Merge tag 'pci-v5.17-fixes-2' of git://git.kernel.org/pub/scm/linux/kernel/git/helgaa...
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 /*
678  * UP store-release, load-acquire
679  */
680
681 #define __store_release(ptr, val)                                       \
682 do {                                                                    \
683         barrier();                                                      \
684         WRITE_ONCE(*(ptr), (val));                                      \
685 } while (0)
686
687 #define __load_acquire(ptr)                                             \
688 ({                                                                      \
689         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
690         barrier();                                                      \
691         ___p;                                                           \
692 })
693
694 #ifdef CONFIG_CGROUP_PERF
695
696 static inline bool
697 perf_cgroup_match(struct perf_event *event)
698 {
699         struct perf_event_context *ctx = event->ctx;
700         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701
702         /* @event doesn't care about cgroup */
703         if (!event->cgrp)
704                 return true;
705
706         /* wants specific cgroup scope but @cpuctx isn't associated with any */
707         if (!cpuctx->cgrp)
708                 return false;
709
710         /*
711          * Cgroup scoping is recursive.  An event enabled for a cgroup is
712          * also enabled for all its descendant cgroups.  If @cpuctx's
713          * cgroup is a descendant of @event's (the test covers identity
714          * case), it's a match.
715          */
716         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717                                     event->cgrp->css.cgroup);
718 }
719
720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722         css_put(&event->cgrp->css);
723         event->cgrp = NULL;
724 }
725
726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728         return event->cgrp != NULL;
729 }
730
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733         struct perf_cgroup_info *t;
734
735         t = per_cpu_ptr(event->cgrp->info, event->cpu);
736         return t->time;
737 }
738
739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741         struct perf_cgroup_info *t;
742
743         t = per_cpu_ptr(event->cgrp->info, event->cpu);
744         if (!__load_acquire(&t->active))
745                 return t->time;
746         now += READ_ONCE(t->timeoffset);
747         return now;
748 }
749
750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752         if (adv)
753                 info->time += now - info->timestamp;
754         info->timestamp = now;
755         /*
756          * see update_context_time()
757          */
758         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760
761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763         struct perf_cgroup *cgrp = cpuctx->cgrp;
764         struct cgroup_subsys_state *css;
765         struct perf_cgroup_info *info;
766
767         if (cgrp) {
768                 u64 now = perf_clock();
769
770                 for (css = &cgrp->css; css; css = css->parent) {
771                         cgrp = container_of(css, struct perf_cgroup, css);
772                         info = this_cpu_ptr(cgrp->info);
773
774                         __update_cgrp_time(info, now, true);
775                         if (final)
776                                 __store_release(&info->active, 0);
777                 }
778         }
779 }
780
781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783         struct perf_cgroup_info *info;
784         struct perf_cgroup *cgrp;
785
786         /*
787          * ensure we access cgroup data only when needed and
788          * when we know the cgroup is pinned (css_get)
789          */
790         if (!is_cgroup_event(event))
791                 return;
792
793         cgrp = perf_cgroup_from_task(current, event->ctx);
794         /*
795          * Do not update time when cgroup is not active
796          */
797         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
798                 info = this_cpu_ptr(event->cgrp->info);
799                 __update_cgrp_time(info, perf_clock(), true);
800         }
801 }
802
803 static inline void
804 perf_cgroup_set_timestamp(struct task_struct *task,
805                           struct perf_event_context *ctx)
806 {
807         struct perf_cgroup *cgrp;
808         struct perf_cgroup_info *info;
809         struct cgroup_subsys_state *css;
810
811         /*
812          * ctx->lock held by caller
813          * ensure we do not access cgroup data
814          * unless we have the cgroup pinned (css_get)
815          */
816         if (!task || !ctx->nr_cgroups)
817                 return;
818
819         cgrp = perf_cgroup_from_task(task, ctx);
820
821         for (css = &cgrp->css; css; css = css->parent) {
822                 cgrp = container_of(css, struct perf_cgroup, css);
823                 info = this_cpu_ptr(cgrp->info);
824                 __update_cgrp_time(info, ctx->timestamp, false);
825                 __store_release(&info->active, 1);
826         }
827 }
828
829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
830
831 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
832 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
833
834 /*
835  * reschedule events based on the cgroup constraint of task.
836  *
837  * mode SWOUT : schedule out everything
838  * mode SWIN : schedule in based on cgroup for next
839  */
840 static void perf_cgroup_switch(struct task_struct *task, int mode)
841 {
842         struct perf_cpu_context *cpuctx;
843         struct list_head *list;
844         unsigned long flags;
845
846         /*
847          * Disable interrupts and preemption to avoid this CPU's
848          * cgrp_cpuctx_entry to change under us.
849          */
850         local_irq_save(flags);
851
852         list = this_cpu_ptr(&cgrp_cpuctx_list);
853         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
854                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
855
856                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
857                 perf_pmu_disable(cpuctx->ctx.pmu);
858
859                 if (mode & PERF_CGROUP_SWOUT) {
860                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
861                         /*
862                          * must not be done before ctxswout due
863                          * to event_filter_match() in event_sched_out()
864                          */
865                         cpuctx->cgrp = NULL;
866                 }
867
868                 if (mode & PERF_CGROUP_SWIN) {
869                         WARN_ON_ONCE(cpuctx->cgrp);
870                         /*
871                          * set cgrp before ctxsw in to allow
872                          * event_filter_match() to not have to pass
873                          * task around
874                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
875                          * because cgorup events are only per-cpu
876                          */
877                         cpuctx->cgrp = perf_cgroup_from_task(task,
878                                                              &cpuctx->ctx);
879                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
880                 }
881                 perf_pmu_enable(cpuctx->ctx.pmu);
882                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
883         }
884
885         local_irq_restore(flags);
886 }
887
888 static inline void perf_cgroup_sched_out(struct task_struct *task,
889                                          struct task_struct *next)
890 {
891         struct perf_cgroup *cgrp1;
892         struct perf_cgroup *cgrp2 = NULL;
893
894         rcu_read_lock();
895         /*
896          * we come here when we know perf_cgroup_events > 0
897          * we do not need to pass the ctx here because we know
898          * we are holding the rcu lock
899          */
900         cgrp1 = perf_cgroup_from_task(task, NULL);
901         cgrp2 = perf_cgroup_from_task(next, NULL);
902
903         /*
904          * only schedule out current cgroup events if we know
905          * that we are switching to a different cgroup. Otherwise,
906          * do no touch the cgroup events.
907          */
908         if (cgrp1 != cgrp2)
909                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
910
911         rcu_read_unlock();
912 }
913
914 static inline void perf_cgroup_sched_in(struct task_struct *prev,
915                                         struct task_struct *task)
916 {
917         struct perf_cgroup *cgrp1;
918         struct perf_cgroup *cgrp2 = NULL;
919
920         rcu_read_lock();
921         /*
922          * we come here when we know perf_cgroup_events > 0
923          * we do not need to pass the ctx here because we know
924          * we are holding the rcu lock
925          */
926         cgrp1 = perf_cgroup_from_task(task, NULL);
927         cgrp2 = perf_cgroup_from_task(prev, NULL);
928
929         /*
930          * only need to schedule in cgroup events if we are changing
931          * cgroup during ctxsw. Cgroup events were not scheduled
932          * out of ctxsw out if that was not the case.
933          */
934         if (cgrp1 != cgrp2)
935                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
936
937         rcu_read_unlock();
938 }
939
940 static int perf_cgroup_ensure_storage(struct perf_event *event,
941                                 struct cgroup_subsys_state *css)
942 {
943         struct perf_cpu_context *cpuctx;
944         struct perf_event **storage;
945         int cpu, heap_size, ret = 0;
946
947         /*
948          * Allow storage to have sufficent space for an iterator for each
949          * possibly nested cgroup plus an iterator for events with no cgroup.
950          */
951         for (heap_size = 1; css; css = css->parent)
952                 heap_size++;
953
954         for_each_possible_cpu(cpu) {
955                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
956                 if (heap_size <= cpuctx->heap_size)
957                         continue;
958
959                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
960                                        GFP_KERNEL, cpu_to_node(cpu));
961                 if (!storage) {
962                         ret = -ENOMEM;
963                         break;
964                 }
965
966                 raw_spin_lock_irq(&cpuctx->ctx.lock);
967                 if (cpuctx->heap_size < heap_size) {
968                         swap(cpuctx->heap, storage);
969                         if (storage == cpuctx->heap_default)
970                                 storage = NULL;
971                         cpuctx->heap_size = heap_size;
972                 }
973                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
974
975                 kfree(storage);
976         }
977
978         return ret;
979 }
980
981 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
982                                       struct perf_event_attr *attr,
983                                       struct perf_event *group_leader)
984 {
985         struct perf_cgroup *cgrp;
986         struct cgroup_subsys_state *css;
987         struct fd f = fdget(fd);
988         int ret = 0;
989
990         if (!f.file)
991                 return -EBADF;
992
993         css = css_tryget_online_from_dir(f.file->f_path.dentry,
994                                          &perf_event_cgrp_subsys);
995         if (IS_ERR(css)) {
996                 ret = PTR_ERR(css);
997                 goto out;
998         }
999
1000         ret = perf_cgroup_ensure_storage(event, css);
1001         if (ret)
1002                 goto out;
1003
1004         cgrp = container_of(css, struct perf_cgroup, css);
1005         event->cgrp = cgrp;
1006
1007         /*
1008          * all events in a group must monitor
1009          * the same cgroup because a task belongs
1010          * to only one perf cgroup at a time
1011          */
1012         if (group_leader && group_leader->cgrp != cgrp) {
1013                 perf_detach_cgroup(event);
1014                 ret = -EINVAL;
1015         }
1016 out:
1017         fdput(f);
1018         return ret;
1019 }
1020
1021 static inline void
1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024         struct perf_cpu_context *cpuctx;
1025
1026         if (!is_cgroup_event(event))
1027                 return;
1028
1029         /*
1030          * Because cgroup events are always per-cpu events,
1031          * @ctx == &cpuctx->ctx.
1032          */
1033         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1034
1035         /*
1036          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1037          * matching the event's cgroup, we must do this for every new event,
1038          * because if the first would mismatch, the second would not try again
1039          * and we would leave cpuctx->cgrp unset.
1040          */
1041         if (ctx->is_active && !cpuctx->cgrp) {
1042                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1043
1044                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1045                         cpuctx->cgrp = cgrp;
1046         }
1047
1048         if (ctx->nr_cgroups++)
1049                 return;
1050
1051         list_add(&cpuctx->cgrp_cpuctx_entry,
1052                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1053 }
1054
1055 static inline void
1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1057 {
1058         struct perf_cpu_context *cpuctx;
1059
1060         if (!is_cgroup_event(event))
1061                 return;
1062
1063         /*
1064          * Because cgroup events are always per-cpu events,
1065          * @ctx == &cpuctx->ctx.
1066          */
1067         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1068
1069         if (--ctx->nr_cgroups)
1070                 return;
1071
1072         if (ctx->is_active && cpuctx->cgrp)
1073                 cpuctx->cgrp = NULL;
1074
1075         list_del(&cpuctx->cgrp_cpuctx_entry);
1076 }
1077
1078 #else /* !CONFIG_CGROUP_PERF */
1079
1080 static inline bool
1081 perf_cgroup_match(struct perf_event *event)
1082 {
1083         return true;
1084 }
1085
1086 static inline void perf_detach_cgroup(struct perf_event *event)
1087 {}
1088
1089 static inline int is_cgroup_event(struct perf_event *event)
1090 {
1091         return 0;
1092 }
1093
1094 static inline void update_cgrp_time_from_event(struct perf_event *event)
1095 {
1096 }
1097
1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1099                                                 bool final)
1100 {
1101 }
1102
1103 static inline void perf_cgroup_sched_out(struct task_struct *task,
1104                                          struct task_struct *next)
1105 {
1106 }
1107
1108 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1109                                         struct task_struct *task)
1110 {
1111 }
1112
1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1114                                       struct perf_event_attr *attr,
1115                                       struct perf_event *group_leader)
1116 {
1117         return -EINVAL;
1118 }
1119
1120 static inline void
1121 perf_cgroup_set_timestamp(struct task_struct *task,
1122                           struct perf_event_context *ctx)
1123 {
1124 }
1125
1126 static inline void
1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1128 {
1129 }
1130
1131 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1132 {
1133         return 0;
1134 }
1135
1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1137 {
1138         return 0;
1139 }
1140
1141 static inline void
1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145
1146 static inline void
1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1148 {
1149 }
1150 #endif
1151
1152 /*
1153  * set default to be dependent on timer tick just
1154  * like original code
1155  */
1156 #define PERF_CPU_HRTIMER (1000 / HZ)
1157 /*
1158  * function must be called with interrupts disabled
1159  */
1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1161 {
1162         struct perf_cpu_context *cpuctx;
1163         bool rotations;
1164
1165         lockdep_assert_irqs_disabled();
1166
1167         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1168         rotations = perf_rotate_context(cpuctx);
1169
1170         raw_spin_lock(&cpuctx->hrtimer_lock);
1171         if (rotations)
1172                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1173         else
1174                 cpuctx->hrtimer_active = 0;
1175         raw_spin_unlock(&cpuctx->hrtimer_lock);
1176
1177         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1178 }
1179
1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1181 {
1182         struct hrtimer *timer = &cpuctx->hrtimer;
1183         struct pmu *pmu = cpuctx->ctx.pmu;
1184         u64 interval;
1185
1186         /* no multiplexing needed for SW PMU */
1187         if (pmu->task_ctx_nr == perf_sw_context)
1188                 return;
1189
1190         /*
1191          * check default is sane, if not set then force to
1192          * default interval (1/tick)
1193          */
1194         interval = pmu->hrtimer_interval_ms;
1195         if (interval < 1)
1196                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1197
1198         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1199
1200         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1201         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1202         timer->function = perf_mux_hrtimer_handler;
1203 }
1204
1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1206 {
1207         struct hrtimer *timer = &cpuctx->hrtimer;
1208         struct pmu *pmu = cpuctx->ctx.pmu;
1209         unsigned long flags;
1210
1211         /* not for SW PMU */
1212         if (pmu->task_ctx_nr == perf_sw_context)
1213                 return 0;
1214
1215         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1216         if (!cpuctx->hrtimer_active) {
1217                 cpuctx->hrtimer_active = 1;
1218                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1219                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1220         }
1221         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1222
1223         return 0;
1224 }
1225
1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1229         if (!(*count)++)
1230                 pmu->pmu_disable(pmu);
1231 }
1232
1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1236         if (!--(*count))
1237                 pmu->pmu_enable(pmu);
1238 }
1239
1240 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1241
1242 /*
1243  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1244  * perf_event_task_tick() are fully serialized because they're strictly cpu
1245  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1246  * disabled, while perf_event_task_tick is called from IRQ context.
1247  */
1248 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1249 {
1250         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1251
1252         lockdep_assert_irqs_disabled();
1253
1254         WARN_ON(!list_empty(&ctx->active_ctx_list));
1255
1256         list_add(&ctx->active_ctx_list, head);
1257 }
1258
1259 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1260 {
1261         lockdep_assert_irqs_disabled();
1262
1263         WARN_ON(list_empty(&ctx->active_ctx_list));
1264
1265         list_del_init(&ctx->active_ctx_list);
1266 }
1267
1268 static void get_ctx(struct perf_event_context *ctx)
1269 {
1270         refcount_inc(&ctx->refcount);
1271 }
1272
1273 static void *alloc_task_ctx_data(struct pmu *pmu)
1274 {
1275         if (pmu->task_ctx_cache)
1276                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1277
1278         return NULL;
1279 }
1280
1281 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1282 {
1283         if (pmu->task_ctx_cache && task_ctx_data)
1284                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1285 }
1286
1287 static void free_ctx(struct rcu_head *head)
1288 {
1289         struct perf_event_context *ctx;
1290
1291         ctx = container_of(head, struct perf_event_context, rcu_head);
1292         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1293         kfree(ctx);
1294 }
1295
1296 static void put_ctx(struct perf_event_context *ctx)
1297 {
1298         if (refcount_dec_and_test(&ctx->refcount)) {
1299                 if (ctx->parent_ctx)
1300                         put_ctx(ctx->parent_ctx);
1301                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1302                         put_task_struct(ctx->task);
1303                 call_rcu(&ctx->rcu_head, free_ctx);
1304         }
1305 }
1306
1307 /*
1308  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1309  * perf_pmu_migrate_context() we need some magic.
1310  *
1311  * Those places that change perf_event::ctx will hold both
1312  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1313  *
1314  * Lock ordering is by mutex address. There are two other sites where
1315  * perf_event_context::mutex nests and those are:
1316  *
1317  *  - perf_event_exit_task_context()    [ child , 0 ]
1318  *      perf_event_exit_event()
1319  *        put_event()                   [ parent, 1 ]
1320  *
1321  *  - perf_event_init_context()         [ parent, 0 ]
1322  *      inherit_task_group()
1323  *        inherit_group()
1324  *          inherit_event()
1325  *            perf_event_alloc()
1326  *              perf_init_event()
1327  *                perf_try_init_event() [ child , 1 ]
1328  *
1329  * While it appears there is an obvious deadlock here -- the parent and child
1330  * nesting levels are inverted between the two. This is in fact safe because
1331  * life-time rules separate them. That is an exiting task cannot fork, and a
1332  * spawning task cannot (yet) exit.
1333  *
1334  * But remember that these are parent<->child context relations, and
1335  * migration does not affect children, therefore these two orderings should not
1336  * interact.
1337  *
1338  * The change in perf_event::ctx does not affect children (as claimed above)
1339  * because the sys_perf_event_open() case will install a new event and break
1340  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1341  * concerned with cpuctx and that doesn't have children.
1342  *
1343  * The places that change perf_event::ctx will issue:
1344  *
1345  *   perf_remove_from_context();
1346  *   synchronize_rcu();
1347  *   perf_install_in_context();
1348  *
1349  * to affect the change. The remove_from_context() + synchronize_rcu() should
1350  * quiesce the event, after which we can install it in the new location. This
1351  * means that only external vectors (perf_fops, prctl) can perturb the event
1352  * while in transit. Therefore all such accessors should also acquire
1353  * perf_event_context::mutex to serialize against this.
1354  *
1355  * However; because event->ctx can change while we're waiting to acquire
1356  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1357  * function.
1358  *
1359  * Lock order:
1360  *    exec_update_lock
1361  *      task_struct::perf_event_mutex
1362  *        perf_event_context::mutex
1363  *          perf_event::child_mutex;
1364  *            perf_event_context::lock
1365  *          perf_event::mmap_mutex
1366  *          mmap_lock
1367  *            perf_addr_filters_head::lock
1368  *
1369  *    cpu_hotplug_lock
1370  *      pmus_lock
1371  *        cpuctx->mutex / perf_event_context::mutex
1372  */
1373 static struct perf_event_context *
1374 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1375 {
1376         struct perf_event_context *ctx;
1377
1378 again:
1379         rcu_read_lock();
1380         ctx = READ_ONCE(event->ctx);
1381         if (!refcount_inc_not_zero(&ctx->refcount)) {
1382                 rcu_read_unlock();
1383                 goto again;
1384         }
1385         rcu_read_unlock();
1386
1387         mutex_lock_nested(&ctx->mutex, nesting);
1388         if (event->ctx != ctx) {
1389                 mutex_unlock(&ctx->mutex);
1390                 put_ctx(ctx);
1391                 goto again;
1392         }
1393
1394         return ctx;
1395 }
1396
1397 static inline struct perf_event_context *
1398 perf_event_ctx_lock(struct perf_event *event)
1399 {
1400         return perf_event_ctx_lock_nested(event, 0);
1401 }
1402
1403 static void perf_event_ctx_unlock(struct perf_event *event,
1404                                   struct perf_event_context *ctx)
1405 {
1406         mutex_unlock(&ctx->mutex);
1407         put_ctx(ctx);
1408 }
1409
1410 /*
1411  * This must be done under the ctx->lock, such as to serialize against
1412  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1413  * calling scheduler related locks and ctx->lock nests inside those.
1414  */
1415 static __must_check struct perf_event_context *
1416 unclone_ctx(struct perf_event_context *ctx)
1417 {
1418         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1419
1420         lockdep_assert_held(&ctx->lock);
1421
1422         if (parent_ctx)
1423                 ctx->parent_ctx = NULL;
1424         ctx->generation++;
1425
1426         return parent_ctx;
1427 }
1428
1429 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1430                                 enum pid_type type)
1431 {
1432         u32 nr;
1433         /*
1434          * only top level events have the pid namespace they were created in
1435          */
1436         if (event->parent)
1437                 event = event->parent;
1438
1439         nr = __task_pid_nr_ns(p, type, event->ns);
1440         /* avoid -1 if it is idle thread or runs in another ns */
1441         if (!nr && !pid_alive(p))
1442                 nr = -1;
1443         return nr;
1444 }
1445
1446 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1447 {
1448         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1449 }
1450
1451 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1452 {
1453         return perf_event_pid_type(event, p, PIDTYPE_PID);
1454 }
1455
1456 /*
1457  * If we inherit events we want to return the parent event id
1458  * to userspace.
1459  */
1460 static u64 primary_event_id(struct perf_event *event)
1461 {
1462         u64 id = event->id;
1463
1464         if (event->parent)
1465                 id = event->parent->id;
1466
1467         return id;
1468 }
1469
1470 /*
1471  * Get the perf_event_context for a task and lock it.
1472  *
1473  * This has to cope with the fact that until it is locked,
1474  * the context could get moved to another task.
1475  */
1476 static struct perf_event_context *
1477 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1478 {
1479         struct perf_event_context *ctx;
1480
1481 retry:
1482         /*
1483          * One of the few rules of preemptible RCU is that one cannot do
1484          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1485          * part of the read side critical section was irqs-enabled -- see
1486          * rcu_read_unlock_special().
1487          *
1488          * Since ctx->lock nests under rq->lock we must ensure the entire read
1489          * side critical section has interrupts disabled.
1490          */
1491         local_irq_save(*flags);
1492         rcu_read_lock();
1493         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1494         if (ctx) {
1495                 /*
1496                  * If this context is a clone of another, it might
1497                  * get swapped for another underneath us by
1498                  * perf_event_task_sched_out, though the
1499                  * rcu_read_lock() protects us from any context
1500                  * getting freed.  Lock the context and check if it
1501                  * got swapped before we could get the lock, and retry
1502                  * if so.  If we locked the right context, then it
1503                  * can't get swapped on us any more.
1504                  */
1505                 raw_spin_lock(&ctx->lock);
1506                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1507                         raw_spin_unlock(&ctx->lock);
1508                         rcu_read_unlock();
1509                         local_irq_restore(*flags);
1510                         goto retry;
1511                 }
1512
1513                 if (ctx->task == TASK_TOMBSTONE ||
1514                     !refcount_inc_not_zero(&ctx->refcount)) {
1515                         raw_spin_unlock(&ctx->lock);
1516                         ctx = NULL;
1517                 } else {
1518                         WARN_ON_ONCE(ctx->task != task);
1519                 }
1520         }
1521         rcu_read_unlock();
1522         if (!ctx)
1523                 local_irq_restore(*flags);
1524         return ctx;
1525 }
1526
1527 /*
1528  * Get the context for a task and increment its pin_count so it
1529  * can't get swapped to another task.  This also increments its
1530  * reference count so that the context can't get freed.
1531  */
1532 static struct perf_event_context *
1533 perf_pin_task_context(struct task_struct *task, int ctxn)
1534 {
1535         struct perf_event_context *ctx;
1536         unsigned long flags;
1537
1538         ctx = perf_lock_task_context(task, ctxn, &flags);
1539         if (ctx) {
1540                 ++ctx->pin_count;
1541                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1542         }
1543         return ctx;
1544 }
1545
1546 static void perf_unpin_context(struct perf_event_context *ctx)
1547 {
1548         unsigned long flags;
1549
1550         raw_spin_lock_irqsave(&ctx->lock, flags);
1551         --ctx->pin_count;
1552         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1553 }
1554
1555 /*
1556  * Update the record of the current time in a context.
1557  */
1558 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1559 {
1560         u64 now = perf_clock();
1561
1562         if (adv)
1563                 ctx->time += now - ctx->timestamp;
1564         ctx->timestamp = now;
1565
1566         /*
1567          * The above: time' = time + (now - timestamp), can be re-arranged
1568          * into: time` = now + (time - timestamp), which gives a single value
1569          * offset to compute future time without locks on.
1570          *
1571          * See perf_event_time_now(), which can be used from NMI context where
1572          * it's (obviously) not possible to acquire ctx->lock in order to read
1573          * both the above values in a consistent manner.
1574          */
1575         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1576 }
1577
1578 static void update_context_time(struct perf_event_context *ctx)
1579 {
1580         __update_context_time(ctx, true);
1581 }
1582
1583 static u64 perf_event_time(struct perf_event *event)
1584 {
1585         struct perf_event_context *ctx = event->ctx;
1586
1587         if (unlikely(!ctx))
1588                 return 0;
1589
1590         if (is_cgroup_event(event))
1591                 return perf_cgroup_event_time(event);
1592
1593         return ctx->time;
1594 }
1595
1596 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1597 {
1598         struct perf_event_context *ctx = event->ctx;
1599
1600         if (unlikely(!ctx))
1601                 return 0;
1602
1603         if (is_cgroup_event(event))
1604                 return perf_cgroup_event_time_now(event, now);
1605
1606         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1607                 return ctx->time;
1608
1609         now += READ_ONCE(ctx->timeoffset);
1610         return now;
1611 }
1612
1613 static enum event_type_t get_event_type(struct perf_event *event)
1614 {
1615         struct perf_event_context *ctx = event->ctx;
1616         enum event_type_t event_type;
1617
1618         lockdep_assert_held(&ctx->lock);
1619
1620         /*
1621          * It's 'group type', really, because if our group leader is
1622          * pinned, so are we.
1623          */
1624         if (event->group_leader != event)
1625                 event = event->group_leader;
1626
1627         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1628         if (!ctx->task)
1629                 event_type |= EVENT_CPU;
1630
1631         return event_type;
1632 }
1633
1634 /*
1635  * Helper function to initialize event group nodes.
1636  */
1637 static void init_event_group(struct perf_event *event)
1638 {
1639         RB_CLEAR_NODE(&event->group_node);
1640         event->group_index = 0;
1641 }
1642
1643 /*
1644  * Extract pinned or flexible groups from the context
1645  * based on event attrs bits.
1646  */
1647 static struct perf_event_groups *
1648 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650         if (event->attr.pinned)
1651                 return &ctx->pinned_groups;
1652         else
1653                 return &ctx->flexible_groups;
1654 }
1655
1656 /*
1657  * Helper function to initializes perf_event_group trees.
1658  */
1659 static void perf_event_groups_init(struct perf_event_groups *groups)
1660 {
1661         groups->tree = RB_ROOT;
1662         groups->index = 0;
1663 }
1664
1665 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1666 {
1667         struct cgroup *cgroup = NULL;
1668
1669 #ifdef CONFIG_CGROUP_PERF
1670         if (event->cgrp)
1671                 cgroup = event->cgrp->css.cgroup;
1672 #endif
1673
1674         return cgroup;
1675 }
1676
1677 /*
1678  * Compare function for event groups;
1679  *
1680  * Implements complex key that first sorts by CPU and then by virtual index
1681  * which provides ordering when rotating groups for the same CPU.
1682  */
1683 static __always_inline int
1684 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1685                       const u64 left_group_index, const struct perf_event *right)
1686 {
1687         if (left_cpu < right->cpu)
1688                 return -1;
1689         if (left_cpu > right->cpu)
1690                 return 1;
1691
1692 #ifdef CONFIG_CGROUP_PERF
1693         {
1694                 const struct cgroup *right_cgroup = event_cgroup(right);
1695
1696                 if (left_cgroup != right_cgroup) {
1697                         if (!left_cgroup) {
1698                                 /*
1699                                  * Left has no cgroup but right does, no
1700                                  * cgroups come first.
1701                                  */
1702                                 return -1;
1703                         }
1704                         if (!right_cgroup) {
1705                                 /*
1706                                  * Right has no cgroup but left does, no
1707                                  * cgroups come first.
1708                                  */
1709                                 return 1;
1710                         }
1711                         /* Two dissimilar cgroups, order by id. */
1712                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1713                                 return -1;
1714
1715                         return 1;
1716                 }
1717         }
1718 #endif
1719
1720         if (left_group_index < right->group_index)
1721                 return -1;
1722         if (left_group_index > right->group_index)
1723                 return 1;
1724
1725         return 0;
1726 }
1727
1728 #define __node_2_pe(node) \
1729         rb_entry((node), struct perf_event, group_node)
1730
1731 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1732 {
1733         struct perf_event *e = __node_2_pe(a);
1734         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1735                                      __node_2_pe(b)) < 0;
1736 }
1737
1738 struct __group_key {
1739         int cpu;
1740         struct cgroup *cgroup;
1741 };
1742
1743 static inline int __group_cmp(const void *key, const struct rb_node *node)
1744 {
1745         const struct __group_key *a = key;
1746         const struct perf_event *b = __node_2_pe(node);
1747
1748         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1749         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1750 }
1751
1752 /*
1753  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1754  * key (see perf_event_groups_less). This places it last inside the CPU
1755  * subtree.
1756  */
1757 static void
1758 perf_event_groups_insert(struct perf_event_groups *groups,
1759                          struct perf_event *event)
1760 {
1761         event->group_index = ++groups->index;
1762
1763         rb_add(&event->group_node, &groups->tree, __group_less);
1764 }
1765
1766 /*
1767  * Helper function to insert event into the pinned or flexible groups.
1768  */
1769 static void
1770 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1771 {
1772         struct perf_event_groups *groups;
1773
1774         groups = get_event_groups(event, ctx);
1775         perf_event_groups_insert(groups, event);
1776 }
1777
1778 /*
1779  * Delete a group from a tree.
1780  */
1781 static void
1782 perf_event_groups_delete(struct perf_event_groups *groups,
1783                          struct perf_event *event)
1784 {
1785         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1786                      RB_EMPTY_ROOT(&groups->tree));
1787
1788         rb_erase(&event->group_node, &groups->tree);
1789         init_event_group(event);
1790 }
1791
1792 /*
1793  * Helper function to delete event from its groups.
1794  */
1795 static void
1796 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1797 {
1798         struct perf_event_groups *groups;
1799
1800         groups = get_event_groups(event, ctx);
1801         perf_event_groups_delete(groups, event);
1802 }
1803
1804 /*
1805  * Get the leftmost event in the cpu/cgroup subtree.
1806  */
1807 static struct perf_event *
1808 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1809                         struct cgroup *cgrp)
1810 {
1811         struct __group_key key = {
1812                 .cpu = cpu,
1813                 .cgroup = cgrp,
1814         };
1815         struct rb_node *node;
1816
1817         node = rb_find_first(&key, &groups->tree, __group_cmp);
1818         if (node)
1819                 return __node_2_pe(node);
1820
1821         return NULL;
1822 }
1823
1824 /*
1825  * Like rb_entry_next_safe() for the @cpu subtree.
1826  */
1827 static struct perf_event *
1828 perf_event_groups_next(struct perf_event *event)
1829 {
1830         struct __group_key key = {
1831                 .cpu = event->cpu,
1832                 .cgroup = event_cgroup(event),
1833         };
1834         struct rb_node *next;
1835
1836         next = rb_next_match(&key, &event->group_node, __group_cmp);
1837         if (next)
1838                 return __node_2_pe(next);
1839
1840         return NULL;
1841 }
1842
1843 /*
1844  * Iterate through the whole groups tree.
1845  */
1846 #define perf_event_groups_for_each(event, groups)                       \
1847         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1848                                 typeof(*event), group_node); event;     \
1849                 event = rb_entry_safe(rb_next(&event->group_node),      \
1850                                 typeof(*event), group_node))
1851
1852 /*
1853  * Add an event from the lists for its context.
1854  * Must be called with ctx->mutex and ctx->lock held.
1855  */
1856 static void
1857 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1858 {
1859         lockdep_assert_held(&ctx->lock);
1860
1861         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1862         event->attach_state |= PERF_ATTACH_CONTEXT;
1863
1864         event->tstamp = perf_event_time(event);
1865
1866         /*
1867          * If we're a stand alone event or group leader, we go to the context
1868          * list, group events are kept attached to the group so that
1869          * perf_group_detach can, at all times, locate all siblings.
1870          */
1871         if (event->group_leader == event) {
1872                 event->group_caps = event->event_caps;
1873                 add_event_to_groups(event, ctx);
1874         }
1875
1876         list_add_rcu(&event->event_entry, &ctx->event_list);
1877         ctx->nr_events++;
1878         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1879                 ctx->nr_user++;
1880         if (event->attr.inherit_stat)
1881                 ctx->nr_stat++;
1882
1883         if (event->state > PERF_EVENT_STATE_OFF)
1884                 perf_cgroup_event_enable(event, ctx);
1885
1886         ctx->generation++;
1887 }
1888
1889 /*
1890  * Initialize event state based on the perf_event_attr::disabled.
1891  */
1892 static inline void perf_event__state_init(struct perf_event *event)
1893 {
1894         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1895                                               PERF_EVENT_STATE_INACTIVE;
1896 }
1897
1898 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1899 {
1900         int entry = sizeof(u64); /* value */
1901         int size = 0;
1902         int nr = 1;
1903
1904         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1905                 size += sizeof(u64);
1906
1907         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1908                 size += sizeof(u64);
1909
1910         if (event->attr.read_format & PERF_FORMAT_ID)
1911                 entry += sizeof(u64);
1912
1913         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1914                 nr += nr_siblings;
1915                 size += sizeof(u64);
1916         }
1917
1918         size += entry * nr;
1919         event->read_size = size;
1920 }
1921
1922 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1923 {
1924         struct perf_sample_data *data;
1925         u16 size = 0;
1926
1927         if (sample_type & PERF_SAMPLE_IP)
1928                 size += sizeof(data->ip);
1929
1930         if (sample_type & PERF_SAMPLE_ADDR)
1931                 size += sizeof(data->addr);
1932
1933         if (sample_type & PERF_SAMPLE_PERIOD)
1934                 size += sizeof(data->period);
1935
1936         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1937                 size += sizeof(data->weight.full);
1938
1939         if (sample_type & PERF_SAMPLE_READ)
1940                 size += event->read_size;
1941
1942         if (sample_type & PERF_SAMPLE_DATA_SRC)
1943                 size += sizeof(data->data_src.val);
1944
1945         if (sample_type & PERF_SAMPLE_TRANSACTION)
1946                 size += sizeof(data->txn);
1947
1948         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1949                 size += sizeof(data->phys_addr);
1950
1951         if (sample_type & PERF_SAMPLE_CGROUP)
1952                 size += sizeof(data->cgroup);
1953
1954         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1955                 size += sizeof(data->data_page_size);
1956
1957         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1958                 size += sizeof(data->code_page_size);
1959
1960         event->header_size = size;
1961 }
1962
1963 /*
1964  * Called at perf_event creation and when events are attached/detached from a
1965  * group.
1966  */
1967 static void perf_event__header_size(struct perf_event *event)
1968 {
1969         __perf_event_read_size(event,
1970                                event->group_leader->nr_siblings);
1971         __perf_event_header_size(event, event->attr.sample_type);
1972 }
1973
1974 static void perf_event__id_header_size(struct perf_event *event)
1975 {
1976         struct perf_sample_data *data;
1977         u64 sample_type = event->attr.sample_type;
1978         u16 size = 0;
1979
1980         if (sample_type & PERF_SAMPLE_TID)
1981                 size += sizeof(data->tid_entry);
1982
1983         if (sample_type & PERF_SAMPLE_TIME)
1984                 size += sizeof(data->time);
1985
1986         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1987                 size += sizeof(data->id);
1988
1989         if (sample_type & PERF_SAMPLE_ID)
1990                 size += sizeof(data->id);
1991
1992         if (sample_type & PERF_SAMPLE_STREAM_ID)
1993                 size += sizeof(data->stream_id);
1994
1995         if (sample_type & PERF_SAMPLE_CPU)
1996                 size += sizeof(data->cpu_entry);
1997
1998         event->id_header_size = size;
1999 }
2000
2001 static bool perf_event_validate_size(struct perf_event *event)
2002 {
2003         /*
2004          * The values computed here will be over-written when we actually
2005          * attach the event.
2006          */
2007         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
2008         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
2009         perf_event__id_header_size(event);
2010
2011         /*
2012          * Sum the lot; should not exceed the 64k limit we have on records.
2013          * Conservative limit to allow for callchains and other variable fields.
2014          */
2015         if (event->read_size + event->header_size +
2016             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
2017                 return false;
2018
2019         return true;
2020 }
2021
2022 static void perf_group_attach(struct perf_event *event)
2023 {
2024         struct perf_event *group_leader = event->group_leader, *pos;
2025
2026         lockdep_assert_held(&event->ctx->lock);
2027
2028         /*
2029          * We can have double attach due to group movement in perf_event_open.
2030          */
2031         if (event->attach_state & PERF_ATTACH_GROUP)
2032                 return;
2033
2034         event->attach_state |= PERF_ATTACH_GROUP;
2035
2036         if (group_leader == event)
2037                 return;
2038
2039         WARN_ON_ONCE(group_leader->ctx != event->ctx);
2040
2041         group_leader->group_caps &= event->event_caps;
2042
2043         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2044         group_leader->nr_siblings++;
2045
2046         perf_event__header_size(group_leader);
2047
2048         for_each_sibling_event(pos, group_leader)
2049                 perf_event__header_size(pos);
2050 }
2051
2052 /*
2053  * Remove an event from the lists for its context.
2054  * Must be called with ctx->mutex and ctx->lock held.
2055  */
2056 static void
2057 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2058 {
2059         WARN_ON_ONCE(event->ctx != ctx);
2060         lockdep_assert_held(&ctx->lock);
2061
2062         /*
2063          * We can have double detach due to exit/hot-unplug + close.
2064          */
2065         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2066                 return;
2067
2068         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2069
2070         ctx->nr_events--;
2071         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2072                 ctx->nr_user--;
2073         if (event->attr.inherit_stat)
2074                 ctx->nr_stat--;
2075
2076         list_del_rcu(&event->event_entry);
2077
2078         if (event->group_leader == event)
2079                 del_event_from_groups(event, ctx);
2080
2081         /*
2082          * If event was in error state, then keep it
2083          * that way, otherwise bogus counts will be
2084          * returned on read(). The only way to get out
2085          * of error state is by explicit re-enabling
2086          * of the event
2087          */
2088         if (event->state > PERF_EVENT_STATE_OFF) {
2089                 perf_cgroup_event_disable(event, ctx);
2090                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2091         }
2092
2093         ctx->generation++;
2094 }
2095
2096 static int
2097 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2098 {
2099         if (!has_aux(aux_event))
2100                 return 0;
2101
2102         if (!event->pmu->aux_output_match)
2103                 return 0;
2104
2105         return event->pmu->aux_output_match(aux_event);
2106 }
2107
2108 static void put_event(struct perf_event *event);
2109 static void event_sched_out(struct perf_event *event,
2110                             struct perf_cpu_context *cpuctx,
2111                             struct perf_event_context *ctx);
2112
2113 static void perf_put_aux_event(struct perf_event *event)
2114 {
2115         struct perf_event_context *ctx = event->ctx;
2116         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2117         struct perf_event *iter;
2118
2119         /*
2120          * If event uses aux_event tear down the link
2121          */
2122         if (event->aux_event) {
2123                 iter = event->aux_event;
2124                 event->aux_event = NULL;
2125                 put_event(iter);
2126                 return;
2127         }
2128
2129         /*
2130          * If the event is an aux_event, tear down all links to
2131          * it from other events.
2132          */
2133         for_each_sibling_event(iter, event->group_leader) {
2134                 if (iter->aux_event != event)
2135                         continue;
2136
2137                 iter->aux_event = NULL;
2138                 put_event(event);
2139
2140                 /*
2141                  * If it's ACTIVE, schedule it out and put it into ERROR
2142                  * state so that we don't try to schedule it again. Note
2143                  * that perf_event_enable() will clear the ERROR status.
2144                  */
2145                 event_sched_out(iter, cpuctx, ctx);
2146                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2147         }
2148 }
2149
2150 static bool perf_need_aux_event(struct perf_event *event)
2151 {
2152         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2153 }
2154
2155 static int perf_get_aux_event(struct perf_event *event,
2156                               struct perf_event *group_leader)
2157 {
2158         /*
2159          * Our group leader must be an aux event if we want to be
2160          * an aux_output. This way, the aux event will precede its
2161          * aux_output events in the group, and therefore will always
2162          * schedule first.
2163          */
2164         if (!group_leader)
2165                 return 0;
2166
2167         /*
2168          * aux_output and aux_sample_size are mutually exclusive.
2169          */
2170         if (event->attr.aux_output && event->attr.aux_sample_size)
2171                 return 0;
2172
2173         if (event->attr.aux_output &&
2174             !perf_aux_output_match(event, group_leader))
2175                 return 0;
2176
2177         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2178                 return 0;
2179
2180         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2181                 return 0;
2182
2183         /*
2184          * Link aux_outputs to their aux event; this is undone in
2185          * perf_group_detach() by perf_put_aux_event(). When the
2186          * group in torn down, the aux_output events loose their
2187          * link to the aux_event and can't schedule any more.
2188          */
2189         event->aux_event = group_leader;
2190
2191         return 1;
2192 }
2193
2194 static inline struct list_head *get_event_list(struct perf_event *event)
2195 {
2196         struct perf_event_context *ctx = event->ctx;
2197         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2198 }
2199
2200 /*
2201  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2202  * cannot exist on their own, schedule them out and move them into the ERROR
2203  * state. Also see _perf_event_enable(), it will not be able to recover
2204  * this ERROR state.
2205  */
2206 static inline void perf_remove_sibling_event(struct perf_event *event)
2207 {
2208         struct perf_event_context *ctx = event->ctx;
2209         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210
2211         event_sched_out(event, cpuctx, ctx);
2212         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2213 }
2214
2215 static void perf_group_detach(struct perf_event *event)
2216 {
2217         struct perf_event *leader = event->group_leader;
2218         struct perf_event *sibling, *tmp;
2219         struct perf_event_context *ctx = event->ctx;
2220
2221         lockdep_assert_held(&ctx->lock);
2222
2223         /*
2224          * We can have double detach due to exit/hot-unplug + close.
2225          */
2226         if (!(event->attach_state & PERF_ATTACH_GROUP))
2227                 return;
2228
2229         event->attach_state &= ~PERF_ATTACH_GROUP;
2230
2231         perf_put_aux_event(event);
2232
2233         /*
2234          * If this is a sibling, remove it from its group.
2235          */
2236         if (leader != event) {
2237                 list_del_init(&event->sibling_list);
2238                 event->group_leader->nr_siblings--;
2239                 goto out;
2240         }
2241
2242         /*
2243          * If this was a group event with sibling events then
2244          * upgrade the siblings to singleton events by adding them
2245          * to whatever list we are on.
2246          */
2247         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2248
2249                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2250                         perf_remove_sibling_event(sibling);
2251
2252                 sibling->group_leader = sibling;
2253                 list_del_init(&sibling->sibling_list);
2254
2255                 /* Inherit group flags from the previous leader */
2256                 sibling->group_caps = event->group_caps;
2257
2258                 if (!RB_EMPTY_NODE(&event->group_node)) {
2259                         add_event_to_groups(sibling, event->ctx);
2260
2261                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2262                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2263                 }
2264
2265                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2266         }
2267
2268 out:
2269         for_each_sibling_event(tmp, leader)
2270                 perf_event__header_size(tmp);
2271
2272         perf_event__header_size(leader);
2273 }
2274
2275 static void sync_child_event(struct perf_event *child_event);
2276
2277 static void perf_child_detach(struct perf_event *event)
2278 {
2279         struct perf_event *parent_event = event->parent;
2280
2281         if (!(event->attach_state & PERF_ATTACH_CHILD))
2282                 return;
2283
2284         event->attach_state &= ~PERF_ATTACH_CHILD;
2285
2286         if (WARN_ON_ONCE(!parent_event))
2287                 return;
2288
2289         lockdep_assert_held(&parent_event->child_mutex);
2290
2291         sync_child_event(event);
2292         list_del_init(&event->child_list);
2293 }
2294
2295 static bool is_orphaned_event(struct perf_event *event)
2296 {
2297         return event->state == PERF_EVENT_STATE_DEAD;
2298 }
2299
2300 static inline int __pmu_filter_match(struct perf_event *event)
2301 {
2302         struct pmu *pmu = event->pmu;
2303         return pmu->filter_match ? pmu->filter_match(event) : 1;
2304 }
2305
2306 /*
2307  * Check whether we should attempt to schedule an event group based on
2308  * PMU-specific filtering. An event group can consist of HW and SW events,
2309  * potentially with a SW leader, so we must check all the filters, to
2310  * determine whether a group is schedulable:
2311  */
2312 static inline int pmu_filter_match(struct perf_event *event)
2313 {
2314         struct perf_event *sibling;
2315
2316         if (!__pmu_filter_match(event))
2317                 return 0;
2318
2319         for_each_sibling_event(sibling, event) {
2320                 if (!__pmu_filter_match(sibling))
2321                         return 0;
2322         }
2323
2324         return 1;
2325 }
2326
2327 static inline int
2328 event_filter_match(struct perf_event *event)
2329 {
2330         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2331                perf_cgroup_match(event) && pmu_filter_match(event);
2332 }
2333
2334 static void
2335 event_sched_out(struct perf_event *event,
2336                   struct perf_cpu_context *cpuctx,
2337                   struct perf_event_context *ctx)
2338 {
2339         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2340
2341         WARN_ON_ONCE(event->ctx != ctx);
2342         lockdep_assert_held(&ctx->lock);
2343
2344         if (event->state != PERF_EVENT_STATE_ACTIVE)
2345                 return;
2346
2347         /*
2348          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2349          * we can schedule events _OUT_ individually through things like
2350          * __perf_remove_from_context().
2351          */
2352         list_del_init(&event->active_list);
2353
2354         perf_pmu_disable(event->pmu);
2355
2356         event->pmu->del(event, 0);
2357         event->oncpu = -1;
2358
2359         if (READ_ONCE(event->pending_disable) >= 0) {
2360                 WRITE_ONCE(event->pending_disable, -1);
2361                 perf_cgroup_event_disable(event, ctx);
2362                 state = PERF_EVENT_STATE_OFF;
2363         }
2364         perf_event_set_state(event, state);
2365
2366         if (!is_software_event(event))
2367                 cpuctx->active_oncpu--;
2368         if (!--ctx->nr_active)
2369                 perf_event_ctx_deactivate(ctx);
2370         if (event->attr.freq && event->attr.sample_freq)
2371                 ctx->nr_freq--;
2372         if (event->attr.exclusive || !cpuctx->active_oncpu)
2373                 cpuctx->exclusive = 0;
2374
2375         perf_pmu_enable(event->pmu);
2376 }
2377
2378 static void
2379 group_sched_out(struct perf_event *group_event,
2380                 struct perf_cpu_context *cpuctx,
2381                 struct perf_event_context *ctx)
2382 {
2383         struct perf_event *event;
2384
2385         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2386                 return;
2387
2388         perf_pmu_disable(ctx->pmu);
2389
2390         event_sched_out(group_event, cpuctx, ctx);
2391
2392         /*
2393          * Schedule out siblings (if any):
2394          */
2395         for_each_sibling_event(event, group_event)
2396                 event_sched_out(event, cpuctx, ctx);
2397
2398         perf_pmu_enable(ctx->pmu);
2399 }
2400
2401 #define DETACH_GROUP    0x01UL
2402 #define DETACH_CHILD    0x02UL
2403
2404 /*
2405  * Cross CPU call to remove a performance event
2406  *
2407  * We disable the event on the hardware level first. After that we
2408  * remove it from the context list.
2409  */
2410 static void
2411 __perf_remove_from_context(struct perf_event *event,
2412                            struct perf_cpu_context *cpuctx,
2413                            struct perf_event_context *ctx,
2414                            void *info)
2415 {
2416         unsigned long flags = (unsigned long)info;
2417
2418         if (ctx->is_active & EVENT_TIME) {
2419                 update_context_time(ctx);
2420                 update_cgrp_time_from_cpuctx(cpuctx, false);
2421         }
2422
2423         event_sched_out(event, cpuctx, ctx);
2424         if (flags & DETACH_GROUP)
2425                 perf_group_detach(event);
2426         if (flags & DETACH_CHILD)
2427                 perf_child_detach(event);
2428         list_del_event(event, ctx);
2429
2430         if (!ctx->nr_events && ctx->is_active) {
2431                 if (ctx == &cpuctx->ctx)
2432                         update_cgrp_time_from_cpuctx(cpuctx, true);
2433
2434                 ctx->is_active = 0;
2435                 ctx->rotate_necessary = 0;
2436                 if (ctx->task) {
2437                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2438                         cpuctx->task_ctx = NULL;
2439                 }
2440         }
2441 }
2442
2443 /*
2444  * Remove the event from a task's (or a CPU's) list of events.
2445  *
2446  * If event->ctx is a cloned context, callers must make sure that
2447  * every task struct that event->ctx->task could possibly point to
2448  * remains valid.  This is OK when called from perf_release since
2449  * that only calls us on the top-level context, which can't be a clone.
2450  * When called from perf_event_exit_task, it's OK because the
2451  * context has been detached from its task.
2452  */
2453 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2454 {
2455         struct perf_event_context *ctx = event->ctx;
2456
2457         lockdep_assert_held(&ctx->mutex);
2458
2459         /*
2460          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2461          * to work in the face of TASK_TOMBSTONE, unlike every other
2462          * event_function_call() user.
2463          */
2464         raw_spin_lock_irq(&ctx->lock);
2465         if (!ctx->is_active) {
2466                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2467                                            ctx, (void *)flags);
2468                 raw_spin_unlock_irq(&ctx->lock);
2469                 return;
2470         }
2471         raw_spin_unlock_irq(&ctx->lock);
2472
2473         event_function_call(event, __perf_remove_from_context, (void *)flags);
2474 }
2475
2476 /*
2477  * Cross CPU call to disable a performance event
2478  */
2479 static void __perf_event_disable(struct perf_event *event,
2480                                  struct perf_cpu_context *cpuctx,
2481                                  struct perf_event_context *ctx,
2482                                  void *info)
2483 {
2484         if (event->state < PERF_EVENT_STATE_INACTIVE)
2485                 return;
2486
2487         if (ctx->is_active & EVENT_TIME) {
2488                 update_context_time(ctx);
2489                 update_cgrp_time_from_event(event);
2490         }
2491
2492         if (event == event->group_leader)
2493                 group_sched_out(event, cpuctx, ctx);
2494         else
2495                 event_sched_out(event, cpuctx, ctx);
2496
2497         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2498         perf_cgroup_event_disable(event, ctx);
2499 }
2500
2501 /*
2502  * Disable an event.
2503  *
2504  * If event->ctx is a cloned context, callers must make sure that
2505  * every task struct that event->ctx->task could possibly point to
2506  * remains valid.  This condition is satisfied when called through
2507  * perf_event_for_each_child or perf_event_for_each because they
2508  * hold the top-level event's child_mutex, so any descendant that
2509  * goes to exit will block in perf_event_exit_event().
2510  *
2511  * When called from perf_pending_event it's OK because event->ctx
2512  * is the current context on this CPU and preemption is disabled,
2513  * hence we can't get into perf_event_task_sched_out for this context.
2514  */
2515 static void _perf_event_disable(struct perf_event *event)
2516 {
2517         struct perf_event_context *ctx = event->ctx;
2518
2519         raw_spin_lock_irq(&ctx->lock);
2520         if (event->state <= PERF_EVENT_STATE_OFF) {
2521                 raw_spin_unlock_irq(&ctx->lock);
2522                 return;
2523         }
2524         raw_spin_unlock_irq(&ctx->lock);
2525
2526         event_function_call(event, __perf_event_disable, NULL);
2527 }
2528
2529 void perf_event_disable_local(struct perf_event *event)
2530 {
2531         event_function_local(event, __perf_event_disable, NULL);
2532 }
2533
2534 /*
2535  * Strictly speaking kernel users cannot create groups and therefore this
2536  * interface does not need the perf_event_ctx_lock() magic.
2537  */
2538 void perf_event_disable(struct perf_event *event)
2539 {
2540         struct perf_event_context *ctx;
2541
2542         ctx = perf_event_ctx_lock(event);
2543         _perf_event_disable(event);
2544         perf_event_ctx_unlock(event, ctx);
2545 }
2546 EXPORT_SYMBOL_GPL(perf_event_disable);
2547
2548 void perf_event_disable_inatomic(struct perf_event *event)
2549 {
2550         WRITE_ONCE(event->pending_disable, smp_processor_id());
2551         /* can fail, see perf_pending_event_disable() */
2552         irq_work_queue(&event->pending);
2553 }
2554
2555 #define MAX_INTERRUPTS (~0ULL)
2556
2557 static void perf_log_throttle(struct perf_event *event, int enable);
2558 static void perf_log_itrace_start(struct perf_event *event);
2559
2560 static int
2561 event_sched_in(struct perf_event *event,
2562                  struct perf_cpu_context *cpuctx,
2563                  struct perf_event_context *ctx)
2564 {
2565         int ret = 0;
2566
2567         WARN_ON_ONCE(event->ctx != ctx);
2568
2569         lockdep_assert_held(&ctx->lock);
2570
2571         if (event->state <= PERF_EVENT_STATE_OFF)
2572                 return 0;
2573
2574         WRITE_ONCE(event->oncpu, smp_processor_id());
2575         /*
2576          * Order event::oncpu write to happen before the ACTIVE state is
2577          * visible. This allows perf_event_{stop,read}() to observe the correct
2578          * ->oncpu if it sees ACTIVE.
2579          */
2580         smp_wmb();
2581         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2582
2583         /*
2584          * Unthrottle events, since we scheduled we might have missed several
2585          * ticks already, also for a heavily scheduling task there is little
2586          * guarantee it'll get a tick in a timely manner.
2587          */
2588         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2589                 perf_log_throttle(event, 1);
2590                 event->hw.interrupts = 0;
2591         }
2592
2593         perf_pmu_disable(event->pmu);
2594
2595         perf_log_itrace_start(event);
2596
2597         if (event->pmu->add(event, PERF_EF_START)) {
2598                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2599                 event->oncpu = -1;
2600                 ret = -EAGAIN;
2601                 goto out;
2602         }
2603
2604         if (!is_software_event(event))
2605                 cpuctx->active_oncpu++;
2606         if (!ctx->nr_active++)
2607                 perf_event_ctx_activate(ctx);
2608         if (event->attr.freq && event->attr.sample_freq)
2609                 ctx->nr_freq++;
2610
2611         if (event->attr.exclusive)
2612                 cpuctx->exclusive = 1;
2613
2614 out:
2615         perf_pmu_enable(event->pmu);
2616
2617         return ret;
2618 }
2619
2620 static int
2621 group_sched_in(struct perf_event *group_event,
2622                struct perf_cpu_context *cpuctx,
2623                struct perf_event_context *ctx)
2624 {
2625         struct perf_event *event, *partial_group = NULL;
2626         struct pmu *pmu = ctx->pmu;
2627
2628         if (group_event->state == PERF_EVENT_STATE_OFF)
2629                 return 0;
2630
2631         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2632
2633         if (event_sched_in(group_event, cpuctx, ctx))
2634                 goto error;
2635
2636         /*
2637          * Schedule in siblings as one group (if any):
2638          */
2639         for_each_sibling_event(event, group_event) {
2640                 if (event_sched_in(event, cpuctx, ctx)) {
2641                         partial_group = event;
2642                         goto group_error;
2643                 }
2644         }
2645
2646         if (!pmu->commit_txn(pmu))
2647                 return 0;
2648
2649 group_error:
2650         /*
2651          * Groups can be scheduled in as one unit only, so undo any
2652          * partial group before returning:
2653          * The events up to the failed event are scheduled out normally.
2654          */
2655         for_each_sibling_event(event, group_event) {
2656                 if (event == partial_group)
2657                         break;
2658
2659                 event_sched_out(event, cpuctx, ctx);
2660         }
2661         event_sched_out(group_event, cpuctx, ctx);
2662
2663 error:
2664         pmu->cancel_txn(pmu);
2665         return -EAGAIN;
2666 }
2667
2668 /*
2669  * Work out whether we can put this event group on the CPU now.
2670  */
2671 static int group_can_go_on(struct perf_event *event,
2672                            struct perf_cpu_context *cpuctx,
2673                            int can_add_hw)
2674 {
2675         /*
2676          * Groups consisting entirely of software events can always go on.
2677          */
2678         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2679                 return 1;
2680         /*
2681          * If an exclusive group is already on, no other hardware
2682          * events can go on.
2683          */
2684         if (cpuctx->exclusive)
2685                 return 0;
2686         /*
2687          * If this group is exclusive and there are already
2688          * events on the CPU, it can't go on.
2689          */
2690         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2691                 return 0;
2692         /*
2693          * Otherwise, try to add it if all previous groups were able
2694          * to go on.
2695          */
2696         return can_add_hw;
2697 }
2698
2699 static void add_event_to_ctx(struct perf_event *event,
2700                                struct perf_event_context *ctx)
2701 {
2702         list_add_event(event, ctx);
2703         perf_group_attach(event);
2704 }
2705
2706 static void ctx_sched_out(struct perf_event_context *ctx,
2707                           struct perf_cpu_context *cpuctx,
2708                           enum event_type_t event_type);
2709 static void
2710 ctx_sched_in(struct perf_event_context *ctx,
2711              struct perf_cpu_context *cpuctx,
2712              enum event_type_t event_type,
2713              struct task_struct *task);
2714
2715 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2716                                struct perf_event_context *ctx,
2717                                enum event_type_t event_type)
2718 {
2719         if (!cpuctx->task_ctx)
2720                 return;
2721
2722         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2723                 return;
2724
2725         ctx_sched_out(ctx, cpuctx, event_type);
2726 }
2727
2728 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2729                                 struct perf_event_context *ctx,
2730                                 struct task_struct *task)
2731 {
2732         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2733         if (ctx)
2734                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2735         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2736         if (ctx)
2737                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2738 }
2739
2740 /*
2741  * We want to maintain the following priority of scheduling:
2742  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2743  *  - task pinned (EVENT_PINNED)
2744  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2745  *  - task flexible (EVENT_FLEXIBLE).
2746  *
2747  * In order to avoid unscheduling and scheduling back in everything every
2748  * time an event is added, only do it for the groups of equal priority and
2749  * below.
2750  *
2751  * This can be called after a batch operation on task events, in which case
2752  * event_type is a bit mask of the types of events involved. For CPU events,
2753  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2754  */
2755 static void ctx_resched(struct perf_cpu_context *cpuctx,
2756                         struct perf_event_context *task_ctx,
2757                         enum event_type_t event_type)
2758 {
2759         enum event_type_t ctx_event_type;
2760         bool cpu_event = !!(event_type & EVENT_CPU);
2761
2762         /*
2763          * If pinned groups are involved, flexible groups also need to be
2764          * scheduled out.
2765          */
2766         if (event_type & EVENT_PINNED)
2767                 event_type |= EVENT_FLEXIBLE;
2768
2769         ctx_event_type = event_type & EVENT_ALL;
2770
2771         perf_pmu_disable(cpuctx->ctx.pmu);
2772         if (task_ctx)
2773                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2774
2775         /*
2776          * Decide which cpu ctx groups to schedule out based on the types
2777          * of events that caused rescheduling:
2778          *  - EVENT_CPU: schedule out corresponding groups;
2779          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2780          *  - otherwise, do nothing more.
2781          */
2782         if (cpu_event)
2783                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2784         else if (ctx_event_type & EVENT_PINNED)
2785                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2786
2787         perf_event_sched_in(cpuctx, task_ctx, current);
2788         perf_pmu_enable(cpuctx->ctx.pmu);
2789 }
2790
2791 void perf_pmu_resched(struct pmu *pmu)
2792 {
2793         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2794         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2795
2796         perf_ctx_lock(cpuctx, task_ctx);
2797         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2798         perf_ctx_unlock(cpuctx, task_ctx);
2799 }
2800
2801 /*
2802  * Cross CPU call to install and enable a performance event
2803  *
2804  * Very similar to remote_function() + event_function() but cannot assume that
2805  * things like ctx->is_active and cpuctx->task_ctx are set.
2806  */
2807 static int  __perf_install_in_context(void *info)
2808 {
2809         struct perf_event *event = info;
2810         struct perf_event_context *ctx = event->ctx;
2811         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2812         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2813         bool reprogram = true;
2814         int ret = 0;
2815
2816         raw_spin_lock(&cpuctx->ctx.lock);
2817         if (ctx->task) {
2818                 raw_spin_lock(&ctx->lock);
2819                 task_ctx = ctx;
2820
2821                 reprogram = (ctx->task == current);
2822
2823                 /*
2824                  * If the task is running, it must be running on this CPU,
2825                  * otherwise we cannot reprogram things.
2826                  *
2827                  * If its not running, we don't care, ctx->lock will
2828                  * serialize against it becoming runnable.
2829                  */
2830                 if (task_curr(ctx->task) && !reprogram) {
2831                         ret = -ESRCH;
2832                         goto unlock;
2833                 }
2834
2835                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2836         } else if (task_ctx) {
2837                 raw_spin_lock(&task_ctx->lock);
2838         }
2839
2840 #ifdef CONFIG_CGROUP_PERF
2841         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2842                 /*
2843                  * If the current cgroup doesn't match the event's
2844                  * cgroup, we should not try to schedule it.
2845                  */
2846                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2847                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2848                                         event->cgrp->css.cgroup);
2849         }
2850 #endif
2851
2852         if (reprogram) {
2853                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2854                 add_event_to_ctx(event, ctx);
2855                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2856         } else {
2857                 add_event_to_ctx(event, ctx);
2858         }
2859
2860 unlock:
2861         perf_ctx_unlock(cpuctx, task_ctx);
2862
2863         return ret;
2864 }
2865
2866 static bool exclusive_event_installable(struct perf_event *event,
2867                                         struct perf_event_context *ctx);
2868
2869 /*
2870  * Attach a performance event to a context.
2871  *
2872  * Very similar to event_function_call, see comment there.
2873  */
2874 static void
2875 perf_install_in_context(struct perf_event_context *ctx,
2876                         struct perf_event *event,
2877                         int cpu)
2878 {
2879         struct task_struct *task = READ_ONCE(ctx->task);
2880
2881         lockdep_assert_held(&ctx->mutex);
2882
2883         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2884
2885         if (event->cpu != -1)
2886                 event->cpu = cpu;
2887
2888         /*
2889          * Ensures that if we can observe event->ctx, both the event and ctx
2890          * will be 'complete'. See perf_iterate_sb_cpu().
2891          */
2892         smp_store_release(&event->ctx, ctx);
2893
2894         /*
2895          * perf_event_attr::disabled events will not run and can be initialized
2896          * without IPI. Except when this is the first event for the context, in
2897          * that case we need the magic of the IPI to set ctx->is_active.
2898          *
2899          * The IOC_ENABLE that is sure to follow the creation of a disabled
2900          * event will issue the IPI and reprogram the hardware.
2901          */
2902         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2903                 raw_spin_lock_irq(&ctx->lock);
2904                 if (ctx->task == TASK_TOMBSTONE) {
2905                         raw_spin_unlock_irq(&ctx->lock);
2906                         return;
2907                 }
2908                 add_event_to_ctx(event, ctx);
2909                 raw_spin_unlock_irq(&ctx->lock);
2910                 return;
2911         }
2912
2913         if (!task) {
2914                 cpu_function_call(cpu, __perf_install_in_context, event);
2915                 return;
2916         }
2917
2918         /*
2919          * Should not happen, we validate the ctx is still alive before calling.
2920          */
2921         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2922                 return;
2923
2924         /*
2925          * Installing events is tricky because we cannot rely on ctx->is_active
2926          * to be set in case this is the nr_events 0 -> 1 transition.
2927          *
2928          * Instead we use task_curr(), which tells us if the task is running.
2929          * However, since we use task_curr() outside of rq::lock, we can race
2930          * against the actual state. This means the result can be wrong.
2931          *
2932          * If we get a false positive, we retry, this is harmless.
2933          *
2934          * If we get a false negative, things are complicated. If we are after
2935          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2936          * value must be correct. If we're before, it doesn't matter since
2937          * perf_event_context_sched_in() will program the counter.
2938          *
2939          * However, this hinges on the remote context switch having observed
2940          * our task->perf_event_ctxp[] store, such that it will in fact take
2941          * ctx::lock in perf_event_context_sched_in().
2942          *
2943          * We do this by task_function_call(), if the IPI fails to hit the task
2944          * we know any future context switch of task must see the
2945          * perf_event_ctpx[] store.
2946          */
2947
2948         /*
2949          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2950          * task_cpu() load, such that if the IPI then does not find the task
2951          * running, a future context switch of that task must observe the
2952          * store.
2953          */
2954         smp_mb();
2955 again:
2956         if (!task_function_call(task, __perf_install_in_context, event))
2957                 return;
2958
2959         raw_spin_lock_irq(&ctx->lock);
2960         task = ctx->task;
2961         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2962                 /*
2963                  * Cannot happen because we already checked above (which also
2964                  * cannot happen), and we hold ctx->mutex, which serializes us
2965                  * against perf_event_exit_task_context().
2966                  */
2967                 raw_spin_unlock_irq(&ctx->lock);
2968                 return;
2969         }
2970         /*
2971          * If the task is not running, ctx->lock will avoid it becoming so,
2972          * thus we can safely install the event.
2973          */
2974         if (task_curr(task)) {
2975                 raw_spin_unlock_irq(&ctx->lock);
2976                 goto again;
2977         }
2978         add_event_to_ctx(event, ctx);
2979         raw_spin_unlock_irq(&ctx->lock);
2980 }
2981
2982 /*
2983  * Cross CPU call to enable a performance event
2984  */
2985 static void __perf_event_enable(struct perf_event *event,
2986                                 struct perf_cpu_context *cpuctx,
2987                                 struct perf_event_context *ctx,
2988                                 void *info)
2989 {
2990         struct perf_event *leader = event->group_leader;
2991         struct perf_event_context *task_ctx;
2992
2993         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2994             event->state <= PERF_EVENT_STATE_ERROR)
2995                 return;
2996
2997         if (ctx->is_active)
2998                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2999
3000         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3001         perf_cgroup_event_enable(event, ctx);
3002
3003         if (!ctx->is_active)
3004                 return;
3005
3006         if (!event_filter_match(event)) {
3007                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3008                 return;
3009         }
3010
3011         /*
3012          * If the event is in a group and isn't the group leader,
3013          * then don't put it on unless the group is on.
3014          */
3015         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3016                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3017                 return;
3018         }
3019
3020         task_ctx = cpuctx->task_ctx;
3021         if (ctx->task)
3022                 WARN_ON_ONCE(task_ctx != ctx);
3023
3024         ctx_resched(cpuctx, task_ctx, get_event_type(event));
3025 }
3026
3027 /*
3028  * Enable an event.
3029  *
3030  * If event->ctx is a cloned context, callers must make sure that
3031  * every task struct that event->ctx->task could possibly point to
3032  * remains valid.  This condition is satisfied when called through
3033  * perf_event_for_each_child or perf_event_for_each as described
3034  * for perf_event_disable.
3035  */
3036 static void _perf_event_enable(struct perf_event *event)
3037 {
3038         struct perf_event_context *ctx = event->ctx;
3039
3040         raw_spin_lock_irq(&ctx->lock);
3041         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3042             event->state <  PERF_EVENT_STATE_ERROR) {
3043 out:
3044                 raw_spin_unlock_irq(&ctx->lock);
3045                 return;
3046         }
3047
3048         /*
3049          * If the event is in error state, clear that first.
3050          *
3051          * That way, if we see the event in error state below, we know that it
3052          * has gone back into error state, as distinct from the task having
3053          * been scheduled away before the cross-call arrived.
3054          */
3055         if (event->state == PERF_EVENT_STATE_ERROR) {
3056                 /*
3057                  * Detached SIBLING events cannot leave ERROR state.
3058                  */
3059                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3060                     event->group_leader == event)
3061                         goto out;
3062
3063                 event->state = PERF_EVENT_STATE_OFF;
3064         }
3065         raw_spin_unlock_irq(&ctx->lock);
3066
3067         event_function_call(event, __perf_event_enable, NULL);
3068 }
3069
3070 /*
3071  * See perf_event_disable();
3072  */
3073 void perf_event_enable(struct perf_event *event)
3074 {
3075         struct perf_event_context *ctx;
3076
3077         ctx = perf_event_ctx_lock(event);
3078         _perf_event_enable(event);
3079         perf_event_ctx_unlock(event, ctx);
3080 }
3081 EXPORT_SYMBOL_GPL(perf_event_enable);
3082
3083 struct stop_event_data {
3084         struct perf_event       *event;
3085         unsigned int            restart;
3086 };
3087
3088 static int __perf_event_stop(void *info)
3089 {
3090         struct stop_event_data *sd = info;
3091         struct perf_event *event = sd->event;
3092
3093         /* if it's already INACTIVE, do nothing */
3094         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3095                 return 0;
3096
3097         /* matches smp_wmb() in event_sched_in() */
3098         smp_rmb();
3099
3100         /*
3101          * There is a window with interrupts enabled before we get here,
3102          * so we need to check again lest we try to stop another CPU's event.
3103          */
3104         if (READ_ONCE(event->oncpu) != smp_processor_id())
3105                 return -EAGAIN;
3106
3107         event->pmu->stop(event, PERF_EF_UPDATE);
3108
3109         /*
3110          * May race with the actual stop (through perf_pmu_output_stop()),
3111          * but it is only used for events with AUX ring buffer, and such
3112          * events will refuse to restart because of rb::aux_mmap_count==0,
3113          * see comments in perf_aux_output_begin().
3114          *
3115          * Since this is happening on an event-local CPU, no trace is lost
3116          * while restarting.
3117          */
3118         if (sd->restart)
3119                 event->pmu->start(event, 0);
3120
3121         return 0;
3122 }
3123
3124 static int perf_event_stop(struct perf_event *event, int restart)
3125 {
3126         struct stop_event_data sd = {
3127                 .event          = event,
3128                 .restart        = restart,
3129         };
3130         int ret = 0;
3131
3132         do {
3133                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3134                         return 0;
3135
3136                 /* matches smp_wmb() in event_sched_in() */
3137                 smp_rmb();
3138
3139                 /*
3140                  * We only want to restart ACTIVE events, so if the event goes
3141                  * inactive here (event->oncpu==-1), there's nothing more to do;
3142                  * fall through with ret==-ENXIO.
3143                  */
3144                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3145                                         __perf_event_stop, &sd);
3146         } while (ret == -EAGAIN);
3147
3148         return ret;
3149 }
3150
3151 /*
3152  * In order to contain the amount of racy and tricky in the address filter
3153  * configuration management, it is a two part process:
3154  *
3155  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3156  *      we update the addresses of corresponding vmas in
3157  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3158  * (p2) when an event is scheduled in (pmu::add), it calls
3159  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3160  *      if the generation has changed since the previous call.
3161  *
3162  * If (p1) happens while the event is active, we restart it to force (p2).
3163  *
3164  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3165  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3166  *     ioctl;
3167  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3168  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3169  *     for reading;
3170  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3171  *     of exec.
3172  */
3173 void perf_event_addr_filters_sync(struct perf_event *event)
3174 {
3175         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3176
3177         if (!has_addr_filter(event))
3178                 return;
3179
3180         raw_spin_lock(&ifh->lock);
3181         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3182                 event->pmu->addr_filters_sync(event);
3183                 event->hw.addr_filters_gen = event->addr_filters_gen;
3184         }
3185         raw_spin_unlock(&ifh->lock);
3186 }
3187 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3188
3189 static int _perf_event_refresh(struct perf_event *event, int refresh)
3190 {
3191         /*
3192          * not supported on inherited events
3193          */
3194         if (event->attr.inherit || !is_sampling_event(event))
3195                 return -EINVAL;
3196
3197         atomic_add(refresh, &event->event_limit);
3198         _perf_event_enable(event);
3199
3200         return 0;
3201 }
3202
3203 /*
3204  * See perf_event_disable()
3205  */
3206 int perf_event_refresh(struct perf_event *event, int refresh)
3207 {
3208         struct perf_event_context *ctx;
3209         int ret;
3210
3211         ctx = perf_event_ctx_lock(event);
3212         ret = _perf_event_refresh(event, refresh);
3213         perf_event_ctx_unlock(event, ctx);
3214
3215         return ret;
3216 }
3217 EXPORT_SYMBOL_GPL(perf_event_refresh);
3218
3219 static int perf_event_modify_breakpoint(struct perf_event *bp,
3220                                          struct perf_event_attr *attr)
3221 {
3222         int err;
3223
3224         _perf_event_disable(bp);
3225
3226         err = modify_user_hw_breakpoint_check(bp, attr, true);
3227
3228         if (!bp->attr.disabled)
3229                 _perf_event_enable(bp);
3230
3231         return err;
3232 }
3233
3234 static int perf_event_modify_attr(struct perf_event *event,
3235                                   struct perf_event_attr *attr)
3236 {
3237         int (*func)(struct perf_event *, struct perf_event_attr *);
3238         struct perf_event *child;
3239         int err;
3240
3241         if (event->attr.type != attr->type)
3242                 return -EINVAL;
3243
3244         switch (event->attr.type) {
3245         case PERF_TYPE_BREAKPOINT:
3246                 func = perf_event_modify_breakpoint;
3247                 break;
3248         default:
3249                 /* Place holder for future additions. */
3250                 return -EOPNOTSUPP;
3251         }
3252
3253         WARN_ON_ONCE(event->ctx->parent_ctx);
3254
3255         mutex_lock(&event->child_mutex);
3256         err = func(event, attr);
3257         if (err)
3258                 goto out;
3259         list_for_each_entry(child, &event->child_list, child_list) {
3260                 err = func(child, attr);
3261                 if (err)
3262                         goto out;
3263         }
3264 out:
3265         mutex_unlock(&event->child_mutex);
3266         return err;
3267 }
3268
3269 static void ctx_sched_out(struct perf_event_context *ctx,
3270                           struct perf_cpu_context *cpuctx,
3271                           enum event_type_t event_type)
3272 {
3273         struct perf_event *event, *tmp;
3274         int is_active = ctx->is_active;
3275
3276         lockdep_assert_held(&ctx->lock);
3277
3278         if (likely(!ctx->nr_events)) {
3279                 /*
3280                  * See __perf_remove_from_context().
3281                  */
3282                 WARN_ON_ONCE(ctx->is_active);
3283                 if (ctx->task)
3284                         WARN_ON_ONCE(cpuctx->task_ctx);
3285                 return;
3286         }
3287
3288         /*
3289          * Always update time if it was set; not only when it changes.
3290          * Otherwise we can 'forget' to update time for any but the last
3291          * context we sched out. For example:
3292          *
3293          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3294          *   ctx_sched_out(.event_type = EVENT_PINNED)
3295          *
3296          * would only update time for the pinned events.
3297          */
3298         if (is_active & EVENT_TIME) {
3299                 /* update (and stop) ctx time */
3300                 update_context_time(ctx);
3301                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3302                 /*
3303                  * CPU-release for the below ->is_active store,
3304                  * see __load_acquire() in perf_event_time_now()
3305                  */
3306                 barrier();
3307         }
3308
3309         ctx->is_active &= ~event_type;
3310         if (!(ctx->is_active & EVENT_ALL))
3311                 ctx->is_active = 0;
3312
3313         if (ctx->task) {
3314                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3315                 if (!ctx->is_active)
3316                         cpuctx->task_ctx = NULL;
3317         }
3318
3319         is_active ^= ctx->is_active; /* changed bits */
3320
3321         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3322                 return;
3323
3324         perf_pmu_disable(ctx->pmu);
3325         if (is_active & EVENT_PINNED) {
3326                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3327                         group_sched_out(event, cpuctx, ctx);
3328         }
3329
3330         if (is_active & EVENT_FLEXIBLE) {
3331                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3332                         group_sched_out(event, cpuctx, ctx);
3333
3334                 /*
3335                  * Since we cleared EVENT_FLEXIBLE, also clear
3336                  * rotate_necessary, is will be reset by
3337                  * ctx_flexible_sched_in() when needed.
3338                  */
3339                 ctx->rotate_necessary = 0;
3340         }
3341         perf_pmu_enable(ctx->pmu);
3342 }
3343
3344 /*
3345  * Test whether two contexts are equivalent, i.e. whether they have both been
3346  * cloned from the same version of the same context.
3347  *
3348  * Equivalence is measured using a generation number in the context that is
3349  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3350  * and list_del_event().
3351  */
3352 static int context_equiv(struct perf_event_context *ctx1,
3353                          struct perf_event_context *ctx2)
3354 {
3355         lockdep_assert_held(&ctx1->lock);
3356         lockdep_assert_held(&ctx2->lock);
3357
3358         /* Pinning disables the swap optimization */
3359         if (ctx1->pin_count || ctx2->pin_count)
3360                 return 0;
3361
3362         /* If ctx1 is the parent of ctx2 */
3363         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3364                 return 1;
3365
3366         /* If ctx2 is the parent of ctx1 */
3367         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3368                 return 1;
3369
3370         /*
3371          * If ctx1 and ctx2 have the same parent; we flatten the parent
3372          * hierarchy, see perf_event_init_context().
3373          */
3374         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3375                         ctx1->parent_gen == ctx2->parent_gen)
3376                 return 1;
3377
3378         /* Unmatched */
3379         return 0;
3380 }
3381
3382 static void __perf_event_sync_stat(struct perf_event *event,
3383                                      struct perf_event *next_event)
3384 {
3385         u64 value;
3386
3387         if (!event->attr.inherit_stat)
3388                 return;
3389
3390         /*
3391          * Update the event value, we cannot use perf_event_read()
3392          * because we're in the middle of a context switch and have IRQs
3393          * disabled, which upsets smp_call_function_single(), however
3394          * we know the event must be on the current CPU, therefore we
3395          * don't need to use it.
3396          */
3397         if (event->state == PERF_EVENT_STATE_ACTIVE)
3398                 event->pmu->read(event);
3399
3400         perf_event_update_time(event);
3401
3402         /*
3403          * In order to keep per-task stats reliable we need to flip the event
3404          * values when we flip the contexts.
3405          */
3406         value = local64_read(&next_event->count);
3407         value = local64_xchg(&event->count, value);
3408         local64_set(&next_event->count, value);
3409
3410         swap(event->total_time_enabled, next_event->total_time_enabled);
3411         swap(event->total_time_running, next_event->total_time_running);
3412
3413         /*
3414          * Since we swizzled the values, update the user visible data too.
3415          */
3416         perf_event_update_userpage(event);
3417         perf_event_update_userpage(next_event);
3418 }
3419
3420 static void perf_event_sync_stat(struct perf_event_context *ctx,
3421                                    struct perf_event_context *next_ctx)
3422 {
3423         struct perf_event *event, *next_event;
3424
3425         if (!ctx->nr_stat)
3426                 return;
3427
3428         update_context_time(ctx);
3429
3430         event = list_first_entry(&ctx->event_list,
3431                                    struct perf_event, event_entry);
3432
3433         next_event = list_first_entry(&next_ctx->event_list,
3434                                         struct perf_event, event_entry);
3435
3436         while (&event->event_entry != &ctx->event_list &&
3437                &next_event->event_entry != &next_ctx->event_list) {
3438
3439                 __perf_event_sync_stat(event, next_event);
3440
3441                 event = list_next_entry(event, event_entry);
3442                 next_event = list_next_entry(next_event, event_entry);
3443         }
3444 }
3445
3446 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3447                                          struct task_struct *next)
3448 {
3449         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3450         struct perf_event_context *next_ctx;
3451         struct perf_event_context *parent, *next_parent;
3452         struct perf_cpu_context *cpuctx;
3453         int do_switch = 1;
3454         struct pmu *pmu;
3455
3456         if (likely(!ctx))
3457                 return;
3458
3459         pmu = ctx->pmu;
3460         cpuctx = __get_cpu_context(ctx);
3461         if (!cpuctx->task_ctx)
3462                 return;
3463
3464         rcu_read_lock();
3465         next_ctx = next->perf_event_ctxp[ctxn];
3466         if (!next_ctx)
3467                 goto unlock;
3468
3469         parent = rcu_dereference(ctx->parent_ctx);
3470         next_parent = rcu_dereference(next_ctx->parent_ctx);
3471
3472         /* If neither context have a parent context; they cannot be clones. */
3473         if (!parent && !next_parent)
3474                 goto unlock;
3475
3476         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3477                 /*
3478                  * Looks like the two contexts are clones, so we might be
3479                  * able to optimize the context switch.  We lock both
3480                  * contexts and check that they are clones under the
3481                  * lock (including re-checking that neither has been
3482                  * uncloned in the meantime).  It doesn't matter which
3483                  * order we take the locks because no other cpu could
3484                  * be trying to lock both of these tasks.
3485                  */
3486                 raw_spin_lock(&ctx->lock);
3487                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3488                 if (context_equiv(ctx, next_ctx)) {
3489
3490                         WRITE_ONCE(ctx->task, next);
3491                         WRITE_ONCE(next_ctx->task, task);
3492
3493                         perf_pmu_disable(pmu);
3494
3495                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3496                                 pmu->sched_task(ctx, false);
3497
3498                         /*
3499                          * PMU specific parts of task perf context can require
3500                          * additional synchronization. As an example of such
3501                          * synchronization see implementation details of Intel
3502                          * LBR call stack data profiling;
3503                          */
3504                         if (pmu->swap_task_ctx)
3505                                 pmu->swap_task_ctx(ctx, next_ctx);
3506                         else
3507                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3508
3509                         perf_pmu_enable(pmu);
3510
3511                         /*
3512                          * RCU_INIT_POINTER here is safe because we've not
3513                          * modified the ctx and the above modification of
3514                          * ctx->task and ctx->task_ctx_data are immaterial
3515                          * since those values are always verified under
3516                          * ctx->lock which we're now holding.
3517                          */
3518                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3519                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3520
3521                         do_switch = 0;
3522
3523                         perf_event_sync_stat(ctx, next_ctx);
3524                 }
3525                 raw_spin_unlock(&next_ctx->lock);
3526                 raw_spin_unlock(&ctx->lock);
3527         }
3528 unlock:
3529         rcu_read_unlock();
3530
3531         if (do_switch) {
3532                 raw_spin_lock(&ctx->lock);
3533                 perf_pmu_disable(pmu);
3534
3535                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3536                         pmu->sched_task(ctx, false);
3537                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3538
3539                 perf_pmu_enable(pmu);
3540                 raw_spin_unlock(&ctx->lock);
3541         }
3542 }
3543
3544 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3545
3546 void perf_sched_cb_dec(struct pmu *pmu)
3547 {
3548         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3549
3550         this_cpu_dec(perf_sched_cb_usages);
3551
3552         if (!--cpuctx->sched_cb_usage)
3553                 list_del(&cpuctx->sched_cb_entry);
3554 }
3555
3556
3557 void perf_sched_cb_inc(struct pmu *pmu)
3558 {
3559         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3560
3561         if (!cpuctx->sched_cb_usage++)
3562                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3563
3564         this_cpu_inc(perf_sched_cb_usages);
3565 }
3566
3567 /*
3568  * This function provides the context switch callback to the lower code
3569  * layer. It is invoked ONLY when the context switch callback is enabled.
3570  *
3571  * This callback is relevant even to per-cpu events; for example multi event
3572  * PEBS requires this to provide PID/TID information. This requires we flush
3573  * all queued PEBS records before we context switch to a new task.
3574  */
3575 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3576 {
3577         struct pmu *pmu;
3578
3579         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3580
3581         if (WARN_ON_ONCE(!pmu->sched_task))
3582                 return;
3583
3584         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3585         perf_pmu_disable(pmu);
3586
3587         pmu->sched_task(cpuctx->task_ctx, sched_in);
3588
3589         perf_pmu_enable(pmu);
3590         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3591 }
3592
3593 static void perf_pmu_sched_task(struct task_struct *prev,
3594                                 struct task_struct *next,
3595                                 bool sched_in)
3596 {
3597         struct perf_cpu_context *cpuctx;
3598
3599         if (prev == next)
3600                 return;
3601
3602         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3603                 /* will be handled in perf_event_context_sched_in/out */
3604                 if (cpuctx->task_ctx)
3605                         continue;
3606
3607                 __perf_pmu_sched_task(cpuctx, sched_in);
3608         }
3609 }
3610
3611 static void perf_event_switch(struct task_struct *task,
3612                               struct task_struct *next_prev, bool sched_in);
3613
3614 #define for_each_task_context_nr(ctxn)                                  \
3615         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3616
3617 /*
3618  * Called from scheduler to remove the events of the current task,
3619  * with interrupts disabled.
3620  *
3621  * We stop each event and update the event value in event->count.
3622  *
3623  * This does not protect us against NMI, but disable()
3624  * sets the disabled bit in the control field of event _before_
3625  * accessing the event control register. If a NMI hits, then it will
3626  * not restart the event.
3627  */
3628 void __perf_event_task_sched_out(struct task_struct *task,
3629                                  struct task_struct *next)
3630 {
3631         int ctxn;
3632
3633         if (__this_cpu_read(perf_sched_cb_usages))
3634                 perf_pmu_sched_task(task, next, false);
3635
3636         if (atomic_read(&nr_switch_events))
3637                 perf_event_switch(task, next, false);
3638
3639         for_each_task_context_nr(ctxn)
3640                 perf_event_context_sched_out(task, ctxn, next);
3641
3642         /*
3643          * if cgroup events exist on this CPU, then we need
3644          * to check if we have to switch out PMU state.
3645          * cgroup event are system-wide mode only
3646          */
3647         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3648                 perf_cgroup_sched_out(task, next);
3649 }
3650
3651 /*
3652  * Called with IRQs disabled
3653  */
3654 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3655                               enum event_type_t event_type)
3656 {
3657         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3658 }
3659
3660 static bool perf_less_group_idx(const void *l, const void *r)
3661 {
3662         const struct perf_event *le = *(const struct perf_event **)l;
3663         const struct perf_event *re = *(const struct perf_event **)r;
3664
3665         return le->group_index < re->group_index;
3666 }
3667
3668 static void swap_ptr(void *l, void *r)
3669 {
3670         void **lp = l, **rp = r;
3671
3672         swap(*lp, *rp);
3673 }
3674
3675 static const struct min_heap_callbacks perf_min_heap = {
3676         .elem_size = sizeof(struct perf_event *),
3677         .less = perf_less_group_idx,
3678         .swp = swap_ptr,
3679 };
3680
3681 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3682 {
3683         struct perf_event **itrs = heap->data;
3684
3685         if (event) {
3686                 itrs[heap->nr] = event;
3687                 heap->nr++;
3688         }
3689 }
3690
3691 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3692                                 struct perf_event_groups *groups, int cpu,
3693                                 int (*func)(struct perf_event *, void *),
3694                                 void *data)
3695 {
3696 #ifdef CONFIG_CGROUP_PERF
3697         struct cgroup_subsys_state *css = NULL;
3698 #endif
3699         /* Space for per CPU and/or any CPU event iterators. */
3700         struct perf_event *itrs[2];
3701         struct min_heap event_heap;
3702         struct perf_event **evt;
3703         int ret;
3704
3705         if (cpuctx) {
3706                 event_heap = (struct min_heap){
3707                         .data = cpuctx->heap,
3708                         .nr = 0,
3709                         .size = cpuctx->heap_size,
3710                 };
3711
3712                 lockdep_assert_held(&cpuctx->ctx.lock);
3713
3714 #ifdef CONFIG_CGROUP_PERF
3715                 if (cpuctx->cgrp)
3716                         css = &cpuctx->cgrp->css;
3717 #endif
3718         } else {
3719                 event_heap = (struct min_heap){
3720                         .data = itrs,
3721                         .nr = 0,
3722                         .size = ARRAY_SIZE(itrs),
3723                 };
3724                 /* Events not within a CPU context may be on any CPU. */
3725                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3726         }
3727         evt = event_heap.data;
3728
3729         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3730
3731 #ifdef CONFIG_CGROUP_PERF
3732         for (; css; css = css->parent)
3733                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3734 #endif
3735
3736         min_heapify_all(&event_heap, &perf_min_heap);
3737
3738         while (event_heap.nr) {
3739                 ret = func(*evt, data);
3740                 if (ret)
3741                         return ret;
3742
3743                 *evt = perf_event_groups_next(*evt);
3744                 if (*evt)
3745                         min_heapify(&event_heap, 0, &perf_min_heap);
3746                 else
3747                         min_heap_pop(&event_heap, &perf_min_heap);
3748         }
3749
3750         return 0;
3751 }
3752
3753 /*
3754  * Because the userpage is strictly per-event (there is no concept of context,
3755  * so there cannot be a context indirection), every userpage must be updated
3756  * when context time starts :-(
3757  *
3758  * IOW, we must not miss EVENT_TIME edges.
3759  */
3760 static inline bool event_update_userpage(struct perf_event *event)
3761 {
3762         if (likely(!atomic_read(&event->mmap_count)))
3763                 return false;
3764
3765         perf_event_update_time(event);
3766         perf_event_update_userpage(event);
3767
3768         return true;
3769 }
3770
3771 static inline void group_update_userpage(struct perf_event *group_event)
3772 {
3773         struct perf_event *event;
3774
3775         if (!event_update_userpage(group_event))
3776                 return;
3777
3778         for_each_sibling_event(event, group_event)
3779                 event_update_userpage(event);
3780 }
3781
3782 static int merge_sched_in(struct perf_event *event, void *data)
3783 {
3784         struct perf_event_context *ctx = event->ctx;
3785         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3786         int *can_add_hw = data;
3787
3788         if (event->state <= PERF_EVENT_STATE_OFF)
3789                 return 0;
3790
3791         if (!event_filter_match(event))
3792                 return 0;
3793
3794         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3795                 if (!group_sched_in(event, cpuctx, ctx))
3796                         list_add_tail(&event->active_list, get_event_list(event));
3797         }
3798
3799         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3800                 *can_add_hw = 0;
3801                 if (event->attr.pinned) {
3802                         perf_cgroup_event_disable(event, ctx);
3803                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3804                 } else {
3805                         ctx->rotate_necessary = 1;
3806                         perf_mux_hrtimer_restart(cpuctx);
3807                         group_update_userpage(event);
3808                 }
3809         }
3810
3811         return 0;
3812 }
3813
3814 static void
3815 ctx_pinned_sched_in(struct perf_event_context *ctx,
3816                     struct perf_cpu_context *cpuctx)
3817 {
3818         int can_add_hw = 1;
3819
3820         if (ctx != &cpuctx->ctx)
3821                 cpuctx = NULL;
3822
3823         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3824                            smp_processor_id(),
3825                            merge_sched_in, &can_add_hw);
3826 }
3827
3828 static void
3829 ctx_flexible_sched_in(struct perf_event_context *ctx,
3830                       struct perf_cpu_context *cpuctx)
3831 {
3832         int can_add_hw = 1;
3833
3834         if (ctx != &cpuctx->ctx)
3835                 cpuctx = NULL;
3836
3837         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3838                            smp_processor_id(),
3839                            merge_sched_in, &can_add_hw);
3840 }
3841
3842 static void
3843 ctx_sched_in(struct perf_event_context *ctx,
3844              struct perf_cpu_context *cpuctx,
3845              enum event_type_t event_type,
3846              struct task_struct *task)
3847 {
3848         int is_active = ctx->is_active;
3849
3850         lockdep_assert_held(&ctx->lock);
3851
3852         if (likely(!ctx->nr_events))
3853                 return;
3854
3855         if (is_active ^ EVENT_TIME) {
3856                 /* start ctx time */
3857                 __update_context_time(ctx, false);
3858                 perf_cgroup_set_timestamp(task, ctx);
3859                 /*
3860                  * CPU-release for the below ->is_active store,
3861                  * see __load_acquire() in perf_event_time_now()
3862                  */
3863                 barrier();
3864         }
3865
3866         ctx->is_active |= (event_type | EVENT_TIME);
3867         if (ctx->task) {
3868                 if (!is_active)
3869                         cpuctx->task_ctx = ctx;
3870                 else
3871                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3872         }
3873
3874         is_active ^= ctx->is_active; /* changed bits */
3875
3876         /*
3877          * First go through the list and put on any pinned groups
3878          * in order to give them the best chance of going on.
3879          */
3880         if (is_active & EVENT_PINNED)
3881                 ctx_pinned_sched_in(ctx, cpuctx);
3882
3883         /* Then walk through the lower prio flexible groups */
3884         if (is_active & EVENT_FLEXIBLE)
3885                 ctx_flexible_sched_in(ctx, cpuctx);
3886 }
3887
3888 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3889                              enum event_type_t event_type,
3890                              struct task_struct *task)
3891 {
3892         struct perf_event_context *ctx = &cpuctx->ctx;
3893
3894         ctx_sched_in(ctx, cpuctx, event_type, task);
3895 }
3896
3897 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3898                                         struct task_struct *task)
3899 {
3900         struct perf_cpu_context *cpuctx;
3901         struct pmu *pmu;
3902
3903         cpuctx = __get_cpu_context(ctx);
3904
3905         /*
3906          * HACK: for HETEROGENEOUS the task context might have switched to a
3907          * different PMU, force (re)set the context,
3908          */
3909         pmu = ctx->pmu = cpuctx->ctx.pmu;
3910
3911         if (cpuctx->task_ctx == ctx) {
3912                 if (cpuctx->sched_cb_usage)
3913                         __perf_pmu_sched_task(cpuctx, true);
3914                 return;
3915         }
3916
3917         perf_ctx_lock(cpuctx, ctx);
3918         /*
3919          * We must check ctx->nr_events while holding ctx->lock, such
3920          * that we serialize against perf_install_in_context().
3921          */
3922         if (!ctx->nr_events)
3923                 goto unlock;
3924
3925         perf_pmu_disable(pmu);
3926         /*
3927          * We want to keep the following priority order:
3928          * cpu pinned (that don't need to move), task pinned,
3929          * cpu flexible, task flexible.
3930          *
3931          * However, if task's ctx is not carrying any pinned
3932          * events, no need to flip the cpuctx's events around.
3933          */
3934         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3935                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3936         perf_event_sched_in(cpuctx, ctx, task);
3937
3938         if (cpuctx->sched_cb_usage && pmu->sched_task)
3939                 pmu->sched_task(cpuctx->task_ctx, true);
3940
3941         perf_pmu_enable(pmu);
3942
3943 unlock:
3944         perf_ctx_unlock(cpuctx, ctx);
3945 }
3946
3947 /*
3948  * Called from scheduler to add the events of the current task
3949  * with interrupts disabled.
3950  *
3951  * We restore the event value and then enable it.
3952  *
3953  * This does not protect us against NMI, but enable()
3954  * sets the enabled bit in the control field of event _before_
3955  * accessing the event control register. If a NMI hits, then it will
3956  * keep the event running.
3957  */
3958 void __perf_event_task_sched_in(struct task_struct *prev,
3959                                 struct task_struct *task)
3960 {
3961         struct perf_event_context *ctx;
3962         int ctxn;
3963
3964         /*
3965          * If cgroup events exist on this CPU, then we need to check if we have
3966          * to switch in PMU state; cgroup event are system-wide mode only.
3967          *
3968          * Since cgroup events are CPU events, we must schedule these in before
3969          * we schedule in the task events.
3970          */
3971         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3972                 perf_cgroup_sched_in(prev, task);
3973
3974         for_each_task_context_nr(ctxn) {
3975                 ctx = task->perf_event_ctxp[ctxn];
3976                 if (likely(!ctx))
3977                         continue;
3978
3979                 perf_event_context_sched_in(ctx, task);
3980         }
3981
3982         if (atomic_read(&nr_switch_events))
3983                 perf_event_switch(task, prev, true);
3984
3985         if (__this_cpu_read(perf_sched_cb_usages))
3986                 perf_pmu_sched_task(prev, task, true);
3987 }
3988
3989 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3990 {
3991         u64 frequency = event->attr.sample_freq;
3992         u64 sec = NSEC_PER_SEC;
3993         u64 divisor, dividend;
3994
3995         int count_fls, nsec_fls, frequency_fls, sec_fls;
3996
3997         count_fls = fls64(count);
3998         nsec_fls = fls64(nsec);
3999         frequency_fls = fls64(frequency);
4000         sec_fls = 30;
4001
4002         /*
4003          * We got @count in @nsec, with a target of sample_freq HZ
4004          * the target period becomes:
4005          *
4006          *             @count * 10^9
4007          * period = -------------------
4008          *          @nsec * sample_freq
4009          *
4010          */
4011
4012         /*
4013          * Reduce accuracy by one bit such that @a and @b converge
4014          * to a similar magnitude.
4015          */
4016 #define REDUCE_FLS(a, b)                \
4017 do {                                    \
4018         if (a##_fls > b##_fls) {        \
4019                 a >>= 1;                \
4020                 a##_fls--;              \
4021         } else {                        \
4022                 b >>= 1;                \
4023                 b##_fls--;              \
4024         }                               \
4025 } while (0)
4026
4027         /*
4028          * Reduce accuracy until either term fits in a u64, then proceed with
4029          * the other, so that finally we can do a u64/u64 division.
4030          */
4031         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4032                 REDUCE_FLS(nsec, frequency);
4033                 REDUCE_FLS(sec, count);
4034         }
4035
4036         if (count_fls + sec_fls > 64) {
4037                 divisor = nsec * frequency;
4038
4039                 while (count_fls + sec_fls > 64) {
4040                         REDUCE_FLS(count, sec);
4041                         divisor >>= 1;
4042                 }
4043
4044                 dividend = count * sec;
4045         } else {
4046                 dividend = count * sec;
4047
4048                 while (nsec_fls + frequency_fls > 64) {
4049                         REDUCE_FLS(nsec, frequency);
4050                         dividend >>= 1;
4051                 }
4052
4053                 divisor = nsec * frequency;
4054         }
4055
4056         if (!divisor)
4057                 return dividend;
4058
4059         return div64_u64(dividend, divisor);
4060 }
4061
4062 static DEFINE_PER_CPU(int, perf_throttled_count);
4063 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4064
4065 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4066 {
4067         struct hw_perf_event *hwc = &event->hw;
4068         s64 period, sample_period;
4069         s64 delta;
4070
4071         period = perf_calculate_period(event, nsec, count);
4072
4073         delta = (s64)(period - hwc->sample_period);
4074         delta = (delta + 7) / 8; /* low pass filter */
4075
4076         sample_period = hwc->sample_period + delta;
4077
4078         if (!sample_period)
4079                 sample_period = 1;
4080
4081         hwc->sample_period = sample_period;
4082
4083         if (local64_read(&hwc->period_left) > 8*sample_period) {
4084                 if (disable)
4085                         event->pmu->stop(event, PERF_EF_UPDATE);
4086
4087                 local64_set(&hwc->period_left, 0);
4088
4089                 if (disable)
4090                         event->pmu->start(event, PERF_EF_RELOAD);
4091         }
4092 }
4093
4094 /*
4095  * combine freq adjustment with unthrottling to avoid two passes over the
4096  * events. At the same time, make sure, having freq events does not change
4097  * the rate of unthrottling as that would introduce bias.
4098  */
4099 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4100                                            int needs_unthr)
4101 {
4102         struct perf_event *event;
4103         struct hw_perf_event *hwc;
4104         u64 now, period = TICK_NSEC;
4105         s64 delta;
4106
4107         /*
4108          * only need to iterate over all events iff:
4109          * - context have events in frequency mode (needs freq adjust)
4110          * - there are events to unthrottle on this cpu
4111          */
4112         if (!(ctx->nr_freq || needs_unthr))
4113                 return;
4114
4115         raw_spin_lock(&ctx->lock);
4116         perf_pmu_disable(ctx->pmu);
4117
4118         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4119                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4120                         continue;
4121
4122                 if (!event_filter_match(event))
4123                         continue;
4124
4125                 perf_pmu_disable(event->pmu);
4126
4127                 hwc = &event->hw;
4128
4129                 if (hwc->interrupts == MAX_INTERRUPTS) {
4130                         hwc->interrupts = 0;
4131                         perf_log_throttle(event, 1);
4132                         event->pmu->start(event, 0);
4133                 }
4134
4135                 if (!event->attr.freq || !event->attr.sample_freq)
4136                         goto next;
4137
4138                 /*
4139                  * stop the event and update event->count
4140                  */
4141                 event->pmu->stop(event, PERF_EF_UPDATE);
4142
4143                 now = local64_read(&event->count);
4144                 delta = now - hwc->freq_count_stamp;
4145                 hwc->freq_count_stamp = now;
4146
4147                 /*
4148                  * restart the event
4149                  * reload only if value has changed
4150                  * we have stopped the event so tell that
4151                  * to perf_adjust_period() to avoid stopping it
4152                  * twice.
4153                  */
4154                 if (delta > 0)
4155                         perf_adjust_period(event, period, delta, false);
4156
4157                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4158         next:
4159                 perf_pmu_enable(event->pmu);
4160         }
4161
4162         perf_pmu_enable(ctx->pmu);
4163         raw_spin_unlock(&ctx->lock);
4164 }
4165
4166 /*
4167  * Move @event to the tail of the @ctx's elegible events.
4168  */
4169 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4170 {
4171         /*
4172          * Rotate the first entry last of non-pinned groups. Rotation might be
4173          * disabled by the inheritance code.
4174          */
4175         if (ctx->rotate_disable)
4176                 return;
4177
4178         perf_event_groups_delete(&ctx->flexible_groups, event);
4179         perf_event_groups_insert(&ctx->flexible_groups, event);
4180 }
4181
4182 /* pick an event from the flexible_groups to rotate */
4183 static inline struct perf_event *
4184 ctx_event_to_rotate(struct perf_event_context *ctx)
4185 {
4186         struct perf_event *event;
4187
4188         /* pick the first active flexible event */
4189         event = list_first_entry_or_null(&ctx->flexible_active,
4190                                          struct perf_event, active_list);
4191
4192         /* if no active flexible event, pick the first event */
4193         if (!event) {
4194                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4195                                       typeof(*event), group_node);
4196         }
4197
4198         /*
4199          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4200          * finds there are unschedulable events, it will set it again.
4201          */
4202         ctx->rotate_necessary = 0;
4203
4204         return event;
4205 }
4206
4207 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4208 {
4209         struct perf_event *cpu_event = NULL, *task_event = NULL;
4210         struct perf_event_context *task_ctx = NULL;
4211         int cpu_rotate, task_rotate;
4212
4213         /*
4214          * Since we run this from IRQ context, nobody can install new
4215          * events, thus the event count values are stable.
4216          */
4217
4218         cpu_rotate = cpuctx->ctx.rotate_necessary;
4219         task_ctx = cpuctx->task_ctx;
4220         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4221
4222         if (!(cpu_rotate || task_rotate))
4223                 return false;
4224
4225         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4226         perf_pmu_disable(cpuctx->ctx.pmu);
4227
4228         if (task_rotate)
4229                 task_event = ctx_event_to_rotate(task_ctx);
4230         if (cpu_rotate)
4231                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4232
4233         /*
4234          * As per the order given at ctx_resched() first 'pop' task flexible
4235          * and then, if needed CPU flexible.
4236          */
4237         if (task_event || (task_ctx && cpu_event))
4238                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4239         if (cpu_event)
4240                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4241
4242         if (task_event)
4243                 rotate_ctx(task_ctx, task_event);
4244         if (cpu_event)
4245                 rotate_ctx(&cpuctx->ctx, cpu_event);
4246
4247         perf_event_sched_in(cpuctx, task_ctx, current);
4248
4249         perf_pmu_enable(cpuctx->ctx.pmu);
4250         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4251
4252         return true;
4253 }
4254
4255 void perf_event_task_tick(void)
4256 {
4257         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4258         struct perf_event_context *ctx, *tmp;
4259         int throttled;
4260
4261         lockdep_assert_irqs_disabled();
4262
4263         __this_cpu_inc(perf_throttled_seq);
4264         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4265         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4266
4267         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4268                 perf_adjust_freq_unthr_context(ctx, throttled);
4269 }
4270
4271 static int event_enable_on_exec(struct perf_event *event,
4272                                 struct perf_event_context *ctx)
4273 {
4274         if (!event->attr.enable_on_exec)
4275                 return 0;
4276
4277         event->attr.enable_on_exec = 0;
4278         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4279                 return 0;
4280
4281         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4282
4283         return 1;
4284 }
4285
4286 /*
4287  * Enable all of a task's events that have been marked enable-on-exec.
4288  * This expects task == current.
4289  */
4290 static void perf_event_enable_on_exec(int ctxn)
4291 {
4292         struct perf_event_context *ctx, *clone_ctx = NULL;
4293         enum event_type_t event_type = 0;
4294         struct perf_cpu_context *cpuctx;
4295         struct perf_event *event;
4296         unsigned long flags;
4297         int enabled = 0;
4298
4299         local_irq_save(flags);
4300         ctx = current->perf_event_ctxp[ctxn];
4301         if (!ctx || !ctx->nr_events)
4302                 goto out;
4303
4304         cpuctx = __get_cpu_context(ctx);
4305         perf_ctx_lock(cpuctx, ctx);
4306         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4307         list_for_each_entry(event, &ctx->event_list, event_entry) {
4308                 enabled |= event_enable_on_exec(event, ctx);
4309                 event_type |= get_event_type(event);
4310         }
4311
4312         /*
4313          * Unclone and reschedule this context if we enabled any event.
4314          */
4315         if (enabled) {
4316                 clone_ctx = unclone_ctx(ctx);
4317                 ctx_resched(cpuctx, ctx, event_type);
4318         } else {
4319                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4320         }
4321         perf_ctx_unlock(cpuctx, ctx);
4322
4323 out:
4324         local_irq_restore(flags);
4325
4326         if (clone_ctx)
4327                 put_ctx(clone_ctx);
4328 }
4329
4330 static void perf_remove_from_owner(struct perf_event *event);
4331 static void perf_event_exit_event(struct perf_event *event,
4332                                   struct perf_event_context *ctx);
4333
4334 /*
4335  * Removes all events from the current task that have been marked
4336  * remove-on-exec, and feeds their values back to parent events.
4337  */
4338 static void perf_event_remove_on_exec(int ctxn)
4339 {
4340         struct perf_event_context *ctx, *clone_ctx = NULL;
4341         struct perf_event *event, *next;
4342         LIST_HEAD(free_list);
4343         unsigned long flags;
4344         bool modified = false;
4345
4346         ctx = perf_pin_task_context(current, ctxn);
4347         if (!ctx)
4348                 return;
4349
4350         mutex_lock(&ctx->mutex);
4351
4352         if (WARN_ON_ONCE(ctx->task != current))
4353                 goto unlock;
4354
4355         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4356                 if (!event->attr.remove_on_exec)
4357                         continue;
4358
4359                 if (!is_kernel_event(event))
4360                         perf_remove_from_owner(event);
4361
4362                 modified = true;
4363
4364                 perf_event_exit_event(event, ctx);
4365         }
4366
4367         raw_spin_lock_irqsave(&ctx->lock, flags);
4368         if (modified)
4369                 clone_ctx = unclone_ctx(ctx);
4370         --ctx->pin_count;
4371         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4372
4373 unlock:
4374         mutex_unlock(&ctx->mutex);
4375
4376         put_ctx(ctx);
4377         if (clone_ctx)
4378                 put_ctx(clone_ctx);
4379 }
4380
4381 struct perf_read_data {
4382         struct perf_event *event;
4383         bool group;
4384         int ret;
4385 };
4386
4387 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4388 {
4389         u16 local_pkg, event_pkg;
4390
4391         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4392                 int local_cpu = smp_processor_id();
4393
4394                 event_pkg = topology_physical_package_id(event_cpu);
4395                 local_pkg = topology_physical_package_id(local_cpu);
4396
4397                 if (event_pkg == local_pkg)
4398                         return local_cpu;
4399         }
4400
4401         return event_cpu;
4402 }
4403
4404 /*
4405  * Cross CPU call to read the hardware event
4406  */
4407 static void __perf_event_read(void *info)
4408 {
4409         struct perf_read_data *data = info;
4410         struct perf_event *sub, *event = data->event;
4411         struct perf_event_context *ctx = event->ctx;
4412         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4413         struct pmu *pmu = event->pmu;
4414
4415         /*
4416          * If this is a task context, we need to check whether it is
4417          * the current task context of this cpu.  If not it has been
4418          * scheduled out before the smp call arrived.  In that case
4419          * event->count would have been updated to a recent sample
4420          * when the event was scheduled out.
4421          */
4422         if (ctx->task && cpuctx->task_ctx != ctx)
4423                 return;
4424
4425         raw_spin_lock(&ctx->lock);
4426         if (ctx->is_active & EVENT_TIME) {
4427                 update_context_time(ctx);
4428                 update_cgrp_time_from_event(event);
4429         }
4430
4431         perf_event_update_time(event);
4432         if (data->group)
4433                 perf_event_update_sibling_time(event);
4434
4435         if (event->state != PERF_EVENT_STATE_ACTIVE)
4436                 goto unlock;
4437
4438         if (!data->group) {
4439                 pmu->read(event);
4440                 data->ret = 0;
4441                 goto unlock;
4442         }
4443
4444         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4445
4446         pmu->read(event);
4447
4448         for_each_sibling_event(sub, event) {
4449                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4450                         /*
4451                          * Use sibling's PMU rather than @event's since
4452                          * sibling could be on different (eg: software) PMU.
4453                          */
4454                         sub->pmu->read(sub);
4455                 }
4456         }
4457
4458         data->ret = pmu->commit_txn(pmu);
4459
4460 unlock:
4461         raw_spin_unlock(&ctx->lock);
4462 }
4463
4464 static inline u64 perf_event_count(struct perf_event *event)
4465 {
4466         return local64_read(&event->count) + atomic64_read(&event->child_count);
4467 }
4468
4469 static void calc_timer_values(struct perf_event *event,
4470                                 u64 *now,
4471                                 u64 *enabled,
4472                                 u64 *running)
4473 {
4474         u64 ctx_time;
4475
4476         *now = perf_clock();
4477         ctx_time = perf_event_time_now(event, *now);
4478         __perf_update_times(event, ctx_time, enabled, running);
4479 }
4480
4481 /*
4482  * NMI-safe method to read a local event, that is an event that
4483  * is:
4484  *   - either for the current task, or for this CPU
4485  *   - does not have inherit set, for inherited task events
4486  *     will not be local and we cannot read them atomically
4487  *   - must not have a pmu::count method
4488  */
4489 int perf_event_read_local(struct perf_event *event, u64 *value,
4490                           u64 *enabled, u64 *running)
4491 {
4492         unsigned long flags;
4493         int ret = 0;
4494
4495         /*
4496          * Disabling interrupts avoids all counter scheduling (context
4497          * switches, timer based rotation and IPIs).
4498          */
4499         local_irq_save(flags);
4500
4501         /*
4502          * It must not be an event with inherit set, we cannot read
4503          * all child counters from atomic context.
4504          */
4505         if (event->attr.inherit) {
4506                 ret = -EOPNOTSUPP;
4507                 goto out;
4508         }
4509
4510         /* If this is a per-task event, it must be for current */
4511         if ((event->attach_state & PERF_ATTACH_TASK) &&
4512             event->hw.target != current) {
4513                 ret = -EINVAL;
4514                 goto out;
4515         }
4516
4517         /* If this is a per-CPU event, it must be for this CPU */
4518         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4519             event->cpu != smp_processor_id()) {
4520                 ret = -EINVAL;
4521                 goto out;
4522         }
4523
4524         /* If this is a pinned event it must be running on this CPU */
4525         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4526                 ret = -EBUSY;
4527                 goto out;
4528         }
4529
4530         /*
4531          * If the event is currently on this CPU, its either a per-task event,
4532          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4533          * oncpu == -1).
4534          */
4535         if (event->oncpu == smp_processor_id())
4536                 event->pmu->read(event);
4537
4538         *value = local64_read(&event->count);
4539         if (enabled || running) {
4540                 u64 __enabled, __running, __now;;
4541
4542                 calc_timer_values(event, &__now, &__enabled, &__running);
4543                 if (enabled)
4544                         *enabled = __enabled;
4545                 if (running)
4546                         *running = __running;
4547         }
4548 out:
4549         local_irq_restore(flags);
4550
4551         return ret;
4552 }
4553
4554 static int perf_event_read(struct perf_event *event, bool group)
4555 {
4556         enum perf_event_state state = READ_ONCE(event->state);
4557         int event_cpu, ret = 0;
4558
4559         /*
4560          * If event is enabled and currently active on a CPU, update the
4561          * value in the event structure:
4562          */
4563 again:
4564         if (state == PERF_EVENT_STATE_ACTIVE) {
4565                 struct perf_read_data data;
4566
4567                 /*
4568                  * Orders the ->state and ->oncpu loads such that if we see
4569                  * ACTIVE we must also see the right ->oncpu.
4570                  *
4571                  * Matches the smp_wmb() from event_sched_in().
4572                  */
4573                 smp_rmb();
4574
4575                 event_cpu = READ_ONCE(event->oncpu);
4576                 if ((unsigned)event_cpu >= nr_cpu_ids)
4577                         return 0;
4578
4579                 data = (struct perf_read_data){
4580                         .event = event,
4581                         .group = group,
4582                         .ret = 0,
4583                 };
4584
4585                 preempt_disable();
4586                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4587
4588                 /*
4589                  * Purposely ignore the smp_call_function_single() return
4590                  * value.
4591                  *
4592                  * If event_cpu isn't a valid CPU it means the event got
4593                  * scheduled out and that will have updated the event count.
4594                  *
4595                  * Therefore, either way, we'll have an up-to-date event count
4596                  * after this.
4597                  */
4598                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4599                 preempt_enable();
4600                 ret = data.ret;
4601
4602         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4603                 struct perf_event_context *ctx = event->ctx;
4604                 unsigned long flags;
4605
4606                 raw_spin_lock_irqsave(&ctx->lock, flags);
4607                 state = event->state;
4608                 if (state != PERF_EVENT_STATE_INACTIVE) {
4609                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4610                         goto again;
4611                 }
4612
4613                 /*
4614                  * May read while context is not active (e.g., thread is
4615                  * blocked), in that case we cannot update context time
4616                  */
4617                 if (ctx->is_active & EVENT_TIME) {
4618                         update_context_time(ctx);
4619                         update_cgrp_time_from_event(event);
4620                 }
4621
4622                 perf_event_update_time(event);
4623                 if (group)
4624                         perf_event_update_sibling_time(event);
4625                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4626         }
4627
4628         return ret;
4629 }
4630
4631 /*
4632  * Initialize the perf_event context in a task_struct:
4633  */
4634 static void __perf_event_init_context(struct perf_event_context *ctx)
4635 {
4636         raw_spin_lock_init(&ctx->lock);
4637         mutex_init(&ctx->mutex);
4638         INIT_LIST_HEAD(&ctx->active_ctx_list);
4639         perf_event_groups_init(&ctx->pinned_groups);
4640         perf_event_groups_init(&ctx->flexible_groups);
4641         INIT_LIST_HEAD(&ctx->event_list);
4642         INIT_LIST_HEAD(&ctx->pinned_active);
4643         INIT_LIST_HEAD(&ctx->flexible_active);
4644         refcount_set(&ctx->refcount, 1);
4645 }
4646
4647 static struct perf_event_context *
4648 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4649 {
4650         struct perf_event_context *ctx;
4651
4652         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4653         if (!ctx)
4654                 return NULL;
4655
4656         __perf_event_init_context(ctx);
4657         if (task)
4658                 ctx->task = get_task_struct(task);
4659         ctx->pmu = pmu;
4660
4661         return ctx;
4662 }
4663
4664 static struct task_struct *
4665 find_lively_task_by_vpid(pid_t vpid)
4666 {
4667         struct task_struct *task;
4668
4669         rcu_read_lock();
4670         if (!vpid)
4671                 task = current;
4672         else
4673                 task = find_task_by_vpid(vpid);
4674         if (task)
4675                 get_task_struct(task);
4676         rcu_read_unlock();
4677
4678         if (!task)
4679                 return ERR_PTR(-ESRCH);
4680
4681         return task;
4682 }
4683
4684 /*
4685  * Returns a matching context with refcount and pincount.
4686  */
4687 static struct perf_event_context *
4688 find_get_context(struct pmu *pmu, struct task_struct *task,
4689                 struct perf_event *event)
4690 {
4691         struct perf_event_context *ctx, *clone_ctx = NULL;
4692         struct perf_cpu_context *cpuctx;
4693         void *task_ctx_data = NULL;
4694         unsigned long flags;
4695         int ctxn, err;
4696         int cpu = event->cpu;
4697
4698         if (!task) {
4699                 /* Must be root to operate on a CPU event: */
4700                 err = perf_allow_cpu(&event->attr);
4701                 if (err)
4702                         return ERR_PTR(err);
4703
4704                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4705                 ctx = &cpuctx->ctx;
4706                 get_ctx(ctx);
4707                 raw_spin_lock_irqsave(&ctx->lock, flags);
4708                 ++ctx->pin_count;
4709                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4710
4711                 return ctx;
4712         }
4713
4714         err = -EINVAL;
4715         ctxn = pmu->task_ctx_nr;
4716         if (ctxn < 0)
4717                 goto errout;
4718
4719         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4720                 task_ctx_data = alloc_task_ctx_data(pmu);
4721                 if (!task_ctx_data) {
4722                         err = -ENOMEM;
4723                         goto errout;
4724                 }
4725         }
4726
4727 retry:
4728         ctx = perf_lock_task_context(task, ctxn, &flags);
4729         if (ctx) {
4730                 clone_ctx = unclone_ctx(ctx);
4731                 ++ctx->pin_count;
4732
4733                 if (task_ctx_data && !ctx->task_ctx_data) {
4734                         ctx->task_ctx_data = task_ctx_data;
4735                         task_ctx_data = NULL;
4736                 }
4737                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4738
4739                 if (clone_ctx)
4740                         put_ctx(clone_ctx);
4741         } else {
4742                 ctx = alloc_perf_context(pmu, task);
4743                 err = -ENOMEM;
4744                 if (!ctx)
4745                         goto errout;
4746
4747                 if (task_ctx_data) {
4748                         ctx->task_ctx_data = task_ctx_data;
4749                         task_ctx_data = NULL;
4750                 }
4751
4752                 err = 0;
4753                 mutex_lock(&task->perf_event_mutex);
4754                 /*
4755                  * If it has already passed perf_event_exit_task().
4756                  * we must see PF_EXITING, it takes this mutex too.
4757                  */
4758                 if (task->flags & PF_EXITING)
4759                         err = -ESRCH;
4760                 else if (task->perf_event_ctxp[ctxn])
4761                         err = -EAGAIN;
4762                 else {
4763                         get_ctx(ctx);
4764                         ++ctx->pin_count;
4765                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4766                 }
4767                 mutex_unlock(&task->perf_event_mutex);
4768
4769                 if (unlikely(err)) {
4770                         put_ctx(ctx);
4771
4772                         if (err == -EAGAIN)
4773                                 goto retry;
4774                         goto errout;
4775                 }
4776         }
4777
4778         free_task_ctx_data(pmu, task_ctx_data);
4779         return ctx;
4780
4781 errout:
4782         free_task_ctx_data(pmu, task_ctx_data);
4783         return ERR_PTR(err);
4784 }
4785
4786 static void perf_event_free_filter(struct perf_event *event);
4787
4788 static void free_event_rcu(struct rcu_head *head)
4789 {
4790         struct perf_event *event;
4791
4792         event = container_of(head, struct perf_event, rcu_head);
4793         if (event->ns)
4794                 put_pid_ns(event->ns);
4795         perf_event_free_filter(event);
4796         kmem_cache_free(perf_event_cache, event);
4797 }
4798
4799 static void ring_buffer_attach(struct perf_event *event,
4800                                struct perf_buffer *rb);
4801
4802 static void detach_sb_event(struct perf_event *event)
4803 {
4804         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4805
4806         raw_spin_lock(&pel->lock);
4807         list_del_rcu(&event->sb_list);
4808         raw_spin_unlock(&pel->lock);
4809 }
4810
4811 static bool is_sb_event(struct perf_event *event)
4812 {
4813         struct perf_event_attr *attr = &event->attr;
4814
4815         if (event->parent)
4816                 return false;
4817
4818         if (event->attach_state & PERF_ATTACH_TASK)
4819                 return false;
4820
4821         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4822             attr->comm || attr->comm_exec ||
4823             attr->task || attr->ksymbol ||
4824             attr->context_switch || attr->text_poke ||
4825             attr->bpf_event)
4826                 return true;
4827         return false;
4828 }
4829
4830 static void unaccount_pmu_sb_event(struct perf_event *event)
4831 {
4832         if (is_sb_event(event))
4833                 detach_sb_event(event);
4834 }
4835
4836 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4837 {
4838         if (event->parent)
4839                 return;
4840
4841         if (is_cgroup_event(event))
4842                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4843 }
4844
4845 #ifdef CONFIG_NO_HZ_FULL
4846 static DEFINE_SPINLOCK(nr_freq_lock);
4847 #endif
4848
4849 static void unaccount_freq_event_nohz(void)
4850 {
4851 #ifdef CONFIG_NO_HZ_FULL
4852         spin_lock(&nr_freq_lock);
4853         if (atomic_dec_and_test(&nr_freq_events))
4854                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4855         spin_unlock(&nr_freq_lock);
4856 #endif
4857 }
4858
4859 static void unaccount_freq_event(void)
4860 {
4861         if (tick_nohz_full_enabled())
4862                 unaccount_freq_event_nohz();
4863         else
4864                 atomic_dec(&nr_freq_events);
4865 }
4866
4867 static void unaccount_event(struct perf_event *event)
4868 {
4869         bool dec = false;
4870
4871         if (event->parent)
4872                 return;
4873
4874         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4875                 dec = true;
4876         if (event->attr.mmap || event->attr.mmap_data)
4877                 atomic_dec(&nr_mmap_events);
4878         if (event->attr.build_id)
4879                 atomic_dec(&nr_build_id_events);
4880         if (event->attr.comm)
4881                 atomic_dec(&nr_comm_events);
4882         if (event->attr.namespaces)
4883                 atomic_dec(&nr_namespaces_events);
4884         if (event->attr.cgroup)
4885                 atomic_dec(&nr_cgroup_events);
4886         if (event->attr.task)
4887                 atomic_dec(&nr_task_events);
4888         if (event->attr.freq)
4889                 unaccount_freq_event();
4890         if (event->attr.context_switch) {
4891                 dec = true;
4892                 atomic_dec(&nr_switch_events);
4893         }
4894         if (is_cgroup_event(event))
4895                 dec = true;
4896         if (has_branch_stack(event))
4897                 dec = true;
4898         if (event->attr.ksymbol)
4899                 atomic_dec(&nr_ksymbol_events);
4900         if (event->attr.bpf_event)
4901                 atomic_dec(&nr_bpf_events);
4902         if (event->attr.text_poke)
4903                 atomic_dec(&nr_text_poke_events);
4904
4905         if (dec) {
4906                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4907                         schedule_delayed_work(&perf_sched_work, HZ);
4908         }
4909
4910         unaccount_event_cpu(event, event->cpu);
4911
4912         unaccount_pmu_sb_event(event);
4913 }
4914
4915 static void perf_sched_delayed(struct work_struct *work)
4916 {
4917         mutex_lock(&perf_sched_mutex);
4918         if (atomic_dec_and_test(&perf_sched_count))
4919                 static_branch_disable(&perf_sched_events);
4920         mutex_unlock(&perf_sched_mutex);
4921 }
4922
4923 /*
4924  * The following implement mutual exclusion of events on "exclusive" pmus
4925  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4926  * at a time, so we disallow creating events that might conflict, namely:
4927  *
4928  *  1) cpu-wide events in the presence of per-task events,
4929  *  2) per-task events in the presence of cpu-wide events,
4930  *  3) two matching events on the same context.
4931  *
4932  * The former two cases are handled in the allocation path (perf_event_alloc(),
4933  * _free_event()), the latter -- before the first perf_install_in_context().
4934  */
4935 static int exclusive_event_init(struct perf_event *event)
4936 {
4937         struct pmu *pmu = event->pmu;
4938
4939         if (!is_exclusive_pmu(pmu))
4940                 return 0;
4941
4942         /*
4943          * Prevent co-existence of per-task and cpu-wide events on the
4944          * same exclusive pmu.
4945          *
4946          * Negative pmu::exclusive_cnt means there are cpu-wide
4947          * events on this "exclusive" pmu, positive means there are
4948          * per-task events.
4949          *
4950          * Since this is called in perf_event_alloc() path, event::ctx
4951          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4952          * to mean "per-task event", because unlike other attach states it
4953          * never gets cleared.
4954          */
4955         if (event->attach_state & PERF_ATTACH_TASK) {
4956                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4957                         return -EBUSY;
4958         } else {
4959                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4960                         return -EBUSY;
4961         }
4962
4963         return 0;
4964 }
4965
4966 static void exclusive_event_destroy(struct perf_event *event)
4967 {
4968         struct pmu *pmu = event->pmu;
4969
4970         if (!is_exclusive_pmu(pmu))
4971                 return;
4972
4973         /* see comment in exclusive_event_init() */
4974         if (event->attach_state & PERF_ATTACH_TASK)
4975                 atomic_dec(&pmu->exclusive_cnt);
4976         else
4977                 atomic_inc(&pmu->exclusive_cnt);
4978 }
4979
4980 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4981 {
4982         if ((e1->pmu == e2->pmu) &&
4983             (e1->cpu == e2->cpu ||
4984              e1->cpu == -1 ||
4985              e2->cpu == -1))
4986                 return true;
4987         return false;
4988 }
4989
4990 static bool exclusive_event_installable(struct perf_event *event,
4991                                         struct perf_event_context *ctx)
4992 {
4993         struct perf_event *iter_event;
4994         struct pmu *pmu = event->pmu;
4995
4996         lockdep_assert_held(&ctx->mutex);
4997
4998         if (!is_exclusive_pmu(pmu))
4999                 return true;
5000
5001         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5002                 if (exclusive_event_match(iter_event, event))
5003                         return false;
5004         }
5005
5006         return true;
5007 }
5008
5009 static void perf_addr_filters_splice(struct perf_event *event,
5010                                        struct list_head *head);
5011
5012 static void _free_event(struct perf_event *event)
5013 {
5014         irq_work_sync(&event->pending);
5015
5016         unaccount_event(event);
5017
5018         security_perf_event_free(event);
5019
5020         if (event->rb) {
5021                 /*
5022                  * Can happen when we close an event with re-directed output.
5023                  *
5024                  * Since we have a 0 refcount, perf_mmap_close() will skip
5025                  * over us; possibly making our ring_buffer_put() the last.
5026                  */
5027                 mutex_lock(&event->mmap_mutex);
5028                 ring_buffer_attach(event, NULL);
5029                 mutex_unlock(&event->mmap_mutex);
5030         }
5031
5032         if (is_cgroup_event(event))
5033                 perf_detach_cgroup(event);
5034
5035         if (!event->parent) {
5036                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5037                         put_callchain_buffers();
5038         }
5039
5040         perf_event_free_bpf_prog(event);
5041         perf_addr_filters_splice(event, NULL);
5042         kfree(event->addr_filter_ranges);
5043
5044         if (event->destroy)
5045                 event->destroy(event);
5046
5047         /*
5048          * Must be after ->destroy(), due to uprobe_perf_close() using
5049          * hw.target.
5050          */
5051         if (event->hw.target)
5052                 put_task_struct(event->hw.target);
5053
5054         /*
5055          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5056          * all task references must be cleaned up.
5057          */
5058         if (event->ctx)
5059                 put_ctx(event->ctx);
5060
5061         exclusive_event_destroy(event);
5062         module_put(event->pmu->module);
5063
5064         call_rcu(&event->rcu_head, free_event_rcu);
5065 }
5066
5067 /*
5068  * Used to free events which have a known refcount of 1, such as in error paths
5069  * where the event isn't exposed yet and inherited events.
5070  */
5071 static void free_event(struct perf_event *event)
5072 {
5073         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5074                                 "unexpected event refcount: %ld; ptr=%p\n",
5075                                 atomic_long_read(&event->refcount), event)) {
5076                 /* leak to avoid use-after-free */
5077                 return;
5078         }
5079
5080         _free_event(event);
5081 }
5082
5083 /*
5084  * Remove user event from the owner task.
5085  */
5086 static void perf_remove_from_owner(struct perf_event *event)
5087 {
5088         struct task_struct *owner;
5089
5090         rcu_read_lock();
5091         /*
5092          * Matches the smp_store_release() in perf_event_exit_task(). If we
5093          * observe !owner it means the list deletion is complete and we can
5094          * indeed free this event, otherwise we need to serialize on
5095          * owner->perf_event_mutex.
5096          */
5097         owner = READ_ONCE(event->owner);
5098         if (owner) {
5099                 /*
5100                  * Since delayed_put_task_struct() also drops the last
5101                  * task reference we can safely take a new reference
5102                  * while holding the rcu_read_lock().
5103                  */
5104                 get_task_struct(owner);
5105         }
5106         rcu_read_unlock();
5107
5108         if (owner) {
5109                 /*
5110                  * If we're here through perf_event_exit_task() we're already
5111                  * holding ctx->mutex which would be an inversion wrt. the
5112                  * normal lock order.
5113                  *
5114                  * However we can safely take this lock because its the child
5115                  * ctx->mutex.
5116                  */
5117                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5118
5119                 /*
5120                  * We have to re-check the event->owner field, if it is cleared
5121                  * we raced with perf_event_exit_task(), acquiring the mutex
5122                  * ensured they're done, and we can proceed with freeing the
5123                  * event.
5124                  */
5125                 if (event->owner) {
5126                         list_del_init(&event->owner_entry);
5127                         smp_store_release(&event->owner, NULL);
5128                 }
5129                 mutex_unlock(&owner->perf_event_mutex);
5130                 put_task_struct(owner);
5131         }
5132 }
5133
5134 static void put_event(struct perf_event *event)
5135 {
5136         if (!atomic_long_dec_and_test(&event->refcount))
5137                 return;
5138
5139         _free_event(event);
5140 }
5141
5142 /*
5143  * Kill an event dead; while event:refcount will preserve the event
5144  * object, it will not preserve its functionality. Once the last 'user'
5145  * gives up the object, we'll destroy the thing.
5146  */
5147 int perf_event_release_kernel(struct perf_event *event)
5148 {
5149         struct perf_event_context *ctx = event->ctx;
5150         struct perf_event *child, *tmp;
5151         LIST_HEAD(free_list);
5152
5153         /*
5154          * If we got here through err_file: fput(event_file); we will not have
5155          * attached to a context yet.
5156          */
5157         if (!ctx) {
5158                 WARN_ON_ONCE(event->attach_state &
5159                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5160                 goto no_ctx;
5161         }
5162
5163         if (!is_kernel_event(event))
5164                 perf_remove_from_owner(event);
5165
5166         ctx = perf_event_ctx_lock(event);
5167         WARN_ON_ONCE(ctx->parent_ctx);
5168         perf_remove_from_context(event, DETACH_GROUP);
5169
5170         raw_spin_lock_irq(&ctx->lock);
5171         /*
5172          * Mark this event as STATE_DEAD, there is no external reference to it
5173          * anymore.
5174          *
5175          * Anybody acquiring event->child_mutex after the below loop _must_
5176          * also see this, most importantly inherit_event() which will avoid
5177          * placing more children on the list.
5178          *
5179          * Thus this guarantees that we will in fact observe and kill _ALL_
5180          * child events.
5181          */
5182         event->state = PERF_EVENT_STATE_DEAD;
5183         raw_spin_unlock_irq(&ctx->lock);
5184
5185         perf_event_ctx_unlock(event, ctx);
5186
5187 again:
5188         mutex_lock(&event->child_mutex);
5189         list_for_each_entry(child, &event->child_list, child_list) {
5190
5191                 /*
5192                  * Cannot change, child events are not migrated, see the
5193                  * comment with perf_event_ctx_lock_nested().
5194                  */
5195                 ctx = READ_ONCE(child->ctx);
5196                 /*
5197                  * Since child_mutex nests inside ctx::mutex, we must jump
5198                  * through hoops. We start by grabbing a reference on the ctx.
5199                  *
5200                  * Since the event cannot get freed while we hold the
5201                  * child_mutex, the context must also exist and have a !0
5202                  * reference count.
5203                  */
5204                 get_ctx(ctx);
5205
5206                 /*
5207                  * Now that we have a ctx ref, we can drop child_mutex, and
5208                  * acquire ctx::mutex without fear of it going away. Then we
5209                  * can re-acquire child_mutex.
5210                  */
5211                 mutex_unlock(&event->child_mutex);
5212                 mutex_lock(&ctx->mutex);
5213                 mutex_lock(&event->child_mutex);
5214
5215                 /*
5216                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5217                  * state, if child is still the first entry, it didn't get freed
5218                  * and we can continue doing so.
5219                  */
5220                 tmp = list_first_entry_or_null(&event->child_list,
5221                                                struct perf_event, child_list);
5222                 if (tmp == child) {
5223                         perf_remove_from_context(child, DETACH_GROUP);
5224                         list_move(&child->child_list, &free_list);
5225                         /*
5226                          * This matches the refcount bump in inherit_event();
5227                          * this can't be the last reference.
5228                          */
5229                         put_event(event);
5230                 }
5231
5232                 mutex_unlock(&event->child_mutex);
5233                 mutex_unlock(&ctx->mutex);
5234                 put_ctx(ctx);
5235                 goto again;
5236         }
5237         mutex_unlock(&event->child_mutex);
5238
5239         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5240                 void *var = &child->ctx->refcount;
5241
5242                 list_del(&child->child_list);
5243                 free_event(child);
5244
5245                 /*
5246                  * Wake any perf_event_free_task() waiting for this event to be
5247                  * freed.
5248                  */
5249                 smp_mb(); /* pairs with wait_var_event() */
5250                 wake_up_var(var);
5251         }
5252
5253 no_ctx:
5254         put_event(event); /* Must be the 'last' reference */
5255         return 0;
5256 }
5257 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5258
5259 /*
5260  * Called when the last reference to the file is gone.
5261  */
5262 static int perf_release(struct inode *inode, struct file *file)
5263 {
5264         perf_event_release_kernel(file->private_data);
5265         return 0;
5266 }
5267
5268 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5269 {
5270         struct perf_event *child;
5271         u64 total = 0;
5272
5273         *enabled = 0;
5274         *running = 0;
5275
5276         mutex_lock(&event->child_mutex);
5277
5278         (void)perf_event_read(event, false);
5279         total += perf_event_count(event);
5280
5281         *enabled += event->total_time_enabled +
5282                         atomic64_read(&event->child_total_time_enabled);
5283         *running += event->total_time_running +
5284                         atomic64_read(&event->child_total_time_running);
5285
5286         list_for_each_entry(child, &event->child_list, child_list) {
5287                 (void)perf_event_read(child, false);
5288                 total += perf_event_count(child);
5289                 *enabled += child->total_time_enabled;
5290                 *running += child->total_time_running;
5291         }
5292         mutex_unlock(&event->child_mutex);
5293
5294         return total;
5295 }
5296
5297 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5298 {
5299         struct perf_event_context *ctx;
5300         u64 count;
5301
5302         ctx = perf_event_ctx_lock(event);
5303         count = __perf_event_read_value(event, enabled, running);
5304         perf_event_ctx_unlock(event, ctx);
5305
5306         return count;
5307 }
5308 EXPORT_SYMBOL_GPL(perf_event_read_value);
5309
5310 static int __perf_read_group_add(struct perf_event *leader,
5311                                         u64 read_format, u64 *values)
5312 {
5313         struct perf_event_context *ctx = leader->ctx;
5314         struct perf_event *sub;
5315         unsigned long flags;
5316         int n = 1; /* skip @nr */
5317         int ret;
5318
5319         ret = perf_event_read(leader, true);
5320         if (ret)
5321                 return ret;
5322
5323         raw_spin_lock_irqsave(&ctx->lock, flags);
5324
5325         /*
5326          * Since we co-schedule groups, {enabled,running} times of siblings
5327          * will be identical to those of the leader, so we only publish one
5328          * set.
5329          */
5330         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5331                 values[n++] += leader->total_time_enabled +
5332                         atomic64_read(&leader->child_total_time_enabled);
5333         }
5334
5335         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5336                 values[n++] += leader->total_time_running +
5337                         atomic64_read(&leader->child_total_time_running);
5338         }
5339
5340         /*
5341          * Write {count,id} tuples for every sibling.
5342          */
5343         values[n++] += perf_event_count(leader);
5344         if (read_format & PERF_FORMAT_ID)
5345                 values[n++] = primary_event_id(leader);
5346
5347         for_each_sibling_event(sub, leader) {
5348                 values[n++] += perf_event_count(sub);
5349                 if (read_format & PERF_FORMAT_ID)
5350                         values[n++] = primary_event_id(sub);
5351         }
5352
5353         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5354         return 0;
5355 }
5356
5357 static int perf_read_group(struct perf_event *event,
5358                                    u64 read_format, char __user *buf)
5359 {
5360         struct perf_event *leader = event->group_leader, *child;
5361         struct perf_event_context *ctx = leader->ctx;
5362         int ret;
5363         u64 *values;
5364
5365         lockdep_assert_held(&ctx->mutex);
5366
5367         values = kzalloc(event->read_size, GFP_KERNEL);
5368         if (!values)
5369                 return -ENOMEM;
5370
5371         values[0] = 1 + leader->nr_siblings;
5372
5373         /*
5374          * By locking the child_mutex of the leader we effectively
5375          * lock the child list of all siblings.. XXX explain how.
5376          */
5377         mutex_lock(&leader->child_mutex);
5378
5379         ret = __perf_read_group_add(leader, read_format, values);
5380         if (ret)
5381                 goto unlock;
5382
5383         list_for_each_entry(child, &leader->child_list, child_list) {
5384                 ret = __perf_read_group_add(child, read_format, values);
5385                 if (ret)
5386                         goto unlock;
5387         }
5388
5389         mutex_unlock(&leader->child_mutex);
5390
5391         ret = event->read_size;
5392         if (copy_to_user(buf, values, event->read_size))
5393                 ret = -EFAULT;
5394         goto out;
5395
5396 unlock:
5397         mutex_unlock(&leader->child_mutex);
5398 out:
5399         kfree(values);
5400         return ret;
5401 }
5402
5403 static int perf_read_one(struct perf_event *event,
5404                                  u64 read_format, char __user *buf)
5405 {
5406         u64 enabled, running;
5407         u64 values[4];
5408         int n = 0;
5409
5410         values[n++] = __perf_event_read_value(event, &enabled, &running);
5411         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5412                 values[n++] = enabled;
5413         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5414                 values[n++] = running;
5415         if (read_format & PERF_FORMAT_ID)
5416                 values[n++] = primary_event_id(event);
5417
5418         if (copy_to_user(buf, values, n * sizeof(u64)))
5419                 return -EFAULT;
5420
5421         return n * sizeof(u64);
5422 }
5423
5424 static bool is_event_hup(struct perf_event *event)
5425 {
5426         bool no_children;
5427
5428         if (event->state > PERF_EVENT_STATE_EXIT)
5429                 return false;
5430
5431         mutex_lock(&event->child_mutex);
5432         no_children = list_empty(&event->child_list);
5433         mutex_unlock(&event->child_mutex);
5434         return no_children;
5435 }
5436
5437 /*
5438  * Read the performance event - simple non blocking version for now
5439  */
5440 static ssize_t
5441 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5442 {
5443         u64 read_format = event->attr.read_format;
5444         int ret;
5445
5446         /*
5447          * Return end-of-file for a read on an event that is in
5448          * error state (i.e. because it was pinned but it couldn't be
5449          * scheduled on to the CPU at some point).
5450          */
5451         if (event->state == PERF_EVENT_STATE_ERROR)
5452                 return 0;
5453
5454         if (count < event->read_size)
5455                 return -ENOSPC;
5456
5457         WARN_ON_ONCE(event->ctx->parent_ctx);
5458         if (read_format & PERF_FORMAT_GROUP)
5459                 ret = perf_read_group(event, read_format, buf);
5460         else
5461                 ret = perf_read_one(event, read_format, buf);
5462
5463         return ret;
5464 }
5465
5466 static ssize_t
5467 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5468 {
5469         struct perf_event *event = file->private_data;
5470         struct perf_event_context *ctx;
5471         int ret;
5472
5473         ret = security_perf_event_read(event);
5474         if (ret)
5475                 return ret;
5476
5477         ctx = perf_event_ctx_lock(event);
5478         ret = __perf_read(event, buf, count);
5479         perf_event_ctx_unlock(event, ctx);
5480
5481         return ret;
5482 }
5483
5484 static __poll_t perf_poll(struct file *file, poll_table *wait)
5485 {
5486         struct perf_event *event = file->private_data;
5487         struct perf_buffer *rb;
5488         __poll_t events = EPOLLHUP;
5489
5490         poll_wait(file, &event->waitq, wait);
5491
5492         if (is_event_hup(event))
5493                 return events;
5494
5495         /*
5496          * Pin the event->rb by taking event->mmap_mutex; otherwise
5497          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5498          */
5499         mutex_lock(&event->mmap_mutex);
5500         rb = event->rb;
5501         if (rb)
5502                 events = atomic_xchg(&rb->poll, 0);
5503         mutex_unlock(&event->mmap_mutex);
5504         return events;
5505 }
5506
5507 static void _perf_event_reset(struct perf_event *event)
5508 {
5509         (void)perf_event_read(event, false);
5510         local64_set(&event->count, 0);
5511         perf_event_update_userpage(event);
5512 }
5513
5514 /* Assume it's not an event with inherit set. */
5515 u64 perf_event_pause(struct perf_event *event, bool reset)
5516 {
5517         struct perf_event_context *ctx;
5518         u64 count;
5519
5520         ctx = perf_event_ctx_lock(event);
5521         WARN_ON_ONCE(event->attr.inherit);
5522         _perf_event_disable(event);
5523         count = local64_read(&event->count);
5524         if (reset)
5525                 local64_set(&event->count, 0);
5526         perf_event_ctx_unlock(event, ctx);
5527
5528         return count;
5529 }
5530 EXPORT_SYMBOL_GPL(perf_event_pause);
5531
5532 /*
5533  * Holding the top-level event's child_mutex means that any
5534  * descendant process that has inherited this event will block
5535  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5536  * task existence requirements of perf_event_enable/disable.
5537  */
5538 static void perf_event_for_each_child(struct perf_event *event,
5539                                         void (*func)(struct perf_event *))
5540 {
5541         struct perf_event *child;
5542
5543         WARN_ON_ONCE(event->ctx->parent_ctx);
5544
5545         mutex_lock(&event->child_mutex);
5546         func(event);
5547         list_for_each_entry(child, &event->child_list, child_list)
5548                 func(child);
5549         mutex_unlock(&event->child_mutex);
5550 }
5551
5552 static void perf_event_for_each(struct perf_event *event,
5553                                   void (*func)(struct perf_event *))
5554 {
5555         struct perf_event_context *ctx = event->ctx;
5556         struct perf_event *sibling;
5557
5558         lockdep_assert_held(&ctx->mutex);
5559
5560         event = event->group_leader;
5561
5562         perf_event_for_each_child(event, func);
5563         for_each_sibling_event(sibling, event)
5564                 perf_event_for_each_child(sibling, func);
5565 }
5566
5567 static void __perf_event_period(struct perf_event *event,
5568                                 struct perf_cpu_context *cpuctx,
5569                                 struct perf_event_context *ctx,
5570                                 void *info)
5571 {
5572         u64 value = *((u64 *)info);
5573         bool active;
5574
5575         if (event->attr.freq) {
5576                 event->attr.sample_freq = value;
5577         } else {
5578                 event->attr.sample_period = value;
5579                 event->hw.sample_period = value;
5580         }
5581
5582         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5583         if (active) {
5584                 perf_pmu_disable(ctx->pmu);
5585                 /*
5586                  * We could be throttled; unthrottle now to avoid the tick
5587                  * trying to unthrottle while we already re-started the event.
5588                  */
5589                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5590                         event->hw.interrupts = 0;
5591                         perf_log_throttle(event, 1);
5592                 }
5593                 event->pmu->stop(event, PERF_EF_UPDATE);
5594         }
5595
5596         local64_set(&event->hw.period_left, 0);
5597
5598         if (active) {
5599                 event->pmu->start(event, PERF_EF_RELOAD);
5600                 perf_pmu_enable(ctx->pmu);
5601         }
5602 }
5603
5604 static int perf_event_check_period(struct perf_event *event, u64 value)
5605 {
5606         return event->pmu->check_period(event, value);
5607 }
5608
5609 static int _perf_event_period(struct perf_event *event, u64 value)
5610 {
5611         if (!is_sampling_event(event))
5612                 return -EINVAL;
5613
5614         if (!value)
5615                 return -EINVAL;
5616
5617         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5618                 return -EINVAL;
5619
5620         if (perf_event_check_period(event, value))
5621                 return -EINVAL;
5622
5623         if (!event->attr.freq && (value & (1ULL << 63)))
5624                 return -EINVAL;
5625
5626         event_function_call(event, __perf_event_period, &value);
5627
5628         return 0;
5629 }
5630
5631 int perf_event_period(struct perf_event *event, u64 value)
5632 {
5633         struct perf_event_context *ctx;
5634         int ret;
5635
5636         ctx = perf_event_ctx_lock(event);
5637         ret = _perf_event_period(event, value);
5638         perf_event_ctx_unlock(event, ctx);
5639
5640         return ret;
5641 }
5642 EXPORT_SYMBOL_GPL(perf_event_period);
5643
5644 static const struct file_operations perf_fops;
5645
5646 static inline int perf_fget_light(int fd, struct fd *p)
5647 {
5648         struct fd f = fdget(fd);
5649         if (!f.file)
5650                 return -EBADF;
5651
5652         if (f.file->f_op != &perf_fops) {
5653                 fdput(f);
5654                 return -EBADF;
5655         }
5656         *p = f;
5657         return 0;
5658 }
5659
5660 static int perf_event_set_output(struct perf_event *event,
5661                                  struct perf_event *output_event);
5662 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5663 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5664                           struct perf_event_attr *attr);
5665
5666 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5667 {
5668         void (*func)(struct perf_event *);
5669         u32 flags = arg;
5670
5671         switch (cmd) {
5672         case PERF_EVENT_IOC_ENABLE:
5673                 func = _perf_event_enable;
5674                 break;
5675         case PERF_EVENT_IOC_DISABLE:
5676                 func = _perf_event_disable;
5677                 break;
5678         case PERF_EVENT_IOC_RESET:
5679                 func = _perf_event_reset;
5680                 break;
5681
5682         case PERF_EVENT_IOC_REFRESH:
5683                 return _perf_event_refresh(event, arg);
5684
5685         case PERF_EVENT_IOC_PERIOD:
5686         {
5687                 u64 value;
5688
5689                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5690                         return -EFAULT;
5691
5692                 return _perf_event_period(event, value);
5693         }
5694         case PERF_EVENT_IOC_ID:
5695         {
5696                 u64 id = primary_event_id(event);
5697
5698                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5699                         return -EFAULT;
5700                 return 0;
5701         }
5702
5703         case PERF_EVENT_IOC_SET_OUTPUT:
5704         {
5705                 int ret;
5706                 if (arg != -1) {
5707                         struct perf_event *output_event;
5708                         struct fd output;
5709                         ret = perf_fget_light(arg, &output);
5710                         if (ret)
5711                                 return ret;
5712                         output_event = output.file->private_data;
5713                         ret = perf_event_set_output(event, output_event);
5714                         fdput(output);
5715                 } else {
5716                         ret = perf_event_set_output(event, NULL);
5717                 }
5718                 return ret;
5719         }
5720
5721         case PERF_EVENT_IOC_SET_FILTER:
5722                 return perf_event_set_filter(event, (void __user *)arg);
5723
5724         case PERF_EVENT_IOC_SET_BPF:
5725         {
5726                 struct bpf_prog *prog;
5727                 int err;
5728
5729                 prog = bpf_prog_get(arg);
5730                 if (IS_ERR(prog))
5731                         return PTR_ERR(prog);
5732
5733                 err = perf_event_set_bpf_prog(event, prog, 0);
5734                 if (err) {
5735                         bpf_prog_put(prog);
5736                         return err;
5737                 }
5738
5739                 return 0;
5740         }
5741
5742         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5743                 struct perf_buffer *rb;
5744
5745                 rcu_read_lock();
5746                 rb = rcu_dereference(event->rb);
5747                 if (!rb || !rb->nr_pages) {
5748                         rcu_read_unlock();
5749                         return -EINVAL;
5750                 }
5751                 rb_toggle_paused(rb, !!arg);
5752                 rcu_read_unlock();
5753                 return 0;
5754         }
5755
5756         case PERF_EVENT_IOC_QUERY_BPF:
5757                 return perf_event_query_prog_array(event, (void __user *)arg);
5758
5759         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5760                 struct perf_event_attr new_attr;
5761                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5762                                          &new_attr);
5763
5764                 if (err)
5765                         return err;
5766
5767                 return perf_event_modify_attr(event,  &new_attr);
5768         }
5769         default:
5770                 return -ENOTTY;
5771         }
5772
5773         if (flags & PERF_IOC_FLAG_GROUP)
5774                 perf_event_for_each(event, func);
5775         else
5776                 perf_event_for_each_child(event, func);
5777
5778         return 0;
5779 }
5780
5781 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5782 {
5783         struct perf_event *event = file->private_data;
5784         struct perf_event_context *ctx;
5785         long ret;
5786
5787         /* Treat ioctl like writes as it is likely a mutating operation. */
5788         ret = security_perf_event_write(event);
5789         if (ret)
5790                 return ret;
5791
5792         ctx = perf_event_ctx_lock(event);
5793         ret = _perf_ioctl(event, cmd, arg);
5794         perf_event_ctx_unlock(event, ctx);
5795
5796         return ret;
5797 }
5798
5799 #ifdef CONFIG_COMPAT
5800 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5801                                 unsigned long arg)
5802 {
5803         switch (_IOC_NR(cmd)) {
5804         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5805         case _IOC_NR(PERF_EVENT_IOC_ID):
5806         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5807         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5808                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5809                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5810                         cmd &= ~IOCSIZE_MASK;
5811                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5812                 }
5813                 break;
5814         }
5815         return perf_ioctl(file, cmd, arg);
5816 }
5817 #else
5818 # define perf_compat_ioctl NULL
5819 #endif
5820
5821 int perf_event_task_enable(void)
5822 {
5823         struct perf_event_context *ctx;
5824         struct perf_event *event;
5825
5826         mutex_lock(&current->perf_event_mutex);
5827         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5828                 ctx = perf_event_ctx_lock(event);
5829                 perf_event_for_each_child(event, _perf_event_enable);
5830                 perf_event_ctx_unlock(event, ctx);
5831         }
5832         mutex_unlock(&current->perf_event_mutex);
5833
5834         return 0;
5835 }
5836
5837 int perf_event_task_disable(void)
5838 {
5839         struct perf_event_context *ctx;
5840         struct perf_event *event;
5841
5842         mutex_lock(&current->perf_event_mutex);
5843         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5844                 ctx = perf_event_ctx_lock(event);
5845                 perf_event_for_each_child(event, _perf_event_disable);
5846                 perf_event_ctx_unlock(event, ctx);
5847         }
5848         mutex_unlock(&current->perf_event_mutex);
5849
5850         return 0;
5851 }
5852
5853 static int perf_event_index(struct perf_event *event)
5854 {
5855         if (event->hw.state & PERF_HES_STOPPED)
5856                 return 0;
5857
5858         if (event->state != PERF_EVENT_STATE_ACTIVE)
5859                 return 0;
5860
5861         return event->pmu->event_idx(event);
5862 }
5863
5864 static void perf_event_init_userpage(struct perf_event *event)
5865 {
5866         struct perf_event_mmap_page *userpg;
5867         struct perf_buffer *rb;
5868
5869         rcu_read_lock();
5870         rb = rcu_dereference(event->rb);
5871         if (!rb)
5872                 goto unlock;
5873
5874         userpg = rb->user_page;
5875
5876         /* Allow new userspace to detect that bit 0 is deprecated */
5877         userpg->cap_bit0_is_deprecated = 1;
5878         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5879         userpg->data_offset = PAGE_SIZE;
5880         userpg->data_size = perf_data_size(rb);
5881
5882 unlock:
5883         rcu_read_unlock();
5884 }
5885
5886 void __weak arch_perf_update_userpage(
5887         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5888 {
5889 }
5890
5891 /*
5892  * Callers need to ensure there can be no nesting of this function, otherwise
5893  * the seqlock logic goes bad. We can not serialize this because the arch
5894  * code calls this from NMI context.
5895  */
5896 void perf_event_update_userpage(struct perf_event *event)
5897 {
5898         struct perf_event_mmap_page *userpg;
5899         struct perf_buffer *rb;
5900         u64 enabled, running, now;
5901
5902         rcu_read_lock();
5903         rb = rcu_dereference(event->rb);
5904         if (!rb)
5905                 goto unlock;
5906
5907         /*
5908          * compute total_time_enabled, total_time_running
5909          * based on snapshot values taken when the event
5910          * was last scheduled in.
5911          *
5912          * we cannot simply called update_context_time()
5913          * because of locking issue as we can be called in
5914          * NMI context
5915          */
5916         calc_timer_values(event, &now, &enabled, &running);
5917
5918         userpg = rb->user_page;
5919         /*
5920          * Disable preemption to guarantee consistent time stamps are stored to
5921          * the user page.
5922          */
5923         preempt_disable();
5924         ++userpg->lock;
5925         barrier();
5926         userpg->index = perf_event_index(event);
5927         userpg->offset = perf_event_count(event);
5928         if (userpg->index)
5929                 userpg->offset -= local64_read(&event->hw.prev_count);
5930
5931         userpg->time_enabled = enabled +
5932                         atomic64_read(&event->child_total_time_enabled);
5933
5934         userpg->time_running = running +
5935                         atomic64_read(&event->child_total_time_running);
5936
5937         arch_perf_update_userpage(event, userpg, now);
5938
5939         barrier();
5940         ++userpg->lock;
5941         preempt_enable();
5942 unlock:
5943         rcu_read_unlock();
5944 }
5945 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5946
5947 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5948 {
5949         struct perf_event *event = vmf->vma->vm_file->private_data;
5950         struct perf_buffer *rb;
5951         vm_fault_t ret = VM_FAULT_SIGBUS;
5952
5953         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5954                 if (vmf->pgoff == 0)
5955                         ret = 0;
5956                 return ret;
5957         }
5958
5959         rcu_read_lock();
5960         rb = rcu_dereference(event->rb);
5961         if (!rb)
5962                 goto unlock;
5963
5964         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5965                 goto unlock;
5966
5967         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5968         if (!vmf->page)
5969                 goto unlock;
5970
5971         get_page(vmf->page);
5972         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5973         vmf->page->index   = vmf->pgoff;
5974
5975         ret = 0;
5976 unlock:
5977         rcu_read_unlock();
5978
5979         return ret;
5980 }
5981
5982 static void ring_buffer_attach(struct perf_event *event,
5983                                struct perf_buffer *rb)
5984 {
5985         struct perf_buffer *old_rb = NULL;
5986         unsigned long flags;
5987
5988         if (event->rb) {
5989                 /*
5990                  * Should be impossible, we set this when removing
5991                  * event->rb_entry and wait/clear when adding event->rb_entry.
5992                  */
5993                 WARN_ON_ONCE(event->rcu_pending);
5994
5995                 old_rb = event->rb;
5996                 spin_lock_irqsave(&old_rb->event_lock, flags);
5997                 list_del_rcu(&event->rb_entry);
5998                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5999
6000                 event->rcu_batches = get_state_synchronize_rcu();
6001                 event->rcu_pending = 1;
6002         }
6003
6004         if (rb) {
6005                 if (event->rcu_pending) {
6006                         cond_synchronize_rcu(event->rcu_batches);
6007                         event->rcu_pending = 0;
6008                 }
6009
6010                 spin_lock_irqsave(&rb->event_lock, flags);
6011                 list_add_rcu(&event->rb_entry, &rb->event_list);
6012                 spin_unlock_irqrestore(&rb->event_lock, flags);
6013         }
6014
6015         /*
6016          * Avoid racing with perf_mmap_close(AUX): stop the event
6017          * before swizzling the event::rb pointer; if it's getting
6018          * unmapped, its aux_mmap_count will be 0 and it won't
6019          * restart. See the comment in __perf_pmu_output_stop().
6020          *
6021          * Data will inevitably be lost when set_output is done in
6022          * mid-air, but then again, whoever does it like this is
6023          * not in for the data anyway.
6024          */
6025         if (has_aux(event))
6026                 perf_event_stop(event, 0);
6027
6028         rcu_assign_pointer(event->rb, rb);
6029
6030         if (old_rb) {
6031                 ring_buffer_put(old_rb);
6032                 /*
6033                  * Since we detached before setting the new rb, so that we
6034                  * could attach the new rb, we could have missed a wakeup.
6035                  * Provide it now.
6036                  */
6037                 wake_up_all(&event->waitq);
6038         }
6039 }
6040
6041 static void ring_buffer_wakeup(struct perf_event *event)
6042 {
6043         struct perf_buffer *rb;
6044
6045         rcu_read_lock();
6046         rb = rcu_dereference(event->rb);
6047         if (rb) {
6048                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6049                         wake_up_all(&event->waitq);
6050         }
6051         rcu_read_unlock();
6052 }
6053
6054 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6055 {
6056         struct perf_buffer *rb;
6057
6058         rcu_read_lock();
6059         rb = rcu_dereference(event->rb);
6060         if (rb) {
6061                 if (!refcount_inc_not_zero(&rb->refcount))
6062                         rb = NULL;
6063         }
6064         rcu_read_unlock();
6065
6066         return rb;
6067 }
6068
6069 void ring_buffer_put(struct perf_buffer *rb)
6070 {
6071         if (!refcount_dec_and_test(&rb->refcount))
6072                 return;
6073
6074         WARN_ON_ONCE(!list_empty(&rb->event_list));
6075
6076         call_rcu(&rb->rcu_head, rb_free_rcu);
6077 }
6078
6079 static void perf_mmap_open(struct vm_area_struct *vma)
6080 {
6081         struct perf_event *event = vma->vm_file->private_data;
6082
6083         atomic_inc(&event->mmap_count);
6084         atomic_inc(&event->rb->mmap_count);
6085
6086         if (vma->vm_pgoff)
6087                 atomic_inc(&event->rb->aux_mmap_count);
6088
6089         if (event->pmu->event_mapped)
6090                 event->pmu->event_mapped(event, vma->vm_mm);
6091 }
6092
6093 static void perf_pmu_output_stop(struct perf_event *event);
6094
6095 /*
6096  * A buffer can be mmap()ed multiple times; either directly through the same
6097  * event, or through other events by use of perf_event_set_output().
6098  *
6099  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6100  * the buffer here, where we still have a VM context. This means we need
6101  * to detach all events redirecting to us.
6102  */
6103 static void perf_mmap_close(struct vm_area_struct *vma)
6104 {
6105         struct perf_event *event = vma->vm_file->private_data;
6106         struct perf_buffer *rb = ring_buffer_get(event);
6107         struct user_struct *mmap_user = rb->mmap_user;
6108         int mmap_locked = rb->mmap_locked;
6109         unsigned long size = perf_data_size(rb);
6110         bool detach_rest = false;
6111
6112         if (event->pmu->event_unmapped)
6113                 event->pmu->event_unmapped(event, vma->vm_mm);
6114
6115         /*
6116          * rb->aux_mmap_count will always drop before rb->mmap_count and
6117          * event->mmap_count, so it is ok to use event->mmap_mutex to
6118          * serialize with perf_mmap here.
6119          */
6120         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6121             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6122                 /*
6123                  * Stop all AUX events that are writing to this buffer,
6124                  * so that we can free its AUX pages and corresponding PMU
6125                  * data. Note that after rb::aux_mmap_count dropped to zero,
6126                  * they won't start any more (see perf_aux_output_begin()).
6127                  */
6128                 perf_pmu_output_stop(event);
6129
6130                 /* now it's safe to free the pages */
6131                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6132                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6133
6134                 /* this has to be the last one */
6135                 rb_free_aux(rb);
6136                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6137
6138                 mutex_unlock(&event->mmap_mutex);
6139         }
6140
6141         if (atomic_dec_and_test(&rb->mmap_count))
6142                 detach_rest = true;
6143
6144         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6145                 goto out_put;
6146
6147         ring_buffer_attach(event, NULL);
6148         mutex_unlock(&event->mmap_mutex);
6149
6150         /* If there's still other mmap()s of this buffer, we're done. */
6151         if (!detach_rest)
6152                 goto out_put;
6153
6154         /*
6155          * No other mmap()s, detach from all other events that might redirect
6156          * into the now unreachable buffer. Somewhat complicated by the
6157          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6158          */
6159 again:
6160         rcu_read_lock();
6161         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6162                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6163                         /*
6164                          * This event is en-route to free_event() which will
6165                          * detach it and remove it from the list.
6166                          */
6167                         continue;
6168                 }
6169                 rcu_read_unlock();
6170
6171                 mutex_lock(&event->mmap_mutex);
6172                 /*
6173                  * Check we didn't race with perf_event_set_output() which can
6174                  * swizzle the rb from under us while we were waiting to
6175                  * acquire mmap_mutex.
6176                  *
6177                  * If we find a different rb; ignore this event, a next
6178                  * iteration will no longer find it on the list. We have to
6179                  * still restart the iteration to make sure we're not now
6180                  * iterating the wrong list.
6181                  */
6182                 if (event->rb == rb)
6183                         ring_buffer_attach(event, NULL);
6184
6185                 mutex_unlock(&event->mmap_mutex);
6186                 put_event(event);
6187
6188                 /*
6189                  * Restart the iteration; either we're on the wrong list or
6190                  * destroyed its integrity by doing a deletion.
6191                  */
6192                 goto again;
6193         }
6194         rcu_read_unlock();
6195
6196         /*
6197          * It could be there's still a few 0-ref events on the list; they'll
6198          * get cleaned up by free_event() -- they'll also still have their
6199          * ref on the rb and will free it whenever they are done with it.
6200          *
6201          * Aside from that, this buffer is 'fully' detached and unmapped,
6202          * undo the VM accounting.
6203          */
6204
6205         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6206                         &mmap_user->locked_vm);
6207         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6208         free_uid(mmap_user);
6209
6210 out_put:
6211         ring_buffer_put(rb); /* could be last */
6212 }
6213
6214 static const struct vm_operations_struct perf_mmap_vmops = {
6215         .open           = perf_mmap_open,
6216         .close          = perf_mmap_close, /* non mergeable */
6217         .fault          = perf_mmap_fault,
6218         .page_mkwrite   = perf_mmap_fault,
6219 };
6220
6221 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6222 {
6223         struct perf_event *event = file->private_data;
6224         unsigned long user_locked, user_lock_limit;
6225         struct user_struct *user = current_user();
6226         struct perf_buffer *rb = NULL;
6227         unsigned long locked, lock_limit;
6228         unsigned long vma_size;
6229         unsigned long nr_pages;
6230         long user_extra = 0, extra = 0;
6231         int ret = 0, flags = 0;
6232
6233         /*
6234          * Don't allow mmap() of inherited per-task counters. This would
6235          * create a performance issue due to all children writing to the
6236          * same rb.
6237          */
6238         if (event->cpu == -1 && event->attr.inherit)
6239                 return -EINVAL;
6240
6241         if (!(vma->vm_flags & VM_SHARED))
6242                 return -EINVAL;
6243
6244         ret = security_perf_event_read(event);
6245         if (ret)
6246                 return ret;
6247
6248         vma_size = vma->vm_end - vma->vm_start;
6249
6250         if (vma->vm_pgoff == 0) {
6251                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6252         } else {
6253                 /*
6254                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6255                  * mapped, all subsequent mappings should have the same size
6256                  * and offset. Must be above the normal perf buffer.
6257                  */
6258                 u64 aux_offset, aux_size;
6259
6260                 if (!event->rb)
6261                         return -EINVAL;
6262
6263                 nr_pages = vma_size / PAGE_SIZE;
6264
6265                 mutex_lock(&event->mmap_mutex);
6266                 ret = -EINVAL;
6267
6268                 rb = event->rb;
6269                 if (!rb)
6270                         goto aux_unlock;
6271
6272                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6273                 aux_size = READ_ONCE(rb->user_page->aux_size);
6274
6275                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6276                         goto aux_unlock;
6277
6278                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6279                         goto aux_unlock;
6280
6281                 /* already mapped with a different offset */
6282                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6283                         goto aux_unlock;
6284
6285                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6286                         goto aux_unlock;
6287
6288                 /* already mapped with a different size */
6289                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6290                         goto aux_unlock;
6291
6292                 if (!is_power_of_2(nr_pages))
6293                         goto aux_unlock;
6294
6295                 if (!atomic_inc_not_zero(&rb->mmap_count))
6296                         goto aux_unlock;
6297
6298                 if (rb_has_aux(rb)) {
6299                         atomic_inc(&rb->aux_mmap_count);
6300                         ret = 0;
6301                         goto unlock;
6302                 }
6303
6304                 atomic_set(&rb->aux_mmap_count, 1);
6305                 user_extra = nr_pages;
6306
6307                 goto accounting;
6308         }
6309
6310         /*
6311          * If we have rb pages ensure they're a power-of-two number, so we
6312          * can do bitmasks instead of modulo.
6313          */
6314         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6315                 return -EINVAL;
6316
6317         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6318                 return -EINVAL;
6319
6320         WARN_ON_ONCE(event->ctx->parent_ctx);
6321 again:
6322         mutex_lock(&event->mmap_mutex);
6323         if (event->rb) {
6324                 if (event->rb->nr_pages != nr_pages) {
6325                         ret = -EINVAL;
6326                         goto unlock;
6327                 }
6328
6329                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6330                         /*
6331                          * Raced against perf_mmap_close() through
6332                          * perf_event_set_output(). Try again, hope for better
6333                          * luck.
6334                          */
6335                         mutex_unlock(&event->mmap_mutex);
6336                         goto again;
6337                 }
6338
6339                 goto unlock;
6340         }
6341
6342         user_extra = nr_pages + 1;
6343
6344 accounting:
6345         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6346
6347         /*
6348          * Increase the limit linearly with more CPUs:
6349          */
6350         user_lock_limit *= num_online_cpus();
6351
6352         user_locked = atomic_long_read(&user->locked_vm);
6353
6354         /*
6355          * sysctl_perf_event_mlock may have changed, so that
6356          *     user->locked_vm > user_lock_limit
6357          */
6358         if (user_locked > user_lock_limit)
6359                 user_locked = user_lock_limit;
6360         user_locked += user_extra;
6361
6362         if (user_locked > user_lock_limit) {
6363                 /*
6364                  * charge locked_vm until it hits user_lock_limit;
6365                  * charge the rest from pinned_vm
6366                  */
6367                 extra = user_locked - user_lock_limit;
6368                 user_extra -= extra;
6369         }
6370
6371         lock_limit = rlimit(RLIMIT_MEMLOCK);
6372         lock_limit >>= PAGE_SHIFT;
6373         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6374
6375         if ((locked > lock_limit) && perf_is_paranoid() &&
6376                 !capable(CAP_IPC_LOCK)) {
6377                 ret = -EPERM;
6378                 goto unlock;
6379         }
6380
6381         WARN_ON(!rb && event->rb);
6382
6383         if (vma->vm_flags & VM_WRITE)
6384                 flags |= RING_BUFFER_WRITABLE;
6385
6386         if (!rb) {
6387                 rb = rb_alloc(nr_pages,
6388                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6389                               event->cpu, flags);
6390
6391                 if (!rb) {
6392                         ret = -ENOMEM;
6393                         goto unlock;
6394                 }
6395
6396                 atomic_set(&rb->mmap_count, 1);
6397                 rb->mmap_user = get_current_user();
6398                 rb->mmap_locked = extra;
6399
6400                 ring_buffer_attach(event, rb);
6401
6402                 perf_event_update_time(event);
6403                 perf_event_init_userpage(event);
6404                 perf_event_update_userpage(event);
6405         } else {
6406                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6407                                    event->attr.aux_watermark, flags);
6408                 if (!ret)
6409                         rb->aux_mmap_locked = extra;
6410         }
6411
6412 unlock:
6413         if (!ret) {
6414                 atomic_long_add(user_extra, &user->locked_vm);
6415                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6416
6417                 atomic_inc(&event->mmap_count);
6418         } else if (rb) {
6419                 atomic_dec(&rb->mmap_count);
6420         }
6421 aux_unlock:
6422         mutex_unlock(&event->mmap_mutex);
6423
6424         /*
6425          * Since pinned accounting is per vm we cannot allow fork() to copy our
6426          * vma.
6427          */
6428         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6429         vma->vm_ops = &perf_mmap_vmops;
6430
6431         if (event->pmu->event_mapped)
6432                 event->pmu->event_mapped(event, vma->vm_mm);
6433
6434         return ret;
6435 }
6436
6437 static int perf_fasync(int fd, struct file *filp, int on)
6438 {
6439         struct inode *inode = file_inode(filp);
6440         struct perf_event *event = filp->private_data;
6441         int retval;
6442
6443         inode_lock(inode);
6444         retval = fasync_helper(fd, filp, on, &event->fasync);
6445         inode_unlock(inode);
6446
6447         if (retval < 0)
6448                 return retval;
6449
6450         return 0;
6451 }
6452
6453 static const struct file_operations perf_fops = {
6454         .llseek                 = no_llseek,
6455         .release                = perf_release,
6456         .read                   = perf_read,
6457         .poll                   = perf_poll,
6458         .unlocked_ioctl         = perf_ioctl,
6459         .compat_ioctl           = perf_compat_ioctl,
6460         .mmap                   = perf_mmap,
6461         .fasync                 = perf_fasync,
6462 };
6463
6464 /*
6465  * Perf event wakeup
6466  *
6467  * If there's data, ensure we set the poll() state and publish everything
6468  * to user-space before waking everybody up.
6469  */
6470
6471 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6472 {
6473         /* only the parent has fasync state */
6474         if (event->parent)
6475                 event = event->parent;
6476         return &event->fasync;
6477 }
6478
6479 void perf_event_wakeup(struct perf_event *event)
6480 {
6481         ring_buffer_wakeup(event);
6482
6483         if (event->pending_kill) {
6484                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6485                 event->pending_kill = 0;
6486         }
6487 }
6488
6489 static void perf_sigtrap(struct perf_event *event)
6490 {
6491         /*
6492          * We'd expect this to only occur if the irq_work is delayed and either
6493          * ctx->task or current has changed in the meantime. This can be the
6494          * case on architectures that do not implement arch_irq_work_raise().
6495          */
6496         if (WARN_ON_ONCE(event->ctx->task != current))
6497                 return;
6498
6499         /*
6500          * perf_pending_event() can race with the task exiting.
6501          */
6502         if (current->flags & PF_EXITING)
6503                 return;
6504
6505         force_sig_perf((void __user *)event->pending_addr,
6506                        event->attr.type, event->attr.sig_data);
6507 }
6508
6509 static void perf_pending_event_disable(struct perf_event *event)
6510 {
6511         int cpu = READ_ONCE(event->pending_disable);
6512
6513         if (cpu < 0)
6514                 return;
6515
6516         if (cpu == smp_processor_id()) {
6517                 WRITE_ONCE(event->pending_disable, -1);
6518
6519                 if (event->attr.sigtrap) {
6520                         perf_sigtrap(event);
6521                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6522                         return;
6523                 }
6524
6525                 perf_event_disable_local(event);
6526                 return;
6527         }
6528
6529         /*
6530          *  CPU-A                       CPU-B
6531          *
6532          *  perf_event_disable_inatomic()
6533          *    @pending_disable = CPU-A;
6534          *    irq_work_queue();
6535          *
6536          *  sched-out
6537          *    @pending_disable = -1;
6538          *
6539          *                              sched-in
6540          *                              perf_event_disable_inatomic()
6541          *                                @pending_disable = CPU-B;
6542          *                                irq_work_queue(); // FAILS
6543          *
6544          *  irq_work_run()
6545          *    perf_pending_event()
6546          *
6547          * But the event runs on CPU-B and wants disabling there.
6548          */
6549         irq_work_queue_on(&event->pending, cpu);
6550 }
6551
6552 static void perf_pending_event(struct irq_work *entry)
6553 {
6554         struct perf_event *event = container_of(entry, struct perf_event, pending);
6555         int rctx;
6556
6557         rctx = perf_swevent_get_recursion_context();
6558         /*
6559          * If we 'fail' here, that's OK, it means recursion is already disabled
6560          * and we won't recurse 'further'.
6561          */
6562
6563         perf_pending_event_disable(event);
6564
6565         if (event->pending_wakeup) {
6566                 event->pending_wakeup = 0;
6567                 perf_event_wakeup(event);
6568         }
6569
6570         if (rctx >= 0)
6571                 perf_swevent_put_recursion_context(rctx);
6572 }
6573
6574 #ifdef CONFIG_GUEST_PERF_EVENTS
6575 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6576
6577 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6578 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6579 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6580
6581 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6582 {
6583         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6584                 return;
6585
6586         rcu_assign_pointer(perf_guest_cbs, cbs);
6587         static_call_update(__perf_guest_state, cbs->state);
6588         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6589
6590         /* Implementing ->handle_intel_pt_intr is optional. */
6591         if (cbs->handle_intel_pt_intr)
6592                 static_call_update(__perf_guest_handle_intel_pt_intr,
6593                                    cbs->handle_intel_pt_intr);
6594 }
6595 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6596
6597 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6598 {
6599         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6600                 return;
6601
6602         rcu_assign_pointer(perf_guest_cbs, NULL);
6603         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6604         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6605         static_call_update(__perf_guest_handle_intel_pt_intr,
6606                            (void *)&__static_call_return0);
6607         synchronize_rcu();
6608 }
6609 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6610 #endif
6611
6612 static void
6613 perf_output_sample_regs(struct perf_output_handle *handle,
6614                         struct pt_regs *regs, u64 mask)
6615 {
6616         int bit;
6617         DECLARE_BITMAP(_mask, 64);
6618
6619         bitmap_from_u64(_mask, mask);
6620         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6621                 u64 val;
6622
6623                 val = perf_reg_value(regs, bit);
6624                 perf_output_put(handle, val);
6625         }
6626 }
6627
6628 static void perf_sample_regs_user(struct perf_regs *regs_user,
6629                                   struct pt_regs *regs)
6630 {
6631         if (user_mode(regs)) {
6632                 regs_user->abi = perf_reg_abi(current);
6633                 regs_user->regs = regs;
6634         } else if (!(current->flags & PF_KTHREAD)) {
6635                 perf_get_regs_user(regs_user, regs);
6636         } else {
6637                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6638                 regs_user->regs = NULL;
6639         }
6640 }
6641
6642 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6643                                   struct pt_regs *regs)
6644 {
6645         regs_intr->regs = regs;
6646         regs_intr->abi  = perf_reg_abi(current);
6647 }
6648
6649
6650 /*
6651  * Get remaining task size from user stack pointer.
6652  *
6653  * It'd be better to take stack vma map and limit this more
6654  * precisely, but there's no way to get it safely under interrupt,
6655  * so using TASK_SIZE as limit.
6656  */
6657 static u64 perf_ustack_task_size(struct pt_regs *regs)
6658 {
6659         unsigned long addr = perf_user_stack_pointer(regs);
6660
6661         if (!addr || addr >= TASK_SIZE)
6662                 return 0;
6663
6664         return TASK_SIZE - addr;
6665 }
6666
6667 static u16
6668 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6669                         struct pt_regs *regs)
6670 {
6671         u64 task_size;
6672
6673         /* No regs, no stack pointer, no dump. */
6674         if (!regs)
6675                 return 0;
6676
6677         /*
6678          * Check if we fit in with the requested stack size into the:
6679          * - TASK_SIZE
6680          *   If we don't, we limit the size to the TASK_SIZE.
6681          *
6682          * - remaining sample size
6683          *   If we don't, we customize the stack size to
6684          *   fit in to the remaining sample size.
6685          */
6686
6687         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6688         stack_size = min(stack_size, (u16) task_size);
6689
6690         /* Current header size plus static size and dynamic size. */
6691         header_size += 2 * sizeof(u64);
6692
6693         /* Do we fit in with the current stack dump size? */
6694         if ((u16) (header_size + stack_size) < header_size) {
6695                 /*
6696                  * If we overflow the maximum size for the sample,
6697                  * we customize the stack dump size to fit in.
6698                  */
6699                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6700                 stack_size = round_up(stack_size, sizeof(u64));
6701         }
6702
6703         return stack_size;
6704 }
6705
6706 static void
6707 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6708                           struct pt_regs *regs)
6709 {
6710         /* Case of a kernel thread, nothing to dump */
6711         if (!regs) {
6712                 u64 size = 0;
6713                 perf_output_put(handle, size);
6714         } else {
6715                 unsigned long sp;
6716                 unsigned int rem;
6717                 u64 dyn_size;
6718                 mm_segment_t fs;
6719
6720                 /*
6721                  * We dump:
6722                  * static size
6723                  *   - the size requested by user or the best one we can fit
6724                  *     in to the sample max size
6725                  * data
6726                  *   - user stack dump data
6727                  * dynamic size
6728                  *   - the actual dumped size
6729                  */
6730
6731                 /* Static size. */
6732                 perf_output_put(handle, dump_size);
6733
6734                 /* Data. */
6735                 sp = perf_user_stack_pointer(regs);
6736                 fs = force_uaccess_begin();
6737                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6738                 force_uaccess_end(fs);
6739                 dyn_size = dump_size - rem;
6740
6741                 perf_output_skip(handle, rem);
6742
6743                 /* Dynamic size. */
6744                 perf_output_put(handle, dyn_size);
6745         }
6746 }
6747
6748 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6749                                           struct perf_sample_data *data,
6750                                           size_t size)
6751 {
6752         struct perf_event *sampler = event->aux_event;
6753         struct perf_buffer *rb;
6754
6755         data->aux_size = 0;
6756
6757         if (!sampler)
6758                 goto out;
6759
6760         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6761                 goto out;
6762
6763         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6764                 goto out;
6765
6766         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6767         if (!rb)
6768                 goto out;
6769
6770         /*
6771          * If this is an NMI hit inside sampling code, don't take
6772          * the sample. See also perf_aux_sample_output().
6773          */
6774         if (READ_ONCE(rb->aux_in_sampling)) {
6775                 data->aux_size = 0;
6776         } else {
6777                 size = min_t(size_t, size, perf_aux_size(rb));
6778                 data->aux_size = ALIGN(size, sizeof(u64));
6779         }
6780         ring_buffer_put(rb);
6781
6782 out:
6783         return data->aux_size;
6784 }
6785
6786 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6787                                  struct perf_event *event,
6788                                  struct perf_output_handle *handle,
6789                                  unsigned long size)
6790 {
6791         unsigned long flags;
6792         long ret;
6793
6794         /*
6795          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6796          * paths. If we start calling them in NMI context, they may race with
6797          * the IRQ ones, that is, for example, re-starting an event that's just
6798          * been stopped, which is why we're using a separate callback that
6799          * doesn't change the event state.
6800          *
6801          * IRQs need to be disabled to prevent IPIs from racing with us.
6802          */
6803         local_irq_save(flags);
6804         /*
6805          * Guard against NMI hits inside the critical section;
6806          * see also perf_prepare_sample_aux().
6807          */
6808         WRITE_ONCE(rb->aux_in_sampling, 1);
6809         barrier();
6810
6811         ret = event->pmu->snapshot_aux(event, handle, size);
6812
6813         barrier();
6814         WRITE_ONCE(rb->aux_in_sampling, 0);
6815         local_irq_restore(flags);
6816
6817         return ret;
6818 }
6819
6820 static void perf_aux_sample_output(struct perf_event *event,
6821                                    struct perf_output_handle *handle,
6822                                    struct perf_sample_data *data)
6823 {
6824         struct perf_event *sampler = event->aux_event;
6825         struct perf_buffer *rb;
6826         unsigned long pad;
6827         long size;
6828
6829         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6830                 return;
6831
6832         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6833         if (!rb)
6834                 return;
6835
6836         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6837
6838         /*
6839          * An error here means that perf_output_copy() failed (returned a
6840          * non-zero surplus that it didn't copy), which in its current
6841          * enlightened implementation is not possible. If that changes, we'd
6842          * like to know.
6843          */
6844         if (WARN_ON_ONCE(size < 0))
6845                 goto out_put;
6846
6847         /*
6848          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6849          * perf_prepare_sample_aux(), so should not be more than that.
6850          */
6851         pad = data->aux_size - size;
6852         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6853                 pad = 8;
6854
6855         if (pad) {
6856                 u64 zero = 0;
6857                 perf_output_copy(handle, &zero, pad);
6858         }
6859
6860 out_put:
6861         ring_buffer_put(rb);
6862 }
6863
6864 static void __perf_event_header__init_id(struct perf_event_header *header,
6865                                          struct perf_sample_data *data,
6866                                          struct perf_event *event)
6867 {
6868         u64 sample_type = event->attr.sample_type;
6869
6870         data->type = sample_type;
6871         header->size += event->id_header_size;
6872
6873         if (sample_type & PERF_SAMPLE_TID) {
6874                 /* namespace issues */
6875                 data->tid_entry.pid = perf_event_pid(event, current);
6876                 data->tid_entry.tid = perf_event_tid(event, current);
6877         }
6878
6879         if (sample_type & PERF_SAMPLE_TIME)
6880                 data->time = perf_event_clock(event);
6881
6882         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6883                 data->id = primary_event_id(event);
6884
6885         if (sample_type & PERF_SAMPLE_STREAM_ID)
6886                 data->stream_id = event->id;
6887
6888         if (sample_type & PERF_SAMPLE_CPU) {
6889                 data->cpu_entry.cpu      = raw_smp_processor_id();
6890                 data->cpu_entry.reserved = 0;
6891         }
6892 }
6893
6894 void perf_event_header__init_id(struct perf_event_header *header,
6895                                 struct perf_sample_data *data,
6896                                 struct perf_event *event)
6897 {
6898         if (event->attr.sample_id_all)
6899                 __perf_event_header__init_id(header, data, event);
6900 }
6901
6902 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6903                                            struct perf_sample_data *data)
6904 {
6905         u64 sample_type = data->type;
6906
6907         if (sample_type & PERF_SAMPLE_TID)
6908                 perf_output_put(handle, data->tid_entry);
6909
6910         if (sample_type & PERF_SAMPLE_TIME)
6911                 perf_output_put(handle, data->time);
6912
6913         if (sample_type & PERF_SAMPLE_ID)
6914                 perf_output_put(handle, data->id);
6915
6916         if (sample_type & PERF_SAMPLE_STREAM_ID)
6917                 perf_output_put(handle, data->stream_id);
6918
6919         if (sample_type & PERF_SAMPLE_CPU)
6920                 perf_output_put(handle, data->cpu_entry);
6921
6922         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6923                 perf_output_put(handle, data->id);
6924 }
6925
6926 void perf_event__output_id_sample(struct perf_event *event,
6927                                   struct perf_output_handle *handle,
6928                                   struct perf_sample_data *sample)
6929 {
6930         if (event->attr.sample_id_all)
6931                 __perf_event__output_id_sample(handle, sample);
6932 }
6933
6934 static void perf_output_read_one(struct perf_output_handle *handle,
6935                                  struct perf_event *event,
6936                                  u64 enabled, u64 running)
6937 {
6938         u64 read_format = event->attr.read_format;
6939         u64 values[4];
6940         int n = 0;
6941
6942         values[n++] = perf_event_count(event);
6943         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6944                 values[n++] = enabled +
6945                         atomic64_read(&event->child_total_time_enabled);
6946         }
6947         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6948                 values[n++] = running +
6949                         atomic64_read(&event->child_total_time_running);
6950         }
6951         if (read_format & PERF_FORMAT_ID)
6952                 values[n++] = primary_event_id(event);
6953
6954         __output_copy(handle, values, n * sizeof(u64));
6955 }
6956
6957 static void perf_output_read_group(struct perf_output_handle *handle,
6958                             struct perf_event *event,
6959                             u64 enabled, u64 running)
6960 {
6961         struct perf_event *leader = event->group_leader, *sub;
6962         u64 read_format = event->attr.read_format;
6963         u64 values[5];
6964         int n = 0;
6965
6966         values[n++] = 1 + leader->nr_siblings;
6967
6968         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6969                 values[n++] = enabled;
6970
6971         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6972                 values[n++] = running;
6973
6974         if ((leader != event) &&
6975             (leader->state == PERF_EVENT_STATE_ACTIVE))
6976                 leader->pmu->read(leader);
6977
6978         values[n++] = perf_event_count(leader);
6979         if (read_format & PERF_FORMAT_ID)
6980                 values[n++] = primary_event_id(leader);
6981
6982         __output_copy(handle, values, n * sizeof(u64));
6983
6984         for_each_sibling_event(sub, leader) {
6985                 n = 0;
6986
6987                 if ((sub != event) &&
6988                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6989                         sub->pmu->read(sub);
6990
6991                 values[n++] = perf_event_count(sub);
6992                 if (read_format & PERF_FORMAT_ID)
6993                         values[n++] = primary_event_id(sub);
6994
6995                 __output_copy(handle, values, n * sizeof(u64));
6996         }
6997 }
6998
6999 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7000                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7001
7002 /*
7003  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7004  *
7005  * The problem is that its both hard and excessively expensive to iterate the
7006  * child list, not to mention that its impossible to IPI the children running
7007  * on another CPU, from interrupt/NMI context.
7008  */
7009 static void perf_output_read(struct perf_output_handle *handle,
7010                              struct perf_event *event)
7011 {
7012         u64 enabled = 0, running = 0, now;
7013         u64 read_format = event->attr.read_format;
7014
7015         /*
7016          * compute total_time_enabled, total_time_running
7017          * based on snapshot values taken when the event
7018          * was last scheduled in.
7019          *
7020          * we cannot simply called update_context_time()
7021          * because of locking issue as we are called in
7022          * NMI context
7023          */
7024         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7025                 calc_timer_values(event, &now, &enabled, &running);
7026
7027         if (event->attr.read_format & PERF_FORMAT_GROUP)
7028                 perf_output_read_group(handle, event, enabled, running);
7029         else
7030                 perf_output_read_one(handle, event, enabled, running);
7031 }
7032
7033 static inline bool perf_sample_save_hw_index(struct perf_event *event)
7034 {
7035         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
7036 }
7037
7038 void perf_output_sample(struct perf_output_handle *handle,
7039                         struct perf_event_header *header,
7040                         struct perf_sample_data *data,
7041                         struct perf_event *event)
7042 {
7043         u64 sample_type = data->type;
7044
7045         perf_output_put(handle, *header);
7046
7047         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7048                 perf_output_put(handle, data->id);
7049
7050         if (sample_type & PERF_SAMPLE_IP)
7051                 perf_output_put(handle, data->ip);
7052
7053         if (sample_type & PERF_SAMPLE_TID)
7054                 perf_output_put(handle, data->tid_entry);
7055
7056         if (sample_type & PERF_SAMPLE_TIME)
7057                 perf_output_put(handle, data->time);
7058
7059         if (sample_type & PERF_SAMPLE_ADDR)
7060                 perf_output_put(handle, data->addr);
7061
7062         if (sample_type & PERF_SAMPLE_ID)
7063                 perf_output_put(handle, data->id);
7064
7065         if (sample_type & PERF_SAMPLE_STREAM_ID)
7066                 perf_output_put(handle, data->stream_id);
7067
7068         if (sample_type & PERF_SAMPLE_CPU)
7069                 perf_output_put(handle, data->cpu_entry);
7070
7071         if (sample_type & PERF_SAMPLE_PERIOD)
7072                 perf_output_put(handle, data->period);
7073
7074         if (sample_type & PERF_SAMPLE_READ)
7075                 perf_output_read(handle, event);
7076
7077         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7078                 int size = 1;
7079
7080                 size += data->callchain->nr;
7081                 size *= sizeof(u64);
7082                 __output_copy(handle, data->callchain, size);
7083         }
7084
7085         if (sample_type & PERF_SAMPLE_RAW) {
7086                 struct perf_raw_record *raw = data->raw;
7087
7088                 if (raw) {
7089                         struct perf_raw_frag *frag = &raw->frag;
7090
7091                         perf_output_put(handle, raw->size);
7092                         do {
7093                                 if (frag->copy) {
7094                                         __output_custom(handle, frag->copy,
7095                                                         frag->data, frag->size);
7096                                 } else {
7097                                         __output_copy(handle, frag->data,
7098                                                       frag->size);
7099                                 }
7100                                 if (perf_raw_frag_last(frag))
7101                                         break;
7102                                 frag = frag->next;
7103                         } while (1);
7104                         if (frag->pad)
7105                                 __output_skip(handle, NULL, frag->pad);
7106                 } else {
7107                         struct {
7108                                 u32     size;
7109                                 u32     data;
7110                         } raw = {
7111                                 .size = sizeof(u32),
7112                                 .data = 0,
7113                         };
7114                         perf_output_put(handle, raw);
7115                 }
7116         }
7117
7118         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7119                 if (data->br_stack) {
7120                         size_t size;
7121
7122                         size = data->br_stack->nr
7123                              * sizeof(struct perf_branch_entry);
7124
7125                         perf_output_put(handle, data->br_stack->nr);
7126                         if (perf_sample_save_hw_index(event))
7127                                 perf_output_put(handle, data->br_stack->hw_idx);
7128                         perf_output_copy(handle, data->br_stack->entries, size);
7129                 } else {
7130                         /*
7131                          * we always store at least the value of nr
7132                          */
7133                         u64 nr = 0;
7134                         perf_output_put(handle, nr);
7135                 }
7136         }
7137
7138         if (sample_type & PERF_SAMPLE_REGS_USER) {
7139                 u64 abi = data->regs_user.abi;
7140
7141                 /*
7142                  * If there are no regs to dump, notice it through
7143                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7144                  */
7145                 perf_output_put(handle, abi);
7146
7147                 if (abi) {
7148                         u64 mask = event->attr.sample_regs_user;
7149                         perf_output_sample_regs(handle,
7150                                                 data->regs_user.regs,
7151                                                 mask);
7152                 }
7153         }
7154
7155         if (sample_type & PERF_SAMPLE_STACK_USER) {
7156                 perf_output_sample_ustack(handle,
7157                                           data->stack_user_size,
7158                                           data->regs_user.regs);
7159         }
7160
7161         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7162                 perf_output_put(handle, data->weight.full);
7163
7164         if (sample_type & PERF_SAMPLE_DATA_SRC)
7165                 perf_output_put(handle, data->data_src.val);
7166
7167         if (sample_type & PERF_SAMPLE_TRANSACTION)
7168                 perf_output_put(handle, data->txn);
7169
7170         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7171                 u64 abi = data->regs_intr.abi;
7172                 /*
7173                  * If there are no regs to dump, notice it through
7174                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7175                  */
7176                 perf_output_put(handle, abi);
7177
7178                 if (abi) {
7179                         u64 mask = event->attr.sample_regs_intr;
7180
7181                         perf_output_sample_regs(handle,
7182                                                 data->regs_intr.regs,
7183                                                 mask);
7184                 }
7185         }
7186
7187         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7188                 perf_output_put(handle, data->phys_addr);
7189
7190         if (sample_type & PERF_SAMPLE_CGROUP)
7191                 perf_output_put(handle, data->cgroup);
7192
7193         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7194                 perf_output_put(handle, data->data_page_size);
7195
7196         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7197                 perf_output_put(handle, data->code_page_size);
7198
7199         if (sample_type & PERF_SAMPLE_AUX) {
7200                 perf_output_put(handle, data->aux_size);
7201
7202                 if (data->aux_size)
7203                         perf_aux_sample_output(event, handle, data);
7204         }
7205
7206         if (!event->attr.watermark) {
7207                 int wakeup_events = event->attr.wakeup_events;
7208
7209                 if (wakeup_events) {
7210                         struct perf_buffer *rb = handle->rb;
7211                         int events = local_inc_return(&rb->events);
7212
7213                         if (events >= wakeup_events) {
7214                                 local_sub(wakeup_events, &rb->events);
7215                                 local_inc(&rb->wakeup);
7216                         }
7217                 }
7218         }
7219 }
7220
7221 static u64 perf_virt_to_phys(u64 virt)
7222 {
7223         u64 phys_addr = 0;
7224
7225         if (!virt)
7226                 return 0;
7227
7228         if (virt >= TASK_SIZE) {
7229                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7230                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7231                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7232                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7233         } else {
7234                 /*
7235                  * Walking the pages tables for user address.
7236                  * Interrupts are disabled, so it prevents any tear down
7237                  * of the page tables.
7238                  * Try IRQ-safe get_user_page_fast_only first.
7239                  * If failed, leave phys_addr as 0.
7240                  */
7241                 if (current->mm != NULL) {
7242                         struct page *p;
7243
7244                         pagefault_disable();
7245                         if (get_user_page_fast_only(virt, 0, &p)) {
7246                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7247                                 put_page(p);
7248                         }
7249                         pagefault_enable();
7250                 }
7251         }
7252
7253         return phys_addr;
7254 }
7255
7256 /*
7257  * Return the pagetable size of a given virtual address.
7258  */
7259 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7260 {
7261         u64 size = 0;
7262
7263 #ifdef CONFIG_HAVE_FAST_GUP
7264         pgd_t *pgdp, pgd;
7265         p4d_t *p4dp, p4d;
7266         pud_t *pudp, pud;
7267         pmd_t *pmdp, pmd;
7268         pte_t *ptep, pte;
7269
7270         pgdp = pgd_offset(mm, addr);
7271         pgd = READ_ONCE(*pgdp);
7272         if (pgd_none(pgd))
7273                 return 0;
7274
7275         if (pgd_leaf(pgd))
7276                 return pgd_leaf_size(pgd);
7277
7278         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7279         p4d = READ_ONCE(*p4dp);
7280         if (!p4d_present(p4d))
7281                 return 0;
7282
7283         if (p4d_leaf(p4d))
7284                 return p4d_leaf_size(p4d);
7285
7286         pudp = pud_offset_lockless(p4dp, p4d, addr);
7287         pud = READ_ONCE(*pudp);
7288         if (!pud_present(pud))
7289                 return 0;
7290
7291         if (pud_leaf(pud))
7292                 return pud_leaf_size(pud);
7293
7294         pmdp = pmd_offset_lockless(pudp, pud, addr);
7295         pmd = READ_ONCE(*pmdp);
7296         if (!pmd_present(pmd))
7297                 return 0;
7298
7299         if (pmd_leaf(pmd))
7300                 return pmd_leaf_size(pmd);
7301
7302         ptep = pte_offset_map(&pmd, addr);
7303         pte = ptep_get_lockless(ptep);
7304         if (pte_present(pte))
7305                 size = pte_leaf_size(pte);
7306         pte_unmap(ptep);
7307 #endif /* CONFIG_HAVE_FAST_GUP */
7308
7309         return size;
7310 }
7311
7312 static u64 perf_get_page_size(unsigned long addr)
7313 {
7314         struct mm_struct *mm;
7315         unsigned long flags;
7316         u64 size;
7317
7318         if (!addr)
7319                 return 0;
7320
7321         /*
7322          * Software page-table walkers must disable IRQs,
7323          * which prevents any tear down of the page tables.
7324          */
7325         local_irq_save(flags);
7326
7327         mm = current->mm;
7328         if (!mm) {
7329                 /*
7330                  * For kernel threads and the like, use init_mm so that
7331                  * we can find kernel memory.
7332                  */
7333                 mm = &init_mm;
7334         }
7335
7336         size = perf_get_pgtable_size(mm, addr);
7337
7338         local_irq_restore(flags);
7339
7340         return size;
7341 }
7342
7343 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7344
7345 struct perf_callchain_entry *
7346 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7347 {
7348         bool kernel = !event->attr.exclude_callchain_kernel;
7349         bool user   = !event->attr.exclude_callchain_user;
7350         /* Disallow cross-task user callchains. */
7351         bool crosstask = event->ctx->task && event->ctx->task != current;
7352         const u32 max_stack = event->attr.sample_max_stack;
7353         struct perf_callchain_entry *callchain;
7354
7355         if (!kernel && !user)
7356                 return &__empty_callchain;
7357
7358         callchain = get_perf_callchain(regs, 0, kernel, user,
7359                                        max_stack, crosstask, true);
7360         return callchain ?: &__empty_callchain;
7361 }
7362
7363 void perf_prepare_sample(struct perf_event_header *header,
7364                          struct perf_sample_data *data,
7365                          struct perf_event *event,
7366                          struct pt_regs *regs)
7367 {
7368         u64 sample_type = event->attr.sample_type;
7369
7370         header->type = PERF_RECORD_SAMPLE;
7371         header->size = sizeof(*header) + event->header_size;
7372
7373         header->misc = 0;
7374         header->misc |= perf_misc_flags(regs);
7375
7376         __perf_event_header__init_id(header, data, event);
7377
7378         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7379                 data->ip = perf_instruction_pointer(regs);
7380
7381         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7382                 int size = 1;
7383
7384                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7385                         data->callchain = perf_callchain(event, regs);
7386
7387                 size += data->callchain->nr;
7388
7389                 header->size += size * sizeof(u64);
7390         }
7391
7392         if (sample_type & PERF_SAMPLE_RAW) {
7393                 struct perf_raw_record *raw = data->raw;
7394                 int size;
7395
7396                 if (raw) {
7397                         struct perf_raw_frag *frag = &raw->frag;
7398                         u32 sum = 0;
7399
7400                         do {
7401                                 sum += frag->size;
7402                                 if (perf_raw_frag_last(frag))
7403                                         break;
7404                                 frag = frag->next;
7405                         } while (1);
7406
7407                         size = round_up(sum + sizeof(u32), sizeof(u64));
7408                         raw->size = size - sizeof(u32);
7409                         frag->pad = raw->size - sum;
7410                 } else {
7411                         size = sizeof(u64);
7412                 }
7413
7414                 header->size += size;
7415         }
7416
7417         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7418                 int size = sizeof(u64); /* nr */
7419                 if (data->br_stack) {
7420                         if (perf_sample_save_hw_index(event))
7421                                 size += sizeof(u64);
7422
7423                         size += data->br_stack->nr
7424                               * sizeof(struct perf_branch_entry);
7425                 }
7426                 header->size += size;
7427         }
7428
7429         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7430                 perf_sample_regs_user(&data->regs_user, regs);
7431
7432         if (sample_type & PERF_SAMPLE_REGS_USER) {
7433                 /* regs dump ABI info */
7434                 int size = sizeof(u64);
7435
7436                 if (data->regs_user.regs) {
7437                         u64 mask = event->attr.sample_regs_user;
7438                         size += hweight64(mask) * sizeof(u64);
7439                 }
7440
7441                 header->size += size;
7442         }
7443
7444         if (sample_type & PERF_SAMPLE_STACK_USER) {
7445                 /*
7446                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7447                  * processed as the last one or have additional check added
7448                  * in case new sample type is added, because we could eat
7449                  * up the rest of the sample size.
7450                  */
7451                 u16 stack_size = event->attr.sample_stack_user;
7452                 u16 size = sizeof(u64);
7453
7454                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7455                                                      data->regs_user.regs);
7456
7457                 /*
7458                  * If there is something to dump, add space for the dump
7459                  * itself and for the field that tells the dynamic size,
7460                  * which is how many have been actually dumped.
7461                  */
7462                 if (stack_size)
7463                         size += sizeof(u64) + stack_size;
7464
7465                 data->stack_user_size = stack_size;
7466                 header->size += size;
7467         }
7468
7469         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7470                 /* regs dump ABI info */
7471                 int size = sizeof(u64);
7472
7473                 perf_sample_regs_intr(&data->regs_intr, regs);
7474
7475                 if (data->regs_intr.regs) {
7476                         u64 mask = event->attr.sample_regs_intr;
7477
7478                         size += hweight64(mask) * sizeof(u64);
7479                 }
7480
7481                 header->size += size;
7482         }
7483
7484         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7485                 data->phys_addr = perf_virt_to_phys(data->addr);
7486
7487 #ifdef CONFIG_CGROUP_PERF
7488         if (sample_type & PERF_SAMPLE_CGROUP) {
7489                 struct cgroup *cgrp;
7490
7491                 /* protected by RCU */
7492                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7493                 data->cgroup = cgroup_id(cgrp);
7494         }
7495 #endif
7496
7497         /*
7498          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7499          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7500          * but the value will not dump to the userspace.
7501          */
7502         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7503                 data->data_page_size = perf_get_page_size(data->addr);
7504
7505         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7506                 data->code_page_size = perf_get_page_size(data->ip);
7507
7508         if (sample_type & PERF_SAMPLE_AUX) {
7509                 u64 size;
7510
7511                 header->size += sizeof(u64); /* size */
7512
7513                 /*
7514                  * Given the 16bit nature of header::size, an AUX sample can
7515                  * easily overflow it, what with all the preceding sample bits.
7516                  * Make sure this doesn't happen by using up to U16_MAX bytes
7517                  * per sample in total (rounded down to 8 byte boundary).
7518                  */
7519                 size = min_t(size_t, U16_MAX - header->size,
7520                              event->attr.aux_sample_size);
7521                 size = rounddown(size, 8);
7522                 size = perf_prepare_sample_aux(event, data, size);
7523
7524                 WARN_ON_ONCE(size + header->size > U16_MAX);
7525                 header->size += size;
7526         }
7527         /*
7528          * If you're adding more sample types here, you likely need to do
7529          * something about the overflowing header::size, like repurpose the
7530          * lowest 3 bits of size, which should be always zero at the moment.
7531          * This raises a more important question, do we really need 512k sized
7532          * samples and why, so good argumentation is in order for whatever you
7533          * do here next.
7534          */
7535         WARN_ON_ONCE(header->size & 7);
7536 }
7537
7538 static __always_inline int
7539 __perf_event_output(struct perf_event *event,
7540                     struct perf_sample_data *data,
7541                     struct pt_regs *regs,
7542                     int (*output_begin)(struct perf_output_handle *,
7543                                         struct perf_sample_data *,
7544                                         struct perf_event *,
7545                                         unsigned int))
7546 {
7547         struct perf_output_handle handle;
7548         struct perf_event_header header;
7549         int err;
7550
7551         /* protect the callchain buffers */
7552         rcu_read_lock();
7553
7554         perf_prepare_sample(&header, data, event, regs);
7555
7556         err = output_begin(&handle, data, event, header.size);
7557         if (err)
7558                 goto exit;
7559
7560         perf_output_sample(&handle, &header, data, event);
7561
7562         perf_output_end(&handle);
7563
7564 exit:
7565         rcu_read_unlock();
7566         return err;
7567 }
7568
7569 void
7570 perf_event_output_forward(struct perf_event *event,
7571                          struct perf_sample_data *data,
7572                          struct pt_regs *regs)
7573 {
7574         __perf_event_output(event, data, regs, perf_output_begin_forward);
7575 }
7576
7577 void
7578 perf_event_output_backward(struct perf_event *event,
7579                            struct perf_sample_data *data,
7580                            struct pt_regs *regs)
7581 {
7582         __perf_event_output(event, data, regs, perf_output_begin_backward);
7583 }
7584
7585 int
7586 perf_event_output(struct perf_event *event,
7587                   struct perf_sample_data *data,
7588                   struct pt_regs *regs)
7589 {
7590         return __perf_event_output(event, data, regs, perf_output_begin);
7591 }
7592
7593 /*
7594  * read event_id
7595  */
7596
7597 struct perf_read_event {
7598         struct perf_event_header        header;
7599
7600         u32                             pid;
7601         u32                             tid;
7602 };
7603
7604 static void
7605 perf_event_read_event(struct perf_event *event,
7606                         struct task_struct *task)
7607 {
7608         struct perf_output_handle handle;
7609         struct perf_sample_data sample;
7610         struct perf_read_event read_event = {
7611                 .header = {
7612                         .type = PERF_RECORD_READ,
7613                         .misc = 0,
7614                         .size = sizeof(read_event) + event->read_size,
7615                 },
7616                 .pid = perf_event_pid(event, task),
7617                 .tid = perf_event_tid(event, task),
7618         };
7619         int ret;
7620
7621         perf_event_header__init_id(&read_event.header, &sample, event);
7622         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7623         if (ret)
7624                 return;
7625
7626         perf_output_put(&handle, read_event);
7627         perf_output_read(&handle, event);
7628         perf_event__output_id_sample(event, &handle, &sample);
7629
7630         perf_output_end(&handle);
7631 }
7632
7633 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7634
7635 static void
7636 perf_iterate_ctx(struct perf_event_context *ctx,
7637                    perf_iterate_f output,
7638                    void *data, bool all)
7639 {
7640         struct perf_event *event;
7641
7642         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7643                 if (!all) {
7644                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7645                                 continue;
7646                         if (!event_filter_match(event))
7647                                 continue;
7648                 }
7649
7650                 output(event, data);
7651         }
7652 }
7653
7654 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7655 {
7656         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7657         struct perf_event *event;
7658
7659         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7660                 /*
7661                  * Skip events that are not fully formed yet; ensure that
7662                  * if we observe event->ctx, both event and ctx will be
7663                  * complete enough. See perf_install_in_context().
7664                  */
7665                 if (!smp_load_acquire(&event->ctx))
7666                         continue;
7667
7668                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7669                         continue;
7670                 if (!event_filter_match(event))
7671                         continue;
7672                 output(event, data);
7673         }
7674 }
7675
7676 /*
7677  * Iterate all events that need to receive side-band events.
7678  *
7679  * For new callers; ensure that account_pmu_sb_event() includes
7680  * your event, otherwise it might not get delivered.
7681  */
7682 static void
7683 perf_iterate_sb(perf_iterate_f output, void *data,
7684                struct perf_event_context *task_ctx)
7685 {
7686         struct perf_event_context *ctx;
7687         int ctxn;
7688
7689         rcu_read_lock();
7690         preempt_disable();
7691
7692         /*
7693          * If we have task_ctx != NULL we only notify the task context itself.
7694          * The task_ctx is set only for EXIT events before releasing task
7695          * context.
7696          */
7697         if (task_ctx) {
7698                 perf_iterate_ctx(task_ctx, output, data, false);
7699                 goto done;
7700         }
7701
7702         perf_iterate_sb_cpu(output, data);
7703
7704         for_each_task_context_nr(ctxn) {
7705                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7706                 if (ctx)
7707                         perf_iterate_ctx(ctx, output, data, false);
7708         }
7709 done:
7710         preempt_enable();
7711         rcu_read_unlock();
7712 }
7713
7714 /*
7715  * Clear all file-based filters at exec, they'll have to be
7716  * re-instated when/if these objects are mmapped again.
7717  */
7718 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7719 {
7720         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7721         struct perf_addr_filter *filter;
7722         unsigned int restart = 0, count = 0;
7723         unsigned long flags;
7724
7725         if (!has_addr_filter(event))
7726                 return;
7727
7728         raw_spin_lock_irqsave(&ifh->lock, flags);
7729         list_for_each_entry(filter, &ifh->list, entry) {
7730                 if (filter->path.dentry) {
7731                         event->addr_filter_ranges[count].start = 0;
7732                         event->addr_filter_ranges[count].size = 0;
7733                         restart++;
7734                 }
7735
7736                 count++;
7737         }
7738
7739         if (restart)
7740                 event->addr_filters_gen++;
7741         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7742
7743         if (restart)
7744                 perf_event_stop(event, 1);
7745 }
7746
7747 void perf_event_exec(void)
7748 {
7749         struct perf_event_context *ctx;
7750         int ctxn;
7751
7752         for_each_task_context_nr(ctxn) {
7753                 perf_event_enable_on_exec(ctxn);
7754                 perf_event_remove_on_exec(ctxn);
7755
7756                 rcu_read_lock();
7757                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7758                 if (ctx) {
7759                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7760                                          NULL, true);
7761                 }
7762                 rcu_read_unlock();
7763         }
7764 }
7765
7766 struct remote_output {
7767         struct perf_buffer      *rb;
7768         int                     err;
7769 };
7770
7771 static void __perf_event_output_stop(struct perf_event *event, void *data)
7772 {
7773         struct perf_event *parent = event->parent;
7774         struct remote_output *ro = data;
7775         struct perf_buffer *rb = ro->rb;
7776         struct stop_event_data sd = {
7777                 .event  = event,
7778         };
7779
7780         if (!has_aux(event))
7781                 return;
7782
7783         if (!parent)
7784                 parent = event;
7785
7786         /*
7787          * In case of inheritance, it will be the parent that links to the
7788          * ring-buffer, but it will be the child that's actually using it.
7789          *
7790          * We are using event::rb to determine if the event should be stopped,
7791          * however this may race with ring_buffer_attach() (through set_output),
7792          * which will make us skip the event that actually needs to be stopped.
7793          * So ring_buffer_attach() has to stop an aux event before re-assigning
7794          * its rb pointer.
7795          */
7796         if (rcu_dereference(parent->rb) == rb)
7797                 ro->err = __perf_event_stop(&sd);
7798 }
7799
7800 static int __perf_pmu_output_stop(void *info)
7801 {
7802         struct perf_event *event = info;
7803         struct pmu *pmu = event->ctx->pmu;
7804         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7805         struct remote_output ro = {
7806                 .rb     = event->rb,
7807         };
7808
7809         rcu_read_lock();
7810         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7811         if (cpuctx->task_ctx)
7812                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7813                                    &ro, false);
7814         rcu_read_unlock();
7815
7816         return ro.err;
7817 }
7818
7819 static void perf_pmu_output_stop(struct perf_event *event)
7820 {
7821         struct perf_event *iter;
7822         int err, cpu;
7823
7824 restart:
7825         rcu_read_lock();
7826         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7827                 /*
7828                  * For per-CPU events, we need to make sure that neither they
7829                  * nor their children are running; for cpu==-1 events it's
7830                  * sufficient to stop the event itself if it's active, since
7831                  * it can't have children.
7832                  */
7833                 cpu = iter->cpu;
7834                 if (cpu == -1)
7835                         cpu = READ_ONCE(iter->oncpu);
7836
7837                 if (cpu == -1)
7838                         continue;
7839
7840                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7841                 if (err == -EAGAIN) {
7842                         rcu_read_unlock();
7843                         goto restart;
7844                 }
7845         }
7846         rcu_read_unlock();
7847 }
7848
7849 /*
7850  * task tracking -- fork/exit
7851  *
7852  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7853  */
7854
7855 struct perf_task_event {
7856         struct task_struct              *task;
7857         struct perf_event_context       *task_ctx;
7858
7859         struct {
7860                 struct perf_event_header        header;
7861
7862                 u32                             pid;
7863                 u32                             ppid;
7864                 u32                             tid;
7865                 u32                             ptid;
7866                 u64                             time;
7867         } event_id;
7868 };
7869
7870 static int perf_event_task_match(struct perf_event *event)
7871 {
7872         return event->attr.comm  || event->attr.mmap ||
7873                event->attr.mmap2 || event->attr.mmap_data ||
7874                event->attr.task;
7875 }
7876
7877 static void perf_event_task_output(struct perf_event *event,
7878                                    void *data)
7879 {
7880         struct perf_task_event *task_event = data;
7881         struct perf_output_handle handle;
7882         struct perf_sample_data sample;
7883         struct task_struct *task = task_event->task;
7884         int ret, size = task_event->event_id.header.size;
7885
7886         if (!perf_event_task_match(event))
7887                 return;
7888
7889         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7890
7891         ret = perf_output_begin(&handle, &sample, event,
7892                                 task_event->event_id.header.size);
7893         if (ret)
7894                 goto out;
7895
7896         task_event->event_id.pid = perf_event_pid(event, task);
7897         task_event->event_id.tid = perf_event_tid(event, task);
7898
7899         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7900                 task_event->event_id.ppid = perf_event_pid(event,
7901                                                         task->real_parent);
7902                 task_event->event_id.ptid = perf_event_pid(event,
7903                                                         task->real_parent);
7904         } else {  /* PERF_RECORD_FORK */
7905                 task_event->event_id.ppid = perf_event_pid(event, current);
7906                 task_event->event_id.ptid = perf_event_tid(event, current);
7907         }
7908
7909         task_event->event_id.time = perf_event_clock(event);
7910
7911         perf_output_put(&handle, task_event->event_id);
7912
7913         perf_event__output_id_sample(event, &handle, &sample);
7914
7915         perf_output_end(&handle);
7916 out:
7917         task_event->event_id.header.size = size;
7918 }
7919
7920 static void perf_event_task(struct task_struct *task,
7921                               struct perf_event_context *task_ctx,
7922                               int new)
7923 {
7924         struct perf_task_event task_event;
7925
7926         if (!atomic_read(&nr_comm_events) &&
7927             !atomic_read(&nr_mmap_events) &&
7928             !atomic_read(&nr_task_events))
7929                 return;
7930
7931         task_event = (struct perf_task_event){
7932                 .task     = task,
7933                 .task_ctx = task_ctx,
7934                 .event_id    = {
7935                         .header = {
7936                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7937                                 .misc = 0,
7938                                 .size = sizeof(task_event.event_id),
7939                         },
7940                         /* .pid  */
7941                         /* .ppid */
7942                         /* .tid  */
7943                         /* .ptid */
7944                         /* .time */
7945                 },
7946         };
7947
7948         perf_iterate_sb(perf_event_task_output,
7949                        &task_event,
7950                        task_ctx);
7951 }
7952
7953 void perf_event_fork(struct task_struct *task)
7954 {
7955         perf_event_task(task, NULL, 1);
7956         perf_event_namespaces(task);
7957 }
7958
7959 /*
7960  * comm tracking
7961  */
7962
7963 struct perf_comm_event {
7964         struct task_struct      *task;
7965         char                    *comm;
7966         int                     comm_size;
7967
7968         struct {
7969                 struct perf_event_header        header;
7970
7971                 u32                             pid;
7972                 u32                             tid;
7973         } event_id;
7974 };
7975
7976 static int perf_event_comm_match(struct perf_event *event)
7977 {
7978         return event->attr.comm;
7979 }
7980
7981 static void perf_event_comm_output(struct perf_event *event,
7982                                    void *data)
7983 {
7984         struct perf_comm_event *comm_event = data;
7985         struct perf_output_handle handle;
7986         struct perf_sample_data sample;
7987         int size = comm_event->event_id.header.size;
7988         int ret;
7989
7990         if (!perf_event_comm_match(event))
7991                 return;
7992
7993         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7994         ret = perf_output_begin(&handle, &sample, event,
7995                                 comm_event->event_id.header.size);
7996
7997         if (ret)
7998                 goto out;
7999
8000         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8001         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8002
8003         perf_output_put(&handle, comm_event->event_id);
8004         __output_copy(&handle, comm_event->comm,
8005                                    comm_event->comm_size);
8006
8007         perf_event__output_id_sample(event, &handle, &sample);
8008
8009         perf_output_end(&handle);
8010 out:
8011         comm_event->event_id.header.size = size;
8012 }
8013
8014 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8015 {
8016         char comm[TASK_COMM_LEN];
8017         unsigned int size;
8018
8019         memset(comm, 0, sizeof(comm));
8020         strlcpy(comm, comm_event->task->comm, sizeof(comm));
8021         size = ALIGN(strlen(comm)+1, sizeof(u64));
8022
8023         comm_event->comm = comm;
8024         comm_event->comm_size = size;
8025
8026         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8027
8028         perf_iterate_sb(perf_event_comm_output,
8029                        comm_event,
8030                        NULL);
8031 }
8032
8033 void perf_event_comm(struct task_struct *task, bool exec)
8034 {
8035         struct perf_comm_event comm_event;
8036
8037         if (!atomic_read(&nr_comm_events))
8038                 return;
8039
8040         comm_event = (struct perf_comm_event){
8041                 .task   = task,
8042                 /* .comm      */
8043                 /* .comm_size */
8044                 .event_id  = {
8045                         .header = {
8046                                 .type = PERF_RECORD_COMM,
8047                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8048                                 /* .size */
8049                         },
8050                         /* .pid */
8051                         /* .tid */
8052                 },
8053         };
8054
8055         perf_event_comm_event(&comm_event);
8056 }
8057
8058 /*
8059  * namespaces tracking
8060  */
8061
8062 struct perf_namespaces_event {
8063         struct task_struct              *task;
8064
8065         struct {
8066                 struct perf_event_header        header;
8067
8068                 u32                             pid;
8069                 u32                             tid;
8070                 u64                             nr_namespaces;
8071                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8072         } event_id;
8073 };
8074
8075 static int perf_event_namespaces_match(struct perf_event *event)
8076 {
8077         return event->attr.namespaces;
8078 }
8079
8080 static void perf_event_namespaces_output(struct perf_event *event,
8081                                          void *data)
8082 {
8083         struct perf_namespaces_event *namespaces_event = data;
8084         struct perf_output_handle handle;
8085         struct perf_sample_data sample;
8086         u16 header_size = namespaces_event->event_id.header.size;
8087         int ret;
8088
8089         if (!perf_event_namespaces_match(event))
8090                 return;
8091
8092         perf_event_header__init_id(&namespaces_event->event_id.header,
8093                                    &sample, event);
8094         ret = perf_output_begin(&handle, &sample, event,
8095                                 namespaces_event->event_id.header.size);
8096         if (ret)
8097                 goto out;
8098
8099         namespaces_event->event_id.pid = perf_event_pid(event,
8100                                                         namespaces_event->task);
8101         namespaces_event->event_id.tid = perf_event_tid(event,
8102                                                         namespaces_event->task);
8103
8104         perf_output_put(&handle, namespaces_event->event_id);
8105
8106         perf_event__output_id_sample(event, &handle, &sample);
8107
8108         perf_output_end(&handle);
8109 out:
8110         namespaces_event->event_id.header.size = header_size;
8111 }
8112
8113 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8114                                    struct task_struct *task,
8115                                    const struct proc_ns_operations *ns_ops)
8116 {
8117         struct path ns_path;
8118         struct inode *ns_inode;
8119         int error;
8120
8121         error = ns_get_path(&ns_path, task, ns_ops);
8122         if (!error) {
8123                 ns_inode = ns_path.dentry->d_inode;
8124                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8125                 ns_link_info->ino = ns_inode->i_ino;
8126                 path_put(&ns_path);
8127         }
8128 }
8129
8130 void perf_event_namespaces(struct task_struct *task)
8131 {
8132         struct perf_namespaces_event namespaces_event;
8133         struct perf_ns_link_info *ns_link_info;
8134
8135         if (!atomic_read(&nr_namespaces_events))
8136                 return;
8137
8138         namespaces_event = (struct perf_namespaces_event){
8139                 .task   = task,
8140                 .event_id  = {
8141                         .header = {
8142                                 .type = PERF_RECORD_NAMESPACES,
8143                                 .misc = 0,
8144                                 .size = sizeof(namespaces_event.event_id),
8145                         },
8146                         /* .pid */
8147                         /* .tid */
8148                         .nr_namespaces = NR_NAMESPACES,
8149                         /* .link_info[NR_NAMESPACES] */
8150                 },
8151         };
8152
8153         ns_link_info = namespaces_event.event_id.link_info;
8154
8155         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8156                                task, &mntns_operations);
8157
8158 #ifdef CONFIG_USER_NS
8159         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8160                                task, &userns_operations);
8161 #endif
8162 #ifdef CONFIG_NET_NS
8163         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8164                                task, &netns_operations);
8165 #endif
8166 #ifdef CONFIG_UTS_NS
8167         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8168                                task, &utsns_operations);
8169 #endif
8170 #ifdef CONFIG_IPC_NS
8171         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8172                                task, &ipcns_operations);
8173 #endif
8174 #ifdef CONFIG_PID_NS
8175         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8176                                task, &pidns_operations);
8177 #endif
8178 #ifdef CONFIG_CGROUPS
8179         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8180                                task, &cgroupns_operations);
8181 #endif
8182
8183         perf_iterate_sb(perf_event_namespaces_output,
8184                         &namespaces_event,
8185                         NULL);
8186 }
8187
8188 /*
8189  * cgroup tracking
8190  */
8191 #ifdef CONFIG_CGROUP_PERF
8192
8193 struct perf_cgroup_event {
8194         char                            *path;
8195         int                             path_size;
8196         struct {
8197                 struct perf_event_header        header;
8198                 u64                             id;
8199                 char                            path[];
8200         } event_id;
8201 };
8202
8203 static int perf_event_cgroup_match(struct perf_event *event)
8204 {
8205         return event->attr.cgroup;
8206 }
8207
8208 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8209 {
8210         struct perf_cgroup_event *cgroup_event = data;
8211         struct perf_output_handle handle;
8212         struct perf_sample_data sample;
8213         u16 header_size = cgroup_event->event_id.header.size;
8214         int ret;
8215
8216         if (!perf_event_cgroup_match(event))
8217                 return;
8218
8219         perf_event_header__init_id(&cgroup_event->event_id.header,
8220                                    &sample, event);
8221         ret = perf_output_begin(&handle, &sample, event,
8222                                 cgroup_event->event_id.header.size);
8223         if (ret)
8224                 goto out;
8225
8226         perf_output_put(&handle, cgroup_event->event_id);
8227         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8228
8229         perf_event__output_id_sample(event, &handle, &sample);
8230
8231         perf_output_end(&handle);
8232 out:
8233         cgroup_event->event_id.header.size = header_size;
8234 }
8235
8236 static void perf_event_cgroup(struct cgroup *cgrp)
8237 {
8238         struct perf_cgroup_event cgroup_event;
8239         char path_enomem[16] = "//enomem";
8240         char *pathname;
8241         size_t size;
8242
8243         if (!atomic_read(&nr_cgroup_events))
8244                 return;
8245
8246         cgroup_event = (struct perf_cgroup_event){
8247                 .event_id  = {
8248                         .header = {
8249                                 .type = PERF_RECORD_CGROUP,
8250                                 .misc = 0,
8251                                 .size = sizeof(cgroup_event.event_id),
8252                         },
8253                         .id = cgroup_id(cgrp),
8254                 },
8255         };
8256
8257         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8258         if (pathname == NULL) {
8259                 cgroup_event.path = path_enomem;
8260         } else {
8261                 /* just to be sure to have enough space for alignment */
8262                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8263                 cgroup_event.path = pathname;
8264         }
8265
8266         /*
8267          * Since our buffer works in 8 byte units we need to align our string
8268          * size to a multiple of 8. However, we must guarantee the tail end is
8269          * zero'd out to avoid leaking random bits to userspace.
8270          */
8271         size = strlen(cgroup_event.path) + 1;
8272         while (!IS_ALIGNED(size, sizeof(u64)))
8273                 cgroup_event.path[size++] = '\0';
8274
8275         cgroup_event.event_id.header.size += size;
8276         cgroup_event.path_size = size;
8277
8278         perf_iterate_sb(perf_event_cgroup_output,
8279                         &cgroup_event,
8280                         NULL);
8281
8282         kfree(pathname);
8283 }
8284
8285 #endif
8286
8287 /*
8288  * mmap tracking
8289  */
8290
8291 struct perf_mmap_event {
8292         struct vm_area_struct   *vma;
8293
8294         const char              *file_name;
8295         int                     file_size;
8296         int                     maj, min;
8297         u64                     ino;
8298         u64                     ino_generation;
8299         u32                     prot, flags;
8300         u8                      build_id[BUILD_ID_SIZE_MAX];
8301         u32                     build_id_size;
8302
8303         struct {
8304                 struct perf_event_header        header;
8305
8306                 u32                             pid;
8307                 u32                             tid;
8308                 u64                             start;
8309                 u64                             len;
8310                 u64                             pgoff;
8311         } event_id;
8312 };
8313
8314 static int perf_event_mmap_match(struct perf_event *event,
8315                                  void *data)
8316 {
8317         struct perf_mmap_event *mmap_event = data;
8318         struct vm_area_struct *vma = mmap_event->vma;
8319         int executable = vma->vm_flags & VM_EXEC;
8320
8321         return (!executable && event->attr.mmap_data) ||
8322                (executable && (event->attr.mmap || event->attr.mmap2));
8323 }
8324
8325 static void perf_event_mmap_output(struct perf_event *event,
8326                                    void *data)
8327 {
8328         struct perf_mmap_event *mmap_event = data;
8329         struct perf_output_handle handle;
8330         struct perf_sample_data sample;
8331         int size = mmap_event->event_id.header.size;
8332         u32 type = mmap_event->event_id.header.type;
8333         bool use_build_id;
8334         int ret;
8335
8336         if (!perf_event_mmap_match(event, data))
8337                 return;
8338
8339         if (event->attr.mmap2) {
8340                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8341                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8342                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8343                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8344                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8345                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8346                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8347         }
8348
8349         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8350         ret = perf_output_begin(&handle, &sample, event,
8351                                 mmap_event->event_id.header.size);
8352         if (ret)
8353                 goto out;
8354
8355         mmap_event->event_id.pid = perf_event_pid(event, current);
8356         mmap_event->event_id.tid = perf_event_tid(event, current);
8357
8358         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8359
8360         if (event->attr.mmap2 && use_build_id)
8361                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8362
8363         perf_output_put(&handle, mmap_event->event_id);
8364
8365         if (event->attr.mmap2) {
8366                 if (use_build_id) {
8367                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8368
8369                         __output_copy(&handle, size, 4);
8370                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8371                 } else {
8372                         perf_output_put(&handle, mmap_event->maj);
8373                         perf_output_put(&handle, mmap_event->min);
8374                         perf_output_put(&handle, mmap_event->ino);
8375                         perf_output_put(&handle, mmap_event->ino_generation);
8376                 }
8377                 perf_output_put(&handle, mmap_event->prot);
8378                 perf_output_put(&handle, mmap_event->flags);
8379         }
8380
8381         __output_copy(&handle, mmap_event->file_name,
8382                                    mmap_event->file_size);
8383
8384         perf_event__output_id_sample(event, &handle, &sample);
8385
8386         perf_output_end(&handle);
8387 out:
8388         mmap_event->event_id.header.size = size;
8389         mmap_event->event_id.header.type = type;
8390 }
8391
8392 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8393 {
8394         struct vm_area_struct *vma = mmap_event->vma;
8395         struct file *file = vma->vm_file;
8396         int maj = 0, min = 0;
8397         u64 ino = 0, gen = 0;
8398         u32 prot = 0, flags = 0;
8399         unsigned int size;
8400         char tmp[16];
8401         char *buf = NULL;
8402         char *name;
8403
8404         if (vma->vm_flags & VM_READ)
8405                 prot |= PROT_READ;
8406         if (vma->vm_flags & VM_WRITE)
8407                 prot |= PROT_WRITE;
8408         if (vma->vm_flags & VM_EXEC)
8409                 prot |= PROT_EXEC;
8410
8411         if (vma->vm_flags & VM_MAYSHARE)
8412                 flags = MAP_SHARED;
8413         else
8414                 flags = MAP_PRIVATE;
8415
8416         if (vma->vm_flags & VM_LOCKED)
8417                 flags |= MAP_LOCKED;
8418         if (is_vm_hugetlb_page(vma))
8419                 flags |= MAP_HUGETLB;
8420
8421         if (file) {
8422                 struct inode *inode;
8423                 dev_t dev;
8424
8425                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8426                 if (!buf) {
8427                         name = "//enomem";
8428                         goto cpy_name;
8429                 }
8430                 /*
8431                  * d_path() works from the end of the rb backwards, so we
8432                  * need to add enough zero bytes after the string to handle
8433                  * the 64bit alignment we do later.
8434                  */
8435                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8436                 if (IS_ERR(name)) {
8437                         name = "//toolong";
8438                         goto cpy_name;
8439                 }
8440                 inode = file_inode(vma->vm_file);
8441                 dev = inode->i_sb->s_dev;
8442                 ino = inode->i_ino;
8443                 gen = inode->i_generation;
8444                 maj = MAJOR(dev);
8445                 min = MINOR(dev);
8446
8447                 goto got_name;
8448         } else {
8449                 if (vma->vm_ops && vma->vm_ops->name) {
8450                         name = (char *) vma->vm_ops->name(vma);
8451                         if (name)
8452                                 goto cpy_name;
8453                 }
8454
8455                 name = (char *)arch_vma_name(vma);
8456                 if (name)
8457                         goto cpy_name;
8458
8459                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8460                                 vma->vm_end >= vma->vm_mm->brk) {
8461                         name = "[heap]";
8462                         goto cpy_name;
8463                 }
8464                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8465                                 vma->vm_end >= vma->vm_mm->start_stack) {
8466                         name = "[stack]";
8467                         goto cpy_name;
8468                 }
8469
8470                 name = "//anon";
8471                 goto cpy_name;
8472         }
8473
8474 cpy_name:
8475         strlcpy(tmp, name, sizeof(tmp));
8476         name = tmp;
8477 got_name:
8478         /*
8479          * Since our buffer works in 8 byte units we need to align our string
8480          * size to a multiple of 8. However, we must guarantee the tail end is
8481          * zero'd out to avoid leaking random bits to userspace.
8482          */
8483         size = strlen(name)+1;
8484         while (!IS_ALIGNED(size, sizeof(u64)))
8485                 name[size++] = '\0';
8486
8487         mmap_event->file_name = name;
8488         mmap_event->file_size = size;
8489         mmap_event->maj = maj;
8490         mmap_event->min = min;
8491         mmap_event->ino = ino;
8492         mmap_event->ino_generation = gen;
8493         mmap_event->prot = prot;
8494         mmap_event->flags = flags;
8495
8496         if (!(vma->vm_flags & VM_EXEC))
8497                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8498
8499         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8500
8501         if (atomic_read(&nr_build_id_events))
8502                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8503
8504         perf_iterate_sb(perf_event_mmap_output,
8505                        mmap_event,
8506                        NULL);
8507
8508         kfree(buf);
8509 }
8510
8511 /*
8512  * Check whether inode and address range match filter criteria.
8513  */
8514 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8515                                      struct file *file, unsigned long offset,
8516                                      unsigned long size)
8517 {
8518         /* d_inode(NULL) won't be equal to any mapped user-space file */
8519         if (!filter->path.dentry)
8520                 return false;
8521
8522         if (d_inode(filter->path.dentry) != file_inode(file))
8523                 return false;
8524
8525         if (filter->offset > offset + size)
8526                 return false;
8527
8528         if (filter->offset + filter->size < offset)
8529                 return false;
8530
8531         return true;
8532 }
8533
8534 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8535                                         struct vm_area_struct *vma,
8536                                         struct perf_addr_filter_range *fr)
8537 {
8538         unsigned long vma_size = vma->vm_end - vma->vm_start;
8539         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8540         struct file *file = vma->vm_file;
8541
8542         if (!perf_addr_filter_match(filter, file, off, vma_size))
8543                 return false;
8544
8545         if (filter->offset < off) {
8546                 fr->start = vma->vm_start;
8547                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8548         } else {
8549                 fr->start = vma->vm_start + filter->offset - off;
8550                 fr->size = min(vma->vm_end - fr->start, filter->size);
8551         }
8552
8553         return true;
8554 }
8555
8556 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8557 {
8558         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8559         struct vm_area_struct *vma = data;
8560         struct perf_addr_filter *filter;
8561         unsigned int restart = 0, count = 0;
8562         unsigned long flags;
8563
8564         if (!has_addr_filter(event))
8565                 return;
8566
8567         if (!vma->vm_file)
8568                 return;
8569
8570         raw_spin_lock_irqsave(&ifh->lock, flags);
8571         list_for_each_entry(filter, &ifh->list, entry) {
8572                 if (perf_addr_filter_vma_adjust(filter, vma,
8573                                                 &event->addr_filter_ranges[count]))
8574                         restart++;
8575
8576                 count++;
8577         }
8578
8579         if (restart)
8580                 event->addr_filters_gen++;
8581         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8582
8583         if (restart)
8584                 perf_event_stop(event, 1);
8585 }
8586
8587 /*
8588  * Adjust all task's events' filters to the new vma
8589  */
8590 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8591 {
8592         struct perf_event_context *ctx;
8593         int ctxn;
8594
8595         /*
8596          * Data tracing isn't supported yet and as such there is no need
8597          * to keep track of anything that isn't related to executable code:
8598          */
8599         if (!(vma->vm_flags & VM_EXEC))
8600                 return;
8601
8602         rcu_read_lock();
8603         for_each_task_context_nr(ctxn) {
8604                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8605                 if (!ctx)
8606                         continue;
8607
8608                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8609         }
8610         rcu_read_unlock();
8611 }
8612
8613 void perf_event_mmap(struct vm_area_struct *vma)
8614 {
8615         struct perf_mmap_event mmap_event;
8616
8617         if (!atomic_read(&nr_mmap_events))
8618                 return;
8619
8620         mmap_event = (struct perf_mmap_event){
8621                 .vma    = vma,
8622                 /* .file_name */
8623                 /* .file_size */
8624                 .event_id  = {
8625                         .header = {
8626                                 .type = PERF_RECORD_MMAP,
8627                                 .misc = PERF_RECORD_MISC_USER,
8628                                 /* .size */
8629                         },
8630                         /* .pid */
8631                         /* .tid */
8632                         .start  = vma->vm_start,
8633                         .len    = vma->vm_end - vma->vm_start,
8634                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8635                 },
8636                 /* .maj (attr_mmap2 only) */
8637                 /* .min (attr_mmap2 only) */
8638                 /* .ino (attr_mmap2 only) */
8639                 /* .ino_generation (attr_mmap2 only) */
8640                 /* .prot (attr_mmap2 only) */
8641                 /* .flags (attr_mmap2 only) */
8642         };
8643
8644         perf_addr_filters_adjust(vma);
8645         perf_event_mmap_event(&mmap_event);
8646 }
8647
8648 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8649                           unsigned long size, u64 flags)
8650 {
8651         struct perf_output_handle handle;
8652         struct perf_sample_data sample;
8653         struct perf_aux_event {
8654                 struct perf_event_header        header;
8655                 u64                             offset;
8656                 u64                             size;
8657                 u64                             flags;
8658         } rec = {
8659                 .header = {
8660                         .type = PERF_RECORD_AUX,
8661                         .misc = 0,
8662                         .size = sizeof(rec),
8663                 },
8664                 .offset         = head,
8665                 .size           = size,
8666                 .flags          = flags,
8667         };
8668         int ret;
8669
8670         perf_event_header__init_id(&rec.header, &sample, event);
8671         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8672
8673         if (ret)
8674                 return;
8675
8676         perf_output_put(&handle, rec);
8677         perf_event__output_id_sample(event, &handle, &sample);
8678
8679         perf_output_end(&handle);
8680 }
8681
8682 /*
8683  * Lost/dropped samples logging
8684  */
8685 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8686 {
8687         struct perf_output_handle handle;
8688         struct perf_sample_data sample;
8689         int ret;
8690
8691         struct {
8692                 struct perf_event_header        header;
8693                 u64                             lost;
8694         } lost_samples_event = {
8695                 .header = {
8696                         .type = PERF_RECORD_LOST_SAMPLES,
8697                         .misc = 0,
8698                         .size = sizeof(lost_samples_event),
8699                 },
8700                 .lost           = lost,
8701         };
8702
8703         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8704
8705         ret = perf_output_begin(&handle, &sample, event,
8706                                 lost_samples_event.header.size);
8707         if (ret)
8708                 return;
8709
8710         perf_output_put(&handle, lost_samples_event);
8711         perf_event__output_id_sample(event, &handle, &sample);
8712         perf_output_end(&handle);
8713 }
8714
8715 /*
8716  * context_switch tracking
8717  */
8718
8719 struct perf_switch_event {
8720         struct task_struct      *task;
8721         struct task_struct      *next_prev;
8722
8723         struct {
8724                 struct perf_event_header        header;
8725                 u32                             next_prev_pid;
8726                 u32                             next_prev_tid;
8727         } event_id;
8728 };
8729
8730 static int perf_event_switch_match(struct perf_event *event)
8731 {
8732         return event->attr.context_switch;
8733 }
8734
8735 static void perf_event_switch_output(struct perf_event *event, void *data)
8736 {
8737         struct perf_switch_event *se = data;
8738         struct perf_output_handle handle;
8739         struct perf_sample_data sample;
8740         int ret;
8741
8742         if (!perf_event_switch_match(event))
8743                 return;
8744
8745         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8746         if (event->ctx->task) {
8747                 se->event_id.header.type = PERF_RECORD_SWITCH;
8748                 se->event_id.header.size = sizeof(se->event_id.header);
8749         } else {
8750                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8751                 se->event_id.header.size = sizeof(se->event_id);
8752                 se->event_id.next_prev_pid =
8753                                         perf_event_pid(event, se->next_prev);
8754                 se->event_id.next_prev_tid =
8755                                         perf_event_tid(event, se->next_prev);
8756         }
8757
8758         perf_event_header__init_id(&se->event_id.header, &sample, event);
8759
8760         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8761         if (ret)
8762                 return;
8763
8764         if (event->ctx->task)
8765                 perf_output_put(&handle, se->event_id.header);
8766         else
8767                 perf_output_put(&handle, se->event_id);
8768
8769         perf_event__output_id_sample(event, &handle, &sample);
8770
8771         perf_output_end(&handle);
8772 }
8773
8774 static void perf_event_switch(struct task_struct *task,
8775                               struct task_struct *next_prev, bool sched_in)
8776 {
8777         struct perf_switch_event switch_event;
8778
8779         /* N.B. caller checks nr_switch_events != 0 */
8780
8781         switch_event = (struct perf_switch_event){
8782                 .task           = task,
8783                 .next_prev      = next_prev,
8784                 .event_id       = {
8785                         .header = {
8786                                 /* .type */
8787                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8788                                 /* .size */
8789                         },
8790                         /* .next_prev_pid */
8791                         /* .next_prev_tid */
8792                 },
8793         };
8794
8795         if (!sched_in && task->on_rq) {
8796                 switch_event.event_id.header.misc |=
8797                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8798         }
8799
8800         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8801 }
8802
8803 /*
8804  * IRQ throttle logging
8805  */
8806
8807 static void perf_log_throttle(struct perf_event *event, int enable)
8808 {
8809         struct perf_output_handle handle;
8810         struct perf_sample_data sample;
8811         int ret;
8812
8813         struct {
8814                 struct perf_event_header        header;
8815                 u64                             time;
8816                 u64                             id;
8817                 u64                             stream_id;
8818         } throttle_event = {
8819                 .header = {
8820                         .type = PERF_RECORD_THROTTLE,
8821                         .misc = 0,
8822                         .size = sizeof(throttle_event),
8823                 },
8824                 .time           = perf_event_clock(event),
8825                 .id             = primary_event_id(event),
8826                 .stream_id      = event->id,
8827         };
8828
8829         if (enable)
8830                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8831
8832         perf_event_header__init_id(&throttle_event.header, &sample, event);
8833
8834         ret = perf_output_begin(&handle, &sample, event,
8835                                 throttle_event.header.size);
8836         if (ret)
8837                 return;
8838
8839         perf_output_put(&handle, throttle_event);
8840         perf_event__output_id_sample(event, &handle, &sample);
8841         perf_output_end(&handle);
8842 }
8843
8844 /*
8845  * ksymbol register/unregister tracking
8846  */
8847
8848 struct perf_ksymbol_event {
8849         const char      *name;
8850         int             name_len;
8851         struct {
8852                 struct perf_event_header        header;
8853                 u64                             addr;
8854                 u32                             len;
8855                 u16                             ksym_type;
8856                 u16                             flags;
8857         } event_id;
8858 };
8859
8860 static int perf_event_ksymbol_match(struct perf_event *event)
8861 {
8862         return event->attr.ksymbol;
8863 }
8864
8865 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8866 {
8867         struct perf_ksymbol_event *ksymbol_event = data;
8868         struct perf_output_handle handle;
8869         struct perf_sample_data sample;
8870         int ret;
8871
8872         if (!perf_event_ksymbol_match(event))
8873                 return;
8874
8875         perf_event_header__init_id(&ksymbol_event->event_id.header,
8876                                    &sample, event);
8877         ret = perf_output_begin(&handle, &sample, event,
8878                                 ksymbol_event->event_id.header.size);
8879         if (ret)
8880                 return;
8881
8882         perf_output_put(&handle, ksymbol_event->event_id);
8883         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8884         perf_event__output_id_sample(event, &handle, &sample);
8885
8886         perf_output_end(&handle);
8887 }
8888
8889 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8890                         const char *sym)
8891 {
8892         struct perf_ksymbol_event ksymbol_event;
8893         char name[KSYM_NAME_LEN];
8894         u16 flags = 0;
8895         int name_len;
8896
8897         if (!atomic_read(&nr_ksymbol_events))
8898                 return;
8899
8900         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8901             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8902                 goto err;
8903
8904         strlcpy(name, sym, KSYM_NAME_LEN);
8905         name_len = strlen(name) + 1;
8906         while (!IS_ALIGNED(name_len, sizeof(u64)))
8907                 name[name_len++] = '\0';
8908         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8909
8910         if (unregister)
8911                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8912
8913         ksymbol_event = (struct perf_ksymbol_event){
8914                 .name = name,
8915                 .name_len = name_len,
8916                 .event_id = {
8917                         .header = {
8918                                 .type = PERF_RECORD_KSYMBOL,
8919                                 .size = sizeof(ksymbol_event.event_id) +
8920                                         name_len,
8921                         },
8922                         .addr = addr,
8923                         .len = len,
8924                         .ksym_type = ksym_type,
8925                         .flags = flags,
8926                 },
8927         };
8928
8929         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8930         return;
8931 err:
8932         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8933 }
8934
8935 /*
8936  * bpf program load/unload tracking
8937  */
8938
8939 struct perf_bpf_event {
8940         struct bpf_prog *prog;
8941         struct {
8942                 struct perf_event_header        header;
8943                 u16                             type;
8944                 u16                             flags;
8945                 u32                             id;
8946                 u8                              tag[BPF_TAG_SIZE];
8947         } event_id;
8948 };
8949
8950 static int perf_event_bpf_match(struct perf_event *event)
8951 {
8952         return event->attr.bpf_event;
8953 }
8954
8955 static void perf_event_bpf_output(struct perf_event *event, void *data)
8956 {
8957         struct perf_bpf_event *bpf_event = data;
8958         struct perf_output_handle handle;
8959         struct perf_sample_data sample;
8960         int ret;
8961
8962         if (!perf_event_bpf_match(event))
8963                 return;
8964
8965         perf_event_header__init_id(&bpf_event->event_id.header,
8966                                    &sample, event);
8967         ret = perf_output_begin(&handle, data, event,
8968                                 bpf_event->event_id.header.size);
8969         if (ret)
8970                 return;
8971
8972         perf_output_put(&handle, bpf_event->event_id);
8973         perf_event__output_id_sample(event, &handle, &sample);
8974
8975         perf_output_end(&handle);
8976 }
8977
8978 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8979                                          enum perf_bpf_event_type type)
8980 {
8981         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8982         int i;
8983
8984         if (prog->aux->func_cnt == 0) {
8985                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8986                                    (u64)(unsigned long)prog->bpf_func,
8987                                    prog->jited_len, unregister,
8988                                    prog->aux->ksym.name);
8989         } else {
8990                 for (i = 0; i < prog->aux->func_cnt; i++) {
8991                         struct bpf_prog *subprog = prog->aux->func[i];
8992
8993                         perf_event_ksymbol(
8994                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8995                                 (u64)(unsigned long)subprog->bpf_func,
8996                                 subprog->jited_len, unregister,
8997                                 prog->aux->ksym.name);
8998                 }
8999         }
9000 }
9001
9002 void perf_event_bpf_event(struct bpf_prog *prog,
9003                           enum perf_bpf_event_type type,
9004                           u16 flags)
9005 {
9006         struct perf_bpf_event bpf_event;
9007
9008         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9009             type >= PERF_BPF_EVENT_MAX)
9010                 return;
9011
9012         switch (type) {
9013         case PERF_BPF_EVENT_PROG_LOAD:
9014         case PERF_BPF_EVENT_PROG_UNLOAD:
9015                 if (atomic_read(&nr_ksymbol_events))
9016                         perf_event_bpf_emit_ksymbols(prog, type);
9017                 break;
9018         default:
9019                 break;
9020         }
9021
9022         if (!atomic_read(&nr_bpf_events))
9023                 return;
9024
9025         bpf_event = (struct perf_bpf_event){
9026                 .prog = prog,
9027                 .event_id = {
9028                         .header = {
9029                                 .type = PERF_RECORD_BPF_EVENT,
9030                                 .size = sizeof(bpf_event.event_id),
9031                         },
9032                         .type = type,
9033                         .flags = flags,
9034                         .id = prog->aux->id,
9035                 },
9036         };
9037
9038         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9039
9040         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9041         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9042 }
9043
9044 struct perf_text_poke_event {
9045         const void              *old_bytes;
9046         const void              *new_bytes;
9047         size_t                  pad;
9048         u16                     old_len;
9049         u16                     new_len;
9050
9051         struct {
9052                 struct perf_event_header        header;
9053
9054                 u64                             addr;
9055         } event_id;
9056 };
9057
9058 static int perf_event_text_poke_match(struct perf_event *event)
9059 {
9060         return event->attr.text_poke;
9061 }
9062
9063 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9064 {
9065         struct perf_text_poke_event *text_poke_event = data;
9066         struct perf_output_handle handle;
9067         struct perf_sample_data sample;
9068         u64 padding = 0;
9069         int ret;
9070
9071         if (!perf_event_text_poke_match(event))
9072                 return;
9073
9074         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9075
9076         ret = perf_output_begin(&handle, &sample, event,
9077                                 text_poke_event->event_id.header.size);
9078         if (ret)
9079                 return;
9080
9081         perf_output_put(&handle, text_poke_event->event_id);
9082         perf_output_put(&handle, text_poke_event->old_len);
9083         perf_output_put(&handle, text_poke_event->new_len);
9084
9085         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9086         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9087
9088         if (text_poke_event->pad)
9089                 __output_copy(&handle, &padding, text_poke_event->pad);
9090
9091         perf_event__output_id_sample(event, &handle, &sample);
9092
9093         perf_output_end(&handle);
9094 }
9095
9096 void perf_event_text_poke(const void *addr, const void *old_bytes,
9097                           size_t old_len, const void *new_bytes, size_t new_len)
9098 {
9099         struct perf_text_poke_event text_poke_event;
9100         size_t tot, pad;
9101
9102         if (!atomic_read(&nr_text_poke_events))
9103                 return;
9104
9105         tot  = sizeof(text_poke_event.old_len) + old_len;
9106         tot += sizeof(text_poke_event.new_len) + new_len;
9107         pad  = ALIGN(tot, sizeof(u64)) - tot;
9108
9109         text_poke_event = (struct perf_text_poke_event){
9110                 .old_bytes    = old_bytes,
9111                 .new_bytes    = new_bytes,
9112                 .pad          = pad,
9113                 .old_len      = old_len,
9114                 .new_len      = new_len,
9115                 .event_id  = {
9116                         .header = {
9117                                 .type = PERF_RECORD_TEXT_POKE,
9118                                 .misc = PERF_RECORD_MISC_KERNEL,
9119                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9120                         },
9121                         .addr = (unsigned long)addr,
9122                 },
9123         };
9124
9125         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9126 }
9127
9128 void perf_event_itrace_started(struct perf_event *event)
9129 {
9130         event->attach_state |= PERF_ATTACH_ITRACE;
9131 }
9132
9133 static void perf_log_itrace_start(struct perf_event *event)
9134 {
9135         struct perf_output_handle handle;
9136         struct perf_sample_data sample;
9137         struct perf_aux_event {
9138                 struct perf_event_header        header;
9139                 u32                             pid;
9140                 u32                             tid;
9141         } rec;
9142         int ret;
9143
9144         if (event->parent)
9145                 event = event->parent;
9146
9147         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9148             event->attach_state & PERF_ATTACH_ITRACE)
9149                 return;
9150
9151         rec.header.type = PERF_RECORD_ITRACE_START;
9152         rec.header.misc = 0;
9153         rec.header.size = sizeof(rec);
9154         rec.pid = perf_event_pid(event, current);
9155         rec.tid = perf_event_tid(event, current);
9156
9157         perf_event_header__init_id(&rec.header, &sample, event);
9158         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9159
9160         if (ret)
9161                 return;
9162
9163         perf_output_put(&handle, rec);
9164         perf_event__output_id_sample(event, &handle, &sample);
9165
9166         perf_output_end(&handle);
9167 }
9168
9169 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9170 {
9171         struct perf_output_handle handle;
9172         struct perf_sample_data sample;
9173         struct perf_aux_event {
9174                 struct perf_event_header        header;
9175                 u64                             hw_id;
9176         } rec;
9177         int ret;
9178
9179         if (event->parent)
9180                 event = event->parent;
9181
9182         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9183         rec.header.misc = 0;
9184         rec.header.size = sizeof(rec);
9185         rec.hw_id       = hw_id;
9186
9187         perf_event_header__init_id(&rec.header, &sample, event);
9188         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9189
9190         if (ret)
9191                 return;
9192
9193         perf_output_put(&handle, rec);
9194         perf_event__output_id_sample(event, &handle, &sample);
9195
9196         perf_output_end(&handle);
9197 }
9198
9199 static int
9200 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9201 {
9202         struct hw_perf_event *hwc = &event->hw;
9203         int ret = 0;
9204         u64 seq;
9205
9206         seq = __this_cpu_read(perf_throttled_seq);
9207         if (seq != hwc->interrupts_seq) {
9208                 hwc->interrupts_seq = seq;
9209                 hwc->interrupts = 1;
9210         } else {
9211                 hwc->interrupts++;
9212                 if (unlikely(throttle
9213                              && hwc->interrupts >= max_samples_per_tick)) {
9214                         __this_cpu_inc(perf_throttled_count);
9215                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9216                         hwc->interrupts = MAX_INTERRUPTS;
9217                         perf_log_throttle(event, 0);
9218                         ret = 1;
9219                 }
9220         }
9221
9222         if (event->attr.freq) {
9223                 u64 now = perf_clock();
9224                 s64 delta = now - hwc->freq_time_stamp;
9225
9226                 hwc->freq_time_stamp = now;
9227
9228                 if (delta > 0 && delta < 2*TICK_NSEC)
9229                         perf_adjust_period(event, delta, hwc->last_period, true);
9230         }
9231
9232         return ret;
9233 }
9234
9235 int perf_event_account_interrupt(struct perf_event *event)
9236 {
9237         return __perf_event_account_interrupt(event, 1);
9238 }
9239
9240 /*
9241  * Generic event overflow handling, sampling.
9242  */
9243
9244 static int __perf_event_overflow(struct perf_event *event,
9245                                    int throttle, struct perf_sample_data *data,
9246                                    struct pt_regs *regs)
9247 {
9248         int events = atomic_read(&event->event_limit);
9249         int ret = 0;
9250
9251         /*
9252          * Non-sampling counters might still use the PMI to fold short
9253          * hardware counters, ignore those.
9254          */
9255         if (unlikely(!is_sampling_event(event)))
9256                 return 0;
9257
9258         ret = __perf_event_account_interrupt(event, throttle);
9259
9260         /*
9261          * XXX event_limit might not quite work as expected on inherited
9262          * events
9263          */
9264
9265         event->pending_kill = POLL_IN;
9266         if (events && atomic_dec_and_test(&event->event_limit)) {
9267                 ret = 1;
9268                 event->pending_kill = POLL_HUP;
9269                 event->pending_addr = data->addr;
9270
9271                 perf_event_disable_inatomic(event);
9272         }
9273
9274         READ_ONCE(event->overflow_handler)(event, data, regs);
9275
9276         if (*perf_event_fasync(event) && event->pending_kill) {
9277                 event->pending_wakeup = 1;
9278                 irq_work_queue(&event->pending);
9279         }
9280
9281         return ret;
9282 }
9283
9284 int perf_event_overflow(struct perf_event *event,
9285                           struct perf_sample_data *data,
9286                           struct pt_regs *regs)
9287 {
9288         return __perf_event_overflow(event, 1, data, regs);
9289 }
9290
9291 /*
9292  * Generic software event infrastructure
9293  */
9294
9295 struct swevent_htable {
9296         struct swevent_hlist            *swevent_hlist;
9297         struct mutex                    hlist_mutex;
9298         int                             hlist_refcount;
9299
9300         /* Recursion avoidance in each contexts */
9301         int                             recursion[PERF_NR_CONTEXTS];
9302 };
9303
9304 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9305
9306 /*
9307  * We directly increment event->count and keep a second value in
9308  * event->hw.period_left to count intervals. This period event
9309  * is kept in the range [-sample_period, 0] so that we can use the
9310  * sign as trigger.
9311  */
9312
9313 u64 perf_swevent_set_period(struct perf_event *event)
9314 {
9315         struct hw_perf_event *hwc = &event->hw;
9316         u64 period = hwc->last_period;
9317         u64 nr, offset;
9318         s64 old, val;
9319
9320         hwc->last_period = hwc->sample_period;
9321
9322 again:
9323         old = val = local64_read(&hwc->period_left);
9324         if (val < 0)
9325                 return 0;
9326
9327         nr = div64_u64(period + val, period);
9328         offset = nr * period;
9329         val -= offset;
9330         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9331                 goto again;
9332
9333         return nr;
9334 }
9335
9336 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9337                                     struct perf_sample_data *data,
9338                                     struct pt_regs *regs)
9339 {
9340         struct hw_perf_event *hwc = &event->hw;
9341         int throttle = 0;
9342
9343         if (!overflow)
9344                 overflow = perf_swevent_set_period(event);
9345
9346         if (hwc->interrupts == MAX_INTERRUPTS)
9347                 return;
9348
9349         for (; overflow; overflow--) {
9350                 if (__perf_event_overflow(event, throttle,
9351                                             data, regs)) {
9352                         /*
9353                          * We inhibit the overflow from happening when
9354                          * hwc->interrupts == MAX_INTERRUPTS.
9355                          */
9356                         break;
9357                 }
9358                 throttle = 1;
9359         }
9360 }
9361
9362 static void perf_swevent_event(struct perf_event *event, u64 nr,
9363                                struct perf_sample_data *data,
9364                                struct pt_regs *regs)
9365 {
9366         struct hw_perf_event *hwc = &event->hw;
9367
9368         local64_add(nr, &event->count);
9369
9370         if (!regs)
9371                 return;
9372
9373         if (!is_sampling_event(event))
9374                 return;
9375
9376         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9377                 data->period = nr;
9378                 return perf_swevent_overflow(event, 1, data, regs);
9379         } else
9380                 data->period = event->hw.last_period;
9381
9382         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9383                 return perf_swevent_overflow(event, 1, data, regs);
9384
9385         if (local64_add_negative(nr, &hwc->period_left))
9386                 return;
9387
9388         perf_swevent_overflow(event, 0, data, regs);
9389 }
9390
9391 static int perf_exclude_event(struct perf_event *event,
9392                               struct pt_regs *regs)
9393 {
9394         if (event->hw.state & PERF_HES_STOPPED)
9395                 return 1;
9396
9397         if (regs) {
9398                 if (event->attr.exclude_user && user_mode(regs))
9399                         return 1;
9400
9401                 if (event->attr.exclude_kernel && !user_mode(regs))
9402                         return 1;
9403         }
9404
9405         return 0;
9406 }
9407
9408 static int perf_swevent_match(struct perf_event *event,
9409                                 enum perf_type_id type,
9410                                 u32 event_id,
9411                                 struct perf_sample_data *data,
9412                                 struct pt_regs *regs)
9413 {
9414         if (event->attr.type != type)
9415                 return 0;
9416
9417         if (event->attr.config != event_id)
9418                 return 0;
9419
9420         if (perf_exclude_event(event, regs))
9421                 return 0;
9422
9423         return 1;
9424 }
9425
9426 static inline u64 swevent_hash(u64 type, u32 event_id)
9427 {
9428         u64 val = event_id | (type << 32);
9429
9430         return hash_64(val, SWEVENT_HLIST_BITS);
9431 }
9432
9433 static inline struct hlist_head *
9434 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9435 {
9436         u64 hash = swevent_hash(type, event_id);
9437
9438         return &hlist->heads[hash];
9439 }
9440
9441 /* For the read side: events when they trigger */
9442 static inline struct hlist_head *
9443 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9444 {
9445         struct swevent_hlist *hlist;
9446
9447         hlist = rcu_dereference(swhash->swevent_hlist);
9448         if (!hlist)
9449                 return NULL;
9450
9451         return __find_swevent_head(hlist, type, event_id);
9452 }
9453
9454 /* For the event head insertion and removal in the hlist */
9455 static inline struct hlist_head *
9456 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9457 {
9458         struct swevent_hlist *hlist;
9459         u32 event_id = event->attr.config;
9460         u64 type = event->attr.type;
9461
9462         /*
9463          * Event scheduling is always serialized against hlist allocation
9464          * and release. Which makes the protected version suitable here.
9465          * The context lock guarantees that.
9466          */
9467         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9468                                           lockdep_is_held(&event->ctx->lock));
9469         if (!hlist)
9470                 return NULL;
9471
9472         return __find_swevent_head(hlist, type, event_id);
9473 }
9474
9475 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9476                                     u64 nr,
9477                                     struct perf_sample_data *data,
9478                                     struct pt_regs *regs)
9479 {
9480         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9481         struct perf_event *event;
9482         struct hlist_head *head;
9483
9484         rcu_read_lock();
9485         head = find_swevent_head_rcu(swhash, type, event_id);
9486         if (!head)
9487                 goto end;
9488
9489         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9490                 if (perf_swevent_match(event, type, event_id, data, regs))
9491                         perf_swevent_event(event, nr, data, regs);
9492         }
9493 end:
9494         rcu_read_unlock();
9495 }
9496
9497 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9498
9499 int perf_swevent_get_recursion_context(void)
9500 {
9501         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9502
9503         return get_recursion_context(swhash->recursion);
9504 }
9505 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9506
9507 void perf_swevent_put_recursion_context(int rctx)
9508 {
9509         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9510
9511         put_recursion_context(swhash->recursion, rctx);
9512 }
9513
9514 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9515 {
9516         struct perf_sample_data data;
9517
9518         if (WARN_ON_ONCE(!regs))
9519                 return;
9520
9521         perf_sample_data_init(&data, addr, 0);
9522         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9523 }
9524
9525 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9526 {
9527         int rctx;
9528
9529         preempt_disable_notrace();
9530         rctx = perf_swevent_get_recursion_context();
9531         if (unlikely(rctx < 0))
9532                 goto fail;
9533
9534         ___perf_sw_event(event_id, nr, regs, addr);
9535
9536         perf_swevent_put_recursion_context(rctx);
9537 fail:
9538         preempt_enable_notrace();
9539 }
9540
9541 static void perf_swevent_read(struct perf_event *event)
9542 {
9543 }
9544
9545 static int perf_swevent_add(struct perf_event *event, int flags)
9546 {
9547         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9548         struct hw_perf_event *hwc = &event->hw;
9549         struct hlist_head *head;
9550
9551         if (is_sampling_event(event)) {
9552                 hwc->last_period = hwc->sample_period;
9553                 perf_swevent_set_period(event);
9554         }
9555
9556         hwc->state = !(flags & PERF_EF_START);
9557
9558         head = find_swevent_head(swhash, event);
9559         if (WARN_ON_ONCE(!head))
9560                 return -EINVAL;
9561
9562         hlist_add_head_rcu(&event->hlist_entry, head);
9563         perf_event_update_userpage(event);
9564
9565         return 0;
9566 }
9567
9568 static void perf_swevent_del(struct perf_event *event, int flags)
9569 {
9570         hlist_del_rcu(&event->hlist_entry);
9571 }
9572
9573 static void perf_swevent_start(struct perf_event *event, int flags)
9574 {
9575         event->hw.state = 0;
9576 }
9577
9578 static void perf_swevent_stop(struct perf_event *event, int flags)
9579 {
9580         event->hw.state = PERF_HES_STOPPED;
9581 }
9582
9583 /* Deref the hlist from the update side */
9584 static inline struct swevent_hlist *
9585 swevent_hlist_deref(struct swevent_htable *swhash)
9586 {
9587         return rcu_dereference_protected(swhash->swevent_hlist,
9588                                          lockdep_is_held(&swhash->hlist_mutex));
9589 }
9590
9591 static void swevent_hlist_release(struct swevent_htable *swhash)
9592 {
9593         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9594
9595         if (!hlist)
9596                 return;
9597
9598         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9599         kfree_rcu(hlist, rcu_head);
9600 }
9601
9602 static void swevent_hlist_put_cpu(int cpu)
9603 {
9604         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9605
9606         mutex_lock(&swhash->hlist_mutex);
9607
9608         if (!--swhash->hlist_refcount)
9609                 swevent_hlist_release(swhash);
9610
9611         mutex_unlock(&swhash->hlist_mutex);
9612 }
9613
9614 static void swevent_hlist_put(void)
9615 {
9616         int cpu;
9617
9618         for_each_possible_cpu(cpu)
9619                 swevent_hlist_put_cpu(cpu);
9620 }
9621
9622 static int swevent_hlist_get_cpu(int cpu)
9623 {
9624         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9625         int err = 0;
9626
9627         mutex_lock(&swhash->hlist_mutex);
9628         if (!swevent_hlist_deref(swhash) &&
9629             cpumask_test_cpu(cpu, perf_online_mask)) {
9630                 struct swevent_hlist *hlist;
9631
9632                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9633                 if (!hlist) {
9634                         err = -ENOMEM;
9635                         goto exit;
9636                 }
9637                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9638         }
9639         swhash->hlist_refcount++;
9640 exit:
9641         mutex_unlock(&swhash->hlist_mutex);
9642
9643         return err;
9644 }
9645
9646 static int swevent_hlist_get(void)
9647 {
9648         int err, cpu, failed_cpu;
9649
9650         mutex_lock(&pmus_lock);
9651         for_each_possible_cpu(cpu) {
9652                 err = swevent_hlist_get_cpu(cpu);
9653                 if (err) {
9654                         failed_cpu = cpu;
9655                         goto fail;
9656                 }
9657         }
9658         mutex_unlock(&pmus_lock);
9659         return 0;
9660 fail:
9661         for_each_possible_cpu(cpu) {
9662                 if (cpu == failed_cpu)
9663                         break;
9664                 swevent_hlist_put_cpu(cpu);
9665         }
9666         mutex_unlock(&pmus_lock);
9667         return err;
9668 }
9669
9670 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9671
9672 static void sw_perf_event_destroy(struct perf_event *event)
9673 {
9674         u64 event_id = event->attr.config;
9675
9676         WARN_ON(event->parent);
9677
9678         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9679         swevent_hlist_put();
9680 }
9681
9682 static int perf_swevent_init(struct perf_event *event)
9683 {
9684         u64 event_id = event->attr.config;
9685
9686         if (event->attr.type != PERF_TYPE_SOFTWARE)
9687                 return -ENOENT;
9688
9689         /*
9690          * no branch sampling for software events
9691          */
9692         if (has_branch_stack(event))
9693                 return -EOPNOTSUPP;
9694
9695         switch (event_id) {
9696         case PERF_COUNT_SW_CPU_CLOCK:
9697         case PERF_COUNT_SW_TASK_CLOCK:
9698                 return -ENOENT;
9699
9700         default:
9701                 break;
9702         }
9703
9704         if (event_id >= PERF_COUNT_SW_MAX)
9705                 return -ENOENT;
9706
9707         if (!event->parent) {
9708                 int err;
9709
9710                 err = swevent_hlist_get();
9711                 if (err)
9712                         return err;
9713
9714                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9715                 event->destroy = sw_perf_event_destroy;
9716         }
9717
9718         return 0;
9719 }
9720
9721 static struct pmu perf_swevent = {
9722         .task_ctx_nr    = perf_sw_context,
9723
9724         .capabilities   = PERF_PMU_CAP_NO_NMI,
9725
9726         .event_init     = perf_swevent_init,
9727         .add            = perf_swevent_add,
9728         .del            = perf_swevent_del,
9729         .start          = perf_swevent_start,
9730         .stop           = perf_swevent_stop,
9731         .read           = perf_swevent_read,
9732 };
9733
9734 #ifdef CONFIG_EVENT_TRACING
9735
9736 static int perf_tp_filter_match(struct perf_event *event,
9737                                 struct perf_sample_data *data)
9738 {
9739         void *record = data->raw->frag.data;
9740
9741         /* only top level events have filters set */
9742         if (event->parent)
9743                 event = event->parent;
9744
9745         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9746                 return 1;
9747         return 0;
9748 }
9749
9750 static int perf_tp_event_match(struct perf_event *event,
9751                                 struct perf_sample_data *data,
9752                                 struct pt_regs *regs)
9753 {
9754         if (event->hw.state & PERF_HES_STOPPED)
9755                 return 0;
9756         /*
9757          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9758          */
9759         if (event->attr.exclude_kernel && !user_mode(regs))
9760                 return 0;
9761
9762         if (!perf_tp_filter_match(event, data))
9763                 return 0;
9764
9765         return 1;
9766 }
9767
9768 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9769                                struct trace_event_call *call, u64 count,
9770                                struct pt_regs *regs, struct hlist_head *head,
9771                                struct task_struct *task)
9772 {
9773         if (bpf_prog_array_valid(call)) {
9774                 *(struct pt_regs **)raw_data = regs;
9775                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9776                         perf_swevent_put_recursion_context(rctx);
9777                         return;
9778                 }
9779         }
9780         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9781                       rctx, task);
9782 }
9783 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9784
9785 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9786                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9787                    struct task_struct *task)
9788 {
9789         struct perf_sample_data data;
9790         struct perf_event *event;
9791
9792         struct perf_raw_record raw = {
9793                 .frag = {
9794                         .size = entry_size,
9795                         .data = record,
9796                 },
9797         };
9798
9799         perf_sample_data_init(&data, 0, 0);
9800         data.raw = &raw;
9801
9802         perf_trace_buf_update(record, event_type);
9803
9804         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9805                 if (perf_tp_event_match(event, &data, regs))
9806                         perf_swevent_event(event, count, &data, regs);
9807         }
9808
9809         /*
9810          * If we got specified a target task, also iterate its context and
9811          * deliver this event there too.
9812          */
9813         if (task && task != current) {
9814                 struct perf_event_context *ctx;
9815                 struct trace_entry *entry = record;
9816
9817                 rcu_read_lock();
9818                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9819                 if (!ctx)
9820                         goto unlock;
9821
9822                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9823                         if (event->cpu != smp_processor_id())
9824                                 continue;
9825                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9826                                 continue;
9827                         if (event->attr.config != entry->type)
9828                                 continue;
9829                         /* Cannot deliver synchronous signal to other task. */
9830                         if (event->attr.sigtrap)
9831                                 continue;
9832                         if (perf_tp_event_match(event, &data, regs))
9833                                 perf_swevent_event(event, count, &data, regs);
9834                 }
9835 unlock:
9836                 rcu_read_unlock();
9837         }
9838
9839         perf_swevent_put_recursion_context(rctx);
9840 }
9841 EXPORT_SYMBOL_GPL(perf_tp_event);
9842
9843 static void tp_perf_event_destroy(struct perf_event *event)
9844 {
9845         perf_trace_destroy(event);
9846 }
9847
9848 static int perf_tp_event_init(struct perf_event *event)
9849 {
9850         int err;
9851
9852         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9853                 return -ENOENT;
9854
9855         /*
9856          * no branch sampling for tracepoint events
9857          */
9858         if (has_branch_stack(event))
9859                 return -EOPNOTSUPP;
9860
9861         err = perf_trace_init(event);
9862         if (err)
9863                 return err;
9864
9865         event->destroy = tp_perf_event_destroy;
9866
9867         return 0;
9868 }
9869
9870 static struct pmu perf_tracepoint = {
9871         .task_ctx_nr    = perf_sw_context,
9872
9873         .event_init     = perf_tp_event_init,
9874         .add            = perf_trace_add,
9875         .del            = perf_trace_del,
9876         .start          = perf_swevent_start,
9877         .stop           = perf_swevent_stop,
9878         .read           = perf_swevent_read,
9879 };
9880
9881 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9882 /*
9883  * Flags in config, used by dynamic PMU kprobe and uprobe
9884  * The flags should match following PMU_FORMAT_ATTR().
9885  *
9886  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9887  *                               if not set, create kprobe/uprobe
9888  *
9889  * The following values specify a reference counter (or semaphore in the
9890  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9891  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9892  *
9893  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9894  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9895  */
9896 enum perf_probe_config {
9897         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9898         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9899         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9900 };
9901
9902 PMU_FORMAT_ATTR(retprobe, "config:0");
9903 #endif
9904
9905 #ifdef CONFIG_KPROBE_EVENTS
9906 static struct attribute *kprobe_attrs[] = {
9907         &format_attr_retprobe.attr,
9908         NULL,
9909 };
9910
9911 static struct attribute_group kprobe_format_group = {
9912         .name = "format",
9913         .attrs = kprobe_attrs,
9914 };
9915
9916 static const struct attribute_group *kprobe_attr_groups[] = {
9917         &kprobe_format_group,
9918         NULL,
9919 };
9920
9921 static int perf_kprobe_event_init(struct perf_event *event);
9922 static struct pmu perf_kprobe = {
9923         .task_ctx_nr    = perf_sw_context,
9924         .event_init     = perf_kprobe_event_init,
9925         .add            = perf_trace_add,
9926         .del            = perf_trace_del,
9927         .start          = perf_swevent_start,
9928         .stop           = perf_swevent_stop,
9929         .read           = perf_swevent_read,
9930         .attr_groups    = kprobe_attr_groups,
9931 };
9932
9933 static int perf_kprobe_event_init(struct perf_event *event)
9934 {
9935         int err;
9936         bool is_retprobe;
9937
9938         if (event->attr.type != perf_kprobe.type)
9939                 return -ENOENT;
9940
9941         if (!perfmon_capable())
9942                 return -EACCES;
9943
9944         /*
9945          * no branch sampling for probe events
9946          */
9947         if (has_branch_stack(event))
9948                 return -EOPNOTSUPP;
9949
9950         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9951         err = perf_kprobe_init(event, is_retprobe);
9952         if (err)
9953                 return err;
9954
9955         event->destroy = perf_kprobe_destroy;
9956
9957         return 0;
9958 }
9959 #endif /* CONFIG_KPROBE_EVENTS */
9960
9961 #ifdef CONFIG_UPROBE_EVENTS
9962 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9963
9964 static struct attribute *uprobe_attrs[] = {
9965         &format_attr_retprobe.attr,
9966         &format_attr_ref_ctr_offset.attr,
9967         NULL,
9968 };
9969
9970 static struct attribute_group uprobe_format_group = {
9971         .name = "format",
9972         .attrs = uprobe_attrs,
9973 };
9974
9975 static const struct attribute_group *uprobe_attr_groups[] = {
9976         &uprobe_format_group,
9977         NULL,
9978 };
9979
9980 static int perf_uprobe_event_init(struct perf_event *event);
9981 static struct pmu perf_uprobe = {
9982         .task_ctx_nr    = perf_sw_context,
9983         .event_init     = perf_uprobe_event_init,
9984         .add            = perf_trace_add,
9985         .del            = perf_trace_del,
9986         .start          = perf_swevent_start,
9987         .stop           = perf_swevent_stop,
9988         .read           = perf_swevent_read,
9989         .attr_groups    = uprobe_attr_groups,
9990 };
9991
9992 static int perf_uprobe_event_init(struct perf_event *event)
9993 {
9994         int err;
9995         unsigned long ref_ctr_offset;
9996         bool is_retprobe;
9997
9998         if (event->attr.type != perf_uprobe.type)
9999                 return -ENOENT;
10000
10001         if (!perfmon_capable())
10002                 return -EACCES;
10003
10004         /*
10005          * no branch sampling for probe events
10006          */
10007         if (has_branch_stack(event))
10008                 return -EOPNOTSUPP;
10009
10010         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10011         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10012         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10013         if (err)
10014                 return err;
10015
10016         event->destroy = perf_uprobe_destroy;
10017
10018         return 0;
10019 }
10020 #endif /* CONFIG_UPROBE_EVENTS */
10021
10022 static inline void perf_tp_register(void)
10023 {
10024         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10025 #ifdef CONFIG_KPROBE_EVENTS
10026         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10027 #endif
10028 #ifdef CONFIG_UPROBE_EVENTS
10029         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10030 #endif
10031 }
10032
10033 static void perf_event_free_filter(struct perf_event *event)
10034 {
10035         ftrace_profile_free_filter(event);
10036 }
10037
10038 #ifdef CONFIG_BPF_SYSCALL
10039 static void bpf_overflow_handler(struct perf_event *event,
10040                                  struct perf_sample_data *data,
10041                                  struct pt_regs *regs)
10042 {
10043         struct bpf_perf_event_data_kern ctx = {
10044                 .data = data,
10045                 .event = event,
10046         };
10047         struct bpf_prog *prog;
10048         int ret = 0;
10049
10050         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10051         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10052                 goto out;
10053         rcu_read_lock();
10054         prog = READ_ONCE(event->prog);
10055         if (prog)
10056                 ret = bpf_prog_run(prog, &ctx);
10057         rcu_read_unlock();
10058 out:
10059         __this_cpu_dec(bpf_prog_active);
10060         if (!ret)
10061                 return;
10062
10063         event->orig_overflow_handler(event, data, regs);
10064 }
10065
10066 static int perf_event_set_bpf_handler(struct perf_event *event,
10067                                       struct bpf_prog *prog,
10068                                       u64 bpf_cookie)
10069 {
10070         if (event->overflow_handler_context)
10071                 /* hw breakpoint or kernel counter */
10072                 return -EINVAL;
10073
10074         if (event->prog)
10075                 return -EEXIST;
10076
10077         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10078                 return -EINVAL;
10079
10080         if (event->attr.precise_ip &&
10081             prog->call_get_stack &&
10082             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10083              event->attr.exclude_callchain_kernel ||
10084              event->attr.exclude_callchain_user)) {
10085                 /*
10086                  * On perf_event with precise_ip, calling bpf_get_stack()
10087                  * may trigger unwinder warnings and occasional crashes.
10088                  * bpf_get_[stack|stackid] works around this issue by using
10089                  * callchain attached to perf_sample_data. If the
10090                  * perf_event does not full (kernel and user) callchain
10091                  * attached to perf_sample_data, do not allow attaching BPF
10092                  * program that calls bpf_get_[stack|stackid].
10093                  */
10094                 return -EPROTO;
10095         }
10096
10097         event->prog = prog;
10098         event->bpf_cookie = bpf_cookie;
10099         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10100         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10101         return 0;
10102 }
10103
10104 static void perf_event_free_bpf_handler(struct perf_event *event)
10105 {
10106         struct bpf_prog *prog = event->prog;
10107
10108         if (!prog)
10109                 return;
10110
10111         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10112         event->prog = NULL;
10113         bpf_prog_put(prog);
10114 }
10115 #else
10116 static int perf_event_set_bpf_handler(struct perf_event *event,
10117                                       struct bpf_prog *prog,
10118                                       u64 bpf_cookie)
10119 {
10120         return -EOPNOTSUPP;
10121 }
10122 static void perf_event_free_bpf_handler(struct perf_event *event)
10123 {
10124 }
10125 #endif
10126
10127 /*
10128  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10129  * with perf_event_open()
10130  */
10131 static inline bool perf_event_is_tracing(struct perf_event *event)
10132 {
10133         if (event->pmu == &perf_tracepoint)
10134                 return true;
10135 #ifdef CONFIG_KPROBE_EVENTS
10136         if (event->pmu == &perf_kprobe)
10137                 return true;
10138 #endif
10139 #ifdef CONFIG_UPROBE_EVENTS
10140         if (event->pmu == &perf_uprobe)
10141                 return true;
10142 #endif
10143         return false;
10144 }
10145
10146 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10147                             u64 bpf_cookie)
10148 {
10149         bool is_kprobe, is_tracepoint, is_syscall_tp;
10150
10151         if (!perf_event_is_tracing(event))
10152                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10153
10154         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10155         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10156         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10157         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10158                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10159                 return -EINVAL;
10160
10161         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10162             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10163             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10164                 return -EINVAL;
10165
10166         /* Kprobe override only works for kprobes, not uprobes. */
10167         if (prog->kprobe_override &&
10168             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10169                 return -EINVAL;
10170
10171         if (is_tracepoint || is_syscall_tp) {
10172                 int off = trace_event_get_offsets(event->tp_event);
10173
10174                 if (prog->aux->max_ctx_offset > off)
10175                         return -EACCES;
10176         }
10177
10178         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10179 }
10180
10181 void perf_event_free_bpf_prog(struct perf_event *event)
10182 {
10183         if (!perf_event_is_tracing(event)) {
10184                 perf_event_free_bpf_handler(event);
10185                 return;
10186         }
10187         perf_event_detach_bpf_prog(event);
10188 }
10189
10190 #else
10191
10192 static inline void perf_tp_register(void)
10193 {
10194 }
10195
10196 static void perf_event_free_filter(struct perf_event *event)
10197 {
10198 }
10199
10200 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10201                             u64 bpf_cookie)
10202 {
10203         return -ENOENT;
10204 }
10205
10206 void perf_event_free_bpf_prog(struct perf_event *event)
10207 {
10208 }
10209 #endif /* CONFIG_EVENT_TRACING */
10210
10211 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10212 void perf_bp_event(struct perf_event *bp, void *data)
10213 {
10214         struct perf_sample_data sample;
10215         struct pt_regs *regs = data;
10216
10217         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10218
10219         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10220                 perf_swevent_event(bp, 1, &sample, regs);
10221 }
10222 #endif
10223
10224 /*
10225  * Allocate a new address filter
10226  */
10227 static struct perf_addr_filter *
10228 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10229 {
10230         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10231         struct perf_addr_filter *filter;
10232
10233         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10234         if (!filter)
10235                 return NULL;
10236
10237         INIT_LIST_HEAD(&filter->entry);
10238         list_add_tail(&filter->entry, filters);
10239
10240         return filter;
10241 }
10242
10243 static void free_filters_list(struct list_head *filters)
10244 {
10245         struct perf_addr_filter *filter, *iter;
10246
10247         list_for_each_entry_safe(filter, iter, filters, entry) {
10248                 path_put(&filter->path);
10249                 list_del(&filter->entry);
10250                 kfree(filter);
10251         }
10252 }
10253
10254 /*
10255  * Free existing address filters and optionally install new ones
10256  */
10257 static void perf_addr_filters_splice(struct perf_event *event,
10258                                      struct list_head *head)
10259 {
10260         unsigned long flags;
10261         LIST_HEAD(list);
10262
10263         if (!has_addr_filter(event))
10264                 return;
10265
10266         /* don't bother with children, they don't have their own filters */
10267         if (event->parent)
10268                 return;
10269
10270         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10271
10272         list_splice_init(&event->addr_filters.list, &list);
10273         if (head)
10274                 list_splice(head, &event->addr_filters.list);
10275
10276         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10277
10278         free_filters_list(&list);
10279 }
10280
10281 /*
10282  * Scan through mm's vmas and see if one of them matches the
10283  * @filter; if so, adjust filter's address range.
10284  * Called with mm::mmap_lock down for reading.
10285  */
10286 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10287                                    struct mm_struct *mm,
10288                                    struct perf_addr_filter_range *fr)
10289 {
10290         struct vm_area_struct *vma;
10291
10292         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10293                 if (!vma->vm_file)
10294                         continue;
10295
10296                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10297                         return;
10298         }
10299 }
10300
10301 /*
10302  * Update event's address range filters based on the
10303  * task's existing mappings, if any.
10304  */
10305 static void perf_event_addr_filters_apply(struct perf_event *event)
10306 {
10307         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10308         struct task_struct *task = READ_ONCE(event->ctx->task);
10309         struct perf_addr_filter *filter;
10310         struct mm_struct *mm = NULL;
10311         unsigned int count = 0;
10312         unsigned long flags;
10313
10314         /*
10315          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10316          * will stop on the parent's child_mutex that our caller is also holding
10317          */
10318         if (task == TASK_TOMBSTONE)
10319                 return;
10320
10321         if (ifh->nr_file_filters) {
10322                 mm = get_task_mm(task);
10323                 if (!mm)
10324                         goto restart;
10325
10326                 mmap_read_lock(mm);
10327         }
10328
10329         raw_spin_lock_irqsave(&ifh->lock, flags);
10330         list_for_each_entry(filter, &ifh->list, entry) {
10331                 if (filter->path.dentry) {
10332                         /*
10333                          * Adjust base offset if the filter is associated to a
10334                          * binary that needs to be mapped:
10335                          */
10336                         event->addr_filter_ranges[count].start = 0;
10337                         event->addr_filter_ranges[count].size = 0;
10338
10339                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10340                 } else {
10341                         event->addr_filter_ranges[count].start = filter->offset;
10342                         event->addr_filter_ranges[count].size  = filter->size;
10343                 }
10344
10345                 count++;
10346         }
10347
10348         event->addr_filters_gen++;
10349         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10350
10351         if (ifh->nr_file_filters) {
10352                 mmap_read_unlock(mm);
10353
10354                 mmput(mm);
10355         }
10356
10357 restart:
10358         perf_event_stop(event, 1);
10359 }
10360
10361 /*
10362  * Address range filtering: limiting the data to certain
10363  * instruction address ranges. Filters are ioctl()ed to us from
10364  * userspace as ascii strings.
10365  *
10366  * Filter string format:
10367  *
10368  * ACTION RANGE_SPEC
10369  * where ACTION is one of the
10370  *  * "filter": limit the trace to this region
10371  *  * "start": start tracing from this address
10372  *  * "stop": stop tracing at this address/region;
10373  * RANGE_SPEC is
10374  *  * for kernel addresses: <start address>[/<size>]
10375  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10376  *
10377  * if <size> is not specified or is zero, the range is treated as a single
10378  * address; not valid for ACTION=="filter".
10379  */
10380 enum {
10381         IF_ACT_NONE = -1,
10382         IF_ACT_FILTER,
10383         IF_ACT_START,
10384         IF_ACT_STOP,
10385         IF_SRC_FILE,
10386         IF_SRC_KERNEL,
10387         IF_SRC_FILEADDR,
10388         IF_SRC_KERNELADDR,
10389 };
10390
10391 enum {
10392         IF_STATE_ACTION = 0,
10393         IF_STATE_SOURCE,
10394         IF_STATE_END,
10395 };
10396
10397 static const match_table_t if_tokens = {
10398         { IF_ACT_FILTER,        "filter" },
10399         { IF_ACT_START,         "start" },
10400         { IF_ACT_STOP,          "stop" },
10401         { IF_SRC_FILE,          "%u/%u@%s" },
10402         { IF_SRC_KERNEL,        "%u/%u" },
10403         { IF_SRC_FILEADDR,      "%u@%s" },
10404         { IF_SRC_KERNELADDR,    "%u" },
10405         { IF_ACT_NONE,          NULL },
10406 };
10407
10408 /*
10409  * Address filter string parser
10410  */
10411 static int
10412 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10413                              struct list_head *filters)
10414 {
10415         struct perf_addr_filter *filter = NULL;
10416         char *start, *orig, *filename = NULL;
10417         substring_t args[MAX_OPT_ARGS];
10418         int state = IF_STATE_ACTION, token;
10419         unsigned int kernel = 0;
10420         int ret = -EINVAL;
10421
10422         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10423         if (!fstr)
10424                 return -ENOMEM;
10425
10426         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10427                 static const enum perf_addr_filter_action_t actions[] = {
10428                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10429                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10430                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10431                 };
10432                 ret = -EINVAL;
10433
10434                 if (!*start)
10435                         continue;
10436
10437                 /* filter definition begins */
10438                 if (state == IF_STATE_ACTION) {
10439                         filter = perf_addr_filter_new(event, filters);
10440                         if (!filter)
10441                                 goto fail;
10442                 }
10443
10444                 token = match_token(start, if_tokens, args);
10445                 switch (token) {
10446                 case IF_ACT_FILTER:
10447                 case IF_ACT_START:
10448                 case IF_ACT_STOP:
10449                         if (state != IF_STATE_ACTION)
10450                                 goto fail;
10451
10452                         filter->action = actions[token];
10453                         state = IF_STATE_SOURCE;
10454                         break;
10455
10456                 case IF_SRC_KERNELADDR:
10457                 case IF_SRC_KERNEL:
10458                         kernel = 1;
10459                         fallthrough;
10460
10461                 case IF_SRC_FILEADDR:
10462                 case IF_SRC_FILE:
10463                         if (state != IF_STATE_SOURCE)
10464                                 goto fail;
10465
10466                         *args[0].to = 0;
10467                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10468                         if (ret)
10469                                 goto fail;
10470
10471                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10472                                 *args[1].to = 0;
10473                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10474                                 if (ret)
10475                                         goto fail;
10476                         }
10477
10478                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10479                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10480
10481                                 kfree(filename);
10482                                 filename = match_strdup(&args[fpos]);
10483                                 if (!filename) {
10484                                         ret = -ENOMEM;
10485                                         goto fail;
10486                                 }
10487                         }
10488
10489                         state = IF_STATE_END;
10490                         break;
10491
10492                 default:
10493                         goto fail;
10494                 }
10495
10496                 /*
10497                  * Filter definition is fully parsed, validate and install it.
10498                  * Make sure that it doesn't contradict itself or the event's
10499                  * attribute.
10500                  */
10501                 if (state == IF_STATE_END) {
10502                         ret = -EINVAL;
10503                         if (kernel && event->attr.exclude_kernel)
10504                                 goto fail;
10505
10506                         /*
10507                          * ACTION "filter" must have a non-zero length region
10508                          * specified.
10509                          */
10510                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10511                             !filter->size)
10512                                 goto fail;
10513
10514                         if (!kernel) {
10515                                 if (!filename)
10516                                         goto fail;
10517
10518                                 /*
10519                                  * For now, we only support file-based filters
10520                                  * in per-task events; doing so for CPU-wide
10521                                  * events requires additional context switching
10522                                  * trickery, since same object code will be
10523                                  * mapped at different virtual addresses in
10524                                  * different processes.
10525                                  */
10526                                 ret = -EOPNOTSUPP;
10527                                 if (!event->ctx->task)
10528                                         goto fail;
10529
10530                                 /* look up the path and grab its inode */
10531                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10532                                                 &filter->path);
10533                                 if (ret)
10534                                         goto fail;
10535
10536                                 ret = -EINVAL;
10537                                 if (!filter->path.dentry ||
10538                                     !S_ISREG(d_inode(filter->path.dentry)
10539                                              ->i_mode))
10540                                         goto fail;
10541
10542                                 event->addr_filters.nr_file_filters++;
10543                         }
10544
10545                         /* ready to consume more filters */
10546                         state = IF_STATE_ACTION;
10547                         filter = NULL;
10548                 }
10549         }
10550
10551         if (state != IF_STATE_ACTION)
10552                 goto fail;
10553
10554         kfree(filename);
10555         kfree(orig);
10556
10557         return 0;
10558
10559 fail:
10560         kfree(filename);
10561         free_filters_list(filters);
10562         kfree(orig);
10563
10564         return ret;
10565 }
10566
10567 static int
10568 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10569 {
10570         LIST_HEAD(filters);
10571         int ret;
10572
10573         /*
10574          * Since this is called in perf_ioctl() path, we're already holding
10575          * ctx::mutex.
10576          */
10577         lockdep_assert_held(&event->ctx->mutex);
10578
10579         if (WARN_ON_ONCE(event->parent))
10580                 return -EINVAL;
10581
10582         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10583         if (ret)
10584                 goto fail_clear_files;
10585
10586         ret = event->pmu->addr_filters_validate(&filters);
10587         if (ret)
10588                 goto fail_free_filters;
10589
10590         /* remove existing filters, if any */
10591         perf_addr_filters_splice(event, &filters);
10592
10593         /* install new filters */
10594         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10595
10596         return ret;
10597
10598 fail_free_filters:
10599         free_filters_list(&filters);
10600
10601 fail_clear_files:
10602         event->addr_filters.nr_file_filters = 0;
10603
10604         return ret;
10605 }
10606
10607 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10608 {
10609         int ret = -EINVAL;
10610         char *filter_str;
10611
10612         filter_str = strndup_user(arg, PAGE_SIZE);
10613         if (IS_ERR(filter_str))
10614                 return PTR_ERR(filter_str);
10615
10616 #ifdef CONFIG_EVENT_TRACING
10617         if (perf_event_is_tracing(event)) {
10618                 struct perf_event_context *ctx = event->ctx;
10619
10620                 /*
10621                  * Beware, here be dragons!!
10622                  *
10623                  * the tracepoint muck will deadlock against ctx->mutex, but
10624                  * the tracepoint stuff does not actually need it. So
10625                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10626                  * already have a reference on ctx.
10627                  *
10628                  * This can result in event getting moved to a different ctx,
10629                  * but that does not affect the tracepoint state.
10630                  */
10631                 mutex_unlock(&ctx->mutex);
10632                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10633                 mutex_lock(&ctx->mutex);
10634         } else
10635 #endif
10636         if (has_addr_filter(event))
10637                 ret = perf_event_set_addr_filter(event, filter_str);
10638
10639         kfree(filter_str);
10640         return ret;
10641 }
10642
10643 /*
10644  * hrtimer based swevent callback
10645  */
10646
10647 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10648 {
10649         enum hrtimer_restart ret = HRTIMER_RESTART;
10650         struct perf_sample_data data;
10651         struct pt_regs *regs;
10652         struct perf_event *event;
10653         u64 period;
10654
10655         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10656
10657         if (event->state != PERF_EVENT_STATE_ACTIVE)
10658                 return HRTIMER_NORESTART;
10659
10660         event->pmu->read(event);
10661
10662         perf_sample_data_init(&data, 0, event->hw.last_period);
10663         regs = get_irq_regs();
10664
10665         if (regs && !perf_exclude_event(event, regs)) {
10666                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10667                         if (__perf_event_overflow(event, 1, &data, regs))
10668                                 ret = HRTIMER_NORESTART;
10669         }
10670
10671         period = max_t(u64, 10000, event->hw.sample_period);
10672         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10673
10674         return ret;
10675 }
10676
10677 static void perf_swevent_start_hrtimer(struct perf_event *event)
10678 {
10679         struct hw_perf_event *hwc = &event->hw;
10680         s64 period;
10681
10682         if (!is_sampling_event(event))
10683                 return;
10684
10685         period = local64_read(&hwc->period_left);
10686         if (period) {
10687                 if (period < 0)
10688                         period = 10000;
10689
10690                 local64_set(&hwc->period_left, 0);
10691         } else {
10692                 period = max_t(u64, 10000, hwc->sample_period);
10693         }
10694         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10695                       HRTIMER_MODE_REL_PINNED_HARD);
10696 }
10697
10698 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10699 {
10700         struct hw_perf_event *hwc = &event->hw;
10701
10702         if (is_sampling_event(event)) {
10703                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10704                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10705
10706                 hrtimer_cancel(&hwc->hrtimer);
10707         }
10708 }
10709
10710 static void perf_swevent_init_hrtimer(struct perf_event *event)
10711 {
10712         struct hw_perf_event *hwc = &event->hw;
10713
10714         if (!is_sampling_event(event))
10715                 return;
10716
10717         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10718         hwc->hrtimer.function = perf_swevent_hrtimer;
10719
10720         /*
10721          * Since hrtimers have a fixed rate, we can do a static freq->period
10722          * mapping and avoid the whole period adjust feedback stuff.
10723          */
10724         if (event->attr.freq) {
10725                 long freq = event->attr.sample_freq;
10726
10727                 event->attr.sample_period = NSEC_PER_SEC / freq;
10728                 hwc->sample_period = event->attr.sample_period;
10729                 local64_set(&hwc->period_left, hwc->sample_period);
10730                 hwc->last_period = hwc->sample_period;
10731                 event->attr.freq = 0;
10732         }
10733 }
10734
10735 /*
10736  * Software event: cpu wall time clock
10737  */
10738
10739 static void cpu_clock_event_update(struct perf_event *event)
10740 {
10741         s64 prev;
10742         u64 now;
10743
10744         now = local_clock();
10745         prev = local64_xchg(&event->hw.prev_count, now);
10746         local64_add(now - prev, &event->count);
10747 }
10748
10749 static void cpu_clock_event_start(struct perf_event *event, int flags)
10750 {
10751         local64_set(&event->hw.prev_count, local_clock());
10752         perf_swevent_start_hrtimer(event);
10753 }
10754
10755 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10756 {
10757         perf_swevent_cancel_hrtimer(event);
10758         cpu_clock_event_update(event);
10759 }
10760
10761 static int cpu_clock_event_add(struct perf_event *event, int flags)
10762 {
10763         if (flags & PERF_EF_START)
10764                 cpu_clock_event_start(event, flags);
10765         perf_event_update_userpage(event);
10766
10767         return 0;
10768 }
10769
10770 static void cpu_clock_event_del(struct perf_event *event, int flags)
10771 {
10772         cpu_clock_event_stop(event, flags);
10773 }
10774
10775 static void cpu_clock_event_read(struct perf_event *event)
10776 {
10777         cpu_clock_event_update(event);
10778 }
10779
10780 static int cpu_clock_event_init(struct perf_event *event)
10781 {
10782         if (event->attr.type != PERF_TYPE_SOFTWARE)
10783                 return -ENOENT;
10784
10785         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10786                 return -ENOENT;
10787
10788         /*
10789          * no branch sampling for software events
10790          */
10791         if (has_branch_stack(event))
10792                 return -EOPNOTSUPP;
10793
10794         perf_swevent_init_hrtimer(event);
10795
10796         return 0;
10797 }
10798
10799 static struct pmu perf_cpu_clock = {
10800         .task_ctx_nr    = perf_sw_context,
10801
10802         .capabilities   = PERF_PMU_CAP_NO_NMI,
10803
10804         .event_init     = cpu_clock_event_init,
10805         .add            = cpu_clock_event_add,
10806         .del            = cpu_clock_event_del,
10807         .start          = cpu_clock_event_start,
10808         .stop           = cpu_clock_event_stop,
10809         .read           = cpu_clock_event_read,
10810 };
10811
10812 /*
10813  * Software event: task time clock
10814  */
10815
10816 static void task_clock_event_update(struct perf_event *event, u64 now)
10817 {
10818         u64 prev;
10819         s64 delta;
10820
10821         prev = local64_xchg(&event->hw.prev_count, now);
10822         delta = now - prev;
10823         local64_add(delta, &event->count);
10824 }
10825
10826 static void task_clock_event_start(struct perf_event *event, int flags)
10827 {
10828         local64_set(&event->hw.prev_count, event->ctx->time);
10829         perf_swevent_start_hrtimer(event);
10830 }
10831
10832 static void task_clock_event_stop(struct perf_event *event, int flags)
10833 {
10834         perf_swevent_cancel_hrtimer(event);
10835         task_clock_event_update(event, event->ctx->time);
10836 }
10837
10838 static int task_clock_event_add(struct perf_event *event, int flags)
10839 {
10840         if (flags & PERF_EF_START)
10841                 task_clock_event_start(event, flags);
10842         perf_event_update_userpage(event);
10843
10844         return 0;
10845 }
10846
10847 static void task_clock_event_del(struct perf_event *event, int flags)
10848 {
10849         task_clock_event_stop(event, PERF_EF_UPDATE);
10850 }
10851
10852 static void task_clock_event_read(struct perf_event *event)
10853 {
10854         u64 now = perf_clock();
10855         u64 delta = now - event->ctx->timestamp;
10856         u64 time = event->ctx->time + delta;
10857
10858         task_clock_event_update(event, time);
10859 }
10860
10861 static int task_clock_event_init(struct perf_event *event)
10862 {
10863         if (event->attr.type != PERF_TYPE_SOFTWARE)
10864                 return -ENOENT;
10865
10866         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10867                 return -ENOENT;
10868
10869         /*
10870          * no branch sampling for software events
10871          */
10872         if (has_branch_stack(event))
10873                 return -EOPNOTSUPP;
10874
10875         perf_swevent_init_hrtimer(event);
10876
10877         return 0;
10878 }
10879
10880 static struct pmu perf_task_clock = {
10881         .task_ctx_nr    = perf_sw_context,
10882
10883         .capabilities   = PERF_PMU_CAP_NO_NMI,
10884
10885         .event_init     = task_clock_event_init,
10886         .add            = task_clock_event_add,
10887         .del            = task_clock_event_del,
10888         .start          = task_clock_event_start,
10889         .stop           = task_clock_event_stop,
10890         .read           = task_clock_event_read,
10891 };
10892
10893 static void perf_pmu_nop_void(struct pmu *pmu)
10894 {
10895 }
10896
10897 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10898 {
10899 }
10900
10901 static int perf_pmu_nop_int(struct pmu *pmu)
10902 {
10903         return 0;
10904 }
10905
10906 static int perf_event_nop_int(struct perf_event *event, u64 value)
10907 {
10908         return 0;
10909 }
10910
10911 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10912
10913 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10914 {
10915         __this_cpu_write(nop_txn_flags, flags);
10916
10917         if (flags & ~PERF_PMU_TXN_ADD)
10918                 return;
10919
10920         perf_pmu_disable(pmu);
10921 }
10922
10923 static int perf_pmu_commit_txn(struct pmu *pmu)
10924 {
10925         unsigned int flags = __this_cpu_read(nop_txn_flags);
10926
10927         __this_cpu_write(nop_txn_flags, 0);
10928
10929         if (flags & ~PERF_PMU_TXN_ADD)
10930                 return 0;
10931
10932         perf_pmu_enable(pmu);
10933         return 0;
10934 }
10935
10936 static void perf_pmu_cancel_txn(struct pmu *pmu)
10937 {
10938         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10939
10940         __this_cpu_write(nop_txn_flags, 0);
10941
10942         if (flags & ~PERF_PMU_TXN_ADD)
10943                 return;
10944
10945         perf_pmu_enable(pmu);
10946 }
10947
10948 static int perf_event_idx_default(struct perf_event *event)
10949 {
10950         return 0;
10951 }
10952
10953 /*
10954  * Ensures all contexts with the same task_ctx_nr have the same
10955  * pmu_cpu_context too.
10956  */
10957 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10958 {
10959         struct pmu *pmu;
10960
10961         if (ctxn < 0)
10962                 return NULL;
10963
10964         list_for_each_entry(pmu, &pmus, entry) {
10965                 if (pmu->task_ctx_nr == ctxn)
10966                         return pmu->pmu_cpu_context;
10967         }
10968
10969         return NULL;
10970 }
10971
10972 static void free_pmu_context(struct pmu *pmu)
10973 {
10974         /*
10975          * Static contexts such as perf_sw_context have a global lifetime
10976          * and may be shared between different PMUs. Avoid freeing them
10977          * when a single PMU is going away.
10978          */
10979         if (pmu->task_ctx_nr > perf_invalid_context)
10980                 return;
10981
10982         free_percpu(pmu->pmu_cpu_context);
10983 }
10984
10985 /*
10986  * Let userspace know that this PMU supports address range filtering:
10987  */
10988 static ssize_t nr_addr_filters_show(struct device *dev,
10989                                     struct device_attribute *attr,
10990                                     char *page)
10991 {
10992         struct pmu *pmu = dev_get_drvdata(dev);
10993
10994         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10995 }
10996 DEVICE_ATTR_RO(nr_addr_filters);
10997
10998 static struct idr pmu_idr;
10999
11000 static ssize_t
11001 type_show(struct device *dev, struct device_attribute *attr, char *page)
11002 {
11003         struct pmu *pmu = dev_get_drvdata(dev);
11004
11005         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
11006 }
11007 static DEVICE_ATTR_RO(type);
11008
11009 static ssize_t
11010 perf_event_mux_interval_ms_show(struct device *dev,
11011                                 struct device_attribute *attr,
11012                                 char *page)
11013 {
11014         struct pmu *pmu = dev_get_drvdata(dev);
11015
11016         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
11017 }
11018
11019 static DEFINE_MUTEX(mux_interval_mutex);
11020
11021 static ssize_t
11022 perf_event_mux_interval_ms_store(struct device *dev,
11023                                  struct device_attribute *attr,
11024                                  const char *buf, size_t count)
11025 {
11026         struct pmu *pmu = dev_get_drvdata(dev);
11027         int timer, cpu, ret;
11028
11029         ret = kstrtoint(buf, 0, &timer);
11030         if (ret)
11031                 return ret;
11032
11033         if (timer < 1)
11034                 return -EINVAL;
11035
11036         /* same value, noting to do */
11037         if (timer == pmu->hrtimer_interval_ms)
11038                 return count;
11039
11040         mutex_lock(&mux_interval_mutex);
11041         pmu->hrtimer_interval_ms = timer;
11042
11043         /* update all cpuctx for this PMU */
11044         cpus_read_lock();
11045         for_each_online_cpu(cpu) {
11046                 struct perf_cpu_context *cpuctx;
11047                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11048                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11049
11050                 cpu_function_call(cpu,
11051                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11052         }
11053         cpus_read_unlock();
11054         mutex_unlock(&mux_interval_mutex);
11055
11056         return count;
11057 }
11058 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11059
11060 static struct attribute *pmu_dev_attrs[] = {
11061         &dev_attr_type.attr,
11062         &dev_attr_perf_event_mux_interval_ms.attr,
11063         NULL,
11064 };
11065 ATTRIBUTE_GROUPS(pmu_dev);
11066
11067 static int pmu_bus_running;
11068 static struct bus_type pmu_bus = {
11069         .name           = "event_source",
11070         .dev_groups     = pmu_dev_groups,
11071 };
11072
11073 static void pmu_dev_release(struct device *dev)
11074 {
11075         kfree(dev);
11076 }
11077
11078 static int pmu_dev_alloc(struct pmu *pmu)
11079 {
11080         int ret = -ENOMEM;
11081
11082         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11083         if (!pmu->dev)
11084                 goto out;
11085
11086         pmu->dev->groups = pmu->attr_groups;
11087         device_initialize(pmu->dev);
11088         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11089         if (ret)
11090                 goto free_dev;
11091
11092         dev_set_drvdata(pmu->dev, pmu);
11093         pmu->dev->bus = &pmu_bus;
11094         pmu->dev->release = pmu_dev_release;
11095         ret = device_add(pmu->dev);
11096         if (ret)
11097                 goto free_dev;
11098
11099         /* For PMUs with address filters, throw in an extra attribute: */
11100         if (pmu->nr_addr_filters)
11101                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11102
11103         if (ret)
11104                 goto del_dev;
11105
11106         if (pmu->attr_update)
11107                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11108
11109         if (ret)
11110                 goto del_dev;
11111
11112 out:
11113         return ret;
11114
11115 del_dev:
11116         device_del(pmu->dev);
11117
11118 free_dev:
11119         put_device(pmu->dev);
11120         goto out;
11121 }
11122
11123 static struct lock_class_key cpuctx_mutex;
11124 static struct lock_class_key cpuctx_lock;
11125
11126 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11127 {
11128         int cpu, ret, max = PERF_TYPE_MAX;
11129
11130         mutex_lock(&pmus_lock);
11131         ret = -ENOMEM;
11132         pmu->pmu_disable_count = alloc_percpu(int);
11133         if (!pmu->pmu_disable_count)
11134                 goto unlock;
11135
11136         pmu->type = -1;
11137         if (!name)
11138                 goto skip_type;
11139         pmu->name = name;
11140
11141         if (type != PERF_TYPE_SOFTWARE) {
11142                 if (type >= 0)
11143                         max = type;
11144
11145                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11146                 if (ret < 0)
11147                         goto free_pdc;
11148
11149                 WARN_ON(type >= 0 && ret != type);
11150
11151                 type = ret;
11152         }
11153         pmu->type = type;
11154
11155         if (pmu_bus_running) {
11156                 ret = pmu_dev_alloc(pmu);
11157                 if (ret)
11158                         goto free_idr;
11159         }
11160
11161 skip_type:
11162         if (pmu->task_ctx_nr == perf_hw_context) {
11163                 static int hw_context_taken = 0;
11164
11165                 /*
11166                  * Other than systems with heterogeneous CPUs, it never makes
11167                  * sense for two PMUs to share perf_hw_context. PMUs which are
11168                  * uncore must use perf_invalid_context.
11169                  */
11170                 if (WARN_ON_ONCE(hw_context_taken &&
11171                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11172                         pmu->task_ctx_nr = perf_invalid_context;
11173
11174                 hw_context_taken = 1;
11175         }
11176
11177         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11178         if (pmu->pmu_cpu_context)
11179                 goto got_cpu_context;
11180
11181         ret = -ENOMEM;
11182         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11183         if (!pmu->pmu_cpu_context)
11184                 goto free_dev;
11185
11186         for_each_possible_cpu(cpu) {
11187                 struct perf_cpu_context *cpuctx;
11188
11189                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11190                 __perf_event_init_context(&cpuctx->ctx);
11191                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11192                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11193                 cpuctx->ctx.pmu = pmu;
11194                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11195
11196                 __perf_mux_hrtimer_init(cpuctx, cpu);
11197
11198                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11199                 cpuctx->heap = cpuctx->heap_default;
11200         }
11201
11202 got_cpu_context:
11203         if (!pmu->start_txn) {
11204                 if (pmu->pmu_enable) {
11205                         /*
11206                          * If we have pmu_enable/pmu_disable calls, install
11207                          * transaction stubs that use that to try and batch
11208                          * hardware accesses.
11209                          */
11210                         pmu->start_txn  = perf_pmu_start_txn;
11211                         pmu->commit_txn = perf_pmu_commit_txn;
11212                         pmu->cancel_txn = perf_pmu_cancel_txn;
11213                 } else {
11214                         pmu->start_txn  = perf_pmu_nop_txn;
11215                         pmu->commit_txn = perf_pmu_nop_int;
11216                         pmu->cancel_txn = perf_pmu_nop_void;
11217                 }
11218         }
11219
11220         if (!pmu->pmu_enable) {
11221                 pmu->pmu_enable  = perf_pmu_nop_void;
11222                 pmu->pmu_disable = perf_pmu_nop_void;
11223         }
11224
11225         if (!pmu->check_period)
11226                 pmu->check_period = perf_event_nop_int;
11227
11228         if (!pmu->event_idx)
11229                 pmu->event_idx = perf_event_idx_default;
11230
11231         /*
11232          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11233          * since these cannot be in the IDR. This way the linear search
11234          * is fast, provided a valid software event is provided.
11235          */
11236         if (type == PERF_TYPE_SOFTWARE || !name)
11237                 list_add_rcu(&pmu->entry, &pmus);
11238         else
11239                 list_add_tail_rcu(&pmu->entry, &pmus);
11240
11241         atomic_set(&pmu->exclusive_cnt, 0);
11242         ret = 0;
11243 unlock:
11244         mutex_unlock(&pmus_lock);
11245
11246         return ret;
11247
11248 free_dev:
11249         device_del(pmu->dev);
11250         put_device(pmu->dev);
11251
11252 free_idr:
11253         if (pmu->type != PERF_TYPE_SOFTWARE)
11254                 idr_remove(&pmu_idr, pmu->type);
11255
11256 free_pdc:
11257         free_percpu(pmu->pmu_disable_count);
11258         goto unlock;
11259 }
11260 EXPORT_SYMBOL_GPL(perf_pmu_register);
11261
11262 void perf_pmu_unregister(struct pmu *pmu)
11263 {
11264         mutex_lock(&pmus_lock);
11265         list_del_rcu(&pmu->entry);
11266
11267         /*
11268          * We dereference the pmu list under both SRCU and regular RCU, so
11269          * synchronize against both of those.
11270          */
11271         synchronize_srcu(&pmus_srcu);
11272         synchronize_rcu();
11273
11274         free_percpu(pmu->pmu_disable_count);
11275         if (pmu->type != PERF_TYPE_SOFTWARE)
11276                 idr_remove(&pmu_idr, pmu->type);
11277         if (pmu_bus_running) {
11278                 if (pmu->nr_addr_filters)
11279                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11280                 device_del(pmu->dev);
11281                 put_device(pmu->dev);
11282         }
11283         free_pmu_context(pmu);
11284         mutex_unlock(&pmus_lock);
11285 }
11286 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11287
11288 static inline bool has_extended_regs(struct perf_event *event)
11289 {
11290         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11291                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11292 }
11293
11294 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11295 {
11296         struct perf_event_context *ctx = NULL;
11297         int ret;
11298
11299         if (!try_module_get(pmu->module))
11300                 return -ENODEV;
11301
11302         /*
11303          * A number of pmu->event_init() methods iterate the sibling_list to,
11304          * for example, validate if the group fits on the PMU. Therefore,
11305          * if this is a sibling event, acquire the ctx->mutex to protect
11306          * the sibling_list.
11307          */
11308         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11309                 /*
11310                  * This ctx->mutex can nest when we're called through
11311                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11312                  */
11313                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11314                                                  SINGLE_DEPTH_NESTING);
11315                 BUG_ON(!ctx);
11316         }
11317
11318         event->pmu = pmu;
11319         ret = pmu->event_init(event);
11320
11321         if (ctx)
11322                 perf_event_ctx_unlock(event->group_leader, ctx);
11323
11324         if (!ret) {
11325                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11326                     has_extended_regs(event))
11327                         ret = -EOPNOTSUPP;
11328
11329                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11330                     event_has_any_exclude_flag(event))
11331                         ret = -EINVAL;
11332
11333                 if (ret && event->destroy)
11334                         event->destroy(event);
11335         }
11336
11337         if (ret)
11338                 module_put(pmu->module);
11339
11340         return ret;
11341 }
11342
11343 static struct pmu *perf_init_event(struct perf_event *event)
11344 {
11345         bool extended_type = false;
11346         int idx, type, ret;
11347         struct pmu *pmu;
11348
11349         idx = srcu_read_lock(&pmus_srcu);
11350
11351         /* Try parent's PMU first: */
11352         if (event->parent && event->parent->pmu) {
11353                 pmu = event->parent->pmu;
11354                 ret = perf_try_init_event(pmu, event);
11355                 if (!ret)
11356                         goto unlock;
11357         }
11358
11359         /*
11360          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11361          * are often aliases for PERF_TYPE_RAW.
11362          */
11363         type = event->attr.type;
11364         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11365                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11366                 if (!type) {
11367                         type = PERF_TYPE_RAW;
11368                 } else {
11369                         extended_type = true;
11370                         event->attr.config &= PERF_HW_EVENT_MASK;
11371                 }
11372         }
11373
11374 again:
11375         rcu_read_lock();
11376         pmu = idr_find(&pmu_idr, type);
11377         rcu_read_unlock();
11378         if (pmu) {
11379                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11380                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11381                         goto fail;
11382
11383                 ret = perf_try_init_event(pmu, event);
11384                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11385                         type = event->attr.type;
11386                         goto again;
11387                 }
11388
11389                 if (ret)
11390                         pmu = ERR_PTR(ret);
11391
11392                 goto unlock;
11393         }
11394
11395         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11396                 ret = perf_try_init_event(pmu, event);
11397                 if (!ret)
11398                         goto unlock;
11399
11400                 if (ret != -ENOENT) {
11401                         pmu = ERR_PTR(ret);
11402                         goto unlock;
11403                 }
11404         }
11405 fail:
11406         pmu = ERR_PTR(-ENOENT);
11407 unlock:
11408         srcu_read_unlock(&pmus_srcu, idx);
11409
11410         return pmu;
11411 }
11412
11413 static void attach_sb_event(struct perf_event *event)
11414 {
11415         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11416
11417         raw_spin_lock(&pel->lock);
11418         list_add_rcu(&event->sb_list, &pel->list);
11419         raw_spin_unlock(&pel->lock);
11420 }
11421
11422 /*
11423  * We keep a list of all !task (and therefore per-cpu) events
11424  * that need to receive side-band records.
11425  *
11426  * This avoids having to scan all the various PMU per-cpu contexts
11427  * looking for them.
11428  */
11429 static void account_pmu_sb_event(struct perf_event *event)
11430 {
11431         if (is_sb_event(event))
11432                 attach_sb_event(event);
11433 }
11434
11435 static void account_event_cpu(struct perf_event *event, int cpu)
11436 {
11437         if (event->parent)
11438                 return;
11439
11440         if (is_cgroup_event(event))
11441                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11442 }
11443
11444 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11445 static void account_freq_event_nohz(void)
11446 {
11447 #ifdef CONFIG_NO_HZ_FULL
11448         /* Lock so we don't race with concurrent unaccount */
11449         spin_lock(&nr_freq_lock);
11450         if (atomic_inc_return(&nr_freq_events) == 1)
11451                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11452         spin_unlock(&nr_freq_lock);
11453 #endif
11454 }
11455
11456 static void account_freq_event(void)
11457 {
11458         if (tick_nohz_full_enabled())
11459                 account_freq_event_nohz();
11460         else
11461                 atomic_inc(&nr_freq_events);
11462 }
11463
11464
11465 static void account_event(struct perf_event *event)
11466 {
11467         bool inc = false;
11468
11469         if (event->parent)
11470                 return;
11471
11472         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11473                 inc = true;
11474         if (event->attr.mmap || event->attr.mmap_data)
11475                 atomic_inc(&nr_mmap_events);
11476         if (event->attr.build_id)
11477                 atomic_inc(&nr_build_id_events);
11478         if (event->attr.comm)
11479                 atomic_inc(&nr_comm_events);
11480         if (event->attr.namespaces)
11481                 atomic_inc(&nr_namespaces_events);
11482         if (event->attr.cgroup)
11483                 atomic_inc(&nr_cgroup_events);
11484         if (event->attr.task)
11485                 atomic_inc(&nr_task_events);
11486         if (event->attr.freq)
11487                 account_freq_event();
11488         if (event->attr.context_switch) {
11489                 atomic_inc(&nr_switch_events);
11490                 inc = true;
11491         }
11492         if (has_branch_stack(event))
11493                 inc = true;
11494         if (is_cgroup_event(event))
11495                 inc = true;
11496         if (event->attr.ksymbol)
11497                 atomic_inc(&nr_ksymbol_events);
11498         if (event->attr.bpf_event)
11499                 atomic_inc(&nr_bpf_events);
11500         if (event->attr.text_poke)
11501                 atomic_inc(&nr_text_poke_events);
11502
11503         if (inc) {
11504                 /*
11505                  * We need the mutex here because static_branch_enable()
11506                  * must complete *before* the perf_sched_count increment
11507                  * becomes visible.
11508                  */
11509                 if (atomic_inc_not_zero(&perf_sched_count))
11510                         goto enabled;
11511
11512                 mutex_lock(&perf_sched_mutex);
11513                 if (!atomic_read(&perf_sched_count)) {
11514                         static_branch_enable(&perf_sched_events);
11515                         /*
11516                          * Guarantee that all CPUs observe they key change and
11517                          * call the perf scheduling hooks before proceeding to
11518                          * install events that need them.
11519                          */
11520                         synchronize_rcu();
11521                 }
11522                 /*
11523                  * Now that we have waited for the sync_sched(), allow further
11524                  * increments to by-pass the mutex.
11525                  */
11526                 atomic_inc(&perf_sched_count);
11527                 mutex_unlock(&perf_sched_mutex);
11528         }
11529 enabled:
11530
11531         account_event_cpu(event, event->cpu);
11532
11533         account_pmu_sb_event(event);
11534 }
11535
11536 /*
11537  * Allocate and initialize an event structure
11538  */
11539 static struct perf_event *
11540 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11541                  struct task_struct *task,
11542                  struct perf_event *group_leader,
11543                  struct perf_event *parent_event,
11544                  perf_overflow_handler_t overflow_handler,
11545                  void *context, int cgroup_fd)
11546 {
11547         struct pmu *pmu;
11548         struct perf_event *event;
11549         struct hw_perf_event *hwc;
11550         long err = -EINVAL;
11551         int node;
11552
11553         if ((unsigned)cpu >= nr_cpu_ids) {
11554                 if (!task || cpu != -1)
11555                         return ERR_PTR(-EINVAL);
11556         }
11557         if (attr->sigtrap && !task) {
11558                 /* Requires a task: avoid signalling random tasks. */
11559                 return ERR_PTR(-EINVAL);
11560         }
11561
11562         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11563         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11564                                       node);
11565         if (!event)
11566                 return ERR_PTR(-ENOMEM);
11567
11568         /*
11569          * Single events are their own group leaders, with an
11570          * empty sibling list:
11571          */
11572         if (!group_leader)
11573                 group_leader = event;
11574
11575         mutex_init(&event->child_mutex);
11576         INIT_LIST_HEAD(&event->child_list);
11577
11578         INIT_LIST_HEAD(&event->event_entry);
11579         INIT_LIST_HEAD(&event->sibling_list);
11580         INIT_LIST_HEAD(&event->active_list);
11581         init_event_group(event);
11582         INIT_LIST_HEAD(&event->rb_entry);
11583         INIT_LIST_HEAD(&event->active_entry);
11584         INIT_LIST_HEAD(&event->addr_filters.list);
11585         INIT_HLIST_NODE(&event->hlist_entry);
11586
11587
11588         init_waitqueue_head(&event->waitq);
11589         event->pending_disable = -1;
11590         init_irq_work(&event->pending, perf_pending_event);
11591
11592         mutex_init(&event->mmap_mutex);
11593         raw_spin_lock_init(&event->addr_filters.lock);
11594
11595         atomic_long_set(&event->refcount, 1);
11596         event->cpu              = cpu;
11597         event->attr             = *attr;
11598         event->group_leader     = group_leader;
11599         event->pmu              = NULL;
11600         event->oncpu            = -1;
11601
11602         event->parent           = parent_event;
11603
11604         event->ns               = get_pid_ns(task_active_pid_ns(current));
11605         event->id               = atomic64_inc_return(&perf_event_id);
11606
11607         event->state            = PERF_EVENT_STATE_INACTIVE;
11608
11609         if (event->attr.sigtrap)
11610                 atomic_set(&event->event_limit, 1);
11611
11612         if (task) {
11613                 event->attach_state = PERF_ATTACH_TASK;
11614                 /*
11615                  * XXX pmu::event_init needs to know what task to account to
11616                  * and we cannot use the ctx information because we need the
11617                  * pmu before we get a ctx.
11618                  */
11619                 event->hw.target = get_task_struct(task);
11620         }
11621
11622         event->clock = &local_clock;
11623         if (parent_event)
11624                 event->clock = parent_event->clock;
11625
11626         if (!overflow_handler && parent_event) {
11627                 overflow_handler = parent_event->overflow_handler;
11628                 context = parent_event->overflow_handler_context;
11629 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11630                 if (overflow_handler == bpf_overflow_handler) {
11631                         struct bpf_prog *prog = parent_event->prog;
11632
11633                         bpf_prog_inc(prog);
11634                         event->prog = prog;
11635                         event->orig_overflow_handler =
11636                                 parent_event->orig_overflow_handler;
11637                 }
11638 #endif
11639         }
11640
11641         if (overflow_handler) {
11642                 event->overflow_handler = overflow_handler;
11643                 event->overflow_handler_context = context;
11644         } else if (is_write_backward(event)){
11645                 event->overflow_handler = perf_event_output_backward;
11646                 event->overflow_handler_context = NULL;
11647         } else {
11648                 event->overflow_handler = perf_event_output_forward;
11649                 event->overflow_handler_context = NULL;
11650         }
11651
11652         perf_event__state_init(event);
11653
11654         pmu = NULL;
11655
11656         hwc = &event->hw;
11657         hwc->sample_period = attr->sample_period;
11658         if (attr->freq && attr->sample_freq)
11659                 hwc->sample_period = 1;
11660         hwc->last_period = hwc->sample_period;
11661
11662         local64_set(&hwc->period_left, hwc->sample_period);
11663
11664         /*
11665          * We currently do not support PERF_SAMPLE_READ on inherited events.
11666          * See perf_output_read().
11667          */
11668         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11669                 goto err_ns;
11670
11671         if (!has_branch_stack(event))
11672                 event->attr.branch_sample_type = 0;
11673
11674         pmu = perf_init_event(event);
11675         if (IS_ERR(pmu)) {
11676                 err = PTR_ERR(pmu);
11677                 goto err_ns;
11678         }
11679
11680         /*
11681          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11682          * be different on other CPUs in the uncore mask.
11683          */
11684         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11685                 err = -EINVAL;
11686                 goto err_pmu;
11687         }
11688
11689         if (event->attr.aux_output &&
11690             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11691                 err = -EOPNOTSUPP;
11692                 goto err_pmu;
11693         }
11694
11695         if (cgroup_fd != -1) {
11696                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11697                 if (err)
11698                         goto err_pmu;
11699         }
11700
11701         err = exclusive_event_init(event);
11702         if (err)
11703                 goto err_pmu;
11704
11705         if (has_addr_filter(event)) {
11706                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11707                                                     sizeof(struct perf_addr_filter_range),
11708                                                     GFP_KERNEL);
11709                 if (!event->addr_filter_ranges) {
11710                         err = -ENOMEM;
11711                         goto err_per_task;
11712                 }
11713
11714                 /*
11715                  * Clone the parent's vma offsets: they are valid until exec()
11716                  * even if the mm is not shared with the parent.
11717                  */
11718                 if (event->parent) {
11719                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11720
11721                         raw_spin_lock_irq(&ifh->lock);
11722                         memcpy(event->addr_filter_ranges,
11723                                event->parent->addr_filter_ranges,
11724                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11725                         raw_spin_unlock_irq(&ifh->lock);
11726                 }
11727
11728                 /* force hw sync on the address filters */
11729                 event->addr_filters_gen = 1;
11730         }
11731
11732         if (!event->parent) {
11733                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11734                         err = get_callchain_buffers(attr->sample_max_stack);
11735                         if (err)
11736                                 goto err_addr_filters;
11737                 }
11738         }
11739
11740         err = security_perf_event_alloc(event);
11741         if (err)
11742                 goto err_callchain_buffer;
11743
11744         /* symmetric to unaccount_event() in _free_event() */
11745         account_event(event);
11746
11747         return event;
11748
11749 err_callchain_buffer:
11750         if (!event->parent) {
11751                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11752                         put_callchain_buffers();
11753         }
11754 err_addr_filters:
11755         kfree(event->addr_filter_ranges);
11756
11757 err_per_task:
11758         exclusive_event_destroy(event);
11759
11760 err_pmu:
11761         if (is_cgroup_event(event))
11762                 perf_detach_cgroup(event);
11763         if (event->destroy)
11764                 event->destroy(event);
11765         module_put(pmu->module);
11766 err_ns:
11767         if (event->ns)
11768                 put_pid_ns(event->ns);
11769         if (event->hw.target)
11770                 put_task_struct(event->hw.target);
11771         kmem_cache_free(perf_event_cache, event);
11772
11773         return ERR_PTR(err);
11774 }
11775
11776 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11777                           struct perf_event_attr *attr)
11778 {
11779         u32 size;
11780         int ret;
11781
11782         /* Zero the full structure, so that a short copy will be nice. */
11783         memset(attr, 0, sizeof(*attr));
11784
11785         ret = get_user(size, &uattr->size);
11786         if (ret)
11787                 return ret;
11788
11789         /* ABI compatibility quirk: */
11790         if (!size)
11791                 size = PERF_ATTR_SIZE_VER0;
11792         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11793                 goto err_size;
11794
11795         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11796         if (ret) {
11797                 if (ret == -E2BIG)
11798                         goto err_size;
11799                 return ret;
11800         }
11801
11802         attr->size = size;
11803
11804         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11805                 return -EINVAL;
11806
11807         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11808                 return -EINVAL;
11809
11810         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11811                 return -EINVAL;
11812
11813         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11814                 u64 mask = attr->branch_sample_type;
11815
11816                 /* only using defined bits */
11817                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11818                         return -EINVAL;
11819
11820                 /* at least one branch bit must be set */
11821                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11822                         return -EINVAL;
11823
11824                 /* propagate priv level, when not set for branch */
11825                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11826
11827                         /* exclude_kernel checked on syscall entry */
11828                         if (!attr->exclude_kernel)
11829                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11830
11831                         if (!attr->exclude_user)
11832                                 mask |= PERF_SAMPLE_BRANCH_USER;
11833
11834                         if (!attr->exclude_hv)
11835                                 mask |= PERF_SAMPLE_BRANCH_HV;
11836                         /*
11837                          * adjust user setting (for HW filter setup)
11838                          */
11839                         attr->branch_sample_type = mask;
11840                 }
11841                 /* privileged levels capture (kernel, hv): check permissions */
11842                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11843                         ret = perf_allow_kernel(attr);
11844                         if (ret)
11845                                 return ret;
11846                 }
11847         }
11848
11849         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11850                 ret = perf_reg_validate(attr->sample_regs_user);
11851                 if (ret)
11852                         return ret;
11853         }
11854
11855         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11856                 if (!arch_perf_have_user_stack_dump())
11857                         return -ENOSYS;
11858
11859                 /*
11860                  * We have __u32 type for the size, but so far
11861                  * we can only use __u16 as maximum due to the
11862                  * __u16 sample size limit.
11863                  */
11864                 if (attr->sample_stack_user >= USHRT_MAX)
11865                         return -EINVAL;
11866                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11867                         return -EINVAL;
11868         }
11869
11870         if (!attr->sample_max_stack)
11871                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11872
11873         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11874                 ret = perf_reg_validate(attr->sample_regs_intr);
11875
11876 #ifndef CONFIG_CGROUP_PERF
11877         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11878                 return -EINVAL;
11879 #endif
11880         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11881             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11882                 return -EINVAL;
11883
11884         if (!attr->inherit && attr->inherit_thread)
11885                 return -EINVAL;
11886
11887         if (attr->remove_on_exec && attr->enable_on_exec)
11888                 return -EINVAL;
11889
11890         if (attr->sigtrap && !attr->remove_on_exec)
11891                 return -EINVAL;
11892
11893 out:
11894         return ret;
11895
11896 err_size:
11897         put_user(sizeof(*attr), &uattr->size);
11898         ret = -E2BIG;
11899         goto out;
11900 }
11901
11902 static int
11903 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11904 {
11905         struct perf_buffer *rb = NULL;
11906         int ret = -EINVAL;
11907
11908         if (!output_event)
11909                 goto set;
11910
11911         /* don't allow circular references */
11912         if (event == output_event)
11913                 goto out;
11914
11915         /*
11916          * Don't allow cross-cpu buffers
11917          */
11918         if (output_event->cpu != event->cpu)
11919                 goto out;
11920
11921         /*
11922          * If its not a per-cpu rb, it must be the same task.
11923          */
11924         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11925                 goto out;
11926
11927         /*
11928          * Mixing clocks in the same buffer is trouble you don't need.
11929          */
11930         if (output_event->clock != event->clock)
11931                 goto out;
11932
11933         /*
11934          * Either writing ring buffer from beginning or from end.
11935          * Mixing is not allowed.
11936          */
11937         if (is_write_backward(output_event) != is_write_backward(event))
11938                 goto out;
11939
11940         /*
11941          * If both events generate aux data, they must be on the same PMU
11942          */
11943         if (has_aux(event) && has_aux(output_event) &&
11944             event->pmu != output_event->pmu)
11945                 goto out;
11946
11947 set:
11948         mutex_lock(&event->mmap_mutex);
11949         /* Can't redirect output if we've got an active mmap() */
11950         if (atomic_read(&event->mmap_count))
11951                 goto unlock;
11952
11953         if (output_event) {
11954                 /* get the rb we want to redirect to */
11955                 rb = ring_buffer_get(output_event);
11956                 if (!rb)
11957                         goto unlock;
11958         }
11959
11960         ring_buffer_attach(event, rb);
11961
11962         ret = 0;
11963 unlock:
11964         mutex_unlock(&event->mmap_mutex);
11965
11966 out:
11967         return ret;
11968 }
11969
11970 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11971 {
11972         if (b < a)
11973                 swap(a, b);
11974
11975         mutex_lock(a);
11976         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11977 }
11978
11979 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11980 {
11981         bool nmi_safe = false;
11982
11983         switch (clk_id) {
11984         case CLOCK_MONOTONIC:
11985                 event->clock = &ktime_get_mono_fast_ns;
11986                 nmi_safe = true;
11987                 break;
11988
11989         case CLOCK_MONOTONIC_RAW:
11990                 event->clock = &ktime_get_raw_fast_ns;
11991                 nmi_safe = true;
11992                 break;
11993
11994         case CLOCK_REALTIME:
11995                 event->clock = &ktime_get_real_ns;
11996                 break;
11997
11998         case CLOCK_BOOTTIME:
11999                 event->clock = &ktime_get_boottime_ns;
12000                 break;
12001
12002         case CLOCK_TAI:
12003                 event->clock = &ktime_get_clocktai_ns;
12004                 break;
12005
12006         default:
12007                 return -EINVAL;
12008         }
12009
12010         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12011                 return -EINVAL;
12012
12013         return 0;
12014 }
12015
12016 /*
12017  * Variation on perf_event_ctx_lock_nested(), except we take two context
12018  * mutexes.
12019  */
12020 static struct perf_event_context *
12021 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12022                              struct perf_event_context *ctx)
12023 {
12024         struct perf_event_context *gctx;
12025
12026 again:
12027         rcu_read_lock();
12028         gctx = READ_ONCE(group_leader->ctx);
12029         if (!refcount_inc_not_zero(&gctx->refcount)) {
12030                 rcu_read_unlock();
12031                 goto again;
12032         }
12033         rcu_read_unlock();
12034
12035         mutex_lock_double(&gctx->mutex, &ctx->mutex);
12036
12037         if (group_leader->ctx != gctx) {
12038                 mutex_unlock(&ctx->mutex);
12039                 mutex_unlock(&gctx->mutex);
12040                 put_ctx(gctx);
12041                 goto again;
12042         }
12043
12044         return gctx;
12045 }
12046
12047 static bool
12048 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12049 {
12050         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12051         bool is_capable = perfmon_capable();
12052
12053         if (attr->sigtrap) {
12054                 /*
12055                  * perf_event_attr::sigtrap sends signals to the other task.
12056                  * Require the current task to also have CAP_KILL.
12057                  */
12058                 rcu_read_lock();
12059                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12060                 rcu_read_unlock();
12061
12062                 /*
12063                  * If the required capabilities aren't available, checks for
12064                  * ptrace permissions: upgrade to ATTACH, since sending signals
12065                  * can effectively change the target task.
12066                  */
12067                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12068         }
12069
12070         /*
12071          * Preserve ptrace permission check for backwards compatibility. The
12072          * ptrace check also includes checks that the current task and other
12073          * task have matching uids, and is therefore not done here explicitly.
12074          */
12075         return is_capable || ptrace_may_access(task, ptrace_mode);
12076 }
12077
12078 /**
12079  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12080  *
12081  * @attr_uptr:  event_id type attributes for monitoring/sampling
12082  * @pid:                target pid
12083  * @cpu:                target cpu
12084  * @group_fd:           group leader event fd
12085  * @flags:              perf event open flags
12086  */
12087 SYSCALL_DEFINE5(perf_event_open,
12088                 struct perf_event_attr __user *, attr_uptr,
12089                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12090 {
12091         struct perf_event *group_leader = NULL, *output_event = NULL;
12092         struct perf_event *event, *sibling;
12093         struct perf_event_attr attr;
12094         struct perf_event_context *ctx, *gctx;
12095         struct file *event_file = NULL;
12096         struct fd group = {NULL, 0};
12097         struct task_struct *task = NULL;
12098         struct pmu *pmu;
12099         int event_fd;
12100         int move_group = 0;
12101         int err;
12102         int f_flags = O_RDWR;
12103         int cgroup_fd = -1;
12104
12105         /* for future expandability... */
12106         if (flags & ~PERF_FLAG_ALL)
12107                 return -EINVAL;
12108
12109         /* Do we allow access to perf_event_open(2) ? */
12110         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12111         if (err)
12112                 return err;
12113
12114         err = perf_copy_attr(attr_uptr, &attr);
12115         if (err)
12116                 return err;
12117
12118         if (!attr.exclude_kernel) {
12119                 err = perf_allow_kernel(&attr);
12120                 if (err)
12121                         return err;
12122         }
12123
12124         if (attr.namespaces) {
12125                 if (!perfmon_capable())
12126                         return -EACCES;
12127         }
12128
12129         if (attr.freq) {
12130                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12131                         return -EINVAL;
12132         } else {
12133                 if (attr.sample_period & (1ULL << 63))
12134                         return -EINVAL;
12135         }
12136
12137         /* Only privileged users can get physical addresses */
12138         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12139                 err = perf_allow_kernel(&attr);
12140                 if (err)
12141                         return err;
12142         }
12143
12144         /* REGS_INTR can leak data, lockdown must prevent this */
12145         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12146                 err = security_locked_down(LOCKDOWN_PERF);
12147                 if (err)
12148                         return err;
12149         }
12150
12151         /*
12152          * In cgroup mode, the pid argument is used to pass the fd
12153          * opened to the cgroup directory in cgroupfs. The cpu argument
12154          * designates the cpu on which to monitor threads from that
12155          * cgroup.
12156          */
12157         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12158                 return -EINVAL;
12159
12160         if (flags & PERF_FLAG_FD_CLOEXEC)
12161                 f_flags |= O_CLOEXEC;
12162
12163         event_fd = get_unused_fd_flags(f_flags);
12164         if (event_fd < 0)
12165                 return event_fd;
12166
12167         if (group_fd != -1) {
12168                 err = perf_fget_light(group_fd, &group);
12169                 if (err)
12170                         goto err_fd;
12171                 group_leader = group.file->private_data;
12172                 if (flags & PERF_FLAG_FD_OUTPUT)
12173                         output_event = group_leader;
12174                 if (flags & PERF_FLAG_FD_NO_GROUP)
12175                         group_leader = NULL;
12176         }
12177
12178         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12179                 task = find_lively_task_by_vpid(pid);
12180                 if (IS_ERR(task)) {
12181                         err = PTR_ERR(task);
12182                         goto err_group_fd;
12183                 }
12184         }
12185
12186         if (task && group_leader &&
12187             group_leader->attr.inherit != attr.inherit) {
12188                 err = -EINVAL;
12189                 goto err_task;
12190         }
12191
12192         if (flags & PERF_FLAG_PID_CGROUP)
12193                 cgroup_fd = pid;
12194
12195         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12196                                  NULL, NULL, cgroup_fd);
12197         if (IS_ERR(event)) {
12198                 err = PTR_ERR(event);
12199                 goto err_task;
12200         }
12201
12202         if (is_sampling_event(event)) {
12203                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12204                         err = -EOPNOTSUPP;
12205                         goto err_alloc;
12206                 }
12207         }
12208
12209         /*
12210          * Special case software events and allow them to be part of
12211          * any hardware group.
12212          */
12213         pmu = event->pmu;
12214
12215         if (attr.use_clockid) {
12216                 err = perf_event_set_clock(event, attr.clockid);
12217                 if (err)
12218                         goto err_alloc;
12219         }
12220
12221         if (pmu->task_ctx_nr == perf_sw_context)
12222                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12223
12224         if (group_leader) {
12225                 if (is_software_event(event) &&
12226                     !in_software_context(group_leader)) {
12227                         /*
12228                          * If the event is a sw event, but the group_leader
12229                          * is on hw context.
12230                          *
12231                          * Allow the addition of software events to hw
12232                          * groups, this is safe because software events
12233                          * never fail to schedule.
12234                          */
12235                         pmu = group_leader->ctx->pmu;
12236                 } else if (!is_software_event(event) &&
12237                            is_software_event(group_leader) &&
12238                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12239                         /*
12240                          * In case the group is a pure software group, and we
12241                          * try to add a hardware event, move the whole group to
12242                          * the hardware context.
12243                          */
12244                         move_group = 1;
12245                 }
12246         }
12247
12248         /*
12249          * Get the target context (task or percpu):
12250          */
12251         ctx = find_get_context(pmu, task, event);
12252         if (IS_ERR(ctx)) {
12253                 err = PTR_ERR(ctx);
12254                 goto err_alloc;
12255         }
12256
12257         /*
12258          * Look up the group leader (we will attach this event to it):
12259          */
12260         if (group_leader) {
12261                 err = -EINVAL;
12262
12263                 /*
12264                  * Do not allow a recursive hierarchy (this new sibling
12265                  * becoming part of another group-sibling):
12266                  */
12267                 if (group_leader->group_leader != group_leader)
12268                         goto err_context;
12269
12270                 /* All events in a group should have the same clock */
12271                 if (group_leader->clock != event->clock)
12272                         goto err_context;
12273
12274                 /*
12275                  * Make sure we're both events for the same CPU;
12276                  * grouping events for different CPUs is broken; since
12277                  * you can never concurrently schedule them anyhow.
12278                  */
12279                 if (group_leader->cpu != event->cpu)
12280                         goto err_context;
12281
12282                 /*
12283                  * Make sure we're both on the same task, or both
12284                  * per-CPU events.
12285                  */
12286                 if (group_leader->ctx->task != ctx->task)
12287                         goto err_context;
12288
12289                 /*
12290                  * Do not allow to attach to a group in a different task
12291                  * or CPU context. If we're moving SW events, we'll fix
12292                  * this up later, so allow that.
12293                  */
12294                 if (!move_group && group_leader->ctx != ctx)
12295                         goto err_context;
12296
12297                 /*
12298                  * Only a group leader can be exclusive or pinned
12299                  */
12300                 if (attr.exclusive || attr.pinned)
12301                         goto err_context;
12302         }
12303
12304         if (output_event) {
12305                 err = perf_event_set_output(event, output_event);
12306                 if (err)
12307                         goto err_context;
12308         }
12309
12310         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12311                                         f_flags);
12312         if (IS_ERR(event_file)) {
12313                 err = PTR_ERR(event_file);
12314                 event_file = NULL;
12315                 goto err_context;
12316         }
12317
12318         if (task) {
12319                 err = down_read_interruptible(&task->signal->exec_update_lock);
12320                 if (err)
12321                         goto err_file;
12322
12323                 /*
12324                  * We must hold exec_update_lock across this and any potential
12325                  * perf_install_in_context() call for this new event to
12326                  * serialize against exec() altering our credentials (and the
12327                  * perf_event_exit_task() that could imply).
12328                  */
12329                 err = -EACCES;
12330                 if (!perf_check_permission(&attr, task))
12331                         goto err_cred;
12332         }
12333
12334         if (move_group) {
12335                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12336
12337                 if (gctx->task == TASK_TOMBSTONE) {
12338                         err = -ESRCH;
12339                         goto err_locked;
12340                 }
12341
12342                 /*
12343                  * Check if we raced against another sys_perf_event_open() call
12344                  * moving the software group underneath us.
12345                  */
12346                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12347                         /*
12348                          * If someone moved the group out from under us, check
12349                          * if this new event wound up on the same ctx, if so
12350                          * its the regular !move_group case, otherwise fail.
12351                          */
12352                         if (gctx != ctx) {
12353                                 err = -EINVAL;
12354                                 goto err_locked;
12355                         } else {
12356                                 perf_event_ctx_unlock(group_leader, gctx);
12357                                 move_group = 0;
12358                         }
12359                 }
12360
12361                 /*
12362                  * Failure to create exclusive events returns -EBUSY.
12363                  */
12364                 err = -EBUSY;
12365                 if (!exclusive_event_installable(group_leader, ctx))
12366                         goto err_locked;
12367
12368                 for_each_sibling_event(sibling, group_leader) {
12369                         if (!exclusive_event_installable(sibling, ctx))
12370                                 goto err_locked;
12371                 }
12372         } else {
12373                 mutex_lock(&ctx->mutex);
12374         }
12375
12376         if (ctx->task == TASK_TOMBSTONE) {
12377                 err = -ESRCH;
12378                 goto err_locked;
12379         }
12380
12381         if (!perf_event_validate_size(event)) {
12382                 err = -E2BIG;
12383                 goto err_locked;
12384         }
12385
12386         if (!task) {
12387                 /*
12388                  * Check if the @cpu we're creating an event for is online.
12389                  *
12390                  * We use the perf_cpu_context::ctx::mutex to serialize against
12391                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12392                  */
12393                 struct perf_cpu_context *cpuctx =
12394                         container_of(ctx, struct perf_cpu_context, ctx);
12395
12396                 if (!cpuctx->online) {
12397                         err = -ENODEV;
12398                         goto err_locked;
12399                 }
12400         }
12401
12402         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12403                 err = -EINVAL;
12404                 goto err_locked;
12405         }
12406
12407         /*
12408          * Must be under the same ctx::mutex as perf_install_in_context(),
12409          * because we need to serialize with concurrent event creation.
12410          */
12411         if (!exclusive_event_installable(event, ctx)) {
12412                 err = -EBUSY;
12413                 goto err_locked;
12414         }
12415
12416         WARN_ON_ONCE(ctx->parent_ctx);
12417
12418         /*
12419          * This is the point on no return; we cannot fail hereafter. This is
12420          * where we start modifying current state.
12421          */
12422
12423         if (move_group) {
12424                 /*
12425                  * See perf_event_ctx_lock() for comments on the details
12426                  * of swizzling perf_event::ctx.
12427                  */
12428                 perf_remove_from_context(group_leader, 0);
12429                 put_ctx(gctx);
12430
12431                 for_each_sibling_event(sibling, group_leader) {
12432                         perf_remove_from_context(sibling, 0);
12433                         put_ctx(gctx);
12434                 }
12435
12436                 /*
12437                  * Wait for everybody to stop referencing the events through
12438                  * the old lists, before installing it on new lists.
12439                  */
12440                 synchronize_rcu();
12441
12442                 /*
12443                  * Install the group siblings before the group leader.
12444                  *
12445                  * Because a group leader will try and install the entire group
12446                  * (through the sibling list, which is still in-tact), we can
12447                  * end up with siblings installed in the wrong context.
12448                  *
12449                  * By installing siblings first we NO-OP because they're not
12450                  * reachable through the group lists.
12451                  */
12452                 for_each_sibling_event(sibling, group_leader) {
12453                         perf_event__state_init(sibling);
12454                         perf_install_in_context(ctx, sibling, sibling->cpu);
12455                         get_ctx(ctx);
12456                 }
12457
12458                 /*
12459                  * Removing from the context ends up with disabled
12460                  * event. What we want here is event in the initial
12461                  * startup state, ready to be add into new context.
12462                  */
12463                 perf_event__state_init(group_leader);
12464                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12465                 get_ctx(ctx);
12466         }
12467
12468         /*
12469          * Precalculate sample_data sizes; do while holding ctx::mutex such
12470          * that we're serialized against further additions and before
12471          * perf_install_in_context() which is the point the event is active and
12472          * can use these values.
12473          */
12474         perf_event__header_size(event);
12475         perf_event__id_header_size(event);
12476
12477         event->owner = current;
12478
12479         perf_install_in_context(ctx, event, event->cpu);
12480         perf_unpin_context(ctx);
12481
12482         if (move_group)
12483                 perf_event_ctx_unlock(group_leader, gctx);
12484         mutex_unlock(&ctx->mutex);
12485
12486         if (task) {
12487                 up_read(&task->signal->exec_update_lock);
12488                 put_task_struct(task);
12489         }
12490
12491         mutex_lock(&current->perf_event_mutex);
12492         list_add_tail(&event->owner_entry, &current->perf_event_list);
12493         mutex_unlock(&current->perf_event_mutex);
12494
12495         /*
12496          * Drop the reference on the group_event after placing the
12497          * new event on the sibling_list. This ensures destruction
12498          * of the group leader will find the pointer to itself in
12499          * perf_group_detach().
12500          */
12501         fdput(group);
12502         fd_install(event_fd, event_file);
12503         return event_fd;
12504
12505 err_locked:
12506         if (move_group)
12507                 perf_event_ctx_unlock(group_leader, gctx);
12508         mutex_unlock(&ctx->mutex);
12509 err_cred:
12510         if (task)
12511                 up_read(&task->signal->exec_update_lock);
12512 err_file:
12513         fput(event_file);
12514 err_context:
12515         perf_unpin_context(ctx);
12516         put_ctx(ctx);
12517 err_alloc:
12518         /*
12519          * If event_file is set, the fput() above will have called ->release()
12520          * and that will take care of freeing the event.
12521          */
12522         if (!event_file)
12523                 free_event(event);
12524 err_task:
12525         if (task)
12526                 put_task_struct(task);
12527 err_group_fd:
12528         fdput(group);
12529 err_fd:
12530         put_unused_fd(event_fd);
12531         return err;
12532 }
12533
12534 /**
12535  * perf_event_create_kernel_counter
12536  *
12537  * @attr: attributes of the counter to create
12538  * @cpu: cpu in which the counter is bound
12539  * @task: task to profile (NULL for percpu)
12540  * @overflow_handler: callback to trigger when we hit the event
12541  * @context: context data could be used in overflow_handler callback
12542  */
12543 struct perf_event *
12544 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12545                                  struct task_struct *task,
12546                                  perf_overflow_handler_t overflow_handler,
12547                                  void *context)
12548 {
12549         struct perf_event_context *ctx;
12550         struct perf_event *event;
12551         int err;
12552
12553         /*
12554          * Grouping is not supported for kernel events, neither is 'AUX',
12555          * make sure the caller's intentions are adjusted.
12556          */
12557         if (attr->aux_output)
12558                 return ERR_PTR(-EINVAL);
12559
12560         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12561                                  overflow_handler, context, -1);
12562         if (IS_ERR(event)) {
12563                 err = PTR_ERR(event);
12564                 goto err;
12565         }
12566
12567         /* Mark owner so we could distinguish it from user events. */
12568         event->owner = TASK_TOMBSTONE;
12569
12570         /*
12571          * Get the target context (task or percpu):
12572          */
12573         ctx = find_get_context(event->pmu, task, event);
12574         if (IS_ERR(ctx)) {
12575                 err = PTR_ERR(ctx);
12576                 goto err_free;
12577         }
12578
12579         WARN_ON_ONCE(ctx->parent_ctx);
12580         mutex_lock(&ctx->mutex);
12581         if (ctx->task == TASK_TOMBSTONE) {
12582                 err = -ESRCH;
12583                 goto err_unlock;
12584         }
12585
12586         if (!task) {
12587                 /*
12588                  * Check if the @cpu we're creating an event for is online.
12589                  *
12590                  * We use the perf_cpu_context::ctx::mutex to serialize against
12591                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12592                  */
12593                 struct perf_cpu_context *cpuctx =
12594                         container_of(ctx, struct perf_cpu_context, ctx);
12595                 if (!cpuctx->online) {
12596                         err = -ENODEV;
12597                         goto err_unlock;
12598                 }
12599         }
12600
12601         if (!exclusive_event_installable(event, ctx)) {
12602                 err = -EBUSY;
12603                 goto err_unlock;
12604         }
12605
12606         perf_install_in_context(ctx, event, event->cpu);
12607         perf_unpin_context(ctx);
12608         mutex_unlock(&ctx->mutex);
12609
12610         return event;
12611
12612 err_unlock:
12613         mutex_unlock(&ctx->mutex);
12614         perf_unpin_context(ctx);
12615         put_ctx(ctx);
12616 err_free:
12617         free_event(event);
12618 err:
12619         return ERR_PTR(err);
12620 }
12621 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12622
12623 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12624 {
12625         struct perf_event_context *src_ctx;
12626         struct perf_event_context *dst_ctx;
12627         struct perf_event *event, *tmp;
12628         LIST_HEAD(events);
12629
12630         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12631         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12632
12633         /*
12634          * See perf_event_ctx_lock() for comments on the details
12635          * of swizzling perf_event::ctx.
12636          */
12637         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12638         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12639                                  event_entry) {
12640                 perf_remove_from_context(event, 0);
12641                 unaccount_event_cpu(event, src_cpu);
12642                 put_ctx(src_ctx);
12643                 list_add(&event->migrate_entry, &events);
12644         }
12645
12646         /*
12647          * Wait for the events to quiesce before re-instating them.
12648          */
12649         synchronize_rcu();
12650
12651         /*
12652          * Re-instate events in 2 passes.
12653          *
12654          * Skip over group leaders and only install siblings on this first
12655          * pass, siblings will not get enabled without a leader, however a
12656          * leader will enable its siblings, even if those are still on the old
12657          * context.
12658          */
12659         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12660                 if (event->group_leader == event)
12661                         continue;
12662
12663                 list_del(&event->migrate_entry);
12664                 if (event->state >= PERF_EVENT_STATE_OFF)
12665                         event->state = PERF_EVENT_STATE_INACTIVE;
12666                 account_event_cpu(event, dst_cpu);
12667                 perf_install_in_context(dst_ctx, event, dst_cpu);
12668                 get_ctx(dst_ctx);
12669         }
12670
12671         /*
12672          * Once all the siblings are setup properly, install the group leaders
12673          * to make it go.
12674          */
12675         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12676                 list_del(&event->migrate_entry);
12677                 if (event->state >= PERF_EVENT_STATE_OFF)
12678                         event->state = PERF_EVENT_STATE_INACTIVE;
12679                 account_event_cpu(event, dst_cpu);
12680                 perf_install_in_context(dst_ctx, event, dst_cpu);
12681                 get_ctx(dst_ctx);
12682         }
12683         mutex_unlock(&dst_ctx->mutex);
12684         mutex_unlock(&src_ctx->mutex);
12685 }
12686 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12687
12688 static void sync_child_event(struct perf_event *child_event)
12689 {
12690         struct perf_event *parent_event = child_event->parent;
12691         u64 child_val;
12692
12693         if (child_event->attr.inherit_stat) {
12694                 struct task_struct *task = child_event->ctx->task;
12695
12696                 if (task && task != TASK_TOMBSTONE)
12697                         perf_event_read_event(child_event, task);
12698         }
12699
12700         child_val = perf_event_count(child_event);
12701
12702         /*
12703          * Add back the child's count to the parent's count:
12704          */
12705         atomic64_add(child_val, &parent_event->child_count);
12706         atomic64_add(child_event->total_time_enabled,
12707                      &parent_event->child_total_time_enabled);
12708         atomic64_add(child_event->total_time_running,
12709                      &parent_event->child_total_time_running);
12710 }
12711
12712 static void
12713 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12714 {
12715         struct perf_event *parent_event = event->parent;
12716         unsigned long detach_flags = 0;
12717
12718         if (parent_event) {
12719                 /*
12720                  * Do not destroy the 'original' grouping; because of the
12721                  * context switch optimization the original events could've
12722                  * ended up in a random child task.
12723                  *
12724                  * If we were to destroy the original group, all group related
12725                  * operations would cease to function properly after this
12726                  * random child dies.
12727                  *
12728                  * Do destroy all inherited groups, we don't care about those
12729                  * and being thorough is better.
12730                  */
12731                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12732                 mutex_lock(&parent_event->child_mutex);
12733         }
12734
12735         perf_remove_from_context(event, detach_flags);
12736
12737         raw_spin_lock_irq(&ctx->lock);
12738         if (event->state > PERF_EVENT_STATE_EXIT)
12739                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12740         raw_spin_unlock_irq(&ctx->lock);
12741
12742         /*
12743          * Child events can be freed.
12744          */
12745         if (parent_event) {
12746                 mutex_unlock(&parent_event->child_mutex);
12747                 /*
12748                  * Kick perf_poll() for is_event_hup();
12749                  */
12750                 perf_event_wakeup(parent_event);
12751                 free_event(event);
12752                 put_event(parent_event);
12753                 return;
12754         }
12755
12756         /*
12757          * Parent events are governed by their filedesc, retain them.
12758          */
12759         perf_event_wakeup(event);
12760 }
12761
12762 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12763 {
12764         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12765         struct perf_event *child_event, *next;
12766
12767         WARN_ON_ONCE(child != current);
12768
12769         child_ctx = perf_pin_task_context(child, ctxn);
12770         if (!child_ctx)
12771                 return;
12772
12773         /*
12774          * In order to reduce the amount of tricky in ctx tear-down, we hold
12775          * ctx::mutex over the entire thing. This serializes against almost
12776          * everything that wants to access the ctx.
12777          *
12778          * The exception is sys_perf_event_open() /
12779          * perf_event_create_kernel_count() which does find_get_context()
12780          * without ctx::mutex (it cannot because of the move_group double mutex
12781          * lock thing). See the comments in perf_install_in_context().
12782          */
12783         mutex_lock(&child_ctx->mutex);
12784
12785         /*
12786          * In a single ctx::lock section, de-schedule the events and detach the
12787          * context from the task such that we cannot ever get it scheduled back
12788          * in.
12789          */
12790         raw_spin_lock_irq(&child_ctx->lock);
12791         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12792
12793         /*
12794          * Now that the context is inactive, destroy the task <-> ctx relation
12795          * and mark the context dead.
12796          */
12797         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12798         put_ctx(child_ctx); /* cannot be last */
12799         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12800         put_task_struct(current); /* cannot be last */
12801
12802         clone_ctx = unclone_ctx(child_ctx);
12803         raw_spin_unlock_irq(&child_ctx->lock);
12804
12805         if (clone_ctx)
12806                 put_ctx(clone_ctx);
12807
12808         /*
12809          * Report the task dead after unscheduling the events so that we
12810          * won't get any samples after PERF_RECORD_EXIT. We can however still
12811          * get a few PERF_RECORD_READ events.
12812          */
12813         perf_event_task(child, child_ctx, 0);
12814
12815         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12816                 perf_event_exit_event(child_event, child_ctx);
12817
12818         mutex_unlock(&child_ctx->mutex);
12819
12820         put_ctx(child_ctx);
12821 }
12822
12823 /*
12824  * When a child task exits, feed back event values to parent events.
12825  *
12826  * Can be called with exec_update_lock held when called from
12827  * setup_new_exec().
12828  */
12829 void perf_event_exit_task(struct task_struct *child)
12830 {
12831         struct perf_event *event, *tmp;
12832         int ctxn;
12833
12834         mutex_lock(&child->perf_event_mutex);
12835         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12836                                  owner_entry) {
12837                 list_del_init(&event->owner_entry);
12838
12839                 /*
12840                  * Ensure the list deletion is visible before we clear
12841                  * the owner, closes a race against perf_release() where
12842                  * we need to serialize on the owner->perf_event_mutex.
12843                  */
12844                 smp_store_release(&event->owner, NULL);
12845         }
12846         mutex_unlock(&child->perf_event_mutex);
12847
12848         for_each_task_context_nr(ctxn)
12849                 perf_event_exit_task_context(child, ctxn);
12850
12851         /*
12852          * The perf_event_exit_task_context calls perf_event_task
12853          * with child's task_ctx, which generates EXIT events for
12854          * child contexts and sets child->perf_event_ctxp[] to NULL.
12855          * At this point we need to send EXIT events to cpu contexts.
12856          */
12857         perf_event_task(child, NULL, 0);
12858 }
12859
12860 static void perf_free_event(struct perf_event *event,
12861                             struct perf_event_context *ctx)
12862 {
12863         struct perf_event *parent = event->parent;
12864
12865         if (WARN_ON_ONCE(!parent))
12866                 return;
12867
12868         mutex_lock(&parent->child_mutex);
12869         list_del_init(&event->child_list);
12870         mutex_unlock(&parent->child_mutex);
12871
12872         put_event(parent);
12873
12874         raw_spin_lock_irq(&ctx->lock);
12875         perf_group_detach(event);
12876         list_del_event(event, ctx);
12877         raw_spin_unlock_irq(&ctx->lock);
12878         free_event(event);
12879 }
12880
12881 /*
12882  * Free a context as created by inheritance by perf_event_init_task() below,
12883  * used by fork() in case of fail.
12884  *
12885  * Even though the task has never lived, the context and events have been
12886  * exposed through the child_list, so we must take care tearing it all down.
12887  */
12888 void perf_event_free_task(struct task_struct *task)
12889 {
12890         struct perf_event_context *ctx;
12891         struct perf_event *event, *tmp;
12892         int ctxn;
12893
12894         for_each_task_context_nr(ctxn) {
12895                 ctx = task->perf_event_ctxp[ctxn];
12896                 if (!ctx)
12897                         continue;
12898
12899                 mutex_lock(&ctx->mutex);
12900                 raw_spin_lock_irq(&ctx->lock);
12901                 /*
12902                  * Destroy the task <-> ctx relation and mark the context dead.
12903                  *
12904                  * This is important because even though the task hasn't been
12905                  * exposed yet the context has been (through child_list).
12906                  */
12907                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12908                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12909                 put_task_struct(task); /* cannot be last */
12910                 raw_spin_unlock_irq(&ctx->lock);
12911
12912                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12913                         perf_free_event(event, ctx);
12914
12915                 mutex_unlock(&ctx->mutex);
12916
12917                 /*
12918                  * perf_event_release_kernel() could've stolen some of our
12919                  * child events and still have them on its free_list. In that
12920                  * case we must wait for these events to have been freed (in
12921                  * particular all their references to this task must've been
12922                  * dropped).
12923                  *
12924                  * Without this copy_process() will unconditionally free this
12925                  * task (irrespective of its reference count) and
12926                  * _free_event()'s put_task_struct(event->hw.target) will be a
12927                  * use-after-free.
12928                  *
12929                  * Wait for all events to drop their context reference.
12930                  */
12931                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12932                 put_ctx(ctx); /* must be last */
12933         }
12934 }
12935
12936 void perf_event_delayed_put(struct task_struct *task)
12937 {
12938         int ctxn;
12939
12940         for_each_task_context_nr(ctxn)
12941                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12942 }
12943
12944 struct file *perf_event_get(unsigned int fd)
12945 {
12946         struct file *file = fget(fd);
12947         if (!file)
12948                 return ERR_PTR(-EBADF);
12949
12950         if (file->f_op != &perf_fops) {
12951                 fput(file);
12952                 return ERR_PTR(-EBADF);
12953         }
12954
12955         return file;
12956 }
12957
12958 const struct perf_event *perf_get_event(struct file *file)
12959 {
12960         if (file->f_op != &perf_fops)
12961                 return ERR_PTR(-EINVAL);
12962
12963         return file->private_data;
12964 }
12965
12966 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12967 {
12968         if (!event)
12969                 return ERR_PTR(-EINVAL);
12970
12971         return &event->attr;
12972 }
12973
12974 /*
12975  * Inherit an event from parent task to child task.
12976  *
12977  * Returns:
12978  *  - valid pointer on success
12979  *  - NULL for orphaned events
12980  *  - IS_ERR() on error
12981  */
12982 static struct perf_event *
12983 inherit_event(struct perf_event *parent_event,
12984               struct task_struct *parent,
12985               struct perf_event_context *parent_ctx,
12986               struct task_struct *child,
12987               struct perf_event *group_leader,
12988               struct perf_event_context *child_ctx)
12989 {
12990         enum perf_event_state parent_state = parent_event->state;
12991         struct perf_event *child_event;
12992         unsigned long flags;
12993
12994         /*
12995          * Instead of creating recursive hierarchies of events,
12996          * we link inherited events back to the original parent,
12997          * which has a filp for sure, which we use as the reference
12998          * count:
12999          */
13000         if (parent_event->parent)
13001                 parent_event = parent_event->parent;
13002
13003         child_event = perf_event_alloc(&parent_event->attr,
13004                                            parent_event->cpu,
13005                                            child,
13006                                            group_leader, parent_event,
13007                                            NULL, NULL, -1);
13008         if (IS_ERR(child_event))
13009                 return child_event;
13010
13011
13012         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13013             !child_ctx->task_ctx_data) {
13014                 struct pmu *pmu = child_event->pmu;
13015
13016                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13017                 if (!child_ctx->task_ctx_data) {
13018                         free_event(child_event);
13019                         return ERR_PTR(-ENOMEM);
13020                 }
13021         }
13022
13023         /*
13024          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13025          * must be under the same lock in order to serialize against
13026          * perf_event_release_kernel(), such that either we must observe
13027          * is_orphaned_event() or they will observe us on the child_list.
13028          */
13029         mutex_lock(&parent_event->child_mutex);
13030         if (is_orphaned_event(parent_event) ||
13031             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13032                 mutex_unlock(&parent_event->child_mutex);
13033                 /* task_ctx_data is freed with child_ctx */
13034                 free_event(child_event);
13035                 return NULL;
13036         }
13037
13038         get_ctx(child_ctx);
13039
13040         /*
13041          * Make the child state follow the state of the parent event,
13042          * not its attr.disabled bit.  We hold the parent's mutex,
13043          * so we won't race with perf_event_{en, dis}able_family.
13044          */
13045         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13046                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13047         else
13048                 child_event->state = PERF_EVENT_STATE_OFF;
13049
13050         if (parent_event->attr.freq) {
13051                 u64 sample_period = parent_event->hw.sample_period;
13052                 struct hw_perf_event *hwc = &child_event->hw;
13053
13054                 hwc->sample_period = sample_period;
13055                 hwc->last_period   = sample_period;
13056
13057                 local64_set(&hwc->period_left, sample_period);
13058         }
13059
13060         child_event->ctx = child_ctx;
13061         child_event->overflow_handler = parent_event->overflow_handler;
13062         child_event->overflow_handler_context
13063                 = parent_event->overflow_handler_context;
13064
13065         /*
13066          * Precalculate sample_data sizes
13067          */
13068         perf_event__header_size(child_event);
13069         perf_event__id_header_size(child_event);
13070
13071         /*
13072          * Link it up in the child's context:
13073          */
13074         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13075         add_event_to_ctx(child_event, child_ctx);
13076         child_event->attach_state |= PERF_ATTACH_CHILD;
13077         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13078
13079         /*
13080          * Link this into the parent event's child list
13081          */
13082         list_add_tail(&child_event->child_list, &parent_event->child_list);
13083         mutex_unlock(&parent_event->child_mutex);
13084
13085         return child_event;
13086 }
13087
13088 /*
13089  * Inherits an event group.
13090  *
13091  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13092  * This matches with perf_event_release_kernel() removing all child events.
13093  *
13094  * Returns:
13095  *  - 0 on success
13096  *  - <0 on error
13097  */
13098 static int inherit_group(struct perf_event *parent_event,
13099               struct task_struct *parent,
13100               struct perf_event_context *parent_ctx,
13101               struct task_struct *child,
13102               struct perf_event_context *child_ctx)
13103 {
13104         struct perf_event *leader;
13105         struct perf_event *sub;
13106         struct perf_event *child_ctr;
13107
13108         leader = inherit_event(parent_event, parent, parent_ctx,
13109                                  child, NULL, child_ctx);
13110         if (IS_ERR(leader))
13111                 return PTR_ERR(leader);
13112         /*
13113          * @leader can be NULL here because of is_orphaned_event(). In this
13114          * case inherit_event() will create individual events, similar to what
13115          * perf_group_detach() would do anyway.
13116          */
13117         for_each_sibling_event(sub, parent_event) {
13118                 child_ctr = inherit_event(sub, parent, parent_ctx,
13119                                             child, leader, child_ctx);
13120                 if (IS_ERR(child_ctr))
13121                         return PTR_ERR(child_ctr);
13122
13123                 if (sub->aux_event == parent_event && child_ctr &&
13124                     !perf_get_aux_event(child_ctr, leader))
13125                         return -EINVAL;
13126         }
13127         return 0;
13128 }
13129
13130 /*
13131  * Creates the child task context and tries to inherit the event-group.
13132  *
13133  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13134  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13135  * consistent with perf_event_release_kernel() removing all child events.
13136  *
13137  * Returns:
13138  *  - 0 on success
13139  *  - <0 on error
13140  */
13141 static int
13142 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13143                    struct perf_event_context *parent_ctx,
13144                    struct task_struct *child, int ctxn,
13145                    u64 clone_flags, int *inherited_all)
13146 {
13147         int ret;
13148         struct perf_event_context *child_ctx;
13149
13150         if (!event->attr.inherit ||
13151             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13152             /* Do not inherit if sigtrap and signal handlers were cleared. */
13153             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13154                 *inherited_all = 0;
13155                 return 0;
13156         }
13157
13158         child_ctx = child->perf_event_ctxp[ctxn];
13159         if (!child_ctx) {
13160                 /*
13161                  * This is executed from the parent task context, so
13162                  * inherit events that have been marked for cloning.
13163                  * First allocate and initialize a context for the
13164                  * child.
13165                  */
13166                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13167                 if (!child_ctx)
13168                         return -ENOMEM;
13169
13170                 child->perf_event_ctxp[ctxn] = child_ctx;
13171         }
13172
13173         ret = inherit_group(event, parent, parent_ctx,
13174                             child, child_ctx);
13175
13176         if (ret)
13177                 *inherited_all = 0;
13178
13179         return ret;
13180 }
13181
13182 /*
13183  * Initialize the perf_event context in task_struct
13184  */
13185 static int perf_event_init_context(struct task_struct *child, int ctxn,
13186                                    u64 clone_flags)
13187 {
13188         struct perf_event_context *child_ctx, *parent_ctx;
13189         struct perf_event_context *cloned_ctx;
13190         struct perf_event *event;
13191         struct task_struct *parent = current;
13192         int inherited_all = 1;
13193         unsigned long flags;
13194         int ret = 0;
13195
13196         if (likely(!parent->perf_event_ctxp[ctxn]))
13197                 return 0;
13198
13199         /*
13200          * If the parent's context is a clone, pin it so it won't get
13201          * swapped under us.
13202          */
13203         parent_ctx = perf_pin_task_context(parent, ctxn);
13204         if (!parent_ctx)
13205                 return 0;
13206
13207         /*
13208          * No need to check if parent_ctx != NULL here; since we saw
13209          * it non-NULL earlier, the only reason for it to become NULL
13210          * is if we exit, and since we're currently in the middle of
13211          * a fork we can't be exiting at the same time.
13212          */
13213
13214         /*
13215          * Lock the parent list. No need to lock the child - not PID
13216          * hashed yet and not running, so nobody can access it.
13217          */
13218         mutex_lock(&parent_ctx->mutex);
13219
13220         /*
13221          * We dont have to disable NMIs - we are only looking at
13222          * the list, not manipulating it:
13223          */
13224         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13225                 ret = inherit_task_group(event, parent, parent_ctx,
13226                                          child, ctxn, clone_flags,
13227                                          &inherited_all);
13228                 if (ret)
13229                         goto out_unlock;
13230         }
13231
13232         /*
13233          * We can't hold ctx->lock when iterating the ->flexible_group list due
13234          * to allocations, but we need to prevent rotation because
13235          * rotate_ctx() will change the list from interrupt context.
13236          */
13237         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13238         parent_ctx->rotate_disable = 1;
13239         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13240
13241         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13242                 ret = inherit_task_group(event, parent, parent_ctx,
13243                                          child, ctxn, clone_flags,
13244                                          &inherited_all);
13245                 if (ret)
13246                         goto out_unlock;
13247         }
13248
13249         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13250         parent_ctx->rotate_disable = 0;
13251
13252         child_ctx = child->perf_event_ctxp[ctxn];
13253
13254         if (child_ctx && inherited_all) {
13255                 /*
13256                  * Mark the child context as a clone of the parent
13257                  * context, or of whatever the parent is a clone of.
13258                  *
13259                  * Note that if the parent is a clone, the holding of
13260                  * parent_ctx->lock avoids it from being uncloned.
13261                  */
13262                 cloned_ctx = parent_ctx->parent_ctx;
13263                 if (cloned_ctx) {
13264                         child_ctx->parent_ctx = cloned_ctx;
13265                         child_ctx->parent_gen = parent_ctx->parent_gen;
13266                 } else {
13267                         child_ctx->parent_ctx = parent_ctx;
13268                         child_ctx->parent_gen = parent_ctx->generation;
13269                 }
13270                 get_ctx(child_ctx->parent_ctx);
13271         }
13272
13273         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13274 out_unlock:
13275         mutex_unlock(&parent_ctx->mutex);
13276
13277         perf_unpin_context(parent_ctx);
13278         put_ctx(parent_ctx);
13279
13280         return ret;
13281 }
13282
13283 /*
13284  * Initialize the perf_event context in task_struct
13285  */
13286 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13287 {
13288         int ctxn, ret;
13289
13290         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13291         mutex_init(&child->perf_event_mutex);
13292         INIT_LIST_HEAD(&child->perf_event_list);
13293
13294         for_each_task_context_nr(ctxn) {
13295                 ret = perf_event_init_context(child, ctxn, clone_flags);
13296                 if (ret) {
13297                         perf_event_free_task(child);
13298                         return ret;
13299                 }
13300         }
13301
13302         return 0;
13303 }
13304
13305 static void __init perf_event_init_all_cpus(void)
13306 {
13307         struct swevent_htable *swhash;
13308         int cpu;
13309
13310         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13311
13312         for_each_possible_cpu(cpu) {
13313                 swhash = &per_cpu(swevent_htable, cpu);
13314                 mutex_init(&swhash->hlist_mutex);
13315                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13316
13317                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13318                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13319
13320 #ifdef CONFIG_CGROUP_PERF
13321                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13322 #endif
13323                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13324         }
13325 }
13326
13327 static void perf_swevent_init_cpu(unsigned int cpu)
13328 {
13329         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13330
13331         mutex_lock(&swhash->hlist_mutex);
13332         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13333                 struct swevent_hlist *hlist;
13334
13335                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13336                 WARN_ON(!hlist);
13337                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13338         }
13339         mutex_unlock(&swhash->hlist_mutex);
13340 }
13341
13342 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13343 static void __perf_event_exit_context(void *__info)
13344 {
13345         struct perf_event_context *ctx = __info;
13346         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13347         struct perf_event *event;
13348
13349         raw_spin_lock(&ctx->lock);
13350         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13351         list_for_each_entry(event, &ctx->event_list, event_entry)
13352                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13353         raw_spin_unlock(&ctx->lock);
13354 }
13355
13356 static void perf_event_exit_cpu_context(int cpu)
13357 {
13358         struct perf_cpu_context *cpuctx;
13359         struct perf_event_context *ctx;
13360         struct pmu *pmu;
13361
13362         mutex_lock(&pmus_lock);
13363         list_for_each_entry(pmu, &pmus, entry) {
13364                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13365                 ctx = &cpuctx->ctx;
13366
13367                 mutex_lock(&ctx->mutex);
13368                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13369                 cpuctx->online = 0;
13370                 mutex_unlock(&ctx->mutex);
13371         }
13372         cpumask_clear_cpu(cpu, perf_online_mask);
13373         mutex_unlock(&pmus_lock);
13374 }
13375 #else
13376
13377 static void perf_event_exit_cpu_context(int cpu) { }
13378
13379 #endif
13380
13381 int perf_event_init_cpu(unsigned int cpu)
13382 {
13383         struct perf_cpu_context *cpuctx;
13384         struct perf_event_context *ctx;
13385         struct pmu *pmu;
13386
13387         perf_swevent_init_cpu(cpu);
13388
13389         mutex_lock(&pmus_lock);
13390         cpumask_set_cpu(cpu, perf_online_mask);
13391         list_for_each_entry(pmu, &pmus, entry) {
13392                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13393                 ctx = &cpuctx->ctx;
13394
13395                 mutex_lock(&ctx->mutex);
13396                 cpuctx->online = 1;
13397                 mutex_unlock(&ctx->mutex);
13398         }
13399         mutex_unlock(&pmus_lock);
13400
13401         return 0;
13402 }
13403
13404 int perf_event_exit_cpu(unsigned int cpu)
13405 {
13406         perf_event_exit_cpu_context(cpu);
13407         return 0;
13408 }
13409
13410 static int
13411 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13412 {
13413         int cpu;
13414
13415         for_each_online_cpu(cpu)
13416                 perf_event_exit_cpu(cpu);
13417
13418         return NOTIFY_OK;
13419 }
13420
13421 /*
13422  * Run the perf reboot notifier at the very last possible moment so that
13423  * the generic watchdog code runs as long as possible.
13424  */
13425 static struct notifier_block perf_reboot_notifier = {
13426         .notifier_call = perf_reboot,
13427         .priority = INT_MIN,
13428 };
13429
13430 void __init perf_event_init(void)
13431 {
13432         int ret;
13433
13434         idr_init(&pmu_idr);
13435
13436         perf_event_init_all_cpus();
13437         init_srcu_struct(&pmus_srcu);
13438         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13439         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13440         perf_pmu_register(&perf_task_clock, NULL, -1);
13441         perf_tp_register();
13442         perf_event_init_cpu(smp_processor_id());
13443         register_reboot_notifier(&perf_reboot_notifier);
13444
13445         ret = init_hw_breakpoint();
13446         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13447
13448         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13449
13450         /*
13451          * Build time assertion that we keep the data_head at the intended
13452          * location.  IOW, validation we got the __reserved[] size right.
13453          */
13454         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13455                      != 1024);
13456 }
13457
13458 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13459                               char *page)
13460 {
13461         struct perf_pmu_events_attr *pmu_attr =
13462                 container_of(attr, struct perf_pmu_events_attr, attr);
13463
13464         if (pmu_attr->event_str)
13465                 return sprintf(page, "%s\n", pmu_attr->event_str);
13466
13467         return 0;
13468 }
13469 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13470
13471 static int __init perf_event_sysfs_init(void)
13472 {
13473         struct pmu *pmu;
13474         int ret;
13475
13476         mutex_lock(&pmus_lock);
13477
13478         ret = bus_register(&pmu_bus);
13479         if (ret)
13480                 goto unlock;
13481
13482         list_for_each_entry(pmu, &pmus, entry) {
13483                 if (!pmu->name || pmu->type < 0)
13484                         continue;
13485
13486                 ret = pmu_dev_alloc(pmu);
13487                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13488         }
13489         pmu_bus_running = 1;
13490         ret = 0;
13491
13492 unlock:
13493         mutex_unlock(&pmus_lock);
13494
13495         return ret;
13496 }
13497 device_initcall(perf_event_sysfs_init);
13498
13499 #ifdef CONFIG_CGROUP_PERF
13500 static struct cgroup_subsys_state *
13501 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13502 {
13503         struct perf_cgroup *jc;
13504
13505         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13506         if (!jc)
13507                 return ERR_PTR(-ENOMEM);
13508
13509         jc->info = alloc_percpu(struct perf_cgroup_info);
13510         if (!jc->info) {
13511                 kfree(jc);
13512                 return ERR_PTR(-ENOMEM);
13513         }
13514
13515         return &jc->css;
13516 }
13517
13518 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13519 {
13520         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13521
13522         free_percpu(jc->info);
13523         kfree(jc);
13524 }
13525
13526 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13527 {
13528         perf_event_cgroup(css->cgroup);
13529         return 0;
13530 }
13531
13532 static int __perf_cgroup_move(void *info)
13533 {
13534         struct task_struct *task = info;
13535         rcu_read_lock();
13536         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13537         rcu_read_unlock();
13538         return 0;
13539 }
13540
13541 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13542 {
13543         struct task_struct *task;
13544         struct cgroup_subsys_state *css;
13545
13546         cgroup_taskset_for_each(task, css, tset)
13547                 task_function_call(task, __perf_cgroup_move, task);
13548 }
13549
13550 struct cgroup_subsys perf_event_cgrp_subsys = {
13551         .css_alloc      = perf_cgroup_css_alloc,
13552         .css_free       = perf_cgroup_css_free,
13553         .css_online     = perf_cgroup_css_online,
13554         .attach         = perf_cgroup_attach,
13555         /*
13556          * Implicitly enable on dfl hierarchy so that perf events can
13557          * always be filtered by cgroup2 path as long as perf_event
13558          * controller is not mounted on a legacy hierarchy.
13559          */
13560         .implicit_on_dfl = true,
13561         .threaded       = true,
13562 };
13563 #endif /* CONFIG_CGROUP_PERF */
13564
13565 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);