAL_STOP_STOPPED)
1132                         return &p->signal->group_exit_code;
1133         }
1134         return NULL;
1135 }
1136
1137 /**
1138  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1139  * @wo: wait options
1140  * @ptrace: is the wait for ptrace
1141  * @p: task to wait for
1142  *
1143  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1144  *
1145  * CONTEXT:
1146  * read_lock(&tasklist_lock), which is released if return value is
1147  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1148  *
1149  * RETURNS:
1150  * 0 if wait condition didn't exist and search for other wait conditions
1151  * should continue.  Non-zero return, -errno on failure and @p's pid on
1152  * success, implies that tasklist_lock is released and wait condition
1153  * search should terminate.
1154  */
1155 static int wait_task_stopped(struct wait_opts *wo,
1156                                 int ptrace, struct task_struct *p)
1157 {
1158         struct waitid_info *infop;
1159         int exit_code, *p_code, why;
1160         uid_t uid = 0; /* unneeded, required by compiler */
1161         pid_t pid;
1162
1163         /*
1164          * Traditionally we see ptrace'd stopped tasks regardless of options.
1165          */
1166         if (!ptrace && !(wo->wo_flags & WUNTRACED))
1167                 return 0;
1168
1169         if (!task_stopped_code(p, ptrace))
1170                 return 0;
1171
1172         exit_code = 0;
1173         spin_lock_irq(&p->sighand->siglock);
1174
1175         p_code = task_stopped_code(p, ptrace);
1176         if (unlikely(!p_code))
1177                 goto unlock_sig;
1178
1179         exit_code = *p_code;
1180         if (!exit_code)
1181                 goto unlock_sig;
1182
1183         if (!unlikely(wo->wo_flags & WNOWAIT))
1184                 *p_code = 0;
1185
1186         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1187 unlock_sig:
1188         spin_unlock_irq(&p->sighand->siglock);
1189         if (!exit_code)
1190                 return 0;
1191
1192         /*
1193          * Now we are pretty sure this task is interesting.
1194          * Make sure it doesn't get reaped out from under us while we
1195          * give up the lock and then examine it below.  We don't want to
1196          * keep holding onto the tasklist_lock while we call getrusage and
1197          * possibly take page faults for user memory.
1198          */
1199         get_task_struct(p);
1200         pid = task_pid_vnr(p);
1201         why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1202         read_unlock(&tasklist_lock);
1203         sched_annotate_sleep();
1204         if (wo->wo_rusage)
1205                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1206         put_task_struct(p);
1207
1208         if (likely(!(wo->wo_flags & WNOWAIT)))
1209                 wo->wo_stat = (exit_code << 8) | 0x7f;
1210
1211         infop = wo->wo_info;
1212         if (infop) {
1213                 infop->cause = why;
1214                 infop->status = exit_code;
1215                 infop->pid = pid;
1216                 infop->uid = uid;
1217         }
1218         return pid;
1219 }
1220
1221 /*
1222  * Handle do_wait work for one task in a live, non-stopped state.
1223  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1224  * the lock and this task is uninteresting.  If we return nonzero, we have
1225  * released the lock and the system call should return.
1226  */
1227 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1228 {
1229         struct waitid_info *infop;
1230         pid_t pid;
1231         uid_t uid;
1232
1233         if (!unlikely(wo->wo_flags & WCONTINUED))
1234                 return 0;
1235
1236         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1237                 return 0;
1238
1239         spin_lock_irq(&p->sighand->siglock);
1240         /* Re-check with the lock held.  */
1241         if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1242                 spin_unlock_irq(&p->sighand->siglock);
1243                 return 0;
1244         }
1245         if (!unlikely(wo->wo_flags & WNOWAIT))
1246                 p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1247         uid = from_kuid_munged(current_user_ns(), task_uid(p));
1248         spin_unlock_irq(&p->sighand->siglock);
1249
1250         pid = task_pid_vnr(p);
1251         get_task_struct(p);
1252         read_unlock(&tasklist_lock);
1253         sched_annotate_sleep();
1254         if (wo->wo_rusage)
1255                 getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1256         put_task_struct(p);
1257
1258         infop = wo->wo_info;
1259         if (!infop) {
1260                 wo->wo_stat = 0xffff;
1261         } else {
1262                 infop->cause = CLD_CONTINUED;
1263                 infop->pid = pid;
1264                 infop->uid = uid;
1265                 infop->status = SIGCONT;
1266         }
1267         return pid;
1268 }
1269
1270 /*
1271  * Consider @p for a wait by @parent.
1272  *
1273  * -ECHILD should be in ->notask_error before the first call.
1274  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1275  * Returns zero if the search for a child should continue;
1276  * then ->notask_error is 0 if @p is an eligible child,
1277  * or still -ECHILD.
1278  */
1279 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1280                                 struct task_struct *p)
1281 {
1282         /*
1283          * We can race with wait_task_zombie() from another thread.
1284          * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1285          * can't confuse the checks below.
1286          */
1287         int exit_state = READ_ONCE(p->exit_state);
1288         int ret;
1289
1290         if (unlikely(exit_state == EXIT_DEAD))
1291                 return 0;
1292
1293         ret = eligible_child(wo, ptrace, p);
1294         if (!ret)
1295                 return ret;
1296
1297         if (unlikely(exit_state == EXIT_TRACE)) {
1298                 /*
1299                  * ptrace == 0 means we are the natural parent. In this case
1300                  * we should clear notask_error, debugger will notify us.
1301                  */
1302                 if (likely(!ptrace))
1303                         wo->notask_error = 0;
1304                 return 0;
1305         }
1306
1307         if (likely(!ptrace) && unlikely(p->ptrace)) {
1308                 /*
1309                  * If it is traced by its real parent's group, just pretend
1310                  * the caller is ptrace_do_wait() and reap this child if it
1311                  * is zombie.
1312                  *
1313                  * This also hides group stop state from real parent; otherwise
1314                  * a single stop can be reported twice as group and ptrace stop.
1315                  * If a ptracer wants to distinguish these two events for its
1316                  * own children it should create a separate process which takes
1317                  * the role of real parent.
1318                  */
1319                 if (!ptrace_reparented(p))
1320                         ptrace = 1;
1321         }
1322
1323         /* slay zombie? */
1324         if (exit_state == EXIT_ZOMBIE) {
1325                 /* we don't reap group leaders with subthreads */
1326                 if (!delay_group_leader(p)) {
1327                         /*
1328                          * A zombie ptracee is only visible to its ptracer.
1329                          * Notification and reaping will be cascaded to the
1330                          * real parent when the ptracer detaches.
1331                          */
1332                         if (unlikely(ptrace) || likely(!p->ptrace))
1333                                 return wait_task_zombie(wo, p);
1334                 }
1335
1336                 /*
1337                  * Allow access to stopped/continued state via zombie by
1338                  * falling through.  Clearing of notask_error is complex.
1339                  *
1340                  * When !@ptrace:
1341                  *
1342                  * If WEXITED is set, notask_error should naturally be
1343                  * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1344                  * so, if there are live subthreads, there are events to
1345                  * wait for.  If all subthreads are dead, it's still safe
1346                  * to clear - this function will be called again in finite
1347                  * amount time once all the subthreads are released and
1348                  * will then return without clearing.
1349                  *
1350                  * When @ptrace:
1351                  *
1352                  * Stopped state is per-task and thus can't change once the
1353                  * target task dies.  Only continued and exited can happen.
1354                  * Clear notask_error if WCONTINUED | WEXITED.
1355                  */
1356                 if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1357                         wo->notask_error = 0;
1358         } else {
1359                 /*
1360                  * @p is alive and it's gonna stop, continue or exit, so
1361                  * there always is something to wait for.
1362                  */
1363                 wo->notask_error = 0;
1364         }
1365
1366         /*
1367          * Wait for stopped.  Depending on @ptrace, different stopped state
1368          * is used and the two don't interact with each other.
1369          */
1370         ret = wait_task_stopped(wo, ptrace, p);
1371         if (ret)
1372                 return ret;
1373
1374         /*
1375          * Wait for continued.  There's only one continued state and the
1376          * ptracer can consume it which can confuse the real parent.  Don't
1377          * use WCONTINUED from ptracer.  You don't need or want it.
1378          */
1379         return wait_task_continued(wo, p);
1380 }
1381
1382 /*
1383  * Do the work of do_wait() for one thread in the group, @tsk.
1384  *
1385  * -ECHILD should be in ->notask_error before the first call.
1386  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1387  * Returns zero if the search for a child should continue; then
1388  * ->notask_error is 0 if there were any eligible children,
1389  * or still -ECHILD.
1390  */
1391 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1392 {
1393         struct task_struct *p;
1394
1395         list_for_each_entry(p, &tsk->children, sibling) {
1396                 int ret = wait_consider_task(wo, 0, p);
1397
1398                 if (ret)
1399                         return ret;
1400         }
1401
1402         return 0;
1403 }
1404
1405 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1406 {
1407         struct task_struct *p;
1408
1409         list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1410                 int ret = wait_consider_task(wo, 1, p);
1411
1412                 if (ret)
1413                         return ret;
1414         }
1415
1416         return 0;
1417 }
1418
1419 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1420                                 int sync, void *key)
1421 {
1422         struct wait_opts *wo = container_of(wait, struct wait_opts,
1423                                                 child_wait);
1424         struct task_struct *p = key;
1425
1426         if (!eligible_pid(wo, p))
1427                 return 0;
1428
1429         if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1430                 return 0;
1431
1432         return default_wake_function(wait, mode, sync, key);
1433 }
1434
1435 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1436 {
1437         __wake_up_sync_key(&parent->signal->wait_chldexit,
1438                            TASK_INTERRUPTIBLE, p);
1439 }
1440
1441 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1442                                  struct task_struct *target)
1443 {
1444         struct task_struct *parent =
1445                 !ptrace ? target->real_parent : target->parent;
1446
1447         return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1448                                      same_thread_group(current, parent));
1449 }
1450
1451 /*
1452  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1453  * and tracee lists to find the target task.
1454  */
1455 static int do_wait_pid(struct wait_opts *wo)
1456 {
1457         bool ptrace;
1458         struct task_struct *target;
1459         int retval;
1460
1461         ptrace = false;
1462         target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1463         if (target && is_effectively_child(wo, ptrace, target)) {
1464                 retval = wait_consider_task(wo, ptrace, target);
1465                 if (retval)
1466                         return retval;
1467         }
1468
1469         ptrace = true;
1470         target = pid_task(wo->wo_pid, PIDTYPE_PID);
1471         if (target && target->ptrace &&
1472             is_effectively_child(wo, ptrace, target)) {
1473                 retval = wait_consider_task(wo, ptrace, target);
1474                 if (retval)
1475                         return retval;
1476         }
1477
1478         return 0;
1479 }
1480
1481 static long do_wait(struct wait_opts *wo)
1482 {
1483         int retval;
1484
1485         trace_sched_process_wait(wo->wo_pid);
1486
1487         init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1488         wo->child_wait.private = current;
1489         add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1490 repeat:
1491         /*
1492          * If there is nothing that can match our criteria, just get out.
1493          * We will clear ->notask_error to zero if we see any child that
1494          * might later match our criteria, even if we are not able to reap
1495          * it yet.
1496          */
1497         wo->notask_error = -ECHILD;
1498         if ((wo->wo_type < PIDTYPE_MAX) &&
1499            (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1500                 goto notask;
1501
1502         set_current_state(TASK_INTERRUPTIBLE);
1503         read_lock(&tasklist_lock);
1504
1505         if (wo->wo_type == PIDTYPE_PID) {
1506                 retval = do_wait_pid(wo);
1507                 if (retval)
1508                         goto end;
1509         } else {
1510                 struct task_struct *tsk = current;
1511
1512                 do {
1513                         retval = do_wait_thread(wo, tsk);
1514                         if (retval)
1515                                 goto end;
1516
1517                         retval = ptrace_do_wait(wo, tsk);
1518                         if (retval)
1519                                 goto end;
1520
1521                         if (wo->wo_flags & __WNOTHREAD)
1522                                 break;
1523                 } while_each_thread(current, tsk);
1524         }
1525         read_unlock(&tasklist_lock);
1526
1527 notask:
1528         retval = wo->notask_error;
1529         if (!retval && !(wo->wo_flags & WNOHANG)) {
1530                 retval = -ERESTARTSYS;
1531                 if (!signal_pending(current)) {
1532                         schedule();
1533                         goto repeat;
1534                 }
1535         }
1536 end:
1537         __set_current_state(TASK_RUNNING);
1538         remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1539         return retval;
1540 }
1541
1542 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1543                           int options, struct rusage *ru)
1544 {
1545         struct wait_opts wo;
1546         struct pid *pid = NULL;
1547         enum pid_type type;
1548         long ret;
1549         unsigned int f_flags = 0;
1550
1551         if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1552                         __WNOTHREAD|__WCLONE|__WALL))
1553                 return -EINVAL;
1554         if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1555                 return -EINVAL;
1556
1557         switch (which) {
1558         case P_ALL:
1559                 type = PIDTYPE_MAX;
1560                 break;
1561         case P_PID:
1562                 type = PIDTYPE_PID;
1563                 if (upid <= 0)
1564                         return -EINVAL;
1565
1566                 pid = find_get_pid(upid);
1567                 break;
1568         case P_PGID:
1569                 type = PIDTYPE_PGID;
1570                 if (upid < 0)
1571                         return -EINVAL;
1572
1573                 if (upid)
1574                         pid = find_get_pid(upid);
1575                 else
1576                         pid = get_task_pid(current, PIDTYPE_PGID);
1577                 break;
1578         case P_PIDFD:
1579                 type = PIDTYPE_PID;
1580                 if (upid < 0)
1581                         return -EINVAL;
1582
1583                 pid = pidfd_get_pid(upid, &f_flags);
1584                 if (IS_ERR(pid))
1585                         return PTR_ERR(pid);
1586
1587                 break;
1588         default:
1589                 return -EINVAL;
1590         }
1591
1592         wo.wo_type      = type;
1593         wo.wo_pid       = pid;
1594         wo.wo_flags     = options;
1595         wo.wo_info      = infop;
1596         wo.wo_rusage    = ru;
1597         if (f_flags & O_NONBLOCK)
1598                 wo.wo_flags |= WNOHANG;
1599
1600         ret = do_wait(&wo);
1601         if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1602                 ret = -EAGAIN;
1603
1604         put_pid(pid);
1605         return ret;
1606 }
1607
1608 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1609                 infop, int, options, struct rusage __user *, ru)
1610 {
1611         struct rusage r;
1612         struct waitid_info info = {.status = 0};
1613         long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1614         int signo = 0;
1615
1616         if (err > 0) {
1617                 signo = SIGCHLD;
1618                 err = 0;
1619                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1620                         return -EFAULT;
1621         }
1622         if (!infop)
1623                 return err;
1624
1625         if (!user_write_access_begin(infop, sizeof(*infop)))
1626                 return -EFAULT;
1627
1628         unsafe_put_user(signo, &infop->si_signo, Efault);
1629         unsafe_put_user(0, &infop->si_errno, Efault);
1630         unsafe_put_user(info.cause, &infop->si_code, Efault);
1631         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1632         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1633         unsafe_put_user(info.status, &infop->si_status, Efault);
1634         user_write_access_end();
1635         return err;
1636 Efault:
1637         user_write_access_end();
1638         return -EFAULT;
1639 }
1640
1641 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1642                   struct rusage *ru)
1643 {
1644         struct wait_opts wo;
1645         struct pid *pid = NULL;
1646         enum pid_type type;
1647         long ret;
1648
1649         if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1650                         __WNOTHREAD|__WCLONE|__WALL))
1651                 return -EINVAL;
1652
1653         /* -INT_MIN is not defined */
1654         if (upid == INT_MIN)
1655                 return -ESRCH;
1656
1657         if (upid == -1)
1658                 type = PIDTYPE_MAX;
1659         else if (upid < 0) {
1660                 type = PIDTYPE_PGID;
1661                 pid = find_get_pid(-upid);
1662         } else if (upid == 0) {
1663                 type = PIDTYPE_PGID;
1664                 pid = get_task_pid(current, PIDTYPE_PGID);
1665         } else /* upid > 0 */ {
1666                 type = PIDTYPE_PID;
1667                 pid = find_get_pid(upid);
1668         }
1669
1670         wo.wo_type      = type;
1671         wo.wo_pid       = pid;
1672         wo.wo_flags     = options | WEXITED;
1673         wo.wo_info      = NULL;
1674         wo.wo_stat      = 0;
1675         wo.wo_rusage    = ru;
1676         ret = do_wait(&wo);
1677         put_pid(pid);
1678         if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1679                 ret = -EFAULT;
1680
1681         return ret;
1682 }
1683
1684 int kernel_wait(pid_t pid, int *stat)
1685 {
1686         struct wait_opts wo = {
1687                 .wo_type        = PIDTYPE_PID,
1688                 .wo_pid         = find_get_pid(pid),
1689                 .wo_flags       = WEXITED,
1690         };
1691         int ret;
1692
1693         ret = do_wait(&wo);
1694         if (ret > 0 && wo.wo_stat)
1695                 *stat = wo.wo_stat;
1696         put_pid(wo.wo_pid);
1697         return ret;
1698 }
1699
1700 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1701                 int, options, struct rusage __user *, ru)
1702 {
1703         struct rusage r;
1704         long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1705
1706         if (err > 0) {
1707                 if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1708                         return -EFAULT;
1709         }
1710         return err;
1711 }
1712
1713 #ifdef __ARCH_WANT_SYS_WAITPID
1714
1715 /*
1716  * sys_waitpid() remains for compatibility. waitpid() should be
1717  * implemented by calling sys_wait4() from libc.a.
1718  */
1719 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1720 {
1721         return kernel_wait4(pid, stat_addr, options, NULL);
1722 }
1723
1724 #endif
1725
1726 #ifdef CONFIG_COMPAT
1727 COMPAT_SYSCALL_DEFINE4(wait4,
1728         compat_pid_t, pid,
1729         compat_uint_t __user *, stat_addr,
1730         int, options,
1731         struct compat_rusage __user *, ru)
1732 {
1733         struct rusage r;
1734         long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1735         if (err > 0) {
1736                 if (ru && put_compat_rusage(&r, ru))
1737                         return -EFAULT;
1738         }
1739         return err;
1740 }
1741
1742 COMPAT_SYSCALL_DEFINE5(waitid,
1743                 int, which, compat_pid_t, pid,
1744                 struct compat_siginfo __user *, infop, int, options,
1745                 struct compat_rusage __user *, uru)
1746 {
1747         struct rusage ru;
1748         struct waitid_info info = {.status = 0};
1749         long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1750         int signo = 0;
1751         if (err > 0) {
1752                 signo = SIGCHLD;
1753                 err = 0;
1754                 if (uru) {
1755                         /* kernel_waitid() overwrites everything in ru */
1756                         if (COMPAT_USE_64BIT_TIME)
1757                                 err = copy_to_user(uru, &ru, sizeof(ru));
1758                         else
1759                                 err = put_compat_rusage(&ru, uru);
1760                         if (err)
1761                                 return -EFAULT;
1762                 }
1763         }
1764
1765         if (!infop)
1766                 return err;
1767
1768         if (!user_write_access_begin(infop, sizeof(*infop)))
1769                 return -EFAULT;
1770
1771         unsafe_put_user(signo, &infop->si_signo, Efault);
1772         unsafe_put_user(0, &infop->si_errno, Efault);
1773         unsafe_put_user(info.cause, &infop->si_code, Efault);
1774         unsafe_put_user(info.pid, &infop->si_pid, Efault);
1775         unsafe_put_user(info.uid, &infop->si_uid, Efault);
1776         unsafe_put_user(info.status, &infop->si_status, Efault);
1777         user_write_access_end();
1778         return err;
1779 Efault:
1780         user_write_access_end();
1781         return -EFAULT;
1782 }
1783 #endif
1784
1785 /**
1786  * thread_group_exited - check that a thread group has exited
1787  * @pid: tgid of thread group to be checked.
1788  *
1789  * Test if the thread group represented by tgid has exited (all
1790  * threads are zombies, dead or completely gone).
1791  *
1792  * Return: true if the thread group has exited. false otherwise.
1793  */
1794 bool thread_group_exited(struct pid *pid)
1795 {
1796         struct task_struct *task;
1797         bool exited;
1798
1799         rcu_read_lock();
1800         task = pid_task(pid, PIDTYPE_PID);
1801         exited = !task ||
1802                 (READ_ONCE(task->exit_state) && thread_group_empty(task));
1803         rcu_read_unlock();
1804
1805         return exited;
1806 }
1807 EXPORT_SYMBOL(thread_group_exited);
1808
1809 __weak void abort(void)
1810 {
1811         BUG();
1812
1813         /* if that doesn't kill us, halt */
1814         panic("Oops failed to kill thread");
1815 }
1816 EXPORT_SYMBOL(abort);