mm: don't return the number of pages from map_kernel_range{,_noflush}
[linux-2.6-microblaze.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *      Srikar Dronamraju
8  *      Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>      /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>         /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h>         /* try_to_free_swap */
23 #include <linux/ptrace.h>       /* user_enable_single_step */
24 #include <linux/kdebug.h>       /* notifier mechanism */
25 #include "../../mm/internal.h"  /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30
31 #include <linux/uprobes.h>
32
33 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
35
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN        0
54
55 struct uprobe {
56         struct rb_node          rb_node;        /* node in the rb tree */
57         refcount_t              ref;
58         struct rw_semaphore     register_rwsem;
59         struct rw_semaphore     consumer_rwsem;
60         struct list_head        pending_list;
61         struct uprobe_consumer  *consumers;
62         struct inode            *inode;         /* Also hold a ref to inode */
63         loff_t                  offset;
64         loff_t                  ref_ctr_offset;
65         unsigned long           flags;
66
67         /*
68          * The generic code assumes that it has two members of unknown type
69          * owned by the arch-specific code:
70          *
71          *      insn -  copy_insn() saves the original instruction here for
72          *              arch_uprobe_analyze_insn().
73          *
74          *      ixol -  potentially modified instruction to execute out of
75          *              line, copied to xol_area by xol_get_insn_slot().
76          */
77         struct arch_uprobe      arch;
78 };
79
80 struct delayed_uprobe {
81         struct list_head list;
82         struct uprobe *uprobe;
83         struct mm_struct *mm;
84 };
85
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155                                 struct page *old_page, struct page *new_page)
156 {
157         struct mm_struct *mm = vma->vm_mm;
158         struct page_vma_mapped_walk pvmw = {
159                 .page = compound_head(old_page),
160                 .vma = vma,
161                 .address = addr,
162         };
163         int err;
164         struct mmu_notifier_range range;
165         struct mem_cgroup *memcg;
166
167         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
168                                 addr + PAGE_SIZE);
169
170         if (new_page) {
171                 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
172                                             &memcg, false);
173                 if (err)
174                         return err;
175         }
176
177         /* For try_to_free_swap() and munlock_vma_page() below */
178         lock_page(old_page);
179
180         mmu_notifier_invalidate_range_start(&range);
181         err = -EAGAIN;
182         if (!page_vma_mapped_walk(&pvmw)) {
183                 if (new_page)
184                         mem_cgroup_cancel_charge(new_page, memcg, false);
185                 goto unlock;
186         }
187         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
188
189         if (new_page) {
190                 get_page(new_page);
191                 page_add_new_anon_rmap(new_page, vma, addr, false);
192                 mem_cgroup_commit_charge(new_page, memcg, false, false);
193                 lru_cache_add_active_or_unevictable(new_page, vma);
194         } else
195                 /* no new page, just dec_mm_counter for old_page */
196                 dec_mm_counter(mm, MM_ANONPAGES);
197
198         if (!PageAnon(old_page)) {
199                 dec_mm_counter(mm, mm_counter_file(old_page));
200                 inc_mm_counter(mm, MM_ANONPAGES);
201         }
202
203         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
204         ptep_clear_flush_notify(vma, addr, pvmw.pte);
205         if (new_page)
206                 set_pte_at_notify(mm, addr, pvmw.pte,
207                                   mk_pte(new_page, vma->vm_page_prot));
208
209         page_remove_rmap(old_page, false);
210         if (!page_mapped(old_page))
211                 try_to_free_swap(old_page);
212         page_vma_mapped_walk_done(&pvmw);
213
214         if (vma->vm_flags & VM_LOCKED)
215                 munlock_vma_page(old_page);
216         put_page(old_page);
217
218         err = 0;
219  unlock:
220         mmu_notifier_invalidate_range_end(&range);
221         unlock_page(old_page);
222         return err;
223 }
224
225 /**
226  * is_swbp_insn - check if instruction is breakpoint instruction.
227  * @insn: instruction to be checked.
228  * Default implementation of is_swbp_insn
229  * Returns true if @insn is a breakpoint instruction.
230  */
231 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
232 {
233         return *insn == UPROBE_SWBP_INSN;
234 }
235
236 /**
237  * is_trap_insn - check if instruction is breakpoint instruction.
238  * @insn: instruction to be checked.
239  * Default implementation of is_trap_insn
240  * Returns true if @insn is a breakpoint instruction.
241  *
242  * This function is needed for the case where an architecture has multiple
243  * trap instructions (like powerpc).
244  */
245 bool __weak is_trap_insn(uprobe_opcode_t *insn)
246 {
247         return is_swbp_insn(insn);
248 }
249
250 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
251 {
252         void *kaddr = kmap_atomic(page);
253         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
254         kunmap_atomic(kaddr);
255 }
256
257 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
258 {
259         void *kaddr = kmap_atomic(page);
260         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
261         kunmap_atomic(kaddr);
262 }
263
264 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
265 {
266         uprobe_opcode_t old_opcode;
267         bool is_swbp;
268
269         /*
270          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
271          * We do not check if it is any other 'trap variant' which could
272          * be conditional trap instruction such as the one powerpc supports.
273          *
274          * The logic is that we do not care if the underlying instruction
275          * is a trap variant; uprobes always wins over any other (gdb)
276          * breakpoint.
277          */
278         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
279         is_swbp = is_swbp_insn(&old_opcode);
280
281         if (is_swbp_insn(new_opcode)) {
282                 if (is_swbp)            /* register: already installed? */
283                         return 0;
284         } else {
285                 if (!is_swbp)           /* unregister: was it changed by us? */
286                         return 0;
287         }
288
289         return 1;
290 }
291
292 static struct delayed_uprobe *
293 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295         struct delayed_uprobe *du;
296
297         list_for_each_entry(du, &delayed_uprobe_list, list)
298                 if (du->uprobe == uprobe && du->mm == mm)
299                         return du;
300         return NULL;
301 }
302
303 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
304 {
305         struct delayed_uprobe *du;
306
307         if (delayed_uprobe_check(uprobe, mm))
308                 return 0;
309
310         du  = kzalloc(sizeof(*du), GFP_KERNEL);
311         if (!du)
312                 return -ENOMEM;
313
314         du->uprobe = uprobe;
315         du->mm = mm;
316         list_add(&du->list, &delayed_uprobe_list);
317         return 0;
318 }
319
320 static void delayed_uprobe_delete(struct delayed_uprobe *du)
321 {
322         if (WARN_ON(!du))
323                 return;
324         list_del(&du->list);
325         kfree(du);
326 }
327
328 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
329 {
330         struct list_head *pos, *q;
331         struct delayed_uprobe *du;
332
333         if (!uprobe && !mm)
334                 return;
335
336         list_for_each_safe(pos, q, &delayed_uprobe_list) {
337                 du = list_entry(pos, struct delayed_uprobe, list);
338
339                 if (uprobe && du->uprobe != uprobe)
340                         continue;
341                 if (mm && du->mm != mm)
342                         continue;
343
344                 delayed_uprobe_delete(du);
345         }
346 }
347
348 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
349                               struct vm_area_struct *vma)
350 {
351         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
352
353         return uprobe->ref_ctr_offset &&
354                 vma->vm_file &&
355                 file_inode(vma->vm_file) == uprobe->inode &&
356                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
357                 vma->vm_start <= vaddr &&
358                 vma->vm_end > vaddr;
359 }
360
361 static struct vm_area_struct *
362 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
363 {
364         struct vm_area_struct *tmp;
365
366         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
367                 if (valid_ref_ctr_vma(uprobe, tmp))
368                         return tmp;
369
370         return NULL;
371 }
372
373 static int
374 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
375 {
376         void *kaddr;
377         struct page *page;
378         struct vm_area_struct *vma;
379         int ret;
380         short *ptr;
381
382         if (!vaddr || !d)
383                 return -EINVAL;
384
385         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
386                         FOLL_WRITE, &page, &vma, NULL);
387         if (unlikely(ret <= 0)) {
388                 /*
389                  * We are asking for 1 page. If get_user_pages_remote() fails,
390                  * it may return 0, in that case we have to return error.
391                  */
392                 return ret == 0 ? -EBUSY : ret;
393         }
394
395         kaddr = kmap_atomic(page);
396         ptr = kaddr + (vaddr & ~PAGE_MASK);
397
398         if (unlikely(*ptr + d < 0)) {
399                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
400                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
401                 ret = -EINVAL;
402                 goto out;
403         }
404
405         *ptr += d;
406         ret = 0;
407 out:
408         kunmap_atomic(kaddr);
409         put_page(page);
410         return ret;
411 }
412
413 static void update_ref_ctr_warn(struct uprobe *uprobe,
414                                 struct mm_struct *mm, short d)
415 {
416         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
417                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
418                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
419                 (unsigned long long) uprobe->offset,
420                 (unsigned long long) uprobe->ref_ctr_offset, mm);
421 }
422
423 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
424                           short d)
425 {
426         struct vm_area_struct *rc_vma;
427         unsigned long rc_vaddr;
428         int ret = 0;
429
430         rc_vma = find_ref_ctr_vma(uprobe, mm);
431
432         if (rc_vma) {
433                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
434                 ret = __update_ref_ctr(mm, rc_vaddr, d);
435                 if (ret)
436                         update_ref_ctr_warn(uprobe, mm, d);
437
438                 if (d > 0)
439                         return ret;
440         }
441
442         mutex_lock(&delayed_uprobe_lock);
443         if (d > 0)
444                 ret = delayed_uprobe_add(uprobe, mm);
445         else
446                 delayed_uprobe_remove(uprobe, mm);
447         mutex_unlock(&delayed_uprobe_lock);
448
449         return ret;
450 }
451
452 /*
453  * NOTE:
454  * Expect the breakpoint instruction to be the smallest size instruction for
455  * the architecture. If an arch has variable length instruction and the
456  * breakpoint instruction is not of the smallest length instruction
457  * supported by that architecture then we need to modify is_trap_at_addr and
458  * uprobe_write_opcode accordingly. This would never be a problem for archs
459  * that have fixed length instructions.
460  *
461  * uprobe_write_opcode - write the opcode at a given virtual address.
462  * @mm: the probed process address space.
463  * @vaddr: the virtual address to store the opcode.
464  * @opcode: opcode to be written at @vaddr.
465  *
466  * Called with mm->mmap_sem held for write.
467  * Return 0 (success) or a negative errno.
468  */
469 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
470                         unsigned long vaddr, uprobe_opcode_t opcode)
471 {
472         struct uprobe *uprobe;
473         struct page *old_page, *new_page;
474         struct vm_area_struct *vma;
475         int ret, is_register, ref_ctr_updated = 0;
476         bool orig_page_huge = false;
477         unsigned int gup_flags = FOLL_FORCE;
478
479         is_register = is_swbp_insn(&opcode);
480         uprobe = container_of(auprobe, struct uprobe, arch);
481
482 retry:
483         if (is_register)
484                 gup_flags |= FOLL_SPLIT_PMD;
485         /* Read the page with vaddr into memory */
486         ret = get_user_pages_remote(NULL, mm, vaddr, 1, gup_flags,
487                                     &old_page, &vma, NULL);
488         if (ret <= 0)
489                 return ret;
490
491         ret = verify_opcode(old_page, vaddr, &opcode);
492         if (ret <= 0)
493                 goto put_old;
494
495         if (WARN(!is_register && PageCompound(old_page),
496                  "uprobe unregister should never work on compound page\n")) {
497                 ret = -EINVAL;
498                 goto put_old;
499         }
500
501         /* We are going to replace instruction, update ref_ctr. */
502         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
503                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
504                 if (ret)
505                         goto put_old;
506
507                 ref_ctr_updated = 1;
508         }
509
510         ret = 0;
511         if (!is_register && !PageAnon(old_page))
512                 goto put_old;
513
514         ret = anon_vma_prepare(vma);
515         if (ret)
516                 goto put_old;
517
518         ret = -ENOMEM;
519         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
520         if (!new_page)
521                 goto put_old;
522
523         __SetPageUptodate(new_page);
524         copy_highpage(new_page, old_page);
525         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
526
527         if (!is_register) {
528                 struct page *orig_page;
529                 pgoff_t index;
530
531                 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
532
533                 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
534                 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
535                                           index);
536
537                 if (orig_page) {
538                         if (PageUptodate(orig_page) &&
539                             pages_identical(new_page, orig_page)) {
540                                 /* let go new_page */
541                                 put_page(new_page);
542                                 new_page = NULL;
543
544                                 if (PageCompound(orig_page))
545                                         orig_page_huge = true;
546                         }
547                         put_page(orig_page);
548                 }
549         }
550
551         ret = __replace_page(vma, vaddr, old_page, new_page);
552         if (new_page)
553                 put_page(new_page);
554 put_old:
555         put_page(old_page);
556
557         if (unlikely(ret == -EAGAIN))
558                 goto retry;
559
560         /* Revert back reference counter if instruction update failed. */
561         if (ret && is_register && ref_ctr_updated)
562                 update_ref_ctr(uprobe, mm, -1);
563
564         /* try collapse pmd for compound page */
565         if (!ret && orig_page_huge)
566                 collapse_pte_mapped_thp(mm, vaddr);
567
568         return ret;
569 }
570
571 /**
572  * set_swbp - store breakpoint at a given address.
573  * @auprobe: arch specific probepoint information.
574  * @mm: the probed process address space.
575  * @vaddr: the virtual address to insert the opcode.
576  *
577  * For mm @mm, store the breakpoint instruction at @vaddr.
578  * Return 0 (success) or a negative errno.
579  */
580 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
581 {
582         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
583 }
584
585 /**
586  * set_orig_insn - Restore the original instruction.
587  * @mm: the probed process address space.
588  * @auprobe: arch specific probepoint information.
589  * @vaddr: the virtual address to insert the opcode.
590  *
591  * For mm @mm, restore the original opcode (opcode) at @vaddr.
592  * Return 0 (success) or a negative errno.
593  */
594 int __weak
595 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
596 {
597         return uprobe_write_opcode(auprobe, mm, vaddr,
598                         *(uprobe_opcode_t *)&auprobe->insn);
599 }
600
601 static struct uprobe *get_uprobe(struct uprobe *uprobe)
602 {
603         refcount_inc(&uprobe->ref);
604         return uprobe;
605 }
606
607 static void put_uprobe(struct uprobe *uprobe)
608 {
609         if (refcount_dec_and_test(&uprobe->ref)) {
610                 /*
611                  * If application munmap(exec_vma) before uprobe_unregister()
612                  * gets called, we don't get a chance to remove uprobe from
613                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
614                  */
615                 mutex_lock(&delayed_uprobe_lock);
616                 delayed_uprobe_remove(uprobe, NULL);
617                 mutex_unlock(&delayed_uprobe_lock);
618                 kfree(uprobe);
619         }
620 }
621
622 static int match_uprobe(struct uprobe *l, struct uprobe *r)
623 {
624         if (l->inode < r->inode)
625                 return -1;
626
627         if (l->inode > r->inode)
628                 return 1;
629
630         if (l->offset < r->offset)
631                 return -1;
632
633         if (l->offset > r->offset)
634                 return 1;
635
636         return 0;
637 }
638
639 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
640 {
641         struct uprobe u = { .inode = inode, .offset = offset };
642         struct rb_node *n = uprobes_tree.rb_node;
643         struct uprobe *uprobe;
644         int match;
645
646         while (n) {
647                 uprobe = rb_entry(n, struct uprobe, rb_node);
648                 match = match_uprobe(&u, uprobe);
649                 if (!match)
650                         return get_uprobe(uprobe);
651
652                 if (match < 0)
653                         n = n->rb_left;
654                 else
655                         n = n->rb_right;
656         }
657         return NULL;
658 }
659
660 /*
661  * Find a uprobe corresponding to a given inode:offset
662  * Acquires uprobes_treelock
663  */
664 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
665 {
666         struct uprobe *uprobe;
667
668         spin_lock(&uprobes_treelock);
669         uprobe = __find_uprobe(inode, offset);
670         spin_unlock(&uprobes_treelock);
671
672         return uprobe;
673 }
674
675 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
676 {
677         struct rb_node **p = &uprobes_tree.rb_node;
678         struct rb_node *parent = NULL;
679         struct uprobe *u;
680         int match;
681
682         while (*p) {
683                 parent = *p;
684                 u = rb_entry(parent, struct uprobe, rb_node);
685                 match = match_uprobe(uprobe, u);
686                 if (!match)
687                         return get_uprobe(u);
688
689                 if (match < 0)
690                         p = &parent->rb_left;
691                 else
692                         p = &parent->rb_right;
693
694         }
695
696         u = NULL;
697         rb_link_node(&uprobe->rb_node, parent, p);
698         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
699         /* get access + creation ref */
700         refcount_set(&uprobe->ref, 2);
701
702         return u;
703 }
704
705 /*
706  * Acquire uprobes_treelock.
707  * Matching uprobe already exists in rbtree;
708  *      increment (access refcount) and return the matching uprobe.
709  *
710  * No matching uprobe; insert the uprobe in rb_tree;
711  *      get a double refcount (access + creation) and return NULL.
712  */
713 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
714 {
715         struct uprobe *u;
716
717         spin_lock(&uprobes_treelock);
718         u = __insert_uprobe(uprobe);
719         spin_unlock(&uprobes_treelock);
720
721         return u;
722 }
723
724 static void
725 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
726 {
727         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
728                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
729                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
730                 (unsigned long long) cur_uprobe->ref_ctr_offset,
731                 (unsigned long long) uprobe->ref_ctr_offset);
732 }
733
734 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
735                                    loff_t ref_ctr_offset)
736 {
737         struct uprobe *uprobe, *cur_uprobe;
738
739         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
740         if (!uprobe)
741                 return NULL;
742
743         uprobe->inode = inode;
744         uprobe->offset = offset;
745         uprobe->ref_ctr_offset = ref_ctr_offset;
746         init_rwsem(&uprobe->register_rwsem);
747         init_rwsem(&uprobe->consumer_rwsem);
748
749         /* add to uprobes_tree, sorted on inode:offset */
750         cur_uprobe = insert_uprobe(uprobe);
751         /* a uprobe exists for this inode:offset combination */
752         if (cur_uprobe) {
753                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
754                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
755                         put_uprobe(cur_uprobe);
756                         kfree(uprobe);
757                         return ERR_PTR(-EINVAL);
758                 }
759                 kfree(uprobe);
760                 uprobe = cur_uprobe;
761         }
762
763         return uprobe;
764 }
765
766 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
767 {
768         down_write(&uprobe->consumer_rwsem);
769         uc->next = uprobe->consumers;
770         uprobe->consumers = uc;
771         up_write(&uprobe->consumer_rwsem);
772 }
773
774 /*
775  * For uprobe @uprobe, delete the consumer @uc.
776  * Return true if the @uc is deleted successfully
777  * or return false.
778  */
779 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
780 {
781         struct uprobe_consumer **con;
782         bool ret = false;
783
784         down_write(&uprobe->consumer_rwsem);
785         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
786                 if (*con == uc) {
787                         *con = uc->next;
788                         ret = true;
789                         break;
790                 }
791         }
792         up_write(&uprobe->consumer_rwsem);
793
794         return ret;
795 }
796
797 static int __copy_insn(struct address_space *mapping, struct file *filp,
798                         void *insn, int nbytes, loff_t offset)
799 {
800         struct page *page;
801         /*
802          * Ensure that the page that has the original instruction is populated
803          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
804          * see uprobe_register().
805          */
806         if (mapping->a_ops->readpage)
807                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
808         else
809                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
810         if (IS_ERR(page))
811                 return PTR_ERR(page);
812
813         copy_from_page(page, offset, insn, nbytes);
814         put_page(page);
815
816         return 0;
817 }
818
819 static int copy_insn(struct uprobe *uprobe, struct file *filp)
820 {
821         struct address_space *mapping = uprobe->inode->i_mapping;
822         loff_t offs = uprobe->offset;
823         void *insn = &uprobe->arch.insn;
824         int size = sizeof(uprobe->arch.insn);
825         int len, err = -EIO;
826
827         /* Copy only available bytes, -EIO if nothing was read */
828         do {
829                 if (offs >= i_size_read(uprobe->inode))
830                         break;
831
832                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
833                 err = __copy_insn(mapping, filp, insn, len, offs);
834                 if (err)
835                         break;
836
837                 insn += len;
838                 offs += len;
839                 size -= len;
840         } while (size);
841
842         return err;
843 }
844
845 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
846                                 struct mm_struct *mm, unsigned long vaddr)
847 {
848         int ret = 0;
849
850         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
851                 return ret;
852
853         /* TODO: move this into _register, until then we abuse this sem. */
854         down_write(&uprobe->consumer_rwsem);
855         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
856                 goto out;
857
858         ret = copy_insn(uprobe, file);
859         if (ret)
860                 goto out;
861
862         ret = -ENOTSUPP;
863         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
864                 goto out;
865
866         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
867         if (ret)
868                 goto out;
869
870         /* uprobe_write_opcode() assumes we don't cross page boundary */
871         BUG_ON((uprobe->offset & ~PAGE_MASK) +
872                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
873
874         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
875         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
876
877  out:
878         up_write(&uprobe->consumer_rwsem);
879
880         return ret;
881 }
882
883 static inline bool consumer_filter(struct uprobe_consumer *uc,
884                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
885 {
886         return !uc->filter || uc->filter(uc, ctx, mm);
887 }
888
889 static bool filter_chain(struct uprobe *uprobe,
890                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
891 {
892         struct uprobe_consumer *uc;
893         bool ret = false;
894
895         down_read(&uprobe->consumer_rwsem);
896         for (uc = uprobe->consumers; uc; uc = uc->next) {
897                 ret = consumer_filter(uc, ctx, mm);
898                 if (ret)
899                         break;
900         }
901         up_read(&uprobe->consumer_rwsem);
902
903         return ret;
904 }
905
906 static int
907 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
908                         struct vm_area_struct *vma, unsigned long vaddr)
909 {
910         bool first_uprobe;
911         int ret;
912
913         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
914         if (ret)
915                 return ret;
916
917         /*
918          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
919          * the task can hit this breakpoint right after __replace_page().
920          */
921         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
922         if (first_uprobe)
923                 set_bit(MMF_HAS_UPROBES, &mm->flags);
924
925         ret = set_swbp(&uprobe->arch, mm, vaddr);
926         if (!ret)
927                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
928         else if (first_uprobe)
929                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
930
931         return ret;
932 }
933
934 static int
935 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
936 {
937         set_bit(MMF_RECALC_UPROBES, &mm->flags);
938         return set_orig_insn(&uprobe->arch, mm, vaddr);
939 }
940
941 static inline bool uprobe_is_active(struct uprobe *uprobe)
942 {
943         return !RB_EMPTY_NODE(&uprobe->rb_node);
944 }
945 /*
946  * There could be threads that have already hit the breakpoint. They
947  * will recheck the current insn and restart if find_uprobe() fails.
948  * See find_active_uprobe().
949  */
950 static void delete_uprobe(struct uprobe *uprobe)
951 {
952         if (WARN_ON(!uprobe_is_active(uprobe)))
953                 return;
954
955         spin_lock(&uprobes_treelock);
956         rb_erase(&uprobe->rb_node, &uprobes_tree);
957         spin_unlock(&uprobes_treelock);
958         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
959         put_uprobe(uprobe);
960 }
961
962 struct map_info {
963         struct map_info *next;
964         struct mm_struct *mm;
965         unsigned long vaddr;
966 };
967
968 static inline struct map_info *free_map_info(struct map_info *info)
969 {
970         struct map_info *next = info->next;
971         kfree(info);
972         return next;
973 }
974
975 static struct map_info *
976 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
977 {
978         unsigned long pgoff = offset >> PAGE_SHIFT;
979         struct vm_area_struct *vma;
980         struct map_info *curr = NULL;
981         struct map_info *prev = NULL;
982         struct map_info *info;
983         int more = 0;
984
985  again:
986         i_mmap_lock_read(mapping);
987         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
988                 if (!valid_vma(vma, is_register))
989                         continue;
990
991                 if (!prev && !more) {
992                         /*
993                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
994                          * reclaim. This is optimistic, no harm done if it fails.
995                          */
996                         prev = kmalloc(sizeof(struct map_info),
997                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
998                         if (prev)
999                                 prev->next = NULL;
1000                 }
1001                 if (!prev) {
1002                         more++;
1003                         continue;
1004                 }
1005
1006                 if (!mmget_not_zero(vma->vm_mm))
1007                         continue;
1008
1009                 info = prev;
1010                 prev = prev->next;
1011                 info->next = curr;
1012                 curr = info;
1013
1014                 info->mm = vma->vm_mm;
1015                 info->vaddr = offset_to_vaddr(vma, offset);
1016         }
1017         i_mmap_unlock_read(mapping);
1018
1019         if (!more)
1020                 goto out;
1021
1022         prev = curr;
1023         while (curr) {
1024                 mmput(curr->mm);
1025                 curr = curr->next;
1026         }
1027
1028         do {
1029                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1030                 if (!info) {
1031                         curr = ERR_PTR(-ENOMEM);
1032                         goto out;
1033                 }
1034                 info->next = prev;
1035                 prev = info;
1036         } while (--more);
1037
1038         goto again;
1039  out:
1040         while (prev)
1041                 prev = free_map_info(prev);
1042         return curr;
1043 }
1044
1045 static int
1046 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1047 {
1048         bool is_register = !!new;
1049         struct map_info *info;
1050         int err = 0;
1051
1052         percpu_down_write(&dup_mmap_sem);
1053         info = build_map_info(uprobe->inode->i_mapping,
1054                                         uprobe->offset, is_register);
1055         if (IS_ERR(info)) {
1056                 err = PTR_ERR(info);
1057                 goto out;
1058         }
1059
1060         while (info) {
1061                 struct mm_struct *mm = info->mm;
1062                 struct vm_area_struct *vma;
1063
1064                 if (err && is_register)
1065                         goto free;
1066
1067                 down_write(&mm->mmap_sem);
1068                 vma = find_vma(mm, info->vaddr);
1069                 if (!vma || !valid_vma(vma, is_register) ||
1070                     file_inode(vma->vm_file) != uprobe->inode)
1071                         goto unlock;
1072
1073                 if (vma->vm_start > info->vaddr ||
1074                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1075                         goto unlock;
1076
1077                 if (is_register) {
1078                         /* consult only the "caller", new consumer. */
1079                         if (consumer_filter(new,
1080                                         UPROBE_FILTER_REGISTER, mm))
1081                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1082                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1083                         if (!filter_chain(uprobe,
1084                                         UPROBE_FILTER_UNREGISTER, mm))
1085                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1086                 }
1087
1088  unlock:
1089                 up_write(&mm->mmap_sem);
1090  free:
1091                 mmput(mm);
1092                 info = free_map_info(info);
1093         }
1094  out:
1095         percpu_up_write(&dup_mmap_sem);
1096         return err;
1097 }
1098
1099 static void
1100 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1101 {
1102         int err;
1103
1104         if (WARN_ON(!consumer_del(uprobe, uc)))
1105                 return;
1106
1107         err = register_for_each_vma(uprobe, NULL);
1108         /* TODO : cant unregister? schedule a worker thread */
1109         if (!uprobe->consumers && !err)
1110                 delete_uprobe(uprobe);
1111 }
1112
1113 /*
1114  * uprobe_unregister - unregister an already registered probe.
1115  * @inode: the file in which the probe has to be removed.
1116  * @offset: offset from the start of the file.
1117  * @uc: identify which probe if multiple probes are colocated.
1118  */
1119 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1120 {
1121         struct uprobe *uprobe;
1122
1123         uprobe = find_uprobe(inode, offset);
1124         if (WARN_ON(!uprobe))
1125                 return;
1126
1127         down_write(&uprobe->register_rwsem);
1128         __uprobe_unregister(uprobe, uc);
1129         up_write(&uprobe->register_rwsem);
1130         put_uprobe(uprobe);
1131 }
1132 EXPORT_SYMBOL_GPL(uprobe_unregister);
1133
1134 /*
1135  * __uprobe_register - register a probe
1136  * @inode: the file in which the probe has to be placed.
1137  * @offset: offset from the start of the file.
1138  * @uc: information on howto handle the probe..
1139  *
1140  * Apart from the access refcount, __uprobe_register() takes a creation
1141  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1142  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1143  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1144  * @uprobe even before the register operation is complete. Creation
1145  * refcount is released when the last @uc for the @uprobe
1146  * unregisters. Caller of __uprobe_register() is required to keep @inode
1147  * (and the containing mount) referenced.
1148  *
1149  * Return errno if it cannot successully install probes
1150  * else return 0 (success)
1151  */
1152 static int __uprobe_register(struct inode *inode, loff_t offset,
1153                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1154 {
1155         struct uprobe *uprobe;
1156         int ret;
1157
1158         /* Uprobe must have at least one set consumer */
1159         if (!uc->handler && !uc->ret_handler)
1160                 return -EINVAL;
1161
1162         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1163         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1164                 return -EIO;
1165         /* Racy, just to catch the obvious mistakes */
1166         if (offset > i_size_read(inode))
1167                 return -EINVAL;
1168
1169  retry:
1170         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1171         if (!uprobe)
1172                 return -ENOMEM;
1173         if (IS_ERR(uprobe))
1174                 return PTR_ERR(uprobe);
1175
1176         /*
1177          * We can race with uprobe_unregister()->delete_uprobe().
1178          * Check uprobe_is_active() and retry if it is false.
1179          */
1180         down_write(&uprobe->register_rwsem);
1181         ret = -EAGAIN;
1182         if (likely(uprobe_is_active(uprobe))) {
1183                 consumer_add(uprobe, uc);
1184                 ret = register_for_each_vma(uprobe, uc);
1185                 if (ret)
1186                         __uprobe_unregister(uprobe, uc);
1187         }
1188         up_write(&uprobe->register_rwsem);
1189         put_uprobe(uprobe);
1190
1191         if (unlikely(ret == -EAGAIN))
1192                 goto retry;
1193         return ret;
1194 }
1195
1196 int uprobe_register(struct inode *inode, loff_t offset,
1197                     struct uprobe_consumer *uc)
1198 {
1199         return __uprobe_register(inode, offset, 0, uc);
1200 }
1201 EXPORT_SYMBOL_GPL(uprobe_register);
1202
1203 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1204                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1205 {
1206         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1207 }
1208 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1209
1210 /*
1211  * uprobe_apply - unregister an already registered probe.
1212  * @inode: the file in which the probe has to be removed.
1213  * @offset: offset from the start of the file.
1214  * @uc: consumer which wants to add more or remove some breakpoints
1215  * @add: add or remove the breakpoints
1216  */
1217 int uprobe_apply(struct inode *inode, loff_t offset,
1218                         struct uprobe_consumer *uc, bool add)
1219 {
1220         struct uprobe *uprobe;
1221         struct uprobe_consumer *con;
1222         int ret = -ENOENT;
1223
1224         uprobe = find_uprobe(inode, offset);
1225         if (WARN_ON(!uprobe))
1226                 return ret;
1227
1228         down_write(&uprobe->register_rwsem);
1229         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1230                 ;
1231         if (con)
1232                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1233         up_write(&uprobe->register_rwsem);
1234         put_uprobe(uprobe);
1235
1236         return ret;
1237 }
1238
1239 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1240 {
1241         struct vm_area_struct *vma;
1242         int err = 0;
1243
1244         down_read(&mm->mmap_sem);
1245         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1246                 unsigned long vaddr;
1247                 loff_t offset;
1248
1249                 if (!valid_vma(vma, false) ||
1250                     file_inode(vma->vm_file) != uprobe->inode)
1251                         continue;
1252
1253                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1254                 if (uprobe->offset <  offset ||
1255                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1256                         continue;
1257
1258                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1259                 err |= remove_breakpoint(uprobe, mm, vaddr);
1260         }
1261         up_read(&mm->mmap_sem);
1262
1263         return err;
1264 }
1265
1266 static struct rb_node *
1267 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1268 {
1269         struct rb_node *n = uprobes_tree.rb_node;
1270
1271         while (n) {
1272                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1273
1274                 if (inode < u->inode) {
1275                         n = n->rb_left;
1276                 } else if (inode > u->inode) {
1277                         n = n->rb_right;
1278                 } else {
1279                         if (max < u->offset)
1280                                 n = n->rb_left;
1281                         else if (min > u->offset)
1282                                 n = n->rb_right;
1283                         else
1284                                 break;
1285                 }
1286         }
1287
1288         return n;
1289 }
1290
1291 /*
1292  * For a given range in vma, build a list of probes that need to be inserted.
1293  */
1294 static void build_probe_list(struct inode *inode,
1295                                 struct vm_area_struct *vma,
1296                                 unsigned long start, unsigned long end,
1297                                 struct list_head *head)
1298 {
1299         loff_t min, max;
1300         struct rb_node *n, *t;
1301         struct uprobe *u;
1302
1303         INIT_LIST_HEAD(head);
1304         min = vaddr_to_offset(vma, start);
1305         max = min + (end - start) - 1;
1306
1307         spin_lock(&uprobes_treelock);
1308         n = find_node_in_range(inode, min, max);
1309         if (n) {
1310                 for (t = n; t; t = rb_prev(t)) {
1311                         u = rb_entry(t, struct uprobe, rb_node);
1312                         if (u->inode != inode || u->offset < min)
1313                                 break;
1314                         list_add(&u->pending_list, head);
1315                         get_uprobe(u);
1316                 }
1317                 for (t = n; (t = rb_next(t)); ) {
1318                         u = rb_entry(t, struct uprobe, rb_node);
1319                         if (u->inode != inode || u->offset > max)
1320                                 break;
1321                         list_add(&u->pending_list, head);
1322                         get_uprobe(u);
1323                 }
1324         }
1325         spin_unlock(&uprobes_treelock);
1326 }
1327
1328 /* @vma contains reference counter, not the probed instruction. */
1329 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1330 {
1331         struct list_head *pos, *q;
1332         struct delayed_uprobe *du;
1333         unsigned long vaddr;
1334         int ret = 0, err = 0;
1335
1336         mutex_lock(&delayed_uprobe_lock);
1337         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1338                 du = list_entry(pos, struct delayed_uprobe, list);
1339
1340                 if (du->mm != vma->vm_mm ||
1341                     !valid_ref_ctr_vma(du->uprobe, vma))
1342                         continue;
1343
1344                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1345                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1346                 if (ret) {
1347                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1348                         if (!err)
1349                                 err = ret;
1350                 }
1351                 delayed_uprobe_delete(du);
1352         }
1353         mutex_unlock(&delayed_uprobe_lock);
1354         return err;
1355 }
1356
1357 /*
1358  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1359  *
1360  * Currently we ignore all errors and always return 0, the callers
1361  * can't handle the failure anyway.
1362  */
1363 int uprobe_mmap(struct vm_area_struct *vma)
1364 {
1365         struct list_head tmp_list;
1366         struct uprobe *uprobe, *u;
1367         struct inode *inode;
1368
1369         if (no_uprobe_events())
1370                 return 0;
1371
1372         if (vma->vm_file &&
1373             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1374             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1375                 delayed_ref_ctr_inc(vma);
1376
1377         if (!valid_vma(vma, true))
1378                 return 0;
1379
1380         inode = file_inode(vma->vm_file);
1381         if (!inode)
1382                 return 0;
1383
1384         mutex_lock(uprobes_mmap_hash(inode));
1385         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1386         /*
1387          * We can race with uprobe_unregister(), this uprobe can be already
1388          * removed. But in this case filter_chain() must return false, all
1389          * consumers have gone away.
1390          */
1391         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1392                 if (!fatal_signal_pending(current) &&
1393                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1394                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1395                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1396                 }
1397                 put_uprobe(uprobe);
1398         }
1399         mutex_unlock(uprobes_mmap_hash(inode));
1400
1401         return 0;
1402 }
1403
1404 static bool
1405 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1406 {
1407         loff_t min, max;
1408         struct inode *inode;
1409         struct rb_node *n;
1410
1411         inode = file_inode(vma->vm_file);
1412
1413         min = vaddr_to_offset(vma, start);
1414         max = min + (end - start) - 1;
1415
1416         spin_lock(&uprobes_treelock);
1417         n = find_node_in_range(inode, min, max);
1418         spin_unlock(&uprobes_treelock);
1419
1420         return !!n;
1421 }
1422
1423 /*
1424  * Called in context of a munmap of a vma.
1425  */
1426 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1427 {
1428         if (no_uprobe_events() || !valid_vma(vma, false))
1429                 return;
1430
1431         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1432                 return;
1433
1434         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1435              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1436                 return;
1437
1438         if (vma_has_uprobes(vma, start, end))
1439                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1440 }
1441
1442 /* Slot allocation for XOL */
1443 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1444 {
1445         struct vm_area_struct *vma;
1446         int ret;
1447
1448         if (down_write_killable(&mm->mmap_sem))
1449                 return -EINTR;
1450
1451         if (mm->uprobes_state.xol_area) {
1452                 ret = -EALREADY;
1453                 goto fail;
1454         }
1455
1456         if (!area->vaddr) {
1457                 /* Try to map as high as possible, this is only a hint. */
1458                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1459                                                 PAGE_SIZE, 0, 0);
1460                 if (IS_ERR_VALUE(area->vaddr)) {
1461                         ret = area->vaddr;
1462                         goto fail;
1463                 }
1464         }
1465
1466         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1467                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1468                                 &area->xol_mapping);
1469         if (IS_ERR(vma)) {
1470                 ret = PTR_ERR(vma);
1471                 goto fail;
1472         }
1473
1474         ret = 0;
1475         /* pairs with get_xol_area() */
1476         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1477  fail:
1478         up_write(&mm->mmap_sem);
1479
1480         return ret;
1481 }
1482
1483 static struct xol_area *__create_xol_area(unsigned long vaddr)
1484 {
1485         struct mm_struct *mm = current->mm;
1486         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1487         struct xol_area *area;
1488
1489         area = kmalloc(sizeof(*area), GFP_KERNEL);
1490         if (unlikely(!area))
1491                 goto out;
1492
1493         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1494                                GFP_KERNEL);
1495         if (!area->bitmap)
1496                 goto free_area;
1497
1498         area->xol_mapping.name = "[uprobes]";
1499         area->xol_mapping.fault = NULL;
1500         area->xol_mapping.pages = area->pages;
1501         area->pages[0] = alloc_page(GFP_HIGHUSER);
1502         if (!area->pages[0])
1503                 goto free_bitmap;
1504         area->pages[1] = NULL;
1505
1506         area->vaddr = vaddr;
1507         init_waitqueue_head(&area->wq);
1508         /* Reserve the 1st slot for get_trampoline_vaddr() */
1509         set_bit(0, area->bitmap);
1510         atomic_set(&area->slot_count, 1);
1511         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1512
1513         if (!xol_add_vma(mm, area))
1514                 return area;
1515
1516         __free_page(area->pages[0]);
1517  free_bitmap:
1518         kfree(area->bitmap);
1519  free_area:
1520         kfree(area);
1521  out:
1522         return NULL;
1523 }
1524
1525 /*
1526  * get_xol_area - Allocate process's xol_area if necessary.
1527  * This area will be used for storing instructions for execution out of line.
1528  *
1529  * Returns the allocated area or NULL.
1530  */
1531 static struct xol_area *get_xol_area(void)
1532 {
1533         struct mm_struct *mm = current->mm;
1534         struct xol_area *area;
1535
1536         if (!mm->uprobes_state.xol_area)
1537                 __create_xol_area(0);
1538
1539         /* Pairs with xol_add_vma() smp_store_release() */
1540         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1541         return area;
1542 }
1543
1544 /*
1545  * uprobe_clear_state - Free the area allocated for slots.
1546  */
1547 void uprobe_clear_state(struct mm_struct *mm)
1548 {
1549         struct xol_area *area = mm->uprobes_state.xol_area;
1550
1551         mutex_lock(&delayed_uprobe_lock);
1552         delayed_uprobe_remove(NULL, mm);
1553         mutex_unlock(&delayed_uprobe_lock);
1554
1555         if (!area)
1556                 return;
1557
1558         put_page(area->pages[0]);
1559         kfree(area->bitmap);
1560         kfree(area);
1561 }
1562
1563 void uprobe_start_dup_mmap(void)
1564 {
1565         percpu_down_read(&dup_mmap_sem);
1566 }
1567
1568 void uprobe_end_dup_mmap(void)
1569 {
1570         percpu_up_read(&dup_mmap_sem);
1571 }
1572
1573 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1574 {
1575         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1576                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1577                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1578                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1579         }
1580 }
1581
1582 /*
1583  *  - search for a free slot.
1584  */
1585 static unsigned long xol_take_insn_slot(struct xol_area *area)
1586 {
1587         unsigned long slot_addr;
1588         int slot_nr;
1589
1590         do {
1591                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1592                 if (slot_nr < UINSNS_PER_PAGE) {
1593                         if (!test_and_set_bit(slot_nr, area->bitmap))
1594                                 break;
1595
1596                         slot_nr = UINSNS_PER_PAGE;
1597                         continue;
1598                 }
1599                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1600         } while (slot_nr >= UINSNS_PER_PAGE);
1601
1602         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1603         atomic_inc(&area->slot_count);
1604
1605         return slot_addr;
1606 }
1607
1608 /*
1609  * xol_get_insn_slot - allocate a slot for xol.
1610  * Returns the allocated slot address or 0.
1611  */
1612 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1613 {
1614         struct xol_area *area;
1615         unsigned long xol_vaddr;
1616
1617         area = get_xol_area();
1618         if (!area)
1619                 return 0;
1620
1621         xol_vaddr = xol_take_insn_slot(area);
1622         if (unlikely(!xol_vaddr))
1623                 return 0;
1624
1625         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1626                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1627
1628         return xol_vaddr;
1629 }
1630
1631 /*
1632  * xol_free_insn_slot - If slot was earlier allocated by
1633  * @xol_get_insn_slot(), make the slot available for
1634  * subsequent requests.
1635  */
1636 static void xol_free_insn_slot(struct task_struct *tsk)
1637 {
1638         struct xol_area *area;
1639         unsigned long vma_end;
1640         unsigned long slot_addr;
1641
1642         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1643                 return;
1644
1645         slot_addr = tsk->utask->xol_vaddr;
1646         if (unlikely(!slot_addr))
1647                 return;
1648
1649         area = tsk->mm->uprobes_state.xol_area;
1650         vma_end = area->vaddr + PAGE_SIZE;
1651         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1652                 unsigned long offset;
1653                 int slot_nr;
1654
1655                 offset = slot_addr - area->vaddr;
1656                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1657                 if (slot_nr >= UINSNS_PER_PAGE)
1658                         return;
1659
1660                 clear_bit(slot_nr, area->bitmap);
1661                 atomic_dec(&area->slot_count);
1662                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1663                 if (waitqueue_active(&area->wq))
1664                         wake_up(&area->wq);
1665
1666                 tsk->utask->xol_vaddr = 0;
1667         }
1668 }
1669
1670 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1671                                   void *src, unsigned long len)
1672 {
1673         /* Initialize the slot */
1674         copy_to_page(page, vaddr, src, len);
1675
1676         /*
1677          * We probably need flush_icache_user_range() but it needs vma.
1678          * This should work on most of architectures by default. If
1679          * architecture needs to do something different it can define
1680          * its own version of the function.
1681          */
1682         flush_dcache_page(page);
1683 }
1684
1685 /**
1686  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1687  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1688  * instruction.
1689  * Return the address of the breakpoint instruction.
1690  */
1691 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1692 {
1693         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1694 }
1695
1696 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1697 {
1698         struct uprobe_task *utask = current->utask;
1699
1700         if (unlikely(utask && utask->active_uprobe))
1701                 return utask->vaddr;
1702
1703         return instruction_pointer(regs);
1704 }
1705
1706 static struct return_instance *free_ret_instance(struct return_instance *ri)
1707 {
1708         struct return_instance *next = ri->next;
1709         put_uprobe(ri->uprobe);
1710         kfree(ri);
1711         return next;
1712 }
1713
1714 /*
1715  * Called with no locks held.
1716  * Called in context of an exiting or an exec-ing thread.
1717  */
1718 void uprobe_free_utask(struct task_struct *t)
1719 {
1720         struct uprobe_task *utask = t->utask;
1721         struct return_instance *ri;
1722
1723         if (!utask)
1724                 return;
1725
1726         if (utask->active_uprobe)
1727                 put_uprobe(utask->active_uprobe);
1728
1729         ri = utask->return_instances;
1730         while (ri)
1731                 ri = free_ret_instance(ri);
1732
1733         xol_free_insn_slot(t);
1734         kfree(utask);
1735         t->utask = NULL;
1736 }
1737
1738 /*
1739  * Allocate a uprobe_task object for the task if if necessary.
1740  * Called when the thread hits a breakpoint.
1741  *
1742  * Returns:
1743  * - pointer to new uprobe_task on success
1744  * - NULL otherwise
1745  */
1746 static struct uprobe_task *get_utask(void)
1747 {
1748         if (!current->utask)
1749                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1750         return current->utask;
1751 }
1752
1753 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1754 {
1755         struct uprobe_task *n_utask;
1756         struct return_instance **p, *o, *n;
1757
1758         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1759         if (!n_utask)
1760                 return -ENOMEM;
1761         t->utask = n_utask;
1762
1763         p = &n_utask->return_instances;
1764         for (o = o_utask->return_instances; o; o = o->next) {
1765                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1766                 if (!n)
1767                         return -ENOMEM;
1768
1769                 *n = *o;
1770                 get_uprobe(n->uprobe);
1771                 n->next = NULL;
1772
1773                 *p = n;
1774                 p = &n->next;
1775                 n_utask->depth++;
1776         }
1777
1778         return 0;
1779 }
1780
1781 static void uprobe_warn(struct task_struct *t, const char *msg)
1782 {
1783         pr_warn("uprobe: %s:%d failed to %s\n",
1784                         current->comm, current->pid, msg);
1785 }
1786
1787 static void dup_xol_work(struct callback_head *work)
1788 {
1789         if (current->flags & PF_EXITING)
1790                 return;
1791
1792         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1793                         !fatal_signal_pending(current))
1794                 uprobe_warn(current, "dup xol area");
1795 }
1796
1797 /*
1798  * Called in context of a new clone/fork from copy_process.
1799  */
1800 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1801 {
1802         struct uprobe_task *utask = current->utask;
1803         struct mm_struct *mm = current->mm;
1804         struct xol_area *area;
1805
1806         t->utask = NULL;
1807
1808         if (!utask || !utask->return_instances)
1809                 return;
1810
1811         if (mm == t->mm && !(flags & CLONE_VFORK))
1812                 return;
1813
1814         if (dup_utask(t, utask))
1815                 return uprobe_warn(t, "dup ret instances");
1816
1817         /* The task can fork() after dup_xol_work() fails */
1818         area = mm->uprobes_state.xol_area;
1819         if (!area)
1820                 return uprobe_warn(t, "dup xol area");
1821
1822         if (mm == t->mm)
1823                 return;
1824
1825         t->utask->dup_xol_addr = area->vaddr;
1826         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1827         task_work_add(t, &t->utask->dup_xol_work, true);
1828 }
1829
1830 /*
1831  * Current area->vaddr notion assume the trampoline address is always
1832  * equal area->vaddr.
1833  *
1834  * Returns -1 in case the xol_area is not allocated.
1835  */
1836 static unsigned long get_trampoline_vaddr(void)
1837 {
1838         struct xol_area *area;
1839         unsigned long trampoline_vaddr = -1;
1840
1841         /* Pairs with xol_add_vma() smp_store_release() */
1842         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1843         if (area)
1844                 trampoline_vaddr = area->vaddr;
1845
1846         return trampoline_vaddr;
1847 }
1848
1849 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1850                                         struct pt_regs *regs)
1851 {
1852         struct return_instance *ri = utask->return_instances;
1853         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1854
1855         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1856                 ri = free_ret_instance(ri);
1857                 utask->depth--;
1858         }
1859         utask->return_instances = ri;
1860 }
1861
1862 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1863 {
1864         struct return_instance *ri;
1865         struct uprobe_task *utask;
1866         unsigned long orig_ret_vaddr, trampoline_vaddr;
1867         bool chained;
1868
1869         if (!get_xol_area())
1870                 return;
1871
1872         utask = get_utask();
1873         if (!utask)
1874                 return;
1875
1876         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1877                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1878                                 " nestedness limit pid/tgid=%d/%d\n",
1879                                 current->pid, current->tgid);
1880                 return;
1881         }
1882
1883         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1884         if (!ri)
1885                 return;
1886
1887         trampoline_vaddr = get_trampoline_vaddr();
1888         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1889         if (orig_ret_vaddr == -1)
1890                 goto fail;
1891
1892         /* drop the entries invalidated by longjmp() */
1893         chained = (orig_ret_vaddr == trampoline_vaddr);
1894         cleanup_return_instances(utask, chained, regs);
1895
1896         /*
1897          * We don't want to keep trampoline address in stack, rather keep the
1898          * original return address of first caller thru all the consequent
1899          * instances. This also makes breakpoint unwrapping easier.
1900          */
1901         if (chained) {
1902                 if (!utask->return_instances) {
1903                         /*
1904                          * This situation is not possible. Likely we have an
1905                          * attack from user-space.
1906                          */
1907                         uprobe_warn(current, "handle tail call");
1908                         goto fail;
1909                 }
1910                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1911         }
1912
1913         ri->uprobe = get_uprobe(uprobe);
1914         ri->func = instruction_pointer(regs);
1915         ri->stack = user_stack_pointer(regs);
1916         ri->orig_ret_vaddr = orig_ret_vaddr;
1917         ri->chained = chained;
1918
1919         utask->depth++;
1920         ri->next = utask->return_instances;
1921         utask->return_instances = ri;
1922
1923         return;
1924  fail:
1925         kfree(ri);
1926 }
1927
1928 /* Prepare to single-step probed instruction out of line. */
1929 static int
1930 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1931 {
1932         struct uprobe_task *utask;
1933         unsigned long xol_vaddr;
1934         int err;
1935
1936         utask = get_utask();
1937         if (!utask)
1938                 return -ENOMEM;
1939
1940         xol_vaddr = xol_get_insn_slot(uprobe);
1941         if (!xol_vaddr)
1942                 return -ENOMEM;
1943
1944         utask->xol_vaddr = xol_vaddr;
1945         utask->vaddr = bp_vaddr;
1946
1947         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1948         if (unlikely(err)) {
1949                 xol_free_insn_slot(current);
1950                 return err;
1951         }
1952
1953         utask->active_uprobe = uprobe;
1954         utask->state = UTASK_SSTEP;
1955         return 0;
1956 }
1957
1958 /*
1959  * If we are singlestepping, then ensure this thread is not connected to
1960  * non-fatal signals until completion of singlestep.  When xol insn itself
1961  * triggers the signal,  restart the original insn even if the task is
1962  * already SIGKILL'ed (since coredump should report the correct ip).  This
1963  * is even more important if the task has a handler for SIGSEGV/etc, The
1964  * _same_ instruction should be repeated again after return from the signal
1965  * handler, and SSTEP can never finish in this case.
1966  */
1967 bool uprobe_deny_signal(void)
1968 {
1969         struct task_struct *t = current;
1970         struct uprobe_task *utask = t->utask;
1971
1972         if (likely(!utask || !utask->active_uprobe))
1973                 return false;
1974
1975         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1976
1977         if (signal_pending(t)) {
1978                 spin_lock_irq(&t->sighand->siglock);
1979                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1980                 spin_unlock_irq(&t->sighand->siglock);
1981
1982                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1983                         utask->state = UTASK_SSTEP_TRAPPED;
1984                         set_tsk_thread_flag(t, TIF_UPROBE);
1985                 }
1986         }
1987
1988         return true;
1989 }
1990
1991 static void mmf_recalc_uprobes(struct mm_struct *mm)
1992 {
1993         struct vm_area_struct *vma;
1994
1995         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1996                 if (!valid_vma(vma, false))
1997                         continue;
1998                 /*
1999                  * This is not strictly accurate, we can race with
2000                  * uprobe_unregister() and see the already removed
2001                  * uprobe if delete_uprobe() was not yet called.
2002                  * Or this uprobe can be filtered out.
2003                  */
2004                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
2005                         return;
2006         }
2007
2008         clear_bit(MMF_HAS_UPROBES, &mm->flags);
2009 }
2010
2011 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2012 {
2013         struct page *page;
2014         uprobe_opcode_t opcode;
2015         int result;
2016
2017         pagefault_disable();
2018         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2019         pagefault_enable();
2020
2021         if (likely(result == 0))
2022                 goto out;
2023
2024         /*
2025          * The NULL 'tsk' here ensures that any faults that occur here
2026          * will not be accounted to the task.  'mm' *is* current->mm,
2027          * but we treat this as a 'remote' access since it is
2028          * essentially a kernel access to the memory.
2029          */
2030         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2031                         NULL, NULL);
2032         if (result < 0)
2033                 return result;
2034
2035         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2036         put_page(page);
2037  out:
2038         /* This needs to return true for any variant of the trap insn */
2039         return is_trap_insn(&opcode);
2040 }
2041
2042 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2043 {
2044         struct mm_struct *mm = current->mm;
2045         struct uprobe *uprobe = NULL;
2046         struct vm_area_struct *vma;
2047
2048         down_read(&mm->mmap_sem);
2049         vma = find_vma(mm, bp_vaddr);
2050         if (vma && vma->vm_start <= bp_vaddr) {
2051                 if (valid_vma(vma, false)) {
2052                         struct inode *inode = file_inode(vma->vm_file);
2053                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2054
2055                         uprobe = find_uprobe(inode, offset);
2056                 }
2057
2058                 if (!uprobe)
2059                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2060         } else {
2061                 *is_swbp = -EFAULT;
2062         }
2063
2064         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2065                 mmf_recalc_uprobes(mm);
2066         up_read(&mm->mmap_sem);
2067
2068         return uprobe;
2069 }
2070
2071 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2072 {
2073         struct uprobe_consumer *uc;
2074         int remove = UPROBE_HANDLER_REMOVE;
2075         bool need_prep = false; /* prepare return uprobe, when needed */
2076
2077         down_read(&uprobe->register_rwsem);
2078         for (uc = uprobe->consumers; uc; uc = uc->next) {
2079                 int rc = 0;
2080
2081                 if (uc->handler) {
2082                         rc = uc->handler(uc, regs);
2083                         WARN(rc & ~UPROBE_HANDLER_MASK,
2084                                 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2085                 }
2086
2087                 if (uc->ret_handler)
2088                         need_prep = true;
2089
2090                 remove &= rc;
2091         }
2092
2093         if (need_prep && !remove)
2094                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2095
2096         if (remove && uprobe->consumers) {
2097                 WARN_ON(!uprobe_is_active(uprobe));
2098                 unapply_uprobe(uprobe, current->mm);
2099         }
2100         up_read(&uprobe->register_rwsem);
2101 }
2102
2103 static void
2104 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2105 {
2106         struct uprobe *uprobe = ri->uprobe;
2107         struct uprobe_consumer *uc;
2108
2109         down_read(&uprobe->register_rwsem);
2110         for (uc = uprobe->consumers; uc; uc = uc->next) {
2111                 if (uc->ret_handler)
2112                         uc->ret_handler(uc, ri->func, regs);
2113         }
2114         up_read(&uprobe->register_rwsem);
2115 }
2116
2117 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2118 {
2119         bool chained;
2120
2121         do {
2122                 chained = ri->chained;
2123                 ri = ri->next;  /* can't be NULL if chained */
2124         } while (chained);
2125
2126         return ri;
2127 }
2128
2129 static void handle_trampoline(struct pt_regs *regs)
2130 {
2131         struct uprobe_task *utask;
2132         struct return_instance *ri, *next;
2133         bool valid;
2134
2135         utask = current->utask;
2136         if (!utask)
2137                 goto sigill;
2138
2139         ri = utask->return_instances;
2140         if (!ri)
2141                 goto sigill;
2142
2143         do {
2144                 /*
2145                  * We should throw out the frames invalidated by longjmp().
2146                  * If this chain is valid, then the next one should be alive
2147                  * or NULL; the latter case means that nobody but ri->func
2148                  * could hit this trampoline on return. TODO: sigaltstack().
2149                  */
2150                 next = find_next_ret_chain(ri);
2151                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2152
2153                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2154                 do {
2155                         if (valid)
2156                                 handle_uretprobe_chain(ri, regs);
2157                         ri = free_ret_instance(ri);
2158                         utask->depth--;
2159                 } while (ri != next);
2160         } while (!valid);
2161
2162         utask->return_instances = ri;
2163         return;
2164
2165  sigill:
2166         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2167         force_sig(SIGILL);
2168
2169 }
2170
2171 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2172 {
2173         return false;
2174 }
2175
2176 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2177                                         struct pt_regs *regs)
2178 {
2179         return true;
2180 }
2181
2182 /*
2183  * Run handler and ask thread to singlestep.
2184  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2185  */
2186 static void handle_swbp(struct pt_regs *regs)
2187 {
2188         struct uprobe *uprobe;
2189         unsigned long bp_vaddr;
2190         int uninitialized_var(is_swbp);
2191
2192         bp_vaddr = uprobe_get_swbp_addr(regs);
2193         if (bp_vaddr == get_trampoline_vaddr())
2194                 return handle_trampoline(regs);
2195
2196         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2197         if (!uprobe) {
2198                 if (is_swbp > 0) {
2199                         /* No matching uprobe; signal SIGTRAP. */
2200                         send_sig(SIGTRAP, current, 0);
2201                 } else {
2202                         /*
2203                          * Either we raced with uprobe_unregister() or we can't
2204                          * access this memory. The latter is only possible if
2205                          * another thread plays with our ->mm. In both cases
2206                          * we can simply restart. If this vma was unmapped we
2207                          * can pretend this insn was not executed yet and get
2208                          * the (correct) SIGSEGV after restart.
2209                          */
2210                         instruction_pointer_set(regs, bp_vaddr);
2211                 }
2212                 return;
2213         }
2214
2215         /* change it in advance for ->handler() and restart */
2216         instruction_pointer_set(regs, bp_vaddr);
2217
2218         /*
2219          * TODO: move copy_insn/etc into _register and remove this hack.
2220          * After we hit the bp, _unregister + _register can install the
2221          * new and not-yet-analyzed uprobe at the same address, restart.
2222          */
2223         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2224                 goto out;
2225
2226         /*
2227          * Pairs with the smp_wmb() in prepare_uprobe().
2228          *
2229          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2230          * we must also see the stores to &uprobe->arch performed by the
2231          * prepare_uprobe() call.
2232          */
2233         smp_rmb();
2234
2235         /* Tracing handlers use ->utask to communicate with fetch methods */
2236         if (!get_utask())
2237                 goto out;
2238
2239         if (arch_uprobe_ignore(&uprobe->arch, regs))
2240                 goto out;
2241
2242         handler_chain(uprobe, regs);
2243
2244         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2245                 goto out;
2246
2247         if (!pre_ssout(uprobe, regs, bp_vaddr))
2248                 return;
2249
2250         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2251 out:
2252         put_uprobe(uprobe);
2253 }
2254
2255 /*
2256  * Perform required fix-ups and disable singlestep.
2257  * Allow pending signals to take effect.
2258  */
2259 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2260 {
2261         struct uprobe *uprobe;
2262         int err = 0;
2263
2264         uprobe = utask->active_uprobe;
2265         if (utask->state == UTASK_SSTEP_ACK)
2266                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2267         else if (utask->state == UTASK_SSTEP_TRAPPED)
2268                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2269         else
2270                 WARN_ON_ONCE(1);
2271
2272         put_uprobe(uprobe);
2273         utask->active_uprobe = NULL;
2274         utask->state = UTASK_RUNNING;
2275         xol_free_insn_slot(current);
2276
2277         spin_lock_irq(&current->sighand->siglock);
2278         recalc_sigpending(); /* see uprobe_deny_signal() */
2279         spin_unlock_irq(&current->sighand->siglock);
2280
2281         if (unlikely(err)) {
2282                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2283                 force_sig(SIGILL);
2284         }
2285 }
2286
2287 /*
2288  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2289  * allows the thread to return from interrupt. After that handle_swbp()
2290  * sets utask->active_uprobe.
2291  *
2292  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2293  * and allows the thread to return from interrupt.
2294  *
2295  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2296  * uprobe_notify_resume().
2297  */
2298 void uprobe_notify_resume(struct pt_regs *regs)
2299 {
2300         struct uprobe_task *utask;
2301
2302         clear_thread_flag(TIF_UPROBE);
2303
2304         utask = current->utask;
2305         if (utask && utask->active_uprobe)
2306                 handle_singlestep(utask, regs);
2307         else
2308                 handle_swbp(regs);
2309 }
2310
2311 /*
2312  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2313  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2314  */
2315 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2316 {
2317         if (!current->mm)
2318                 return 0;
2319
2320         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2321             (!current->utask || !current->utask->return_instances))
2322                 return 0;
2323
2324         set_thread_flag(TIF_UPROBE);
2325         return 1;
2326 }
2327
2328 /*
2329  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2330  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2331  */
2332 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2333 {
2334         struct uprobe_task *utask = current->utask;
2335
2336         if (!current->mm || !utask || !utask->active_uprobe)
2337                 /* task is currently not uprobed */
2338                 return 0;
2339
2340         utask->state = UTASK_SSTEP_ACK;
2341         set_thread_flag(TIF_UPROBE);
2342         return 1;
2343 }
2344
2345 static struct notifier_block uprobe_exception_nb = {
2346         .notifier_call          = arch_uprobe_exception_notify,
2347         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2348 };
2349
2350 void __init uprobes_init(void)
2351 {
2352         int i;
2353
2354         for (i = 0; i < UPROBES_HASH_SZ; i++)
2355                 mutex_init(&uprobes_mmap_mutex[i]);
2356
2357         BUG_ON(register_die_notifier(&uprobe_exception_nb));
2358 }