mm/munlock: rmap call mlock_vma_page() munlock_vma_page()
[linux-2.6-microblaze.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *      Srikar Dronamraju
8  *      Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>      /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>         /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h>         /* try_to_free_swap */
23 #include <linux/ptrace.h>       /* user_enable_single_step */
24 #include <linux/kdebug.h>       /* notifier mechanism */
25 #include "../../mm/internal.h"  /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30
31 #include <linux/uprobes.h>
32
33 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
35
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN        0
54
55 struct uprobe {
56         struct rb_node          rb_node;        /* node in the rb tree */
57         refcount_t              ref;
58         struct rw_semaphore     register_rwsem;
59         struct rw_semaphore     consumer_rwsem;
60         struct list_head        pending_list;
61         struct uprobe_consumer  *consumers;
62         struct inode            *inode;         /* Also hold a ref to inode */
63         loff_t                  offset;
64         loff_t                  ref_ctr_offset;
65         unsigned long           flags;
66
67         /*
68          * The generic code assumes that it has two members of unknown type
69          * owned by the arch-specific code:
70          *
71          *      insn -  copy_insn() saves the original instruction here for
72          *              arch_uprobe_analyze_insn().
73          *
74          *      ixol -  potentially modified instruction to execute out of
75          *              line, copied to xol_area by xol_get_insn_slot().
76          */
77         struct arch_uprobe      arch;
78 };
79
80 struct delayed_uprobe {
81         struct list_head list;
82         struct uprobe *uprobe;
83         struct mm_struct *mm;
84 };
85
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155                                 struct page *old_page, struct page *new_page)
156 {
157         struct mm_struct *mm = vma->vm_mm;
158         struct page_vma_mapped_walk pvmw = {
159                 .page = compound_head(old_page),
160                 .vma = vma,
161                 .address = addr,
162         };
163         int err;
164         struct mmu_notifier_range range;
165
166         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
167                                 addr + PAGE_SIZE);
168
169         if (new_page) {
170                 err = mem_cgroup_charge(page_folio(new_page), vma->vm_mm,
171                                         GFP_KERNEL);
172                 if (err)
173                         return err;
174         }
175
176         /* For try_to_free_swap() below */
177         lock_page(old_page);
178
179         mmu_notifier_invalidate_range_start(&range);
180         err = -EAGAIN;
181         if (!page_vma_mapped_walk(&pvmw))
182                 goto unlock;
183         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
184
185         if (new_page) {
186                 get_page(new_page);
187                 page_add_new_anon_rmap(new_page, vma, addr, false);
188                 lru_cache_add_inactive_or_unevictable(new_page, vma);
189         } else
190                 /* no new page, just dec_mm_counter for old_page */
191                 dec_mm_counter(mm, MM_ANONPAGES);
192
193         if (!PageAnon(old_page)) {
194                 dec_mm_counter(mm, mm_counter_file(old_page));
195                 inc_mm_counter(mm, MM_ANONPAGES);
196         }
197
198         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
199         ptep_clear_flush_notify(vma, addr, pvmw.pte);
200         if (new_page)
201                 set_pte_at_notify(mm, addr, pvmw.pte,
202                                   mk_pte(new_page, vma->vm_page_prot));
203
204         page_remove_rmap(old_page, vma, false);
205         if (!page_mapped(old_page))
206                 try_to_free_swap(old_page);
207         page_vma_mapped_walk_done(&pvmw);
208         put_page(old_page);
209
210         err = 0;
211  unlock:
212         mmu_notifier_invalidate_range_end(&range);
213         unlock_page(old_page);
214         return err;
215 }
216
217 /**
218  * is_swbp_insn - check if instruction is breakpoint instruction.
219  * @insn: instruction to be checked.
220  * Default implementation of is_swbp_insn
221  * Returns true if @insn is a breakpoint instruction.
222  */
223 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
224 {
225         return *insn == UPROBE_SWBP_INSN;
226 }
227
228 /**
229  * is_trap_insn - check if instruction is breakpoint instruction.
230  * @insn: instruction to be checked.
231  * Default implementation of is_trap_insn
232  * Returns true if @insn is a breakpoint instruction.
233  *
234  * This function is needed for the case where an architecture has multiple
235  * trap instructions (like powerpc).
236  */
237 bool __weak is_trap_insn(uprobe_opcode_t *insn)
238 {
239         return is_swbp_insn(insn);
240 }
241
242 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
243 {
244         void *kaddr = kmap_atomic(page);
245         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
246         kunmap_atomic(kaddr);
247 }
248
249 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
250 {
251         void *kaddr = kmap_atomic(page);
252         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
253         kunmap_atomic(kaddr);
254 }
255
256 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
257 {
258         uprobe_opcode_t old_opcode;
259         bool is_swbp;
260
261         /*
262          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
263          * We do not check if it is any other 'trap variant' which could
264          * be conditional trap instruction such as the one powerpc supports.
265          *
266          * The logic is that we do not care if the underlying instruction
267          * is a trap variant; uprobes always wins over any other (gdb)
268          * breakpoint.
269          */
270         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
271         is_swbp = is_swbp_insn(&old_opcode);
272
273         if (is_swbp_insn(new_opcode)) {
274                 if (is_swbp)            /* register: already installed? */
275                         return 0;
276         } else {
277                 if (!is_swbp)           /* unregister: was it changed by us? */
278                         return 0;
279         }
280
281         return 1;
282 }
283
284 static struct delayed_uprobe *
285 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
286 {
287         struct delayed_uprobe *du;
288
289         list_for_each_entry(du, &delayed_uprobe_list, list)
290                 if (du->uprobe == uprobe && du->mm == mm)
291                         return du;
292         return NULL;
293 }
294
295 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
296 {
297         struct delayed_uprobe *du;
298
299         if (delayed_uprobe_check(uprobe, mm))
300                 return 0;
301
302         du  = kzalloc(sizeof(*du), GFP_KERNEL);
303         if (!du)
304                 return -ENOMEM;
305
306         du->uprobe = uprobe;
307         du->mm = mm;
308         list_add(&du->list, &delayed_uprobe_list);
309         return 0;
310 }
311
312 static void delayed_uprobe_delete(struct delayed_uprobe *du)
313 {
314         if (WARN_ON(!du))
315                 return;
316         list_del(&du->list);
317         kfree(du);
318 }
319
320 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
321 {
322         struct list_head *pos, *q;
323         struct delayed_uprobe *du;
324
325         if (!uprobe && !mm)
326                 return;
327
328         list_for_each_safe(pos, q, &delayed_uprobe_list) {
329                 du = list_entry(pos, struct delayed_uprobe, list);
330
331                 if (uprobe && du->uprobe != uprobe)
332                         continue;
333                 if (mm && du->mm != mm)
334                         continue;
335
336                 delayed_uprobe_delete(du);
337         }
338 }
339
340 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
341                               struct vm_area_struct *vma)
342 {
343         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
344
345         return uprobe->ref_ctr_offset &&
346                 vma->vm_file &&
347                 file_inode(vma->vm_file) == uprobe->inode &&
348                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
349                 vma->vm_start <= vaddr &&
350                 vma->vm_end > vaddr;
351 }
352
353 static struct vm_area_struct *
354 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
355 {
356         struct vm_area_struct *tmp;
357
358         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
359                 if (valid_ref_ctr_vma(uprobe, tmp))
360                         return tmp;
361
362         return NULL;
363 }
364
365 static int
366 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
367 {
368         void *kaddr;
369         struct page *page;
370         struct vm_area_struct *vma;
371         int ret;
372         short *ptr;
373
374         if (!vaddr || !d)
375                 return -EINVAL;
376
377         ret = get_user_pages_remote(mm, vaddr, 1,
378                         FOLL_WRITE, &page, &vma, NULL);
379         if (unlikely(ret <= 0)) {
380                 /*
381                  * We are asking for 1 page. If get_user_pages_remote() fails,
382                  * it may return 0, in that case we have to return error.
383                  */
384                 return ret == 0 ? -EBUSY : ret;
385         }
386
387         kaddr = kmap_atomic(page);
388         ptr = kaddr + (vaddr & ~PAGE_MASK);
389
390         if (unlikely(*ptr + d < 0)) {
391                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
392                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
393                 ret = -EINVAL;
394                 goto out;
395         }
396
397         *ptr += d;
398         ret = 0;
399 out:
400         kunmap_atomic(kaddr);
401         put_page(page);
402         return ret;
403 }
404
405 static void update_ref_ctr_warn(struct uprobe *uprobe,
406                                 struct mm_struct *mm, short d)
407 {
408         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
409                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
410                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
411                 (unsigned long long) uprobe->offset,
412                 (unsigned long long) uprobe->ref_ctr_offset, mm);
413 }
414
415 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
416                           short d)
417 {
418         struct vm_area_struct *rc_vma;
419         unsigned long rc_vaddr;
420         int ret = 0;
421
422         rc_vma = find_ref_ctr_vma(uprobe, mm);
423
424         if (rc_vma) {
425                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
426                 ret = __update_ref_ctr(mm, rc_vaddr, d);
427                 if (ret)
428                         update_ref_ctr_warn(uprobe, mm, d);
429
430                 if (d > 0)
431                         return ret;
432         }
433
434         mutex_lock(&delayed_uprobe_lock);
435         if (d > 0)
436                 ret = delayed_uprobe_add(uprobe, mm);
437         else
438                 delayed_uprobe_remove(uprobe, mm);
439         mutex_unlock(&delayed_uprobe_lock);
440
441         return ret;
442 }
443
444 /*
445  * NOTE:
446  * Expect the breakpoint instruction to be the smallest size instruction for
447  * the architecture. If an arch has variable length instruction and the
448  * breakpoint instruction is not of the smallest length instruction
449  * supported by that architecture then we need to modify is_trap_at_addr and
450  * uprobe_write_opcode accordingly. This would never be a problem for archs
451  * that have fixed length instructions.
452  *
453  * uprobe_write_opcode - write the opcode at a given virtual address.
454  * @auprobe: arch specific probepoint information.
455  * @mm: the probed process address space.
456  * @vaddr: the virtual address to store the opcode.
457  * @opcode: opcode to be written at @vaddr.
458  *
459  * Called with mm->mmap_lock held for write.
460  * Return 0 (success) or a negative errno.
461  */
462 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
463                         unsigned long vaddr, uprobe_opcode_t opcode)
464 {
465         struct uprobe *uprobe;
466         struct page *old_page, *new_page;
467         struct vm_area_struct *vma;
468         int ret, is_register, ref_ctr_updated = 0;
469         bool orig_page_huge = false;
470         unsigned int gup_flags = FOLL_FORCE;
471
472         is_register = is_swbp_insn(&opcode);
473         uprobe = container_of(auprobe, struct uprobe, arch);
474
475 retry:
476         if (is_register)
477                 gup_flags |= FOLL_SPLIT_PMD;
478         /* Read the page with vaddr into memory */
479         ret = get_user_pages_remote(mm, vaddr, 1, gup_flags,
480                                     &old_page, &vma, NULL);
481         if (ret <= 0)
482                 return ret;
483
484         ret = verify_opcode(old_page, vaddr, &opcode);
485         if (ret <= 0)
486                 goto put_old;
487
488         if (WARN(!is_register && PageCompound(old_page),
489                  "uprobe unregister should never work on compound page\n")) {
490                 ret = -EINVAL;
491                 goto put_old;
492         }
493
494         /* We are going to replace instruction, update ref_ctr. */
495         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
496                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
497                 if (ret)
498                         goto put_old;
499
500                 ref_ctr_updated = 1;
501         }
502
503         ret = 0;
504         if (!is_register && !PageAnon(old_page))
505                 goto put_old;
506
507         ret = anon_vma_prepare(vma);
508         if (ret)
509                 goto put_old;
510
511         ret = -ENOMEM;
512         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
513         if (!new_page)
514                 goto put_old;
515
516         __SetPageUptodate(new_page);
517         copy_highpage(new_page, old_page);
518         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
519
520         if (!is_register) {
521                 struct page *orig_page;
522                 pgoff_t index;
523
524                 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
525
526                 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
527                 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
528                                           index);
529
530                 if (orig_page) {
531                         if (PageUptodate(orig_page) &&
532                             pages_identical(new_page, orig_page)) {
533                                 /* let go new_page */
534                                 put_page(new_page);
535                                 new_page = NULL;
536
537                                 if (PageCompound(orig_page))
538                                         orig_page_huge = true;
539                         }
540                         put_page(orig_page);
541                 }
542         }
543
544         ret = __replace_page(vma, vaddr, old_page, new_page);
545         if (new_page)
546                 put_page(new_page);
547 put_old:
548         put_page(old_page);
549
550         if (unlikely(ret == -EAGAIN))
551                 goto retry;
552
553         /* Revert back reference counter if instruction update failed. */
554         if (ret && is_register && ref_ctr_updated)
555                 update_ref_ctr(uprobe, mm, -1);
556
557         /* try collapse pmd for compound page */
558         if (!ret && orig_page_huge)
559                 collapse_pte_mapped_thp(mm, vaddr);
560
561         return ret;
562 }
563
564 /**
565  * set_swbp - store breakpoint at a given address.
566  * @auprobe: arch specific probepoint information.
567  * @mm: the probed process address space.
568  * @vaddr: the virtual address to insert the opcode.
569  *
570  * For mm @mm, store the breakpoint instruction at @vaddr.
571  * Return 0 (success) or a negative errno.
572  */
573 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
574 {
575         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
576 }
577
578 /**
579  * set_orig_insn - Restore the original instruction.
580  * @mm: the probed process address space.
581  * @auprobe: arch specific probepoint information.
582  * @vaddr: the virtual address to insert the opcode.
583  *
584  * For mm @mm, restore the original opcode (opcode) at @vaddr.
585  * Return 0 (success) or a negative errno.
586  */
587 int __weak
588 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
589 {
590         return uprobe_write_opcode(auprobe, mm, vaddr,
591                         *(uprobe_opcode_t *)&auprobe->insn);
592 }
593
594 static struct uprobe *get_uprobe(struct uprobe *uprobe)
595 {
596         refcount_inc(&uprobe->ref);
597         return uprobe;
598 }
599
600 static void put_uprobe(struct uprobe *uprobe)
601 {
602         if (refcount_dec_and_test(&uprobe->ref)) {
603                 /*
604                  * If application munmap(exec_vma) before uprobe_unregister()
605                  * gets called, we don't get a chance to remove uprobe from
606                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
607                  */
608                 mutex_lock(&delayed_uprobe_lock);
609                 delayed_uprobe_remove(uprobe, NULL);
610                 mutex_unlock(&delayed_uprobe_lock);
611                 kfree(uprobe);
612         }
613 }
614
615 static __always_inline
616 int uprobe_cmp(const struct inode *l_inode, const loff_t l_offset,
617                const struct uprobe *r)
618 {
619         if (l_inode < r->inode)
620                 return -1;
621
622         if (l_inode > r->inode)
623                 return 1;
624
625         if (l_offset < r->offset)
626                 return -1;
627
628         if (l_offset > r->offset)
629                 return 1;
630
631         return 0;
632 }
633
634 #define __node_2_uprobe(node) \
635         rb_entry((node), struct uprobe, rb_node)
636
637 struct __uprobe_key {
638         struct inode *inode;
639         loff_t offset;
640 };
641
642 static inline int __uprobe_cmp_key(const void *key, const struct rb_node *b)
643 {
644         const struct __uprobe_key *a = key;
645         return uprobe_cmp(a->inode, a->offset, __node_2_uprobe(b));
646 }
647
648 static inline int __uprobe_cmp(struct rb_node *a, const struct rb_node *b)
649 {
650         struct uprobe *u = __node_2_uprobe(a);
651         return uprobe_cmp(u->inode, u->offset, __node_2_uprobe(b));
652 }
653
654 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
655 {
656         struct __uprobe_key key = {
657                 .inode = inode,
658                 .offset = offset,
659         };
660         struct rb_node *node = rb_find(&key, &uprobes_tree, __uprobe_cmp_key);
661
662         if (node)
663                 return get_uprobe(__node_2_uprobe(node));
664
665         return NULL;
666 }
667
668 /*
669  * Find a uprobe corresponding to a given inode:offset
670  * Acquires uprobes_treelock
671  */
672 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
673 {
674         struct uprobe *uprobe;
675
676         spin_lock(&uprobes_treelock);
677         uprobe = __find_uprobe(inode, offset);
678         spin_unlock(&uprobes_treelock);
679
680         return uprobe;
681 }
682
683 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
684 {
685         struct rb_node *node;
686
687         node = rb_find_add(&uprobe->rb_node, &uprobes_tree, __uprobe_cmp);
688         if (node)
689                 return get_uprobe(__node_2_uprobe(node));
690
691         /* get access + creation ref */
692         refcount_set(&uprobe->ref, 2);
693         return NULL;
694 }
695
696 /*
697  * Acquire uprobes_treelock.
698  * Matching uprobe already exists in rbtree;
699  *      increment (access refcount) and return the matching uprobe.
700  *
701  * No matching uprobe; insert the uprobe in rb_tree;
702  *      get a double refcount (access + creation) and return NULL.
703  */
704 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
705 {
706         struct uprobe *u;
707
708         spin_lock(&uprobes_treelock);
709         u = __insert_uprobe(uprobe);
710         spin_unlock(&uprobes_treelock);
711
712         return u;
713 }
714
715 static void
716 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
717 {
718         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
719                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
720                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
721                 (unsigned long long) cur_uprobe->ref_ctr_offset,
722                 (unsigned long long) uprobe->ref_ctr_offset);
723 }
724
725 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
726                                    loff_t ref_ctr_offset)
727 {
728         struct uprobe *uprobe, *cur_uprobe;
729
730         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
731         if (!uprobe)
732                 return NULL;
733
734         uprobe->inode = inode;
735         uprobe->offset = offset;
736         uprobe->ref_ctr_offset = ref_ctr_offset;
737         init_rwsem(&uprobe->register_rwsem);
738         init_rwsem(&uprobe->consumer_rwsem);
739
740         /* add to uprobes_tree, sorted on inode:offset */
741         cur_uprobe = insert_uprobe(uprobe);
742         /* a uprobe exists for this inode:offset combination */
743         if (cur_uprobe) {
744                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
745                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
746                         put_uprobe(cur_uprobe);
747                         kfree(uprobe);
748                         return ERR_PTR(-EINVAL);
749                 }
750                 kfree(uprobe);
751                 uprobe = cur_uprobe;
752         }
753
754         return uprobe;
755 }
756
757 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
758 {
759         down_write(&uprobe->consumer_rwsem);
760         uc->next = uprobe->consumers;
761         uprobe->consumers = uc;
762         up_write(&uprobe->consumer_rwsem);
763 }
764
765 /*
766  * For uprobe @uprobe, delete the consumer @uc.
767  * Return true if the @uc is deleted successfully
768  * or return false.
769  */
770 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
771 {
772         struct uprobe_consumer **con;
773         bool ret = false;
774
775         down_write(&uprobe->consumer_rwsem);
776         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
777                 if (*con == uc) {
778                         *con = uc->next;
779                         ret = true;
780                         break;
781                 }
782         }
783         up_write(&uprobe->consumer_rwsem);
784
785         return ret;
786 }
787
788 static int __copy_insn(struct address_space *mapping, struct file *filp,
789                         void *insn, int nbytes, loff_t offset)
790 {
791         struct page *page;
792         /*
793          * Ensure that the page that has the original instruction is populated
794          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
795          * see uprobe_register().
796          */
797         if (mapping->a_ops->readpage)
798                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
799         else
800                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
801         if (IS_ERR(page))
802                 return PTR_ERR(page);
803
804         copy_from_page(page, offset, insn, nbytes);
805         put_page(page);
806
807         return 0;
808 }
809
810 static int copy_insn(struct uprobe *uprobe, struct file *filp)
811 {
812         struct address_space *mapping = uprobe->inode->i_mapping;
813         loff_t offs = uprobe->offset;
814         void *insn = &uprobe->arch.insn;
815         int size = sizeof(uprobe->arch.insn);
816         int len, err = -EIO;
817
818         /* Copy only available bytes, -EIO if nothing was read */
819         do {
820                 if (offs >= i_size_read(uprobe->inode))
821                         break;
822
823                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
824                 err = __copy_insn(mapping, filp, insn, len, offs);
825                 if (err)
826                         break;
827
828                 insn += len;
829                 offs += len;
830                 size -= len;
831         } while (size);
832
833         return err;
834 }
835
836 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
837                                 struct mm_struct *mm, unsigned long vaddr)
838 {
839         int ret = 0;
840
841         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
842                 return ret;
843
844         /* TODO: move this into _register, until then we abuse this sem. */
845         down_write(&uprobe->consumer_rwsem);
846         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
847                 goto out;
848
849         ret = copy_insn(uprobe, file);
850         if (ret)
851                 goto out;
852
853         ret = -ENOTSUPP;
854         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
855                 goto out;
856
857         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
858         if (ret)
859                 goto out;
860
861         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
862         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
863
864  out:
865         up_write(&uprobe->consumer_rwsem);
866
867         return ret;
868 }
869
870 static inline bool consumer_filter(struct uprobe_consumer *uc,
871                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
872 {
873         return !uc->filter || uc->filter(uc, ctx, mm);
874 }
875
876 static bool filter_chain(struct uprobe *uprobe,
877                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
878 {
879         struct uprobe_consumer *uc;
880         bool ret = false;
881
882         down_read(&uprobe->consumer_rwsem);
883         for (uc = uprobe->consumers; uc; uc = uc->next) {
884                 ret = consumer_filter(uc, ctx, mm);
885                 if (ret)
886                         break;
887         }
888         up_read(&uprobe->consumer_rwsem);
889
890         return ret;
891 }
892
893 static int
894 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
895                         struct vm_area_struct *vma, unsigned long vaddr)
896 {
897         bool first_uprobe;
898         int ret;
899
900         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
901         if (ret)
902                 return ret;
903
904         /*
905          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
906          * the task can hit this breakpoint right after __replace_page().
907          */
908         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
909         if (first_uprobe)
910                 set_bit(MMF_HAS_UPROBES, &mm->flags);
911
912         ret = set_swbp(&uprobe->arch, mm, vaddr);
913         if (!ret)
914                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
915         else if (first_uprobe)
916                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
917
918         return ret;
919 }
920
921 static int
922 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
923 {
924         set_bit(MMF_RECALC_UPROBES, &mm->flags);
925         return set_orig_insn(&uprobe->arch, mm, vaddr);
926 }
927
928 static inline bool uprobe_is_active(struct uprobe *uprobe)
929 {
930         return !RB_EMPTY_NODE(&uprobe->rb_node);
931 }
932 /*
933  * There could be threads that have already hit the breakpoint. They
934  * will recheck the current insn and restart if find_uprobe() fails.
935  * See find_active_uprobe().
936  */
937 static void delete_uprobe(struct uprobe *uprobe)
938 {
939         if (WARN_ON(!uprobe_is_active(uprobe)))
940                 return;
941
942         spin_lock(&uprobes_treelock);
943         rb_erase(&uprobe->rb_node, &uprobes_tree);
944         spin_unlock(&uprobes_treelock);
945         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
946         put_uprobe(uprobe);
947 }
948
949 struct map_info {
950         struct map_info *next;
951         struct mm_struct *mm;
952         unsigned long vaddr;
953 };
954
955 static inline struct map_info *free_map_info(struct map_info *info)
956 {
957         struct map_info *next = info->next;
958         kfree(info);
959         return next;
960 }
961
962 static struct map_info *
963 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
964 {
965         unsigned long pgoff = offset >> PAGE_SHIFT;
966         struct vm_area_struct *vma;
967         struct map_info *curr = NULL;
968         struct map_info *prev = NULL;
969         struct map_info *info;
970         int more = 0;
971
972  again:
973         i_mmap_lock_read(mapping);
974         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
975                 if (!valid_vma(vma, is_register))
976                         continue;
977
978                 if (!prev && !more) {
979                         /*
980                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
981                          * reclaim. This is optimistic, no harm done if it fails.
982                          */
983                         prev = kmalloc(sizeof(struct map_info),
984                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
985                         if (prev)
986                                 prev->next = NULL;
987                 }
988                 if (!prev) {
989                         more++;
990                         continue;
991                 }
992
993                 if (!mmget_not_zero(vma->vm_mm))
994                         continue;
995
996                 info = prev;
997                 prev = prev->next;
998                 info->next = curr;
999                 curr = info;
1000
1001                 info->mm = vma->vm_mm;
1002                 info->vaddr = offset_to_vaddr(vma, offset);
1003         }
1004         i_mmap_unlock_read(mapping);
1005
1006         if (!more)
1007                 goto out;
1008
1009         prev = curr;
1010         while (curr) {
1011                 mmput(curr->mm);
1012                 curr = curr->next;
1013         }
1014
1015         do {
1016                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1017                 if (!info) {
1018                         curr = ERR_PTR(-ENOMEM);
1019                         goto out;
1020                 }
1021                 info->next = prev;
1022                 prev = info;
1023         } while (--more);
1024
1025         goto again;
1026  out:
1027         while (prev)
1028                 prev = free_map_info(prev);
1029         return curr;
1030 }
1031
1032 static int
1033 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1034 {
1035         bool is_register = !!new;
1036         struct map_info *info;
1037         int err = 0;
1038
1039         percpu_down_write(&dup_mmap_sem);
1040         info = build_map_info(uprobe->inode->i_mapping,
1041                                         uprobe->offset, is_register);
1042         if (IS_ERR(info)) {
1043                 err = PTR_ERR(info);
1044                 goto out;
1045         }
1046
1047         while (info) {
1048                 struct mm_struct *mm = info->mm;
1049                 struct vm_area_struct *vma;
1050
1051                 if (err && is_register)
1052                         goto free;
1053
1054                 mmap_write_lock(mm);
1055                 vma = find_vma(mm, info->vaddr);
1056                 if (!vma || !valid_vma(vma, is_register) ||
1057                     file_inode(vma->vm_file) != uprobe->inode)
1058                         goto unlock;
1059
1060                 if (vma->vm_start > info->vaddr ||
1061                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1062                         goto unlock;
1063
1064                 if (is_register) {
1065                         /* consult only the "caller", new consumer. */
1066                         if (consumer_filter(new,
1067                                         UPROBE_FILTER_REGISTER, mm))
1068                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1069                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1070                         if (!filter_chain(uprobe,
1071                                         UPROBE_FILTER_UNREGISTER, mm))
1072                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1073                 }
1074
1075  unlock:
1076                 mmap_write_unlock(mm);
1077  free:
1078                 mmput(mm);
1079                 info = free_map_info(info);
1080         }
1081  out:
1082         percpu_up_write(&dup_mmap_sem);
1083         return err;
1084 }
1085
1086 static void
1087 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1088 {
1089         int err;
1090
1091         if (WARN_ON(!consumer_del(uprobe, uc)))
1092                 return;
1093
1094         err = register_for_each_vma(uprobe, NULL);
1095         /* TODO : cant unregister? schedule a worker thread */
1096         if (!uprobe->consumers && !err)
1097                 delete_uprobe(uprobe);
1098 }
1099
1100 /*
1101  * uprobe_unregister - unregister an already registered probe.
1102  * @inode: the file in which the probe has to be removed.
1103  * @offset: offset from the start of the file.
1104  * @uc: identify which probe if multiple probes are colocated.
1105  */
1106 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1107 {
1108         struct uprobe *uprobe;
1109
1110         uprobe = find_uprobe(inode, offset);
1111         if (WARN_ON(!uprobe))
1112                 return;
1113
1114         down_write(&uprobe->register_rwsem);
1115         __uprobe_unregister(uprobe, uc);
1116         up_write(&uprobe->register_rwsem);
1117         put_uprobe(uprobe);
1118 }
1119 EXPORT_SYMBOL_GPL(uprobe_unregister);
1120
1121 /*
1122  * __uprobe_register - register a probe
1123  * @inode: the file in which the probe has to be placed.
1124  * @offset: offset from the start of the file.
1125  * @uc: information on howto handle the probe..
1126  *
1127  * Apart from the access refcount, __uprobe_register() takes a creation
1128  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1129  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1130  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1131  * @uprobe even before the register operation is complete. Creation
1132  * refcount is released when the last @uc for the @uprobe
1133  * unregisters. Caller of __uprobe_register() is required to keep @inode
1134  * (and the containing mount) referenced.
1135  *
1136  * Return errno if it cannot successully install probes
1137  * else return 0 (success)
1138  */
1139 static int __uprobe_register(struct inode *inode, loff_t offset,
1140                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1141 {
1142         struct uprobe *uprobe;
1143         int ret;
1144
1145         /* Uprobe must have at least one set consumer */
1146         if (!uc->handler && !uc->ret_handler)
1147                 return -EINVAL;
1148
1149         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1150         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1151                 return -EIO;
1152         /* Racy, just to catch the obvious mistakes */
1153         if (offset > i_size_read(inode))
1154                 return -EINVAL;
1155
1156         /*
1157          * This ensures that copy_from_page(), copy_to_page() and
1158          * __update_ref_ctr() can't cross page boundary.
1159          */
1160         if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
1161                 return -EINVAL;
1162         if (!IS_ALIGNED(ref_ctr_offset, sizeof(short)))
1163                 return -EINVAL;
1164
1165  retry:
1166         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1167         if (!uprobe)
1168                 return -ENOMEM;
1169         if (IS_ERR(uprobe))
1170                 return PTR_ERR(uprobe);
1171
1172         /*
1173          * We can race with uprobe_unregister()->delete_uprobe().
1174          * Check uprobe_is_active() and retry if it is false.
1175          */
1176         down_write(&uprobe->register_rwsem);
1177         ret = -EAGAIN;
1178         if (likely(uprobe_is_active(uprobe))) {
1179                 consumer_add(uprobe, uc);
1180                 ret = register_for_each_vma(uprobe, uc);
1181                 if (ret)
1182                         __uprobe_unregister(uprobe, uc);
1183         }
1184         up_write(&uprobe->register_rwsem);
1185         put_uprobe(uprobe);
1186
1187         if (unlikely(ret == -EAGAIN))
1188                 goto retry;
1189         return ret;
1190 }
1191
1192 int uprobe_register(struct inode *inode, loff_t offset,
1193                     struct uprobe_consumer *uc)
1194 {
1195         return __uprobe_register(inode, offset, 0, uc);
1196 }
1197 EXPORT_SYMBOL_GPL(uprobe_register);
1198
1199 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1200                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1201 {
1202         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1203 }
1204 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1205
1206 /*
1207  * uprobe_apply - unregister an already registered probe.
1208  * @inode: the file in which the probe has to be removed.
1209  * @offset: offset from the start of the file.
1210  * @uc: consumer which wants to add more or remove some breakpoints
1211  * @add: add or remove the breakpoints
1212  */
1213 int uprobe_apply(struct inode *inode, loff_t offset,
1214                         struct uprobe_consumer *uc, bool add)
1215 {
1216         struct uprobe *uprobe;
1217         struct uprobe_consumer *con;
1218         int ret = -ENOENT;
1219
1220         uprobe = find_uprobe(inode, offset);
1221         if (WARN_ON(!uprobe))
1222                 return ret;
1223
1224         down_write(&uprobe->register_rwsem);
1225         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1226                 ;
1227         if (con)
1228                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1229         up_write(&uprobe->register_rwsem);
1230         put_uprobe(uprobe);
1231
1232         return ret;
1233 }
1234
1235 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1236 {
1237         struct vm_area_struct *vma;
1238         int err = 0;
1239
1240         mmap_read_lock(mm);
1241         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1242                 unsigned long vaddr;
1243                 loff_t offset;
1244
1245                 if (!valid_vma(vma, false) ||
1246                     file_inode(vma->vm_file) != uprobe->inode)
1247                         continue;
1248
1249                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1250                 if (uprobe->offset <  offset ||
1251                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1252                         continue;
1253
1254                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1255                 err |= remove_breakpoint(uprobe, mm, vaddr);
1256         }
1257         mmap_read_unlock(mm);
1258
1259         return err;
1260 }
1261
1262 static struct rb_node *
1263 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1264 {
1265         struct rb_node *n = uprobes_tree.rb_node;
1266
1267         while (n) {
1268                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1269
1270                 if (inode < u->inode) {
1271                         n = n->rb_left;
1272                 } else if (inode > u->inode) {
1273                         n = n->rb_right;
1274                 } else {
1275                         if (max < u->offset)
1276                                 n = n->rb_left;
1277                         else if (min > u->offset)
1278                                 n = n->rb_right;
1279                         else
1280                                 break;
1281                 }
1282         }
1283
1284         return n;
1285 }
1286
1287 /*
1288  * For a given range in vma, build a list of probes that need to be inserted.
1289  */
1290 static void build_probe_list(struct inode *inode,
1291                                 struct vm_area_struct *vma,
1292                                 unsigned long start, unsigned long end,
1293                                 struct list_head *head)
1294 {
1295         loff_t min, max;
1296         struct rb_node *n, *t;
1297         struct uprobe *u;
1298
1299         INIT_LIST_HEAD(head);
1300         min = vaddr_to_offset(vma, start);
1301         max = min + (end - start) - 1;
1302
1303         spin_lock(&uprobes_treelock);
1304         n = find_node_in_range(inode, min, max);
1305         if (n) {
1306                 for (t = n; t; t = rb_prev(t)) {
1307                         u = rb_entry(t, struct uprobe, rb_node);
1308                         if (u->inode != inode || u->offset < min)
1309                                 break;
1310                         list_add(&u->pending_list, head);
1311                         get_uprobe(u);
1312                 }
1313                 for (t = n; (t = rb_next(t)); ) {
1314                         u = rb_entry(t, struct uprobe, rb_node);
1315                         if (u->inode != inode || u->offset > max)
1316                                 break;
1317                         list_add(&u->pending_list, head);
1318                         get_uprobe(u);
1319                 }
1320         }
1321         spin_unlock(&uprobes_treelock);
1322 }
1323
1324 /* @vma contains reference counter, not the probed instruction. */
1325 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1326 {
1327         struct list_head *pos, *q;
1328         struct delayed_uprobe *du;
1329         unsigned long vaddr;
1330         int ret = 0, err = 0;
1331
1332         mutex_lock(&delayed_uprobe_lock);
1333         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1334                 du = list_entry(pos, struct delayed_uprobe, list);
1335
1336                 if (du->mm != vma->vm_mm ||
1337                     !valid_ref_ctr_vma(du->uprobe, vma))
1338                         continue;
1339
1340                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1341                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1342                 if (ret) {
1343                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1344                         if (!err)
1345                                 err = ret;
1346                 }
1347                 delayed_uprobe_delete(du);
1348         }
1349         mutex_unlock(&delayed_uprobe_lock);
1350         return err;
1351 }
1352
1353 /*
1354  * Called from mmap_region/vma_adjust with mm->mmap_lock acquired.
1355  *
1356  * Currently we ignore all errors and always return 0, the callers
1357  * can't handle the failure anyway.
1358  */
1359 int uprobe_mmap(struct vm_area_struct *vma)
1360 {
1361         struct list_head tmp_list;
1362         struct uprobe *uprobe, *u;
1363         struct inode *inode;
1364
1365         if (no_uprobe_events())
1366                 return 0;
1367
1368         if (vma->vm_file &&
1369             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1370             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1371                 delayed_ref_ctr_inc(vma);
1372
1373         if (!valid_vma(vma, true))
1374                 return 0;
1375
1376         inode = file_inode(vma->vm_file);
1377         if (!inode)
1378                 return 0;
1379
1380         mutex_lock(uprobes_mmap_hash(inode));
1381         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1382         /*
1383          * We can race with uprobe_unregister(), this uprobe can be already
1384          * removed. But in this case filter_chain() must return false, all
1385          * consumers have gone away.
1386          */
1387         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1388                 if (!fatal_signal_pending(current) &&
1389                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1390                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1391                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1392                 }
1393                 put_uprobe(uprobe);
1394         }
1395         mutex_unlock(uprobes_mmap_hash(inode));
1396
1397         return 0;
1398 }
1399
1400 static bool
1401 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1402 {
1403         loff_t min, max;
1404         struct inode *inode;
1405         struct rb_node *n;
1406
1407         inode = file_inode(vma->vm_file);
1408
1409         min = vaddr_to_offset(vma, start);
1410         max = min + (end - start) - 1;
1411
1412         spin_lock(&uprobes_treelock);
1413         n = find_node_in_range(inode, min, max);
1414         spin_unlock(&uprobes_treelock);
1415
1416         return !!n;
1417 }
1418
1419 /*
1420  * Called in context of a munmap of a vma.
1421  */
1422 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1423 {
1424         if (no_uprobe_events() || !valid_vma(vma, false))
1425                 return;
1426
1427         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1428                 return;
1429
1430         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1431              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1432                 return;
1433
1434         if (vma_has_uprobes(vma, start, end))
1435                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1436 }
1437
1438 /* Slot allocation for XOL */
1439 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1440 {
1441         struct vm_area_struct *vma;
1442         int ret;
1443
1444         if (mmap_write_lock_killable(mm))
1445                 return -EINTR;
1446
1447         if (mm->uprobes_state.xol_area) {
1448                 ret = -EALREADY;
1449                 goto fail;
1450         }
1451
1452         if (!area->vaddr) {
1453                 /* Try to map as high as possible, this is only a hint. */
1454                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1455                                                 PAGE_SIZE, 0, 0);
1456                 if (IS_ERR_VALUE(area->vaddr)) {
1457                         ret = area->vaddr;
1458                         goto fail;
1459                 }
1460         }
1461
1462         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1463                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1464                                 &area->xol_mapping);
1465         if (IS_ERR(vma)) {
1466                 ret = PTR_ERR(vma);
1467                 goto fail;
1468         }
1469
1470         ret = 0;
1471         /* pairs with get_xol_area() */
1472         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1473  fail:
1474         mmap_write_unlock(mm);
1475
1476         return ret;
1477 }
1478
1479 static struct xol_area *__create_xol_area(unsigned long vaddr)
1480 {
1481         struct mm_struct *mm = current->mm;
1482         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1483         struct xol_area *area;
1484
1485         area = kmalloc(sizeof(*area), GFP_KERNEL);
1486         if (unlikely(!area))
1487                 goto out;
1488
1489         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1490                                GFP_KERNEL);
1491         if (!area->bitmap)
1492                 goto free_area;
1493
1494         area->xol_mapping.name = "[uprobes]";
1495         area->xol_mapping.fault = NULL;
1496         area->xol_mapping.pages = area->pages;
1497         area->pages[0] = alloc_page(GFP_HIGHUSER);
1498         if (!area->pages[0])
1499                 goto free_bitmap;
1500         area->pages[1] = NULL;
1501
1502         area->vaddr = vaddr;
1503         init_waitqueue_head(&area->wq);
1504         /* Reserve the 1st slot for get_trampoline_vaddr() */
1505         set_bit(0, area->bitmap);
1506         atomic_set(&area->slot_count, 1);
1507         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1508
1509         if (!xol_add_vma(mm, area))
1510                 return area;
1511
1512         __free_page(area->pages[0]);
1513  free_bitmap:
1514         kfree(area->bitmap);
1515  free_area:
1516         kfree(area);
1517  out:
1518         return NULL;
1519 }
1520
1521 /*
1522  * get_xol_area - Allocate process's xol_area if necessary.
1523  * This area will be used for storing instructions for execution out of line.
1524  *
1525  * Returns the allocated area or NULL.
1526  */
1527 static struct xol_area *get_xol_area(void)
1528 {
1529         struct mm_struct *mm = current->mm;
1530         struct xol_area *area;
1531
1532         if (!mm->uprobes_state.xol_area)
1533                 __create_xol_area(0);
1534
1535         /* Pairs with xol_add_vma() smp_store_release() */
1536         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1537         return area;
1538 }
1539
1540 /*
1541  * uprobe_clear_state - Free the area allocated for slots.
1542  */
1543 void uprobe_clear_state(struct mm_struct *mm)
1544 {
1545         struct xol_area *area = mm->uprobes_state.xol_area;
1546
1547         mutex_lock(&delayed_uprobe_lock);
1548         delayed_uprobe_remove(NULL, mm);
1549         mutex_unlock(&delayed_uprobe_lock);
1550
1551         if (!area)
1552                 return;
1553
1554         put_page(area->pages[0]);
1555         kfree(area->bitmap);
1556         kfree(area);
1557 }
1558
1559 void uprobe_start_dup_mmap(void)
1560 {
1561         percpu_down_read(&dup_mmap_sem);
1562 }
1563
1564 void uprobe_end_dup_mmap(void)
1565 {
1566         percpu_up_read(&dup_mmap_sem);
1567 }
1568
1569 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1570 {
1571         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1572                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1573                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1574                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1575         }
1576 }
1577
1578 /*
1579  *  - search for a free slot.
1580  */
1581 static unsigned long xol_take_insn_slot(struct xol_area *area)
1582 {
1583         unsigned long slot_addr;
1584         int slot_nr;
1585
1586         do {
1587                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1588                 if (slot_nr < UINSNS_PER_PAGE) {
1589                         if (!test_and_set_bit(slot_nr, area->bitmap))
1590                                 break;
1591
1592                         slot_nr = UINSNS_PER_PAGE;
1593                         continue;
1594                 }
1595                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1596         } while (slot_nr >= UINSNS_PER_PAGE);
1597
1598         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1599         atomic_inc(&area->slot_count);
1600
1601         return slot_addr;
1602 }
1603
1604 /*
1605  * xol_get_insn_slot - allocate a slot for xol.
1606  * Returns the allocated slot address or 0.
1607  */
1608 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1609 {
1610         struct xol_area *area;
1611         unsigned long xol_vaddr;
1612
1613         area = get_xol_area();
1614         if (!area)
1615                 return 0;
1616
1617         xol_vaddr = xol_take_insn_slot(area);
1618         if (unlikely(!xol_vaddr))
1619                 return 0;
1620
1621         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1622                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1623
1624         return xol_vaddr;
1625 }
1626
1627 /*
1628  * xol_free_insn_slot - If slot was earlier allocated by
1629  * @xol_get_insn_slot(), make the slot available for
1630  * subsequent requests.
1631  */
1632 static void xol_free_insn_slot(struct task_struct *tsk)
1633 {
1634         struct xol_area *area;
1635         unsigned long vma_end;
1636         unsigned long slot_addr;
1637
1638         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1639                 return;
1640
1641         slot_addr = tsk->utask->xol_vaddr;
1642         if (unlikely(!slot_addr))
1643                 return;
1644
1645         area = tsk->mm->uprobes_state.xol_area;
1646         vma_end = area->vaddr + PAGE_SIZE;
1647         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1648                 unsigned long offset;
1649                 int slot_nr;
1650
1651                 offset = slot_addr - area->vaddr;
1652                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1653                 if (slot_nr >= UINSNS_PER_PAGE)
1654                         return;
1655
1656                 clear_bit(slot_nr, area->bitmap);
1657                 atomic_dec(&area->slot_count);
1658                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1659                 if (waitqueue_active(&area->wq))
1660                         wake_up(&area->wq);
1661
1662                 tsk->utask->xol_vaddr = 0;
1663         }
1664 }
1665
1666 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1667                                   void *src, unsigned long len)
1668 {
1669         /* Initialize the slot */
1670         copy_to_page(page, vaddr, src, len);
1671
1672         /*
1673          * We probably need flush_icache_user_page() but it needs vma.
1674          * This should work on most of architectures by default. If
1675          * architecture needs to do something different it can define
1676          * its own version of the function.
1677          */
1678         flush_dcache_page(page);
1679 }
1680
1681 /**
1682  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1683  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1684  * instruction.
1685  * Return the address of the breakpoint instruction.
1686  */
1687 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1688 {
1689         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1690 }
1691
1692 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1693 {
1694         struct uprobe_task *utask = current->utask;
1695
1696         if (unlikely(utask && utask->active_uprobe))
1697                 return utask->vaddr;
1698
1699         return instruction_pointer(regs);
1700 }
1701
1702 static struct return_instance *free_ret_instance(struct return_instance *ri)
1703 {
1704         struct return_instance *next = ri->next;
1705         put_uprobe(ri->uprobe);
1706         kfree(ri);
1707         return next;
1708 }
1709
1710 /*
1711  * Called with no locks held.
1712  * Called in context of an exiting or an exec-ing thread.
1713  */
1714 void uprobe_free_utask(struct task_struct *t)
1715 {
1716         struct uprobe_task *utask = t->utask;
1717         struct return_instance *ri;
1718
1719         if (!utask)
1720                 return;
1721
1722         if (utask->active_uprobe)
1723                 put_uprobe(utask->active_uprobe);
1724
1725         ri = utask->return_instances;
1726         while (ri)
1727                 ri = free_ret_instance(ri);
1728
1729         xol_free_insn_slot(t);
1730         kfree(utask);
1731         t->utask = NULL;
1732 }
1733
1734 /*
1735  * Allocate a uprobe_task object for the task if necessary.
1736  * Called when the thread hits a breakpoint.
1737  *
1738  * Returns:
1739  * - pointer to new uprobe_task on success
1740  * - NULL otherwise
1741  */
1742 static struct uprobe_task *get_utask(void)
1743 {
1744         if (!current->utask)
1745                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1746         return current->utask;
1747 }
1748
1749 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1750 {
1751         struct uprobe_task *n_utask;
1752         struct return_instance **p, *o, *n;
1753
1754         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1755         if (!n_utask)
1756                 return -ENOMEM;
1757         t->utask = n_utask;
1758
1759         p = &n_utask->return_instances;
1760         for (o = o_utask->return_instances; o; o = o->next) {
1761                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1762                 if (!n)
1763                         return -ENOMEM;
1764
1765                 *n = *o;
1766                 get_uprobe(n->uprobe);
1767                 n->next = NULL;
1768
1769                 *p = n;
1770                 p = &n->next;
1771                 n_utask->depth++;
1772         }
1773
1774         return 0;
1775 }
1776
1777 static void uprobe_warn(struct task_struct *t, const char *msg)
1778 {
1779         pr_warn("uprobe: %s:%d failed to %s\n",
1780                         current->comm, current->pid, msg);
1781 }
1782
1783 static void dup_xol_work(struct callback_head *work)
1784 {
1785         if (current->flags & PF_EXITING)
1786                 return;
1787
1788         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1789                         !fatal_signal_pending(current))
1790                 uprobe_warn(current, "dup xol area");
1791 }
1792
1793 /*
1794  * Called in context of a new clone/fork from copy_process.
1795  */
1796 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1797 {
1798         struct uprobe_task *utask = current->utask;
1799         struct mm_struct *mm = current->mm;
1800         struct xol_area *area;
1801
1802         t->utask = NULL;
1803
1804         if (!utask || !utask->return_instances)
1805                 return;
1806
1807         if (mm == t->mm && !(flags & CLONE_VFORK))
1808                 return;
1809
1810         if (dup_utask(t, utask))
1811                 return uprobe_warn(t, "dup ret instances");
1812
1813         /* The task can fork() after dup_xol_work() fails */
1814         area = mm->uprobes_state.xol_area;
1815         if (!area)
1816                 return uprobe_warn(t, "dup xol area");
1817
1818         if (mm == t->mm)
1819                 return;
1820
1821         t->utask->dup_xol_addr = area->vaddr;
1822         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1823         task_work_add(t, &t->utask->dup_xol_work, TWA_RESUME);
1824 }
1825
1826 /*
1827  * Current area->vaddr notion assume the trampoline address is always
1828  * equal area->vaddr.
1829  *
1830  * Returns -1 in case the xol_area is not allocated.
1831  */
1832 static unsigned long get_trampoline_vaddr(void)
1833 {
1834         struct xol_area *area;
1835         unsigned long trampoline_vaddr = -1;
1836
1837         /* Pairs with xol_add_vma() smp_store_release() */
1838         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1839         if (area)
1840                 trampoline_vaddr = area->vaddr;
1841
1842         return trampoline_vaddr;
1843 }
1844
1845 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1846                                         struct pt_regs *regs)
1847 {
1848         struct return_instance *ri = utask->return_instances;
1849         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1850
1851         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1852                 ri = free_ret_instance(ri);
1853                 utask->depth--;
1854         }
1855         utask->return_instances = ri;
1856 }
1857
1858 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1859 {
1860         struct return_instance *ri;
1861         struct uprobe_task *utask;
1862         unsigned long orig_ret_vaddr, trampoline_vaddr;
1863         bool chained;
1864
1865         if (!get_xol_area())
1866                 return;
1867
1868         utask = get_utask();
1869         if (!utask)
1870                 return;
1871
1872         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1873                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1874                                 " nestedness limit pid/tgid=%d/%d\n",
1875                                 current->pid, current->tgid);
1876                 return;
1877         }
1878
1879         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1880         if (!ri)
1881                 return;
1882
1883         trampoline_vaddr = get_trampoline_vaddr();
1884         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1885         if (orig_ret_vaddr == -1)
1886                 goto fail;
1887
1888         /* drop the entries invalidated by longjmp() */
1889         chained = (orig_ret_vaddr == trampoline_vaddr);
1890         cleanup_return_instances(utask, chained, regs);
1891
1892         /*
1893          * We don't want to keep trampoline address in stack, rather keep the
1894          * original return address of first caller thru all the consequent
1895          * instances. This also makes breakpoint unwrapping easier.
1896          */
1897         if (chained) {
1898                 if (!utask->return_instances) {
1899                         /*
1900                          * This situation is not possible. Likely we have an
1901                          * attack from user-space.
1902                          */
1903                         uprobe_warn(current, "handle tail call");
1904                         goto fail;
1905                 }
1906                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1907         }
1908
1909         ri->uprobe = get_uprobe(uprobe);
1910         ri->func = instruction_pointer(regs);
1911         ri->stack = user_stack_pointer(regs);
1912         ri->orig_ret_vaddr = orig_ret_vaddr;
1913         ri->chained = chained;
1914
1915         utask->depth++;
1916         ri->next = utask->return_instances;
1917         utask->return_instances = ri;
1918
1919         return;
1920  fail:
1921         kfree(ri);
1922 }
1923
1924 /* Prepare to single-step probed instruction out of line. */
1925 static int
1926 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1927 {
1928         struct uprobe_task *utask;
1929         unsigned long xol_vaddr;
1930         int err;
1931
1932         utask = get_utask();
1933         if (!utask)
1934                 return -ENOMEM;
1935
1936         xol_vaddr = xol_get_insn_slot(uprobe);
1937         if (!xol_vaddr)
1938                 return -ENOMEM;
1939
1940         utask->xol_vaddr = xol_vaddr;
1941         utask->vaddr = bp_vaddr;
1942
1943         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1944         if (unlikely(err)) {
1945                 xol_free_insn_slot(current);
1946                 return err;
1947         }
1948
1949         utask->active_uprobe = uprobe;
1950         utask->state = UTASK_SSTEP;
1951         return 0;
1952 }
1953
1954 /*
1955  * If we are singlestepping, then ensure this thread is not connected to
1956  * non-fatal signals until completion of singlestep.  When xol insn itself
1957  * triggers the signal,  restart the original insn even if the task is
1958  * already SIGKILL'ed (since coredump should report the correct ip).  This
1959  * is even more important if the task has a handler for SIGSEGV/etc, The
1960  * _same_ instruction should be repeated again after return from the signal
1961  * handler, and SSTEP can never finish in this case.
1962  */
1963 bool uprobe_deny_signal(void)
1964 {
1965         struct task_struct *t = current;
1966         struct uprobe_task *utask = t->utask;
1967
1968         if (likely(!utask || !utask->active_uprobe))
1969                 return false;
1970
1971         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1972
1973         if (task_sigpending(t)) {
1974                 spin_lock_irq(&t->sighand->siglock);
1975                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1976                 spin_unlock_irq(&t->sighand->siglock);
1977
1978                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1979                         utask->state = UTASK_SSTEP_TRAPPED;
1980                         set_tsk_thread_flag(t, TIF_UPROBE);
1981                 }
1982         }
1983
1984         return true;
1985 }
1986
1987 static void mmf_recalc_uprobes(struct mm_struct *mm)
1988 {
1989         struct vm_area_struct *vma;
1990
1991         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1992                 if (!valid_vma(vma, false))
1993                         continue;
1994                 /*
1995                  * This is not strictly accurate, we can race with
1996                  * uprobe_unregister() and see the already removed
1997                  * uprobe if delete_uprobe() was not yet called.
1998                  * Or this uprobe can be filtered out.
1999                  */
2000                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2001                         return;
2002         }
2003
2004         clear_bit(MMF_HAS_UPROBES, &mm->flags);
2005 }
2006
2007 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2008 {
2009         struct page *page;
2010         uprobe_opcode_t opcode;
2011         int result;
2012
2013         if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
2014                 return -EINVAL;
2015
2016         pagefault_disable();
2017         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2018         pagefault_enable();
2019
2020         if (likely(result == 0))
2021                 goto out;
2022
2023         /*
2024          * The NULL 'tsk' here ensures that any faults that occur here
2025          * will not be accounted to the task.  'mm' *is* current->mm,
2026          * but we treat this as a 'remote' access since it is
2027          * essentially a kernel access to the memory.
2028          */
2029         result = get_user_pages_remote(mm, vaddr, 1, FOLL_FORCE, &page,
2030                         NULL, NULL);
2031         if (result < 0)
2032                 return result;
2033
2034         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2035         put_page(page);
2036  out:
2037         /* This needs to return true for any variant of the trap insn */
2038         return is_trap_insn(&opcode);
2039 }
2040
2041 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2042 {
2043         struct mm_struct *mm = current->mm;
2044         struct uprobe *uprobe = NULL;
2045         struct vm_area_struct *vma;
2046
2047         mmap_read_lock(mm);
2048         vma = vma_lookup(mm, bp_vaddr);
2049         if (vma) {
2050                 if (valid_vma(vma, false)) {
2051                         struct inode *inode = file_inode(vma->vm_file);
2052                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2053
2054                         uprobe = find_uprobe(inode, offset);
2055                 }
2056
2057                 if (!uprobe)
2058                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2059         } else {
2060                 *is_swbp = -EFAULT;
2061         }
2062
2063         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2064                 mmf_recalc_uprobes(mm);
2065         mmap_read_unlock(mm);
2066
2067         return uprobe;
2068 }
2069
2070 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2071 {
2072         struct uprobe_consumer *uc;
2073         int remove = UPROBE_HANDLER_REMOVE;
2074         bool need_prep = false; /* prepare return uprobe, when needed */
2075
2076         down_read(&uprobe->register_rwsem);
2077         for (uc = uprobe->consumers; uc; uc = uc->next) {
2078                 int rc = 0;
2079
2080                 if (uc->handler) {
2081                         rc = uc->handler(uc, regs);
2082                         WARN(rc & ~UPROBE_HANDLER_MASK,
2083                                 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2084                 }
2085
2086                 if (uc->ret_handler)
2087                         need_prep = true;
2088
2089                 remove &= rc;
2090         }
2091
2092         if (need_prep && !remove)
2093                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2094
2095         if (remove && uprobe->consumers) {
2096                 WARN_ON(!uprobe_is_active(uprobe));
2097                 unapply_uprobe(uprobe, current->mm);
2098         }
2099         up_read(&uprobe->register_rwsem);
2100 }
2101
2102 static void
2103 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2104 {
2105         struct uprobe *uprobe = ri->uprobe;
2106         struct uprobe_consumer *uc;
2107
2108         down_read(&uprobe->register_rwsem);
2109         for (uc = uprobe->consumers; uc; uc = uc->next) {
2110                 if (uc->ret_handler)
2111                         uc->ret_handler(uc, ri->func, regs);
2112         }
2113         up_read(&uprobe->register_rwsem);
2114 }
2115
2116 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2117 {
2118         bool chained;
2119
2120         do {
2121                 chained = ri->chained;
2122                 ri = ri->next;  /* can't be NULL if chained */
2123         } while (chained);
2124
2125         return ri;
2126 }
2127
2128 static void handle_trampoline(struct pt_regs *regs)
2129 {
2130         struct uprobe_task *utask;
2131         struct return_instance *ri, *next;
2132         bool valid;
2133
2134         utask = current->utask;
2135         if (!utask)
2136                 goto sigill;
2137
2138         ri = utask->return_instances;
2139         if (!ri)
2140                 goto sigill;
2141
2142         do {
2143                 /*
2144                  * We should throw out the frames invalidated by longjmp().
2145                  * If this chain is valid, then the next one should be alive
2146                  * or NULL; the latter case means that nobody but ri->func
2147                  * could hit this trampoline on return. TODO: sigaltstack().
2148                  */
2149                 next = find_next_ret_chain(ri);
2150                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2151
2152                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2153                 do {
2154                         if (valid)
2155                                 handle_uretprobe_chain(ri, regs);
2156                         ri = free_ret_instance(ri);
2157                         utask->depth--;
2158                 } while (ri != next);
2159         } while (!valid);
2160
2161         utask->return_instances = ri;
2162         return;
2163
2164  sigill:
2165         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2166         force_sig(SIGILL);
2167
2168 }
2169
2170 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2171 {
2172         return false;
2173 }
2174
2175 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2176                                         struct pt_regs *regs)
2177 {
2178         return true;
2179 }
2180
2181 /*
2182  * Run handler and ask thread to singlestep.
2183  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2184  */
2185 static void handle_swbp(struct pt_regs *regs)
2186 {
2187         struct uprobe *uprobe;
2188         unsigned long bp_vaddr;
2189         int is_swbp;
2190
2191         bp_vaddr = uprobe_get_swbp_addr(regs);
2192         if (bp_vaddr == get_trampoline_vaddr())
2193                 return handle_trampoline(regs);
2194
2195         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2196         if (!uprobe) {
2197                 if (is_swbp > 0) {
2198                         /* No matching uprobe; signal SIGTRAP. */
2199                         force_sig(SIGTRAP);
2200                 } else {
2201                         /*
2202                          * Either we raced with uprobe_unregister() or we can't
2203                          * access this memory. The latter is only possible if
2204                          * another thread plays with our ->mm. In both cases
2205                          * we can simply restart. If this vma was unmapped we
2206                          * can pretend this insn was not executed yet and get
2207                          * the (correct) SIGSEGV after restart.
2208                          */
2209                         instruction_pointer_set(regs, bp_vaddr);
2210                 }
2211                 return;
2212         }
2213
2214         /* change it in advance for ->handler() and restart */
2215         instruction_pointer_set(regs, bp_vaddr);
2216
2217         /*
2218          * TODO: move copy_insn/etc into _register and remove this hack.
2219          * After we hit the bp, _unregister + _register can install the
2220          * new and not-yet-analyzed uprobe at the same address, restart.
2221          */
2222         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2223                 goto out;
2224
2225         /*
2226          * Pairs with the smp_wmb() in prepare_uprobe().
2227          *
2228          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2229          * we must also see the stores to &uprobe->arch performed by the
2230          * prepare_uprobe() call.
2231          */
2232         smp_rmb();
2233
2234         /* Tracing handlers use ->utask to communicate with fetch methods */
2235         if (!get_utask())
2236                 goto out;
2237
2238         if (arch_uprobe_ignore(&uprobe->arch, regs))
2239                 goto out;
2240
2241         handler_chain(uprobe, regs);
2242
2243         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2244                 goto out;
2245
2246         if (!pre_ssout(uprobe, regs, bp_vaddr))
2247                 return;
2248
2249         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2250 out:
2251         put_uprobe(uprobe);
2252 }
2253
2254 /*
2255  * Perform required fix-ups and disable singlestep.
2256  * Allow pending signals to take effect.
2257  */
2258 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2259 {
2260         struct uprobe *uprobe;
2261         int err = 0;
2262
2263         uprobe = utask->active_uprobe;
2264         if (utask->state == UTASK_SSTEP_ACK)
2265                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2266         else if (utask->state == UTASK_SSTEP_TRAPPED)
2267                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2268         else
2269                 WARN_ON_ONCE(1);
2270
2271         put_uprobe(uprobe);
2272         utask->active_uprobe = NULL;
2273         utask->state = UTASK_RUNNING;
2274         xol_free_insn_slot(current);
2275
2276         spin_lock_irq(&current->sighand->siglock);
2277         recalc_sigpending(); /* see uprobe_deny_signal() */
2278         spin_unlock_irq(&current->sighand->siglock);
2279
2280         if (unlikely(err)) {
2281                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2282                 force_sig(SIGILL);
2283         }
2284 }
2285
2286 /*
2287  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2288  * allows the thread to return from interrupt. After that handle_swbp()
2289  * sets utask->active_uprobe.
2290  *
2291  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2292  * and allows the thread to return from interrupt.
2293  *
2294  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2295  * uprobe_notify_resume().
2296  */
2297 void uprobe_notify_resume(struct pt_regs *regs)
2298 {
2299         struct uprobe_task *utask;
2300
2301         clear_thread_flag(TIF_UPROBE);
2302
2303         utask = current->utask;
2304         if (utask && utask->active_uprobe)
2305                 handle_singlestep(utask, regs);
2306         else
2307                 handle_swbp(regs);
2308 }
2309
2310 /*
2311  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2312  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2313  */
2314 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2315 {
2316         if (!current->mm)
2317                 return 0;
2318
2319         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2320             (!current->utask || !current->utask->return_instances))
2321                 return 0;
2322
2323         set_thread_flag(TIF_UPROBE);
2324         return 1;
2325 }
2326
2327 /*
2328  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2329  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2330  */
2331 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2332 {
2333         struct uprobe_task *utask = current->utask;
2334
2335         if (!current->mm || !utask || !utask->active_uprobe)
2336                 /* task is currently not uprobed */
2337                 return 0;
2338
2339         utask->state = UTASK_SSTEP_ACK;
2340         set_thread_flag(TIF_UPROBE);
2341         return 1;
2342 }
2343
2344 static struct notifier_block uprobe_exception_nb = {
2345         .notifier_call          = arch_uprobe_exception_notify,
2346         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2347 };
2348
2349 void __init uprobes_init(void)
2350 {
2351         int i;
2352
2353         for (i = 0; i < UPROBES_HASH_SZ; i++)
2354                 mutex_init(&uprobes_mmap_mutex[i]);
2355
2356         BUG_ON(register_die_notifier(&uprobe_exception_nb));
2357 }