dm: fix redundant IO accounting for bios that need splitting
[linux-2.6-microblaze.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/coredump.h>
32 #include <linux/export.h>
33 #include <linux/rmap.h>         /* anon_vma_prepare */
34 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
35 #include <linux/swap.h>         /* try_to_free_swap */
36 #include <linux/ptrace.h>       /* user_enable_single_step */
37 #include <linux/kdebug.h>       /* notifier mechanism */
38 #include "../../mm/internal.h"  /* munlock_vma_page */
39 #include <linux/percpu-rwsem.h>
40 #include <linux/task_work.h>
41 #include <linux/shmem_fs.h>
42
43 #include <linux/uprobes.h>
44
45 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
46 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
47
48 static struct rb_root uprobes_tree = RB_ROOT;
49 /*
50  * allows us to skip the uprobe_mmap if there are no uprobe events active
51  * at this time.  Probably a fine grained per inode count is better?
52  */
53 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
54
55 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
56
57 #define UPROBES_HASH_SZ 13
58 /* serialize uprobe->pending_list */
59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
60 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
61
62 static struct percpu_rw_semaphore dup_mmap_sem;
63
64 /* Have a copy of original instruction */
65 #define UPROBE_COPY_INSN        0
66
67 struct uprobe {
68         struct rb_node          rb_node;        /* node in the rb tree */
69         atomic_t                ref;
70         struct rw_semaphore     register_rwsem;
71         struct rw_semaphore     consumer_rwsem;
72         struct list_head        pending_list;
73         struct uprobe_consumer  *consumers;
74         struct inode            *inode;         /* Also hold a ref to inode */
75         loff_t                  offset;
76         loff_t                  ref_ctr_offset;
77         unsigned long           flags;
78
79         /*
80          * The generic code assumes that it has two members of unknown type
81          * owned by the arch-specific code:
82          *
83          *      insn -  copy_insn() saves the original instruction here for
84          *              arch_uprobe_analyze_insn().
85          *
86          *      ixol -  potentially modified instruction to execute out of
87          *              line, copied to xol_area by xol_get_insn_slot().
88          */
89         struct arch_uprobe      arch;
90 };
91
92 struct delayed_uprobe {
93         struct list_head list;
94         struct uprobe *uprobe;
95         struct mm_struct *mm;
96 };
97
98 static DEFINE_MUTEX(delayed_uprobe_lock);
99 static LIST_HEAD(delayed_uprobe_list);
100
101 /*
102  * Execute out of line area: anonymous executable mapping installed
103  * by the probed task to execute the copy of the original instruction
104  * mangled by set_swbp().
105  *
106  * On a breakpoint hit, thread contests for a slot.  It frees the
107  * slot after singlestep. Currently a fixed number of slots are
108  * allocated.
109  */
110 struct xol_area {
111         wait_queue_head_t               wq;             /* if all slots are busy */
112         atomic_t                        slot_count;     /* number of in-use slots */
113         unsigned long                   *bitmap;        /* 0 = free slot */
114
115         struct vm_special_mapping       xol_mapping;
116         struct page                     *pages[2];
117         /*
118          * We keep the vma's vm_start rather than a pointer to the vma
119          * itself.  The probed process or a naughty kernel module could make
120          * the vma go away, and we must handle that reasonably gracefully.
121          */
122         unsigned long                   vaddr;          /* Page(s) of instruction slots */
123 };
124
125 /*
126  * valid_vma: Verify if the specified vma is an executable vma
127  * Relax restrictions while unregistering: vm_flags might have
128  * changed after breakpoint was inserted.
129  *      - is_register: indicates if we are in register context.
130  *      - Return 1 if the specified virtual address is in an
131  *        executable vma.
132  */
133 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
134 {
135         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
136
137         if (is_register)
138                 flags |= VM_WRITE;
139
140         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
141 }
142
143 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
144 {
145         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
146 }
147
148 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
149 {
150         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
151 }
152
153 /**
154  * __replace_page - replace page in vma by new page.
155  * based on replace_page in mm/ksm.c
156  *
157  * @vma:      vma that holds the pte pointing to page
158  * @addr:     address the old @page is mapped at
159  * @page:     the cowed page we are replacing by kpage
160  * @kpage:    the modified page we replace page by
161  *
162  * Returns 0 on success, -EFAULT on failure.
163  */
164 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
165                                 struct page *old_page, struct page *new_page)
166 {
167         struct mm_struct *mm = vma->vm_mm;
168         struct page_vma_mapped_walk pvmw = {
169                 .page = old_page,
170                 .vma = vma,
171                 .address = addr,
172         };
173         int err;
174         struct mmu_notifier_range range;
175         struct mem_cgroup *memcg;
176
177         mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
178
179         VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
180
181         err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
182                         false);
183         if (err)
184                 return err;
185
186         /* For try_to_free_swap() and munlock_vma_page() below */
187         lock_page(old_page);
188
189         mmu_notifier_invalidate_range_start(&range);
190         err = -EAGAIN;
191         if (!page_vma_mapped_walk(&pvmw)) {
192                 mem_cgroup_cancel_charge(new_page, memcg, false);
193                 goto unlock;
194         }
195         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
196
197         get_page(new_page);
198         page_add_new_anon_rmap(new_page, vma, addr, false);
199         mem_cgroup_commit_charge(new_page, memcg, false, false);
200         lru_cache_add_active_or_unevictable(new_page, vma);
201
202         if (!PageAnon(old_page)) {
203                 dec_mm_counter(mm, mm_counter_file(old_page));
204                 inc_mm_counter(mm, MM_ANONPAGES);
205         }
206
207         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
208         ptep_clear_flush_notify(vma, addr, pvmw.pte);
209         set_pte_at_notify(mm, addr, pvmw.pte,
210                         mk_pte(new_page, vma->vm_page_prot));
211
212         page_remove_rmap(old_page, false);
213         if (!page_mapped(old_page))
214                 try_to_free_swap(old_page);
215         page_vma_mapped_walk_done(&pvmw);
216
217         if (vma->vm_flags & VM_LOCKED)
218                 munlock_vma_page(old_page);
219         put_page(old_page);
220
221         err = 0;
222  unlock:
223         mmu_notifier_invalidate_range_end(&range);
224         unlock_page(old_page);
225         return err;
226 }
227
228 /**
229  * is_swbp_insn - check if instruction is breakpoint instruction.
230  * @insn: instruction to be checked.
231  * Default implementation of is_swbp_insn
232  * Returns true if @insn is a breakpoint instruction.
233  */
234 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
235 {
236         return *insn == UPROBE_SWBP_INSN;
237 }
238
239 /**
240  * is_trap_insn - check if instruction is breakpoint instruction.
241  * @insn: instruction to be checked.
242  * Default implementation of is_trap_insn
243  * Returns true if @insn is a breakpoint instruction.
244  *
245  * This function is needed for the case where an architecture has multiple
246  * trap instructions (like powerpc).
247  */
248 bool __weak is_trap_insn(uprobe_opcode_t *insn)
249 {
250         return is_swbp_insn(insn);
251 }
252
253 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
254 {
255         void *kaddr = kmap_atomic(page);
256         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
257         kunmap_atomic(kaddr);
258 }
259
260 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
261 {
262         void *kaddr = kmap_atomic(page);
263         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
264         kunmap_atomic(kaddr);
265 }
266
267 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
268 {
269         uprobe_opcode_t old_opcode;
270         bool is_swbp;
271
272         /*
273          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
274          * We do not check if it is any other 'trap variant' which could
275          * be conditional trap instruction such as the one powerpc supports.
276          *
277          * The logic is that we do not care if the underlying instruction
278          * is a trap variant; uprobes always wins over any other (gdb)
279          * breakpoint.
280          */
281         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
282         is_swbp = is_swbp_insn(&old_opcode);
283
284         if (is_swbp_insn(new_opcode)) {
285                 if (is_swbp)            /* register: already installed? */
286                         return 0;
287         } else {
288                 if (!is_swbp)           /* unregister: was it changed by us? */
289                         return 0;
290         }
291
292         return 1;
293 }
294
295 static struct delayed_uprobe *
296 delayed_uprobe_check(struct uprobe *uprobe, struct mm_struct *mm)
297 {
298         struct delayed_uprobe *du;
299
300         list_for_each_entry(du, &delayed_uprobe_list, list)
301                 if (du->uprobe == uprobe && du->mm == mm)
302                         return du;
303         return NULL;
304 }
305
306 static int delayed_uprobe_add(struct uprobe *uprobe, struct mm_struct *mm)
307 {
308         struct delayed_uprobe *du;
309
310         if (delayed_uprobe_check(uprobe, mm))
311                 return 0;
312
313         du  = kzalloc(sizeof(*du), GFP_KERNEL);
314         if (!du)
315                 return -ENOMEM;
316
317         du->uprobe = uprobe;
318         du->mm = mm;
319         list_add(&du->list, &delayed_uprobe_list);
320         return 0;
321 }
322
323 static void delayed_uprobe_delete(struct delayed_uprobe *du)
324 {
325         if (WARN_ON(!du))
326                 return;
327         list_del(&du->list);
328         kfree(du);
329 }
330
331 static void delayed_uprobe_remove(struct uprobe *uprobe, struct mm_struct *mm)
332 {
333         struct list_head *pos, *q;
334         struct delayed_uprobe *du;
335
336         if (!uprobe && !mm)
337                 return;
338
339         list_for_each_safe(pos, q, &delayed_uprobe_list) {
340                 du = list_entry(pos, struct delayed_uprobe, list);
341
342                 if (uprobe && du->uprobe != uprobe)
343                         continue;
344                 if (mm && du->mm != mm)
345                         continue;
346
347                 delayed_uprobe_delete(du);
348         }
349 }
350
351 static bool valid_ref_ctr_vma(struct uprobe *uprobe,
352                               struct vm_area_struct *vma)
353 {
354         unsigned long vaddr = offset_to_vaddr(vma, uprobe->ref_ctr_offset);
355
356         return uprobe->ref_ctr_offset &&
357                 vma->vm_file &&
358                 file_inode(vma->vm_file) == uprobe->inode &&
359                 (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
360                 vma->vm_start <= vaddr &&
361                 vma->vm_end > vaddr;
362 }
363
364 static struct vm_area_struct *
365 find_ref_ctr_vma(struct uprobe *uprobe, struct mm_struct *mm)
366 {
367         struct vm_area_struct *tmp;
368
369         for (tmp = mm->mmap; tmp; tmp = tmp->vm_next)
370                 if (valid_ref_ctr_vma(uprobe, tmp))
371                         return tmp;
372
373         return NULL;
374 }
375
376 static int
377 __update_ref_ctr(struct mm_struct *mm, unsigned long vaddr, short d)
378 {
379         void *kaddr;
380         struct page *page;
381         struct vm_area_struct *vma;
382         int ret;
383         short *ptr;
384
385         if (!vaddr || !d)
386                 return -EINVAL;
387
388         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
389                         FOLL_WRITE, &page, &vma, NULL);
390         if (unlikely(ret <= 0)) {
391                 /*
392                  * We are asking for 1 page. If get_user_pages_remote() fails,
393                  * it may return 0, in that case we have to return error.
394                  */
395                 return ret == 0 ? -EBUSY : ret;
396         }
397
398         kaddr = kmap_atomic(page);
399         ptr = kaddr + (vaddr & ~PAGE_MASK);
400
401         if (unlikely(*ptr + d < 0)) {
402                 pr_warn("ref_ctr going negative. vaddr: 0x%lx, "
403                         "curr val: %d, delta: %d\n", vaddr, *ptr, d);
404                 ret = -EINVAL;
405                 goto out;
406         }
407
408         *ptr += d;
409         ret = 0;
410 out:
411         kunmap_atomic(kaddr);
412         put_page(page);
413         return ret;
414 }
415
416 static void update_ref_ctr_warn(struct uprobe *uprobe,
417                                 struct mm_struct *mm, short d)
418 {
419         pr_warn("ref_ctr %s failed for inode: 0x%lx offset: "
420                 "0x%llx ref_ctr_offset: 0x%llx of mm: 0x%pK\n",
421                 d > 0 ? "increment" : "decrement", uprobe->inode->i_ino,
422                 (unsigned long long) uprobe->offset,
423                 (unsigned long long) uprobe->ref_ctr_offset, mm);
424 }
425
426 static int update_ref_ctr(struct uprobe *uprobe, struct mm_struct *mm,
427                           short d)
428 {
429         struct vm_area_struct *rc_vma;
430         unsigned long rc_vaddr;
431         int ret = 0;
432
433         rc_vma = find_ref_ctr_vma(uprobe, mm);
434
435         if (rc_vma) {
436                 rc_vaddr = offset_to_vaddr(rc_vma, uprobe->ref_ctr_offset);
437                 ret = __update_ref_ctr(mm, rc_vaddr, d);
438                 if (ret)
439                         update_ref_ctr_warn(uprobe, mm, d);
440
441                 if (d > 0)
442                         return ret;
443         }
444
445         mutex_lock(&delayed_uprobe_lock);
446         if (d > 0)
447                 ret = delayed_uprobe_add(uprobe, mm);
448         else
449                 delayed_uprobe_remove(uprobe, mm);
450         mutex_unlock(&delayed_uprobe_lock);
451
452         return ret;
453 }
454
455 /*
456  * NOTE:
457  * Expect the breakpoint instruction to be the smallest size instruction for
458  * the architecture. If an arch has variable length instruction and the
459  * breakpoint instruction is not of the smallest length instruction
460  * supported by that architecture then we need to modify is_trap_at_addr and
461  * uprobe_write_opcode accordingly. This would never be a problem for archs
462  * that have fixed length instructions.
463  *
464  * uprobe_write_opcode - write the opcode at a given virtual address.
465  * @mm: the probed process address space.
466  * @vaddr: the virtual address to store the opcode.
467  * @opcode: opcode to be written at @vaddr.
468  *
469  * Called with mm->mmap_sem held for write.
470  * Return 0 (success) or a negative errno.
471  */
472 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
473                         unsigned long vaddr, uprobe_opcode_t opcode)
474 {
475         struct uprobe *uprobe;
476         struct page *old_page, *new_page;
477         struct vm_area_struct *vma;
478         int ret, is_register, ref_ctr_updated = 0;
479
480         is_register = is_swbp_insn(&opcode);
481         uprobe = container_of(auprobe, struct uprobe, arch);
482
483 retry:
484         /* Read the page with vaddr into memory */
485         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
486                         FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
487         if (ret <= 0)
488                 return ret;
489
490         ret = verify_opcode(old_page, vaddr, &opcode);
491         if (ret <= 0)
492                 goto put_old;
493
494         /* We are going to replace instruction, update ref_ctr. */
495         if (!ref_ctr_updated && uprobe->ref_ctr_offset) {
496                 ret = update_ref_ctr(uprobe, mm, is_register ? 1 : -1);
497                 if (ret)
498                         goto put_old;
499
500                 ref_ctr_updated = 1;
501         }
502
503         ret = anon_vma_prepare(vma);
504         if (ret)
505                 goto put_old;
506
507         ret = -ENOMEM;
508         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
509         if (!new_page)
510                 goto put_old;
511
512         __SetPageUptodate(new_page);
513         copy_highpage(new_page, old_page);
514         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
515
516         ret = __replace_page(vma, vaddr, old_page, new_page);
517         put_page(new_page);
518 put_old:
519         put_page(old_page);
520
521         if (unlikely(ret == -EAGAIN))
522                 goto retry;
523
524         /* Revert back reference counter if instruction update failed. */
525         if (ret && is_register && ref_ctr_updated)
526                 update_ref_ctr(uprobe, mm, -1);
527
528         return ret;
529 }
530
531 /**
532  * set_swbp - store breakpoint at a given address.
533  * @auprobe: arch specific probepoint information.
534  * @mm: the probed process address space.
535  * @vaddr: the virtual address to insert the opcode.
536  *
537  * For mm @mm, store the breakpoint instruction at @vaddr.
538  * Return 0 (success) or a negative errno.
539  */
540 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
541 {
542         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
543 }
544
545 /**
546  * set_orig_insn - Restore the original instruction.
547  * @mm: the probed process address space.
548  * @auprobe: arch specific probepoint information.
549  * @vaddr: the virtual address to insert the opcode.
550  *
551  * For mm @mm, restore the original opcode (opcode) at @vaddr.
552  * Return 0 (success) or a negative errno.
553  */
554 int __weak
555 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
556 {
557         return uprobe_write_opcode(auprobe, mm, vaddr,
558                         *(uprobe_opcode_t *)&auprobe->insn);
559 }
560
561 static struct uprobe *get_uprobe(struct uprobe *uprobe)
562 {
563         atomic_inc(&uprobe->ref);
564         return uprobe;
565 }
566
567 static void put_uprobe(struct uprobe *uprobe)
568 {
569         if (atomic_dec_and_test(&uprobe->ref)) {
570                 /*
571                  * If application munmap(exec_vma) before uprobe_unregister()
572                  * gets called, we don't get a chance to remove uprobe from
573                  * delayed_uprobe_list from remove_breakpoint(). Do it here.
574                  */
575                 mutex_lock(&delayed_uprobe_lock);
576                 delayed_uprobe_remove(uprobe, NULL);
577                 mutex_unlock(&delayed_uprobe_lock);
578                 kfree(uprobe);
579         }
580 }
581
582 static int match_uprobe(struct uprobe *l, struct uprobe *r)
583 {
584         if (l->inode < r->inode)
585                 return -1;
586
587         if (l->inode > r->inode)
588                 return 1;
589
590         if (l->offset < r->offset)
591                 return -1;
592
593         if (l->offset > r->offset)
594                 return 1;
595
596         return 0;
597 }
598
599 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
600 {
601         struct uprobe u = { .inode = inode, .offset = offset };
602         struct rb_node *n = uprobes_tree.rb_node;
603         struct uprobe *uprobe;
604         int match;
605
606         while (n) {
607                 uprobe = rb_entry(n, struct uprobe, rb_node);
608                 match = match_uprobe(&u, uprobe);
609                 if (!match)
610                         return get_uprobe(uprobe);
611
612                 if (match < 0)
613                         n = n->rb_left;
614                 else
615                         n = n->rb_right;
616         }
617         return NULL;
618 }
619
620 /*
621  * Find a uprobe corresponding to a given inode:offset
622  * Acquires uprobes_treelock
623  */
624 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
625 {
626         struct uprobe *uprobe;
627
628         spin_lock(&uprobes_treelock);
629         uprobe = __find_uprobe(inode, offset);
630         spin_unlock(&uprobes_treelock);
631
632         return uprobe;
633 }
634
635 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
636 {
637         struct rb_node **p = &uprobes_tree.rb_node;
638         struct rb_node *parent = NULL;
639         struct uprobe *u;
640         int match;
641
642         while (*p) {
643                 parent = *p;
644                 u = rb_entry(parent, struct uprobe, rb_node);
645                 match = match_uprobe(uprobe, u);
646                 if (!match)
647                         return get_uprobe(u);
648
649                 if (match < 0)
650                         p = &parent->rb_left;
651                 else
652                         p = &parent->rb_right;
653
654         }
655
656         u = NULL;
657         rb_link_node(&uprobe->rb_node, parent, p);
658         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
659         /* get access + creation ref */
660         atomic_set(&uprobe->ref, 2);
661
662         return u;
663 }
664
665 /*
666  * Acquire uprobes_treelock.
667  * Matching uprobe already exists in rbtree;
668  *      increment (access refcount) and return the matching uprobe.
669  *
670  * No matching uprobe; insert the uprobe in rb_tree;
671  *      get a double refcount (access + creation) and return NULL.
672  */
673 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
674 {
675         struct uprobe *u;
676
677         spin_lock(&uprobes_treelock);
678         u = __insert_uprobe(uprobe);
679         spin_unlock(&uprobes_treelock);
680
681         return u;
682 }
683
684 static void
685 ref_ctr_mismatch_warn(struct uprobe *cur_uprobe, struct uprobe *uprobe)
686 {
687         pr_warn("ref_ctr_offset mismatch. inode: 0x%lx offset: 0x%llx "
688                 "ref_ctr_offset(old): 0x%llx ref_ctr_offset(new): 0x%llx\n",
689                 uprobe->inode->i_ino, (unsigned long long) uprobe->offset,
690                 (unsigned long long) cur_uprobe->ref_ctr_offset,
691                 (unsigned long long) uprobe->ref_ctr_offset);
692 }
693
694 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset,
695                                    loff_t ref_ctr_offset)
696 {
697         struct uprobe *uprobe, *cur_uprobe;
698
699         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
700         if (!uprobe)
701                 return NULL;
702
703         uprobe->inode = inode;
704         uprobe->offset = offset;
705         uprobe->ref_ctr_offset = ref_ctr_offset;
706         init_rwsem(&uprobe->register_rwsem);
707         init_rwsem(&uprobe->consumer_rwsem);
708
709         /* add to uprobes_tree, sorted on inode:offset */
710         cur_uprobe = insert_uprobe(uprobe);
711         /* a uprobe exists for this inode:offset combination */
712         if (cur_uprobe) {
713                 if (cur_uprobe->ref_ctr_offset != uprobe->ref_ctr_offset) {
714                         ref_ctr_mismatch_warn(cur_uprobe, uprobe);
715                         put_uprobe(cur_uprobe);
716                         kfree(uprobe);
717                         return ERR_PTR(-EINVAL);
718                 }
719                 kfree(uprobe);
720                 uprobe = cur_uprobe;
721         }
722
723         return uprobe;
724 }
725
726 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
727 {
728         down_write(&uprobe->consumer_rwsem);
729         uc->next = uprobe->consumers;
730         uprobe->consumers = uc;
731         up_write(&uprobe->consumer_rwsem);
732 }
733
734 /*
735  * For uprobe @uprobe, delete the consumer @uc.
736  * Return true if the @uc is deleted successfully
737  * or return false.
738  */
739 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
740 {
741         struct uprobe_consumer **con;
742         bool ret = false;
743
744         down_write(&uprobe->consumer_rwsem);
745         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
746                 if (*con == uc) {
747                         *con = uc->next;
748                         ret = true;
749                         break;
750                 }
751         }
752         up_write(&uprobe->consumer_rwsem);
753
754         return ret;
755 }
756
757 static int __copy_insn(struct address_space *mapping, struct file *filp,
758                         void *insn, int nbytes, loff_t offset)
759 {
760         struct page *page;
761         /*
762          * Ensure that the page that has the original instruction is populated
763          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
764          * see uprobe_register().
765          */
766         if (mapping->a_ops->readpage)
767                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
768         else
769                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
770         if (IS_ERR(page))
771                 return PTR_ERR(page);
772
773         copy_from_page(page, offset, insn, nbytes);
774         put_page(page);
775
776         return 0;
777 }
778
779 static int copy_insn(struct uprobe *uprobe, struct file *filp)
780 {
781         struct address_space *mapping = uprobe->inode->i_mapping;
782         loff_t offs = uprobe->offset;
783         void *insn = &uprobe->arch.insn;
784         int size = sizeof(uprobe->arch.insn);
785         int len, err = -EIO;
786
787         /* Copy only available bytes, -EIO if nothing was read */
788         do {
789                 if (offs >= i_size_read(uprobe->inode))
790                         break;
791
792                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
793                 err = __copy_insn(mapping, filp, insn, len, offs);
794                 if (err)
795                         break;
796
797                 insn += len;
798                 offs += len;
799                 size -= len;
800         } while (size);
801
802         return err;
803 }
804
805 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
806                                 struct mm_struct *mm, unsigned long vaddr)
807 {
808         int ret = 0;
809
810         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
811                 return ret;
812
813         /* TODO: move this into _register, until then we abuse this sem. */
814         down_write(&uprobe->consumer_rwsem);
815         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
816                 goto out;
817
818         ret = copy_insn(uprobe, file);
819         if (ret)
820                 goto out;
821
822         ret = -ENOTSUPP;
823         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
824                 goto out;
825
826         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
827         if (ret)
828                 goto out;
829
830         /* uprobe_write_opcode() assumes we don't cross page boundary */
831         BUG_ON((uprobe->offset & ~PAGE_MASK) +
832                         UPROBE_SWBP_INSN_SIZE > PAGE_SIZE);
833
834         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
835         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
836
837  out:
838         up_write(&uprobe->consumer_rwsem);
839
840         return ret;
841 }
842
843 static inline bool consumer_filter(struct uprobe_consumer *uc,
844                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
845 {
846         return !uc->filter || uc->filter(uc, ctx, mm);
847 }
848
849 static bool filter_chain(struct uprobe *uprobe,
850                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
851 {
852         struct uprobe_consumer *uc;
853         bool ret = false;
854
855         down_read(&uprobe->consumer_rwsem);
856         for (uc = uprobe->consumers; uc; uc = uc->next) {
857                 ret = consumer_filter(uc, ctx, mm);
858                 if (ret)
859                         break;
860         }
861         up_read(&uprobe->consumer_rwsem);
862
863         return ret;
864 }
865
866 static int
867 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
868                         struct vm_area_struct *vma, unsigned long vaddr)
869 {
870         bool first_uprobe;
871         int ret;
872
873         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
874         if (ret)
875                 return ret;
876
877         /*
878          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
879          * the task can hit this breakpoint right after __replace_page().
880          */
881         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
882         if (first_uprobe)
883                 set_bit(MMF_HAS_UPROBES, &mm->flags);
884
885         ret = set_swbp(&uprobe->arch, mm, vaddr);
886         if (!ret)
887                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
888         else if (first_uprobe)
889                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
890
891         return ret;
892 }
893
894 static int
895 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
896 {
897         set_bit(MMF_RECALC_UPROBES, &mm->flags);
898         return set_orig_insn(&uprobe->arch, mm, vaddr);
899 }
900
901 static inline bool uprobe_is_active(struct uprobe *uprobe)
902 {
903         return !RB_EMPTY_NODE(&uprobe->rb_node);
904 }
905 /*
906  * There could be threads that have already hit the breakpoint. They
907  * will recheck the current insn and restart if find_uprobe() fails.
908  * See find_active_uprobe().
909  */
910 static void delete_uprobe(struct uprobe *uprobe)
911 {
912         if (WARN_ON(!uprobe_is_active(uprobe)))
913                 return;
914
915         spin_lock(&uprobes_treelock);
916         rb_erase(&uprobe->rb_node, &uprobes_tree);
917         spin_unlock(&uprobes_treelock);
918         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
919         put_uprobe(uprobe);
920 }
921
922 struct map_info {
923         struct map_info *next;
924         struct mm_struct *mm;
925         unsigned long vaddr;
926 };
927
928 static inline struct map_info *free_map_info(struct map_info *info)
929 {
930         struct map_info *next = info->next;
931         kfree(info);
932         return next;
933 }
934
935 static struct map_info *
936 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
937 {
938         unsigned long pgoff = offset >> PAGE_SHIFT;
939         struct vm_area_struct *vma;
940         struct map_info *curr = NULL;
941         struct map_info *prev = NULL;
942         struct map_info *info;
943         int more = 0;
944
945  again:
946         i_mmap_lock_read(mapping);
947         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
948                 if (!valid_vma(vma, is_register))
949                         continue;
950
951                 if (!prev && !more) {
952                         /*
953                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
954                          * reclaim. This is optimistic, no harm done if it fails.
955                          */
956                         prev = kmalloc(sizeof(struct map_info),
957                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
958                         if (prev)
959                                 prev->next = NULL;
960                 }
961                 if (!prev) {
962                         more++;
963                         continue;
964                 }
965
966                 if (!mmget_not_zero(vma->vm_mm))
967                         continue;
968
969                 info = prev;
970                 prev = prev->next;
971                 info->next = curr;
972                 curr = info;
973
974                 info->mm = vma->vm_mm;
975                 info->vaddr = offset_to_vaddr(vma, offset);
976         }
977         i_mmap_unlock_read(mapping);
978
979         if (!more)
980                 goto out;
981
982         prev = curr;
983         while (curr) {
984                 mmput(curr->mm);
985                 curr = curr->next;
986         }
987
988         do {
989                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
990                 if (!info) {
991                         curr = ERR_PTR(-ENOMEM);
992                         goto out;
993                 }
994                 info->next = prev;
995                 prev = info;
996         } while (--more);
997
998         goto again;
999  out:
1000         while (prev)
1001                 prev = free_map_info(prev);
1002         return curr;
1003 }
1004
1005 static int
1006 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
1007 {
1008         bool is_register = !!new;
1009         struct map_info *info;
1010         int err = 0;
1011
1012         percpu_down_write(&dup_mmap_sem);
1013         info = build_map_info(uprobe->inode->i_mapping,
1014                                         uprobe->offset, is_register);
1015         if (IS_ERR(info)) {
1016                 err = PTR_ERR(info);
1017                 goto out;
1018         }
1019
1020         while (info) {
1021                 struct mm_struct *mm = info->mm;
1022                 struct vm_area_struct *vma;
1023
1024                 if (err && is_register)
1025                         goto free;
1026
1027                 down_write(&mm->mmap_sem);
1028                 vma = find_vma(mm, info->vaddr);
1029                 if (!vma || !valid_vma(vma, is_register) ||
1030                     file_inode(vma->vm_file) != uprobe->inode)
1031                         goto unlock;
1032
1033                 if (vma->vm_start > info->vaddr ||
1034                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
1035                         goto unlock;
1036
1037                 if (is_register) {
1038                         /* consult only the "caller", new consumer. */
1039                         if (consumer_filter(new,
1040                                         UPROBE_FILTER_REGISTER, mm))
1041                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
1042                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
1043                         if (!filter_chain(uprobe,
1044                                         UPROBE_FILTER_UNREGISTER, mm))
1045                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
1046                 }
1047
1048  unlock:
1049                 up_write(&mm->mmap_sem);
1050  free:
1051                 mmput(mm);
1052                 info = free_map_info(info);
1053         }
1054  out:
1055         percpu_up_write(&dup_mmap_sem);
1056         return err;
1057 }
1058
1059 static void
1060 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
1061 {
1062         int err;
1063
1064         if (WARN_ON(!consumer_del(uprobe, uc)))
1065                 return;
1066
1067         err = register_for_each_vma(uprobe, NULL);
1068         /* TODO : cant unregister? schedule a worker thread */
1069         if (!uprobe->consumers && !err)
1070                 delete_uprobe(uprobe);
1071 }
1072
1073 /*
1074  * uprobe_unregister - unregister an already registered probe.
1075  * @inode: the file in which the probe has to be removed.
1076  * @offset: offset from the start of the file.
1077  * @uc: identify which probe if multiple probes are colocated.
1078  */
1079 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
1080 {
1081         struct uprobe *uprobe;
1082
1083         uprobe = find_uprobe(inode, offset);
1084         if (WARN_ON(!uprobe))
1085                 return;
1086
1087         down_write(&uprobe->register_rwsem);
1088         __uprobe_unregister(uprobe, uc);
1089         up_write(&uprobe->register_rwsem);
1090         put_uprobe(uprobe);
1091 }
1092 EXPORT_SYMBOL_GPL(uprobe_unregister);
1093
1094 /*
1095  * __uprobe_register - register a probe
1096  * @inode: the file in which the probe has to be placed.
1097  * @offset: offset from the start of the file.
1098  * @uc: information on howto handle the probe..
1099  *
1100  * Apart from the access refcount, __uprobe_register() takes a creation
1101  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
1102  * inserted into the rbtree (i.e first consumer for a @inode:@offset
1103  * tuple).  Creation refcount stops uprobe_unregister from freeing the
1104  * @uprobe even before the register operation is complete. Creation
1105  * refcount is released when the last @uc for the @uprobe
1106  * unregisters. Caller of __uprobe_register() is required to keep @inode
1107  * (and the containing mount) referenced.
1108  *
1109  * Return errno if it cannot successully install probes
1110  * else return 0 (success)
1111  */
1112 static int __uprobe_register(struct inode *inode, loff_t offset,
1113                              loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1114 {
1115         struct uprobe *uprobe;
1116         int ret;
1117
1118         /* Uprobe must have at least one set consumer */
1119         if (!uc->handler && !uc->ret_handler)
1120                 return -EINVAL;
1121
1122         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
1123         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
1124                 return -EIO;
1125         /* Racy, just to catch the obvious mistakes */
1126         if (offset > i_size_read(inode))
1127                 return -EINVAL;
1128
1129  retry:
1130         uprobe = alloc_uprobe(inode, offset, ref_ctr_offset);
1131         if (!uprobe)
1132                 return -ENOMEM;
1133         if (IS_ERR(uprobe))
1134                 return PTR_ERR(uprobe);
1135
1136         /*
1137          * We can race with uprobe_unregister()->delete_uprobe().
1138          * Check uprobe_is_active() and retry if it is false.
1139          */
1140         down_write(&uprobe->register_rwsem);
1141         ret = -EAGAIN;
1142         if (likely(uprobe_is_active(uprobe))) {
1143                 consumer_add(uprobe, uc);
1144                 ret = register_for_each_vma(uprobe, uc);
1145                 if (ret)
1146                         __uprobe_unregister(uprobe, uc);
1147         }
1148         up_write(&uprobe->register_rwsem);
1149         put_uprobe(uprobe);
1150
1151         if (unlikely(ret == -EAGAIN))
1152                 goto retry;
1153         return ret;
1154 }
1155
1156 int uprobe_register(struct inode *inode, loff_t offset,
1157                     struct uprobe_consumer *uc)
1158 {
1159         return __uprobe_register(inode, offset, 0, uc);
1160 }
1161 EXPORT_SYMBOL_GPL(uprobe_register);
1162
1163 int uprobe_register_refctr(struct inode *inode, loff_t offset,
1164                            loff_t ref_ctr_offset, struct uprobe_consumer *uc)
1165 {
1166         return __uprobe_register(inode, offset, ref_ctr_offset, uc);
1167 }
1168 EXPORT_SYMBOL_GPL(uprobe_register_refctr);
1169
1170 /*
1171  * uprobe_apply - unregister an already registered probe.
1172  * @inode: the file in which the probe has to be removed.
1173  * @offset: offset from the start of the file.
1174  * @uc: consumer which wants to add more or remove some breakpoints
1175  * @add: add or remove the breakpoints
1176  */
1177 int uprobe_apply(struct inode *inode, loff_t offset,
1178                         struct uprobe_consumer *uc, bool add)
1179 {
1180         struct uprobe *uprobe;
1181         struct uprobe_consumer *con;
1182         int ret = -ENOENT;
1183
1184         uprobe = find_uprobe(inode, offset);
1185         if (WARN_ON(!uprobe))
1186                 return ret;
1187
1188         down_write(&uprobe->register_rwsem);
1189         for (con = uprobe->consumers; con && con != uc ; con = con->next)
1190                 ;
1191         if (con)
1192                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
1193         up_write(&uprobe->register_rwsem);
1194         put_uprobe(uprobe);
1195
1196         return ret;
1197 }
1198
1199 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
1200 {
1201         struct vm_area_struct *vma;
1202         int err = 0;
1203
1204         down_read(&mm->mmap_sem);
1205         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1206                 unsigned long vaddr;
1207                 loff_t offset;
1208
1209                 if (!valid_vma(vma, false) ||
1210                     file_inode(vma->vm_file) != uprobe->inode)
1211                         continue;
1212
1213                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
1214                 if (uprobe->offset <  offset ||
1215                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
1216                         continue;
1217
1218                 vaddr = offset_to_vaddr(vma, uprobe->offset);
1219                 err |= remove_breakpoint(uprobe, mm, vaddr);
1220         }
1221         up_read(&mm->mmap_sem);
1222
1223         return err;
1224 }
1225
1226 static struct rb_node *
1227 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1228 {
1229         struct rb_node *n = uprobes_tree.rb_node;
1230
1231         while (n) {
1232                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1233
1234                 if (inode < u->inode) {
1235                         n = n->rb_left;
1236                 } else if (inode > u->inode) {
1237                         n = n->rb_right;
1238                 } else {
1239                         if (max < u->offset)
1240                                 n = n->rb_left;
1241                         else if (min > u->offset)
1242                                 n = n->rb_right;
1243                         else
1244                                 break;
1245                 }
1246         }
1247
1248         return n;
1249 }
1250
1251 /*
1252  * For a given range in vma, build a list of probes that need to be inserted.
1253  */
1254 static void build_probe_list(struct inode *inode,
1255                                 struct vm_area_struct *vma,
1256                                 unsigned long start, unsigned long end,
1257                                 struct list_head *head)
1258 {
1259         loff_t min, max;
1260         struct rb_node *n, *t;
1261         struct uprobe *u;
1262
1263         INIT_LIST_HEAD(head);
1264         min = vaddr_to_offset(vma, start);
1265         max = min + (end - start) - 1;
1266
1267         spin_lock(&uprobes_treelock);
1268         n = find_node_in_range(inode, min, max);
1269         if (n) {
1270                 for (t = n; t; t = rb_prev(t)) {
1271                         u = rb_entry(t, struct uprobe, rb_node);
1272                         if (u->inode != inode || u->offset < min)
1273                                 break;
1274                         list_add(&u->pending_list, head);
1275                         get_uprobe(u);
1276                 }
1277                 for (t = n; (t = rb_next(t)); ) {
1278                         u = rb_entry(t, struct uprobe, rb_node);
1279                         if (u->inode != inode || u->offset > max)
1280                                 break;
1281                         list_add(&u->pending_list, head);
1282                         get_uprobe(u);
1283                 }
1284         }
1285         spin_unlock(&uprobes_treelock);
1286 }
1287
1288 /* @vma contains reference counter, not the probed instruction. */
1289 static int delayed_ref_ctr_inc(struct vm_area_struct *vma)
1290 {
1291         struct list_head *pos, *q;
1292         struct delayed_uprobe *du;
1293         unsigned long vaddr;
1294         int ret = 0, err = 0;
1295
1296         mutex_lock(&delayed_uprobe_lock);
1297         list_for_each_safe(pos, q, &delayed_uprobe_list) {
1298                 du = list_entry(pos, struct delayed_uprobe, list);
1299
1300                 if (du->mm != vma->vm_mm ||
1301                     !valid_ref_ctr_vma(du->uprobe, vma))
1302                         continue;
1303
1304                 vaddr = offset_to_vaddr(vma, du->uprobe->ref_ctr_offset);
1305                 ret = __update_ref_ctr(vma->vm_mm, vaddr, 1);
1306                 if (ret) {
1307                         update_ref_ctr_warn(du->uprobe, vma->vm_mm, 1);
1308                         if (!err)
1309                                 err = ret;
1310                 }
1311                 delayed_uprobe_delete(du);
1312         }
1313         mutex_unlock(&delayed_uprobe_lock);
1314         return err;
1315 }
1316
1317 /*
1318  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1319  *
1320  * Currently we ignore all errors and always return 0, the callers
1321  * can't handle the failure anyway.
1322  */
1323 int uprobe_mmap(struct vm_area_struct *vma)
1324 {
1325         struct list_head tmp_list;
1326         struct uprobe *uprobe, *u;
1327         struct inode *inode;
1328
1329         if (no_uprobe_events())
1330                 return 0;
1331
1332         if (vma->vm_file &&
1333             (vma->vm_flags & (VM_WRITE|VM_SHARED)) == VM_WRITE &&
1334             test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags))
1335                 delayed_ref_ctr_inc(vma);
1336
1337         if (!valid_vma(vma, true))
1338                 return 0;
1339
1340         inode = file_inode(vma->vm_file);
1341         if (!inode)
1342                 return 0;
1343
1344         mutex_lock(uprobes_mmap_hash(inode));
1345         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1346         /*
1347          * We can race with uprobe_unregister(), this uprobe can be already
1348          * removed. But in this case filter_chain() must return false, all
1349          * consumers have gone away.
1350          */
1351         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1352                 if (!fatal_signal_pending(current) &&
1353                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1354                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1355                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1356                 }
1357                 put_uprobe(uprobe);
1358         }
1359         mutex_unlock(uprobes_mmap_hash(inode));
1360
1361         return 0;
1362 }
1363
1364 static bool
1365 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1366 {
1367         loff_t min, max;
1368         struct inode *inode;
1369         struct rb_node *n;
1370
1371         inode = file_inode(vma->vm_file);
1372
1373         min = vaddr_to_offset(vma, start);
1374         max = min + (end - start) - 1;
1375
1376         spin_lock(&uprobes_treelock);
1377         n = find_node_in_range(inode, min, max);
1378         spin_unlock(&uprobes_treelock);
1379
1380         return !!n;
1381 }
1382
1383 /*
1384  * Called in context of a munmap of a vma.
1385  */
1386 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1387 {
1388         if (no_uprobe_events() || !valid_vma(vma, false))
1389                 return;
1390
1391         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1392                 return;
1393
1394         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1395              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1396                 return;
1397
1398         if (vma_has_uprobes(vma, start, end))
1399                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1400 }
1401
1402 /* Slot allocation for XOL */
1403 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1404 {
1405         struct vm_area_struct *vma;
1406         int ret;
1407
1408         if (down_write_killable(&mm->mmap_sem))
1409                 return -EINTR;
1410
1411         if (mm->uprobes_state.xol_area) {
1412                 ret = -EALREADY;
1413                 goto fail;
1414         }
1415
1416         if (!area->vaddr) {
1417                 /* Try to map as high as possible, this is only a hint. */
1418                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1419                                                 PAGE_SIZE, 0, 0);
1420                 if (area->vaddr & ~PAGE_MASK) {
1421                         ret = area->vaddr;
1422                         goto fail;
1423                 }
1424         }
1425
1426         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1427                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1428                                 &area->xol_mapping);
1429         if (IS_ERR(vma)) {
1430                 ret = PTR_ERR(vma);
1431                 goto fail;
1432         }
1433
1434         ret = 0;
1435         /* pairs with get_xol_area() */
1436         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1437  fail:
1438         up_write(&mm->mmap_sem);
1439
1440         return ret;
1441 }
1442
1443 static struct xol_area *__create_xol_area(unsigned long vaddr)
1444 {
1445         struct mm_struct *mm = current->mm;
1446         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1447         struct xol_area *area;
1448
1449         area = kmalloc(sizeof(*area), GFP_KERNEL);
1450         if (unlikely(!area))
1451                 goto out;
1452
1453         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1454                                GFP_KERNEL);
1455         if (!area->bitmap)
1456                 goto free_area;
1457
1458         area->xol_mapping.name = "[uprobes]";
1459         area->xol_mapping.fault = NULL;
1460         area->xol_mapping.pages = area->pages;
1461         area->pages[0] = alloc_page(GFP_HIGHUSER);
1462         if (!area->pages[0])
1463                 goto free_bitmap;
1464         area->pages[1] = NULL;
1465
1466         area->vaddr = vaddr;
1467         init_waitqueue_head(&area->wq);
1468         /* Reserve the 1st slot for get_trampoline_vaddr() */
1469         set_bit(0, area->bitmap);
1470         atomic_set(&area->slot_count, 1);
1471         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1472
1473         if (!xol_add_vma(mm, area))
1474                 return area;
1475
1476         __free_page(area->pages[0]);
1477  free_bitmap:
1478         kfree(area->bitmap);
1479  free_area:
1480         kfree(area);
1481  out:
1482         return NULL;
1483 }
1484
1485 /*
1486  * get_xol_area - Allocate process's xol_area if necessary.
1487  * This area will be used for storing instructions for execution out of line.
1488  *
1489  * Returns the allocated area or NULL.
1490  */
1491 static struct xol_area *get_xol_area(void)
1492 {
1493         struct mm_struct *mm = current->mm;
1494         struct xol_area *area;
1495
1496         if (!mm->uprobes_state.xol_area)
1497                 __create_xol_area(0);
1498
1499         /* Pairs with xol_add_vma() smp_store_release() */
1500         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1501         return area;
1502 }
1503
1504 /*
1505  * uprobe_clear_state - Free the area allocated for slots.
1506  */
1507 void uprobe_clear_state(struct mm_struct *mm)
1508 {
1509         struct xol_area *area = mm->uprobes_state.xol_area;
1510
1511         mutex_lock(&delayed_uprobe_lock);
1512         delayed_uprobe_remove(NULL, mm);
1513         mutex_unlock(&delayed_uprobe_lock);
1514
1515         if (!area)
1516                 return;
1517
1518         put_page(area->pages[0]);
1519         kfree(area->bitmap);
1520         kfree(area);
1521 }
1522
1523 void uprobe_start_dup_mmap(void)
1524 {
1525         percpu_down_read(&dup_mmap_sem);
1526 }
1527
1528 void uprobe_end_dup_mmap(void)
1529 {
1530         percpu_up_read(&dup_mmap_sem);
1531 }
1532
1533 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1534 {
1535         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1536                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1537                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1538                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1539         }
1540 }
1541
1542 /*
1543  *  - search for a free slot.
1544  */
1545 static unsigned long xol_take_insn_slot(struct xol_area *area)
1546 {
1547         unsigned long slot_addr;
1548         int slot_nr;
1549
1550         do {
1551                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1552                 if (slot_nr < UINSNS_PER_PAGE) {
1553                         if (!test_and_set_bit(slot_nr, area->bitmap))
1554                                 break;
1555
1556                         slot_nr = UINSNS_PER_PAGE;
1557                         continue;
1558                 }
1559                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1560         } while (slot_nr >= UINSNS_PER_PAGE);
1561
1562         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1563         atomic_inc(&area->slot_count);
1564
1565         return slot_addr;
1566 }
1567
1568 /*
1569  * xol_get_insn_slot - allocate a slot for xol.
1570  * Returns the allocated slot address or 0.
1571  */
1572 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1573 {
1574         struct xol_area *area;
1575         unsigned long xol_vaddr;
1576
1577         area = get_xol_area();
1578         if (!area)
1579                 return 0;
1580
1581         xol_vaddr = xol_take_insn_slot(area);
1582         if (unlikely(!xol_vaddr))
1583                 return 0;
1584
1585         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1586                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1587
1588         return xol_vaddr;
1589 }
1590
1591 /*
1592  * xol_free_insn_slot - If slot was earlier allocated by
1593  * @xol_get_insn_slot(), make the slot available for
1594  * subsequent requests.
1595  */
1596 static void xol_free_insn_slot(struct task_struct *tsk)
1597 {
1598         struct xol_area *area;
1599         unsigned long vma_end;
1600         unsigned long slot_addr;
1601
1602         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1603                 return;
1604
1605         slot_addr = tsk->utask->xol_vaddr;
1606         if (unlikely(!slot_addr))
1607                 return;
1608
1609         area = tsk->mm->uprobes_state.xol_area;
1610         vma_end = area->vaddr + PAGE_SIZE;
1611         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1612                 unsigned long offset;
1613                 int slot_nr;
1614
1615                 offset = slot_addr - area->vaddr;
1616                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1617                 if (slot_nr >= UINSNS_PER_PAGE)
1618                         return;
1619
1620                 clear_bit(slot_nr, area->bitmap);
1621                 atomic_dec(&area->slot_count);
1622                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1623                 if (waitqueue_active(&area->wq))
1624                         wake_up(&area->wq);
1625
1626                 tsk->utask->xol_vaddr = 0;
1627         }
1628 }
1629
1630 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1631                                   void *src, unsigned long len)
1632 {
1633         /* Initialize the slot */
1634         copy_to_page(page, vaddr, src, len);
1635
1636         /*
1637          * We probably need flush_icache_user_range() but it needs vma.
1638          * This should work on most of architectures by default. If
1639          * architecture needs to do something different it can define
1640          * its own version of the function.
1641          */
1642         flush_dcache_page(page);
1643 }
1644
1645 /**
1646  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1647  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1648  * instruction.
1649  * Return the address of the breakpoint instruction.
1650  */
1651 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1652 {
1653         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1654 }
1655
1656 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1657 {
1658         struct uprobe_task *utask = current->utask;
1659
1660         if (unlikely(utask && utask->active_uprobe))
1661                 return utask->vaddr;
1662
1663         return instruction_pointer(regs);
1664 }
1665
1666 static struct return_instance *free_ret_instance(struct return_instance *ri)
1667 {
1668         struct return_instance *next = ri->next;
1669         put_uprobe(ri->uprobe);
1670         kfree(ri);
1671         return next;
1672 }
1673
1674 /*
1675  * Called with no locks held.
1676  * Called in context of an exiting or an exec-ing thread.
1677  */
1678 void uprobe_free_utask(struct task_struct *t)
1679 {
1680         struct uprobe_task *utask = t->utask;
1681         struct return_instance *ri;
1682
1683         if (!utask)
1684                 return;
1685
1686         if (utask->active_uprobe)
1687                 put_uprobe(utask->active_uprobe);
1688
1689         ri = utask->return_instances;
1690         while (ri)
1691                 ri = free_ret_instance(ri);
1692
1693         xol_free_insn_slot(t);
1694         kfree(utask);
1695         t->utask = NULL;
1696 }
1697
1698 /*
1699  * Allocate a uprobe_task object for the task if if necessary.
1700  * Called when the thread hits a breakpoint.
1701  *
1702  * Returns:
1703  * - pointer to new uprobe_task on success
1704  * - NULL otherwise
1705  */
1706 static struct uprobe_task *get_utask(void)
1707 {
1708         if (!current->utask)
1709                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1710         return current->utask;
1711 }
1712
1713 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1714 {
1715         struct uprobe_task *n_utask;
1716         struct return_instance **p, *o, *n;
1717
1718         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1719         if (!n_utask)
1720                 return -ENOMEM;
1721         t->utask = n_utask;
1722
1723         p = &n_utask->return_instances;
1724         for (o = o_utask->return_instances; o; o = o->next) {
1725                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1726                 if (!n)
1727                         return -ENOMEM;
1728
1729                 *n = *o;
1730                 get_uprobe(n->uprobe);
1731                 n->next = NULL;
1732
1733                 *p = n;
1734                 p = &n->next;
1735                 n_utask->depth++;
1736         }
1737
1738         return 0;
1739 }
1740
1741 static void uprobe_warn(struct task_struct *t, const char *msg)
1742 {
1743         pr_warn("uprobe: %s:%d failed to %s\n",
1744                         current->comm, current->pid, msg);
1745 }
1746
1747 static void dup_xol_work(struct callback_head *work)
1748 {
1749         if (current->flags & PF_EXITING)
1750                 return;
1751
1752         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1753                         !fatal_signal_pending(current))
1754                 uprobe_warn(current, "dup xol area");
1755 }
1756
1757 /*
1758  * Called in context of a new clone/fork from copy_process.
1759  */
1760 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1761 {
1762         struct uprobe_task *utask = current->utask;
1763         struct mm_struct *mm = current->mm;
1764         struct xol_area *area;
1765
1766         t->utask = NULL;
1767
1768         if (!utask || !utask->return_instances)
1769                 return;
1770
1771         if (mm == t->mm && !(flags & CLONE_VFORK))
1772                 return;
1773
1774         if (dup_utask(t, utask))
1775                 return uprobe_warn(t, "dup ret instances");
1776
1777         /* The task can fork() after dup_xol_work() fails */
1778         area = mm->uprobes_state.xol_area;
1779         if (!area)
1780                 return uprobe_warn(t, "dup xol area");
1781
1782         if (mm == t->mm)
1783                 return;
1784
1785         t->utask->dup_xol_addr = area->vaddr;
1786         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1787         task_work_add(t, &t->utask->dup_xol_work, true);
1788 }
1789
1790 /*
1791  * Current area->vaddr notion assume the trampoline address is always
1792  * equal area->vaddr.
1793  *
1794  * Returns -1 in case the xol_area is not allocated.
1795  */
1796 static unsigned long get_trampoline_vaddr(void)
1797 {
1798         struct xol_area *area;
1799         unsigned long trampoline_vaddr = -1;
1800
1801         /* Pairs with xol_add_vma() smp_store_release() */
1802         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1803         if (area)
1804                 trampoline_vaddr = area->vaddr;
1805
1806         return trampoline_vaddr;
1807 }
1808
1809 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1810                                         struct pt_regs *regs)
1811 {
1812         struct return_instance *ri = utask->return_instances;
1813         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1814
1815         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1816                 ri = free_ret_instance(ri);
1817                 utask->depth--;
1818         }
1819         utask->return_instances = ri;
1820 }
1821
1822 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1823 {
1824         struct return_instance *ri;
1825         struct uprobe_task *utask;
1826         unsigned long orig_ret_vaddr, trampoline_vaddr;
1827         bool chained;
1828
1829         if (!get_xol_area())
1830                 return;
1831
1832         utask = get_utask();
1833         if (!utask)
1834                 return;
1835
1836         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1837                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1838                                 " nestedness limit pid/tgid=%d/%d\n",
1839                                 current->pid, current->tgid);
1840                 return;
1841         }
1842
1843         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1844         if (!ri)
1845                 return;
1846
1847         trampoline_vaddr = get_trampoline_vaddr();
1848         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1849         if (orig_ret_vaddr == -1)
1850                 goto fail;
1851
1852         /* drop the entries invalidated by longjmp() */
1853         chained = (orig_ret_vaddr == trampoline_vaddr);
1854         cleanup_return_instances(utask, chained, regs);
1855
1856         /*
1857          * We don't want to keep trampoline address in stack, rather keep the
1858          * original return address of first caller thru all the consequent
1859          * instances. This also makes breakpoint unwrapping easier.
1860          */
1861         if (chained) {
1862                 if (!utask->return_instances) {
1863                         /*
1864                          * This situation is not possible. Likely we have an
1865                          * attack from user-space.
1866                          */
1867                         uprobe_warn(current, "handle tail call");
1868                         goto fail;
1869                 }
1870                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1871         }
1872
1873         ri->uprobe = get_uprobe(uprobe);
1874         ri->func = instruction_pointer(regs);
1875         ri->stack = user_stack_pointer(regs);
1876         ri->orig_ret_vaddr = orig_ret_vaddr;
1877         ri->chained = chained;
1878
1879         utask->depth++;
1880         ri->next = utask->return_instances;
1881         utask->return_instances = ri;
1882
1883         return;
1884  fail:
1885         kfree(ri);
1886 }
1887
1888 /* Prepare to single-step probed instruction out of line. */
1889 static int
1890 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1891 {
1892         struct uprobe_task *utask;
1893         unsigned long xol_vaddr;
1894         int err;
1895
1896         utask = get_utask();
1897         if (!utask)
1898                 return -ENOMEM;
1899
1900         xol_vaddr = xol_get_insn_slot(uprobe);
1901         if (!xol_vaddr)
1902                 return -ENOMEM;
1903
1904         utask->xol_vaddr = xol_vaddr;
1905         utask->vaddr = bp_vaddr;
1906
1907         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1908         if (unlikely(err)) {
1909                 xol_free_insn_slot(current);
1910                 return err;
1911         }
1912
1913         utask->active_uprobe = uprobe;
1914         utask->state = UTASK_SSTEP;
1915         return 0;
1916 }
1917
1918 /*
1919  * If we are singlestepping, then ensure this thread is not connected to
1920  * non-fatal signals until completion of singlestep.  When xol insn itself
1921  * triggers the signal,  restart the original insn even if the task is
1922  * already SIGKILL'ed (since coredump should report the correct ip).  This
1923  * is even more important if the task has a handler for SIGSEGV/etc, The
1924  * _same_ instruction should be repeated again after return from the signal
1925  * handler, and SSTEP can never finish in this case.
1926  */
1927 bool uprobe_deny_signal(void)
1928 {
1929         struct task_struct *t = current;
1930         struct uprobe_task *utask = t->utask;
1931
1932         if (likely(!utask || !utask->active_uprobe))
1933                 return false;
1934
1935         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1936
1937         if (signal_pending(t)) {
1938                 spin_lock_irq(&t->sighand->siglock);
1939                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1940                 spin_unlock_irq(&t->sighand->siglock);
1941
1942                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1943                         utask->state = UTASK_SSTEP_TRAPPED;
1944                         set_tsk_thread_flag(t, TIF_UPROBE);
1945                 }
1946         }
1947
1948         return true;
1949 }
1950
1951 static void mmf_recalc_uprobes(struct mm_struct *mm)
1952 {
1953         struct vm_area_struct *vma;
1954
1955         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1956                 if (!valid_vma(vma, false))
1957                         continue;
1958                 /*
1959                  * This is not strictly accurate, we can race with
1960                  * uprobe_unregister() and see the already removed
1961                  * uprobe if delete_uprobe() was not yet called.
1962                  * Or this uprobe can be filtered out.
1963                  */
1964                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1965                         return;
1966         }
1967
1968         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1969 }
1970
1971 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1972 {
1973         struct page *page;
1974         uprobe_opcode_t opcode;
1975         int result;
1976
1977         pagefault_disable();
1978         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1979         pagefault_enable();
1980
1981         if (likely(result == 0))
1982                 goto out;
1983
1984         /*
1985          * The NULL 'tsk' here ensures that any faults that occur here
1986          * will not be accounted to the task.  'mm' *is* current->mm,
1987          * but we treat this as a 'remote' access since it is
1988          * essentially a kernel access to the memory.
1989          */
1990         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1991                         NULL, NULL);
1992         if (result < 0)
1993                 return result;
1994
1995         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1996         put_page(page);
1997  out:
1998         /* This needs to return true for any variant of the trap insn */
1999         return is_trap_insn(&opcode);
2000 }
2001
2002 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
2003 {
2004         struct mm_struct *mm = current->mm;
2005         struct uprobe *uprobe = NULL;
2006         struct vm_area_struct *vma;
2007
2008         down_read(&mm->mmap_sem);
2009         vma = find_vma(mm, bp_vaddr);
2010         if (vma && vma->vm_start <= bp_vaddr) {
2011                 if (valid_vma(vma, false)) {
2012                         struct inode *inode = file_inode(vma->vm_file);
2013                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
2014
2015                         uprobe = find_uprobe(inode, offset);
2016                 }
2017
2018                 if (!uprobe)
2019                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
2020         } else {
2021                 *is_swbp = -EFAULT;
2022         }
2023
2024         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
2025                 mmf_recalc_uprobes(mm);
2026         up_read(&mm->mmap_sem);
2027
2028         return uprobe;
2029 }
2030
2031 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
2032 {
2033         struct uprobe_consumer *uc;
2034         int remove = UPROBE_HANDLER_REMOVE;
2035         bool need_prep = false; /* prepare return uprobe, when needed */
2036
2037         down_read(&uprobe->register_rwsem);
2038         for (uc = uprobe->consumers; uc; uc = uc->next) {
2039                 int rc = 0;
2040
2041                 if (uc->handler) {
2042                         rc = uc->handler(uc, regs);
2043                         WARN(rc & ~UPROBE_HANDLER_MASK,
2044                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
2045                 }
2046
2047                 if (uc->ret_handler)
2048                         need_prep = true;
2049
2050                 remove &= rc;
2051         }
2052
2053         if (need_prep && !remove)
2054                 prepare_uretprobe(uprobe, regs); /* put bp at return */
2055
2056         if (remove && uprobe->consumers) {
2057                 WARN_ON(!uprobe_is_active(uprobe));
2058                 unapply_uprobe(uprobe, current->mm);
2059         }
2060         up_read(&uprobe->register_rwsem);
2061 }
2062
2063 static void
2064 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
2065 {
2066         struct uprobe *uprobe = ri->uprobe;
2067         struct uprobe_consumer *uc;
2068
2069         down_read(&uprobe->register_rwsem);
2070         for (uc = uprobe->consumers; uc; uc = uc->next) {
2071                 if (uc->ret_handler)
2072                         uc->ret_handler(uc, ri->func, regs);
2073         }
2074         up_read(&uprobe->register_rwsem);
2075 }
2076
2077 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
2078 {
2079         bool chained;
2080
2081         do {
2082                 chained = ri->chained;
2083                 ri = ri->next;  /* can't be NULL if chained */
2084         } while (chained);
2085
2086         return ri;
2087 }
2088
2089 static void handle_trampoline(struct pt_regs *regs)
2090 {
2091         struct uprobe_task *utask;
2092         struct return_instance *ri, *next;
2093         bool valid;
2094
2095         utask = current->utask;
2096         if (!utask)
2097                 goto sigill;
2098
2099         ri = utask->return_instances;
2100         if (!ri)
2101                 goto sigill;
2102
2103         do {
2104                 /*
2105                  * We should throw out the frames invalidated by longjmp().
2106                  * If this chain is valid, then the next one should be alive
2107                  * or NULL; the latter case means that nobody but ri->func
2108                  * could hit this trampoline on return. TODO: sigaltstack().
2109                  */
2110                 next = find_next_ret_chain(ri);
2111                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
2112
2113                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
2114                 do {
2115                         if (valid)
2116                                 handle_uretprobe_chain(ri, regs);
2117                         ri = free_ret_instance(ri);
2118                         utask->depth--;
2119                 } while (ri != next);
2120         } while (!valid);
2121
2122         utask->return_instances = ri;
2123         return;
2124
2125  sigill:
2126         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
2127         force_sig(SIGILL, current);
2128
2129 }
2130
2131 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
2132 {
2133         return false;
2134 }
2135
2136 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
2137                                         struct pt_regs *regs)
2138 {
2139         return true;
2140 }
2141
2142 /*
2143  * Run handler and ask thread to singlestep.
2144  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
2145  */
2146 static void handle_swbp(struct pt_regs *regs)
2147 {
2148         struct uprobe *uprobe;
2149         unsigned long bp_vaddr;
2150         int uninitialized_var(is_swbp);
2151
2152         bp_vaddr = uprobe_get_swbp_addr(regs);
2153         if (bp_vaddr == get_trampoline_vaddr())
2154                 return handle_trampoline(regs);
2155
2156         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
2157         if (!uprobe) {
2158                 if (is_swbp > 0) {
2159                         /* No matching uprobe; signal SIGTRAP. */
2160                         send_sig(SIGTRAP, current, 0);
2161                 } else {
2162                         /*
2163                          * Either we raced with uprobe_unregister() or we can't
2164                          * access this memory. The latter is only possible if
2165                          * another thread plays with our ->mm. In both cases
2166                          * we can simply restart. If this vma was unmapped we
2167                          * can pretend this insn was not executed yet and get
2168                          * the (correct) SIGSEGV after restart.
2169                          */
2170                         instruction_pointer_set(regs, bp_vaddr);
2171                 }
2172                 return;
2173         }
2174
2175         /* change it in advance for ->handler() and restart */
2176         instruction_pointer_set(regs, bp_vaddr);
2177
2178         /*
2179          * TODO: move copy_insn/etc into _register and remove this hack.
2180          * After we hit the bp, _unregister + _register can install the
2181          * new and not-yet-analyzed uprobe at the same address, restart.
2182          */
2183         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
2184                 goto out;
2185
2186         /*
2187          * Pairs with the smp_wmb() in prepare_uprobe().
2188          *
2189          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
2190          * we must also see the stores to &uprobe->arch performed by the
2191          * prepare_uprobe() call.
2192          */
2193         smp_rmb();
2194
2195         /* Tracing handlers use ->utask to communicate with fetch methods */
2196         if (!get_utask())
2197                 goto out;
2198
2199         if (arch_uprobe_ignore(&uprobe->arch, regs))
2200                 goto out;
2201
2202         handler_chain(uprobe, regs);
2203
2204         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
2205                 goto out;
2206
2207         if (!pre_ssout(uprobe, regs, bp_vaddr))
2208                 return;
2209
2210         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
2211 out:
2212         put_uprobe(uprobe);
2213 }
2214
2215 /*
2216  * Perform required fix-ups and disable singlestep.
2217  * Allow pending signals to take effect.
2218  */
2219 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
2220 {
2221         struct uprobe *uprobe;
2222         int err = 0;
2223
2224         uprobe = utask->active_uprobe;
2225         if (utask->state == UTASK_SSTEP_ACK)
2226                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
2227         else if (utask->state == UTASK_SSTEP_TRAPPED)
2228                 arch_uprobe_abort_xol(&uprobe->arch, regs);
2229         else
2230                 WARN_ON_ONCE(1);
2231
2232         put_uprobe(uprobe);
2233         utask->active_uprobe = NULL;
2234         utask->state = UTASK_RUNNING;
2235         xol_free_insn_slot(current);
2236
2237         spin_lock_irq(&current->sighand->siglock);
2238         recalc_sigpending(); /* see uprobe_deny_signal() */
2239         spin_unlock_irq(&current->sighand->siglock);
2240
2241         if (unlikely(err)) {
2242                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
2243                 force_sig(SIGILL, current);
2244         }
2245 }
2246
2247 /*
2248  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
2249  * allows the thread to return from interrupt. After that handle_swbp()
2250  * sets utask->active_uprobe.
2251  *
2252  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
2253  * and allows the thread to return from interrupt.
2254  *
2255  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
2256  * uprobe_notify_resume().
2257  */
2258 void uprobe_notify_resume(struct pt_regs *regs)
2259 {
2260         struct uprobe_task *utask;
2261
2262         clear_thread_flag(TIF_UPROBE);
2263
2264         utask = current->utask;
2265         if (utask && utask->active_uprobe)
2266                 handle_singlestep(utask, regs);
2267         else
2268                 handle_swbp(regs);
2269 }
2270
2271 /*
2272  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2273  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2274  */
2275 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2276 {
2277         if (!current->mm)
2278                 return 0;
2279
2280         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2281             (!current->utask || !current->utask->return_instances))
2282                 return 0;
2283
2284         set_thread_flag(TIF_UPROBE);
2285         return 1;
2286 }
2287
2288 /*
2289  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2290  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2291  */
2292 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2293 {
2294         struct uprobe_task *utask = current->utask;
2295
2296         if (!current->mm || !utask || !utask->active_uprobe)
2297                 /* task is currently not uprobed */
2298                 return 0;
2299
2300         utask->state = UTASK_SSTEP_ACK;
2301         set_thread_flag(TIF_UPROBE);
2302         return 1;
2303 }
2304
2305 static struct notifier_block uprobe_exception_nb = {
2306         .notifier_call          = arch_uprobe_exception_notify,
2307         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2308 };
2309
2310 static int __init init_uprobes(void)
2311 {
2312         int i;
2313
2314         for (i = 0; i < UPROBES_HASH_SZ; i++)
2315                 mutex_init(&uprobes_mmap_mutex[i]);
2316
2317         if (percpu_init_rwsem(&dup_mmap_sem))
2318                 return -ENOMEM;
2319
2320         return register_die_notifier(&uprobe_exception_nb);
2321 }
2322 __initcall(init_uprobes);