Merge branch 'for-5.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[linux-2.6-microblaze.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *      Srikar Dronamraju
8  *      Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>      /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>         /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h>         /* try_to_free_swap */
23 #include <linux/ptrace.h>       /* user_enable_single_step */
24 #include <linux/kdebug.h>       /* notifier mechanism */
25 #include "../../mm/internal.h"  /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30
31 #include <linux/uprobes.h>
32
33 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
35
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN        0
54
55 struct uprobe {
56         struct rb_node          rb_node;        /* node in the rb tree */
57         refcount_t              ref;
58         struct rw_semaphore     register_rwsem;
59         struct rw_semaphore     consumer_rwsem;
60         struct list_head        pending_list;
61         struct uprobe_consumer  *consumers;
62         struct inode            *inode;         /* Also hold a ref to inode */
63         loff_t                  offset;
64         loff_t                  ref_ctr_offset;
65         unsigned long           flags;
66
67         /*
68          * The generic code assumes that it has two members of unknown type
69          * owned by the arch-specific code:
70          *
71          *      insn -  copy_insn() saves the original instruction here for
72          *              arch_uprobe_analyze_insn().
73          *
74          *      ixol -  potentially modified instruction to execute out of
75          *              line, copied to xol_area by xol_get_insn_slot().
76          */
77         struct arch_uprobe      arch;
78 };
79
80 struct delayed_uprobe {
81         struct list_head list;
82         struct uprobe *uprobe;
83         struct mm_struct *mm;
84 };
85
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155                                 struct page *old_page, struct page *new_page)
156 {
157         struct mm_struct *mm = vma->vm_mm;
158         struct page_vma_mapped_walk pvmw = {
159                 .page = compound_head(old_page),
160                 .vma = vma,
161                 .address = addr,
162         };
163         int err;
164         struct mmu_notifier_range range;
165
166         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167                                 addr + PAGE_SIZE);
168
169         if (new_page) {
170                 err = mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL);
171                 if (err)
172                         return err;
173         }
174
175         /* For try_to_free_swap() and munlock_vma_page() below */
176         lock_page(old_page);
177
178         mmu_notifier_invalidate_range_start(&range);
179         err = -EAGAIN;
180         if (!page_vma_mapped_walk(&pvmw))
181                 goto unlock;
182         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
183
184         if (new_page) {
185                 get_page(new_page);
186                 page_add_new_anon_rmap(new_page, vma, addr, false);
187                 lru_cache_add_active_or_unevictable(new_page, vma);
188         } else
189                 /* no new page, just dec_mm_counter for old_page */
190                 dec_mm_counter(mm, MM_ANONPAGES);
191
192         if (!PageAnon(old_page)) {
193                 dec_mm_counter(mm, mm_counter_file(old_page));
194                 inc_mm_counter(mm, MM_ANONPAGES);
195         }
196
197         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198         ptep_clear_flush_notify(vma, addr, pvmw.pte);
199         if (new_page)
200                 set_pte_at_notify(mm, addr, pvmw.pte,
201                                   mk_pte(new_page, vma->vm_page_prot));
202
203         page_remove_rmap(old_page, false);
204         if (!page_mapped(old_page))
205                 try_to_free_swap(old_page);
206         page_vma_mapped_walk_done(&pvmw);
207
208         if (vma->vm_flags & VM_LOCKED)
209                 munlock_vma_page(old_page);
210         put_page(old_page);
211
212         err = 0;
213  unlock:
214         mmu_notifier_invalidate_range_end(&range);
215         unlock_page(old_page);
216         return err;
217 }
218
219 /**
220  * is_swbp_insn - check if instruction is breakpoint instruction.
221  * @insn: instruction to be checked.
222  * Default implementation of is_swbp_insn
223  * Returns true if @insn is a breakpoint instruction.
224  */
225 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
226 {
227         return *insn == UPROBE_SWBP_INSN;
228 }
229
230 /**
231  * is_trap_insn - check if instruction is breakpoint instruction.
232  * @insn: instruction to be checked.
233  * Default implementation of is_trap_insn
234  * Returns true if @insn is a breakpoint instruction.
235  *
236  * This function is needed for the case where an architecture has multiple
237  * trap instructions (like powerpc).
238  */
239 bool __weak is_trap_insn(uprobe_opcode_t *insn)
240 {
241         return is_swbp_insn(insn);
242 }
243
244 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
245 {
246         void *kaddr = kmap_atomic(page);
247         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
248         kunmap_atomic(kaddr);
249 }
250
251 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
252 {
253         void *kaddr = kmap_atomic(page);
254         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
255         kunmap_atomic(kaddr);
256 }
257
258 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
259 {
260         uprobe_opcode_t old_opcode;
261         bool is_swbp;
262
263         /*
264          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
265          * We do not check if it is any other 'trap variant' which could
266          * be conditional trap instruction such as the one powerpc supports.
267          *
268          * The logic is that we do not care if the underlying instruction
269          * is a trap variant; uprobes always wins over any other (gdb)
270          * breakpoint.
271          */
272         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
273         is_swbp = is_swbp_insn(&old_opcode);
274
275         if (is_swbp_insn(new_opcode)) {
276                 if (is_swbp)            /* register: already installed? */
277                         return 0;
278         } else {
279                 if (!is_swbp)           /* unregister: was it changed by us? */
280                         return 0;
281         }
282
283         return 1;
284 }
285
286 static struct delayed_uprobe *
287 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
288 {
289         struct delayed_uprobe *du;
290
291         list_for_each_entry(du, &delayed_uprobe_list, list)
292                 if (du->uprobe == uprobe && du->mm == mm)
293                         return du;
294         return NULL;
295 }
296
297 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
298 {
299         struct delayed_uprobe *du;
300
301         if (delayed_uprobe_check(uprobe, mm))
302                 return 0;
303
304         du  = kzalloc(sizeof(*du), GFP_KERNEL);
305         if (!du)
306                 return -ENOMEM;
307
308         du->uprobe = uprobe;
309         du->mm = mm;
310         list_add(&du->list, &delayed_uprobe_list);
311         return 0;
312 }
313
314 static void delayed_uprobe_delete(struct delayed_uprobe *du)
315 {
316         if (WARN_ON(!du))
317                 return;
318         list_del(&du->list);
319         kfree(du);
320 }
321
322 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
323 {
324         struct list_head *pos, *q;
325         struct delayed_uprobe *du;
326
327         if (!uprobe && !mm)
328                 return;
329
330         list_for_each_safe(pos, q, &delayed_uprobe_list) {
331                 du = list_entry(pos, struct delayed_uprobe, list);
332
333                 if (uprobe && du->uprobe != uprobe)
334                         continue;
335                 if (mm && du->mm != mm)
336                         continue;
337
338                 delayed_uprobe_delete(du);
339         }
340 }
341
342 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
343                               struct vm_area_struct *vma)
344 {
345         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
346
347         return uprobe->ref_ctr_offset &&
348                 vma->vm_file &&
349                 file_inode(vma->vm_file) == uprobe->inode &&
350                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
351                 vma->vm_start <= vaddr &&
352                 vma->vm_end > vaddr;
353 }
354
355 static struct vm_area_struct *
356 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
357 {
358         struct vm_area_struct *tmp;
359
360         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
361                 if (valid_ref_ctr_vma(uprobe, tmp))
362                         return tmp;
363
364         return NULL;
365 }
366
367 static int
368 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
369 {
370         void *kaddr;
371         struct page *page;
372         struct vm_area_struct *vma;
373         int ret;
374         short *ptr;
375
376         if (!vaddr || !d)
377                 return -EINVAL;
378
379         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
380                         FOLL_WRITE, &page, &vma, NULL);
381         if (unlikely(ret <= 0)) {
382                 /*
383                  * We are asking for 1 page. If get_user_pages_remote() fails,
384                  * it may return 0, in that case we have to return error.
385                  */
386                 return ret == 0 ? -EBUSY : ret;
387         }
388
389         kaddr = kmap_atomic(page);
390         ptr = kaddr + (vaddr & ~PAGE_MASK);
391
392         if (unlikely(*ptr + d < 0)) {
393                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
394                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
395                 ret = -EINVAL;
396                 goto out;
397         }
398
399         *ptr += d;
400         ret = 0;
401 out:
402         kunmap_atomic(kaddr);
403         put_page(page);
404         return ret;
405 }
406
407 static void update_ref_ctr_warn(struct uprobe *uprobe,
408                                 struct mm_struct *mm, short d)
409 {
410         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
411                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
412                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
413                 (unsigned long long) uprobe->offset,
414                 (unsigned long long) uprobe->ref_ctr_offset, mm);
415 }
416
417 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
418                           short d)
419 {
420         struct vm_area_struct *rc_vma;
421         unsigned long rc_vaddr;
422         int ret = 0;
423
424         rc_vma = find_ref_ctr_vma(uprobe, mm);
425
426         if (rc_vma) {
427                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
428                 ret = __update_ref_ctr(mm, rc_vaddr, d);
429                 if (ret)
430                         update_ref_ctr_warn(uprobe, mm, d);
431
432                 if (d > 0)
433                         return ret;
434         }
435
436         mutex_lock(&delayed_uprobe_lock);
437         if (d > 0)
438                 ret = delayed_uprobe_add(uprobe, mm);
439         else
440                 delayed_uprobe_remove(uprobe, mm);
441         mutex_unlock(&delayed_uprobe_lock);
442
443         return ret;
444 }
445
446 /*
447  * NOTE:
448  * Expect the breakpoint instruction to be the smallest size instruction for
449  * the architecture. If an arch has variable length instruction and the
450  * breakpoint instruction is not of the smallest length instruction
451  * supported by that architecture then we need to modify is_trap_at_addr and
452  * uprobe_write_opcode accordingly. This would never be a problem for archs
453  * that have fixed length instructions.
454  *
455  * uprobe_write_opcode - write the opcode at a given virtual address.
456  * @mm: the probed process address space.
457  * @vaddr: the virtual address to store the opcode.
458  * @opcode: opcode to be written at @vaddr.
459  *
460  * Called with mm->mmap_sem held for write.
461  * Return 0 (success) or a negative errno.
462  */
463 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
464                         unsigned long vaddr, uprobe_opcode_t opcode)
465 {
466         struct uprobe *uprobe;
467         struct page *old_page, *new_page;
468         struct vm_area_struct *vma;
469         int ret, is_register, ref_ctr_updated = 0;
470         bool orig_page_huge = false;
471         unsigned int gup_flags = FOLL_FORCE;
472
473         is_register = is_swbp_insn(&opcode);
474         uprobe = container_of(auprobe, struct uprobe, arch);
475
476 retry:
477         if (is_register)
478                 gup_flags |= FOLL_SPLIT_PMD;
479         /* Read the page with vaddr into memory */
480         ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
481                                     &old_page, &vma, NULL);
482         if (ret <= 0)
483                 return ret;
484
485         ret = verify_opcode(old_page, vaddr, &opcode);
486         if (ret <= 0)
487                 goto put_old;
488
489         if (WARN(!is_register && PageCompound(old_page),
490                  "uprobe unregister should never work on compound page\n")) {
491                 ret = -EINVAL;
492                 goto put_old;
493         }
494
495         /* We are going to replace instruction, update ref_ctr. */
496         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
497                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
498                 if (ret)
499                         goto put_old;
500
501                 ref_ctr_updated = 1;
502         }
503
504         ret = 0;
505         if (!is_register && !PageAnon(old_page))
506                 goto put_old;
507
508         ret = anon_vma_prepare(vma);
509         if (ret)
510                 goto put_old;
511
512         ret = -ENOMEM;
513         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
514         if (!new_page)
515                 goto put_old;
516
517         __SetPageUptodate(new_page);
518         copy_highpage(new_page, old_page);
519         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
520
521         if (!is_register) {
522                 struct page *orig_page;
523                 pgoff_t index;
524
525                 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
526
527                 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
528                 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
529                                           index);
530
531                 if (orig_page) {
532                         if (PageUptodate(orig_page) &&
533                             pages_identical(new_page, orig_page)) {
534                                 /* let go new_page */
535                                 put_page(new_page);
536                                 new_page = NULL;
537
538                                 if (PageCompound(orig_page))
539                                         orig_page_huge = true;
540                         }
541                         put_page(orig_page);
542                 }
543         }
544
545         ret = __replace_page(vma, vaddr, old_page, new_page);
546         if (new_page)
547                 put_page(new_page);
548 put_old:
549         put_page(old_page);
550
551         if (unlikely(ret == -EAGAIN))
552                 goto retry;
553
554         /* Revert back reference counter if instruction update failed. */
555         if (ret && is_register && ref_ctr_updated)
556                 update_ref_ctr(uprobe, mm, -1);
557
558         /* try collapse pmd for compound page */
559         if (!ret && orig_page_huge)
560                 collapse_pte_mapped_thp(mm, vaddr);
561
562         return ret;
563 }
564
565 /**
566  * set_swbp - store breakpoint at a given address.
567  * @auprobe: arch specific probepoint information.
568  * @mm: the probed process address space.
569  * @vaddr: the virtual address to insert the opcode.
570  *
571  * For mm @mm, store the breakpoint instruction at @vaddr.
572  * Return 0 (success) or a negative errno.
573  */
574 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
575 {
576         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
577 }
578
579 /**
580  * set_orig_insn - Restore the original instruction.
581  * @mm: the probed process address space.
582  * @auprobe: arch specific probepoint information.
583  * @vaddr: the virtual address to insert the opcode.
584  *
585  * For mm @mm, restore the original opcode (opcode) at @vaddr.
586  * Return 0 (success) or a negative errno.
587  */
588 int __weak
589 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
590 {
591         return uprobe_write_opcode(auprobe, mm, vaddr,
592                         *(uprobe_opcode_t *)&auprobe->insn);
593 }
594
595 static struct uprobe *get_uprobe(struct uprobe *uprobe)
596 {
597         refcount_inc(&uprobe->ref);
598         return uprobe;
599 }
600
601 static void put_uprobe(struct uprobe *uprobe)
602 {
603         if (refcount_dec_and_test(&uprobe->ref)) {
604                 /*
605                  * If application munmap(exec_vma) before uprobe_unregister()
606                  * gets called, we don't get a chance to remove uprobe from
607                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
608                  */
609                 mutex_lock(&delayed_uprobe_lock);
610                 delayed_uprobe_remove(uprobe, NULL);
611                 mutex_unlock(&delayed_uprobe_lock);
612                 kfree(uprobe);
613         }
614 }
615
616 static int match_uprobe(struct uprobe *l, struct uprobe *r)
617 {
618         if (l->inode < r->inode)
619                 return -1;
620
621         if (l->inode > r->inode)
622                 return 1;
623
624         if (l->offset < r->offset)
625                 return -1;
626
627         if (l->offset > r->offset)
628                 return 1;
629
630         return 0;
631 }
632
633 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
634 {
635         struct uprobe u = { .inode = inode, .offset = offset };
636         struct rb_node *n = uprobes_tree.rb_node;
637         struct uprobe *uprobe;
638         int match;
639
640         while (n) {
641                 uprobe = rb_entry(n, struct uprobe, rb_node);
642                 match = match_uprobe(&u, uprobe);
643                 if (!match)
644                         return get_uprobe(uprobe);
645
646                 if (match < 0)
647                         n = n->rb_left;
648                 else
649                         n = n->rb_right;
650         }
651         return NULL;
652 }
653
654 /*
655  * Find a uprobe corresponding to a given inode:offset
656  * Acquires uprobes_treelock
657  */
658 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
659 {
660         struct uprobe *uprobe;
661
662         spin_lock(&uprobes_treelock);
663         uprobe = __find_uprobe(inode, offset);
664         spin_unlock(&uprobes_treelock);
665
666         return uprobe;
667 }
668
669 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
670 {
671         struct rb_node **p = &uprobes_tree.rb_node;
672         struct rb_node *parent = NULL;
673         struct uprobe *u;
674         int match;
675
676         while (*p) {
677                 parent = *p;
678                 u = rb_entry(parent, struct uprobe, rb_node);
679                 match = match_uprobe(uprobe, u);
680                 if (!match)
681                         return get_uprobe(u);
682
683                 if (match < 0)
684                         p = &parent->rb_left;
685                 else
686                         p = &parent->rb_right;
687
688         }
689
690         u = NULL;
691         rb_link_node(&uprobe->rb_node, parent, p);
692         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
693         /* get access + creation ref */
694         refcount_set(&uprobe->ref, 2);
695
696         return u;
697 }
698
699 /*
700  * Acquire uprobes_treelock.
701  * Matching uprobe already exists in rbtree;
702  *      increment (access refcount) and return the matching uprobe.
703  *
704  * No matching uprobe; insert the uprobe in rb_tree;
705  *      get a double refcount (access + creation) and return NULL.
706  */
707 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
708 {
709         struct uprobe *u;
710
711         spin_lock(&uprobes_treelock);
712         u = __insert_uprobe(uprobe);
713         spin_unlock(&uprobes_treelock);
714
715         return u;
716 }
717
718 static void
719 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
720 {
721         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
722                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
723                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
724                 (unsigned long long) cur_uprobe->ref_ctr_offset,
725                 (unsigned long long) uprobe->ref_ctr_offset);
726 }
727
728 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
729                                    loff_t ref_ctr_offset)
730 {
731         struct uprobe *uprobe, *cur_uprobe;
732
733         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
734         if (!uprobe)
735                 return NULL;
736
737         uprobe->inode = inode;
738         uprobe->offset = offset;
739         uprobe->ref_ctr_offset = ref_ctr_offset;
740         init_rwsem(&uprobe->register_rwsem);
741         init_rwsem(&uprobe->consumer_rwsem);
742
743         /* add to uprobes_tree, sorted on inode:offset */
744         cur_uprobe = insert_uprobe(uprobe);
745         /* a uprobe exists for this inode:offset combination */
746         if (cur_uprobe) {
747                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
748                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
749                         put_uprobe(cur_uprobe);
750                         kfree(uprobe);
751                         return ERR_PTR(-EINVAL);
752                 }
753                 kfree(uprobe);
754                 uprobe = cur_uprobe;
755         }
756
757         return uprobe;
758 }
759
760 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
761 {
762         down_write(&uprobe->consumer_rwsem);
763         uc->next = uprobe->consumers;
764         uprobe->consumers = uc;
765         up_write(&uprobe->consumer_rwsem);
766 }
767
768 /*
769  * For uprobe @uprobe, delete the consumer @uc.
770  * Return true if the @uc is deleted successfully
771  * or return false.
772  */
773 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
774 {
775         struct uprobe_consumer **con;
776         bool ret = false;
777
778         down_write(&uprobe->consumer_rwsem);
779         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
780                 if (*con == uc) {
781                         *con = uc->next;
782                         ret = true;
783                         break;
784                 }
785         }
786         up_write(&uprobe->consumer_rwsem);
787
788         return ret;
789 }
790
791 static int __copy_insn(struct address_space *mapping, struct file *filp,
792                         void *insn, int nbytes, loff_t offset)
793 {
794         struct page *page;
795         /*
796          * Ensure that the page that has the original instruction is populated
797          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
798          * see uprobe_register().
799          */
800         if (mapping->a_ops->readpage)
801                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
802         else
803                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
804         if (IS_ERR(page))
805                 return PTR_ERR(page);
806
807         copy_from_page(page, offset, insn, nbytes);
808         put_page(page);
809
810         return 0;
811 }
812
813 static int copy_insn(struct uprobe *uprobe, struct file *filp)
814 {
815         struct address_space *mapping = uprobe->inode->i_mapping;
816         loff_t offs = uprobe->offset;
817         void *insn = &uprobe->arch.insn;
818         int size = sizeof(uprobe->arch.insn);
819         int len, err = -EIO;
820
821         /* Copy only available bytes, -EIO if nothing was read */
822         do {
823                 if (offs >= i_size_read(uprobe->inode))
824                         break;
825
826                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
827                 err = __copy_insn(mapping, filp, insn, len, offs);
828                 if (err)
829                         break;
830
831                 insn += len;
832                 offs += len;
833                 size -= len;
834         } while (size);
835
836         return err;
837 }
838
839 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
840                                 struct mm_struct *mm, unsigned long vaddr)
841 {
842         int ret = 0;
843
844         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
845                 return ret;
846
847         /* TODO: move this into _register, until then we abuse this sem. */
848         down_write(&uprobe->consumer_rwsem);
849         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
850                 goto out;
851
852         ret = copy_insn(uprobe, file);
853         if (ret)
854                 goto out;
855
856         ret = -ENOTSUPP;
857         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
858                 goto out;
859
860         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
861         if (ret)
862                 goto out;
863
864         /* uprobe_write_opcode() assumes we don't cross page boundary */
865         BUG_ON((uprobe->offset & ~PAGE_MASK) +
866                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
867
868         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
869         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
870
871  out:
872         up_write(&uprobe->consumer_rwsem);
873
874         return ret;
875 }
876
877 static inline bool consumer_filter(struct uprobe_consumer *uc,
878                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
879 {
880         return !uc->filter || uc->filter(uc, ctx, mm);
881 }
882
883 static bool filter_chain(struct uprobe *uprobe,
884                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
885 {
886         struct uprobe_consumer *uc;
887         bool ret = false;
888
889         down_read(&uprobe->consumer_rwsem);
890         for (uc = uprobe->consumers; uc; uc = uc->next) {
891                 ret = consumer_filter(uc, ctx, mm);
892                 if (ret)
893                         break;
894         }
895         up_read(&uprobe->consumer_rwsem);
896
897         return ret;
898 }
899
900 static int
901 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
902                         struct vm_area_struct *vma, unsigned long vaddr)
903 {
904         bool first_uprobe;
905         int ret;
906
907         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
908         if (ret)
909                 return ret;
910
911         /*
912          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
913          * the task can hit this breakpoint right after __replace_page().
914          */
915         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
916         if (first_uprobe)
917                 set_bit(MMF_HAS_UPROBES, &mm->flags);
918
919         ret = set_swbp(&uprobe->arch, mm, vaddr);
920         if (!ret)
921                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
922         else if (first_uprobe)
923                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
924
925         return ret;
926 }
927
928 static int
929 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
930 {
931         set_bit(MMF_RECALC_UPROBES, &mm->flags);
932         return set_orig_insn(&uprobe->arch, mm, vaddr);
933 }
934
935 static inline bool uprobe_is_active(struct uprobe *uprobe)
936 {
937         return !RB_EMPTY_NODE(&uprobe->rb_node);
938 }
939 /*
940  * There could be threads that have already hit the breakpoint. They
941  * will recheck the current insn and restart if find_uprobe() fails.
942  * See find_active_uprobe().
943  */
944 static void delete_uprobe(struct uprobe *uprobe)
945 {
946         if (WARN_ON(!uprobe_is_active(uprobe)))
947                 return;
948
949         spin_lock(&uprobes_treelock);
950         rb_erase(&uprobe->rb_node, &uprobes_tree);
951         spin_unlock(&uprobes_treelock);
952         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
953         put_uprobe(uprobe);
954 }
955
956 struct map_info {
957         struct map_info *next;
958         struct mm_struct *mm;
959         unsigned long vaddr;
960 };
961
962 static inline struct map_info *free_map_info(struct map_info *info)
963 {
964         struct map_info *next = info->next;
965         kfree(info);
966         return next;
967 }
968
969 static struct map_info *
970 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
971 {
972         unsigned long pgoff = offset >> PAGE_SHIFT;
973         struct vm_area_struct *vma;
974         struct map_info *curr = NULL;
975         struct map_info *prev = NULL;
976         struct map_info *info;
977         int more = 0;
978
979  again:
980         i_mmap_lock_read(mapping);
981         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
982                 if (!valid_vma(vma, is_register))
983                         continue;
984
985                 if (!prev && !more) {
986                         /*
987                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
988                          * reclaim. This is optimistic, no harm done if it fails.
989                          */
990                         prev = kmalloc(sizeof(struct map_info),
991                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
992                         if (prev)
993                                 prev->next = NULL;
994                 }
995                 if (!prev) {
996                         more++;
997                         continue;
998                 }
999
1000                 if (!mmget_not_zero(vma->vm_mm))
1001                         continue;
1002
1003                 info = prev;
1004                 prev = prev->next;
1005                 info->next = curr;
1006                 curr = info;
1007
1008                 info->mm = vma->vm_mm;
1009                 info->vaddr = offset_to_vaddr(vma, offset);
1010         }
1011         i_mmap_unlock_read(mapping);
1012
1013         if (!more)
1014                 goto out;
1015
1016         prev = curr;
1017         while (curr) {
1018                 mmput(curr->mm);
1019                 curr = curr->next;
1020         }
1021
1022         do {
1023                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1024                 if (!info) {
1025                         curr = ERR_PTR(-ENOMEM);
1026                         goto out;
1027                 }
1028                 info->next = prev;
1029                 prev = info;
1030         } while (--more);
1031
1032         goto again;
1033  out:
1034         while (prev)
1035                 prev = free_map_info(prev);
1036         return curr;
1037 }
1038
1039 static int
1040 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1041 {
1042         bool is_register = !!new;
1043         struct map_info *info;
1044         int err = 0;
1045
1046         percpu_down_write(&dup_mmap_sem);
1047         info = build_map_info(uprobe->inode->i_mapping,
1048                                         uprobe->offset, is_register);
1049         if (IS_ERR(info)) {
1050                 err = PTR_ERR(info);
1051                 goto out;
1052         }
1053
1054         while (info) {
1055                 struct mm_struct *mm = info->mm;
1056                 struct vm_area_struct *vma;
1057
1058                 if (err && is_register)
1059                         goto free;
1060
1061                 down_write(&mm->mmap_sem);
1062                 vma = find_vma(mm, info->vaddr);
1063                 if (!vma || !valid_vma(vma, is_register) ||
1064                     file_inode(vma->vm_file) != uprobe->inode)
1065                         goto unlock;
1066
1067                 if (vma->vm_start > info->vaddr ||
1068                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1069                         goto unlock;
1070
1071                 if (is_register) {
1072                         /* consult only the "caller", new consumer. */
1073                         if (consumer_filter(new,
1074                                         UPROBE_FILTER_REGISTER, mm))
1075                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1076                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1077                         if (!filter_chain(uprobe,
1078                                         UPROBE_FILTER_UNREGISTER, mm))
1079                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1080                 }
1081
1082  unlock:
1083                 up_write(&mm->mmap_sem);
1084  free:
1085                 mmput(mm);
1086                 info = free_map_info(info);
1087         }
1088  out:
1089         percpu_up_write(&dup_mmap_sem);
1090         return err;
1091 }
1092
1093 static void
1094 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1095 {
1096         int err;
1097
1098         if (WARN_ON(!consumer_del(uprobe, uc)))
1099                 return;
1100
1101         err = register_for_each_vma(uprobe, NULL);
1102         /* TODO : cant unregister? schedule a worker thread */
1103         if (!uprobe->consumers && !err)
1104                 delete_uprobe(uprobe);
1105 }
1106
1107 /*
1108  * uprobe_unregister - unregister an already registered probe.
1109  * @inode: the file in which the probe has to be removed.
1110  * @offset: offset from the start of the file.
1111  * @uc: identify which probe if multiple probes are colocated.
1112  */
1113 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1114 {
1115         struct uprobe *uprobe;
1116
1117         uprobe = find_uprobe(inode, offset);
1118         if (WARN_ON(!uprobe))
1119                 return;
1120
1121         down_write(&uprobe->register_rwsem);
1122         __uprobe_unregister(uprobe, uc);
1123         up_write(&uprobe->register_rwsem);
1124         put_uprobe(uprobe);
1125 }
1126 EXPORT_SYMBOL_GPL(uprobe_unregister);
1127
1128 /*
1129  * __uprobe_register - register a probe
1130  * @inode: the file in which the probe has to be placed.
1131  * @offset: offset from the start of the file.
1132  * @uc: information on howto handle the probe..
1133  *
1134  * Apart from the access refcount, __uprobe_register() takes a creation
1135  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1136  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1137  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1138  * @uprobe even before the register operation is complete. Creation
1139  * refcount is released when the last @uc for the @uprobe
1140  * unregisters. Caller of __uprobe_register() is required to keep @inode
1141  * (and the containing mount) referenced.
1142  *
1143  * Return errno if it cannot successully install probes
1144  * else return 0 (success)
1145  */
1146 static int __uprobe_register(struct inode *inode, loff_t offset,
1147                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1148 {
1149         struct uprobe *uprobe;
1150         int ret;
1151
1152         /* Uprobe must have at least one set consumer */
1153         if (!uc->handler && !uc->ret_handler)
1154                 return -EINVAL;
1155
1156         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1157         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1158                 return -EIO;
1159         /* Racy, just to catch the obvious mistakes */
1160         if (offset > i_size_read(inode))
1161                 return -EINVAL;
1162
1163  retry:
1164         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1165         if (!uprobe)
1166                 return -ENOMEM;
1167         if (IS_ERR(uprobe))
1168                 return PTR_ERR(uprobe);
1169
1170         /*
1171          * We can race with uprobe_unregister()->delete_uprobe().
1172          * Check uprobe_is_active() and retry if it is false.
1173          */
1174         down_write(&uprobe->register_rwsem);
1175         ret = -EAGAIN;
1176         if (likely(uprobe_is_active(uprobe))) {
1177                 consumer_add(uprobe, uc);
1178                 ret = register_for_each_vma(uprobe, uc);
1179                 if (ret)
1180                         __uprobe_unregister(uprobe, uc);
1181         }
1182         up_write(&uprobe->register_rwsem);
1183         put_uprobe(uprobe);
1184
1185         if (unlikely(ret == -EAGAIN))
1186                 goto retry;
1187         return ret;
1188 }
1189
1190 int uprobe_register(struct inode *inode, loff_t offset,
1191                     struct uprobe_consumer *uc)
1192 {
1193         return __uprobe_register(inode, offset, 0, uc);
1194 }
1195 EXPORT_SYMBOL_GPL(uprobe_register);
1196
1197 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1198                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1199 {
1200         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1201 }
1202 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1203
1204 /*
1205  * uprobe_apply - unregister an already registered probe.
1206  * @inode: the file in which the probe has to be removed.
1207  * @offset: offset from the start of the file.
1208  * @uc: consumer which wants to add more or remove some breakpoints
1209  * @add: add or remove the breakpoints
1210  */
1211 int uprobe_apply(struct inode *inode, loff_t offset,
1212                         struct uprobe_consumer *uc, bool add)
1213 {
1214         struct uprobe *uprobe;
1215         struct uprobe_consumer *con;
1216         int ret = -ENOENT;
1217
1218         uprobe = find_uprobe(inode, offset);
1219         if (WARN_ON(!uprobe))
1220                 return ret;
1221
1222         down_write(&uprobe->register_rwsem);
1223         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1224                 ;
1225         if (con)
1226                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1227         up_write(&uprobe->register_rwsem);
1228         put_uprobe(uprobe);
1229
1230         return ret;
1231 }
1232
1233 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1234 {
1235         struct vm_area_struct *vma;
1236         int err = 0;
1237
1238         down_read(&mm->mmap_sem);
1239         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1240                 unsigned long vaddr;
1241                 loff_t offset;
1242
1243                 if (!valid_vma(vma, false) ||
1244                     file_inode(vma->vm_file) != uprobe->inode)
1245                         continue;
1246
1247                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1248                 if (uprobe->offset <  offset ||
1249                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1250                         continue;
1251
1252                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1253                 err |= remove_breakpoint(uprobe, mm, vaddr);
1254         }
1255         up_read(&mm->mmap_sem);
1256
1257         return err;
1258 }
1259
1260 static struct rb_node *
1261 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1262 {
1263         struct rb_node *n = uprobes_tree.rb_node;
1264
1265         while (n) {
1266                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1267
1268                 if (inode < u->inode) {
1269                         n = n->rb_left;
1270                 } else if (inode > u->inode) {
1271                         n = n->rb_right;
1272                 } else {
1273                         if (max < u->offset)
1274                                 n = n->rb_left;
1275                         else if (min > u->offset)
1276                                 n = n->rb_right;
1277                         else
1278                                 break;
1279                 }
1280         }
1281
1282         return n;
1283 }
1284
1285 /*
1286  * For a given range in vma, build a list of probes that need to be inserted.
1287  */
1288 static void build_probe_list(struct inode *inode,
1289                                 struct vm_area_struct *vma,
1290                                 unsigned long start, unsigned long end,
1291                                 struct list_head *head)
1292 {
1293         loff_t min, max;
1294         struct rb_node *n, *t;
1295         struct uprobe *u;
1296
1297         INIT_LIST_HEAD(head);
1298         min = vaddr_to_offset(vma, start);
1299         max = min + (end - start) - 1;
1300
1301         spin_lock(&uprobes_treelock);
1302         n = find_node_in_range(inode, min, max);
1303         if (n) {
1304                 for (t = n; t; t = rb_prev(t)) {
1305                         u = rb_entry(t, struct uprobe, rb_node);
1306                         if (u->inode != inode || u->offset < min)
1307                                 break;
1308                         list_add(&u->pending_list, head);
1309                         get_uprobe(u);
1310                 }
1311                 for (t = n; (t = rb_next(t)); ) {
1312                         u = rb_entry(t, struct uprobe, rb_node);
1313                         if (u->inode != inode || u->offset > max)
1314                                 break;
1315                         list_add(&u->pending_list, head);
1316                         get_uprobe(u);
1317                 }
1318         }
1319         spin_unlock(&uprobes_treelock);
1320 }
1321
1322 /* @vma contains reference counter, not the probed instruction. */
1323 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1324 {
1325         struct list_head *pos, *q;
1326         struct delayed_uprobe *du;
1327         unsigned long vaddr;
1328         int ret = 0, err = 0;
1329
1330         mutex_lock(&delayed_uprobe_lock);
1331         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1332                 du = list_entry(pos, struct delayed_uprobe, list);
1333
1334                 if (du->mm != vma->vm_mm ||
1335                     !valid_ref_ctr_vma(du->uprobe, vma))
1336                         continue;
1337
1338                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1339                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1340                 if (ret) {
1341                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1342                         if (!err)
1343                                 err = ret;
1344                 }
1345                 delayed_uprobe_delete(du);
1346         }
1347         mutex_unlock(&delayed_uprobe_lock);
1348         return err;
1349 }
1350
1351 /*
1352  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1353  *
1354  * Currently we ignore all errors and always return 0, the callers
1355  * can't handle the failure anyway.
1356  */
1357 int uprobe_mmap(struct vm_area_struct *vma)
1358 {
1359         struct list_head tmp_list;
1360         struct uprobe *uprobe, *u;
1361         struct inode *inode;
1362
1363         if (no_uprobe_events())
1364                 return 0;
1365
1366         if (vma->vm_file &&
1367             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1368             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1369                 delayed_ref_ctr_inc(vma);
1370
1371         if (!valid_vma(vma, true))
1372                 return 0;
1373
1374         inode = file_inode(vma->vm_file);
1375         if (!inode)
1376                 return 0;
1377
1378         mutex_lock(uprobes_mmap_hash(inode));
1379         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1380         /*
1381          * We can race with uprobe_unregister(), this uprobe can be already
1382          * removed. But in this case filter_chain() must return false, all
1383          * consumers have gone away.
1384          */
1385         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1386                 if (!fatal_signal_pending(current) &&
1387                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1388                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1389                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1390                 }
1391                 put_uprobe(uprobe);
1392         }
1393         mutex_unlock(uprobes_mmap_hash(inode));
1394
1395         return 0;
1396 }
1397
1398 static bool
1399 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1400 {
1401         loff_t min, max;
1402         struct inode *inode;
1403         struct rb_node *n;
1404
1405         inode = file_inode(vma->vm_file);
1406
1407         min = vaddr_to_offset(vma, start);
1408         max = min + (end - start) - 1;
1409
1410         spin_lock(&uprobes_treelock);
1411         n = find_node_in_range(inode, min, max);
1412         spin_unlock(&uprobes_treelock);
1413
1414         return !!n;
1415 }
1416
1417 /*
1418  * Called in context of a munmap of a vma.
1419  */
1420 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1421 {
1422         if (no_uprobe_events() || !valid_vma(vma, false))
1423                 return;
1424
1425         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1426                 return;
1427
1428         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1429              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1430                 return;
1431
1432         if (vma_has_uprobes(vma, start, end))
1433                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1434 }
1435
1436 /* Slot allocation for XOL */
1437 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1438 {
1439         struct vm_area_struct *vma;
1440         int ret;
1441
1442         if (down_write_killable(&mm->mmap_sem))
1443                 return -EINTR;
1444
1445         if (mm->uprobes_state.xol_area) {
1446                 ret = -EALREADY;
1447                 goto fail;
1448         }
1449
1450         if (!area->vaddr) {
1451                 /* Try to map as high as possible, this is only a hint. */
1452                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1453                                                 PAGE_SIZE, 0, 0);
1454                 if (IS_ERR_VALUE(area->vaddr)) {
1455                         ret = area->vaddr;
1456                         goto fail;
1457                 }
1458         }
1459
1460         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1461                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1462                                 &area->xol_mapping);
1463         if (IS_ERR(vma)) {
1464                 ret = PTR_ERR(vma);
1465                 goto fail;
1466         }
1467
1468         ret = 0;
1469         /* pairs with get_xol_area() */
1470         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1471  fail:
1472         up_write(&mm->mmap_sem);
1473
1474         return ret;
1475 }
1476
1477 static struct xol_area *__create_xol_area(unsigned long vaddr)
1478 {
1479         struct mm_struct *mm = current->mm;
1480         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1481         struct xol_area *area;
1482
1483         area = kmalloc(sizeof(*area), GFP_KERNEL);
1484         if (unlikely(!area))
1485                 goto out;
1486
1487         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1488                                GFP_KERNEL);
1489         if (!area->bitmap)
1490                 goto free_area;
1491
1492         area->xol_mapping.name = "[uprobes]";
1493         area->xol_mapping.fault = NULL;
1494         area->xol_mapping.pages = area->pages;
1495         area->pages[0] = alloc_page(GFP_HIGHUSER);
1496         if (!area->pages[0])
1497                 goto free_bitmap;
1498         area->pages[1] = NULL;
1499
1500         area->vaddr = vaddr;
1501         init_waitqueue_head(&area->wq);
1502         /* Reserve the 1st slot for get_trampoline_vaddr() */
1503         set_bit(0, area->bitmap);
1504         atomic_set(&area->slot_count, 1);
1505         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1506
1507         if (!xol_add_vma(mm, area))
1508                 return area;
1509
1510         __free_page(area->pages[0]);
1511  free_bitmap:
1512         kfree(area->bitmap);
1513  free_area:
1514         kfree(area);
1515  out:
1516         return NULL;
1517 }
1518
1519 /*
1520  * get_xol_area - Allocate process's xol_area if necessary.
1521  * This area will be used for storing instructions for execution out of line.
1522  *
1523  * Returns the allocated area or NULL.
1524  */
1525 static struct xol_area *get_xol_area(void)
1526 {
1527         struct mm_struct *mm = current->mm;
1528         struct xol_area *area;
1529
1530         if (!mm->uprobes_state.xol_area)
1531                 __create_xol_area(0);
1532
1533         /* Pairs with xol_add_vma() smp_store_release() */
1534         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1535         return area;
1536 }
1537
1538 /*
1539  * uprobe_clear_state - Free the area allocated for slots.
1540  */
1541 void uprobe_clear_state(struct mm_struct *mm)
1542 {
1543         struct xol_area *area = mm->uprobes_state.xol_area;
1544
1545         mutex_lock(&delayed_uprobe_lock);
1546         delayed_uprobe_remove(NULL, mm);
1547         mutex_unlock(&delayed_uprobe_lock);
1548
1549         if (!area)
1550                 return;
1551
1552         put_page(area->pages[0]);
1553         kfree(area->bitmap);
1554         kfree(area);
1555 }
1556
1557 void uprobe_start_dup_mmap(void)
1558 {
1559         percpu_down_read(&dup_mmap_sem);
1560 }
1561
1562 void uprobe_end_dup_mmap(void)
1563 {
1564         percpu_up_read(&dup_mmap_sem);
1565 }
1566
1567 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1568 {
1569         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1570                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1571                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1572                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1573         }
1574 }
1575
1576 /*
1577  *  - search for a free slot.
1578  */
1579 static unsigned long xol_take_insn_slot(struct xol_area *area)
1580 {
1581         unsigned long slot_addr;
1582         int slot_nr;
1583
1584         do {
1585                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1586                 if (slot_nr < UINSNS_PER_PAGE) {
1587                         if (!test_and_set_bit(slot_nr, area->bitmap))
1588                                 break;
1589
1590                         slot_nr = UINSNS_PER_PAGE;
1591                         continue;
1592                 }
1593                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1594         } while (slot_nr >= UINSNS_PER_PAGE);
1595
1596         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1597         atomic_inc(&area->slot_count);
1598
1599         return slot_addr;
1600 }
1601
1602 /*
1603  * xol_get_insn_slot - allocate a slot for xol.
1604  * Returns the allocated slot address or 0.
1605  */
1606 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1607 {
1608         struct xol_area *area;
1609         unsigned long xol_vaddr;
1610
1611         area = get_xol_area();
1612         if (!area)
1613                 return 0;
1614
1615         xol_vaddr = xol_take_insn_slot(area);
1616         if (unlikely(!xol_vaddr))
1617                 return 0;
1618
1619         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1620                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1621
1622         return xol_vaddr;
1623 }
1624
1625 /*
1626  * xol_free_insn_slot - If slot was earlier allocated by
1627  * @xol_get_insn_slot(), make the slot available for
1628  * subsequent requests.
1629  */
1630 static void xol_free_insn_slot(struct task_struct *tsk)
1631 {
1632         struct xol_area *area;
1633         unsigned long vma_end;
1634         unsigned long slot_addr;
1635
1636         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1637                 return;
1638
1639         slot_addr = tsk->utask->xol_vaddr;
1640         if (unlikely(!slot_addr))
1641                 return;
1642
1643         area = tsk->mm->uprobes_state.xol_area;
1644         vma_end = area->vaddr + PAGE_SIZE;
1645         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1646                 unsigned long offset;
1647                 int slot_nr;
1648
1649                 offset = slot_addr - area->vaddr;
1650                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1651                 if (slot_nr >= UINSNS_PER_PAGE)
1652                         return;
1653
1654                 clear_bit(slot_nr, area->bitmap);
1655                 atomic_dec(&area->slot_count);
1656                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1657                 if (waitqueue_active(&area->wq))
1658                         wake_up(&area->wq);
1659
1660                 tsk->utask->xol_vaddr = 0;
1661         }
1662 }
1663
1664 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1665                                   void *src, unsigned long len)
1666 {
1667         /* Initialize the slot */
1668         copy_to_page(page, vaddr, src, len);
1669
1670         /*
1671          * We probably need flush_icache_user_range() but it needs vma.
1672          * This should work on most of architectures by default. If
1673          * architecture needs to do something different it can define
1674          * its own version of the function.
1675          */
1676         flush_dcache_page(page);
1677 }
1678
1679 /**
1680  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1681  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1682  * instruction.
1683  * Return the address of the breakpoint instruction.
1684  */
1685 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1686 {
1687         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1688 }
1689
1690 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1691 {
1692         struct uprobe_task *utask = current->utask;
1693
1694         if (unlikely(utask && utask->active_uprobe))
1695                 return utask->vaddr;
1696
1697         return instruction_pointer(regs);
1698 }
1699
1700 static struct return_instance *free_ret_instance(struct return_instance *ri)
1701 {
1702         struct return_instance *next = ri->next;
1703         put_uprobe(ri->uprobe);
1704         kfree(ri);
1705         return next;
1706 }
1707
1708 /*
1709  * Called with no locks held.
1710  * Called in context of an exiting or an exec-ing thread.
1711  */
1712 void uprobe_free_utask(struct task_struct *t)
1713 {
1714         struct uprobe_task *utask = t->utask;
1715         struct return_instance *ri;
1716
1717         if (!utask)
1718                 return;
1719
1720         if (utask->active_uprobe)
1721                 put_uprobe(utask->active_uprobe);
1722
1723         ri = utask->return_instances;
1724         while (ri)
1725                 ri = free_ret_instance(ri);
1726
1727         xol_free_insn_slot(t);
1728         kfree(utask);
1729         t->utask = NULL;
1730 }
1731
1732 /*
1733  * Allocate a uprobe_task object for the task if if necessary.
1734  * Called when the thread hits a breakpoint.
1735  *
1736  * Returns:
1737  * - pointer to new uprobe_task on success
1738  * - NULL otherwise
1739  */
1740 static struct uprobe_task *get_utask(void)
1741 {
1742         if (!current->utask)
1743                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1744         return current->utask;
1745 }
1746
1747 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1748 {
1749         struct uprobe_task *n_utask;
1750         struct return_instance **p, *o, *n;
1751
1752         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1753         if (!n_utask)
1754                 return -ENOMEM;
1755         t->utask = n_utask;
1756
1757         p = &n_utask->return_instances;
1758         for (o = o_utask->return_instances; o; o = o->next) {
1759                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1760                 if (!n)
1761                         return -ENOMEM;
1762
1763                 *n = *o;
1764                 get_uprobe(n->uprobe);
1765                 n->next = NULL;
1766
1767                 *p = n;
1768                 p = &n->next;
1769                 n_utask->depth++;
1770         }
1771
1772         return 0;
1773 }
1774
1775 static void uprobe_warn(struct task_struct *t, const char *msg)
1776 {
1777         pr_warn("uprobe: %s:%d failed to %s\n",
1778                         current->comm, current->pid, msg);
1779 }
1780
1781 static void dup_xol_work(struct callback_head *work)
1782 {
1783         if (current->flags & PF_EXITING)
1784                 return;
1785
1786         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1787                         !fatal_signal_pending(current))
1788                 uprobe_warn(current, "dup xol area");
1789 }
1790
1791 /*
1792  * Called in context of a new clone/fork from copy_process.
1793  */
1794 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1795 {
1796         struct uprobe_task *utask = current->utask;
1797         struct mm_struct *mm = current->mm;
1798         struct xol_area *area;
1799
1800         t->utask = NULL;
1801
1802         if (!utask || !utask->return_instances)
1803                 return;
1804
1805         if (mm == t->mm && !(flags & CLONE_VFORK))
1806                 return;
1807
1808         if (dup_utask(t, utask))
1809                 return uprobe_warn(t, "dup ret instances");
1810
1811         /* The task can fork() after dup_xol_work() fails */
1812         area = mm->uprobes_state.xol_area;
1813         if (!area)
1814                 return uprobe_warn(t, "dup xol area");
1815
1816         if (mm == t->mm)
1817                 return;
1818
1819         t->utask->dup_xol_addr = area->vaddr;
1820         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1821         task_work_add(t, &t->utask->dup_xol_work, true);
1822 }
1823
1824 /*
1825  * Current area->vaddr notion assume the trampoline address is always
1826  * equal area->vaddr.
1827  *
1828  * Returns -1 in case the xol_area is not allocated.
1829  */
1830 static unsigned long get_trampoline_vaddr(void)
1831 {
1832         struct xol_area *area;
1833         unsigned long trampoline_vaddr = -1;
1834
1835         /* Pairs with xol_add_vma() smp_store_release() */
1836         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1837         if (area)
1838                 trampoline_vaddr = area->vaddr;
1839
1840         return trampoline_vaddr;
1841 }
1842
1843 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1844                                         struct pt_regs *regs)
1845 {
1846         struct return_instance *ri = utask->return_instances;
1847         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1848
1849         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1850                 ri = free_ret_instance(ri);
1851                 utask->depth--;
1852         }
1853         utask->return_instances = ri;
1854 }
1855
1856 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1857 {
1858         struct return_instance *ri;
1859         struct uprobe_task *utask;
1860         unsigned long orig_ret_vaddr, trampoline_vaddr;
1861         bool chained;
1862
1863         if (!get_xol_area())
1864                 return;
1865
1866         utask = get_utask();
1867         if (!utask)
1868                 return;
1869
1870         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1871                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1872                                 " nestedness limit pid/tgid=%d/%d\n",
1873                                 current->pid, current->tgid);
1874                 return;
1875         }
1876
1877         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1878         if (!ri)
1879                 return;
1880
1881         trampoline_vaddr = get_trampoline_vaddr();
1882         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1883         if (orig_ret_vaddr == -1)
1884                 goto fail;
1885
1886         /* drop the entries invalidated by longjmp() */
1887         chained = (orig_ret_vaddr == trampoline_vaddr);
1888         cleanup_return_instances(utask, chained, regs);
1889
1890         /*
1891          * We don't want to keep trampoline address in stack, rather keep the
1892          * original return address of first caller thru all the consequent
1893          * instances. This also makes breakpoint unwrapping easier.
1894          */
1895         if (chained) {
1896                 if (!utask->return_instances) {
1897                         /*
1898                          * This situation is not possible. Likely we have an
1899                          * attack from user-space.
1900                          */
1901                         uprobe_warn(current, "handle tail call");
1902                         goto fail;
1903                 }
1904                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1905         }
1906
1907         ri->uprobe = get_uprobe(uprobe);
1908         ri->func = instruction_pointer(regs);
1909         ri->stack = user_stack_pointer(regs);
1910         ri->orig_ret_vaddr = orig_ret_vaddr;
1911         ri->chained = chained;
1912
1913         utask->depth++;
1914         ri->next = utask->return_instances;
1915         utask->return_instances = ri;
1916
1917         return;
1918  fail:
1919         kfree(ri);
1920 }
1921
1922 /* Prepare to single-step probed instruction out of line. */
1923 static int
1924 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1925 {
1926         struct uprobe_task *utask;
1927         unsigned long xol_vaddr;
1928         int err;
1929
1930         utask = get_utask();
1931         if (!utask)
1932                 return -ENOMEM;
1933
1934         xol_vaddr = xol_get_insn_slot(uprobe);
1935         if (!xol_vaddr)
1936                 return -ENOMEM;
1937
1938         utask->xol_vaddr = xol_vaddr;
1939         utask->vaddr = bp_vaddr;
1940
1941         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1942         if (unlikely(err)) {
1943                 xol_free_insn_slot(current);
1944                 return err;
1945         }
1946
1947         utask->active_uprobe = uprobe;
1948         utask->state = UTASK_SSTEP;
1949         return 0;
1950 }
1951
1952 /*
1953  * If we are singlestepping, then ensure this thread is not connected to
1954  * non-fatal signals until completion of singlestep.  When xol insn itself
1955  * triggers the signal,  restart the original insn even if the task is
1956  * already SIGKILL'ed (since coredump should report the correct ip).  This
1957  * is even more important if the task has a handler for SIGSEGV/etc, The
1958  * _same_ instruction should be repeated again after return from the signal
1959  * handler, and SSTEP can never finish in this case.
1960  */
1961 bool uprobe_deny_signal(void)
1962 {
1963         struct task_struct *t = current;
1964         struct uprobe_task *utask = t->utask;
1965
1966         if (likely(!utask || !utask->active_uprobe))
1967                 return false;
1968
1969         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1970
1971         if (signal_pending(t)) {
1972                 spin_lock_irq(&t->sighand->siglock);
1973                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1974                 spin_unlock_irq(&t->sighand->siglock);
1975
1976                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1977                         utask->state = UTASK_SSTEP_TRAPPED;
1978                         set_tsk_thread_flag(t, TIF_UPROBE);
1979                 }
1980         }
1981
1982         return true;
1983 }
1984
1985 static void mmf_recalc_uprobes(struct mm_struct *mm)
1986 {
1987         struct vm_area_struct *vma;
1988
1989         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1990                 if (!valid_vma(vma, false))
1991                         continue;
1992                 /*
1993                  * This is not strictly accurate, we can race with
1994                  * uprobe_unregister() and see the already removed
1995                  * uprobe if delete_uprobe() was not yet called.
1996                  * Or this uprobe can be filtered out.
1997                  */
1998                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1999                         return;
2000         }
2001
2002         clear_bit(MMF_HAS_UPROBES, &mm->flags);
2003 }
2004
2005 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2006 {
2007         struct page *page;
2008         uprobe_opcode_t opcode;
2009         int result;
2010
2011         pagefault_disable();
2012         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2013         pagefault_enable();
2014
2015         if (likely(result == 0))
2016                 goto out;
2017
2018         /*
2019          * The NULL 'tsk' here ensures that any faults that occur here
2020          * will not be accounted to the task.  'mm' *is* current->mm,
2021          * but we treat this as a 'remote' access since it is
2022          * essentially a kernel access to the memory.
2023          */
2024         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2025                         NULL, NULL);
2026         if (result < 0)
2027                 return result;
2028
2029         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2030         put_page(page);
2031  out:
2032         /* This needs to return true for any variant of the trap insn */
2033         return is_trap_insn(&opcode);
2034 }
2035
2036 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2037 {
2038         struct mm_struct *mm = current->mm;
2039         struct uprobe *uprobe = NULL;
2040         struct vm_area_struct *vma;
2041
2042         down_read(&mm->mmap_sem);
2043         vma = find_vma(mm, bp_vaddr);
2044         if (vma && vma->vm_start <= bp_vaddr) {
2045                 if (valid_vma(vma, false)) {
2046                         struct inode *inode = file_inode(vma->vm_file);
2047                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2048
2049                         uprobe = find_uprobe(inode, offset);
2050                 }
2051
2052                 if (!uprobe)
2053                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2054         } else {
2055                 *is_swbp = -EFAULT;
2056         }
2057
2058         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2059                 mmf_recalc_uprobes(mm);
2060         up_read(&mm->mmap_sem);
2061
2062         return uprobe;
2063 }
2064
2065 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2066 {
2067         struct uprobe_consumer *uc;
2068         int remove = UPROBE_HANDLER_REMOVE;
2069         bool need_prep = false; /* prepare return uprobe, when needed */
2070
2071         down_read(&uprobe->register_rwsem);
2072         for (uc = uprobe->consumers; uc; uc = uc->next) {
2073                 int rc = 0;
2074
2075                 if (uc->handler) {
2076                         rc = uc->handler(uc, regs);
2077                         WARN(rc & ~UPROBE_HANDLER_MASK,
2078                                 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2079                 }
2080
2081                 if (uc->ret_handler)
2082                         need_prep = true;
2083
2084                 remove &= rc;
2085         }
2086
2087         if (need_prep && !remove)
2088                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2089
2090         if (remove && uprobe->consumers) {
2091                 WARN_ON(!uprobe_is_active(uprobe));
2092                 unapply_uprobe(uprobe, current->mm);
2093         }
2094         up_read(&uprobe->register_rwsem);
2095 }
2096
2097 static void
2098 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2099 {
2100         struct uprobe *uprobe = ri->uprobe;
2101         struct uprobe_consumer *uc;
2102
2103         down_read(&uprobe->register_rwsem);
2104         for (uc = uprobe->consumers; uc; uc = uc->next) {
2105                 if (uc->ret_handler)
2106                         uc->ret_handler(uc, ri->func, regs);
2107         }
2108         up_read(&uprobe->register_rwsem);
2109 }
2110
2111 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2112 {
2113         bool chained;
2114
2115         do {
2116                 chained = ri->chained;
2117                 ri = ri->next;  /* can't be NULL if chained */
2118         } while (chained);
2119
2120         return ri;
2121 }
2122
2123 static void handle_trampoline(struct pt_regs *regs)
2124 {
2125         struct uprobe_task *utask;
2126         struct return_instance *ri, *next;
2127         bool valid;
2128
2129         utask = current->utask;
2130         if (!utask)
2131                 goto sigill;
2132
2133         ri = utask->return_instances;
2134         if (!ri)
2135                 goto sigill;
2136
2137         do {
2138                 /*
2139                  * We should throw out the frames invalidated by longjmp().
2140                  * If this chain is valid, then the next one should be alive
2141                  * or NULL; the latter case means that nobody but ri->func
2142                  * could hit this trampoline on return. TODO: sigaltstack().
2143                  */
2144                 next = find_next_ret_chain(ri);
2145                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2146
2147                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2148                 do {
2149                         if (valid)
2150                                 handle_uretprobe_chain(ri, regs);
2151                         ri = free_ret_instance(ri);
2152                         utask->depth--;
2153                 } while (ri != next);
2154         } while (!valid);
2155
2156         utask->return_instances = ri;
2157         return;
2158
2159  sigill:
2160         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2161         force_sig(SIGILL);
2162
2163 }
2164
2165 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2166 {
2167         return false;
2168 }
2169
2170 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2171                                         struct pt_regs *regs)
2172 {
2173         return true;
2174 }
2175
2176 /*
2177  * Run handler and ask thread to singlestep.
2178  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2179  */
2180 static void handle_swbp(struct pt_regs *regs)
2181 {
2182         struct uprobe *uprobe;
2183         unsigned long bp_vaddr;
2184         int uninitialized_var(is_swbp);
2185
2186         bp_vaddr = uprobe_get_swbp_addr(regs);
2187         if (bp_vaddr == get_trampoline_vaddr())
2188                 return handle_trampoline(regs);
2189
2190         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2191         if (!uprobe) {
2192                 if (is_swbp > 0) {
2193                         /* No matching uprobe; signal SIGTRAP. */
2194                         send_sig(SIGTRAP, current, 0);
2195                 } else {
2196                         /*
2197                          * Either we raced with uprobe_unregister() or we can't
2198                          * access this memory. The latter is only possible if
2199                          * another thread plays with our ->mm. In both cases
2200                          * we can simply restart. If this vma was unmapped we
2201                          * can pretend this insn was not executed yet and get
2202                          * the (correct) SIGSEGV after restart.
2203                          */
2204                         instruction_pointer_set(regs, bp_vaddr);
2205                 }
2206                 return;
2207         }
2208
2209         /* change it in advance for ->handler() and restart */
2210         instruction_pointer_set(regs, bp_vaddr);
2211
2212         /*
2213          * TODO: move copy_insn/etc into _register and remove this hack.
2214          * After we hit the bp, _unregister + _register can install the
2215          * new and not-yet-analyzed uprobe at the same address, restart.
2216          */
2217         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2218                 goto out;
2219
2220         /*
2221          * Pairs with the smp_wmb() in prepare_uprobe().
2222          *
2223          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2224          * we must also see the stores to &uprobe->arch performed by the
2225          * prepare_uprobe() call.
2226          */
2227         smp_rmb();
2228
2229         /* Tracing handlers use ->utask to communicate with fetch methods */
2230         if (!get_utask())
2231                 goto out;
2232
2233         if (arch_uprobe_ignore(&uprobe->arch, regs))
2234                 goto out;
2235
2236         handler_chain(uprobe, regs);
2237
2238         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2239                 goto out;
2240
2241         if (!pre_ssout(uprobe, regs, bp_vaddr))
2242                 return;
2243
2244         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2245 out:
2246         put_uprobe(uprobe);
2247 }
2248
2249 /*
2250  * Perform required fix-ups and disable singlestep.
2251  * Allow pending signals to take effect.
2252  */
2253 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2254 {
2255         struct uprobe *uprobe;
2256         int err = 0;
2257
2258         uprobe = utask->active_uprobe;
2259         if (utask->state == UTASK_SSTEP_ACK)
2260                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2261         else if (utask->state == UTASK_SSTEP_TRAPPED)
2262                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2263         else
2264                 WARN_ON_ONCE(1);
2265
2266         put_uprobe(uprobe);
2267         utask->active_uprobe = NULL;
2268         utask->state = UTASK_RUNNING;
2269         xol_free_insn_slot(current);
2270
2271         spin_lock_irq(&current->sighand->siglock);
2272         recalc_sigpending(); /* see uprobe_deny_signal() */
2273         spin_unlock_irq(&current->sighand->siglock);
2274
2275         if (unlikely(err)) {
2276                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2277                 force_sig(SIGILL);
2278         }
2279 }
2280
2281 /*
2282  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2283  * allows the thread to return from interrupt. After that handle_swbp()
2284  * sets utask->active_uprobe.
2285  *
2286  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2287  * and allows the thread to return from interrupt.
2288  *
2289  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2290  * uprobe_notify_resume().
2291  */
2292 void uprobe_notify_resume(struct pt_regs *regs)
2293 {
2294         struct uprobe_task *utask;
2295
2296         clear_thread_flag(TIF_UPROBE);
2297
2298         utask = current->utask;
2299         if (utask && utask->active_uprobe)
2300                 handle_singlestep(utask, regs);
2301         else
2302                 handle_swbp(regs);
2303 }
2304
2305 /*
2306  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2307  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2308  */
2309 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2310 {
2311         if (!current->mm)
2312                 return 0;
2313
2314         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2315             (!current->utask || !current->utask->return_instances))
2316                 return 0;
2317
2318         set_thread_flag(TIF_UPROBE);
2319         return 1;
2320 }
2321
2322 /*
2323  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2324  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2325  */
2326 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2327 {
2328         struct uprobe_task *utask = current->utask;
2329
2330         if (!current->mm || !utask || !utask->active_uprobe)
2331                 /* task is currently not uprobed */
2332                 return 0;
2333
2334         utask->state = UTASK_SSTEP_ACK;
2335         set_thread_flag(TIF_UPROBE);
2336         return 1;
2337 }
2338
2339 static struct notifier_block uprobe_exception_nb = {
2340         .notifier_call          = arch_uprobe_exception_notify,
2341         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2342 };
2343
2344 void __init uprobes_init(void)
2345 {
2346         int i;
2347
2348         for (i = 0; i < UPROBES_HASH_SZ; i++)
2349                 mutex_init(&uprobes_mmap_mutex[i]);
2350
2351         BUG_ON(register_die_notifier(&uprobe_exception_nb));
2352 }