uprobe: collapse THP pmd after removing all uprobes
[linux-2.6-microblaze.git] / kernel / events / uprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * User-space Probes (UProbes)
4  *
5  * Copyright (C) IBM Corporation, 2008-2012
6  * Authors:
7  *      Srikar Dronamraju
8  *      Jim Keniston
9  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>      /* read_mapping_page */
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/sched/mm.h>
18 #include <linux/sched/coredump.h>
19 #include <linux/export.h>
20 #include <linux/rmap.h>         /* anon_vma_prepare */
21 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
22 #include <linux/swap.h>         /* try_to_free_swap */
23 #include <linux/ptrace.h>       /* user_enable_single_step */
24 #include <linux/kdebug.h>       /* notifier mechanism */
25 #include "../../mm/internal.h"  /* munlock_vma_page */
26 #include <linux/percpu-rwsem.h>
27 #include <linux/task_work.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/khugepaged.h>
30
31 #include <linux/uprobes.h>
32
33 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
34 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
35
36 static struct rb_root uprobes_tree = RB_ROOT;
37 /*
38  * allows us to skip the uprobe_mmap if there are no uprobe events active
39  * at this time.  Probably a fine grained per inode count is better?
40  */
41 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
42
43 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
44
45 #define UPROBES_HASH_SZ 13
46 /* serialize uprobe->pending_list */
47 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
48 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
49
50 DEFINE_STATIC_PERCPU_RWSEM(dup_mmap_sem);
51
52 /* Have a copy of original instruction */
53 #define UPROBE_COPY_INSN        0
54
55 struct uprobe {
56         struct rb_node          rb_node;        /* node in the rb tree */
57         refcount_t              ref;
58         struct rw_semaphore     register_rwsem;
59         struct rw_semaphore     consumer_rwsem;
60         struct list_head        pending_list;
61         struct uprobe_consumer  *consumers;
62         struct inode            *inode;         /* Also hold a ref to inode */
63         loff_t                  offset;
64         loff_t                  ref_ctr_offset;
65         unsigned long           flags;
66
67         /*
68          * The generic code assumes that it has two members of unknown type
69          * owned by the arch-specific code:
70          *
71          *      insn -  copy_insn() saves the original instruction here for
72          *              arch_uprobe_analyze_insn().
73          *
74          *      ixol -  potentially modified instruction to execute out of
75          *              line, copied to xol_area by xol_get_insn_slot().
76          */
77         struct arch_uprobe      arch;
78 };
79
80 struct delayed_uprobe {
81         struct list_head list;
82         struct uprobe *uprobe;
83         struct mm_struct *mm;
84 };
85
86 static DEFINE_MUTEX(delayed_uprobe_lock);
87 static LIST_HEAD(delayed_uprobe_list);
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @old_page: the page we are replacing by new_page
148  * @new_page: the modified page we replace page by
149  *
150  * If @new_page is NULL, only unmap @old_page.
151  *
152  * Returns 0 on success, negative error code otherwise.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155                                 struct page *old_page, struct page *new_page)
156 {
157         struct mm_struct *mm = vma->vm_mm;
158         struct page_vma_mapped_walk pvmw = {
159                 .page = compound_head(old_page),
160                 .vma = vma,
161                 .address = addr,
162         };
163         int err;
164         struct mmu_notifier_range range;
165         struct mem_cgroup *memcg;
166
167         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
168                                 addr + PAGE_SIZE);
169
170         if (new_page) {
171                 err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL,
172                                             &memcg, false);
173                 if (err)
174                         return err;
175         }
176
177         /* For try_to_free_swap() and munlock_vma_page() below */
178         lock_page(old_page);
179
180         mmu_notifier_invalidate_range_start(&range);
181         err = -EAGAIN;
182         if (!page_vma_mapped_walk(&pvmw)) {
183                 if (new_page)
184                         mem_cgroup_cancel_charge(new_page, memcg, false);
185                 goto unlock;
186         }
187         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
188
189         if (new_page) {
190                 get_page(new_page);
191                 page_add_new_anon_rmap(new_page, vma, addr, false);
192                 mem_cgroup_commit_charge(new_page, memcg, false, false);
193                 lru_cache_add_active_or_unevictable(new_page, vma);
194         } else
195                 /* no new page, just dec_mm_counter for old_page */
196                 dec_mm_counter(mm, MM_ANONPAGES);
197
198         if (!PageAnon(old_page)) {
199                 dec_mm_counter(mm, mm_counter_file(old_page));
200                 inc_mm_counter(mm, MM_ANONPAGES);
201         }
202
203         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
204         ptep_clear_flush_notify(vma, addr, pvmw.pte);
205         if (new_page)
206                 set_pte_at_notify(mm, addr, pvmw.pte,
207                                   mk_pte(new_page, vma->vm_page_prot));
208
209         page_remove_rmap(old_page, false);
210         if (!page_mapped(old_page))
211                 try_to_free_swap(old_page);
212         page_vma_mapped_walk_done(&pvmw);
213
214         if (vma->vm_flags & VM_LOCKED)
215                 munlock_vma_page(old_page);
216         put_page(old_page);
217
218         err = 0;
219  unlock:
220         mmu_notifier_invalidate_range_end(&range);
221         unlock_page(old_page);
222         return err;
223 }
224
225 /**
226  * is_swbp_insn - check if instruction is breakpoint instruction.
227  * @insn: instruction to be checked.
228  * Default implementation of is_swbp_insn
229  * Returns true if @insn is a breakpoint instruction.
230  */
231 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
232 {
233         return *insn == UPROBE_SWBP_INSN;
234 }
235
236 /**
237  * is_trap_insn - check if instruction is breakpoint instruction.
238  * @insn: instruction to be checked.
239  * Default implementation of is_trap_insn
240  * Returns true if @insn is a breakpoint instruction.
241  *
242  * This function is needed for the case where an architecture has multiple
243  * trap instructions (like powerpc).
244  */
245 bool __weak is_trap_insn(uprobe_opcode_t *insn)
246 {
247         return is_swbp_insn(insn);
248 }
249
250 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
251 {
252         void *kaddr = kmap_atomic(page);
253         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
254         kunmap_atomic(kaddr);
255 }
256
257 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
258 {
259         void *kaddr = kmap_atomic(page);
260         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
261         kunmap_atomic(kaddr);
262 }
263
264 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
265 {
266         uprobe_opcode_t old_opcode;
267         bool is_swbp;
268
269         /*
270          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
271          * We do not check if it is any other 'trap variant' which could
272          * be conditional trap instruction such as the one powerpc supports.
273          *
274          * The logic is that we do not care if the underlying instruction
275          * is a trap variant; uprobes always wins over any other (gdb)
276          * breakpoint.
277          */
278         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
279         is_swbp = is_swbp_insn(&old_opcode);
280
281         if (is_swbp_insn(new_opcode)) {
282                 if (is_swbp)            /* register: already installed? */
283                         return 0;
284         } else {
285                 if (!is_swbp)           /* unregister: was it changed by us? */
286                         return 0;
287         }
288
289         return 1;
290 }
291
292 static struct delayed_uprobe *
293 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
294 {
295         struct delayed_uprobe *du;
296
297         list_for_each_entry(du, &delayed_uprobe_list, list)
298                 if (du->uprobe == uprobe && du->mm == mm)
299                         return du;
300         return NULL;
301 }
302
303 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
304 {
305         struct delayed_uprobe *du;
306
307         if (delayed_uprobe_check(uprobe, mm))
308                 return 0;
309
310         du  = kzalloc(sizeof(*du), GFP_KERNEL);
311         if (!du)
312                 return -ENOMEM;
313
314         du->uprobe = uprobe;
315         du->mm = mm;
316         list_add(&du->list, &delayed_uprobe_list);
317         return 0;
318 }
319
320 static void delayed_uprobe_delete(struct delayed_uprobe *du)
321 {
322         if (WARN_ON(!du))
323                 return;
324         list_del(&du->list);
325         kfree(du);
326 }
327
328 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
329 {
330         struct list_head *pos, *q;
331         struct delayed_uprobe *du;
332
333         if (!uprobe && !mm)
334                 return;
335
336         list_for_each_safe(pos, q, &delayed_uprobe_list) {
337                 du = list_entry(pos, struct delayed_uprobe, list);
338
339                 if (uprobe && du->uprobe != uprobe)
340                         continue;
341                 if (mm && du->mm != mm)
342                         continue;
343
344                 delayed_uprobe_delete(du);
345         }
346 }
347
348 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
349                               struct vm_area_struct *vma)
350 {
351         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
352
353         return uprobe->ref_ctr_offset &&
354                 vma->vm_file &&
355                 file_inode(vma->vm_file) == uprobe->inode &&
356                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
357                 vma->vm_start <= vaddr &&
358                 vma->vm_end > vaddr;
359 }
360
361 static struct vm_area_struct *
362 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
363 {
364         struct vm_area_struct *tmp;
365
366         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
367                 if (valid_ref_ctr_vma(uprobe, tmp))
368                         return tmp;
369
370         return NULL;
371 }
372
373 static int
374 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
375 {
376         void *kaddr;
377         struct page *page;
378         struct vm_area_struct *vma;
379         int ret;
380         short *ptr;
381
382         if (!vaddr || !d)
383                 return -EINVAL;
384
385         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
386                         FOLL_WRITE, &page, &vma, NULL);
387         if (unlikely(ret <= 0)) {
388                 /*
389                  * We are asking for 1 page. If get_user_pages_remote() fails,
390                  * it may return 0, in that case we have to return error.
391                  */
392                 return ret == 0 ? -EBUSY : ret;
393         }
394
395         kaddr = kmap_atomic(page);
396         ptr = kaddr + (vaddr & ~PAGE_MASK);
397
398         if (unlikely(*ptr + d < 0)) {
399                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
400                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
401                 ret = -EINVAL;
402                 goto out;
403         }
404
405         *ptr += d;
406         ret = 0;
407 out:
408         kunmap_atomic(kaddr);
409         put_page(page);
410         return ret;
411 }
412
413 static void update_ref_ctr_warn(struct uprobe *uprobe,
414                                 struct mm_struct *mm, short d)
415 {
416         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
417                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
418                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
419                 (unsigned long long) uprobe->offset,
420                 (unsigned long long) uprobe->ref_ctr_offset, mm);
421 }
422
423 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
424                           short d)
425 {
426         struct vm_area_struct *rc_vma;
427         unsigned long rc_vaddr;
428         int ret = 0;
429
430         rc_vma = find_ref_ctr_vma(uprobe, mm);
431
432         if (rc_vma) {
433                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
434                 ret = __update_ref_ctr(mm, rc_vaddr, d);
435                 if (ret)
436                         update_ref_ctr_warn(uprobe, mm, d);
437
438                 if (d > 0)
439                         return ret;
440         }
441
442         mutex_lock(&delayed_uprobe_lock);
443         if (d > 0)
444                 ret = delayed_uprobe_add(uprobe, mm);
445         else
446                 delayed_uprobe_remove(uprobe, mm);
447         mutex_unlock(&delayed_uprobe_lock);
448
449         return ret;
450 }
451
452 /*
453  * NOTE:
454  * Expect the breakpoint instruction to be the smallest size instruction for
455  * the architecture. If an arch has variable length instruction and the
456  * breakpoint instruction is not of the smallest length instruction
457  * supported by that architecture then we need to modify is_trap_at_addr and
458  * uprobe_write_opcode accordingly. This would never be a problem for archs
459  * that have fixed length instructions.
460  *
461  * uprobe_write_opcode - write the opcode at a given virtual address.
462  * @mm: the probed process address space.
463  * @vaddr: the virtual address to store the opcode.
464  * @opcode: opcode to be written at @vaddr.
465  *
466  * Called with mm->mmap_sem held for write.
467  * Return 0 (success) or a negative errno.
468  */
469 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
470                         unsigned long vaddr, uprobe_opcode_t opcode)
471 {
472         struct uprobe *uprobe;
473         struct page *old_page, *new_page;
474         struct vm_area_struct *vma;
475         int ret, is_register, ref_ctr_updated = 0;
476         bool orig_page_huge = false;
477
478         is_register = is_swbp_insn(&opcode);
479         uprobe = container_of(auprobe, struct uprobe, arch);
480
481 retry:
482         /* Read the page with vaddr into memory */
483         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
484                         FOLL_FORCE | FOLL_SPLIT_PMD, &old_page, &vma, NULL);
485         if (ret <= 0)
486                 return ret;
487
488         ret = verify_opcode(old_page, vaddr, &opcode);
489         if (ret <= 0)
490                 goto put_old;
491
492         /* We are going to replace instruction, update ref_ctr. */
493         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
494                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
495                 if (ret)
496                         goto put_old;
497
498                 ref_ctr_updated = 1;
499         }
500
501         ret = 0;
502         if (!is_register && !PageAnon(old_page))
503                 goto put_old;
504
505         ret = anon_vma_prepare(vma);
506         if (ret)
507                 goto put_old;
508
509         ret = -ENOMEM;
510         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
511         if (!new_page)
512                 goto put_old;
513
514         __SetPageUptodate(new_page);
515         copy_highpage(new_page, old_page);
516         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
517
518         if (!is_register) {
519                 struct page *orig_page;
520                 pgoff_t index;
521
522                 VM_BUG_ON_PAGE(!PageAnon(old_page), old_page);
523
524                 index = vaddr_to_offset(vma, vaddr & PAGE_MASK) >> PAGE_SHIFT;
525                 orig_page = find_get_page(vma->vm_file->f_inode->i_mapping,
526                                           index);
527
528                 if (orig_page) {
529                         if (PageUptodate(orig_page) &&
530                             pages_identical(new_page, orig_page)) {
531                                 /* let go new_page */
532                                 put_page(new_page);
533                                 new_page = NULL;
534
535                                 if (PageCompound(orig_page))
536                                         orig_page_huge = true;
537                         }
538                         put_page(orig_page);
539                 }
540         }
541
542         ret = __replace_page(vma, vaddr, old_page, new_page);
543         if (new_page)
544                 put_page(new_page);
545 put_old:
546         put_page(old_page);
547
548         if (unlikely(ret == -EAGAIN))
549                 goto retry;
550
551         /* Revert back reference counter if instruction update failed. */
552         if (ret && is_register && ref_ctr_updated)
553                 update_ref_ctr(uprobe, mm, -1);
554
555         /* try collapse pmd for compound page */
556         if (!ret && orig_page_huge)
557                 collapse_pte_mapped_thp(mm, vaddr);
558
559         return ret;
560 }
561
562 /**
563  * set_swbp - store breakpoint at a given address.
564  * @auprobe: arch specific probepoint information.
565  * @mm: the probed process address space.
566  * @vaddr: the virtual address to insert the opcode.
567  *
568  * For mm @mm, store the breakpoint instruction at @vaddr.
569  * Return 0 (success) or a negative errno.
570  */
571 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
572 {
573         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
574 }
575
576 /**
577  * set_orig_insn - Restore the original instruction.
578  * @mm: the probed process address space.
579  * @auprobe: arch specific probepoint information.
580  * @vaddr: the virtual address to insert the opcode.
581  *
582  * For mm @mm, restore the original opcode (opcode) at @vaddr.
583  * Return 0 (success) or a negative errno.
584  */
585 int __weak
586 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
587 {
588         return uprobe_write_opcode(auprobe, mm, vaddr,
589                         *(uprobe_opcode_t *)&auprobe->insn);
590 }
591
592 static struct uprobe *get_uprobe(struct uprobe *uprobe)
593 {
594         refcount_inc(&uprobe->ref);
595         return uprobe;
596 }
597
598 static void put_uprobe(struct uprobe *uprobe)
599 {
600         if (refcount_dec_and_test(&uprobe->ref)) {
601                 /*
602                  * If application munmap(exec_vma) before uprobe_unregister()
603                  * gets called, we don't get a chance to remove uprobe from
604                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
605                  */
606                 mutex_lock(&delayed_uprobe_lock);
607                 delayed_uprobe_remove(uprobe, NULL);
608                 mutex_unlock(&delayed_uprobe_lock);
609                 kfree(uprobe);
610         }
611 }
612
613 static int match_uprobe(struct uprobe *l, struct uprobe *r)
614 {
615         if (l->inode < r->inode)
616                 return -1;
617
618         if (l->inode > r->inode)
619                 return 1;
620
621         if (l->offset < r->offset)
622                 return -1;
623
624         if (l->offset > r->offset)
625                 return 1;
626
627         return 0;
628 }
629
630 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
631 {
632         struct uprobe u = { .inode = inode, .offset = offset };
633         struct rb_node *n = uprobes_tree.rb_node;
634         struct uprobe *uprobe;
635         int match;
636
637         while (n) {
638                 uprobe = rb_entry(n, struct uprobe, rb_node);
639                 match = match_uprobe(&u, uprobe);
640                 if (!match)
641                         return get_uprobe(uprobe);
642
643                 if (match < 0)
644                         n = n->rb_left;
645                 else
646                         n = n->rb_right;
647         }
648         return NULL;
649 }
650
651 /*
652  * Find a uprobe corresponding to a given inode:offset
653  * Acquires uprobes_treelock
654  */
655 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
656 {
657         struct uprobe *uprobe;
658
659         spin_lock(&uprobes_treelock);
660         uprobe = __find_uprobe(inode, offset);
661         spin_unlock(&uprobes_treelock);
662
663         return uprobe;
664 }
665
666 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
667 {
668         struct rb_node **p = &uprobes_tree.rb_node;
669         struct rb_node *parent = NULL;
670         struct uprobe *u;
671         int match;
672
673         while (*p) {
674                 parent = *p;
675                 u = rb_entry(parent, struct uprobe, rb_node);
676                 match = match_uprobe(uprobe, u);
677                 if (!match)
678                         return get_uprobe(u);
679
680                 if (match < 0)
681                         p = &parent->rb_left;
682                 else
683                         p = &parent->rb_right;
684
685         }
686
687         u = NULL;
688         rb_link_node(&uprobe->rb_node, parent, p);
689         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
690         /* get access + creation ref */
691         refcount_set(&uprobe->ref, 2);
692
693         return u;
694 }
695
696 /*
697  * Acquire uprobes_treelock.
698  * Matching uprobe already exists in rbtree;
699  *      increment (access refcount) and return the matching uprobe.
700  *
701  * No matching uprobe; insert the uprobe in rb_tree;
702  *      get a double refcount (access + creation) and return NULL.
703  */
704 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
705 {
706         struct uprobe *u;
707
708         spin_lock(&uprobes_treelock);
709         u = __insert_uprobe(uprobe);
710         spin_unlock(&uprobes_treelock);
711
712         return u;
713 }
714
715 static void
716 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
717 {
718         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
719                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
720                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
721                 (unsigned long long) cur_uprobe->ref_ctr_offset,
722                 (unsigned long long) uprobe->ref_ctr_offset);
723 }
724
725 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
726                                    loff_t ref_ctr_offset)
727 {
728         struct uprobe *uprobe, *cur_uprobe;
729
730         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
731         if (!uprobe)
732                 return NULL;
733
734         uprobe->inode = inode;
735         uprobe->offset = offset;
736         uprobe->ref_ctr_offset = ref_ctr_offset;
737         init_rwsem(&uprobe->register_rwsem);
738         init_rwsem(&uprobe->consumer_rwsem);
739
740         /* add to uprobes_tree, sorted on inode:offset */
741         cur_uprobe = insert_uprobe(uprobe);
742         /* a uprobe exists for this inode:offset combination */
743         if (cur_uprobe) {
744                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
745                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
746                         put_uprobe(cur_uprobe);
747                         kfree(uprobe);
748                         return ERR_PTR(-EINVAL);
749                 }
750                 kfree(uprobe);
751                 uprobe = cur_uprobe;
752         }
753
754         return uprobe;
755 }
756
757 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
758 {
759         down_write(&uprobe->consumer_rwsem);
760         uc->next = uprobe->consumers;
761         uprobe->consumers = uc;
762         up_write(&uprobe->consumer_rwsem);
763 }
764
765 /*
766  * For uprobe @uprobe, delete the consumer @uc.
767  * Return true if the @uc is deleted successfully
768  * or return false.
769  */
770 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
771 {
772         struct uprobe_consumer **con;
773         bool ret = false;
774
775         down_write(&uprobe->consumer_rwsem);
776         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
777                 if (*con == uc) {
778                         *con = uc->next;
779                         ret = true;
780                         break;
781                 }
782         }
783         up_write(&uprobe->consumer_rwsem);
784
785         return ret;
786 }
787
788 static int __copy_insn(struct address_space *mapping, struct file *filp,
789                         void *insn, int nbytes, loff_t offset)
790 {
791         struct page *page;
792         /*
793          * Ensure that the page that has the original instruction is populated
794          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
795          * see uprobe_register().
796          */
797         if (mapping->a_ops->readpage)
798                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
799         else
800                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
801         if (IS_ERR(page))
802                 return PTR_ERR(page);
803
804         copy_from_page(page, offset, insn, nbytes);
805         put_page(page);
806
807         return 0;
808 }
809
810 static int copy_insn(struct uprobe *uprobe, struct file *filp)
811 {
812         struct address_space *mapping = uprobe->inode->i_mapping;
813         loff_t offs = uprobe->offset;
814         void *insn = &uprobe->arch.insn;
815         int size = sizeof(uprobe->arch.insn);
816         int len, err = -EIO;
817
818         /* Copy only available bytes, -EIO if nothing was read */
819         do {
820                 if (offs >= i_size_read(uprobe->inode))
821                         break;
822
823                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
824                 err = __copy_insn(mapping, filp, insn, len, offs);
825                 if (err)
826                         break;
827
828                 insn += len;
829                 offs += len;
830                 size -= len;
831         } while (size);
832
833         return err;
834 }
835
836 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
837                                 struct mm_struct *mm, unsigned long vaddr)
838 {
839         int ret = 0;
840
841         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
842                 return ret;
843
844         /* TODO: move this into _register, until then we abuse this sem. */
845         down_write(&uprobe->consumer_rwsem);
846         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
847                 goto out;
848
849         ret = copy_insn(uprobe, file);
850         if (ret)
851                 goto out;
852
853         ret = -ENOTSUPP;
854         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
855                 goto out;
856
857         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
858         if (ret)
859                 goto out;
860
861         /* uprobe_write_opcode() assumes we don't cross page boundary */
862         BUG_ON((uprobe->offset & ~PAGE_MASK) +
863                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
864
865         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
866         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
867
868  out:
869         up_write(&uprobe->consumer_rwsem);
870
871         return ret;
872 }
873
874 static inline bool consumer_filter(struct uprobe_consumer *uc,
875                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
876 {
877         return !uc->filter || uc->filter(uc, ctx, mm);
878 }
879
880 static bool filter_chain(struct uprobe *uprobe,
881                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
882 {
883         struct uprobe_consumer *uc;
884         bool ret = false;
885
886         down_read(&uprobe->consumer_rwsem);
887         for (uc = uprobe->consumers; uc; uc = uc->next) {
888                 ret = consumer_filter(uc, ctx, mm);
889                 if (ret)
890                         break;
891         }
892         up_read(&uprobe->consumer_rwsem);
893
894         return ret;
895 }
896
897 static int
898 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
899                         struct vm_area_struct *vma, unsigned long vaddr)
900 {
901         bool first_uprobe;
902         int ret;
903
904         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
905         if (ret)
906                 return ret;
907
908         /*
909          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
910          * the task can hit this breakpoint right after __replace_page().
911          */
912         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
913         if (first_uprobe)
914                 set_bit(MMF_HAS_UPROBES, &mm->flags);
915
916         ret = set_swbp(&uprobe->arch, mm, vaddr);
917         if (!ret)
918                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
919         else if (first_uprobe)
920                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
921
922         return ret;
923 }
924
925 static int
926 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
927 {
928         set_bit(MMF_RECALC_UPROBES, &mm->flags);
929         return set_orig_insn(&uprobe->arch, mm, vaddr);
930 }
931
932 static inline bool uprobe_is_active(struct uprobe *uprobe)
933 {
934         return !RB_EMPTY_NODE(&uprobe->rb_node);
935 }
936 /*
937  * There could be threads that have already hit the breakpoint. They
938  * will recheck the current insn and restart if find_uprobe() fails.
939  * See find_active_uprobe().
940  */
941 static void delete_uprobe(struct uprobe *uprobe)
942 {
943         if (WARN_ON(!uprobe_is_active(uprobe)))
944                 return;
945
946         spin_lock(&uprobes_treelock);
947         rb_erase(&uprobe->rb_node, &uprobes_tree);
948         spin_unlock(&uprobes_treelock);
949         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
950         put_uprobe(uprobe);
951 }
952
953 struct map_info {
954         struct map_info *next;
955         struct mm_struct *mm;
956         unsigned long vaddr;
957 };
958
959 static inline struct map_info *free_map_info(struct map_info *info)
960 {
961         struct map_info *next = info->next;
962         kfree(info);
963         return next;
964 }
965
966 static struct map_info *
967 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
968 {
969         unsigned long pgoff = offset >> PAGE_SHIFT;
970         struct vm_area_struct *vma;
971         struct map_info *curr = NULL;
972         struct map_info *prev = NULL;
973         struct map_info *info;
974         int more = 0;
975
976  again:
977         i_mmap_lock_read(mapping);
978         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
979                 if (!valid_vma(vma, is_register))
980                         continue;
981
982                 if (!prev && !more) {
983                         /*
984                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
985                          * reclaim. This is optimistic, no harm done if it fails.
986                          */
987                         prev = kmalloc(sizeof(struct map_info),
988                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
989                         if (prev)
990                                 prev->next = NULL;
991                 }
992                 if (!prev) {
993                         more++;
994                         continue;
995                 }
996
997                 if (!mmget_not_zero(vma->vm_mm))
998                         continue;
999
1000                 info = prev;
1001                 prev = prev->next;
1002                 info->next = curr;
1003                 curr = info;
1004
1005                 info->mm = vma->vm_mm;
1006                 info->vaddr = offset_to_vaddr(vma, offset);
1007         }
1008         i_mmap_unlock_read(mapping);
1009
1010         if (!more)
1011                 goto out;
1012
1013         prev = curr;
1014         while (curr) {
1015                 mmput(curr->mm);
1016                 curr = curr->next;
1017         }
1018
1019         do {
1020                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
1021                 if (!info) {
1022                         curr = ERR_PTR(-ENOMEM);
1023                         goto out;
1024                 }
1025                 info->next = prev;
1026                 prev = info;
1027         } while (--more);
1028
1029         goto again;
1030  out:
1031         while (prev)
1032                 prev = free_map_info(prev);
1033         return curr;
1034 }
1035
1036 static int
1037 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1038 {
1039         bool is_register = !!new;
1040         struct map_info *info;
1041         int err = 0;
1042
1043         percpu_down_write(&dup_mmap_sem);
1044         info = build_map_info(uprobe->inode->i_mapping,
1045                                         uprobe->offset, is_register);
1046         if (IS_ERR(info)) {
1047                 err = PTR_ERR(info);
1048                 goto out;
1049         }
1050
1051         while (info) {
1052                 struct mm_struct *mm = info->mm;
1053                 struct vm_area_struct *vma;
1054
1055                 if (err && is_register)
1056                         goto free;
1057
1058                 down_write(&mm->mmap_sem);
1059                 vma = find_vma(mm, info->vaddr);
1060                 if (!vma || !valid_vma(vma, is_register) ||
1061                     file_inode(vma->vm_file) != uprobe->inode)
1062                         goto unlock;
1063
1064                 if (vma->vm_start > info->vaddr ||
1065                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1066                         goto unlock;
1067
1068                 if (is_register) {
1069                         /* consult only the "caller", new consumer. */
1070                         if (consumer_filter(new,
1071                                         UPROBE_FILTER_REGISTER, mm))
1072                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1073                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1074                         if (!filter_chain(uprobe,
1075                                         UPROBE_FILTER_UNREGISTER, mm))
1076                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1077                 }
1078
1079  unlock:
1080                 up_write(&mm->mmap_sem);
1081  free:
1082                 mmput(mm);
1083                 info = free_map_info(info);
1084         }
1085  out:
1086         percpu_up_write(&dup_mmap_sem);
1087         return err;
1088 }
1089
1090 static void
1091 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1092 {
1093         int err;
1094
1095         if (WARN_ON(!consumer_del(uprobe, uc)))
1096                 return;
1097
1098         err = register_for_each_vma(uprobe, NULL);
1099         /* TODO : cant unregister? schedule a worker thread */
1100         if (!uprobe->consumers && !err)
1101                 delete_uprobe(uprobe);
1102 }
1103
1104 /*
1105  * uprobe_unregister - unregister an already registered probe.
1106  * @inode: the file in which the probe has to be removed.
1107  * @offset: offset from the start of the file.
1108  * @uc: identify which probe if multiple probes are colocated.
1109  */
1110 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1111 {
1112         struct uprobe *uprobe;
1113
1114         uprobe = find_uprobe(inode, offset);
1115         if (WARN_ON(!uprobe))
1116                 return;
1117
1118         down_write(&uprobe->register_rwsem);
1119         __uprobe_unregister(uprobe, uc);
1120         up_write(&uprobe->register_rwsem);
1121         put_uprobe(uprobe);
1122 }
1123 EXPORT_SYMBOL_GPL(uprobe_unregister);
1124
1125 /*
1126  * __uprobe_register - register a probe
1127  * @inode: the file in which the probe has to be placed.
1128  * @offset: offset from the start of the file.
1129  * @uc: information on howto handle the probe..
1130  *
1131  * Apart from the access refcount, __uprobe_register() takes a creation
1132  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1133  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1134  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1135  * @uprobe even before the register operation is complete. Creation
1136  * refcount is released when the last @uc for the @uprobe
1137  * unregisters. Caller of __uprobe_register() is required to keep @inode
1138  * (and the containing mount) referenced.
1139  *
1140  * Return errno if it cannot successully install probes
1141  * else return 0 (success)
1142  */
1143 static int __uprobe_register(struct inode *inode, loff_t offset,
1144                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1145 {
1146         struct uprobe *uprobe;
1147         int ret;
1148
1149         /* Uprobe must have at least one set consumer */
1150         if (!uc->handler && !uc->ret_handler)
1151                 return -EINVAL;
1152
1153         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1154         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1155                 return -EIO;
1156         /* Racy, just to catch the obvious mistakes */
1157         if (offset > i_size_read(inode))
1158                 return -EINVAL;
1159
1160  retry:
1161         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1162         if (!uprobe)
1163                 return -ENOMEM;
1164         if (IS_ERR(uprobe))
1165                 return PTR_ERR(uprobe);
1166
1167         /*
1168          * We can race with uprobe_unregister()->delete_uprobe().
1169          * Check uprobe_is_active() and retry if it is false.
1170          */
1171         down_write(&uprobe->register_rwsem);
1172         ret = -EAGAIN;
1173         if (likely(uprobe_is_active(uprobe))) {
1174                 consumer_add(uprobe, uc);
1175                 ret = register_for_each_vma(uprobe, uc);
1176                 if (ret)
1177                         __uprobe_unregister(uprobe, uc);
1178         }
1179         up_write(&uprobe->register_rwsem);
1180         put_uprobe(uprobe);
1181
1182         if (unlikely(ret == -EAGAIN))
1183                 goto retry;
1184         return ret;
1185 }
1186
1187 int uprobe_register(struct inode *inode, loff_t offset,
1188                     struct uprobe_consumer *uc)
1189 {
1190         return __uprobe_register(inode, offset, 0, uc);
1191 }
1192 EXPORT_SYMBOL_GPL(uprobe_register);
1193
1194 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1195                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1196 {
1197         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1198 }
1199 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1200
1201 /*
1202  * uprobe_apply - unregister an already registered probe.
1203  * @inode: the file in which the probe has to be removed.
1204  * @offset: offset from the start of the file.
1205  * @uc: consumer which wants to add more or remove some breakpoints
1206  * @add: add or remove the breakpoints
1207  */
1208 int uprobe_apply(struct inode *inode, loff_t offset,
1209                         struct uprobe_consumer *uc, bool add)
1210 {
1211         struct uprobe *uprobe;
1212         struct uprobe_consumer *con;
1213         int ret = -ENOENT;
1214
1215         uprobe = find_uprobe(inode, offset);
1216         if (WARN_ON(!uprobe))
1217                 return ret;
1218
1219         down_write(&uprobe->register_rwsem);
1220         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1221                 ;
1222         if (con)
1223                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1224         up_write(&uprobe->register_rwsem);
1225         put_uprobe(uprobe);
1226
1227         return ret;
1228 }
1229
1230 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1231 {
1232         struct vm_area_struct *vma;
1233         int err = 0;
1234
1235         down_read(&mm->mmap_sem);
1236         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1237                 unsigned long vaddr;
1238                 loff_t offset;
1239
1240                 if (!valid_vma(vma, false) ||
1241                     file_inode(vma->vm_file) != uprobe->inode)
1242                         continue;
1243
1244                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1245                 if (uprobe->offset <  offset ||
1246                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1247                         continue;
1248
1249                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1250                 err |= remove_breakpoint(uprobe, mm, vaddr);
1251         }
1252         up_read(&mm->mmap_sem);
1253
1254         return err;
1255 }
1256
1257 static struct rb_node *
1258 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1259 {
1260         struct rb_node *n = uprobes_tree.rb_node;
1261
1262         while (n) {
1263                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1264
1265                 if (inode < u->inode) {
1266                         n = n->rb_left;
1267                 } else if (inode > u->inode) {
1268                         n = n->rb_right;
1269                 } else {
1270                         if (max < u->offset)
1271                                 n = n->rb_left;
1272                         else if (min > u->offset)
1273                                 n = n->rb_right;
1274                         else
1275                                 break;
1276                 }
1277         }
1278
1279         return n;
1280 }
1281
1282 /*
1283  * For a given range in vma, build a list of probes that need to be inserted.
1284  */
1285 static void build_probe_list(struct inode *inode,
1286                                 struct vm_area_struct *vma,
1287                                 unsigned long start, unsigned long end,
1288                                 struct list_head *head)
1289 {
1290         loff_t min, max;
1291         struct rb_node *n, *t;
1292         struct uprobe *u;
1293
1294         INIT_LIST_HEAD(head);
1295         min = vaddr_to_offset(vma, start);
1296         max = min + (end - start) - 1;
1297
1298         spin_lock(&uprobes_treelock);
1299         n = find_node_in_range(inode, min, max);
1300         if (n) {
1301                 for (t = n; t; t = rb_prev(t)) {
1302                         u = rb_entry(t, struct uprobe, rb_node);
1303                         if (u->inode != inode || u->offset < min)
1304                                 break;
1305                         list_add(&u->pending_list, head);
1306                         get_uprobe(u);
1307                 }
1308                 for (t = n; (t = rb_next(t)); ) {
1309                         u = rb_entry(t, struct uprobe, rb_node);
1310                         if (u->inode != inode || u->offset > max)
1311                                 break;
1312                         list_add(&u->pending_list, head);
1313                         get_uprobe(u);
1314                 }
1315         }
1316         spin_unlock(&uprobes_treelock);
1317 }
1318
1319 /* @vma contains reference counter, not the probed instruction. */
1320 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1321 {
1322         struct list_head *pos, *q;
1323         struct delayed_uprobe *du;
1324         unsigned long vaddr;
1325         int ret = 0, err = 0;
1326
1327         mutex_lock(&delayed_uprobe_lock);
1328         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1329                 du = list_entry(pos, struct delayed_uprobe, list);
1330
1331                 if (du->mm != vma->vm_mm ||
1332                     !valid_ref_ctr_vma(du->uprobe, vma))
1333                         continue;
1334
1335                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1336                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1337                 if (ret) {
1338                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1339                         if (!err)
1340                                 err = ret;
1341                 }
1342                 delayed_uprobe_delete(du);
1343         }
1344         mutex_unlock(&delayed_uprobe_lock);
1345         return err;
1346 }
1347
1348 /*
1349  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1350  *
1351  * Currently we ignore all errors and always return 0, the callers
1352  * can't handle the failure anyway.
1353  */
1354 int uprobe_mmap(struct vm_area_struct *vma)
1355 {
1356         struct list_head tmp_list;
1357         struct uprobe *uprobe, *u;
1358         struct inode *inode;
1359
1360         if (no_uprobe_events())
1361                 return 0;
1362
1363         if (vma->vm_file &&
1364             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1365             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1366                 delayed_ref_ctr_inc(vma);
1367
1368         if (!valid_vma(vma, true))
1369                 return 0;
1370
1371         inode = file_inode(vma->vm_file);
1372         if (!inode)
1373                 return 0;
1374
1375         mutex_lock(uprobes_mmap_hash(inode));
1376         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1377         /*
1378          * We can race with uprobe_unregister(), this uprobe can be already
1379          * removed. But in this case filter_chain() must return false, all
1380          * consumers have gone away.
1381          */
1382         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1383                 if (!fatal_signal_pending(current) &&
1384                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1385                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1386                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1387                 }
1388                 put_uprobe(uprobe);
1389         }
1390         mutex_unlock(uprobes_mmap_hash(inode));
1391
1392         return 0;
1393 }
1394
1395 static bool
1396 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1397 {
1398         loff_t min, max;
1399         struct inode *inode;
1400         struct rb_node *n;
1401
1402         inode = file_inode(vma->vm_file);
1403
1404         min = vaddr_to_offset(vma, start);
1405         max = min + (end - start) - 1;
1406
1407         spin_lock(&uprobes_treelock);
1408         n = find_node_in_range(inode, min, max);
1409         spin_unlock(&uprobes_treelock);
1410
1411         return !!n;
1412 }
1413
1414 /*
1415  * Called in context of a munmap of a vma.
1416  */
1417 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1418 {
1419         if (no_uprobe_events() || !valid_vma(vma, false))
1420                 return;
1421
1422         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1423                 return;
1424
1425         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1426              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1427                 return;
1428
1429         if (vma_has_uprobes(vma, start, end))
1430                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1431 }
1432
1433 /* Slot allocation for XOL */
1434 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1435 {
1436         struct vm_area_struct *vma;
1437         int ret;
1438
1439         if (down_write_killable(&mm->mmap_sem))
1440                 return -EINTR;
1441
1442         if (mm->uprobes_state.xol_area) {
1443                 ret = -EALREADY;
1444                 goto fail;
1445         }
1446
1447         if (!area->vaddr) {
1448                 /* Try to map as high as possible, this is only a hint. */
1449                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1450                                                 PAGE_SIZE, 0, 0);
1451                 if (area->vaddr & ~PAGE_MASK) {
1452                         ret = area->vaddr;
1453                         goto fail;
1454                 }
1455         }
1456
1457         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1458                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1459                                 &area->xol_mapping);
1460         if (IS_ERR(vma)) {
1461                 ret = PTR_ERR(vma);
1462                 goto fail;
1463         }
1464
1465         ret = 0;
1466         /* pairs with get_xol_area() */
1467         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1468  fail:
1469         up_write(&mm->mmap_sem);
1470
1471         return ret;
1472 }
1473
1474 static struct xol_area *__create_xol_area(unsigned long vaddr)
1475 {
1476         struct mm_struct *mm = current->mm;
1477         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1478         struct xol_area *area;
1479
1480         area = kmalloc(sizeof(*area), GFP_KERNEL);
1481         if (unlikely(!area))
1482                 goto out;
1483
1484         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1485                                GFP_KERNEL);
1486         if (!area->bitmap)
1487                 goto free_area;
1488
1489         area->xol_mapping.name = "[uprobes]";
1490         area->xol_mapping.fault = NULL;
1491         area->xol_mapping.pages = area->pages;
1492         area->pages[0] = alloc_page(GFP_HIGHUSER);
1493         if (!area->pages[0])
1494                 goto free_bitmap;
1495         area->pages[1] = NULL;
1496
1497         area->vaddr = vaddr;
1498         init_waitqueue_head(&area->wq);
1499         /* Reserve the 1st slot for get_trampoline_vaddr() */
1500         set_bit(0, area->bitmap);
1501         atomic_set(&area->slot_count, 1);
1502         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1503
1504         if (!xol_add_vma(mm, area))
1505                 return area;
1506
1507         __free_page(area->pages[0]);
1508  free_bitmap:
1509         kfree(area->bitmap);
1510  free_area:
1511         kfree(area);
1512  out:
1513         return NULL;
1514 }
1515
1516 /*
1517  * get_xol_area - Allocate process's xol_area if necessary.
1518  * This area will be used for storing instructions for execution out of line.
1519  *
1520  * Returns the allocated area or NULL.
1521  */
1522 static struct xol_area *get_xol_area(void)
1523 {
1524         struct mm_struct *mm = current->mm;
1525         struct xol_area *area;
1526
1527         if (!mm->uprobes_state.xol_area)
1528                 __create_xol_area(0);
1529
1530         /* Pairs with xol_add_vma() smp_store_release() */
1531         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1532         return area;
1533 }
1534
1535 /*
1536  * uprobe_clear_state - Free the area allocated for slots.
1537  */
1538 void uprobe_clear_state(struct mm_struct *mm)
1539 {
1540         struct xol_area *area = mm->uprobes_state.xol_area;
1541
1542         mutex_lock(&delayed_uprobe_lock);
1543         delayed_uprobe_remove(NULL, mm);
1544         mutex_unlock(&delayed_uprobe_lock);
1545
1546         if (!area)
1547                 return;
1548
1549         put_page(area->pages[0]);
1550         kfree(area->bitmap);
1551         kfree(area);
1552 }
1553
1554 void uprobe_start_dup_mmap(void)
1555 {
1556         percpu_down_read(&dup_mmap_sem);
1557 }
1558
1559 void uprobe_end_dup_mmap(void)
1560 {
1561         percpu_up_read(&dup_mmap_sem);
1562 }
1563
1564 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1565 {
1566         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1567                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1568                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1569                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1570         }
1571 }
1572
1573 /*
1574  *  - search for a free slot.
1575  */
1576 static unsigned long xol_take_insn_slot(struct xol_area *area)
1577 {
1578         unsigned long slot_addr;
1579         int slot_nr;
1580
1581         do {
1582                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1583                 if (slot_nr < UINSNS_PER_PAGE) {
1584                         if (!test_and_set_bit(slot_nr, area->bitmap))
1585                                 break;
1586
1587                         slot_nr = UINSNS_PER_PAGE;
1588                         continue;
1589                 }
1590                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1591         } while (slot_nr >= UINSNS_PER_PAGE);
1592
1593         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1594         atomic_inc(&area->slot_count);
1595
1596         return slot_addr;
1597 }
1598
1599 /*
1600  * xol_get_insn_slot - allocate a slot for xol.
1601  * Returns the allocated slot address or 0.
1602  */
1603 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1604 {
1605         struct xol_area *area;
1606         unsigned long xol_vaddr;
1607
1608         area = get_xol_area();
1609         if (!area)
1610                 return 0;
1611
1612         xol_vaddr = xol_take_insn_slot(area);
1613         if (unlikely(!xol_vaddr))
1614                 return 0;
1615
1616         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1617                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1618
1619         return xol_vaddr;
1620 }
1621
1622 /*
1623  * xol_free_insn_slot - If slot was earlier allocated by
1624  * @xol_get_insn_slot(), make the slot available for
1625  * subsequent requests.
1626  */
1627 static void xol_free_insn_slot(struct task_struct *tsk)
1628 {
1629         struct xol_area *area;
1630         unsigned long vma_end;
1631         unsigned long slot_addr;
1632
1633         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1634                 return;
1635
1636         slot_addr = tsk->utask->xol_vaddr;
1637         if (unlikely(!slot_addr))
1638                 return;
1639
1640         area = tsk->mm->uprobes_state.xol_area;
1641         vma_end = area->vaddr + PAGE_SIZE;
1642         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1643                 unsigned long offset;
1644                 int slot_nr;
1645
1646                 offset = slot_addr - area->vaddr;
1647                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1648                 if (slot_nr >= UINSNS_PER_PAGE)
1649                         return;
1650
1651                 clear_bit(slot_nr, area->bitmap);
1652                 atomic_dec(&area->slot_count);
1653                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1654                 if (waitqueue_active(&area->wq))
1655                         wake_up(&area->wq);
1656
1657                 tsk->utask->xol_vaddr = 0;
1658         }
1659 }
1660
1661 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1662                                   void *src, unsigned long len)
1663 {
1664         /* Initialize the slot */
1665         copy_to_page(page, vaddr, src, len);
1666
1667         /*
1668          * We probably need flush_icache_user_range() but it needs vma.
1669          * This should work on most of architectures by default. If
1670          * architecture needs to do something different it can define
1671          * its own version of the function.
1672          */
1673         flush_dcache_page(page);
1674 }
1675
1676 /**
1677  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1678  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1679  * instruction.
1680  * Return the address of the breakpoint instruction.
1681  */
1682 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1683 {
1684         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1685 }
1686
1687 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1688 {
1689         struct uprobe_task *utask = current->utask;
1690
1691         if (unlikely(utask && utask->active_uprobe))
1692                 return utask->vaddr;
1693
1694         return instruction_pointer(regs);
1695 }
1696
1697 static struct return_instance *free_ret_instance(struct return_instance *ri)
1698 {
1699         struct return_instance *next = ri->next;
1700         put_uprobe(ri->uprobe);
1701         kfree(ri);
1702         return next;
1703 }
1704
1705 /*
1706  * Called with no locks held.
1707  * Called in context of an exiting or an exec-ing thread.
1708  */
1709 void uprobe_free_utask(struct task_struct *t)
1710 {
1711         struct uprobe_task *utask = t->utask;
1712         struct return_instance *ri;
1713
1714         if (!utask)
1715                 return;
1716
1717         if (utask->active_uprobe)
1718                 put_uprobe(utask->active_uprobe);
1719
1720         ri = utask->return_instances;
1721         while (ri)
1722                 ri = free_ret_instance(ri);
1723
1724         xol_free_insn_slot(t);
1725         kfree(utask);
1726         t->utask = NULL;
1727 }
1728
1729 /*
1730  * Allocate a uprobe_task object for the task if if necessary.
1731  * Called when the thread hits a breakpoint.
1732  *
1733  * Returns:
1734  * - pointer to new uprobe_task on success
1735  * - NULL otherwise
1736  */
1737 static struct uprobe_task *get_utask(void)
1738 {
1739         if (!current->utask)
1740                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1741         return current->utask;
1742 }
1743
1744 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1745 {
1746         struct uprobe_task *n_utask;
1747         struct return_instance **p, *o, *n;
1748
1749         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1750         if (!n_utask)
1751                 return -ENOMEM;
1752         t->utask = n_utask;
1753
1754         p = &n_utask->return_instances;
1755         for (o = o_utask->return_instances; o; o = o->next) {
1756                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1757                 if (!n)
1758                         return -ENOMEM;
1759
1760                 *n = *o;
1761                 get_uprobe(n->uprobe);
1762                 n->next = NULL;
1763
1764                 *p = n;
1765                 p = &n->next;
1766                 n_utask->depth++;
1767         }
1768
1769         return 0;
1770 }
1771
1772 static void uprobe_warn(struct task_struct *t, const char *msg)
1773 {
1774         pr_warn("uprobe: %s:%d failed to %s\n",
1775                         current->comm, current->pid, msg);
1776 }
1777
1778 static void dup_xol_work(struct callback_head *work)
1779 {
1780         if (current->flags & PF_EXITING)
1781                 return;
1782
1783         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1784                         !fatal_signal_pending(current))
1785                 uprobe_warn(current, "dup xol area");
1786 }
1787
1788 /*
1789  * Called in context of a new clone/fork from copy_process.
1790  */
1791 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1792 {
1793         struct uprobe_task *utask = current->utask;
1794         struct mm_struct *mm = current->mm;
1795         struct xol_area *area;
1796
1797         t->utask = NULL;
1798
1799         if (!utask || !utask->return_instances)
1800                 return;
1801
1802         if (mm == t->mm && !(flags & CLONE_VFORK))
1803                 return;
1804
1805         if (dup_utask(t, utask))
1806                 return uprobe_warn(t, "dup ret instances");
1807
1808         /* The task can fork() after dup_xol_work() fails */
1809         area = mm->uprobes_state.xol_area;
1810         if (!area)
1811                 return uprobe_warn(t, "dup xol area");
1812
1813         if (mm == t->mm)
1814                 return;
1815
1816         t->utask->dup_xol_addr = area->vaddr;
1817         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1818         task_work_add(t, &t->utask->dup_xol_work, true);
1819 }
1820
1821 /*
1822  * Current area->vaddr notion assume the trampoline address is always
1823  * equal area->vaddr.
1824  *
1825  * Returns -1 in case the xol_area is not allocated.
1826  */
1827 static unsigned long get_trampoline_vaddr(void)
1828 {
1829         struct xol_area *area;
1830         unsigned long trampoline_vaddr = -1;
1831
1832         /* Pairs with xol_add_vma() smp_store_release() */
1833         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1834         if (area)
1835                 trampoline_vaddr = area->vaddr;
1836
1837         return trampoline_vaddr;
1838 }
1839
1840 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1841                                         struct pt_regs *regs)
1842 {
1843         struct return_instance *ri = utask->return_instances;
1844         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1845
1846         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1847                 ri = free_ret_instance(ri);
1848                 utask->depth--;
1849         }
1850         utask->return_instances = ri;
1851 }
1852
1853 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1854 {
1855         struct return_instance *ri;
1856         struct uprobe_task *utask;
1857         unsigned long orig_ret_vaddr, trampoline_vaddr;
1858         bool chained;
1859
1860         if (!get_xol_area())
1861                 return;
1862
1863         utask = get_utask();
1864         if (!utask)
1865                 return;
1866
1867         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1868                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1869                                 " nestedness limit pid/tgid=%d/%d\n",
1870                                 current->pid, current->tgid);
1871                 return;
1872         }
1873
1874         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1875         if (!ri)
1876                 return;
1877
1878         trampoline_vaddr = get_trampoline_vaddr();
1879         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1880         if (orig_ret_vaddr == -1)
1881                 goto fail;
1882
1883         /* drop the entries invalidated by longjmp() */
1884         chained = (orig_ret_vaddr == trampoline_vaddr);
1885         cleanup_return_instances(utask, chained, regs);
1886
1887         /*
1888          * We don't want to keep trampoline address in stack, rather keep the
1889          * original return address of first caller thru all the consequent
1890          * instances. This also makes breakpoint unwrapping easier.
1891          */
1892         if (chained) {
1893                 if (!utask->return_instances) {
1894                         /*
1895                          * This situation is not possible. Likely we have an
1896                          * attack from user-space.
1897                          */
1898                         uprobe_warn(current, "handle tail call");
1899                         goto fail;
1900                 }
1901                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1902         }
1903
1904         ri->uprobe = get_uprobe(uprobe);
1905         ri->func = instruction_pointer(regs);
1906         ri->stack = user_stack_pointer(regs);
1907         ri->orig_ret_vaddr = orig_ret_vaddr;
1908         ri->chained = chained;
1909
1910         utask->depth++;
1911         ri->next = utask->return_instances;
1912         utask->return_instances = ri;
1913
1914         return;
1915  fail:
1916         kfree(ri);
1917 }
1918
1919 /* Prepare to single-step probed instruction out of line. */
1920 static int
1921 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1922 {
1923         struct uprobe_task *utask;
1924         unsigned long xol_vaddr;
1925         int err;
1926
1927         utask = get_utask();
1928         if (!utask)
1929                 return -ENOMEM;
1930
1931         xol_vaddr = xol_get_insn_slot(uprobe);
1932         if (!xol_vaddr)
1933                 return -ENOMEM;
1934
1935         utask->xol_vaddr = xol_vaddr;
1936         utask->vaddr = bp_vaddr;
1937
1938         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1939         if (unlikely(err)) {
1940                 xol_free_insn_slot(current);
1941                 return err;
1942         }
1943
1944         utask->active_uprobe = uprobe;
1945         utask->state = UTASK_SSTEP;
1946         return 0;
1947 }
1948
1949 /*
1950  * If we are singlestepping, then ensure this thread is not connected to
1951  * non-fatal signals until completion of singlestep.  When xol insn itself
1952  * triggers the signal,  restart the original insn even if the task is
1953  * already SIGKILL'ed (since coredump should report the correct ip).  This
1954  * is even more important if the task has a handler for SIGSEGV/etc, The
1955  * _same_ instruction should be repeated again after return from the signal
1956  * handler, and SSTEP can never finish in this case.
1957  */
1958 bool uprobe_deny_signal(void)
1959 {
1960         struct task_struct *t = current;
1961         struct uprobe_task *utask = t->utask;
1962
1963         if (likely(!utask || !utask->active_uprobe))
1964                 return false;
1965
1966         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1967
1968         if (signal_pending(t)) {
1969                 spin_lock_irq(&t->sighand->siglock);
1970                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1971                 spin_unlock_irq(&t->sighand->siglock);
1972
1973                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1974                         utask->state = UTASK_SSTEP_TRAPPED;
1975                         set_tsk_thread_flag(t, TIF_UPROBE);
1976                 }
1977         }
1978
1979         return true;
1980 }
1981
1982 static void mmf_recalc_uprobes(struct mm_struct *mm)
1983 {
1984         struct vm_area_struct *vma;
1985
1986         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1987                 if (!valid_vma(vma, false))
1988                         continue;
1989                 /*
1990                  * This is not strictly accurate, we can race with
1991                  * uprobe_unregister() and see the already removed
1992                  * uprobe if delete_uprobe() was not yet called.
1993                  * Or this uprobe can be filtered out.
1994                  */
1995                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1996                         return;
1997         }
1998
1999         clear_bit(MMF_HAS_UPROBES, &mm->flags);
2000 }
2001
2002 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
2003 {
2004         struct page *page;
2005         uprobe_opcode_t opcode;
2006         int result;
2007
2008         pagefault_disable();
2009         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
2010         pagefault_enable();
2011
2012         if (likely(result == 0))
2013                 goto out;
2014
2015         /*
2016          * The NULL 'tsk' here ensures that any faults that occur here
2017          * will not be accounted to the task.  'mm' *is* current->mm,
2018          * but we treat this as a 'remote' access since it is
2019          * essentially a kernel access to the memory.
2020          */
2021         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
2022                         NULL, NULL);
2023         if (result < 0)
2024                 return result;
2025
2026         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
2027         put_page(page);
2028  out:
2029         /* This needs to return true for any variant of the trap insn */
2030         return is_trap_insn(&opcode);
2031 }
2032
2033 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2034 {
2035         struct mm_struct *mm = current->mm;
2036         struct uprobe *uprobe = NULL;
2037         struct vm_area_struct *vma;
2038
2039         down_read(&mm->mmap_sem);
2040         vma = find_vma(mm, bp_vaddr);
2041         if (vma && vma->vm_start <= bp_vaddr) {
2042                 if (valid_vma(vma, false)) {
2043                         struct inode *inode = file_inode(vma->vm_file);
2044                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2045
2046                         uprobe = find_uprobe(inode, offset);
2047                 }
2048
2049                 if (!uprobe)
2050                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2051         } else {
2052                 *is_swbp = -EFAULT;
2053         }
2054
2055         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2056                 mmf_recalc_uprobes(mm);
2057         up_read(&mm->mmap_sem);
2058
2059         return uprobe;
2060 }
2061
2062 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2063 {
2064         struct uprobe_consumer *uc;
2065         int remove = UPROBE_HANDLER_REMOVE;
2066         bool need_prep = false; /* prepare return uprobe, when needed */
2067
2068         down_read(&uprobe->register_rwsem);
2069         for (uc = uprobe->consumers; uc; uc = uc->next) {
2070                 int rc = 0;
2071
2072                 if (uc->handler) {
2073                         rc = uc->handler(uc, regs);
2074                         WARN(rc & ~UPROBE_HANDLER_MASK,
2075                                 "bad rc=0x%x from %ps()\n", rc, uc->handler);
2076                 }
2077
2078                 if (uc->ret_handler)
2079                         need_prep = true;
2080
2081                 remove &= rc;
2082         }
2083
2084         if (need_prep && !remove)
2085                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2086
2087         if (remove && uprobe->consumers) {
2088                 WARN_ON(!uprobe_is_active(uprobe));
2089                 unapply_uprobe(uprobe, current->mm);
2090         }
2091         up_read(&uprobe->register_rwsem);
2092 }
2093
2094 static void
2095 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2096 {
2097         struct uprobe *uprobe = ri->uprobe;
2098         struct uprobe_consumer *uc;
2099
2100         down_read(&uprobe->register_rwsem);
2101         for (uc = uprobe->consumers; uc; uc = uc->next) {
2102                 if (uc->ret_handler)
2103                         uc->ret_handler(uc, ri->func, regs);
2104         }
2105         up_read(&uprobe->register_rwsem);
2106 }
2107
2108 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2109 {
2110         bool chained;
2111
2112         do {
2113                 chained = ri->chained;
2114                 ri = ri->next;  /* can't be NULL if chained */
2115         } while (chained);
2116
2117         return ri;
2118 }
2119
2120 static void handle_trampoline(struct pt_regs *regs)
2121 {
2122         struct uprobe_task *utask;
2123         struct return_instance *ri, *next;
2124         bool valid;
2125
2126         utask = current->utask;
2127         if (!utask)
2128                 goto sigill;
2129
2130         ri = utask->return_instances;
2131         if (!ri)
2132                 goto sigill;
2133
2134         do {
2135                 /*
2136                  * We should throw out the frames invalidated by longjmp().
2137                  * If this chain is valid, then the next one should be alive
2138                  * or NULL; the latter case means that nobody but ri->func
2139                  * could hit this trampoline on return. TODO: sigaltstack().
2140                  */
2141                 next = find_next_ret_chain(ri);
2142                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2143
2144                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2145                 do {
2146                         if (valid)
2147                                 handle_uretprobe_chain(ri, regs);
2148                         ri = free_ret_instance(ri);
2149                         utask->depth--;
2150                 } while (ri != next);
2151         } while (!valid);
2152
2153         utask->return_instances = ri;
2154         return;
2155
2156  sigill:
2157         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2158         force_sig(SIGILL);
2159
2160 }
2161
2162 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2163 {
2164         return false;
2165 }
2166
2167 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2168                                         struct pt_regs *regs)
2169 {
2170         return true;
2171 }
2172
2173 /*
2174  * Run handler and ask thread to singlestep.
2175  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2176  */
2177 static void handle_swbp(struct pt_regs *regs)
2178 {
2179         struct uprobe *uprobe;
2180         unsigned long bp_vaddr;
2181         int uninitialized_var(is_swbp);
2182
2183         bp_vaddr = uprobe_get_swbp_addr(regs);
2184         if (bp_vaddr == get_trampoline_vaddr())
2185                 return handle_trampoline(regs);
2186
2187         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2188         if (!uprobe) {
2189                 if (is_swbp > 0) {
2190                         /* No matching uprobe; signal SIGTRAP. */
2191                         send_sig(SIGTRAP, current, 0);
2192                 } else {
2193                         /*
2194                          * Either we raced with uprobe_unregister() or we can't
2195                          * access this memory. The latter is only possible if
2196                          * another thread plays with our ->mm. In both cases
2197                          * we can simply restart. If this vma was unmapped we
2198                          * can pretend this insn was not executed yet and get
2199                          * the (correct) SIGSEGV after restart.
2200                          */
2201                         instruction_pointer_set(regs, bp_vaddr);
2202                 }
2203                 return;
2204         }
2205
2206         /* change it in advance for ->handler() and restart */
2207         instruction_pointer_set(regs, bp_vaddr);
2208
2209         /*
2210          * TODO: move copy_insn/etc into _register and remove this hack.
2211          * After we hit the bp, _unregister + _register can install the
2212          * new and not-yet-analyzed uprobe at the same address, restart.
2213          */
2214         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2215                 goto out;
2216
2217         /*
2218          * Pairs with the smp_wmb() in prepare_uprobe().
2219          *
2220          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2221          * we must also see the stores to &uprobe->arch performed by the
2222          * prepare_uprobe() call.
2223          */
2224         smp_rmb();
2225
2226         /* Tracing handlers use ->utask to communicate with fetch methods */
2227         if (!get_utask())
2228                 goto out;
2229
2230         if (arch_uprobe_ignore(&uprobe->arch, regs))
2231                 goto out;
2232
2233         handler_chain(uprobe, regs);
2234
2235         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2236                 goto out;
2237
2238         if (!pre_ssout(uprobe, regs, bp_vaddr))
2239                 return;
2240
2241         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2242 out:
2243         put_uprobe(uprobe);
2244 }
2245
2246 /*
2247  * Perform required fix-ups and disable singlestep.
2248  * Allow pending signals to take effect.
2249  */
2250 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2251 {
2252         struct uprobe *uprobe;
2253         int err = 0;
2254
2255         uprobe = utask->active_uprobe;
2256         if (utask->state == UTASK_SSTEP_ACK)
2257                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2258         else if (utask->state == UTASK_SSTEP_TRAPPED)
2259                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2260         else
2261                 WARN_ON_ONCE(1);
2262
2263         put_uprobe(uprobe);
2264         utask->active_uprobe = NULL;
2265         utask->state = UTASK_RUNNING;
2266         xol_free_insn_slot(current);
2267
2268         spin_lock_irq(&current->sighand->siglock);
2269         recalc_sigpending(); /* see uprobe_deny_signal() */
2270         spin_unlock_irq(&current->sighand->siglock);
2271
2272         if (unlikely(err)) {
2273                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2274                 force_sig(SIGILL);
2275         }
2276 }
2277
2278 /*
2279  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2280  * allows the thread to return from interrupt. After that handle_swbp()
2281  * sets utask->active_uprobe.
2282  *
2283  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2284  * and allows the thread to return from interrupt.
2285  *
2286  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2287  * uprobe_notify_resume().
2288  */
2289 void uprobe_notify_resume(struct pt_regs *regs)
2290 {
2291         struct uprobe_task *utask;
2292
2293         clear_thread_flag(TIF_UPROBE);
2294
2295         utask = current->utask;
2296         if (utask && utask->active_uprobe)
2297                 handle_singlestep(utask, regs);
2298         else
2299                 handle_swbp(regs);
2300 }
2301
2302 /*
2303  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2304  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2305  */
2306 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2307 {
2308         if (!current->mm)
2309                 return 0;
2310
2311         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2312             (!current->utask || !current->utask->return_instances))
2313                 return 0;
2314
2315         set_thread_flag(TIF_UPROBE);
2316         return 1;
2317 }
2318
2319 /*
2320  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2321  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2322  */
2323 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2324 {
2325         struct uprobe_task *utask = current->utask;
2326
2327         if (!current->mm || !utask || !utask->active_uprobe)
2328                 /* task is currently not uprobed */
2329                 return 0;
2330
2331         utask->state = UTASK_SSTEP_ACK;
2332         set_thread_flag(TIF_UPROBE);
2333         return 1;
2334 }
2335
2336 static struct notifier_block uprobe_exception_nb = {
2337         .notifier_call          = arch_uprobe_exception_notify,
2338         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2339 };
2340
2341 void __init uprobes_init(void)
2342 {
2343         int i;
2344
2345         for (i = 0; i < UPROBES_HASH_SZ; i++)
2346                 mutex_init(&uprobes_mmap_mutex[i]);
2347
2348         BUG_ON(register_die_notifier(&uprobe_exception_nb));
2349 }