Merge tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @func:       the function to be called
136  * @info:       the function call argument
137  *
138  * Calls the function @func on the remote cpu.
139  *
140  * returns: @func return value or -ENXIO when the cpu is offline
141  */
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
143 {
144         struct remote_function_call data = {
145                 .p      = NULL,
146                 .func   = func,
147                 .info   = info,
148                 .ret    = -ENXIO, /* No such CPU */
149         };
150
151         smp_call_function_single(cpu, remote_function, &data, 1);
152
153         return data.ret;
154 }
155
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
158 {
159         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160 }
161
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163                           struct perf_event_context *ctx)
164 {
165         raw_spin_lock(&cpuctx->ctx.lock);
166         if (ctx)
167                 raw_spin_lock(&ctx->lock);
168 }
169
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171                             struct perf_event_context *ctx)
172 {
173         if (ctx)
174                 raw_spin_unlock(&ctx->lock);
175         raw_spin_unlock(&cpuctx->ctx.lock);
176 }
177
178 #define TASK_TOMBSTONE ((void *)-1L)
179
180 static bool is_kernel_event(struct perf_event *event)
181 {
182         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
183 }
184
185 /*
186  * On task ctx scheduling...
187  *
188  * When !ctx->nr_events a task context will not be scheduled. This means
189  * we can disable the scheduler hooks (for performance) without leaving
190  * pending task ctx state.
191  *
192  * This however results in two special cases:
193  *
194  *  - removing the last event from a task ctx; this is relatively straight
195  *    forward and is done in __perf_remove_from_context.
196  *
197  *  - adding the first event to a task ctx; this is tricky because we cannot
198  *    rely on ctx->is_active and therefore cannot use event_function_call().
199  *    See perf_install_in_context().
200  *
201  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202  */
203
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205                         struct perf_event_context *, void *);
206
207 struct event_function_struct {
208         struct perf_event *event;
209         event_f func;
210         void *data;
211 };
212
213 static int event_function(void *info)
214 {
215         struct event_function_struct *efs = info;
216         struct perf_event *event = efs->event;
217         struct perf_event_context *ctx = event->ctx;
218         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219         struct perf_event_context *task_ctx = cpuctx->task_ctx;
220         int ret = 0;
221
222         lockdep_assert_irqs_disabled();
223
224         perf_ctx_lock(cpuctx, task_ctx);
225         /*
226          * Since we do the IPI call without holding ctx->lock things can have
227          * changed, double check we hit the task we set out to hit.
228          */
229         if (ctx->task) {
230                 if (ctx->task != current) {
231                         ret = -ESRCH;
232                         goto unlock;
233                 }
234
235                 /*
236                  * We only use event_function_call() on established contexts,
237                  * and event_function() is only ever called when active (or
238                  * rather, we'll have bailed in task_function_call() or the
239                  * above ctx->task != current test), therefore we must have
240                  * ctx->is_active here.
241                  */
242                 WARN_ON_ONCE(!ctx->is_active);
243                 /*
244                  * And since we have ctx->is_active, cpuctx->task_ctx must
245                  * match.
246                  */
247                 WARN_ON_ONCE(task_ctx != ctx);
248         } else {
249                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
250         }
251
252         efs->func(event, cpuctx, ctx, efs->data);
253 unlock:
254         perf_ctx_unlock(cpuctx, task_ctx);
255
256         return ret;
257 }
258
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
260 {
261         struct perf_event_context *ctx = event->ctx;
262         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263         struct event_function_struct efs = {
264                 .event = event,
265                 .func = func,
266                 .data = data,
267         };
268
269         if (!event->parent) {
270                 /*
271                  * If this is a !child event, we must hold ctx::mutex to
272                  * stabilize the event->ctx relation. See
273                  * perf_event_ctx_lock().
274                  */
275                 lockdep_assert_held(&ctx->mutex);
276         }
277
278         if (!task) {
279                 cpu_function_call(event->cpu, event_function, &efs);
280                 return;
281         }
282
283         if (task == TASK_TOMBSTONE)
284                 return;
285
286 again:
287         if (!task_function_call(task, event_function, &efs))
288                 return;
289
290         raw_spin_lock_irq(&ctx->lock);
291         /*
292          * Reload the task pointer, it might have been changed by
293          * a concurrent perf_event_context_sched_out().
294          */
295         task = ctx->task;
296         if (task == TASK_TOMBSTONE) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 return;
299         }
300         if (ctx->is_active) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 goto again;
303         }
304         func(event, NULL, ctx, data);
305         raw_spin_unlock_irq(&ctx->lock);
306 }
307
308 /*
309  * Similar to event_function_call() + event_function(), but hard assumes IRQs
310  * are already disabled and we're on the right CPU.
311  */
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
313 {
314         struct perf_event_context *ctx = event->ctx;
315         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316         struct task_struct *task = READ_ONCE(ctx->task);
317         struct perf_event_context *task_ctx = NULL;
318
319         lockdep_assert_irqs_disabled();
320
321         if (task) {
322                 if (task == TASK_TOMBSTONE)
323                         return;
324
325                 task_ctx = ctx;
326         }
327
328         perf_ctx_lock(cpuctx, task_ctx);
329
330         task = ctx->task;
331         if (task == TASK_TOMBSTONE)
332                 goto unlock;
333
334         if (task) {
335                 /*
336                  * We must be either inactive or active and the right task,
337                  * otherwise we're screwed, since we cannot IPI to somewhere
338                  * else.
339                  */
340                 if (ctx->is_active) {
341                         if (WARN_ON_ONCE(task != current))
342                                 goto unlock;
343
344                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345                                 goto unlock;
346                 }
347         } else {
348                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
349         }
350
351         func(event, cpuctx, ctx, data);
352 unlock:
353         perf_ctx_unlock(cpuctx, task_ctx);
354 }
355
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357                        PERF_FLAG_FD_OUTPUT  |\
358                        PERF_FLAG_PID_CGROUP |\
359                        PERF_FLAG_FD_CLOEXEC)
360
361 /*
362  * branch priv levels that need permission checks
363  */
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365         (PERF_SAMPLE_BRANCH_KERNEL |\
366          PERF_SAMPLE_BRANCH_HV)
367
368 enum event_type_t {
369         EVENT_FLEXIBLE = 0x1,
370         EVENT_PINNED = 0x2,
371         EVENT_TIME = 0x4,
372         /* see ctx_resched() for details */
373         EVENT_CPU = 0x8,
374         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375 };
376
377 /*
378  * perf_sched_events : >0 events exist
379  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380  */
381
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
387
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
391
392 static atomic_t nr_mmap_events __read_mostly;
393 static atomic_t nr_comm_events __read_mostly;
394 static atomic_t nr_namespaces_events __read_mostly;
395 static atomic_t nr_task_events __read_mostly;
396 static atomic_t nr_freq_events __read_mostly;
397 static atomic_t nr_switch_events __read_mostly;
398 static atomic_t nr_ksymbol_events __read_mostly;
399 static atomic_t nr_bpf_events __read_mostly;
400 static atomic_t nr_cgroup_events __read_mostly;
401 static atomic_t nr_text_poke_events __read_mostly;
402 static atomic_t nr_build_id_events __read_mostly;
403
404 static LIST_HEAD(pmus);
405 static DEFINE_MUTEX(pmus_lock);
406 static struct srcu_struct pmus_srcu;
407 static cpumask_var_t perf_online_mask;
408
409 /*
410  * perf event paranoia level:
411  *  -1 - not paranoid at all
412  *   0 - disallow raw tracepoint access for unpriv
413  *   1 - disallow cpu events for unpriv
414  *   2 - disallow kernel profiling for unpriv
415  */
416 int sysctl_perf_event_paranoid __read_mostly = 2;
417
418 /* Minimum for 512 kiB + 1 user control page */
419 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
420
421 /*
422  * max perf event sample rate
423  */
424 #define DEFAULT_MAX_SAMPLE_RATE         100000
425 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
426 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
427
428 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
429
430 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
431 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
432
433 static int perf_sample_allowed_ns __read_mostly =
434         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
435
436 static void update_perf_cpu_limits(void)
437 {
438         u64 tmp = perf_sample_period_ns;
439
440         tmp *= sysctl_perf_cpu_time_max_percent;
441         tmp = div_u64(tmp, 100);
442         if (!tmp)
443                 tmp = 1;
444
445         WRITE_ONCE(perf_sample_allowed_ns, tmp);
446 }
447
448 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
449
450 int perf_proc_update_handler(struct ctl_table *table, int write,
451                 void *buffer, size_t *lenp, loff_t *ppos)
452 {
453         int ret;
454         int perf_cpu = sysctl_perf_cpu_time_max_percent;
455         /*
456          * If throttling is disabled don't allow the write:
457          */
458         if (write && (perf_cpu == 100 || perf_cpu == 0))
459                 return -EINVAL;
460
461         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
462         if (ret || !write)
463                 return ret;
464
465         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
466         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
467         update_perf_cpu_limits();
468
469         return 0;
470 }
471
472 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
473
474 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
475                 void *buffer, size_t *lenp, loff_t *ppos)
476 {
477         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
478
479         if (ret || !write)
480                 return ret;
481
482         if (sysctl_perf_cpu_time_max_percent == 100 ||
483             sysctl_perf_cpu_time_max_percent == 0) {
484                 printk(KERN_WARNING
485                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
486                 WRITE_ONCE(perf_sample_allowed_ns, 0);
487         } else {
488                 update_perf_cpu_limits();
489         }
490
491         return 0;
492 }
493
494 /*
495  * perf samples are done in some very critical code paths (NMIs).
496  * If they take too much CPU time, the system can lock up and not
497  * get any real work done.  This will drop the sample rate when
498  * we detect that events are taking too long.
499  */
500 #define NR_ACCUMULATED_SAMPLES 128
501 static DEFINE_PER_CPU(u64, running_sample_length);
502
503 static u64 __report_avg;
504 static u64 __report_allowed;
505
506 static void perf_duration_warn(struct irq_work *w)
507 {
508         printk_ratelimited(KERN_INFO
509                 "perf: interrupt took too long (%lld > %lld), lowering "
510                 "kernel.perf_event_max_sample_rate to %d\n",
511                 __report_avg, __report_allowed,
512                 sysctl_perf_event_sample_rate);
513 }
514
515 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
516
517 void perf_sample_event_took(u64 sample_len_ns)
518 {
519         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
520         u64 running_len;
521         u64 avg_len;
522         u32 max;
523
524         if (max_len == 0)
525                 return;
526
527         /* Decay the counter by 1 average sample. */
528         running_len = __this_cpu_read(running_sample_length);
529         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
530         running_len += sample_len_ns;
531         __this_cpu_write(running_sample_length, running_len);
532
533         /*
534          * Note: this will be biased artifically low until we have
535          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
536          * from having to maintain a count.
537          */
538         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
539         if (avg_len <= max_len)
540                 return;
541
542         __report_avg = avg_len;
543         __report_allowed = max_len;
544
545         /*
546          * Compute a throttle threshold 25% below the current duration.
547          */
548         avg_len += avg_len / 4;
549         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
550         if (avg_len < max)
551                 max /= (u32)avg_len;
552         else
553                 max = 1;
554
555         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
556         WRITE_ONCE(max_samples_per_tick, max);
557
558         sysctl_perf_event_sample_rate = max * HZ;
559         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
560
561         if (!irq_work_queue(&perf_duration_work)) {
562                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
563                              "kernel.perf_event_max_sample_rate to %d\n",
564                              __report_avg, __report_allowed,
565                              sysctl_perf_event_sample_rate);
566         }
567 }
568
569 static atomic64_t perf_event_id;
570
571 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
572                               enum event_type_t event_type);
573
574 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
575                              enum event_type_t event_type,
576                              struct task_struct *task);
577
578 static void update_context_time(struct perf_event_context *ctx);
579 static u64 perf_event_time(struct perf_event *event);
580
581 void __weak perf_event_print_debug(void)        { }
582
583 extern __weak const char *perf_pmu_name(void)
584 {
585         return "pmu";
586 }
587
588 static inline u64 perf_clock(void)
589 {
590         return local_clock();
591 }
592
593 static inline u64 perf_event_clock(struct perf_event *event)
594 {
595         return event->clock();
596 }
597
598 /*
599  * State based event timekeeping...
600  *
601  * The basic idea is to use event->state to determine which (if any) time
602  * fields to increment with the current delta. This means we only need to
603  * update timestamps when we change state or when they are explicitly requested
604  * (read).
605  *
606  * Event groups make things a little more complicated, but not terribly so. The
607  * rules for a group are that if the group leader is OFF the entire group is
608  * OFF, irrespecive of what the group member states are. This results in
609  * __perf_effective_state().
610  *
611  * A futher ramification is that when a group leader flips between OFF and
612  * !OFF, we need to update all group member times.
613  *
614  *
615  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
616  * need to make sure the relevant context time is updated before we try and
617  * update our timestamps.
618  */
619
620 static __always_inline enum perf_event_state
621 __perf_effective_state(struct perf_event *event)
622 {
623         struct perf_event *leader = event->group_leader;
624
625         if (leader->state <= PERF_EVENT_STATE_OFF)
626                 return leader->state;
627
628         return event->state;
629 }
630
631 static __always_inline void
632 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
633 {
634         enum perf_event_state state = __perf_effective_state(event);
635         u64 delta = now - event->tstamp;
636
637         *enabled = event->total_time_enabled;
638         if (state >= PERF_EVENT_STATE_INACTIVE)
639                 *enabled += delta;
640
641         *running = event->total_time_running;
642         if (state >= PERF_EVENT_STATE_ACTIVE)
643                 *running += delta;
644 }
645
646 static void perf_event_update_time(struct perf_event *event)
647 {
648         u64 now = perf_event_time(event);
649
650         __perf_update_times(event, now, &event->total_time_enabled,
651                                         &event->total_time_running);
652         event->tstamp = now;
653 }
654
655 static void perf_event_update_sibling_time(struct perf_event *leader)
656 {
657         struct perf_event *sibling;
658
659         for_each_sibling_event(sibling, leader)
660                 perf_event_update_time(sibling);
661 }
662
663 static void
664 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
665 {
666         if (event->state == state)
667                 return;
668
669         perf_event_update_time(event);
670         /*
671          * If a group leader gets enabled/disabled all its siblings
672          * are affected too.
673          */
674         if ((event->state < 0) ^ (state < 0))
675                 perf_event_update_sibling_time(event);
676
677         WRITE_ONCE(event->state, state);
678 }
679
680 #ifdef CONFIG_CGROUP_PERF
681
682 static inline bool
683 perf_cgroup_match(struct perf_event *event)
684 {
685         struct perf_event_context *ctx = event->ctx;
686         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
687
688         /* @event doesn't care about cgroup */
689         if (!event->cgrp)
690                 return true;
691
692         /* wants specific cgroup scope but @cpuctx isn't associated with any */
693         if (!cpuctx->cgrp)
694                 return false;
695
696         /*
697          * Cgroup scoping is recursive.  An event enabled for a cgroup is
698          * also enabled for all its descendant cgroups.  If @cpuctx's
699          * cgroup is a descendant of @event's (the test covers identity
700          * case), it's a match.
701          */
702         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
703                                     event->cgrp->css.cgroup);
704 }
705
706 static inline void perf_detach_cgroup(struct perf_event *event)
707 {
708         css_put(&event->cgrp->css);
709         event->cgrp = NULL;
710 }
711
712 static inline int is_cgroup_event(struct perf_event *event)
713 {
714         return event->cgrp != NULL;
715 }
716
717 static inline u64 perf_cgroup_event_time(struct perf_event *event)
718 {
719         struct perf_cgroup_info *t;
720
721         t = per_cpu_ptr(event->cgrp->info, event->cpu);
722         return t->time;
723 }
724
725 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
726 {
727         struct perf_cgroup_info *info;
728         u64 now;
729
730         now = perf_clock();
731
732         info = this_cpu_ptr(cgrp->info);
733
734         info->time += now - info->timestamp;
735         info->timestamp = now;
736 }
737
738 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
739 {
740         struct perf_cgroup *cgrp = cpuctx->cgrp;
741         struct cgroup_subsys_state *css;
742
743         if (cgrp) {
744                 for (css = &cgrp->css; css; css = css->parent) {
745                         cgrp = container_of(css, struct perf_cgroup, css);
746                         __update_cgrp_time(cgrp);
747                 }
748         }
749 }
750
751 static inline void update_cgrp_time_from_event(struct perf_event *event)
752 {
753         struct perf_cgroup *cgrp;
754
755         /*
756          * ensure we access cgroup data only when needed and
757          * when we know the cgroup is pinned (css_get)
758          */
759         if (!is_cgroup_event(event))
760                 return;
761
762         cgrp = perf_cgroup_from_task(current, event->ctx);
763         /*
764          * Do not update time when cgroup is not active
765          */
766         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
767                 __update_cgrp_time(event->cgrp);
768 }
769
770 static inline void
771 perf_cgroup_set_timestamp(struct task_struct *task,
772                           struct perf_event_context *ctx)
773 {
774         struct perf_cgroup *cgrp;
775         struct perf_cgroup_info *info;
776         struct cgroup_subsys_state *css;
777
778         /*
779          * ctx->lock held by caller
780          * ensure we do not access cgroup data
781          * unless we have the cgroup pinned (css_get)
782          */
783         if (!task || !ctx->nr_cgroups)
784                 return;
785
786         cgrp = perf_cgroup_from_task(task, ctx);
787
788         for (css = &cgrp->css; css; css = css->parent) {
789                 cgrp = container_of(css, struct perf_cgroup, css);
790                 info = this_cpu_ptr(cgrp->info);
791                 info->timestamp = ctx->timestamp;
792         }
793 }
794
795 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
796
797 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
798 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
799
800 /*
801  * reschedule events based on the cgroup constraint of task.
802  *
803  * mode SWOUT : schedule out everything
804  * mode SWIN : schedule in based on cgroup for next
805  */
806 static void perf_cgroup_switch(struct task_struct *task, int mode)
807 {
808         struct perf_cpu_context *cpuctx;
809         struct list_head *list;
810         unsigned long flags;
811
812         /*
813          * Disable interrupts and preemption to avoid this CPU's
814          * cgrp_cpuctx_entry to change under us.
815          */
816         local_irq_save(flags);
817
818         list = this_cpu_ptr(&cgrp_cpuctx_list);
819         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
820                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
821
822                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
823                 perf_pmu_disable(cpuctx->ctx.pmu);
824
825                 if (mode & PERF_CGROUP_SWOUT) {
826                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
827                         /*
828                          * must not be done before ctxswout due
829                          * to event_filter_match() in event_sched_out()
830                          */
831                         cpuctx->cgrp = NULL;
832                 }
833
834                 if (mode & PERF_CGROUP_SWIN) {
835                         WARN_ON_ONCE(cpuctx->cgrp);
836                         /*
837                          * set cgrp before ctxsw in to allow
838                          * event_filter_match() to not have to pass
839                          * task around
840                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
841                          * because cgorup events are only per-cpu
842                          */
843                         cpuctx->cgrp = perf_cgroup_from_task(task,
844                                                              &cpuctx->ctx);
845                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
846                 }
847                 perf_pmu_enable(cpuctx->ctx.pmu);
848                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
849         }
850
851         local_irq_restore(flags);
852 }
853
854 static inline void perf_cgroup_sched_out(struct task_struct *task,
855                                          struct task_struct *next)
856 {
857         struct perf_cgroup *cgrp1;
858         struct perf_cgroup *cgrp2 = NULL;
859
860         rcu_read_lock();
861         /*
862          * we come here when we know perf_cgroup_events > 0
863          * we do not need to pass the ctx here because we know
864          * we are holding the rcu lock
865          */
866         cgrp1 = perf_cgroup_from_task(task, NULL);
867         cgrp2 = perf_cgroup_from_task(next, NULL);
868
869         /*
870          * only schedule out current cgroup events if we know
871          * that we are switching to a different cgroup. Otherwise,
872          * do no touch the cgroup events.
873          */
874         if (cgrp1 != cgrp2)
875                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
876
877         rcu_read_unlock();
878 }
879
880 static inline void perf_cgroup_sched_in(struct task_struct *prev,
881                                         struct task_struct *task)
882 {
883         struct perf_cgroup *cgrp1;
884         struct perf_cgroup *cgrp2 = NULL;
885
886         rcu_read_lock();
887         /*
888          * we come here when we know perf_cgroup_events > 0
889          * we do not need to pass the ctx here because we know
890          * we are holding the rcu lock
891          */
892         cgrp1 = perf_cgroup_from_task(task, NULL);
893         cgrp2 = perf_cgroup_from_task(prev, NULL);
894
895         /*
896          * only need to schedule in cgroup events if we are changing
897          * cgroup during ctxsw. Cgroup events were not scheduled
898          * out of ctxsw out if that was not the case.
899          */
900         if (cgrp1 != cgrp2)
901                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
902
903         rcu_read_unlock();
904 }
905
906 static int perf_cgroup_ensure_storage(struct perf_event *event,
907                                 struct cgroup_subsys_state *css)
908 {
909         struct perf_cpu_context *cpuctx;
910         struct perf_event **storage;
911         int cpu, heap_size, ret = 0;
912
913         /*
914          * Allow storage to have sufficent space for an iterator for each
915          * possibly nested cgroup plus an iterator for events with no cgroup.
916          */
917         for (heap_size = 1; css; css = css->parent)
918                 heap_size++;
919
920         for_each_possible_cpu(cpu) {
921                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
922                 if (heap_size <= cpuctx->heap_size)
923                         continue;
924
925                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
926                                        GFP_KERNEL, cpu_to_node(cpu));
927                 if (!storage) {
928                         ret = -ENOMEM;
929                         break;
930                 }
931
932                 raw_spin_lock_irq(&cpuctx->ctx.lock);
933                 if (cpuctx->heap_size < heap_size) {
934                         swap(cpuctx->heap, storage);
935                         if (storage == cpuctx->heap_default)
936                                 storage = NULL;
937                         cpuctx->heap_size = heap_size;
938                 }
939                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
940
941                 kfree(storage);
942         }
943
944         return ret;
945 }
946
947 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
948                                       struct perf_event_attr *attr,
949                                       struct perf_event *group_leader)
950 {
951         struct perf_cgroup *cgrp;
952         struct cgroup_subsys_state *css;
953         struct fd f = fdget(fd);
954         int ret = 0;
955
956         if (!f.file)
957                 return -EBADF;
958
959         css = css_tryget_online_from_dir(f.file->f_path.dentry,
960                                          &perf_event_cgrp_subsys);
961         if (IS_ERR(css)) {
962                 ret = PTR_ERR(css);
963                 goto out;
964         }
965
966         ret = perf_cgroup_ensure_storage(event, css);
967         if (ret)
968                 goto out;
969
970         cgrp = container_of(css, struct perf_cgroup, css);
971         event->cgrp = cgrp;
972
973         /*
974          * all events in a group must monitor
975          * the same cgroup because a task belongs
976          * to only one perf cgroup at a time
977          */
978         if (group_leader && group_leader->cgrp != cgrp) {
979                 perf_detach_cgroup(event);
980                 ret = -EINVAL;
981         }
982 out:
983         fdput(f);
984         return ret;
985 }
986
987 static inline void
988 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
989 {
990         struct perf_cgroup_info *t;
991         t = per_cpu_ptr(event->cgrp->info, event->cpu);
992         event->shadow_ctx_time = now - t->timestamp;
993 }
994
995 static inline void
996 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
997 {
998         struct perf_cpu_context *cpuctx;
999
1000         if (!is_cgroup_event(event))
1001                 return;
1002
1003         /*
1004          * Because cgroup events are always per-cpu events,
1005          * @ctx == &cpuctx->ctx.
1006          */
1007         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1008
1009         /*
1010          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1011          * matching the event's cgroup, we must do this for every new event,
1012          * because if the first would mismatch, the second would not try again
1013          * and we would leave cpuctx->cgrp unset.
1014          */
1015         if (ctx->is_active && !cpuctx->cgrp) {
1016                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1017
1018                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1019                         cpuctx->cgrp = cgrp;
1020         }
1021
1022         if (ctx->nr_cgroups++)
1023                 return;
1024
1025         list_add(&cpuctx->cgrp_cpuctx_entry,
1026                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1027 }
1028
1029 static inline void
1030 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1031 {
1032         struct perf_cpu_context *cpuctx;
1033
1034         if (!is_cgroup_event(event))
1035                 return;
1036
1037         /*
1038          * Because cgroup events are always per-cpu events,
1039          * @ctx == &cpuctx->ctx.
1040          */
1041         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1042
1043         if (--ctx->nr_cgroups)
1044                 return;
1045
1046         if (ctx->is_active && cpuctx->cgrp)
1047                 cpuctx->cgrp = NULL;
1048
1049         list_del(&cpuctx->cgrp_cpuctx_entry);
1050 }
1051
1052 #else /* !CONFIG_CGROUP_PERF */
1053
1054 static inline bool
1055 perf_cgroup_match(struct perf_event *event)
1056 {
1057         return true;
1058 }
1059
1060 static inline void perf_detach_cgroup(struct perf_event *event)
1061 {}
1062
1063 static inline int is_cgroup_event(struct perf_event *event)
1064 {
1065         return 0;
1066 }
1067
1068 static inline void update_cgrp_time_from_event(struct perf_event *event)
1069 {
1070 }
1071
1072 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1073 {
1074 }
1075
1076 static inline void perf_cgroup_sched_out(struct task_struct *task,
1077                                          struct task_struct *next)
1078 {
1079 }
1080
1081 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1082                                         struct task_struct *task)
1083 {
1084 }
1085
1086 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1087                                       struct perf_event_attr *attr,
1088                                       struct perf_event *group_leader)
1089 {
1090         return -EINVAL;
1091 }
1092
1093 static inline void
1094 perf_cgroup_set_timestamp(struct task_struct *task,
1095                           struct perf_event_context *ctx)
1096 {
1097 }
1098
1099 static inline void
1100 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1101 {
1102 }
1103
1104 static inline void
1105 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1106 {
1107 }
1108
1109 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1110 {
1111         return 0;
1112 }
1113
1114 static inline void
1115 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1116 {
1117 }
1118
1119 static inline void
1120 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1121 {
1122 }
1123 #endif
1124
1125 /*
1126  * set default to be dependent on timer tick just
1127  * like original code
1128  */
1129 #define PERF_CPU_HRTIMER (1000 / HZ)
1130 /*
1131  * function must be called with interrupts disabled
1132  */
1133 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1134 {
1135         struct perf_cpu_context *cpuctx;
1136         bool rotations;
1137
1138         lockdep_assert_irqs_disabled();
1139
1140         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1141         rotations = perf_rotate_context(cpuctx);
1142
1143         raw_spin_lock(&cpuctx->hrtimer_lock);
1144         if (rotations)
1145                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1146         else
1147                 cpuctx->hrtimer_active = 0;
1148         raw_spin_unlock(&cpuctx->hrtimer_lock);
1149
1150         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1151 }
1152
1153 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1154 {
1155         struct hrtimer *timer = &cpuctx->hrtimer;
1156         struct pmu *pmu = cpuctx->ctx.pmu;
1157         u64 interval;
1158
1159         /* no multiplexing needed for SW PMU */
1160         if (pmu->task_ctx_nr == perf_sw_context)
1161                 return;
1162
1163         /*
1164          * check default is sane, if not set then force to
1165          * default interval (1/tick)
1166          */
1167         interval = pmu->hrtimer_interval_ms;
1168         if (interval < 1)
1169                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1170
1171         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1172
1173         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1174         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1175         timer->function = perf_mux_hrtimer_handler;
1176 }
1177
1178 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1179 {
1180         struct hrtimer *timer = &cpuctx->hrtimer;
1181         struct pmu *pmu = cpuctx->ctx.pmu;
1182         unsigned long flags;
1183
1184         /* not for SW PMU */
1185         if (pmu->task_ctx_nr == perf_sw_context)
1186                 return 0;
1187
1188         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1189         if (!cpuctx->hrtimer_active) {
1190                 cpuctx->hrtimer_active = 1;
1191                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1192                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1193         }
1194         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1195
1196         return 0;
1197 }
1198
1199 void perf_pmu_disable(struct pmu *pmu)
1200 {
1201         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1202         if (!(*count)++)
1203                 pmu->pmu_disable(pmu);
1204 }
1205
1206 void perf_pmu_enable(struct pmu *pmu)
1207 {
1208         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1209         if (!--(*count))
1210                 pmu->pmu_enable(pmu);
1211 }
1212
1213 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1214
1215 /*
1216  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1217  * perf_event_task_tick() are fully serialized because they're strictly cpu
1218  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1219  * disabled, while perf_event_task_tick is called from IRQ context.
1220  */
1221 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1222 {
1223         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1224
1225         lockdep_assert_irqs_disabled();
1226
1227         WARN_ON(!list_empty(&ctx->active_ctx_list));
1228
1229         list_add(&ctx->active_ctx_list, head);
1230 }
1231
1232 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1233 {
1234         lockdep_assert_irqs_disabled();
1235
1236         WARN_ON(list_empty(&ctx->active_ctx_list));
1237
1238         list_del_init(&ctx->active_ctx_list);
1239 }
1240
1241 static void get_ctx(struct perf_event_context *ctx)
1242 {
1243         refcount_inc(&ctx->refcount);
1244 }
1245
1246 static void *alloc_task_ctx_data(struct pmu *pmu)
1247 {
1248         if (pmu->task_ctx_cache)
1249                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1250
1251         return NULL;
1252 }
1253
1254 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1255 {
1256         if (pmu->task_ctx_cache && task_ctx_data)
1257                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1258 }
1259
1260 static void free_ctx(struct rcu_head *head)
1261 {
1262         struct perf_event_context *ctx;
1263
1264         ctx = container_of(head, struct perf_event_context, rcu_head);
1265         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1266         kfree(ctx);
1267 }
1268
1269 static void put_ctx(struct perf_event_context *ctx)
1270 {
1271         if (refcount_dec_and_test(&ctx->refcount)) {
1272                 if (ctx->parent_ctx)
1273                         put_ctx(ctx->parent_ctx);
1274                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1275                         put_task_struct(ctx->task);
1276                 call_rcu(&ctx->rcu_head, free_ctx);
1277         }
1278 }
1279
1280 /*
1281  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1282  * perf_pmu_migrate_context() we need some magic.
1283  *
1284  * Those places that change perf_event::ctx will hold both
1285  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1286  *
1287  * Lock ordering is by mutex address. There are two other sites where
1288  * perf_event_context::mutex nests and those are:
1289  *
1290  *  - perf_event_exit_task_context()    [ child , 0 ]
1291  *      perf_event_exit_event()
1292  *        put_event()                   [ parent, 1 ]
1293  *
1294  *  - perf_event_init_context()         [ parent, 0 ]
1295  *      inherit_task_group()
1296  *        inherit_group()
1297  *          inherit_event()
1298  *            perf_event_alloc()
1299  *              perf_init_event()
1300  *                perf_try_init_event() [ child , 1 ]
1301  *
1302  * While it appears there is an obvious deadlock here -- the parent and child
1303  * nesting levels are inverted between the two. This is in fact safe because
1304  * life-time rules separate them. That is an exiting task cannot fork, and a
1305  * spawning task cannot (yet) exit.
1306  *
1307  * But remember that these are parent<->child context relations, and
1308  * migration does not affect children, therefore these two orderings should not
1309  * interact.
1310  *
1311  * The change in perf_event::ctx does not affect children (as claimed above)
1312  * because the sys_perf_event_open() case will install a new event and break
1313  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1314  * concerned with cpuctx and that doesn't have children.
1315  *
1316  * The places that change perf_event::ctx will issue:
1317  *
1318  *   perf_remove_from_context();
1319  *   synchronize_rcu();
1320  *   perf_install_in_context();
1321  *
1322  * to affect the change. The remove_from_context() + synchronize_rcu() should
1323  * quiesce the event, after which we can install it in the new location. This
1324  * means that only external vectors (perf_fops, prctl) can perturb the event
1325  * while in transit. Therefore all such accessors should also acquire
1326  * perf_event_context::mutex to serialize against this.
1327  *
1328  * However; because event->ctx can change while we're waiting to acquire
1329  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1330  * function.
1331  *
1332  * Lock order:
1333  *    exec_update_lock
1334  *      task_struct::perf_event_mutex
1335  *        perf_event_context::mutex
1336  *          perf_event::child_mutex;
1337  *            perf_event_context::lock
1338  *          perf_event::mmap_mutex
1339  *          mmap_lock
1340  *            perf_addr_filters_head::lock
1341  *
1342  *    cpu_hotplug_lock
1343  *      pmus_lock
1344  *        cpuctx->mutex / perf_event_context::mutex
1345  */
1346 static struct perf_event_context *
1347 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1348 {
1349         struct perf_event_context *ctx;
1350
1351 again:
1352         rcu_read_lock();
1353         ctx = READ_ONCE(event->ctx);
1354         if (!refcount_inc_not_zero(&ctx->refcount)) {
1355                 rcu_read_unlock();
1356                 goto again;
1357         }
1358         rcu_read_unlock();
1359
1360         mutex_lock_nested(&ctx->mutex, nesting);
1361         if (event->ctx != ctx) {
1362                 mutex_unlock(&ctx->mutex);
1363                 put_ctx(ctx);
1364                 goto again;
1365         }
1366
1367         return ctx;
1368 }
1369
1370 static inline struct perf_event_context *
1371 perf_event_ctx_lock(struct perf_event *event)
1372 {
1373         return perf_event_ctx_lock_nested(event, 0);
1374 }
1375
1376 static void perf_event_ctx_unlock(struct perf_event *event,
1377                                   struct perf_event_context *ctx)
1378 {
1379         mutex_unlock(&ctx->mutex);
1380         put_ctx(ctx);
1381 }
1382
1383 /*
1384  * This must be done under the ctx->lock, such as to serialize against
1385  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1386  * calling scheduler related locks and ctx->lock nests inside those.
1387  */
1388 static __must_check struct perf_event_context *
1389 unclone_ctx(struct perf_event_context *ctx)
1390 {
1391         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1392
1393         lockdep_assert_held(&ctx->lock);
1394
1395         if (parent_ctx)
1396                 ctx->parent_ctx = NULL;
1397         ctx->generation++;
1398
1399         return parent_ctx;
1400 }
1401
1402 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1403                                 enum pid_type type)
1404 {
1405         u32 nr;
1406         /*
1407          * only top level events have the pid namespace they were created in
1408          */
1409         if (event->parent)
1410                 event = event->parent;
1411
1412         nr = __task_pid_nr_ns(p, type, event->ns);
1413         /* avoid -1 if it is idle thread or runs in another ns */
1414         if (!nr && !pid_alive(p))
1415                 nr = -1;
1416         return nr;
1417 }
1418
1419 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1420 {
1421         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1422 }
1423
1424 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1425 {
1426         return perf_event_pid_type(event, p, PIDTYPE_PID);
1427 }
1428
1429 /*
1430  * If we inherit events we want to return the parent event id
1431  * to userspace.
1432  */
1433 static u64 primary_event_id(struct perf_event *event)
1434 {
1435         u64 id = event->id;
1436
1437         if (event->parent)
1438                 id = event->parent->id;
1439
1440         return id;
1441 }
1442
1443 /*
1444  * Get the perf_event_context for a task and lock it.
1445  *
1446  * This has to cope with the fact that until it is locked,
1447  * the context could get moved to another task.
1448  */
1449 static struct perf_event_context *
1450 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1451 {
1452         struct perf_event_context *ctx;
1453
1454 retry:
1455         /*
1456          * One of the few rules of preemptible RCU is that one cannot do
1457          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1458          * part of the read side critical section was irqs-enabled -- see
1459          * rcu_read_unlock_special().
1460          *
1461          * Since ctx->lock nests under rq->lock we must ensure the entire read
1462          * side critical section has interrupts disabled.
1463          */
1464         local_irq_save(*flags);
1465         rcu_read_lock();
1466         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1467         if (ctx) {
1468                 /*
1469                  * If this context is a clone of another, it might
1470                  * get swapped for another underneath us by
1471                  * perf_event_task_sched_out, though the
1472                  * rcu_read_lock() protects us from any context
1473                  * getting freed.  Lock the context and check if it
1474                  * got swapped before we could get the lock, and retry
1475                  * if so.  If we locked the right context, then it
1476                  * can't get swapped on us any more.
1477                  */
1478                 raw_spin_lock(&ctx->lock);
1479                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1480                         raw_spin_unlock(&ctx->lock);
1481                         rcu_read_unlock();
1482                         local_irq_restore(*flags);
1483                         goto retry;
1484                 }
1485
1486                 if (ctx->task == TASK_TOMBSTONE ||
1487                     !refcount_inc_not_zero(&ctx->refcount)) {
1488                         raw_spin_unlock(&ctx->lock);
1489                         ctx = NULL;
1490                 } else {
1491                         WARN_ON_ONCE(ctx->task != task);
1492                 }
1493         }
1494         rcu_read_unlock();
1495         if (!ctx)
1496                 local_irq_restore(*flags);
1497         return ctx;
1498 }
1499
1500 /*
1501  * Get the context for a task and increment its pin_count so it
1502  * can't get swapped to another task.  This also increments its
1503  * reference count so that the context can't get freed.
1504  */
1505 static struct perf_event_context *
1506 perf_pin_task_context(struct task_struct *task, int ctxn)
1507 {
1508         struct perf_event_context *ctx;
1509         unsigned long flags;
1510
1511         ctx = perf_lock_task_context(task, ctxn, &flags);
1512         if (ctx) {
1513                 ++ctx->pin_count;
1514                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1515         }
1516         return ctx;
1517 }
1518
1519 static void perf_unpin_context(struct perf_event_context *ctx)
1520 {
1521         unsigned long flags;
1522
1523         raw_spin_lock_irqsave(&ctx->lock, flags);
1524         --ctx->pin_count;
1525         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1526 }
1527
1528 /*
1529  * Update the record of the current time in a context.
1530  */
1531 static void update_context_time(struct perf_event_context *ctx)
1532 {
1533         u64 now = perf_clock();
1534
1535         ctx->time += now - ctx->timestamp;
1536         ctx->timestamp = now;
1537 }
1538
1539 static u64 perf_event_time(struct perf_event *event)
1540 {
1541         struct perf_event_context *ctx = event->ctx;
1542
1543         if (is_cgroup_event(event))
1544                 return perf_cgroup_event_time(event);
1545
1546         return ctx ? ctx->time : 0;
1547 }
1548
1549 static enum event_type_t get_event_type(struct perf_event *event)
1550 {
1551         struct perf_event_context *ctx = event->ctx;
1552         enum event_type_t event_type;
1553
1554         lockdep_assert_held(&ctx->lock);
1555
1556         /*
1557          * It's 'group type', really, because if our group leader is
1558          * pinned, so are we.
1559          */
1560         if (event->group_leader != event)
1561                 event = event->group_leader;
1562
1563         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1564         if (!ctx->task)
1565                 event_type |= EVENT_CPU;
1566
1567         return event_type;
1568 }
1569
1570 /*
1571  * Helper function to initialize event group nodes.
1572  */
1573 static void init_event_group(struct perf_event *event)
1574 {
1575         RB_CLEAR_NODE(&event->group_node);
1576         event->group_index = 0;
1577 }
1578
1579 /*
1580  * Extract pinned or flexible groups from the context
1581  * based on event attrs bits.
1582  */
1583 static struct perf_event_groups *
1584 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1585 {
1586         if (event->attr.pinned)
1587                 return &ctx->pinned_groups;
1588         else
1589                 return &ctx->flexible_groups;
1590 }
1591
1592 /*
1593  * Helper function to initializes perf_event_group trees.
1594  */
1595 static void perf_event_groups_init(struct perf_event_groups *groups)
1596 {
1597         groups->tree = RB_ROOT;
1598         groups->index = 0;
1599 }
1600
1601 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1602 {
1603         struct cgroup *cgroup = NULL;
1604
1605 #ifdef CONFIG_CGROUP_PERF
1606         if (event->cgrp)
1607                 cgroup = event->cgrp->css.cgroup;
1608 #endif
1609
1610         return cgroup;
1611 }
1612
1613 /*
1614  * Compare function for event groups;
1615  *
1616  * Implements complex key that first sorts by CPU and then by virtual index
1617  * which provides ordering when rotating groups for the same CPU.
1618  */
1619 static __always_inline int
1620 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1621                       const u64 left_group_index, const struct perf_event *right)
1622 {
1623         if (left_cpu < right->cpu)
1624                 return -1;
1625         if (left_cpu > right->cpu)
1626                 return 1;
1627
1628 #ifdef CONFIG_CGROUP_PERF
1629         {
1630                 const struct cgroup *right_cgroup = event_cgroup(right);
1631
1632                 if (left_cgroup != right_cgroup) {
1633                         if (!left_cgroup) {
1634                                 /*
1635                                  * Left has no cgroup but right does, no
1636                                  * cgroups come first.
1637                                  */
1638                                 return -1;
1639                         }
1640                         if (!right_cgroup) {
1641                                 /*
1642                                  * Right has no cgroup but left does, no
1643                                  * cgroups come first.
1644                                  */
1645                                 return 1;
1646                         }
1647                         /* Two dissimilar cgroups, order by id. */
1648                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1649                                 return -1;
1650
1651                         return 1;
1652                 }
1653         }
1654 #endif
1655
1656         if (left_group_index < right->group_index)
1657                 return -1;
1658         if (left_group_index > right->group_index)
1659                 return 1;
1660
1661         return 0;
1662 }
1663
1664 #define __node_2_pe(node) \
1665         rb_entry((node), struct perf_event, group_node)
1666
1667 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1668 {
1669         struct perf_event *e = __node_2_pe(a);
1670         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1671                                      __node_2_pe(b)) < 0;
1672 }
1673
1674 struct __group_key {
1675         int cpu;
1676         struct cgroup *cgroup;
1677 };
1678
1679 static inline int __group_cmp(const void *key, const struct rb_node *node)
1680 {
1681         const struct __group_key *a = key;
1682         const struct perf_event *b = __node_2_pe(node);
1683
1684         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1685         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1686 }
1687
1688 /*
1689  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1690  * key (see perf_event_groups_less). This places it last inside the CPU
1691  * subtree.
1692  */
1693 static void
1694 perf_event_groups_insert(struct perf_event_groups *groups,
1695                          struct perf_event *event)
1696 {
1697         event->group_index = ++groups->index;
1698
1699         rb_add(&event->group_node, &groups->tree, __group_less);
1700 }
1701
1702 /*
1703  * Helper function to insert event into the pinned or flexible groups.
1704  */
1705 static void
1706 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1707 {
1708         struct perf_event_groups *groups;
1709
1710         groups = get_event_groups(event, ctx);
1711         perf_event_groups_insert(groups, event);
1712 }
1713
1714 /*
1715  * Delete a group from a tree.
1716  */
1717 static void
1718 perf_event_groups_delete(struct perf_event_groups *groups,
1719                          struct perf_event *event)
1720 {
1721         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1722                      RB_EMPTY_ROOT(&groups->tree));
1723
1724         rb_erase(&event->group_node, &groups->tree);
1725         init_event_group(event);
1726 }
1727
1728 /*
1729  * Helper function to delete event from its groups.
1730  */
1731 static void
1732 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1733 {
1734         struct perf_event_groups *groups;
1735
1736         groups = get_event_groups(event, ctx);
1737         perf_event_groups_delete(groups, event);
1738 }
1739
1740 /*
1741  * Get the leftmost event in the cpu/cgroup subtree.
1742  */
1743 static struct perf_event *
1744 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1745                         struct cgroup *cgrp)
1746 {
1747         struct __group_key key = {
1748                 .cpu = cpu,
1749                 .cgroup = cgrp,
1750         };
1751         struct rb_node *node;
1752
1753         node = rb_find_first(&key, &groups->tree, __group_cmp);
1754         if (node)
1755                 return __node_2_pe(node);
1756
1757         return NULL;
1758 }
1759
1760 /*
1761  * Like rb_entry_next_safe() for the @cpu subtree.
1762  */
1763 static struct perf_event *
1764 perf_event_groups_next(struct perf_event *event)
1765 {
1766         struct __group_key key = {
1767                 .cpu = event->cpu,
1768                 .cgroup = event_cgroup(event),
1769         };
1770         struct rb_node *next;
1771
1772         next = rb_next_match(&key, &event->group_node, __group_cmp);
1773         if (next)
1774                 return __node_2_pe(next);
1775
1776         return NULL;
1777 }
1778
1779 /*
1780  * Iterate through the whole groups tree.
1781  */
1782 #define perf_event_groups_for_each(event, groups)                       \
1783         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1784                                 typeof(*event), group_node); event;     \
1785                 event = rb_entry_safe(rb_next(&event->group_node),      \
1786                                 typeof(*event), group_node))
1787
1788 /*
1789  * Add an event from the lists for its context.
1790  * Must be called with ctx->mutex and ctx->lock held.
1791  */
1792 static void
1793 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1794 {
1795         lockdep_assert_held(&ctx->lock);
1796
1797         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1798         event->attach_state |= PERF_ATTACH_CONTEXT;
1799
1800         event->tstamp = perf_event_time(event);
1801
1802         /*
1803          * If we're a stand alone event or group leader, we go to the context
1804          * list, group events are kept attached to the group so that
1805          * perf_group_detach can, at all times, locate all siblings.
1806          */
1807         if (event->group_leader == event) {
1808                 event->group_caps = event->event_caps;
1809                 add_event_to_groups(event, ctx);
1810         }
1811
1812         list_add_rcu(&event->event_entry, &ctx->event_list);
1813         ctx->nr_events++;
1814         if (event->attr.inherit_stat)
1815                 ctx->nr_stat++;
1816
1817         if (event->state > PERF_EVENT_STATE_OFF)
1818                 perf_cgroup_event_enable(event, ctx);
1819
1820         ctx->generation++;
1821 }
1822
1823 /*
1824  * Initialize event state based on the perf_event_attr::disabled.
1825  */
1826 static inline void perf_event__state_init(struct perf_event *event)
1827 {
1828         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1829                                               PERF_EVENT_STATE_INACTIVE;
1830 }
1831
1832 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1833 {
1834         int entry = sizeof(u64); /* value */
1835         int size = 0;
1836         int nr = 1;
1837
1838         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1839                 size += sizeof(u64);
1840
1841         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1842                 size += sizeof(u64);
1843
1844         if (event->attr.read_format & PERF_FORMAT_ID)
1845                 entry += sizeof(u64);
1846
1847         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1848                 nr += nr_siblings;
1849                 size += sizeof(u64);
1850         }
1851
1852         size += entry * nr;
1853         event->read_size = size;
1854 }
1855
1856 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1857 {
1858         struct perf_sample_data *data;
1859         u16 size = 0;
1860
1861         if (sample_type & PERF_SAMPLE_IP)
1862                 size += sizeof(data->ip);
1863
1864         if (sample_type & PERF_SAMPLE_ADDR)
1865                 size += sizeof(data->addr);
1866
1867         if (sample_type & PERF_SAMPLE_PERIOD)
1868                 size += sizeof(data->period);
1869
1870         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1871                 size += sizeof(data->weight.full);
1872
1873         if (sample_type & PERF_SAMPLE_READ)
1874                 size += event->read_size;
1875
1876         if (sample_type & PERF_SAMPLE_DATA_SRC)
1877                 size += sizeof(data->data_src.val);
1878
1879         if (sample_type & PERF_SAMPLE_TRANSACTION)
1880                 size += sizeof(data->txn);
1881
1882         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1883                 size += sizeof(data->phys_addr);
1884
1885         if (sample_type & PERF_SAMPLE_CGROUP)
1886                 size += sizeof(data->cgroup);
1887
1888         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1889                 size += sizeof(data->data_page_size);
1890
1891         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1892                 size += sizeof(data->code_page_size);
1893
1894         event->header_size = size;
1895 }
1896
1897 /*
1898  * Called at perf_event creation and when events are attached/detached from a
1899  * group.
1900  */
1901 static void perf_event__header_size(struct perf_event *event)
1902 {
1903         __perf_event_read_size(event,
1904                                event->group_leader->nr_siblings);
1905         __perf_event_header_size(event, event->attr.sample_type);
1906 }
1907
1908 static void perf_event__id_header_size(struct perf_event *event)
1909 {
1910         struct perf_sample_data *data;
1911         u64 sample_type = event->attr.sample_type;
1912         u16 size = 0;
1913
1914         if (sample_type & PERF_SAMPLE_TID)
1915                 size += sizeof(data->tid_entry);
1916
1917         if (sample_type & PERF_SAMPLE_TIME)
1918                 size += sizeof(data->time);
1919
1920         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1921                 size += sizeof(data->id);
1922
1923         if (sample_type & PERF_SAMPLE_ID)
1924                 size += sizeof(data->id);
1925
1926         if (sample_type & PERF_SAMPLE_STREAM_ID)
1927                 size += sizeof(data->stream_id);
1928
1929         if (sample_type & PERF_SAMPLE_CPU)
1930                 size += sizeof(data->cpu_entry);
1931
1932         event->id_header_size = size;
1933 }
1934
1935 static bool perf_event_validate_size(struct perf_event *event)
1936 {
1937         /*
1938          * The values computed here will be over-written when we actually
1939          * attach the event.
1940          */
1941         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1942         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1943         perf_event__id_header_size(event);
1944
1945         /*
1946          * Sum the lot; should not exceed the 64k limit we have on records.
1947          * Conservative limit to allow for callchains and other variable fields.
1948          */
1949         if (event->read_size + event->header_size +
1950             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1951                 return false;
1952
1953         return true;
1954 }
1955
1956 static void perf_group_attach(struct perf_event *event)
1957 {
1958         struct perf_event *group_leader = event->group_leader, *pos;
1959
1960         lockdep_assert_held(&event->ctx->lock);
1961
1962         /*
1963          * We can have double attach due to group movement in perf_event_open.
1964          */
1965         if (event->attach_state & PERF_ATTACH_GROUP)
1966                 return;
1967
1968         event->attach_state |= PERF_ATTACH_GROUP;
1969
1970         if (group_leader == event)
1971                 return;
1972
1973         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1974
1975         group_leader->group_caps &= event->event_caps;
1976
1977         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1978         group_leader->nr_siblings++;
1979
1980         perf_event__header_size(group_leader);
1981
1982         for_each_sibling_event(pos, group_leader)
1983                 perf_event__header_size(pos);
1984 }
1985
1986 /*
1987  * Remove an event from the lists for its context.
1988  * Must be called with ctx->mutex and ctx->lock held.
1989  */
1990 static void
1991 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1992 {
1993         WARN_ON_ONCE(event->ctx != ctx);
1994         lockdep_assert_held(&ctx->lock);
1995
1996         /*
1997          * We can have double detach due to exit/hot-unplug + close.
1998          */
1999         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2000                 return;
2001
2002         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2003
2004         ctx->nr_events--;
2005         if (event->attr.inherit_stat)
2006                 ctx->nr_stat--;
2007
2008         list_del_rcu(&event->event_entry);
2009
2010         if (event->group_leader == event)
2011                 del_event_from_groups(event, ctx);
2012
2013         /*
2014          * If event was in error state, then keep it
2015          * that way, otherwise bogus counts will be
2016          * returned on read(). The only way to get out
2017          * of error state is by explicit re-enabling
2018          * of the event
2019          */
2020         if (event->state > PERF_EVENT_STATE_OFF) {
2021                 perf_cgroup_event_disable(event, ctx);
2022                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2023         }
2024
2025         ctx->generation++;
2026 }
2027
2028 static int
2029 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2030 {
2031         if (!has_aux(aux_event))
2032                 return 0;
2033
2034         if (!event->pmu->aux_output_match)
2035                 return 0;
2036
2037         return event->pmu->aux_output_match(aux_event);
2038 }
2039
2040 static void put_event(struct perf_event *event);
2041 static void event_sched_out(struct perf_event *event,
2042                             struct perf_cpu_context *cpuctx,
2043                             struct perf_event_context *ctx);
2044
2045 static void perf_put_aux_event(struct perf_event *event)
2046 {
2047         struct perf_event_context *ctx = event->ctx;
2048         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2049         struct perf_event *iter;
2050
2051         /*
2052          * If event uses aux_event tear down the link
2053          */
2054         if (event->aux_event) {
2055                 iter = event->aux_event;
2056                 event->aux_event = NULL;
2057                 put_event(iter);
2058                 return;
2059         }
2060
2061         /*
2062          * If the event is an aux_event, tear down all links to
2063          * it from other events.
2064          */
2065         for_each_sibling_event(iter, event->group_leader) {
2066                 if (iter->aux_event != event)
2067                         continue;
2068
2069                 iter->aux_event = NULL;
2070                 put_event(event);
2071
2072                 /*
2073                  * If it's ACTIVE, schedule it out and put it into ERROR
2074                  * state so that we don't try to schedule it again. Note
2075                  * that perf_event_enable() will clear the ERROR status.
2076                  */
2077                 event_sched_out(iter, cpuctx, ctx);
2078                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2079         }
2080 }
2081
2082 static bool perf_need_aux_event(struct perf_event *event)
2083 {
2084         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2085 }
2086
2087 static int perf_get_aux_event(struct perf_event *event,
2088                               struct perf_event *group_leader)
2089 {
2090         /*
2091          * Our group leader must be an aux event if we want to be
2092          * an aux_output. This way, the aux event will precede its
2093          * aux_output events in the group, and therefore will always
2094          * schedule first.
2095          */
2096         if (!group_leader)
2097                 return 0;
2098
2099         /*
2100          * aux_output and aux_sample_size are mutually exclusive.
2101          */
2102         if (event->attr.aux_output && event->attr.aux_sample_size)
2103                 return 0;
2104
2105         if (event->attr.aux_output &&
2106             !perf_aux_output_match(event, group_leader))
2107                 return 0;
2108
2109         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2110                 return 0;
2111
2112         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2113                 return 0;
2114
2115         /*
2116          * Link aux_outputs to their aux event; this is undone in
2117          * perf_group_detach() by perf_put_aux_event(). When the
2118          * group in torn down, the aux_output events loose their
2119          * link to the aux_event and can't schedule any more.
2120          */
2121         event->aux_event = group_leader;
2122
2123         return 1;
2124 }
2125
2126 static inline struct list_head *get_event_list(struct perf_event *event)
2127 {
2128         struct perf_event_context *ctx = event->ctx;
2129         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2130 }
2131
2132 /*
2133  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2134  * cannot exist on their own, schedule them out and move them into the ERROR
2135  * state. Also see _perf_event_enable(), it will not be able to recover
2136  * this ERROR state.
2137  */
2138 static inline void perf_remove_sibling_event(struct perf_event *event)
2139 {
2140         struct perf_event_context *ctx = event->ctx;
2141         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2142
2143         event_sched_out(event, cpuctx, ctx);
2144         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2145 }
2146
2147 static void perf_group_detach(struct perf_event *event)
2148 {
2149         struct perf_event *leader = event->group_leader;
2150         struct perf_event *sibling, *tmp;
2151         struct perf_event_context *ctx = event->ctx;
2152
2153         lockdep_assert_held(&ctx->lock);
2154
2155         /*
2156          * We can have double detach due to exit/hot-unplug + close.
2157          */
2158         if (!(event->attach_state & PERF_ATTACH_GROUP))
2159                 return;
2160
2161         event->attach_state &= ~PERF_ATTACH_GROUP;
2162
2163         perf_put_aux_event(event);
2164
2165         /*
2166          * If this is a sibling, remove it from its group.
2167          */
2168         if (leader != event) {
2169                 list_del_init(&event->sibling_list);
2170                 event->group_leader->nr_siblings--;
2171                 goto out;
2172         }
2173
2174         /*
2175          * If this was a group event with sibling events then
2176          * upgrade the siblings to singleton events by adding them
2177          * to whatever list we are on.
2178          */
2179         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2180
2181                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2182                         perf_remove_sibling_event(sibling);
2183
2184                 sibling->group_leader = sibling;
2185                 list_del_init(&sibling->sibling_list);
2186
2187                 /* Inherit group flags from the previous leader */
2188                 sibling->group_caps = event->group_caps;
2189
2190                 if (!RB_EMPTY_NODE(&event->group_node)) {
2191                         add_event_to_groups(sibling, event->ctx);
2192
2193                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2194                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2195                 }
2196
2197                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2198         }
2199
2200 out:
2201         for_each_sibling_event(tmp, leader)
2202                 perf_event__header_size(tmp);
2203
2204         perf_event__header_size(leader);
2205 }
2206
2207 static bool is_orphaned_event(struct perf_event *event)
2208 {
2209         return event->state == PERF_EVENT_STATE_DEAD;
2210 }
2211
2212 static inline int __pmu_filter_match(struct perf_event *event)
2213 {
2214         struct pmu *pmu = event->pmu;
2215         return pmu->filter_match ? pmu->filter_match(event) : 1;
2216 }
2217
2218 /*
2219  * Check whether we should attempt to schedule an event group based on
2220  * PMU-specific filtering. An event group can consist of HW and SW events,
2221  * potentially with a SW leader, so we must check all the filters, to
2222  * determine whether a group is schedulable:
2223  */
2224 static inline int pmu_filter_match(struct perf_event *event)
2225 {
2226         struct perf_event *sibling;
2227
2228         if (!__pmu_filter_match(event))
2229                 return 0;
2230
2231         for_each_sibling_event(sibling, event) {
2232                 if (!__pmu_filter_match(sibling))
2233                         return 0;
2234         }
2235
2236         return 1;
2237 }
2238
2239 static inline int
2240 event_filter_match(struct perf_event *event)
2241 {
2242         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2243                perf_cgroup_match(event) && pmu_filter_match(event);
2244 }
2245
2246 static void
2247 event_sched_out(struct perf_event *event,
2248                   struct perf_cpu_context *cpuctx,
2249                   struct perf_event_context *ctx)
2250 {
2251         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2252
2253         WARN_ON_ONCE(event->ctx != ctx);
2254         lockdep_assert_held(&ctx->lock);
2255
2256         if (event->state != PERF_EVENT_STATE_ACTIVE)
2257                 return;
2258
2259         /*
2260          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2261          * we can schedule events _OUT_ individually through things like
2262          * __perf_remove_from_context().
2263          */
2264         list_del_init(&event->active_list);
2265
2266         perf_pmu_disable(event->pmu);
2267
2268         event->pmu->del(event, 0);
2269         event->oncpu = -1;
2270
2271         if (READ_ONCE(event->pending_disable) >= 0) {
2272                 WRITE_ONCE(event->pending_disable, -1);
2273                 perf_cgroup_event_disable(event, ctx);
2274                 state = PERF_EVENT_STATE_OFF;
2275         }
2276         perf_event_set_state(event, state);
2277
2278         if (!is_software_event(event))
2279                 cpuctx->active_oncpu--;
2280         if (!--ctx->nr_active)
2281                 perf_event_ctx_deactivate(ctx);
2282         if (event->attr.freq && event->attr.sample_freq)
2283                 ctx->nr_freq--;
2284         if (event->attr.exclusive || !cpuctx->active_oncpu)
2285                 cpuctx->exclusive = 0;
2286
2287         perf_pmu_enable(event->pmu);
2288 }
2289
2290 static void
2291 group_sched_out(struct perf_event *group_event,
2292                 struct perf_cpu_context *cpuctx,
2293                 struct perf_event_context *ctx)
2294 {
2295         struct perf_event *event;
2296
2297         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2298                 return;
2299
2300         perf_pmu_disable(ctx->pmu);
2301
2302         event_sched_out(group_event, cpuctx, ctx);
2303
2304         /*
2305          * Schedule out siblings (if any):
2306          */
2307         for_each_sibling_event(event, group_event)
2308                 event_sched_out(event, cpuctx, ctx);
2309
2310         perf_pmu_enable(ctx->pmu);
2311 }
2312
2313 #define DETACH_GROUP    0x01UL
2314
2315 /*
2316  * Cross CPU call to remove a performance event
2317  *
2318  * We disable the event on the hardware level first. After that we
2319  * remove it from the context list.
2320  */
2321 static void
2322 __perf_remove_from_context(struct perf_event *event,
2323                            struct perf_cpu_context *cpuctx,
2324                            struct perf_event_context *ctx,
2325                            void *info)
2326 {
2327         unsigned long flags = (unsigned long)info;
2328
2329         if (ctx->is_active & EVENT_TIME) {
2330                 update_context_time(ctx);
2331                 update_cgrp_time_from_cpuctx(cpuctx);
2332         }
2333
2334         event_sched_out(event, cpuctx, ctx);
2335         if (flags & DETACH_GROUP)
2336                 perf_group_detach(event);
2337         list_del_event(event, ctx);
2338
2339         if (!ctx->nr_events && ctx->is_active) {
2340                 ctx->is_active = 0;
2341                 ctx->rotate_necessary = 0;
2342                 if (ctx->task) {
2343                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2344                         cpuctx->task_ctx = NULL;
2345                 }
2346         }
2347 }
2348
2349 /*
2350  * Remove the event from a task's (or a CPU's) list of events.
2351  *
2352  * If event->ctx is a cloned context, callers must make sure that
2353  * every task struct that event->ctx->task could possibly point to
2354  * remains valid.  This is OK when called from perf_release since
2355  * that only calls us on the top-level context, which can't be a clone.
2356  * When called from perf_event_exit_task, it's OK because the
2357  * context has been detached from its task.
2358  */
2359 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2360 {
2361         struct perf_event_context *ctx = event->ctx;
2362
2363         lockdep_assert_held(&ctx->mutex);
2364
2365         event_function_call(event, __perf_remove_from_context, (void *)flags);
2366
2367         /*
2368          * The above event_function_call() can NO-OP when it hits
2369          * TASK_TOMBSTONE. In that case we must already have been detached
2370          * from the context (by perf_event_exit_event()) but the grouping
2371          * might still be in-tact.
2372          */
2373         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2374         if ((flags & DETACH_GROUP) &&
2375             (event->attach_state & PERF_ATTACH_GROUP)) {
2376                 /*
2377                  * Since in that case we cannot possibly be scheduled, simply
2378                  * detach now.
2379                  */
2380                 raw_spin_lock_irq(&ctx->lock);
2381                 perf_group_detach(event);
2382                 raw_spin_unlock_irq(&ctx->lock);
2383         }
2384 }
2385
2386 /*
2387  * Cross CPU call to disable a performance event
2388  */
2389 static void __perf_event_disable(struct perf_event *event,
2390                                  struct perf_cpu_context *cpuctx,
2391                                  struct perf_event_context *ctx,
2392                                  void *info)
2393 {
2394         if (event->state < PERF_EVENT_STATE_INACTIVE)
2395                 return;
2396
2397         if (ctx->is_active & EVENT_TIME) {
2398                 update_context_time(ctx);
2399                 update_cgrp_time_from_event(event);
2400         }
2401
2402         if (event == event->group_leader)
2403                 group_sched_out(event, cpuctx, ctx);
2404         else
2405                 event_sched_out(event, cpuctx, ctx);
2406
2407         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2408         perf_cgroup_event_disable(event, ctx);
2409 }
2410
2411 /*
2412  * Disable an event.
2413  *
2414  * If event->ctx is a cloned context, callers must make sure that
2415  * every task struct that event->ctx->task could possibly point to
2416  * remains valid.  This condition is satisfied when called through
2417  * perf_event_for_each_child or perf_event_for_each because they
2418  * hold the top-level event's child_mutex, so any descendant that
2419  * goes to exit will block in perf_event_exit_event().
2420  *
2421  * When called from perf_pending_event it's OK because event->ctx
2422  * is the current context on this CPU and preemption is disabled,
2423  * hence we can't get into perf_event_task_sched_out for this context.
2424  */
2425 static void _perf_event_disable(struct perf_event *event)
2426 {
2427         struct perf_event_context *ctx = event->ctx;
2428
2429         raw_spin_lock_irq(&ctx->lock);
2430         if (event->state <= PERF_EVENT_STATE_OFF) {
2431                 raw_spin_unlock_irq(&ctx->lock);
2432                 return;
2433         }
2434         raw_spin_unlock_irq(&ctx->lock);
2435
2436         event_function_call(event, __perf_event_disable, NULL);
2437 }
2438
2439 void perf_event_disable_local(struct perf_event *event)
2440 {
2441         event_function_local(event, __perf_event_disable, NULL);
2442 }
2443
2444 /*
2445  * Strictly speaking kernel users cannot create groups and therefore this
2446  * interface does not need the perf_event_ctx_lock() magic.
2447  */
2448 void perf_event_disable(struct perf_event *event)
2449 {
2450         struct perf_event_context *ctx;
2451
2452         ctx = perf_event_ctx_lock(event);
2453         _perf_event_disable(event);
2454         perf_event_ctx_unlock(event, ctx);
2455 }
2456 EXPORT_SYMBOL_GPL(perf_event_disable);
2457
2458 void perf_event_disable_inatomic(struct perf_event *event)
2459 {
2460         WRITE_ONCE(event->pending_disable, smp_processor_id());
2461         /* can fail, see perf_pending_event_disable() */
2462         irq_work_queue(&event->pending);
2463 }
2464
2465 static void perf_set_shadow_time(struct perf_event *event,
2466                                  struct perf_event_context *ctx)
2467 {
2468         /*
2469          * use the correct time source for the time snapshot
2470          *
2471          * We could get by without this by leveraging the
2472          * fact that to get to this function, the caller
2473          * has most likely already called update_context_time()
2474          * and update_cgrp_time_xx() and thus both timestamp
2475          * are identical (or very close). Given that tstamp is,
2476          * already adjusted for cgroup, we could say that:
2477          *    tstamp - ctx->timestamp
2478          * is equivalent to
2479          *    tstamp - cgrp->timestamp.
2480          *
2481          * Then, in perf_output_read(), the calculation would
2482          * work with no changes because:
2483          * - event is guaranteed scheduled in
2484          * - no scheduled out in between
2485          * - thus the timestamp would be the same
2486          *
2487          * But this is a bit hairy.
2488          *
2489          * So instead, we have an explicit cgroup call to remain
2490          * within the time source all along. We believe it
2491          * is cleaner and simpler to understand.
2492          */
2493         if (is_cgroup_event(event))
2494                 perf_cgroup_set_shadow_time(event, event->tstamp);
2495         else
2496                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2497 }
2498
2499 #define MAX_INTERRUPTS (~0ULL)
2500
2501 static void perf_log_throttle(struct perf_event *event, int enable);
2502 static void perf_log_itrace_start(struct perf_event *event);
2503
2504 static int
2505 event_sched_in(struct perf_event *event,
2506                  struct perf_cpu_context *cpuctx,
2507                  struct perf_event_context *ctx)
2508 {
2509         int ret = 0;
2510
2511         WARN_ON_ONCE(event->ctx != ctx);
2512
2513         lockdep_assert_held(&ctx->lock);
2514
2515         if (event->state <= PERF_EVENT_STATE_OFF)
2516                 return 0;
2517
2518         WRITE_ONCE(event->oncpu, smp_processor_id());
2519         /*
2520          * Order event::oncpu write to happen before the ACTIVE state is
2521          * visible. This allows perf_event_{stop,read}() to observe the correct
2522          * ->oncpu if it sees ACTIVE.
2523          */
2524         smp_wmb();
2525         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2526
2527         /*
2528          * Unthrottle events, since we scheduled we might have missed several
2529          * ticks already, also for a heavily scheduling task there is little
2530          * guarantee it'll get a tick in a timely manner.
2531          */
2532         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2533                 perf_log_throttle(event, 1);
2534                 event->hw.interrupts = 0;
2535         }
2536
2537         perf_pmu_disable(event->pmu);
2538
2539         perf_set_shadow_time(event, ctx);
2540
2541         perf_log_itrace_start(event);
2542
2543         if (event->pmu->add(event, PERF_EF_START)) {
2544                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2545                 event->oncpu = -1;
2546                 ret = -EAGAIN;
2547                 goto out;
2548         }
2549
2550         if (!is_software_event(event))
2551                 cpuctx->active_oncpu++;
2552         if (!ctx->nr_active++)
2553                 perf_event_ctx_activate(ctx);
2554         if (event->attr.freq && event->attr.sample_freq)
2555                 ctx->nr_freq++;
2556
2557         if (event->attr.exclusive)
2558                 cpuctx->exclusive = 1;
2559
2560 out:
2561         perf_pmu_enable(event->pmu);
2562
2563         return ret;
2564 }
2565
2566 static int
2567 group_sched_in(struct perf_event *group_event,
2568                struct perf_cpu_context *cpuctx,
2569                struct perf_event_context *ctx)
2570 {
2571         struct perf_event *event, *partial_group = NULL;
2572         struct pmu *pmu = ctx->pmu;
2573
2574         if (group_event->state == PERF_EVENT_STATE_OFF)
2575                 return 0;
2576
2577         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2578
2579         if (event_sched_in(group_event, cpuctx, ctx))
2580                 goto error;
2581
2582         /*
2583          * Schedule in siblings as one group (if any):
2584          */
2585         for_each_sibling_event(event, group_event) {
2586                 if (event_sched_in(event, cpuctx, ctx)) {
2587                         partial_group = event;
2588                         goto group_error;
2589                 }
2590         }
2591
2592         if (!pmu->commit_txn(pmu))
2593                 return 0;
2594
2595 group_error:
2596         /*
2597          * Groups can be scheduled in as one unit only, so undo any
2598          * partial group before returning:
2599          * The events up to the failed event are scheduled out normally.
2600          */
2601         for_each_sibling_event(event, group_event) {
2602                 if (event == partial_group)
2603                         break;
2604
2605                 event_sched_out(event, cpuctx, ctx);
2606         }
2607         event_sched_out(group_event, cpuctx, ctx);
2608
2609 error:
2610         pmu->cancel_txn(pmu);
2611         return -EAGAIN;
2612 }
2613
2614 /*
2615  * Work out whether we can put this event group on the CPU now.
2616  */
2617 static int group_can_go_on(struct perf_event *event,
2618                            struct perf_cpu_context *cpuctx,
2619                            int can_add_hw)
2620 {
2621         /*
2622          * Groups consisting entirely of software events can always go on.
2623          */
2624         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2625                 return 1;
2626         /*
2627          * If an exclusive group is already on, no other hardware
2628          * events can go on.
2629          */
2630         if (cpuctx->exclusive)
2631                 return 0;
2632         /*
2633          * If this group is exclusive and there are already
2634          * events on the CPU, it can't go on.
2635          */
2636         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2637                 return 0;
2638         /*
2639          * Otherwise, try to add it if all previous groups were able
2640          * to go on.
2641          */
2642         return can_add_hw;
2643 }
2644
2645 static void add_event_to_ctx(struct perf_event *event,
2646                                struct perf_event_context *ctx)
2647 {
2648         list_add_event(event, ctx);
2649         perf_group_attach(event);
2650 }
2651
2652 static void ctx_sched_out(struct perf_event_context *ctx,
2653                           struct perf_cpu_context *cpuctx,
2654                           enum event_type_t event_type);
2655 static void
2656 ctx_sched_in(struct perf_event_context *ctx,
2657              struct perf_cpu_context *cpuctx,
2658              enum event_type_t event_type,
2659              struct task_struct *task);
2660
2661 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2662                                struct perf_event_context *ctx,
2663                                enum event_type_t event_type)
2664 {
2665         if (!cpuctx->task_ctx)
2666                 return;
2667
2668         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2669                 return;
2670
2671         ctx_sched_out(ctx, cpuctx, event_type);
2672 }
2673
2674 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2675                                 struct perf_event_context *ctx,
2676                                 struct task_struct *task)
2677 {
2678         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2679         if (ctx)
2680                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2681         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2682         if (ctx)
2683                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2684 }
2685
2686 /*
2687  * We want to maintain the following priority of scheduling:
2688  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2689  *  - task pinned (EVENT_PINNED)
2690  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2691  *  - task flexible (EVENT_FLEXIBLE).
2692  *
2693  * In order to avoid unscheduling and scheduling back in everything every
2694  * time an event is added, only do it for the groups of equal priority and
2695  * below.
2696  *
2697  * This can be called after a batch operation on task events, in which case
2698  * event_type is a bit mask of the types of events involved. For CPU events,
2699  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2700  */
2701 static void ctx_resched(struct perf_cpu_context *cpuctx,
2702                         struct perf_event_context *task_ctx,
2703                         enum event_type_t event_type)
2704 {
2705         enum event_type_t ctx_event_type;
2706         bool cpu_event = !!(event_type & EVENT_CPU);
2707
2708         /*
2709          * If pinned groups are involved, flexible groups also need to be
2710          * scheduled out.
2711          */
2712         if (event_type & EVENT_PINNED)
2713                 event_type |= EVENT_FLEXIBLE;
2714
2715         ctx_event_type = event_type & EVENT_ALL;
2716
2717         perf_pmu_disable(cpuctx->ctx.pmu);
2718         if (task_ctx)
2719                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2720
2721         /*
2722          * Decide which cpu ctx groups to schedule out based on the types
2723          * of events that caused rescheduling:
2724          *  - EVENT_CPU: schedule out corresponding groups;
2725          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2726          *  - otherwise, do nothing more.
2727          */
2728         if (cpu_event)
2729                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2730         else if (ctx_event_type & EVENT_PINNED)
2731                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2732
2733         perf_event_sched_in(cpuctx, task_ctx, current);
2734         perf_pmu_enable(cpuctx->ctx.pmu);
2735 }
2736
2737 void perf_pmu_resched(struct pmu *pmu)
2738 {
2739         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2740         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2741
2742         perf_ctx_lock(cpuctx, task_ctx);
2743         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2744         perf_ctx_unlock(cpuctx, task_ctx);
2745 }
2746
2747 /*
2748  * Cross CPU call to install and enable a performance event
2749  *
2750  * Very similar to remote_function() + event_function() but cannot assume that
2751  * things like ctx->is_active and cpuctx->task_ctx are set.
2752  */
2753 static int  __perf_install_in_context(void *info)
2754 {
2755         struct perf_event *event = info;
2756         struct perf_event_context *ctx = event->ctx;
2757         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2758         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2759         bool reprogram = true;
2760         int ret = 0;
2761
2762         raw_spin_lock(&cpuctx->ctx.lock);
2763         if (ctx->task) {
2764                 raw_spin_lock(&ctx->lock);
2765                 task_ctx = ctx;
2766
2767                 reprogram = (ctx->task == current);
2768
2769                 /*
2770                  * If the task is running, it must be running on this CPU,
2771                  * otherwise we cannot reprogram things.
2772                  *
2773                  * If its not running, we don't care, ctx->lock will
2774                  * serialize against it becoming runnable.
2775                  */
2776                 if (task_curr(ctx->task) && !reprogram) {
2777                         ret = -ESRCH;
2778                         goto unlock;
2779                 }
2780
2781                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2782         } else if (task_ctx) {
2783                 raw_spin_lock(&task_ctx->lock);
2784         }
2785
2786 #ifdef CONFIG_CGROUP_PERF
2787         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2788                 /*
2789                  * If the current cgroup doesn't match the event's
2790                  * cgroup, we should not try to schedule it.
2791                  */
2792                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2793                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2794                                         event->cgrp->css.cgroup);
2795         }
2796 #endif
2797
2798         if (reprogram) {
2799                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2800                 add_event_to_ctx(event, ctx);
2801                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2802         } else {
2803                 add_event_to_ctx(event, ctx);
2804         }
2805
2806 unlock:
2807         perf_ctx_unlock(cpuctx, task_ctx);
2808
2809         return ret;
2810 }
2811
2812 static bool exclusive_event_installable(struct perf_event *event,
2813                                         struct perf_event_context *ctx);
2814
2815 /*
2816  * Attach a performance event to a context.
2817  *
2818  * Very similar to event_function_call, see comment there.
2819  */
2820 static void
2821 perf_install_in_context(struct perf_event_context *ctx,
2822                         struct perf_event *event,
2823                         int cpu)
2824 {
2825         struct task_struct *task = READ_ONCE(ctx->task);
2826
2827         lockdep_assert_held(&ctx->mutex);
2828
2829         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2830
2831         if (event->cpu != -1)
2832                 event->cpu = cpu;
2833
2834         /*
2835          * Ensures that if we can observe event->ctx, both the event and ctx
2836          * will be 'complete'. See perf_iterate_sb_cpu().
2837          */
2838         smp_store_release(&event->ctx, ctx);
2839
2840         /*
2841          * perf_event_attr::disabled events will not run and can be initialized
2842          * without IPI. Except when this is the first event for the context, in
2843          * that case we need the magic of the IPI to set ctx->is_active.
2844          *
2845          * The IOC_ENABLE that is sure to follow the creation of a disabled
2846          * event will issue the IPI and reprogram the hardware.
2847          */
2848         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2849                 raw_spin_lock_irq(&ctx->lock);
2850                 if (ctx->task == TASK_TOMBSTONE) {
2851                         raw_spin_unlock_irq(&ctx->lock);
2852                         return;
2853                 }
2854                 add_event_to_ctx(event, ctx);
2855                 raw_spin_unlock_irq(&ctx->lock);
2856                 return;
2857         }
2858
2859         if (!task) {
2860                 cpu_function_call(cpu, __perf_install_in_context, event);
2861                 return;
2862         }
2863
2864         /*
2865          * Should not happen, we validate the ctx is still alive before calling.
2866          */
2867         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2868                 return;
2869
2870         /*
2871          * Installing events is tricky because we cannot rely on ctx->is_active
2872          * to be set in case this is the nr_events 0 -> 1 transition.
2873          *
2874          * Instead we use task_curr(), which tells us if the task is running.
2875          * However, since we use task_curr() outside of rq::lock, we can race
2876          * against the actual state. This means the result can be wrong.
2877          *
2878          * If we get a false positive, we retry, this is harmless.
2879          *
2880          * If we get a false negative, things are complicated. If we are after
2881          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2882          * value must be correct. If we're before, it doesn't matter since
2883          * perf_event_context_sched_in() will program the counter.
2884          *
2885          * However, this hinges on the remote context switch having observed
2886          * our task->perf_event_ctxp[] store, such that it will in fact take
2887          * ctx::lock in perf_event_context_sched_in().
2888          *
2889          * We do this by task_function_call(), if the IPI fails to hit the task
2890          * we know any future context switch of task must see the
2891          * perf_event_ctpx[] store.
2892          */
2893
2894         /*
2895          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2896          * task_cpu() load, such that if the IPI then does not find the task
2897          * running, a future context switch of that task must observe the
2898          * store.
2899          */
2900         smp_mb();
2901 again:
2902         if (!task_function_call(task, __perf_install_in_context, event))
2903                 return;
2904
2905         raw_spin_lock_irq(&ctx->lock);
2906         task = ctx->task;
2907         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2908                 /*
2909                  * Cannot happen because we already checked above (which also
2910                  * cannot happen), and we hold ctx->mutex, which serializes us
2911                  * against perf_event_exit_task_context().
2912                  */
2913                 raw_spin_unlock_irq(&ctx->lock);
2914                 return;
2915         }
2916         /*
2917          * If the task is not running, ctx->lock will avoid it becoming so,
2918          * thus we can safely install the event.
2919          */
2920         if (task_curr(task)) {
2921                 raw_spin_unlock_irq(&ctx->lock);
2922                 goto again;
2923         }
2924         add_event_to_ctx(event, ctx);
2925         raw_spin_unlock_irq(&ctx->lock);
2926 }
2927
2928 /*
2929  * Cross CPU call to enable a performance event
2930  */
2931 static void __perf_event_enable(struct perf_event *event,
2932                                 struct perf_cpu_context *cpuctx,
2933                                 struct perf_event_context *ctx,
2934                                 void *info)
2935 {
2936         struct perf_event *leader = event->group_leader;
2937         struct perf_event_context *task_ctx;
2938
2939         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2940             event->state <= PERF_EVENT_STATE_ERROR)
2941                 return;
2942
2943         if (ctx->is_active)
2944                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2945
2946         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2947         perf_cgroup_event_enable(event, ctx);
2948
2949         if (!ctx->is_active)
2950                 return;
2951
2952         if (!event_filter_match(event)) {
2953                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2954                 return;
2955         }
2956
2957         /*
2958          * If the event is in a group and isn't the group leader,
2959          * then don't put it on unless the group is on.
2960          */
2961         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2962                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2963                 return;
2964         }
2965
2966         task_ctx = cpuctx->task_ctx;
2967         if (ctx->task)
2968                 WARN_ON_ONCE(task_ctx != ctx);
2969
2970         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2971 }
2972
2973 /*
2974  * Enable an event.
2975  *
2976  * If event->ctx is a cloned context, callers must make sure that
2977  * every task struct that event->ctx->task could possibly point to
2978  * remains valid.  This condition is satisfied when called through
2979  * perf_event_for_each_child or perf_event_for_each as described
2980  * for perf_event_disable.
2981  */
2982 static void _perf_event_enable(struct perf_event *event)
2983 {
2984         struct perf_event_context *ctx = event->ctx;
2985
2986         raw_spin_lock_irq(&ctx->lock);
2987         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2988             event->state <  PERF_EVENT_STATE_ERROR) {
2989 out:
2990                 raw_spin_unlock_irq(&ctx->lock);
2991                 return;
2992         }
2993
2994         /*
2995          * If the event is in error state, clear that first.
2996          *
2997          * That way, if we see the event in error state below, we know that it
2998          * has gone back into error state, as distinct from the task having
2999          * been scheduled away before the cross-call arrived.
3000          */
3001         if (event->state == PERF_EVENT_STATE_ERROR) {
3002                 /*
3003                  * Detached SIBLING events cannot leave ERROR state.
3004                  */
3005                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3006                     event->group_leader == event)
3007                         goto out;
3008
3009                 event->state = PERF_EVENT_STATE_OFF;
3010         }
3011         raw_spin_unlock_irq(&ctx->lock);
3012
3013         event_function_call(event, __perf_event_enable, NULL);
3014 }
3015
3016 /*
3017  * See perf_event_disable();
3018  */
3019 void perf_event_enable(struct perf_event *event)
3020 {
3021         struct perf_event_context *ctx;
3022
3023         ctx = perf_event_ctx_lock(event);
3024         _perf_event_enable(event);
3025         perf_event_ctx_unlock(event, ctx);
3026 }
3027 EXPORT_SYMBOL_GPL(perf_event_enable);
3028
3029 struct stop_event_data {
3030         struct perf_event       *event;
3031         unsigned int            restart;
3032 };
3033
3034 static int __perf_event_stop(void *info)
3035 {
3036         struct stop_event_data *sd = info;
3037         struct perf_event *event = sd->event;
3038
3039         /* if it's already INACTIVE, do nothing */
3040         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3041                 return 0;
3042
3043         /* matches smp_wmb() in event_sched_in() */
3044         smp_rmb();
3045
3046         /*
3047          * There is a window with interrupts enabled before we get here,
3048          * so we need to check again lest we try to stop another CPU's event.
3049          */
3050         if (READ_ONCE(event->oncpu) != smp_processor_id())
3051                 return -EAGAIN;
3052
3053         event->pmu->stop(event, PERF_EF_UPDATE);
3054
3055         /*
3056          * May race with the actual stop (through perf_pmu_output_stop()),
3057          * but it is only used for events with AUX ring buffer, and such
3058          * events will refuse to restart because of rb::aux_mmap_count==0,
3059          * see comments in perf_aux_output_begin().
3060          *
3061          * Since this is happening on an event-local CPU, no trace is lost
3062          * while restarting.
3063          */
3064         if (sd->restart)
3065                 event->pmu->start(event, 0);
3066
3067         return 0;
3068 }
3069
3070 static int perf_event_stop(struct perf_event *event, int restart)
3071 {
3072         struct stop_event_data sd = {
3073                 .event          = event,
3074                 .restart        = restart,
3075         };
3076         int ret = 0;
3077
3078         do {
3079                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3080                         return 0;
3081
3082                 /* matches smp_wmb() in event_sched_in() */
3083                 smp_rmb();
3084
3085                 /*
3086                  * We only want to restart ACTIVE events, so if the event goes
3087                  * inactive here (event->oncpu==-1), there's nothing more to do;
3088                  * fall through with ret==-ENXIO.
3089                  */
3090                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3091                                         __perf_event_stop, &sd);
3092         } while (ret == -EAGAIN);
3093
3094         return ret;
3095 }
3096
3097 /*
3098  * In order to contain the amount of racy and tricky in the address filter
3099  * configuration management, it is a two part process:
3100  *
3101  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3102  *      we update the addresses of corresponding vmas in
3103  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3104  * (p2) when an event is scheduled in (pmu::add), it calls
3105  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3106  *      if the generation has changed since the previous call.
3107  *
3108  * If (p1) happens while the event is active, we restart it to force (p2).
3109  *
3110  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3111  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3112  *     ioctl;
3113  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3114  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3115  *     for reading;
3116  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3117  *     of exec.
3118  */
3119 void perf_event_addr_filters_sync(struct perf_event *event)
3120 {
3121         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3122
3123         if (!has_addr_filter(event))
3124                 return;
3125
3126         raw_spin_lock(&ifh->lock);
3127         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3128                 event->pmu->addr_filters_sync(event);
3129                 event->hw.addr_filters_gen = event->addr_filters_gen;
3130         }
3131         raw_spin_unlock(&ifh->lock);
3132 }
3133 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3134
3135 static int _perf_event_refresh(struct perf_event *event, int refresh)
3136 {
3137         /*
3138          * not supported on inherited events
3139          */
3140         if (event->attr.inherit || !is_sampling_event(event))
3141                 return -EINVAL;
3142
3143         atomic_add(refresh, &event->event_limit);
3144         _perf_event_enable(event);
3145
3146         return 0;
3147 }
3148
3149 /*
3150  * See perf_event_disable()
3151  */
3152 int perf_event_refresh(struct perf_event *event, int refresh)
3153 {
3154         struct perf_event_context *ctx;
3155         int ret;
3156
3157         ctx = perf_event_ctx_lock(event);
3158         ret = _perf_event_refresh(event, refresh);
3159         perf_event_ctx_unlock(event, ctx);
3160
3161         return ret;
3162 }
3163 EXPORT_SYMBOL_GPL(perf_event_refresh);
3164
3165 static int perf_event_modify_breakpoint(struct perf_event *bp,
3166                                          struct perf_event_attr *attr)
3167 {
3168         int err;
3169
3170         _perf_event_disable(bp);
3171
3172         err = modify_user_hw_breakpoint_check(bp, attr, true);
3173
3174         if (!bp->attr.disabled)
3175                 _perf_event_enable(bp);
3176
3177         return err;
3178 }
3179
3180 static int perf_event_modify_attr(struct perf_event *event,
3181                                   struct perf_event_attr *attr)
3182 {
3183         if (event->attr.type != attr->type)
3184                 return -EINVAL;
3185
3186         switch (event->attr.type) {
3187         case PERF_TYPE_BREAKPOINT:
3188                 return perf_event_modify_breakpoint(event, attr);
3189         default:
3190                 /* Place holder for future additions. */
3191                 return -EOPNOTSUPP;
3192         }
3193 }
3194
3195 static void ctx_sched_out(struct perf_event_context *ctx,
3196                           struct perf_cpu_context *cpuctx,
3197                           enum event_type_t event_type)
3198 {
3199         struct perf_event *event, *tmp;
3200         int is_active = ctx->is_active;
3201
3202         lockdep_assert_held(&ctx->lock);
3203
3204         if (likely(!ctx->nr_events)) {
3205                 /*
3206                  * See __perf_remove_from_context().
3207                  */
3208                 WARN_ON_ONCE(ctx->is_active);
3209                 if (ctx->task)
3210                         WARN_ON_ONCE(cpuctx->task_ctx);
3211                 return;
3212         }
3213
3214         ctx->is_active &= ~event_type;
3215         if (!(ctx->is_active & EVENT_ALL))
3216                 ctx->is_active = 0;
3217
3218         if (ctx->task) {
3219                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3220                 if (!ctx->is_active)
3221                         cpuctx->task_ctx = NULL;
3222         }
3223
3224         /*
3225          * Always update time if it was set; not only when it changes.
3226          * Otherwise we can 'forget' to update time for any but the last
3227          * context we sched out. For example:
3228          *
3229          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3230          *   ctx_sched_out(.event_type = EVENT_PINNED)
3231          *
3232          * would only update time for the pinned events.
3233          */
3234         if (is_active & EVENT_TIME) {
3235                 /* update (and stop) ctx time */
3236                 update_context_time(ctx);
3237                 update_cgrp_time_from_cpuctx(cpuctx);
3238         }
3239
3240         is_active ^= ctx->is_active; /* changed bits */
3241
3242         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3243                 return;
3244
3245         perf_pmu_disable(ctx->pmu);
3246         if (is_active & EVENT_PINNED) {
3247                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3248                         group_sched_out(event, cpuctx, ctx);
3249         }
3250
3251         if (is_active & EVENT_FLEXIBLE) {
3252                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3253                         group_sched_out(event, cpuctx, ctx);
3254
3255                 /*
3256                  * Since we cleared EVENT_FLEXIBLE, also clear
3257                  * rotate_necessary, is will be reset by
3258                  * ctx_flexible_sched_in() when needed.
3259                  */
3260                 ctx->rotate_necessary = 0;
3261         }
3262         perf_pmu_enable(ctx->pmu);
3263 }
3264
3265 /*
3266  * Test whether two contexts are equivalent, i.e. whether they have both been
3267  * cloned from the same version of the same context.
3268  *
3269  * Equivalence is measured using a generation number in the context that is
3270  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3271  * and list_del_event().
3272  */
3273 static int context_equiv(struct perf_event_context *ctx1,
3274                          struct perf_event_context *ctx2)
3275 {
3276         lockdep_assert_held(&ctx1->lock);
3277         lockdep_assert_held(&ctx2->lock);
3278
3279         /* Pinning disables the swap optimization */
3280         if (ctx1->pin_count || ctx2->pin_count)
3281                 return 0;
3282
3283         /* If ctx1 is the parent of ctx2 */
3284         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3285                 return 1;
3286
3287         /* If ctx2 is the parent of ctx1 */
3288         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3289                 return 1;
3290
3291         /*
3292          * If ctx1 and ctx2 have the same parent; we flatten the parent
3293          * hierarchy, see perf_event_init_context().
3294          */
3295         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3296                         ctx1->parent_gen == ctx2->parent_gen)
3297                 return 1;
3298
3299         /* Unmatched */
3300         return 0;
3301 }
3302
3303 static void __perf_event_sync_stat(struct perf_event *event,
3304                                      struct perf_event *next_event)
3305 {
3306         u64 value;
3307
3308         if (!event->attr.inherit_stat)
3309                 return;
3310
3311         /*
3312          * Update the event value, we cannot use perf_event_read()
3313          * because we're in the middle of a context switch and have IRQs
3314          * disabled, which upsets smp_call_function_single(), however
3315          * we know the event must be on the current CPU, therefore we
3316          * don't need to use it.
3317          */
3318         if (event->state == PERF_EVENT_STATE_ACTIVE)
3319                 event->pmu->read(event);
3320
3321         perf_event_update_time(event);
3322
3323         /*
3324          * In order to keep per-task stats reliable we need to flip the event
3325          * values when we flip the contexts.
3326          */
3327         value = local64_read(&next_event->count);
3328         value = local64_xchg(&event->count, value);
3329         local64_set(&next_event->count, value);
3330
3331         swap(event->total_time_enabled, next_event->total_time_enabled);
3332         swap(event->total_time_running, next_event->total_time_running);
3333
3334         /*
3335          * Since we swizzled the values, update the user visible data too.
3336          */
3337         perf_event_update_userpage(event);
3338         perf_event_update_userpage(next_event);
3339 }
3340
3341 static void perf_event_sync_stat(struct perf_event_context *ctx,
3342                                    struct perf_event_context *next_ctx)
3343 {
3344         struct perf_event *event, *next_event;
3345
3346         if (!ctx->nr_stat)
3347                 return;
3348
3349         update_context_time(ctx);
3350
3351         event = list_first_entry(&ctx->event_list,
3352                                    struct perf_event, event_entry);
3353
3354         next_event = list_first_entry(&next_ctx->event_list,
3355                                         struct perf_event, event_entry);
3356
3357         while (&event->event_entry != &ctx->event_list &&
3358                &next_event->event_entry != &next_ctx->event_list) {
3359
3360                 __perf_event_sync_stat(event, next_event);
3361
3362                 event = list_next_entry(event, event_entry);
3363                 next_event = list_next_entry(next_event, event_entry);
3364         }
3365 }
3366
3367 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3368                                          struct task_struct *next)
3369 {
3370         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3371         struct perf_event_context *next_ctx;
3372         struct perf_event_context *parent, *next_parent;
3373         struct perf_cpu_context *cpuctx;
3374         int do_switch = 1;
3375         struct pmu *pmu;
3376
3377         if (likely(!ctx))
3378                 return;
3379
3380         pmu = ctx->pmu;
3381         cpuctx = __get_cpu_context(ctx);
3382         if (!cpuctx->task_ctx)
3383                 return;
3384
3385         rcu_read_lock();
3386         next_ctx = next->perf_event_ctxp[ctxn];
3387         if (!next_ctx)
3388                 goto unlock;
3389
3390         parent = rcu_dereference(ctx->parent_ctx);
3391         next_parent = rcu_dereference(next_ctx->parent_ctx);
3392
3393         /* If neither context have a parent context; they cannot be clones. */
3394         if (!parent && !next_parent)
3395                 goto unlock;
3396
3397         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3398                 /*
3399                  * Looks like the two contexts are clones, so we might be
3400                  * able to optimize the context switch.  We lock both
3401                  * contexts and check that they are clones under the
3402                  * lock (including re-checking that neither has been
3403                  * uncloned in the meantime).  It doesn't matter which
3404                  * order we take the locks because no other cpu could
3405                  * be trying to lock both of these tasks.
3406                  */
3407                 raw_spin_lock(&ctx->lock);
3408                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3409                 if (context_equiv(ctx, next_ctx)) {
3410
3411                         WRITE_ONCE(ctx->task, next);
3412                         WRITE_ONCE(next_ctx->task, task);
3413
3414                         perf_pmu_disable(pmu);
3415
3416                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3417                                 pmu->sched_task(ctx, false);
3418
3419                         /*
3420                          * PMU specific parts of task perf context can require
3421                          * additional synchronization. As an example of such
3422                          * synchronization see implementation details of Intel
3423                          * LBR call stack data profiling;
3424                          */
3425                         if (pmu->swap_task_ctx)
3426                                 pmu->swap_task_ctx(ctx, next_ctx);
3427                         else
3428                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3429
3430                         perf_pmu_enable(pmu);
3431
3432                         /*
3433                          * RCU_INIT_POINTER here is safe because we've not
3434                          * modified the ctx and the above modification of
3435                          * ctx->task and ctx->task_ctx_data are immaterial
3436                          * since those values are always verified under
3437                          * ctx->lock which we're now holding.
3438                          */
3439                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3440                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3441
3442                         do_switch = 0;
3443
3444                         perf_event_sync_stat(ctx, next_ctx);
3445                 }
3446                 raw_spin_unlock(&next_ctx->lock);
3447                 raw_spin_unlock(&ctx->lock);
3448         }
3449 unlock:
3450         rcu_read_unlock();
3451
3452         if (do_switch) {
3453                 raw_spin_lock(&ctx->lock);
3454                 perf_pmu_disable(pmu);
3455
3456                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3457                         pmu->sched_task(ctx, false);
3458                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3459
3460                 perf_pmu_enable(pmu);
3461                 raw_spin_unlock(&ctx->lock);
3462         }
3463 }
3464
3465 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3466
3467 void perf_sched_cb_dec(struct pmu *pmu)
3468 {
3469         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3470
3471         this_cpu_dec(perf_sched_cb_usages);
3472
3473         if (!--cpuctx->sched_cb_usage)
3474                 list_del(&cpuctx->sched_cb_entry);
3475 }
3476
3477
3478 void perf_sched_cb_inc(struct pmu *pmu)
3479 {
3480         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3481
3482         if (!cpuctx->sched_cb_usage++)
3483                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3484
3485         this_cpu_inc(perf_sched_cb_usages);
3486 }
3487
3488 /*
3489  * This function provides the context switch callback to the lower code
3490  * layer. It is invoked ONLY when the context switch callback is enabled.
3491  *
3492  * This callback is relevant even to per-cpu events; for example multi event
3493  * PEBS requires this to provide PID/TID information. This requires we flush
3494  * all queued PEBS records before we context switch to a new task.
3495  */
3496 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3497 {
3498         struct pmu *pmu;
3499
3500         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3501
3502         if (WARN_ON_ONCE(!pmu->sched_task))
3503                 return;
3504
3505         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3506         perf_pmu_disable(pmu);
3507
3508         pmu->sched_task(cpuctx->task_ctx, sched_in);
3509
3510         perf_pmu_enable(pmu);
3511         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3512 }
3513
3514 static void perf_pmu_sched_task(struct task_struct *prev,
3515                                 struct task_struct *next,
3516                                 bool sched_in)
3517 {
3518         struct perf_cpu_context *cpuctx;
3519
3520         if (prev == next)
3521                 return;
3522
3523         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3524                 /* will be handled in perf_event_context_sched_in/out */
3525                 if (cpuctx->task_ctx)
3526                         continue;
3527
3528                 __perf_pmu_sched_task(cpuctx, sched_in);
3529         }
3530 }
3531
3532 static void perf_event_switch(struct task_struct *task,
3533                               struct task_struct *next_prev, bool sched_in);
3534
3535 #define for_each_task_context_nr(ctxn)                                  \
3536         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3537
3538 /*
3539  * Called from scheduler to remove the events of the current task,
3540  * with interrupts disabled.
3541  *
3542  * We stop each event and update the event value in event->count.
3543  *
3544  * This does not protect us against NMI, but disable()
3545  * sets the disabled bit in the control field of event _before_
3546  * accessing the event control register. If a NMI hits, then it will
3547  * not restart the event.
3548  */
3549 void __perf_event_task_sched_out(struct task_struct *task,
3550                                  struct task_struct *next)
3551 {
3552         int ctxn;
3553
3554         if (__this_cpu_read(perf_sched_cb_usages))
3555                 perf_pmu_sched_task(task, next, false);
3556
3557         if (atomic_read(&nr_switch_events))
3558                 perf_event_switch(task, next, false);
3559
3560         for_each_task_context_nr(ctxn)
3561                 perf_event_context_sched_out(task, ctxn, next);
3562
3563         /*
3564          * if cgroup events exist on this CPU, then we need
3565          * to check if we have to switch out PMU state.
3566          * cgroup event are system-wide mode only
3567          */
3568         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3569                 perf_cgroup_sched_out(task, next);
3570 }
3571
3572 /*
3573  * Called with IRQs disabled
3574  */
3575 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3576                               enum event_type_t event_type)
3577 {
3578         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3579 }
3580
3581 static bool perf_less_group_idx(const void *l, const void *r)
3582 {
3583         const struct perf_event *le = *(const struct perf_event **)l;
3584         const struct perf_event *re = *(const struct perf_event **)r;
3585
3586         return le->group_index < re->group_index;
3587 }
3588
3589 static void swap_ptr(void *l, void *r)
3590 {
3591         void **lp = l, **rp = r;
3592
3593         swap(*lp, *rp);
3594 }
3595
3596 static const struct min_heap_callbacks perf_min_heap = {
3597         .elem_size = sizeof(struct perf_event *),
3598         .less = perf_less_group_idx,
3599         .swp = swap_ptr,
3600 };
3601
3602 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3603 {
3604         struct perf_event **itrs = heap->data;
3605
3606         if (event) {
3607                 itrs[heap->nr] = event;
3608                 heap->nr++;
3609         }
3610 }
3611
3612 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3613                                 struct perf_event_groups *groups, int cpu,
3614                                 int (*func)(struct perf_event *, void *),
3615                                 void *data)
3616 {
3617 #ifdef CONFIG_CGROUP_PERF
3618         struct cgroup_subsys_state *css = NULL;
3619 #endif
3620         /* Space for per CPU and/or any CPU event iterators. */
3621         struct perf_event *itrs[2];
3622         struct min_heap event_heap;
3623         struct perf_event **evt;
3624         int ret;
3625
3626         if (cpuctx) {
3627                 event_heap = (struct min_heap){
3628                         .data = cpuctx->heap,
3629                         .nr = 0,
3630                         .size = cpuctx->heap_size,
3631                 };
3632
3633                 lockdep_assert_held(&cpuctx->ctx.lock);
3634
3635 #ifdef CONFIG_CGROUP_PERF
3636                 if (cpuctx->cgrp)
3637                         css = &cpuctx->cgrp->css;
3638 #endif
3639         } else {
3640                 event_heap = (struct min_heap){
3641                         .data = itrs,
3642                         .nr = 0,
3643                         .size = ARRAY_SIZE(itrs),
3644                 };
3645                 /* Events not within a CPU context may be on any CPU. */
3646                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3647         }
3648         evt = event_heap.data;
3649
3650         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3651
3652 #ifdef CONFIG_CGROUP_PERF
3653         for (; css; css = css->parent)
3654                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3655 #endif
3656
3657         min_heapify_all(&event_heap, &perf_min_heap);
3658
3659         while (event_heap.nr) {
3660                 ret = func(*evt, data);
3661                 if (ret)
3662                         return ret;
3663
3664                 *evt = perf_event_groups_next(*evt);
3665                 if (*evt)
3666                         min_heapify(&event_heap, 0, &perf_min_heap);
3667                 else
3668                         min_heap_pop(&event_heap, &perf_min_heap);
3669         }
3670
3671         return 0;
3672 }
3673
3674 static int merge_sched_in(struct perf_event *event, void *data)
3675 {
3676         struct perf_event_context *ctx = event->ctx;
3677         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3678         int *can_add_hw = data;
3679
3680         if (event->state <= PERF_EVENT_STATE_OFF)
3681                 return 0;
3682
3683         if (!event_filter_match(event))
3684                 return 0;
3685
3686         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3687                 if (!group_sched_in(event, cpuctx, ctx))
3688                         list_add_tail(&event->active_list, get_event_list(event));
3689         }
3690
3691         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3692                 if (event->attr.pinned) {
3693                         perf_cgroup_event_disable(event, ctx);
3694                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3695                 }
3696
3697                 *can_add_hw = 0;
3698                 ctx->rotate_necessary = 1;
3699                 perf_mux_hrtimer_restart(cpuctx);
3700         }
3701
3702         return 0;
3703 }
3704
3705 static void
3706 ctx_pinned_sched_in(struct perf_event_context *ctx,
3707                     struct perf_cpu_context *cpuctx)
3708 {
3709         int can_add_hw = 1;
3710
3711         if (ctx != &cpuctx->ctx)
3712                 cpuctx = NULL;
3713
3714         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3715                            smp_processor_id(),
3716                            merge_sched_in, &can_add_hw);
3717 }
3718
3719 static void
3720 ctx_flexible_sched_in(struct perf_event_context *ctx,
3721                       struct perf_cpu_context *cpuctx)
3722 {
3723         int can_add_hw = 1;
3724
3725         if (ctx != &cpuctx->ctx)
3726                 cpuctx = NULL;
3727
3728         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3729                            smp_processor_id(),
3730                            merge_sched_in, &can_add_hw);
3731 }
3732
3733 static void
3734 ctx_sched_in(struct perf_event_context *ctx,
3735              struct perf_cpu_context *cpuctx,
3736              enum event_type_t event_type,
3737              struct task_struct *task)
3738 {
3739         int is_active = ctx->is_active;
3740         u64 now;
3741
3742         lockdep_assert_held(&ctx->lock);
3743
3744         if (likely(!ctx->nr_events))
3745                 return;
3746
3747         ctx->is_active |= (event_type | EVENT_TIME);
3748         if (ctx->task) {
3749                 if (!is_active)
3750                         cpuctx->task_ctx = ctx;
3751                 else
3752                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3753         }
3754
3755         is_active ^= ctx->is_active; /* changed bits */
3756
3757         if (is_active & EVENT_TIME) {
3758                 /* start ctx time */
3759                 now = perf_clock();
3760                 ctx->timestamp = now;
3761                 perf_cgroup_set_timestamp(task, ctx);
3762         }
3763
3764         /*
3765          * First go through the list and put on any pinned groups
3766          * in order to give them the best chance of going on.
3767          */
3768         if (is_active & EVENT_PINNED)
3769                 ctx_pinned_sched_in(ctx, cpuctx);
3770
3771         /* Then walk through the lower prio flexible groups */
3772         if (is_active & EVENT_FLEXIBLE)
3773                 ctx_flexible_sched_in(ctx, cpuctx);
3774 }
3775
3776 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3777                              enum event_type_t event_type,
3778                              struct task_struct *task)
3779 {
3780         struct perf_event_context *ctx = &cpuctx->ctx;
3781
3782         ctx_sched_in(ctx, cpuctx, event_type, task);
3783 }
3784
3785 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3786                                         struct task_struct *task)
3787 {
3788         struct perf_cpu_context *cpuctx;
3789         struct pmu *pmu = ctx->pmu;
3790
3791         cpuctx = __get_cpu_context(ctx);
3792         if (cpuctx->task_ctx == ctx) {
3793                 if (cpuctx->sched_cb_usage)
3794                         __perf_pmu_sched_task(cpuctx, true);
3795                 return;
3796         }
3797
3798         perf_ctx_lock(cpuctx, ctx);
3799         /*
3800          * We must check ctx->nr_events while holding ctx->lock, such
3801          * that we serialize against perf_install_in_context().
3802          */
3803         if (!ctx->nr_events)
3804                 goto unlock;
3805
3806         perf_pmu_disable(pmu);
3807         /*
3808          * We want to keep the following priority order:
3809          * cpu pinned (that don't need to move), task pinned,
3810          * cpu flexible, task flexible.
3811          *
3812          * However, if task's ctx is not carrying any pinned
3813          * events, no need to flip the cpuctx's events around.
3814          */
3815         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3816                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3817         perf_event_sched_in(cpuctx, ctx, task);
3818
3819         if (cpuctx->sched_cb_usage && pmu->sched_task)
3820                 pmu->sched_task(cpuctx->task_ctx, true);
3821
3822         perf_pmu_enable(pmu);
3823
3824 unlock:
3825         perf_ctx_unlock(cpuctx, ctx);
3826 }
3827
3828 /*
3829  * Called from scheduler to add the events of the current task
3830  * with interrupts disabled.
3831  *
3832  * We restore the event value and then enable it.
3833  *
3834  * This does not protect us against NMI, but enable()
3835  * sets the enabled bit in the control field of event _before_
3836  * accessing the event control register. If a NMI hits, then it will
3837  * keep the event running.
3838  */
3839 void __perf_event_task_sched_in(struct task_struct *prev,
3840                                 struct task_struct *task)
3841 {
3842         struct perf_event_context *ctx;
3843         int ctxn;
3844
3845         /*
3846          * If cgroup events exist on this CPU, then we need to check if we have
3847          * to switch in PMU state; cgroup event are system-wide mode only.
3848          *
3849          * Since cgroup events are CPU events, we must schedule these in before
3850          * we schedule in the task events.
3851          */
3852         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3853                 perf_cgroup_sched_in(prev, task);
3854
3855         for_each_task_context_nr(ctxn) {
3856                 ctx = task->perf_event_ctxp[ctxn];
3857                 if (likely(!ctx))
3858                         continue;
3859
3860                 perf_event_context_sched_in(ctx, task);
3861         }
3862
3863         if (atomic_read(&nr_switch_events))
3864                 perf_event_switch(task, prev, true);
3865
3866         if (__this_cpu_read(perf_sched_cb_usages))
3867                 perf_pmu_sched_task(prev, task, true);
3868 }
3869
3870 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3871 {
3872         u64 frequency = event->attr.sample_freq;
3873         u64 sec = NSEC_PER_SEC;
3874         u64 divisor, dividend;
3875
3876         int count_fls, nsec_fls, frequency_fls, sec_fls;
3877
3878         count_fls = fls64(count);
3879         nsec_fls = fls64(nsec);
3880         frequency_fls = fls64(frequency);
3881         sec_fls = 30;
3882
3883         /*
3884          * We got @count in @nsec, with a target of sample_freq HZ
3885          * the target period becomes:
3886          *
3887          *             @count * 10^9
3888          * period = -------------------
3889          *          @nsec * sample_freq
3890          *
3891          */
3892
3893         /*
3894          * Reduce accuracy by one bit such that @a and @b converge
3895          * to a similar magnitude.
3896          */
3897 #define REDUCE_FLS(a, b)                \
3898 do {                                    \
3899         if (a##_fls > b##_fls) {        \
3900                 a >>= 1;                \
3901                 a##_fls--;              \
3902         } else {                        \
3903                 b >>= 1;                \
3904                 b##_fls--;              \
3905         }                               \
3906 } while (0)
3907
3908         /*
3909          * Reduce accuracy until either term fits in a u64, then proceed with
3910          * the other, so that finally we can do a u64/u64 division.
3911          */
3912         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3913                 REDUCE_FLS(nsec, frequency);
3914                 REDUCE_FLS(sec, count);
3915         }
3916
3917         if (count_fls + sec_fls > 64) {
3918                 divisor = nsec * frequency;
3919
3920                 while (count_fls + sec_fls > 64) {
3921                         REDUCE_FLS(count, sec);
3922                         divisor >>= 1;
3923                 }
3924
3925                 dividend = count * sec;
3926         } else {
3927                 dividend = count * sec;
3928
3929                 while (nsec_fls + frequency_fls > 64) {
3930                         REDUCE_FLS(nsec, frequency);
3931                         dividend >>= 1;
3932                 }
3933
3934                 divisor = nsec * frequency;
3935         }
3936
3937         if (!divisor)
3938                 return dividend;
3939
3940         return div64_u64(dividend, divisor);
3941 }
3942
3943 static DEFINE_PER_CPU(int, perf_throttled_count);
3944 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3945
3946 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3947 {
3948         struct hw_perf_event *hwc = &event->hw;
3949         s64 period, sample_period;
3950         s64 delta;
3951
3952         period = perf_calculate_period(event, nsec, count);
3953
3954         delta = (s64)(period - hwc->sample_period);
3955         delta = (delta + 7) / 8; /* low pass filter */
3956
3957         sample_period = hwc->sample_period + delta;
3958
3959         if (!sample_period)
3960                 sample_period = 1;
3961
3962         hwc->sample_period = sample_period;
3963
3964         if (local64_read(&hwc->period_left) > 8*sample_period) {
3965                 if (disable)
3966                         event->pmu->stop(event, PERF_EF_UPDATE);
3967
3968                 local64_set(&hwc->period_left, 0);
3969
3970                 if (disable)
3971                         event->pmu->start(event, PERF_EF_RELOAD);
3972         }
3973 }
3974
3975 /*
3976  * combine freq adjustment with unthrottling to avoid two passes over the
3977  * events. At the same time, make sure, having freq events does not change
3978  * the rate of unthrottling as that would introduce bias.
3979  */
3980 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3981                                            int needs_unthr)
3982 {
3983         struct perf_event *event;
3984         struct hw_perf_event *hwc;
3985         u64 now, period = TICK_NSEC;
3986         s64 delta;
3987
3988         /*
3989          * only need to iterate over all events iff:
3990          * - context have events in frequency mode (needs freq adjust)
3991          * - there are events to unthrottle on this cpu
3992          */
3993         if (!(ctx->nr_freq || needs_unthr))
3994                 return;
3995
3996         raw_spin_lock(&ctx->lock);
3997         perf_pmu_disable(ctx->pmu);
3998
3999         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4000                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4001                         continue;
4002
4003                 if (!event_filter_match(event))
4004                         continue;
4005
4006                 perf_pmu_disable(event->pmu);
4007
4008                 hwc = &event->hw;
4009
4010                 if (hwc->interrupts == MAX_INTERRUPTS) {
4011                         hwc->interrupts = 0;
4012                         perf_log_throttle(event, 1);
4013                         event->pmu->start(event, 0);
4014                 }
4015
4016                 if (!event->attr.freq || !event->attr.sample_freq)
4017                         goto next;
4018
4019                 /*
4020                  * stop the event and update event->count
4021                  */
4022                 event->pmu->stop(event, PERF_EF_UPDATE);
4023
4024                 now = local64_read(&event->count);
4025                 delta = now - hwc->freq_count_stamp;
4026                 hwc->freq_count_stamp = now;
4027
4028                 /*
4029                  * restart the event
4030                  * reload only if value has changed
4031                  * we have stopped the event so tell that
4032                  * to perf_adjust_period() to avoid stopping it
4033                  * twice.
4034                  */
4035                 if (delta > 0)
4036                         perf_adjust_period(event, period, delta, false);
4037
4038                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4039         next:
4040                 perf_pmu_enable(event->pmu);
4041         }
4042
4043         perf_pmu_enable(ctx->pmu);
4044         raw_spin_unlock(&ctx->lock);
4045 }
4046
4047 /*
4048  * Move @event to the tail of the @ctx's elegible events.
4049  */
4050 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4051 {
4052         /*
4053          * Rotate the first entry last of non-pinned groups. Rotation might be
4054          * disabled by the inheritance code.
4055          */
4056         if (ctx->rotate_disable)
4057                 return;
4058
4059         perf_event_groups_delete(&ctx->flexible_groups, event);
4060         perf_event_groups_insert(&ctx->flexible_groups, event);
4061 }
4062
4063 /* pick an event from the flexible_groups to rotate */
4064 static inline struct perf_event *
4065 ctx_event_to_rotate(struct perf_event_context *ctx)
4066 {
4067         struct perf_event *event;
4068
4069         /* pick the first active flexible event */
4070         event = list_first_entry_or_null(&ctx->flexible_active,
4071                                          struct perf_event, active_list);
4072
4073         /* if no active flexible event, pick the first event */
4074         if (!event) {
4075                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4076                                       typeof(*event), group_node);
4077         }
4078
4079         /*
4080          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4081          * finds there are unschedulable events, it will set it again.
4082          */
4083         ctx->rotate_necessary = 0;
4084
4085         return event;
4086 }
4087
4088 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4089 {
4090         struct perf_event *cpu_event = NULL, *task_event = NULL;
4091         struct perf_event_context *task_ctx = NULL;
4092         int cpu_rotate, task_rotate;
4093
4094         /*
4095          * Since we run this from IRQ context, nobody can install new
4096          * events, thus the event count values are stable.
4097          */
4098
4099         cpu_rotate = cpuctx->ctx.rotate_necessary;
4100         task_ctx = cpuctx->task_ctx;
4101         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4102
4103         if (!(cpu_rotate || task_rotate))
4104                 return false;
4105
4106         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4107         perf_pmu_disable(cpuctx->ctx.pmu);
4108
4109         if (task_rotate)
4110                 task_event = ctx_event_to_rotate(task_ctx);
4111         if (cpu_rotate)
4112                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4113
4114         /*
4115          * As per the order given at ctx_resched() first 'pop' task flexible
4116          * and then, if needed CPU flexible.
4117          */
4118         if (task_event || (task_ctx && cpu_event))
4119                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4120         if (cpu_event)
4121                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4122
4123         if (task_event)
4124                 rotate_ctx(task_ctx, task_event);
4125         if (cpu_event)
4126                 rotate_ctx(&cpuctx->ctx, cpu_event);
4127
4128         perf_event_sched_in(cpuctx, task_ctx, current);
4129
4130         perf_pmu_enable(cpuctx->ctx.pmu);
4131         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4132
4133         return true;
4134 }
4135
4136 void perf_event_task_tick(void)
4137 {
4138         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4139         struct perf_event_context *ctx, *tmp;
4140         int throttled;
4141
4142         lockdep_assert_irqs_disabled();
4143
4144         __this_cpu_inc(perf_throttled_seq);
4145         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4146         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4147
4148         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4149                 perf_adjust_freq_unthr_context(ctx, throttled);
4150 }
4151
4152 static int event_enable_on_exec(struct perf_event *event,
4153                                 struct perf_event_context *ctx)
4154 {
4155         if (!event->attr.enable_on_exec)
4156                 return 0;
4157
4158         event->attr.enable_on_exec = 0;
4159         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4160                 return 0;
4161
4162         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4163
4164         return 1;
4165 }
4166
4167 /*
4168  * Enable all of a task's events that have been marked enable-on-exec.
4169  * This expects task == current.
4170  */
4171 static void perf_event_enable_on_exec(int ctxn)
4172 {
4173         struct perf_event_context *ctx, *clone_ctx = NULL;
4174         enum event_type_t event_type = 0;
4175         struct perf_cpu_context *cpuctx;
4176         struct perf_event *event;
4177         unsigned long flags;
4178         int enabled = 0;
4179
4180         local_irq_save(flags);
4181         ctx = current->perf_event_ctxp[ctxn];
4182         if (!ctx || !ctx->nr_events)
4183                 goto out;
4184
4185         cpuctx = __get_cpu_context(ctx);
4186         perf_ctx_lock(cpuctx, ctx);
4187         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4188         list_for_each_entry(event, &ctx->event_list, event_entry) {
4189                 enabled |= event_enable_on_exec(event, ctx);
4190                 event_type |= get_event_type(event);
4191         }
4192
4193         /*
4194          * Unclone and reschedule this context if we enabled any event.
4195          */
4196         if (enabled) {
4197                 clone_ctx = unclone_ctx(ctx);
4198                 ctx_resched(cpuctx, ctx, event_type);
4199         } else {
4200                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4201         }
4202         perf_ctx_unlock(cpuctx, ctx);
4203
4204 out:
4205         local_irq_restore(flags);
4206
4207         if (clone_ctx)
4208                 put_ctx(clone_ctx);
4209 }
4210
4211 struct perf_read_data {
4212         struct perf_event *event;
4213         bool group;
4214         int ret;
4215 };
4216
4217 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4218 {
4219         u16 local_pkg, event_pkg;
4220
4221         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4222                 int local_cpu = smp_processor_id();
4223
4224                 event_pkg = topology_physical_package_id(event_cpu);
4225                 local_pkg = topology_physical_package_id(local_cpu);
4226
4227                 if (event_pkg == local_pkg)
4228                         return local_cpu;
4229         }
4230
4231         return event_cpu;
4232 }
4233
4234 /*
4235  * Cross CPU call to read the hardware event
4236  */
4237 static void __perf_event_read(void *info)
4238 {
4239         struct perf_read_data *data = info;
4240         struct perf_event *sub, *event = data->event;
4241         struct perf_event_context *ctx = event->ctx;
4242         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4243         struct pmu *pmu = event->pmu;
4244
4245         /*
4246          * If this is a task context, we need to check whether it is
4247          * the current task context of this cpu.  If not it has been
4248          * scheduled out before the smp call arrived.  In that case
4249          * event->count would have been updated to a recent sample
4250          * when the event was scheduled out.
4251          */
4252         if (ctx->task && cpuctx->task_ctx != ctx)
4253                 return;
4254
4255         raw_spin_lock(&ctx->lock);
4256         if (ctx->is_active & EVENT_TIME) {
4257                 update_context_time(ctx);
4258                 update_cgrp_time_from_event(event);
4259         }
4260
4261         perf_event_update_time(event);
4262         if (data->group)
4263                 perf_event_update_sibling_time(event);
4264
4265         if (event->state != PERF_EVENT_STATE_ACTIVE)
4266                 goto unlock;
4267
4268         if (!data->group) {
4269                 pmu->read(event);
4270                 data->ret = 0;
4271                 goto unlock;
4272         }
4273
4274         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4275
4276         pmu->read(event);
4277
4278         for_each_sibling_event(sub, event) {
4279                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4280                         /*
4281                          * Use sibling's PMU rather than @event's since
4282                          * sibling could be on different (eg: software) PMU.
4283                          */
4284                         sub->pmu->read(sub);
4285                 }
4286         }
4287
4288         data->ret = pmu->commit_txn(pmu);
4289
4290 unlock:
4291         raw_spin_unlock(&ctx->lock);
4292 }
4293
4294 static inline u64 perf_event_count(struct perf_event *event)
4295 {
4296         return local64_read(&event->count) + atomic64_read(&event->child_count);
4297 }
4298
4299 /*
4300  * NMI-safe method to read a local event, that is an event that
4301  * is:
4302  *   - either for the current task, or for this CPU
4303  *   - does not have inherit set, for inherited task events
4304  *     will not be local and we cannot read them atomically
4305  *   - must not have a pmu::count method
4306  */
4307 int perf_event_read_local(struct perf_event *event, u64 *value,
4308                           u64 *enabled, u64 *running)
4309 {
4310         unsigned long flags;
4311         int ret = 0;
4312
4313         /*
4314          * Disabling interrupts avoids all counter scheduling (context
4315          * switches, timer based rotation and IPIs).
4316          */
4317         local_irq_save(flags);
4318
4319         /*
4320          * It must not be an event with inherit set, we cannot read
4321          * all child counters from atomic context.
4322          */
4323         if (event->attr.inherit) {
4324                 ret = -EOPNOTSUPP;
4325                 goto out;
4326         }
4327
4328         /* If this is a per-task event, it must be for current */
4329         if ((event->attach_state & PERF_ATTACH_TASK) &&
4330             event->hw.target != current) {
4331                 ret = -EINVAL;
4332                 goto out;
4333         }
4334
4335         /* If this is a per-CPU event, it must be for this CPU */
4336         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4337             event->cpu != smp_processor_id()) {
4338                 ret = -EINVAL;
4339                 goto out;
4340         }
4341
4342         /* If this is a pinned event it must be running on this CPU */
4343         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4344                 ret = -EBUSY;
4345                 goto out;
4346         }
4347
4348         /*
4349          * If the event is currently on this CPU, its either a per-task event,
4350          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4351          * oncpu == -1).
4352          */
4353         if (event->oncpu == smp_processor_id())
4354                 event->pmu->read(event);
4355
4356         *value = local64_read(&event->count);
4357         if (enabled || running) {
4358                 u64 now = event->shadow_ctx_time + perf_clock();
4359                 u64 __enabled, __running;
4360
4361                 __perf_update_times(event, now, &__enabled, &__running);
4362                 if (enabled)
4363                         *enabled = __enabled;
4364                 if (running)
4365                         *running = __running;
4366         }
4367 out:
4368         local_irq_restore(flags);
4369
4370         return ret;
4371 }
4372
4373 static int perf_event_read(struct perf_event *event, bool group)
4374 {
4375         enum perf_event_state state = READ_ONCE(event->state);
4376         int event_cpu, ret = 0;
4377
4378         /*
4379          * If event is enabled and currently active on a CPU, update the
4380          * value in the event structure:
4381          */
4382 again:
4383         if (state == PERF_EVENT_STATE_ACTIVE) {
4384                 struct perf_read_data data;
4385
4386                 /*
4387                  * Orders the ->state and ->oncpu loads such that if we see
4388                  * ACTIVE we must also see the right ->oncpu.
4389                  *
4390                  * Matches the smp_wmb() from event_sched_in().
4391                  */
4392                 smp_rmb();
4393
4394                 event_cpu = READ_ONCE(event->oncpu);
4395                 if ((unsigned)event_cpu >= nr_cpu_ids)
4396                         return 0;
4397
4398                 data = (struct perf_read_data){
4399                         .event = event,
4400                         .group = group,
4401                         .ret = 0,
4402                 };
4403
4404                 preempt_disable();
4405                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4406
4407                 /*
4408                  * Purposely ignore the smp_call_function_single() return
4409                  * value.
4410                  *
4411                  * If event_cpu isn't a valid CPU it means the event got
4412                  * scheduled out and that will have updated the event count.
4413                  *
4414                  * Therefore, either way, we'll have an up-to-date event count
4415                  * after this.
4416                  */
4417                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4418                 preempt_enable();
4419                 ret = data.ret;
4420
4421         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4422                 struct perf_event_context *ctx = event->ctx;
4423                 unsigned long flags;
4424
4425                 raw_spin_lock_irqsave(&ctx->lock, flags);
4426                 state = event->state;
4427                 if (state != PERF_EVENT_STATE_INACTIVE) {
4428                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4429                         goto again;
4430                 }
4431
4432                 /*
4433                  * May read while context is not active (e.g., thread is
4434                  * blocked), in that case we cannot update context time
4435                  */
4436                 if (ctx->is_active & EVENT_TIME) {
4437                         update_context_time(ctx);
4438                         update_cgrp_time_from_event(event);
4439                 }
4440
4441                 perf_event_update_time(event);
4442                 if (group)
4443                         perf_event_update_sibling_time(event);
4444                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4445         }
4446
4447         return ret;
4448 }
4449
4450 /*
4451  * Initialize the perf_event context in a task_struct:
4452  */
4453 static void __perf_event_init_context(struct perf_event_context *ctx)
4454 {
4455         raw_spin_lock_init(&ctx->lock);
4456         mutex_init(&ctx->mutex);
4457         INIT_LIST_HEAD(&ctx->active_ctx_list);
4458         perf_event_groups_init(&ctx->pinned_groups);
4459         perf_event_groups_init(&ctx->flexible_groups);
4460         INIT_LIST_HEAD(&ctx->event_list);
4461         INIT_LIST_HEAD(&ctx->pinned_active);
4462         INIT_LIST_HEAD(&ctx->flexible_active);
4463         refcount_set(&ctx->refcount, 1);
4464 }
4465
4466 static struct perf_event_context *
4467 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4468 {
4469         struct perf_event_context *ctx;
4470
4471         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4472         if (!ctx)
4473                 return NULL;
4474
4475         __perf_event_init_context(ctx);
4476         if (task)
4477                 ctx->task = get_task_struct(task);
4478         ctx->pmu = pmu;
4479
4480         return ctx;
4481 }
4482
4483 static struct task_struct *
4484 find_lively_task_by_vpid(pid_t vpid)
4485 {
4486         struct task_struct *task;
4487
4488         rcu_read_lock();
4489         if (!vpid)
4490                 task = current;
4491         else
4492                 task = find_task_by_vpid(vpid);
4493         if (task)
4494                 get_task_struct(task);
4495         rcu_read_unlock();
4496
4497         if (!task)
4498                 return ERR_PTR(-ESRCH);
4499
4500         return task;
4501 }
4502
4503 /*
4504  * Returns a matching context with refcount and pincount.
4505  */
4506 static struct perf_event_context *
4507 find_get_context(struct pmu *pmu, struct task_struct *task,
4508                 struct perf_event *event)
4509 {
4510         struct perf_event_context *ctx, *clone_ctx = NULL;
4511         struct perf_cpu_context *cpuctx;
4512         void *task_ctx_data = NULL;
4513         unsigned long flags;
4514         int ctxn, err;
4515         int cpu = event->cpu;
4516
4517         if (!task) {
4518                 /* Must be root to operate on a CPU event: */
4519                 err = perf_allow_cpu(&event->attr);
4520                 if (err)
4521                         return ERR_PTR(err);
4522
4523                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4524                 ctx = &cpuctx->ctx;
4525                 get_ctx(ctx);
4526                 ++ctx->pin_count;
4527
4528                 return ctx;
4529         }
4530
4531         err = -EINVAL;
4532         ctxn = pmu->task_ctx_nr;
4533         if (ctxn < 0)
4534                 goto errout;
4535
4536         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4537                 task_ctx_data = alloc_task_ctx_data(pmu);
4538                 if (!task_ctx_data) {
4539                         err = -ENOMEM;
4540                         goto errout;
4541                 }
4542         }
4543
4544 retry:
4545         ctx = perf_lock_task_context(task, ctxn, &flags);
4546         if (ctx) {
4547                 clone_ctx = unclone_ctx(ctx);
4548                 ++ctx->pin_count;
4549
4550                 if (task_ctx_data && !ctx->task_ctx_data) {
4551                         ctx->task_ctx_data = task_ctx_data;
4552                         task_ctx_data = NULL;
4553                 }
4554                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4555
4556                 if (clone_ctx)
4557                         put_ctx(clone_ctx);
4558         } else {
4559                 ctx = alloc_perf_context(pmu, task);
4560                 err = -ENOMEM;
4561                 if (!ctx)
4562                         goto errout;
4563
4564                 if (task_ctx_data) {
4565                         ctx->task_ctx_data = task_ctx_data;
4566                         task_ctx_data = NULL;
4567                 }
4568
4569                 err = 0;
4570                 mutex_lock(&task->perf_event_mutex);
4571                 /*
4572                  * If it has already passed perf_event_exit_task().
4573                  * we must see PF_EXITING, it takes this mutex too.
4574                  */
4575                 if (task->flags & PF_EXITING)
4576                         err = -ESRCH;
4577                 else if (task->perf_event_ctxp[ctxn])
4578                         err = -EAGAIN;
4579                 else {
4580                         get_ctx(ctx);
4581                         ++ctx->pin_count;
4582                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4583                 }
4584                 mutex_unlock(&task->perf_event_mutex);
4585
4586                 if (unlikely(err)) {
4587                         put_ctx(ctx);
4588
4589                         if (err == -EAGAIN)
4590                                 goto retry;
4591                         goto errout;
4592                 }
4593         }
4594
4595         free_task_ctx_data(pmu, task_ctx_data);
4596         return ctx;
4597
4598 errout:
4599         free_task_ctx_data(pmu, task_ctx_data);
4600         return ERR_PTR(err);
4601 }
4602
4603 static void perf_event_free_filter(struct perf_event *event);
4604 static void perf_event_free_bpf_prog(struct perf_event *event);
4605
4606 static void free_event_rcu(struct rcu_head *head)
4607 {
4608         struct perf_event *event;
4609
4610         event = container_of(head, struct perf_event, rcu_head);
4611         if (event->ns)
4612                 put_pid_ns(event->ns);
4613         perf_event_free_filter(event);
4614         kfree(event);
4615 }
4616
4617 static void ring_buffer_attach(struct perf_event *event,
4618                                struct perf_buffer *rb);
4619
4620 static void detach_sb_event(struct perf_event *event)
4621 {
4622         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4623
4624         raw_spin_lock(&pel->lock);
4625         list_del_rcu(&event->sb_list);
4626         raw_spin_unlock(&pel->lock);
4627 }
4628
4629 static bool is_sb_event(struct perf_event *event)
4630 {
4631         struct perf_event_attr *attr = &event->attr;
4632
4633         if (event->parent)
4634                 return false;
4635
4636         if (event->attach_state & PERF_ATTACH_TASK)
4637                 return false;
4638
4639         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4640             attr->comm || attr->comm_exec ||
4641             attr->task || attr->ksymbol ||
4642             attr->context_switch || attr->text_poke ||
4643             attr->bpf_event)
4644                 return true;
4645         return false;
4646 }
4647
4648 static void unaccount_pmu_sb_event(struct perf_event *event)
4649 {
4650         if (is_sb_event(event))
4651                 detach_sb_event(event);
4652 }
4653
4654 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4655 {
4656         if (event->parent)
4657                 return;
4658
4659         if (is_cgroup_event(event))
4660                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4661 }
4662
4663 #ifdef CONFIG_NO_HZ_FULL
4664 static DEFINE_SPINLOCK(nr_freq_lock);
4665 #endif
4666
4667 static void unaccount_freq_event_nohz(void)
4668 {
4669 #ifdef CONFIG_NO_HZ_FULL
4670         spin_lock(&nr_freq_lock);
4671         if (atomic_dec_and_test(&nr_freq_events))
4672                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4673         spin_unlock(&nr_freq_lock);
4674 #endif
4675 }
4676
4677 static void unaccount_freq_event(void)
4678 {
4679         if (tick_nohz_full_enabled())
4680                 unaccount_freq_event_nohz();
4681         else
4682                 atomic_dec(&nr_freq_events);
4683 }
4684
4685 static void unaccount_event(struct perf_event *event)
4686 {
4687         bool dec = false;
4688
4689         if (event->parent)
4690                 return;
4691
4692         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4693                 dec = true;
4694         if (event->attr.mmap || event->attr.mmap_data)
4695                 atomic_dec(&nr_mmap_events);
4696         if (event->attr.build_id)
4697                 atomic_dec(&nr_build_id_events);
4698         if (event->attr.comm)
4699                 atomic_dec(&nr_comm_events);
4700         if (event->attr.namespaces)
4701                 atomic_dec(&nr_namespaces_events);
4702         if (event->attr.cgroup)
4703                 atomic_dec(&nr_cgroup_events);
4704         if (event->attr.task)
4705                 atomic_dec(&nr_task_events);
4706         if (event->attr.freq)
4707                 unaccount_freq_event();
4708         if (event->attr.context_switch) {
4709                 dec = true;
4710                 atomic_dec(&nr_switch_events);
4711         }
4712         if (is_cgroup_event(event))
4713                 dec = true;
4714         if (has_branch_stack(event))
4715                 dec = true;
4716         if (event->attr.ksymbol)
4717                 atomic_dec(&nr_ksymbol_events);
4718         if (event->attr.bpf_event)
4719                 atomic_dec(&nr_bpf_events);
4720         if (event->attr.text_poke)
4721                 atomic_dec(&nr_text_poke_events);
4722
4723         if (dec) {
4724                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4725                         schedule_delayed_work(&perf_sched_work, HZ);
4726         }
4727
4728         unaccount_event_cpu(event, event->cpu);
4729
4730         unaccount_pmu_sb_event(event);
4731 }
4732
4733 static void perf_sched_delayed(struct work_struct *work)
4734 {
4735         mutex_lock(&perf_sched_mutex);
4736         if (atomic_dec_and_test(&perf_sched_count))
4737                 static_branch_disable(&perf_sched_events);
4738         mutex_unlock(&perf_sched_mutex);
4739 }
4740
4741 /*
4742  * The following implement mutual exclusion of events on "exclusive" pmus
4743  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4744  * at a time, so we disallow creating events that might conflict, namely:
4745  *
4746  *  1) cpu-wide events in the presence of per-task events,
4747  *  2) per-task events in the presence of cpu-wide events,
4748  *  3) two matching events on the same context.
4749  *
4750  * The former two cases are handled in the allocation path (perf_event_alloc(),
4751  * _free_event()), the latter -- before the first perf_install_in_context().
4752  */
4753 static int exclusive_event_init(struct perf_event *event)
4754 {
4755         struct pmu *pmu = event->pmu;
4756
4757         if (!is_exclusive_pmu(pmu))
4758                 return 0;
4759
4760         /*
4761          * Prevent co-existence of per-task and cpu-wide events on the
4762          * same exclusive pmu.
4763          *
4764          * Negative pmu::exclusive_cnt means there are cpu-wide
4765          * events on this "exclusive" pmu, positive means there are
4766          * per-task events.
4767          *
4768          * Since this is called in perf_event_alloc() path, event::ctx
4769          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4770          * to mean "per-task event", because unlike other attach states it
4771          * never gets cleared.
4772          */
4773         if (event->attach_state & PERF_ATTACH_TASK) {
4774                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4775                         return -EBUSY;
4776         } else {
4777                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4778                         return -EBUSY;
4779         }
4780
4781         return 0;
4782 }
4783
4784 static void exclusive_event_destroy(struct perf_event *event)
4785 {
4786         struct pmu *pmu = event->pmu;
4787
4788         if (!is_exclusive_pmu(pmu))
4789                 return;
4790
4791         /* see comment in exclusive_event_init() */
4792         if (event->attach_state & PERF_ATTACH_TASK)
4793                 atomic_dec(&pmu->exclusive_cnt);
4794         else
4795                 atomic_inc(&pmu->exclusive_cnt);
4796 }
4797
4798 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4799 {
4800         if ((e1->pmu == e2->pmu) &&
4801             (e1->cpu == e2->cpu ||
4802              e1->cpu == -1 ||
4803              e2->cpu == -1))
4804                 return true;
4805         return false;
4806 }
4807
4808 static bool exclusive_event_installable(struct perf_event *event,
4809                                         struct perf_event_context *ctx)
4810 {
4811         struct perf_event *iter_event;
4812         struct pmu *pmu = event->pmu;
4813
4814         lockdep_assert_held(&ctx->mutex);
4815
4816         if (!is_exclusive_pmu(pmu))
4817                 return true;
4818
4819         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4820                 if (exclusive_event_match(iter_event, event))
4821                         return false;
4822         }
4823
4824         return true;
4825 }
4826
4827 static void perf_addr_filters_splice(struct perf_event *event,
4828                                        struct list_head *head);
4829
4830 static void _free_event(struct perf_event *event)
4831 {
4832         irq_work_sync(&event->pending);
4833
4834         unaccount_event(event);
4835
4836         security_perf_event_free(event);
4837
4838         if (event->rb) {
4839                 /*
4840                  * Can happen when we close an event with re-directed output.
4841                  *
4842                  * Since we have a 0 refcount, perf_mmap_close() will skip
4843                  * over us; possibly making our ring_buffer_put() the last.
4844                  */
4845                 mutex_lock(&event->mmap_mutex);
4846                 ring_buffer_attach(event, NULL);
4847                 mutex_unlock(&event->mmap_mutex);
4848         }
4849
4850         if (is_cgroup_event(event))
4851                 perf_detach_cgroup(event);
4852
4853         if (!event->parent) {
4854                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4855                         put_callchain_buffers();
4856         }
4857
4858         perf_event_free_bpf_prog(event);
4859         perf_addr_filters_splice(event, NULL);
4860         kfree(event->addr_filter_ranges);
4861
4862         if (event->destroy)
4863                 event->destroy(event);
4864
4865         /*
4866          * Must be after ->destroy(), due to uprobe_perf_close() using
4867          * hw.target.
4868          */
4869         if (event->hw.target)
4870                 put_task_struct(event->hw.target);
4871
4872         /*
4873          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4874          * all task references must be cleaned up.
4875          */
4876         if (event->ctx)
4877                 put_ctx(event->ctx);
4878
4879         exclusive_event_destroy(event);
4880         module_put(event->pmu->module);
4881
4882         call_rcu(&event->rcu_head, free_event_rcu);
4883 }
4884
4885 /*
4886  * Used to free events which have a known refcount of 1, such as in error paths
4887  * where the event isn't exposed yet and inherited events.
4888  */
4889 static void free_event(struct perf_event *event)
4890 {
4891         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4892                                 "unexpected event refcount: %ld; ptr=%p\n",
4893                                 atomic_long_read(&event->refcount), event)) {
4894                 /* leak to avoid use-after-free */
4895                 return;
4896         }
4897
4898         _free_event(event);
4899 }
4900
4901 /*
4902  * Remove user event from the owner task.
4903  */
4904 static void perf_remove_from_owner(struct perf_event *event)
4905 {
4906         struct task_struct *owner;
4907
4908         rcu_read_lock();
4909         /*
4910          * Matches the smp_store_release() in perf_event_exit_task(). If we
4911          * observe !owner it means the list deletion is complete and we can
4912          * indeed free this event, otherwise we need to serialize on
4913          * owner->perf_event_mutex.
4914          */
4915         owner = READ_ONCE(event->owner);
4916         if (owner) {
4917                 /*
4918                  * Since delayed_put_task_struct() also drops the last
4919                  * task reference we can safely take a new reference
4920                  * while holding the rcu_read_lock().
4921                  */
4922                 get_task_struct(owner);
4923         }
4924         rcu_read_unlock();
4925
4926         if (owner) {
4927                 /*
4928                  * If we're here through perf_event_exit_task() we're already
4929                  * holding ctx->mutex which would be an inversion wrt. the
4930                  * normal lock order.
4931                  *
4932                  * However we can safely take this lock because its the child
4933                  * ctx->mutex.
4934                  */
4935                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4936
4937                 /*
4938                  * We have to re-check the event->owner field, if it is cleared
4939                  * we raced with perf_event_exit_task(), acquiring the mutex
4940                  * ensured they're done, and we can proceed with freeing the
4941                  * event.
4942                  */
4943                 if (event->owner) {
4944                         list_del_init(&event->owner_entry);
4945                         smp_store_release(&event->owner, NULL);
4946                 }
4947                 mutex_unlock(&owner->perf_event_mutex);
4948                 put_task_struct(owner);
4949         }
4950 }
4951
4952 static void put_event(struct perf_event *event)
4953 {
4954         if (!atomic_long_dec_and_test(&event->refcount))
4955                 return;
4956
4957         _free_event(event);
4958 }
4959
4960 /*
4961  * Kill an event dead; while event:refcount will preserve the event
4962  * object, it will not preserve its functionality. Once the last 'user'
4963  * gives up the object, we'll destroy the thing.
4964  */
4965 int perf_event_release_kernel(struct perf_event *event)
4966 {
4967         struct perf_event_context *ctx = event->ctx;
4968         struct perf_event *child, *tmp;
4969         LIST_HEAD(free_list);
4970
4971         /*
4972          * If we got here through err_file: fput(event_file); we will not have
4973          * attached to a context yet.
4974          */
4975         if (!ctx) {
4976                 WARN_ON_ONCE(event->attach_state &
4977                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4978                 goto no_ctx;
4979         }
4980
4981         if (!is_kernel_event(event))
4982                 perf_remove_from_owner(event);
4983
4984         ctx = perf_event_ctx_lock(event);
4985         WARN_ON_ONCE(ctx->parent_ctx);
4986         perf_remove_from_context(event, DETACH_GROUP);
4987
4988         raw_spin_lock_irq(&ctx->lock);
4989         /*
4990          * Mark this event as STATE_DEAD, there is no external reference to it
4991          * anymore.
4992          *
4993          * Anybody acquiring event->child_mutex after the below loop _must_
4994          * also see this, most importantly inherit_event() which will avoid
4995          * placing more children on the list.
4996          *
4997          * Thus this guarantees that we will in fact observe and kill _ALL_
4998          * child events.
4999          */
5000         event->state = PERF_EVENT_STATE_DEAD;
5001         raw_spin_unlock_irq(&ctx->lock);
5002
5003         perf_event_ctx_unlock(event, ctx);
5004
5005 again:
5006         mutex_lock(&event->child_mutex);
5007         list_for_each_entry(child, &event->child_list, child_list) {
5008
5009                 /*
5010                  * Cannot change, child events are not migrated, see the
5011                  * comment with perf_event_ctx_lock_nested().
5012                  */
5013                 ctx = READ_ONCE(child->ctx);
5014                 /*
5015                  * Since child_mutex nests inside ctx::mutex, we must jump
5016                  * through hoops. We start by grabbing a reference on the ctx.
5017                  *
5018                  * Since the event cannot get freed while we hold the
5019                  * child_mutex, the context must also exist and have a !0
5020                  * reference count.
5021                  */
5022                 get_ctx(ctx);
5023
5024                 /*
5025                  * Now that we have a ctx ref, we can drop child_mutex, and
5026                  * acquire ctx::mutex without fear of it going away. Then we
5027                  * can re-acquire child_mutex.
5028                  */
5029                 mutex_unlock(&event->child_mutex);
5030                 mutex_lock(&ctx->mutex);
5031                 mutex_lock(&event->child_mutex);
5032
5033                 /*
5034                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5035                  * state, if child is still the first entry, it didn't get freed
5036                  * and we can continue doing so.
5037                  */
5038                 tmp = list_first_entry_or_null(&event->child_list,
5039                                                struct perf_event, child_list);
5040                 if (tmp == child) {
5041                         perf_remove_from_context(child, DETACH_GROUP);
5042                         list_move(&child->child_list, &free_list);
5043                         /*
5044                          * This matches the refcount bump in inherit_event();
5045                          * this can't be the last reference.
5046                          */
5047                         put_event(event);
5048                 }
5049
5050                 mutex_unlock(&event->child_mutex);
5051                 mutex_unlock(&ctx->mutex);
5052                 put_ctx(ctx);
5053                 goto again;
5054         }
5055         mutex_unlock(&event->child_mutex);
5056
5057         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5058                 void *var = &child->ctx->refcount;
5059
5060                 list_del(&child->child_list);
5061                 free_event(child);
5062
5063                 /*
5064                  * Wake any perf_event_free_task() waiting for this event to be
5065                  * freed.
5066                  */
5067                 smp_mb(); /* pairs with wait_var_event() */
5068                 wake_up_var(var);
5069         }
5070
5071 no_ctx:
5072         put_event(event); /* Must be the 'last' reference */
5073         return 0;
5074 }
5075 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5076
5077 /*
5078  * Called when the last reference to the file is gone.
5079  */
5080 static int perf_release(struct inode *inode, struct file *file)
5081 {
5082         perf_event_release_kernel(file->private_data);
5083         return 0;
5084 }
5085
5086 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5087 {
5088         struct perf_event *child;
5089         u64 total = 0;
5090
5091         *enabled = 0;
5092         *running = 0;
5093
5094         mutex_lock(&event->child_mutex);
5095
5096         (void)perf_event_read(event, false);
5097         total += perf_event_count(event);
5098
5099         *enabled += event->total_time_enabled +
5100                         atomic64_read(&event->child_total_time_enabled);
5101         *running += event->total_time_running +
5102                         atomic64_read(&event->child_total_time_running);
5103
5104         list_for_each_entry(child, &event->child_list, child_list) {
5105                 (void)perf_event_read(child, false);
5106                 total += perf_event_count(child);
5107                 *enabled += child->total_time_enabled;
5108                 *running += child->total_time_running;
5109         }
5110         mutex_unlock(&event->child_mutex);
5111
5112         return total;
5113 }
5114
5115 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5116 {
5117         struct perf_event_context *ctx;
5118         u64 count;
5119
5120         ctx = perf_event_ctx_lock(event);
5121         count = __perf_event_read_value(event, enabled, running);
5122         perf_event_ctx_unlock(event, ctx);
5123
5124         return count;
5125 }
5126 EXPORT_SYMBOL_GPL(perf_event_read_value);
5127
5128 static int __perf_read_group_add(struct perf_event *leader,
5129                                         u64 read_format, u64 *values)
5130 {
5131         struct perf_event_context *ctx = leader->ctx;
5132         struct perf_event *sub;
5133         unsigned long flags;
5134         int n = 1; /* skip @nr */
5135         int ret;
5136
5137         ret = perf_event_read(leader, true);
5138         if (ret)
5139                 return ret;
5140
5141         raw_spin_lock_irqsave(&ctx->lock, flags);
5142
5143         /*
5144          * Since we co-schedule groups, {enabled,running} times of siblings
5145          * will be identical to those of the leader, so we only publish one
5146          * set.
5147          */
5148         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5149                 values[n++] += leader->total_time_enabled +
5150                         atomic64_read(&leader->child_total_time_enabled);
5151         }
5152
5153         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5154                 values[n++] += leader->total_time_running +
5155                         atomic64_read(&leader->child_total_time_running);
5156         }
5157
5158         /*
5159          * Write {count,id} tuples for every sibling.
5160          */
5161         values[n++] += perf_event_count(leader);
5162         if (read_format & PERF_FORMAT_ID)
5163                 values[n++] = primary_event_id(leader);
5164
5165         for_each_sibling_event(sub, leader) {
5166                 values[n++] += perf_event_count(sub);
5167                 if (read_format & PERF_FORMAT_ID)
5168                         values[n++] = primary_event_id(sub);
5169         }
5170
5171         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5172         return 0;
5173 }
5174
5175 static int perf_read_group(struct perf_event *event,
5176                                    u64 read_format, char __user *buf)
5177 {
5178         struct perf_event *leader = event->group_leader, *child;
5179         struct perf_event_context *ctx = leader->ctx;
5180         int ret;
5181         u64 *values;
5182
5183         lockdep_assert_held(&ctx->mutex);
5184
5185         values = kzalloc(event->read_size, GFP_KERNEL);
5186         if (!values)
5187                 return -ENOMEM;
5188
5189         values[0] = 1 + leader->nr_siblings;
5190
5191         /*
5192          * By locking the child_mutex of the leader we effectively
5193          * lock the child list of all siblings.. XXX explain how.
5194          */
5195         mutex_lock(&leader->child_mutex);
5196
5197         ret = __perf_read_group_add(leader, read_format, values);
5198         if (ret)
5199                 goto unlock;
5200
5201         list_for_each_entry(child, &leader->child_list, child_list) {
5202                 ret = __perf_read_group_add(child, read_format, values);
5203                 if (ret)
5204                         goto unlock;
5205         }
5206
5207         mutex_unlock(&leader->child_mutex);
5208
5209         ret = event->read_size;
5210         if (copy_to_user(buf, values, event->read_size))
5211                 ret = -EFAULT;
5212         goto out;
5213
5214 unlock:
5215         mutex_unlock(&leader->child_mutex);
5216 out:
5217         kfree(values);
5218         return ret;
5219 }
5220
5221 static int perf_read_one(struct perf_event *event,
5222                                  u64 read_format, char __user *buf)
5223 {
5224         u64 enabled, running;
5225         u64 values[4];
5226         int n = 0;
5227
5228         values[n++] = __perf_event_read_value(event, &enabled, &running);
5229         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5230                 values[n++] = enabled;
5231         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5232                 values[n++] = running;
5233         if (read_format & PERF_FORMAT_ID)
5234                 values[n++] = primary_event_id(event);
5235
5236         if (copy_to_user(buf, values, n * sizeof(u64)))
5237                 return -EFAULT;
5238
5239         return n * sizeof(u64);
5240 }
5241
5242 static bool is_event_hup(struct perf_event *event)
5243 {
5244         bool no_children;
5245
5246         if (event->state > PERF_EVENT_STATE_EXIT)
5247                 return false;
5248
5249         mutex_lock(&event->child_mutex);
5250         no_children = list_empty(&event->child_list);
5251         mutex_unlock(&event->child_mutex);
5252         return no_children;
5253 }
5254
5255 /*
5256  * Read the performance event - simple non blocking version for now
5257  */
5258 static ssize_t
5259 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5260 {
5261         u64 read_format = event->attr.read_format;
5262         int ret;
5263
5264         /*
5265          * Return end-of-file for a read on an event that is in
5266          * error state (i.e. because it was pinned but it couldn't be
5267          * scheduled on to the CPU at some point).
5268          */
5269         if (event->state == PERF_EVENT_STATE_ERROR)
5270                 return 0;
5271
5272         if (count < event->read_size)
5273                 return -ENOSPC;
5274
5275         WARN_ON_ONCE(event->ctx->parent_ctx);
5276         if (read_format & PERF_FORMAT_GROUP)
5277                 ret = perf_read_group(event, read_format, buf);
5278         else
5279                 ret = perf_read_one(event, read_format, buf);
5280
5281         return ret;
5282 }
5283
5284 static ssize_t
5285 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5286 {
5287         struct perf_event *event = file->private_data;
5288         struct perf_event_context *ctx;
5289         int ret;
5290
5291         ret = security_perf_event_read(event);
5292         if (ret)
5293                 return ret;
5294
5295         ctx = perf_event_ctx_lock(event);
5296         ret = __perf_read(event, buf, count);
5297         perf_event_ctx_unlock(event, ctx);
5298
5299         return ret;
5300 }
5301
5302 static __poll_t perf_poll(struct file *file, poll_table *wait)
5303 {
5304         struct perf_event *event = file->private_data;
5305         struct perf_buffer *rb;
5306         __poll_t events = EPOLLHUP;
5307
5308         poll_wait(file, &event->waitq, wait);
5309
5310         if (is_event_hup(event))
5311                 return events;
5312
5313         /*
5314          * Pin the event->rb by taking event->mmap_mutex; otherwise
5315          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5316          */
5317         mutex_lock(&event->mmap_mutex);
5318         rb = event->rb;
5319         if (rb)
5320                 events = atomic_xchg(&rb->poll, 0);
5321         mutex_unlock(&event->mmap_mutex);
5322         return events;
5323 }
5324
5325 static void _perf_event_reset(struct perf_event *event)
5326 {
5327         (void)perf_event_read(event, false);
5328         local64_set(&event->count, 0);
5329         perf_event_update_userpage(event);
5330 }
5331
5332 /* Assume it's not an event with inherit set. */
5333 u64 perf_event_pause(struct perf_event *event, bool reset)
5334 {
5335         struct perf_event_context *ctx;
5336         u64 count;
5337
5338         ctx = perf_event_ctx_lock(event);
5339         WARN_ON_ONCE(event->attr.inherit);
5340         _perf_event_disable(event);
5341         count = local64_read(&event->count);
5342         if (reset)
5343                 local64_set(&event->count, 0);
5344         perf_event_ctx_unlock(event, ctx);
5345
5346         return count;
5347 }
5348 EXPORT_SYMBOL_GPL(perf_event_pause);
5349
5350 /*
5351  * Holding the top-level event's child_mutex means that any
5352  * descendant process that has inherited this event will block
5353  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5354  * task existence requirements of perf_event_enable/disable.
5355  */
5356 static void perf_event_for_each_child(struct perf_event *event,
5357                                         void (*func)(struct perf_event *))
5358 {
5359         struct perf_event *child;
5360
5361         WARN_ON_ONCE(event->ctx->parent_ctx);
5362
5363         mutex_lock(&event->child_mutex);
5364         func(event);
5365         list_for_each_entry(child, &event->child_list, child_list)
5366                 func(child);
5367         mutex_unlock(&event->child_mutex);
5368 }
5369
5370 static void perf_event_for_each(struct perf_event *event,
5371                                   void (*func)(struct perf_event *))
5372 {
5373         struct perf_event_context *ctx = event->ctx;
5374         struct perf_event *sibling;
5375
5376         lockdep_assert_held(&ctx->mutex);
5377
5378         event = event->group_leader;
5379
5380         perf_event_for_each_child(event, func);
5381         for_each_sibling_event(sibling, event)
5382                 perf_event_for_each_child(sibling, func);
5383 }
5384
5385 static void __perf_event_period(struct perf_event *event,
5386                                 struct perf_cpu_context *cpuctx,
5387                                 struct perf_event_context *ctx,
5388                                 void *info)
5389 {
5390         u64 value = *((u64 *)info);
5391         bool active;
5392
5393         if (event->attr.freq) {
5394                 event->attr.sample_freq = value;
5395         } else {
5396                 event->attr.sample_period = value;
5397                 event->hw.sample_period = value;
5398         }
5399
5400         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5401         if (active) {
5402                 perf_pmu_disable(ctx->pmu);
5403                 /*
5404                  * We could be throttled; unthrottle now to avoid the tick
5405                  * trying to unthrottle while we already re-started the event.
5406                  */
5407                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5408                         event->hw.interrupts = 0;
5409                         perf_log_throttle(event, 1);
5410                 }
5411                 event->pmu->stop(event, PERF_EF_UPDATE);
5412         }
5413
5414         local64_set(&event->hw.period_left, 0);
5415
5416         if (active) {
5417                 event->pmu->start(event, PERF_EF_RELOAD);
5418                 perf_pmu_enable(ctx->pmu);
5419         }
5420 }
5421
5422 static int perf_event_check_period(struct perf_event *event, u64 value)
5423 {
5424         return event->pmu->check_period(event, value);
5425 }
5426
5427 static int _perf_event_period(struct perf_event *event, u64 value)
5428 {
5429         if (!is_sampling_event(event))
5430                 return -EINVAL;
5431
5432         if (!value)
5433                 return -EINVAL;
5434
5435         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5436                 return -EINVAL;
5437
5438         if (perf_event_check_period(event, value))
5439                 return -EINVAL;
5440
5441         if (!event->attr.freq && (value & (1ULL << 63)))
5442                 return -EINVAL;
5443
5444         event_function_call(event, __perf_event_period, &value);
5445
5446         return 0;
5447 }
5448
5449 int perf_event_period(struct perf_event *event, u64 value)
5450 {
5451         struct perf_event_context *ctx;
5452         int ret;
5453
5454         ctx = perf_event_ctx_lock(event);
5455         ret = _perf_event_period(event, value);
5456         perf_event_ctx_unlock(event, ctx);
5457
5458         return ret;
5459 }
5460 EXPORT_SYMBOL_GPL(perf_event_period);
5461
5462 static const struct file_operations perf_fops;
5463
5464 static inline int perf_fget_light(int fd, struct fd *p)
5465 {
5466         struct fd f = fdget(fd);
5467         if (!f.file)
5468                 return -EBADF;
5469
5470         if (f.file->f_op != &perf_fops) {
5471                 fdput(f);
5472                 return -EBADF;
5473         }
5474         *p = f;
5475         return 0;
5476 }
5477
5478 static int perf_event_set_output(struct perf_event *event,
5479                                  struct perf_event *output_event);
5480 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5481 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5482 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5483                           struct perf_event_attr *attr);
5484
5485 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5486 {
5487         void (*func)(struct perf_event *);
5488         u32 flags = arg;
5489
5490         switch (cmd) {
5491         case PERF_EVENT_IOC_ENABLE:
5492                 func = _perf_event_enable;
5493                 break;
5494         case PERF_EVENT_IOC_DISABLE:
5495                 func = _perf_event_disable;
5496                 break;
5497         case PERF_EVENT_IOC_RESET:
5498                 func = _perf_event_reset;
5499                 break;
5500
5501         case PERF_EVENT_IOC_REFRESH:
5502                 return _perf_event_refresh(event, arg);
5503
5504         case PERF_EVENT_IOC_PERIOD:
5505         {
5506                 u64 value;
5507
5508                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5509                         return -EFAULT;
5510
5511                 return _perf_event_period(event, value);
5512         }
5513         case PERF_EVENT_IOC_ID:
5514         {
5515                 u64 id = primary_event_id(event);
5516
5517                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5518                         return -EFAULT;
5519                 return 0;
5520         }
5521
5522         case PERF_EVENT_IOC_SET_OUTPUT:
5523         {
5524                 int ret;
5525                 if (arg != -1) {
5526                         struct perf_event *output_event;
5527                         struct fd output;
5528                         ret = perf_fget_light(arg, &output);
5529                         if (ret)
5530                                 return ret;
5531                         output_event = output.file->private_data;
5532                         ret = perf_event_set_output(event, output_event);
5533                         fdput(output);
5534                 } else {
5535                         ret = perf_event_set_output(event, NULL);
5536                 }
5537                 return ret;
5538         }
5539
5540         case PERF_EVENT_IOC_SET_FILTER:
5541                 return perf_event_set_filter(event, (void __user *)arg);
5542
5543         case PERF_EVENT_IOC_SET_BPF:
5544                 return perf_event_set_bpf_prog(event, arg);
5545
5546         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5547                 struct perf_buffer *rb;
5548
5549                 rcu_read_lock();
5550                 rb = rcu_dereference(event->rb);
5551                 if (!rb || !rb->nr_pages) {
5552                         rcu_read_unlock();
5553                         return -EINVAL;
5554                 }
5555                 rb_toggle_paused(rb, !!arg);
5556                 rcu_read_unlock();
5557                 return 0;
5558         }
5559
5560         case PERF_EVENT_IOC_QUERY_BPF:
5561                 return perf_event_query_prog_array(event, (void __user *)arg);
5562
5563         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5564                 struct perf_event_attr new_attr;
5565                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5566                                          &new_attr);
5567
5568                 if (err)
5569                         return err;
5570
5571                 return perf_event_modify_attr(event,  &new_attr);
5572         }
5573         default:
5574                 return -ENOTTY;
5575         }
5576
5577         if (flags & PERF_IOC_FLAG_GROUP)
5578                 perf_event_for_each(event, func);
5579         else
5580                 perf_event_for_each_child(event, func);
5581
5582         return 0;
5583 }
5584
5585 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5586 {
5587         struct perf_event *event = file->private_data;
5588         struct perf_event_context *ctx;
5589         long ret;
5590
5591         /* Treat ioctl like writes as it is likely a mutating operation. */
5592         ret = security_perf_event_write(event);
5593         if (ret)
5594                 return ret;
5595
5596         ctx = perf_event_ctx_lock(event);
5597         ret = _perf_ioctl(event, cmd, arg);
5598         perf_event_ctx_unlock(event, ctx);
5599
5600         return ret;
5601 }
5602
5603 #ifdef CONFIG_COMPAT
5604 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5605                                 unsigned long arg)
5606 {
5607         switch (_IOC_NR(cmd)) {
5608         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5609         case _IOC_NR(PERF_EVENT_IOC_ID):
5610         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5611         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5612                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5613                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5614                         cmd &= ~IOCSIZE_MASK;
5615                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5616                 }
5617                 break;
5618         }
5619         return perf_ioctl(file, cmd, arg);
5620 }
5621 #else
5622 # define perf_compat_ioctl NULL
5623 #endif
5624
5625 int perf_event_task_enable(void)
5626 {
5627         struct perf_event_context *ctx;
5628         struct perf_event *event;
5629
5630         mutex_lock(&current->perf_event_mutex);
5631         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5632                 ctx = perf_event_ctx_lock(event);
5633                 perf_event_for_each_child(event, _perf_event_enable);
5634                 perf_event_ctx_unlock(event, ctx);
5635         }
5636         mutex_unlock(&current->perf_event_mutex);
5637
5638         return 0;
5639 }
5640
5641 int perf_event_task_disable(void)
5642 {
5643         struct perf_event_context *ctx;
5644         struct perf_event *event;
5645
5646         mutex_lock(&current->perf_event_mutex);
5647         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5648                 ctx = perf_event_ctx_lock(event);
5649                 perf_event_for_each_child(event, _perf_event_disable);
5650                 perf_event_ctx_unlock(event, ctx);
5651         }
5652         mutex_unlock(&current->perf_event_mutex);
5653
5654         return 0;
5655 }
5656
5657 static int perf_event_index(struct perf_event *event)
5658 {
5659         if (event->hw.state & PERF_HES_STOPPED)
5660                 return 0;
5661
5662         if (event->state != PERF_EVENT_STATE_ACTIVE)
5663                 return 0;
5664
5665         return event->pmu->event_idx(event);
5666 }
5667
5668 static void calc_timer_values(struct perf_event *event,
5669                                 u64 *now,
5670                                 u64 *enabled,
5671                                 u64 *running)
5672 {
5673         u64 ctx_time;
5674
5675         *now = perf_clock();
5676         ctx_time = event->shadow_ctx_time + *now;
5677         __perf_update_times(event, ctx_time, enabled, running);
5678 }
5679
5680 static void perf_event_init_userpage(struct perf_event *event)
5681 {
5682         struct perf_event_mmap_page *userpg;
5683         struct perf_buffer *rb;
5684
5685         rcu_read_lock();
5686         rb = rcu_dereference(event->rb);
5687         if (!rb)
5688                 goto unlock;
5689
5690         userpg = rb->user_page;
5691
5692         /* Allow new userspace to detect that bit 0 is deprecated */
5693         userpg->cap_bit0_is_deprecated = 1;
5694         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5695         userpg->data_offset = PAGE_SIZE;
5696         userpg->data_size = perf_data_size(rb);
5697
5698 unlock:
5699         rcu_read_unlock();
5700 }
5701
5702 void __weak arch_perf_update_userpage(
5703         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5704 {
5705 }
5706
5707 /*
5708  * Callers need to ensure there can be no nesting of this function, otherwise
5709  * the seqlock logic goes bad. We can not serialize this because the arch
5710  * code calls this from NMI context.
5711  */
5712 void perf_event_update_userpage(struct perf_event *event)
5713 {
5714         struct perf_event_mmap_page *userpg;
5715         struct perf_buffer *rb;
5716         u64 enabled, running, now;
5717
5718         rcu_read_lock();
5719         rb = rcu_dereference(event->rb);
5720         if (!rb)
5721                 goto unlock;
5722
5723         /*
5724          * compute total_time_enabled, total_time_running
5725          * based on snapshot values taken when the event
5726          * was last scheduled in.
5727          *
5728          * we cannot simply called update_context_time()
5729          * because of locking issue as we can be called in
5730          * NMI context
5731          */
5732         calc_timer_values(event, &now, &enabled, &running);
5733
5734         userpg = rb->user_page;
5735         /*
5736          * Disable preemption to guarantee consistent time stamps are stored to
5737          * the user page.
5738          */
5739         preempt_disable();
5740         ++userpg->lock;
5741         barrier();
5742         userpg->index = perf_event_index(event);
5743         userpg->offset = perf_event_count(event);
5744         if (userpg->index)
5745                 userpg->offset -= local64_read(&event->hw.prev_count);
5746
5747         userpg->time_enabled = enabled +
5748                         atomic64_read(&event->child_total_time_enabled);
5749
5750         userpg->time_running = running +
5751                         atomic64_read(&event->child_total_time_running);
5752
5753         arch_perf_update_userpage(event, userpg, now);
5754
5755         barrier();
5756         ++userpg->lock;
5757         preempt_enable();
5758 unlock:
5759         rcu_read_unlock();
5760 }
5761 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5762
5763 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5764 {
5765         struct perf_event *event = vmf->vma->vm_file->private_data;
5766         struct perf_buffer *rb;
5767         vm_fault_t ret = VM_FAULT_SIGBUS;
5768
5769         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5770                 if (vmf->pgoff == 0)
5771                         ret = 0;
5772                 return ret;
5773         }
5774
5775         rcu_read_lock();
5776         rb = rcu_dereference(event->rb);
5777         if (!rb)
5778                 goto unlock;
5779
5780         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5781                 goto unlock;
5782
5783         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5784         if (!vmf->page)
5785                 goto unlock;
5786
5787         get_page(vmf->page);
5788         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5789         vmf->page->index   = vmf->pgoff;
5790
5791         ret = 0;
5792 unlock:
5793         rcu_read_unlock();
5794
5795         return ret;
5796 }
5797
5798 static void ring_buffer_attach(struct perf_event *event,
5799                                struct perf_buffer *rb)
5800 {
5801         struct perf_buffer *old_rb = NULL;
5802         unsigned long flags;
5803
5804         if (event->rb) {
5805                 /*
5806                  * Should be impossible, we set this when removing
5807                  * event->rb_entry and wait/clear when adding event->rb_entry.
5808                  */
5809                 WARN_ON_ONCE(event->rcu_pending);
5810
5811                 old_rb = event->rb;
5812                 spin_lock_irqsave(&old_rb->event_lock, flags);
5813                 list_del_rcu(&event->rb_entry);
5814                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5815
5816                 event->rcu_batches = get_state_synchronize_rcu();
5817                 event->rcu_pending = 1;
5818         }
5819
5820         if (rb) {
5821                 if (event->rcu_pending) {
5822                         cond_synchronize_rcu(event->rcu_batches);
5823                         event->rcu_pending = 0;
5824                 }
5825
5826                 spin_lock_irqsave(&rb->event_lock, flags);
5827                 list_add_rcu(&event->rb_entry, &rb->event_list);
5828                 spin_unlock_irqrestore(&rb->event_lock, flags);
5829         }
5830
5831         /*
5832          * Avoid racing with perf_mmap_close(AUX): stop the event
5833          * before swizzling the event::rb pointer; if it's getting
5834          * unmapped, its aux_mmap_count will be 0 and it won't
5835          * restart. See the comment in __perf_pmu_output_stop().
5836          *
5837          * Data will inevitably be lost when set_output is done in
5838          * mid-air, but then again, whoever does it like this is
5839          * not in for the data anyway.
5840          */
5841         if (has_aux(event))
5842                 perf_event_stop(event, 0);
5843
5844         rcu_assign_pointer(event->rb, rb);
5845
5846         if (old_rb) {
5847                 ring_buffer_put(old_rb);
5848                 /*
5849                  * Since we detached before setting the new rb, so that we
5850                  * could attach the new rb, we could have missed a wakeup.
5851                  * Provide it now.
5852                  */
5853                 wake_up_all(&event->waitq);
5854         }
5855 }
5856
5857 static void ring_buffer_wakeup(struct perf_event *event)
5858 {
5859         struct perf_buffer *rb;
5860
5861         rcu_read_lock();
5862         rb = rcu_dereference(event->rb);
5863         if (rb) {
5864                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5865                         wake_up_all(&event->waitq);
5866         }
5867         rcu_read_unlock();
5868 }
5869
5870 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5871 {
5872         struct perf_buffer *rb;
5873
5874         rcu_read_lock();
5875         rb = rcu_dereference(event->rb);
5876         if (rb) {
5877                 if (!refcount_inc_not_zero(&rb->refcount))
5878                         rb = NULL;
5879         }
5880         rcu_read_unlock();
5881
5882         return rb;
5883 }
5884
5885 void ring_buffer_put(struct perf_buffer *rb)
5886 {
5887         if (!refcount_dec_and_test(&rb->refcount))
5888                 return;
5889
5890         WARN_ON_ONCE(!list_empty(&rb->event_list));
5891
5892         call_rcu(&rb->rcu_head, rb_free_rcu);
5893 }
5894
5895 static void perf_mmap_open(struct vm_area_struct *vma)
5896 {
5897         struct perf_event *event = vma->vm_file->private_data;
5898
5899         atomic_inc(&event->mmap_count);
5900         atomic_inc(&event->rb->mmap_count);
5901
5902         if (vma->vm_pgoff)
5903                 atomic_inc(&event->rb->aux_mmap_count);
5904
5905         if (event->pmu->event_mapped)
5906                 event->pmu->event_mapped(event, vma->vm_mm);
5907 }
5908
5909 static void perf_pmu_output_stop(struct perf_event *event);
5910
5911 /*
5912  * A buffer can be mmap()ed multiple times; either directly through the same
5913  * event, or through other events by use of perf_event_set_output().
5914  *
5915  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5916  * the buffer here, where we still have a VM context. This means we need
5917  * to detach all events redirecting to us.
5918  */
5919 static void perf_mmap_close(struct vm_area_struct *vma)
5920 {
5921         struct perf_event *event = vma->vm_file->private_data;
5922         struct perf_buffer *rb = ring_buffer_get(event);
5923         struct user_struct *mmap_user = rb->mmap_user;
5924         int mmap_locked = rb->mmap_locked;
5925         unsigned long size = perf_data_size(rb);
5926         bool detach_rest = false;
5927
5928         if (event->pmu->event_unmapped)
5929                 event->pmu->event_unmapped(event, vma->vm_mm);
5930
5931         /*
5932          * rb->aux_mmap_count will always drop before rb->mmap_count and
5933          * event->mmap_count, so it is ok to use event->mmap_mutex to
5934          * serialize with perf_mmap here.
5935          */
5936         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5937             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5938                 /*
5939                  * Stop all AUX events that are writing to this buffer,
5940                  * so that we can free its AUX pages and corresponding PMU
5941                  * data. Note that after rb::aux_mmap_count dropped to zero,
5942                  * they won't start any more (see perf_aux_output_begin()).
5943                  */
5944                 perf_pmu_output_stop(event);
5945
5946                 /* now it's safe to free the pages */
5947                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5948                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5949
5950                 /* this has to be the last one */
5951                 rb_free_aux(rb);
5952                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5953
5954                 mutex_unlock(&event->mmap_mutex);
5955         }
5956
5957         if (atomic_dec_and_test(&rb->mmap_count))
5958                 detach_rest = true;
5959
5960         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5961                 goto out_put;
5962
5963         ring_buffer_attach(event, NULL);
5964         mutex_unlock(&event->mmap_mutex);
5965
5966         /* If there's still other mmap()s of this buffer, we're done. */
5967         if (!detach_rest)
5968                 goto out_put;
5969
5970         /*
5971          * No other mmap()s, detach from all other events that might redirect
5972          * into the now unreachable buffer. Somewhat complicated by the
5973          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5974          */
5975 again:
5976         rcu_read_lock();
5977         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5978                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5979                         /*
5980                          * This event is en-route to free_event() which will
5981                          * detach it and remove it from the list.
5982                          */
5983                         continue;
5984                 }
5985                 rcu_read_unlock();
5986
5987                 mutex_lock(&event->mmap_mutex);
5988                 /*
5989                  * Check we didn't race with perf_event_set_output() which can
5990                  * swizzle the rb from under us while we were waiting to
5991                  * acquire mmap_mutex.
5992                  *
5993                  * If we find a different rb; ignore this event, a next
5994                  * iteration will no longer find it on the list. We have to
5995                  * still restart the iteration to make sure we're not now
5996                  * iterating the wrong list.
5997                  */
5998                 if (event->rb == rb)
5999                         ring_buffer_attach(event, NULL);
6000
6001                 mutex_unlock(&event->mmap_mutex);
6002                 put_event(event);
6003
6004                 /*
6005                  * Restart the iteration; either we're on the wrong list or
6006                  * destroyed its integrity by doing a deletion.
6007                  */
6008                 goto again;
6009         }
6010         rcu_read_unlock();
6011
6012         /*
6013          * It could be there's still a few 0-ref events on the list; they'll
6014          * get cleaned up by free_event() -- they'll also still have their
6015          * ref on the rb and will free it whenever they are done with it.
6016          *
6017          * Aside from that, this buffer is 'fully' detached and unmapped,
6018          * undo the VM accounting.
6019          */
6020
6021         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6022                         &mmap_user->locked_vm);
6023         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6024         free_uid(mmap_user);
6025
6026 out_put:
6027         ring_buffer_put(rb); /* could be last */
6028 }
6029
6030 static const struct vm_operations_struct perf_mmap_vmops = {
6031         .open           = perf_mmap_open,
6032         .close          = perf_mmap_close, /* non mergeable */
6033         .fault          = perf_mmap_fault,
6034         .page_mkwrite   = perf_mmap_fault,
6035 };
6036
6037 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6038 {
6039         struct perf_event *event = file->private_data;
6040         unsigned long user_locked, user_lock_limit;
6041         struct user_struct *user = current_user();
6042         struct perf_buffer *rb = NULL;
6043         unsigned long locked, lock_limit;
6044         unsigned long vma_size;
6045         unsigned long nr_pages;
6046         long user_extra = 0, extra = 0;
6047         int ret = 0, flags = 0;
6048
6049         /*
6050          * Don't allow mmap() of inherited per-task counters. This would
6051          * create a performance issue due to all children writing to the
6052          * same rb.
6053          */
6054         if (event->cpu == -1 && event->attr.inherit)
6055                 return -EINVAL;
6056
6057         if (!(vma->vm_flags & VM_SHARED))
6058                 return -EINVAL;
6059
6060         ret = security_perf_event_read(event);
6061         if (ret)
6062                 return ret;
6063
6064         vma_size = vma->vm_end - vma->vm_start;
6065
6066         if (vma->vm_pgoff == 0) {
6067                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6068         } else {
6069                 /*
6070                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6071                  * mapped, all subsequent mappings should have the same size
6072                  * and offset. Must be above the normal perf buffer.
6073                  */
6074                 u64 aux_offset, aux_size;
6075
6076                 if (!event->rb)
6077                         return -EINVAL;
6078
6079                 nr_pages = vma_size / PAGE_SIZE;
6080
6081                 mutex_lock(&event->mmap_mutex);
6082                 ret = -EINVAL;
6083
6084                 rb = event->rb;
6085                 if (!rb)
6086                         goto aux_unlock;
6087
6088                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6089                 aux_size = READ_ONCE(rb->user_page->aux_size);
6090
6091                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6092                         goto aux_unlock;
6093
6094                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6095                         goto aux_unlock;
6096
6097                 /* already mapped with a different offset */
6098                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6099                         goto aux_unlock;
6100
6101                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6102                         goto aux_unlock;
6103
6104                 /* already mapped with a different size */
6105                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6106                         goto aux_unlock;
6107
6108                 if (!is_power_of_2(nr_pages))
6109                         goto aux_unlock;
6110
6111                 if (!atomic_inc_not_zero(&rb->mmap_count))
6112                         goto aux_unlock;
6113
6114                 if (rb_has_aux(rb)) {
6115                         atomic_inc(&rb->aux_mmap_count);
6116                         ret = 0;
6117                         goto unlock;
6118                 }
6119
6120                 atomic_set(&rb->aux_mmap_count, 1);
6121                 user_extra = nr_pages;
6122
6123                 goto accounting;
6124         }
6125
6126         /*
6127          * If we have rb pages ensure they're a power-of-two number, so we
6128          * can do bitmasks instead of modulo.
6129          */
6130         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6131                 return -EINVAL;
6132
6133         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6134                 return -EINVAL;
6135
6136         WARN_ON_ONCE(event->ctx->parent_ctx);
6137 again:
6138         mutex_lock(&event->mmap_mutex);
6139         if (event->rb) {
6140                 if (event->rb->nr_pages != nr_pages) {
6141                         ret = -EINVAL;
6142                         goto unlock;
6143                 }
6144
6145                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6146                         /*
6147                          * Raced against perf_mmap_close() through
6148                          * perf_event_set_output(). Try again, hope for better
6149                          * luck.
6150                          */
6151                         mutex_unlock(&event->mmap_mutex);
6152                         goto again;
6153                 }
6154
6155                 goto unlock;
6156         }
6157
6158         user_extra = nr_pages + 1;
6159
6160 accounting:
6161         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6162
6163         /*
6164          * Increase the limit linearly with more CPUs:
6165          */
6166         user_lock_limit *= num_online_cpus();
6167
6168         user_locked = atomic_long_read(&user->locked_vm);
6169
6170         /*
6171          * sysctl_perf_event_mlock may have changed, so that
6172          *     user->locked_vm > user_lock_limit
6173          */
6174         if (user_locked > user_lock_limit)
6175                 user_locked = user_lock_limit;
6176         user_locked += user_extra;
6177
6178         if (user_locked > user_lock_limit) {
6179                 /*
6180                  * charge locked_vm until it hits user_lock_limit;
6181                  * charge the rest from pinned_vm
6182                  */
6183                 extra = user_locked - user_lock_limit;
6184                 user_extra -= extra;
6185         }
6186
6187         lock_limit = rlimit(RLIMIT_MEMLOCK);
6188         lock_limit >>= PAGE_SHIFT;
6189         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6190
6191         if ((locked > lock_limit) && perf_is_paranoid() &&
6192                 !capable(CAP_IPC_LOCK)) {
6193                 ret = -EPERM;
6194                 goto unlock;
6195         }
6196
6197         WARN_ON(!rb && event->rb);
6198
6199         if (vma->vm_flags & VM_WRITE)
6200                 flags |= RING_BUFFER_WRITABLE;
6201
6202         if (!rb) {
6203                 rb = rb_alloc(nr_pages,
6204                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6205                               event->cpu, flags);
6206
6207                 if (!rb) {
6208                         ret = -ENOMEM;
6209                         goto unlock;
6210                 }
6211
6212                 atomic_set(&rb->mmap_count, 1);
6213                 rb->mmap_user = get_current_user();
6214                 rb->mmap_locked = extra;
6215
6216                 ring_buffer_attach(event, rb);
6217
6218                 perf_event_init_userpage(event);
6219                 perf_event_update_userpage(event);
6220         } else {
6221                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6222                                    event->attr.aux_watermark, flags);
6223                 if (!ret)
6224                         rb->aux_mmap_locked = extra;
6225         }
6226
6227 unlock:
6228         if (!ret) {
6229                 atomic_long_add(user_extra, &user->locked_vm);
6230                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6231
6232                 atomic_inc(&event->mmap_count);
6233         } else if (rb) {
6234                 atomic_dec(&rb->mmap_count);
6235         }
6236 aux_unlock:
6237         mutex_unlock(&event->mmap_mutex);
6238
6239         /*
6240          * Since pinned accounting is per vm we cannot allow fork() to copy our
6241          * vma.
6242          */
6243         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6244         vma->vm_ops = &perf_mmap_vmops;
6245
6246         if (event->pmu->event_mapped)
6247                 event->pmu->event_mapped(event, vma->vm_mm);
6248
6249         return ret;
6250 }
6251
6252 static int perf_fasync(int fd, struct file *filp, int on)
6253 {
6254         struct inode *inode = file_inode(filp);
6255         struct perf_event *event = filp->private_data;
6256         int retval;
6257
6258         inode_lock(inode);
6259         retval = fasync_helper(fd, filp, on, &event->fasync);
6260         inode_unlock(inode);
6261
6262         if (retval < 0)
6263                 return retval;
6264
6265         return 0;
6266 }
6267
6268 static const struct file_operations perf_fops = {
6269         .llseek                 = no_llseek,
6270         .release                = perf_release,
6271         .read                   = perf_read,
6272         .poll                   = perf_poll,
6273         .unlocked_ioctl         = perf_ioctl,
6274         .compat_ioctl           = perf_compat_ioctl,
6275         .mmap                   = perf_mmap,
6276         .fasync                 = perf_fasync,
6277 };
6278
6279 /*
6280  * Perf event wakeup
6281  *
6282  * If there's data, ensure we set the poll() state and publish everything
6283  * to user-space before waking everybody up.
6284  */
6285
6286 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6287 {
6288         /* only the parent has fasync state */
6289         if (event->parent)
6290                 event = event->parent;
6291         return &event->fasync;
6292 }
6293
6294 void perf_event_wakeup(struct perf_event *event)
6295 {
6296         ring_buffer_wakeup(event);
6297
6298         if (event->pending_kill) {
6299                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6300                 event->pending_kill = 0;
6301         }
6302 }
6303
6304 static void perf_pending_event_disable(struct perf_event *event)
6305 {
6306         int cpu = READ_ONCE(event->pending_disable);
6307
6308         if (cpu < 0)
6309                 return;
6310
6311         if (cpu == smp_processor_id()) {
6312                 WRITE_ONCE(event->pending_disable, -1);
6313                 perf_event_disable_local(event);
6314                 return;
6315         }
6316
6317         /*
6318          *  CPU-A                       CPU-B
6319          *
6320          *  perf_event_disable_inatomic()
6321          *    @pending_disable = CPU-A;
6322          *    irq_work_queue();
6323          *
6324          *  sched-out
6325          *    @pending_disable = -1;
6326          *
6327          *                              sched-in
6328          *                              perf_event_disable_inatomic()
6329          *                                @pending_disable = CPU-B;
6330          *                                irq_work_queue(); // FAILS
6331          *
6332          *  irq_work_run()
6333          *    perf_pending_event()
6334          *
6335          * But the event runs on CPU-B and wants disabling there.
6336          */
6337         irq_work_queue_on(&event->pending, cpu);
6338 }
6339
6340 static void perf_pending_event(struct irq_work *entry)
6341 {
6342         struct perf_event *event = container_of(entry, struct perf_event, pending);
6343         int rctx;
6344
6345         rctx = perf_swevent_get_recursion_context();
6346         /*
6347          * If we 'fail' here, that's OK, it means recursion is already disabled
6348          * and we won't recurse 'further'.
6349          */
6350
6351         perf_pending_event_disable(event);
6352
6353         if (event->pending_wakeup) {
6354                 event->pending_wakeup = 0;
6355                 perf_event_wakeup(event);
6356         }
6357
6358         if (rctx >= 0)
6359                 perf_swevent_put_recursion_context(rctx);
6360 }
6361
6362 /*
6363  * We assume there is only KVM supporting the callbacks.
6364  * Later on, we might change it to a list if there is
6365  * another virtualization implementation supporting the callbacks.
6366  */
6367 struct perf_guest_info_callbacks *perf_guest_cbs;
6368
6369 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6370 {
6371         perf_guest_cbs = cbs;
6372         return 0;
6373 }
6374 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6375
6376 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6377 {
6378         perf_guest_cbs = NULL;
6379         return 0;
6380 }
6381 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6382
6383 static void
6384 perf_output_sample_regs(struct perf_output_handle *handle,
6385                         struct pt_regs *regs, u64 mask)
6386 {
6387         int bit;
6388         DECLARE_BITMAP(_mask, 64);
6389
6390         bitmap_from_u64(_mask, mask);
6391         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6392                 u64 val;
6393
6394                 val = perf_reg_value(regs, bit);
6395                 perf_output_put(handle, val);
6396         }
6397 }
6398
6399 static void perf_sample_regs_user(struct perf_regs *regs_user,
6400                                   struct pt_regs *regs)
6401 {
6402         if (user_mode(regs)) {
6403                 regs_user->abi = perf_reg_abi(current);
6404                 regs_user->regs = regs;
6405         } else if (!(current->flags & PF_KTHREAD)) {
6406                 perf_get_regs_user(regs_user, regs);
6407         } else {
6408                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6409                 regs_user->regs = NULL;
6410         }
6411 }
6412
6413 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6414                                   struct pt_regs *regs)
6415 {
6416         regs_intr->regs = regs;
6417         regs_intr->abi  = perf_reg_abi(current);
6418 }
6419
6420
6421 /*
6422  * Get remaining task size from user stack pointer.
6423  *
6424  * It'd be better to take stack vma map and limit this more
6425  * precisely, but there's no way to get it safely under interrupt,
6426  * so using TASK_SIZE as limit.
6427  */
6428 static u64 perf_ustack_task_size(struct pt_regs *regs)
6429 {
6430         unsigned long addr = perf_user_stack_pointer(regs);
6431
6432         if (!addr || addr >= TASK_SIZE)
6433                 return 0;
6434
6435         return TASK_SIZE - addr;
6436 }
6437
6438 static u16
6439 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6440                         struct pt_regs *regs)
6441 {
6442         u64 task_size;
6443
6444         /* No regs, no stack pointer, no dump. */
6445         if (!regs)
6446                 return 0;
6447
6448         /*
6449          * Check if we fit in with the requested stack size into the:
6450          * - TASK_SIZE
6451          *   If we don't, we limit the size to the TASK_SIZE.
6452          *
6453          * - remaining sample size
6454          *   If we don't, we customize the stack size to
6455          *   fit in to the remaining sample size.
6456          */
6457
6458         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6459         stack_size = min(stack_size, (u16) task_size);
6460
6461         /* Current header size plus static size and dynamic size. */
6462         header_size += 2 * sizeof(u64);
6463
6464         /* Do we fit in with the current stack dump size? */
6465         if ((u16) (header_size + stack_size) < header_size) {
6466                 /*
6467                  * If we overflow the maximum size for the sample,
6468                  * we customize the stack dump size to fit in.
6469                  */
6470                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6471                 stack_size = round_up(stack_size, sizeof(u64));
6472         }
6473
6474         return stack_size;
6475 }
6476
6477 static void
6478 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6479                           struct pt_regs *regs)
6480 {
6481         /* Case of a kernel thread, nothing to dump */
6482         if (!regs) {
6483                 u64 size = 0;
6484                 perf_output_put(handle, size);
6485         } else {
6486                 unsigned long sp;
6487                 unsigned int rem;
6488                 u64 dyn_size;
6489                 mm_segment_t fs;
6490
6491                 /*
6492                  * We dump:
6493                  * static size
6494                  *   - the size requested by user or the best one we can fit
6495                  *     in to the sample max size
6496                  * data
6497                  *   - user stack dump data
6498                  * dynamic size
6499                  *   - the actual dumped size
6500                  */
6501
6502                 /* Static size. */
6503                 perf_output_put(handle, dump_size);
6504
6505                 /* Data. */
6506                 sp = perf_user_stack_pointer(regs);
6507                 fs = force_uaccess_begin();
6508                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6509                 force_uaccess_end(fs);
6510                 dyn_size = dump_size - rem;
6511
6512                 perf_output_skip(handle, rem);
6513
6514                 /* Dynamic size. */
6515                 perf_output_put(handle, dyn_size);
6516         }
6517 }
6518
6519 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6520                                           struct perf_sample_data *data,
6521                                           size_t size)
6522 {
6523         struct perf_event *sampler = event->aux_event;
6524         struct perf_buffer *rb;
6525
6526         data->aux_size = 0;
6527
6528         if (!sampler)
6529                 goto out;
6530
6531         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6532                 goto out;
6533
6534         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6535                 goto out;
6536
6537         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6538         if (!rb)
6539                 goto out;
6540
6541         /*
6542          * If this is an NMI hit inside sampling code, don't take
6543          * the sample. See also perf_aux_sample_output().
6544          */
6545         if (READ_ONCE(rb->aux_in_sampling)) {
6546                 data->aux_size = 0;
6547         } else {
6548                 size = min_t(size_t, size, perf_aux_size(rb));
6549                 data->aux_size = ALIGN(size, sizeof(u64));
6550         }
6551         ring_buffer_put(rb);
6552
6553 out:
6554         return data->aux_size;
6555 }
6556
6557 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6558                            struct perf_event *event,
6559                            struct perf_output_handle *handle,
6560                            unsigned long size)
6561 {
6562         unsigned long flags;
6563         long ret;
6564
6565         /*
6566          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6567          * paths. If we start calling them in NMI context, they may race with
6568          * the IRQ ones, that is, for example, re-starting an event that's just
6569          * been stopped, which is why we're using a separate callback that
6570          * doesn't change the event state.
6571          *
6572          * IRQs need to be disabled to prevent IPIs from racing with us.
6573          */
6574         local_irq_save(flags);
6575         /*
6576          * Guard against NMI hits inside the critical section;
6577          * see also perf_prepare_sample_aux().
6578          */
6579         WRITE_ONCE(rb->aux_in_sampling, 1);
6580         barrier();
6581
6582         ret = event->pmu->snapshot_aux(event, handle, size);
6583
6584         barrier();
6585         WRITE_ONCE(rb->aux_in_sampling, 0);
6586         local_irq_restore(flags);
6587
6588         return ret;
6589 }
6590
6591 static void perf_aux_sample_output(struct perf_event *event,
6592                                    struct perf_output_handle *handle,
6593                                    struct perf_sample_data *data)
6594 {
6595         struct perf_event *sampler = event->aux_event;
6596         struct perf_buffer *rb;
6597         unsigned long pad;
6598         long size;
6599
6600         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6601                 return;
6602
6603         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6604         if (!rb)
6605                 return;
6606
6607         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6608
6609         /*
6610          * An error here means that perf_output_copy() failed (returned a
6611          * non-zero surplus that it didn't copy), which in its current
6612          * enlightened implementation is not possible. If that changes, we'd
6613          * like to know.
6614          */
6615         if (WARN_ON_ONCE(size < 0))
6616                 goto out_put;
6617
6618         /*
6619          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6620          * perf_prepare_sample_aux(), so should not be more than that.
6621          */
6622         pad = data->aux_size - size;
6623         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6624                 pad = 8;
6625
6626         if (pad) {
6627                 u64 zero = 0;
6628                 perf_output_copy(handle, &zero, pad);
6629         }
6630
6631 out_put:
6632         ring_buffer_put(rb);
6633 }
6634
6635 static void __perf_event_header__init_id(struct perf_event_header *header,
6636                                          struct perf_sample_data *data,
6637                                          struct perf_event *event)
6638 {
6639         u64 sample_type = event->attr.sample_type;
6640
6641         data->type = sample_type;
6642         header->size += event->id_header_size;
6643
6644         if (sample_type & PERF_SAMPLE_TID) {
6645                 /* namespace issues */
6646                 data->tid_entry.pid = perf_event_pid(event, current);
6647                 data->tid_entry.tid = perf_event_tid(event, current);
6648         }
6649
6650         if (sample_type & PERF_SAMPLE_TIME)
6651                 data->time = perf_event_clock(event);
6652
6653         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6654                 data->id = primary_event_id(event);
6655
6656         if (sample_type & PERF_SAMPLE_STREAM_ID)
6657                 data->stream_id = event->id;
6658
6659         if (sample_type & PERF_SAMPLE_CPU) {
6660                 data->cpu_entry.cpu      = raw_smp_processor_id();
6661                 data->cpu_entry.reserved = 0;
6662         }
6663 }
6664
6665 void perf_event_header__init_id(struct perf_event_header *header,
6666                                 struct perf_sample_data *data,
6667                                 struct perf_event *event)
6668 {
6669         if (event->attr.sample_id_all)
6670                 __perf_event_header__init_id(header, data, event);
6671 }
6672
6673 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6674                                            struct perf_sample_data *data)
6675 {
6676         u64 sample_type = data->type;
6677
6678         if (sample_type & PERF_SAMPLE_TID)
6679                 perf_output_put(handle, data->tid_entry);
6680
6681         if (sample_type & PERF_SAMPLE_TIME)
6682                 perf_output_put(handle, data->time);
6683
6684         if (sample_type & PERF_SAMPLE_ID)
6685                 perf_output_put(handle, data->id);
6686
6687         if (sample_type & PERF_SAMPLE_STREAM_ID)
6688                 perf_output_put(handle, data->stream_id);
6689
6690         if (sample_type & PERF_SAMPLE_CPU)
6691                 perf_output_put(handle, data->cpu_entry);
6692
6693         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6694                 perf_output_put(handle, data->id);
6695 }
6696
6697 void perf_event__output_id_sample(struct perf_event *event,
6698                                   struct perf_output_handle *handle,
6699                                   struct perf_sample_data *sample)
6700 {
6701         if (event->attr.sample_id_all)
6702                 __perf_event__output_id_sample(handle, sample);
6703 }
6704
6705 static void perf_output_read_one(struct perf_output_handle *handle,
6706                                  struct perf_event *event,
6707                                  u64 enabled, u64 running)
6708 {
6709         u64 read_format = event->attr.read_format;
6710         u64 values[4];
6711         int n = 0;
6712
6713         values[n++] = perf_event_count(event);
6714         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6715                 values[n++] = enabled +
6716                         atomic64_read(&event->child_total_time_enabled);
6717         }
6718         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6719                 values[n++] = running +
6720                         atomic64_read(&event->child_total_time_running);
6721         }
6722         if (read_format & PERF_FORMAT_ID)
6723                 values[n++] = primary_event_id(event);
6724
6725         __output_copy(handle, values, n * sizeof(u64));
6726 }
6727
6728 static void perf_output_read_group(struct perf_output_handle *handle,
6729                             struct perf_event *event,
6730                             u64 enabled, u64 running)
6731 {
6732         struct perf_event *leader = event->group_leader, *sub;
6733         u64 read_format = event->attr.read_format;
6734         u64 values[5];
6735         int n = 0;
6736
6737         values[n++] = 1 + leader->nr_siblings;
6738
6739         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6740                 values[n++] = enabled;
6741
6742         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6743                 values[n++] = running;
6744
6745         if ((leader != event) &&
6746             (leader->state == PERF_EVENT_STATE_ACTIVE))
6747                 leader->pmu->read(leader);
6748
6749         values[n++] = perf_event_count(leader);
6750         if (read_format & PERF_FORMAT_ID)
6751                 values[n++] = primary_event_id(leader);
6752
6753         __output_copy(handle, values, n * sizeof(u64));
6754
6755         for_each_sibling_event(sub, leader) {
6756                 n = 0;
6757
6758                 if ((sub != event) &&
6759                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6760                         sub->pmu->read(sub);
6761
6762                 values[n++] = perf_event_count(sub);
6763                 if (read_format & PERF_FORMAT_ID)
6764                         values[n++] = primary_event_id(sub);
6765
6766                 __output_copy(handle, values, n * sizeof(u64));
6767         }
6768 }
6769
6770 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6771                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6772
6773 /*
6774  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6775  *
6776  * The problem is that its both hard and excessively expensive to iterate the
6777  * child list, not to mention that its impossible to IPI the children running
6778  * on another CPU, from interrupt/NMI context.
6779  */
6780 static void perf_output_read(struct perf_output_handle *handle,
6781                              struct perf_event *event)
6782 {
6783         u64 enabled = 0, running = 0, now;
6784         u64 read_format = event->attr.read_format;
6785
6786         /*
6787          * compute total_time_enabled, total_time_running
6788          * based on snapshot values taken when the event
6789          * was last scheduled in.
6790          *
6791          * we cannot simply called update_context_time()
6792          * because of locking issue as we are called in
6793          * NMI context
6794          */
6795         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6796                 calc_timer_values(event, &now, &enabled, &running);
6797
6798         if (event->attr.read_format & PERF_FORMAT_GROUP)
6799                 perf_output_read_group(handle, event, enabled, running);
6800         else
6801                 perf_output_read_one(handle, event, enabled, running);
6802 }
6803
6804 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6805 {
6806         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6807 }
6808
6809 void perf_output_sample(struct perf_output_handle *handle,
6810                         struct perf_event_header *header,
6811                         struct perf_sample_data *data,
6812                         struct perf_event *event)
6813 {
6814         u64 sample_type = data->type;
6815
6816         perf_output_put(handle, *header);
6817
6818         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6819                 perf_output_put(handle, data->id);
6820
6821         if (sample_type & PERF_SAMPLE_IP)
6822                 perf_output_put(handle, data->ip);
6823
6824         if (sample_type & PERF_SAMPLE_TID)
6825                 perf_output_put(handle, data->tid_entry);
6826
6827         if (sample_type & PERF_SAMPLE_TIME)
6828                 perf_output_put(handle, data->time);
6829
6830         if (sample_type & PERF_SAMPLE_ADDR)
6831                 perf_output_put(handle, data->addr);
6832
6833         if (sample_type & PERF_SAMPLE_ID)
6834                 perf_output_put(handle, data->id);
6835
6836         if (sample_type & PERF_SAMPLE_STREAM_ID)
6837                 perf_output_put(handle, data->stream_id);
6838
6839         if (sample_type & PERF_SAMPLE_CPU)
6840                 perf_output_put(handle, data->cpu_entry);
6841
6842         if (sample_type & PERF_SAMPLE_PERIOD)
6843                 perf_output_put(handle, data->period);
6844
6845         if (sample_type & PERF_SAMPLE_READ)
6846                 perf_output_read(handle, event);
6847
6848         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6849                 int size = 1;
6850
6851                 size += data->callchain->nr;
6852                 size *= sizeof(u64);
6853                 __output_copy(handle, data->callchain, size);
6854         }
6855
6856         if (sample_type & PERF_SAMPLE_RAW) {
6857                 struct perf_raw_record *raw = data->raw;
6858
6859                 if (raw) {
6860                         struct perf_raw_frag *frag = &raw->frag;
6861
6862                         perf_output_put(handle, raw->size);
6863                         do {
6864                                 if (frag->copy) {
6865                                         __output_custom(handle, frag->copy,
6866                                                         frag->data, frag->size);
6867                                 } else {
6868                                         __output_copy(handle, frag->data,
6869                                                       frag->size);
6870                                 }
6871                                 if (perf_raw_frag_last(frag))
6872                                         break;
6873                                 frag = frag->next;
6874                         } while (1);
6875                         if (frag->pad)
6876                                 __output_skip(handle, NULL, frag->pad);
6877                 } else {
6878                         struct {
6879                                 u32     size;
6880                                 u32     data;
6881                         } raw = {
6882                                 .size = sizeof(u32),
6883                                 .data = 0,
6884                         };
6885                         perf_output_put(handle, raw);
6886                 }
6887         }
6888
6889         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6890                 if (data->br_stack) {
6891                         size_t size;
6892
6893                         size = data->br_stack->nr
6894                              * sizeof(struct perf_branch_entry);
6895
6896                         perf_output_put(handle, data->br_stack->nr);
6897                         if (perf_sample_save_hw_index(event))
6898                                 perf_output_put(handle, data->br_stack->hw_idx);
6899                         perf_output_copy(handle, data->br_stack->entries, size);
6900                 } else {
6901                         /*
6902                          * we always store at least the value of nr
6903                          */
6904                         u64 nr = 0;
6905                         perf_output_put(handle, nr);
6906                 }
6907         }
6908
6909         if (sample_type & PERF_SAMPLE_REGS_USER) {
6910                 u64 abi = data->regs_user.abi;
6911
6912                 /*
6913                  * If there are no regs to dump, notice it through
6914                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6915                  */
6916                 perf_output_put(handle, abi);
6917
6918                 if (abi) {
6919                         u64 mask = event->attr.sample_regs_user;
6920                         perf_output_sample_regs(handle,
6921                                                 data->regs_user.regs,
6922                                                 mask);
6923                 }
6924         }
6925
6926         if (sample_type & PERF_SAMPLE_STACK_USER) {
6927                 perf_output_sample_ustack(handle,
6928                                           data->stack_user_size,
6929                                           data->regs_user.regs);
6930         }
6931
6932         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
6933                 perf_output_put(handle, data->weight.full);
6934
6935         if (sample_type & PERF_SAMPLE_DATA_SRC)
6936                 perf_output_put(handle, data->data_src.val);
6937
6938         if (sample_type & PERF_SAMPLE_TRANSACTION)
6939                 perf_output_put(handle, data->txn);
6940
6941         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6942                 u64 abi = data->regs_intr.abi;
6943                 /*
6944                  * If there are no regs to dump, notice it through
6945                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6946                  */
6947                 perf_output_put(handle, abi);
6948
6949                 if (abi) {
6950                         u64 mask = event->attr.sample_regs_intr;
6951
6952                         perf_output_sample_regs(handle,
6953                                                 data->regs_intr.regs,
6954                                                 mask);
6955                 }
6956         }
6957
6958         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6959                 perf_output_put(handle, data->phys_addr);
6960
6961         if (sample_type & PERF_SAMPLE_CGROUP)
6962                 perf_output_put(handle, data->cgroup);
6963
6964         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
6965                 perf_output_put(handle, data->data_page_size);
6966
6967         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
6968                 perf_output_put(handle, data->code_page_size);
6969
6970         if (sample_type & PERF_SAMPLE_AUX) {
6971                 perf_output_put(handle, data->aux_size);
6972
6973                 if (data->aux_size)
6974                         perf_aux_sample_output(event, handle, data);
6975         }
6976
6977         if (!event->attr.watermark) {
6978                 int wakeup_events = event->attr.wakeup_events;
6979
6980                 if (wakeup_events) {
6981                         struct perf_buffer *rb = handle->rb;
6982                         int events = local_inc_return(&rb->events);
6983
6984                         if (events >= wakeup_events) {
6985                                 local_sub(wakeup_events, &rb->events);
6986                                 local_inc(&rb->wakeup);
6987                         }
6988                 }
6989         }
6990 }
6991
6992 static u64 perf_virt_to_phys(u64 virt)
6993 {
6994         u64 phys_addr = 0;
6995         struct page *p = NULL;
6996
6997         if (!virt)
6998                 return 0;
6999
7000         if (virt >= TASK_SIZE) {
7001                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7002                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7003                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7004                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7005         } else {
7006                 /*
7007                  * Walking the pages tables for user address.
7008                  * Interrupts are disabled, so it prevents any tear down
7009                  * of the page tables.
7010                  * Try IRQ-safe get_user_page_fast_only first.
7011                  * If failed, leave phys_addr as 0.
7012                  */
7013                 if (current->mm != NULL) {
7014                         pagefault_disable();
7015                         if (get_user_page_fast_only(virt, 0, &p))
7016                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7017                         pagefault_enable();
7018                 }
7019
7020                 if (p)
7021                         put_page(p);
7022         }
7023
7024         return phys_addr;
7025 }
7026
7027 /*
7028  * Return the pagetable size of a given virtual address.
7029  */
7030 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7031 {
7032         u64 size = 0;
7033
7034 #ifdef CONFIG_HAVE_FAST_GUP
7035         pgd_t *pgdp, pgd;
7036         p4d_t *p4dp, p4d;
7037         pud_t *pudp, pud;
7038         pmd_t *pmdp, pmd;
7039         pte_t *ptep, pte;
7040
7041         pgdp = pgd_offset(mm, addr);
7042         pgd = READ_ONCE(*pgdp);
7043         if (pgd_none(pgd))
7044                 return 0;
7045
7046         if (pgd_leaf(pgd))
7047                 return pgd_leaf_size(pgd);
7048
7049         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7050         p4d = READ_ONCE(*p4dp);
7051         if (!p4d_present(p4d))
7052                 return 0;
7053
7054         if (p4d_leaf(p4d))
7055                 return p4d_leaf_size(p4d);
7056
7057         pudp = pud_offset_lockless(p4dp, p4d, addr);
7058         pud = READ_ONCE(*pudp);
7059         if (!pud_present(pud))
7060                 return 0;
7061
7062         if (pud_leaf(pud))
7063                 return pud_leaf_size(pud);
7064
7065         pmdp = pmd_offset_lockless(pudp, pud, addr);
7066         pmd = READ_ONCE(*pmdp);
7067         if (!pmd_present(pmd))
7068                 return 0;
7069
7070         if (pmd_leaf(pmd))
7071                 return pmd_leaf_size(pmd);
7072
7073         ptep = pte_offset_map(&pmd, addr);
7074         pte = ptep_get_lockless(ptep);
7075         if (pte_present(pte))
7076                 size = pte_leaf_size(pte);
7077         pte_unmap(ptep);
7078 #endif /* CONFIG_HAVE_FAST_GUP */
7079
7080         return size;
7081 }
7082
7083 static u64 perf_get_page_size(unsigned long addr)
7084 {
7085         struct mm_struct *mm;
7086         unsigned long flags;
7087         u64 size;
7088
7089         if (!addr)
7090                 return 0;
7091
7092         /*
7093          * Software page-table walkers must disable IRQs,
7094          * which prevents any tear down of the page tables.
7095          */
7096         local_irq_save(flags);
7097
7098         mm = current->mm;
7099         if (!mm) {
7100                 /*
7101                  * For kernel threads and the like, use init_mm so that
7102                  * we can find kernel memory.
7103                  */
7104                 mm = &init_mm;
7105         }
7106
7107         size = perf_get_pgtable_size(mm, addr);
7108
7109         local_irq_restore(flags);
7110
7111         return size;
7112 }
7113
7114 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7115
7116 struct perf_callchain_entry *
7117 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7118 {
7119         bool kernel = !event->attr.exclude_callchain_kernel;
7120         bool user   = !event->attr.exclude_callchain_user;
7121         /* Disallow cross-task user callchains. */
7122         bool crosstask = event->ctx->task && event->ctx->task != current;
7123         const u32 max_stack = event->attr.sample_max_stack;
7124         struct perf_callchain_entry *callchain;
7125
7126         if (!kernel && !user)
7127                 return &__empty_callchain;
7128
7129         callchain = get_perf_callchain(regs, 0, kernel, user,
7130                                        max_stack, crosstask, true);
7131         return callchain ?: &__empty_callchain;
7132 }
7133
7134 void perf_prepare_sample(struct perf_event_header *header,
7135                          struct perf_sample_data *data,
7136                          struct perf_event *event,
7137                          struct pt_regs *regs)
7138 {
7139         u64 sample_type = event->attr.sample_type;
7140
7141         header->type = PERF_RECORD_SAMPLE;
7142         header->size = sizeof(*header) + event->header_size;
7143
7144         header->misc = 0;
7145         header->misc |= perf_misc_flags(regs);
7146
7147         __perf_event_header__init_id(header, data, event);
7148
7149         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7150                 data->ip = perf_instruction_pointer(regs);
7151
7152         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7153                 int size = 1;
7154
7155                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7156                         data->callchain = perf_callchain(event, regs);
7157
7158                 size += data->callchain->nr;
7159
7160                 header->size += size * sizeof(u64);
7161         }
7162
7163         if (sample_type & PERF_SAMPLE_RAW) {
7164                 struct perf_raw_record *raw = data->raw;
7165                 int size;
7166
7167                 if (raw) {
7168                         struct perf_raw_frag *frag = &raw->frag;
7169                         u32 sum = 0;
7170
7171                         do {
7172                                 sum += frag->size;
7173                                 if (perf_raw_frag_last(frag))
7174                                         break;
7175                                 frag = frag->next;
7176                         } while (1);
7177
7178                         size = round_up(sum + sizeof(u32), sizeof(u64));
7179                         raw->size = size - sizeof(u32);
7180                         frag->pad = raw->size - sum;
7181                 } else {
7182                         size = sizeof(u64);
7183                 }
7184
7185                 header->size += size;
7186         }
7187
7188         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7189                 int size = sizeof(u64); /* nr */
7190                 if (data->br_stack) {
7191                         if (perf_sample_save_hw_index(event))
7192                                 size += sizeof(u64);
7193
7194                         size += data->br_stack->nr
7195                               * sizeof(struct perf_branch_entry);
7196                 }
7197                 header->size += size;
7198         }
7199
7200         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7201                 perf_sample_regs_user(&data->regs_user, regs);
7202
7203         if (sample_type & PERF_SAMPLE_REGS_USER) {
7204                 /* regs dump ABI info */
7205                 int size = sizeof(u64);
7206
7207                 if (data->regs_user.regs) {
7208                         u64 mask = event->attr.sample_regs_user;
7209                         size += hweight64(mask) * sizeof(u64);
7210                 }
7211
7212                 header->size += size;
7213         }
7214
7215         if (sample_type & PERF_SAMPLE_STACK_USER) {
7216                 /*
7217                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7218                  * processed as the last one or have additional check added
7219                  * in case new sample type is added, because we could eat
7220                  * up the rest of the sample size.
7221                  */
7222                 u16 stack_size = event->attr.sample_stack_user;
7223                 u16 size = sizeof(u64);
7224
7225                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7226                                                      data->regs_user.regs);
7227
7228                 /*
7229                  * If there is something to dump, add space for the dump
7230                  * itself and for the field that tells the dynamic size,
7231                  * which is how many have been actually dumped.
7232                  */
7233                 if (stack_size)
7234                         size += sizeof(u64) + stack_size;
7235
7236                 data->stack_user_size = stack_size;
7237                 header->size += size;
7238         }
7239
7240         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7241                 /* regs dump ABI info */
7242                 int size = sizeof(u64);
7243
7244                 perf_sample_regs_intr(&data->regs_intr, regs);
7245
7246                 if (data->regs_intr.regs) {
7247                         u64 mask = event->attr.sample_regs_intr;
7248
7249                         size += hweight64(mask) * sizeof(u64);
7250                 }
7251
7252                 header->size += size;
7253         }
7254
7255         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7256                 data->phys_addr = perf_virt_to_phys(data->addr);
7257
7258 #ifdef CONFIG_CGROUP_PERF
7259         if (sample_type & PERF_SAMPLE_CGROUP) {
7260                 struct cgroup *cgrp;
7261
7262                 /* protected by RCU */
7263                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7264                 data->cgroup = cgroup_id(cgrp);
7265         }
7266 #endif
7267
7268         /*
7269          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7270          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7271          * but the value will not dump to the userspace.
7272          */
7273         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7274                 data->data_page_size = perf_get_page_size(data->addr);
7275
7276         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7277                 data->code_page_size = perf_get_page_size(data->ip);
7278
7279         if (sample_type & PERF_SAMPLE_AUX) {
7280                 u64 size;
7281
7282                 header->size += sizeof(u64); /* size */
7283
7284                 /*
7285                  * Given the 16bit nature of header::size, an AUX sample can
7286                  * easily overflow it, what with all the preceding sample bits.
7287                  * Make sure this doesn't happen by using up to U16_MAX bytes
7288                  * per sample in total (rounded down to 8 byte boundary).
7289                  */
7290                 size = min_t(size_t, U16_MAX - header->size,
7291                              event->attr.aux_sample_size);
7292                 size = rounddown(size, 8);
7293                 size = perf_prepare_sample_aux(event, data, size);
7294
7295                 WARN_ON_ONCE(size + header->size > U16_MAX);
7296                 header->size += size;
7297         }
7298         /*
7299          * If you're adding more sample types here, you likely need to do
7300          * something about the overflowing header::size, like repurpose the
7301          * lowest 3 bits of size, which should be always zero at the moment.
7302          * This raises a more important question, do we really need 512k sized
7303          * samples and why, so good argumentation is in order for whatever you
7304          * do here next.
7305          */
7306         WARN_ON_ONCE(header->size & 7);
7307 }
7308
7309 static __always_inline int
7310 __perf_event_output(struct perf_event *event,
7311                     struct perf_sample_data *data,
7312                     struct pt_regs *regs,
7313                     int (*output_begin)(struct perf_output_handle *,
7314                                         struct perf_sample_data *,
7315                                         struct perf_event *,
7316                                         unsigned int))
7317 {
7318         struct perf_output_handle handle;
7319         struct perf_event_header header;
7320         int err;
7321
7322         /* protect the callchain buffers */
7323         rcu_read_lock();
7324
7325         perf_prepare_sample(&header, data, event, regs);
7326
7327         err = output_begin(&handle, data, event, header.size);
7328         if (err)
7329                 goto exit;
7330
7331         perf_output_sample(&handle, &header, data, event);
7332
7333         perf_output_end(&handle);
7334
7335 exit:
7336         rcu_read_unlock();
7337         return err;
7338 }
7339
7340 void
7341 perf_event_output_forward(struct perf_event *event,
7342                          struct perf_sample_data *data,
7343                          struct pt_regs *regs)
7344 {
7345         __perf_event_output(event, data, regs, perf_output_begin_forward);
7346 }
7347
7348 void
7349 perf_event_output_backward(struct perf_event *event,
7350                            struct perf_sample_data *data,
7351                            struct pt_regs *regs)
7352 {
7353         __perf_event_output(event, data, regs, perf_output_begin_backward);
7354 }
7355
7356 int
7357 perf_event_output(struct perf_event *event,
7358                   struct perf_sample_data *data,
7359                   struct pt_regs *regs)
7360 {
7361         return __perf_event_output(event, data, regs, perf_output_begin);
7362 }
7363
7364 /*
7365  * read event_id
7366  */
7367
7368 struct perf_read_event {
7369         struct perf_event_header        header;
7370
7371         u32                             pid;
7372         u32                             tid;
7373 };
7374
7375 static void
7376 perf_event_read_event(struct perf_event *event,
7377                         struct task_struct *task)
7378 {
7379         struct perf_output_handle handle;
7380         struct perf_sample_data sample;
7381         struct perf_read_event read_event = {
7382                 .header = {
7383                         .type = PERF_RECORD_READ,
7384                         .misc = 0,
7385                         .size = sizeof(read_event) + event->read_size,
7386                 },
7387                 .pid = perf_event_pid(event, task),
7388                 .tid = perf_event_tid(event, task),
7389         };
7390         int ret;
7391
7392         perf_event_header__init_id(&read_event.header, &sample, event);
7393         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7394         if (ret)
7395                 return;
7396
7397         perf_output_put(&handle, read_event);
7398         perf_output_read(&handle, event);
7399         perf_event__output_id_sample(event, &handle, &sample);
7400
7401         perf_output_end(&handle);
7402 }
7403
7404 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7405
7406 static void
7407 perf_iterate_ctx(struct perf_event_context *ctx,
7408                    perf_iterate_f output,
7409                    void *data, bool all)
7410 {
7411         struct perf_event *event;
7412
7413         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7414                 if (!all) {
7415                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7416                                 continue;
7417                         if (!event_filter_match(event))
7418                                 continue;
7419                 }
7420
7421                 output(event, data);
7422         }
7423 }
7424
7425 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7426 {
7427         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7428         struct perf_event *event;
7429
7430         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7431                 /*
7432                  * Skip events that are not fully formed yet; ensure that
7433                  * if we observe event->ctx, both event and ctx will be
7434                  * complete enough. See perf_install_in_context().
7435                  */
7436                 if (!smp_load_acquire(&event->ctx))
7437                         continue;
7438
7439                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7440                         continue;
7441                 if (!event_filter_match(event))
7442                         continue;
7443                 output(event, data);
7444         }
7445 }
7446
7447 /*
7448  * Iterate all events that need to receive side-band events.
7449  *
7450  * For new callers; ensure that account_pmu_sb_event() includes
7451  * your event, otherwise it might not get delivered.
7452  */
7453 static void
7454 perf_iterate_sb(perf_iterate_f output, void *data,
7455                struct perf_event_context *task_ctx)
7456 {
7457         struct perf_event_context *ctx;
7458         int ctxn;
7459
7460         rcu_read_lock();
7461         preempt_disable();
7462
7463         /*
7464          * If we have task_ctx != NULL we only notify the task context itself.
7465          * The task_ctx is set only for EXIT events before releasing task
7466          * context.
7467          */
7468         if (task_ctx) {
7469                 perf_iterate_ctx(task_ctx, output, data, false);
7470                 goto done;
7471         }
7472
7473         perf_iterate_sb_cpu(output, data);
7474
7475         for_each_task_context_nr(ctxn) {
7476                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7477                 if (ctx)
7478                         perf_iterate_ctx(ctx, output, data, false);
7479         }
7480 done:
7481         preempt_enable();
7482         rcu_read_unlock();
7483 }
7484
7485 /*
7486  * Clear all file-based filters at exec, they'll have to be
7487  * re-instated when/if these objects are mmapped again.
7488  */
7489 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7490 {
7491         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7492         struct perf_addr_filter *filter;
7493         unsigned int restart = 0, count = 0;
7494         unsigned long flags;
7495
7496         if (!has_addr_filter(event))
7497                 return;
7498
7499         raw_spin_lock_irqsave(&ifh->lock, flags);
7500         list_for_each_entry(filter, &ifh->list, entry) {
7501                 if (filter->path.dentry) {
7502                         event->addr_filter_ranges[count].start = 0;
7503                         event->addr_filter_ranges[count].size = 0;
7504                         restart++;
7505                 }
7506
7507                 count++;
7508         }
7509
7510         if (restart)
7511                 event->addr_filters_gen++;
7512         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7513
7514         if (restart)
7515                 perf_event_stop(event, 1);
7516 }
7517
7518 void perf_event_exec(void)
7519 {
7520         struct perf_event_context *ctx;
7521         int ctxn;
7522
7523         rcu_read_lock();
7524         for_each_task_context_nr(ctxn) {
7525                 ctx = current->perf_event_ctxp[ctxn];
7526                 if (!ctx)
7527                         continue;
7528
7529                 perf_event_enable_on_exec(ctxn);
7530
7531                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7532                                    true);
7533         }
7534         rcu_read_unlock();
7535 }
7536
7537 struct remote_output {
7538         struct perf_buffer      *rb;
7539         int                     err;
7540 };
7541
7542 static void __perf_event_output_stop(struct perf_event *event, void *data)
7543 {
7544         struct perf_event *parent = event->parent;
7545         struct remote_output *ro = data;
7546         struct perf_buffer *rb = ro->rb;
7547         struct stop_event_data sd = {
7548                 .event  = event,
7549         };
7550
7551         if (!has_aux(event))
7552                 return;
7553
7554         if (!parent)
7555                 parent = event;
7556
7557         /*
7558          * In case of inheritance, it will be the parent that links to the
7559          * ring-buffer, but it will be the child that's actually using it.
7560          *
7561          * We are using event::rb to determine if the event should be stopped,
7562          * however this may race with ring_buffer_attach() (through set_output),
7563          * which will make us skip the event that actually needs to be stopped.
7564          * So ring_buffer_attach() has to stop an aux event before re-assigning
7565          * its rb pointer.
7566          */
7567         if (rcu_dereference(parent->rb) == rb)
7568                 ro->err = __perf_event_stop(&sd);
7569 }
7570
7571 static int __perf_pmu_output_stop(void *info)
7572 {
7573         struct perf_event *event = info;
7574         struct pmu *pmu = event->ctx->pmu;
7575         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7576         struct remote_output ro = {
7577                 .rb     = event->rb,
7578         };
7579
7580         rcu_read_lock();
7581         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7582         if (cpuctx->task_ctx)
7583                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7584                                    &ro, false);
7585         rcu_read_unlock();
7586
7587         return ro.err;
7588 }
7589
7590 static void perf_pmu_output_stop(struct perf_event *event)
7591 {
7592         struct perf_event *iter;
7593         int err, cpu;
7594
7595 restart:
7596         rcu_read_lock();
7597         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7598                 /*
7599                  * For per-CPU events, we need to make sure that neither they
7600                  * nor their children are running; for cpu==-1 events it's
7601                  * sufficient to stop the event itself if it's active, since
7602                  * it can't have children.
7603                  */
7604                 cpu = iter->cpu;
7605                 if (cpu == -1)
7606                         cpu = READ_ONCE(iter->oncpu);
7607
7608                 if (cpu == -1)
7609                         continue;
7610
7611                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7612                 if (err == -EAGAIN) {
7613                         rcu_read_unlock();
7614                         goto restart;
7615                 }
7616         }
7617         rcu_read_unlock();
7618 }
7619
7620 /*
7621  * task tracking -- fork/exit
7622  *
7623  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7624  */
7625
7626 struct perf_task_event {
7627         struct task_struct              *task;
7628         struct perf_event_context       *task_ctx;
7629
7630         struct {
7631                 struct perf_event_header        header;
7632
7633                 u32                             pid;
7634                 u32                             ppid;
7635                 u32                             tid;
7636                 u32                             ptid;
7637                 u64                             time;
7638         } event_id;
7639 };
7640
7641 static int perf_event_task_match(struct perf_event *event)
7642 {
7643         return event->attr.comm  || event->attr.mmap ||
7644                event->attr.mmap2 || event->attr.mmap_data ||
7645                event->attr.task;
7646 }
7647
7648 static void perf_event_task_output(struct perf_event *event,
7649                                    void *data)
7650 {
7651         struct perf_task_event *task_event = data;
7652         struct perf_output_handle handle;
7653         struct perf_sample_data sample;
7654         struct task_struct *task = task_event->task;
7655         int ret, size = task_event->event_id.header.size;
7656
7657         if (!perf_event_task_match(event))
7658                 return;
7659
7660         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7661
7662         ret = perf_output_begin(&handle, &sample, event,
7663                                 task_event->event_id.header.size);
7664         if (ret)
7665                 goto out;
7666
7667         task_event->event_id.pid = perf_event_pid(event, task);
7668         task_event->event_id.tid = perf_event_tid(event, task);
7669
7670         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7671                 task_event->event_id.ppid = perf_event_pid(event,
7672                                                         task->real_parent);
7673                 task_event->event_id.ptid = perf_event_pid(event,
7674                                                         task->real_parent);
7675         } else {  /* PERF_RECORD_FORK */
7676                 task_event->event_id.ppid = perf_event_pid(event, current);
7677                 task_event->event_id.ptid = perf_event_tid(event, current);
7678         }
7679
7680         task_event->event_id.time = perf_event_clock(event);
7681
7682         perf_output_put(&handle, task_event->event_id);
7683
7684         perf_event__output_id_sample(event, &handle, &sample);
7685
7686         perf_output_end(&handle);
7687 out:
7688         task_event->event_id.header.size = size;
7689 }
7690
7691 static void perf_event_task(struct task_struct *task,
7692                               struct perf_event_context *task_ctx,
7693                               int new)
7694 {
7695         struct perf_task_event task_event;
7696
7697         if (!atomic_read(&nr_comm_events) &&
7698             !atomic_read(&nr_mmap_events) &&
7699             !atomic_read(&nr_task_events))
7700                 return;
7701
7702         task_event = (struct perf_task_event){
7703                 .task     = task,
7704                 .task_ctx = task_ctx,
7705                 .event_id    = {
7706                         .header = {
7707                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7708                                 .misc = 0,
7709                                 .size = sizeof(task_event.event_id),
7710                         },
7711                         /* .pid  */
7712                         /* .ppid */
7713                         /* .tid  */
7714                         /* .ptid */
7715                         /* .time */
7716                 },
7717         };
7718
7719         perf_iterate_sb(perf_event_task_output,
7720                        &task_event,
7721                        task_ctx);
7722 }
7723
7724 void perf_event_fork(struct task_struct *task)
7725 {
7726         perf_event_task(task, NULL, 1);
7727         perf_event_namespaces(task);
7728 }
7729
7730 /*
7731  * comm tracking
7732  */
7733
7734 struct perf_comm_event {
7735         struct task_struct      *task;
7736         char                    *comm;
7737         int                     comm_size;
7738
7739         struct {
7740                 struct perf_event_header        header;
7741
7742                 u32                             pid;
7743                 u32                             tid;
7744         } event_id;
7745 };
7746
7747 static int perf_event_comm_match(struct perf_event *event)
7748 {
7749         return event->attr.comm;
7750 }
7751
7752 static void perf_event_comm_output(struct perf_event *event,
7753                                    void *data)
7754 {
7755         struct perf_comm_event *comm_event = data;
7756         struct perf_output_handle handle;
7757         struct perf_sample_data sample;
7758         int size = comm_event->event_id.header.size;
7759         int ret;
7760
7761         if (!perf_event_comm_match(event))
7762                 return;
7763
7764         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7765         ret = perf_output_begin(&handle, &sample, event,
7766                                 comm_event->event_id.header.size);
7767
7768         if (ret)
7769                 goto out;
7770
7771         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7772         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7773
7774         perf_output_put(&handle, comm_event->event_id);
7775         __output_copy(&handle, comm_event->comm,
7776                                    comm_event->comm_size);
7777
7778         perf_event__output_id_sample(event, &handle, &sample);
7779
7780         perf_output_end(&handle);
7781 out:
7782         comm_event->event_id.header.size = size;
7783 }
7784
7785 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7786 {
7787         char comm[TASK_COMM_LEN];
7788         unsigned int size;
7789
7790         memset(comm, 0, sizeof(comm));
7791         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7792         size = ALIGN(strlen(comm)+1, sizeof(u64));
7793
7794         comm_event->comm = comm;
7795         comm_event->comm_size = size;
7796
7797         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7798
7799         perf_iterate_sb(perf_event_comm_output,
7800                        comm_event,
7801                        NULL);
7802 }
7803
7804 void perf_event_comm(struct task_struct *task, bool exec)
7805 {
7806         struct perf_comm_event comm_event;
7807
7808         if (!atomic_read(&nr_comm_events))
7809                 return;
7810
7811         comm_event = (struct perf_comm_event){
7812                 .task   = task,
7813                 /* .comm      */
7814                 /* .comm_size */
7815                 .event_id  = {
7816                         .header = {
7817                                 .type = PERF_RECORD_COMM,
7818                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7819                                 /* .size */
7820                         },
7821                         /* .pid */
7822                         /* .tid */
7823                 },
7824         };
7825
7826         perf_event_comm_event(&comm_event);
7827 }
7828
7829 /*
7830  * namespaces tracking
7831  */
7832
7833 struct perf_namespaces_event {
7834         struct task_struct              *task;
7835
7836         struct {
7837                 struct perf_event_header        header;
7838
7839                 u32                             pid;
7840                 u32                             tid;
7841                 u64                             nr_namespaces;
7842                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7843         } event_id;
7844 };
7845
7846 static int perf_event_namespaces_match(struct perf_event *event)
7847 {
7848         return event->attr.namespaces;
7849 }
7850
7851 static void perf_event_namespaces_output(struct perf_event *event,
7852                                          void *data)
7853 {
7854         struct perf_namespaces_event *namespaces_event = data;
7855         struct perf_output_handle handle;
7856         struct perf_sample_data sample;
7857         u16 header_size = namespaces_event->event_id.header.size;
7858         int ret;
7859
7860         if (!perf_event_namespaces_match(event))
7861                 return;
7862
7863         perf_event_header__init_id(&namespaces_event->event_id.header,
7864                                    &sample, event);
7865         ret = perf_output_begin(&handle, &sample, event,
7866                                 namespaces_event->event_id.header.size);
7867         if (ret)
7868                 goto out;
7869
7870         namespaces_event->event_id.pid = perf_event_pid(event,
7871                                                         namespaces_event->task);
7872         namespaces_event->event_id.tid = perf_event_tid(event,
7873                                                         namespaces_event->task);
7874
7875         perf_output_put(&handle, namespaces_event->event_id);
7876
7877         perf_event__output_id_sample(event, &handle, &sample);
7878
7879         perf_output_end(&handle);
7880 out:
7881         namespaces_event->event_id.header.size = header_size;
7882 }
7883
7884 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7885                                    struct task_struct *task,
7886                                    const struct proc_ns_operations *ns_ops)
7887 {
7888         struct path ns_path;
7889         struct inode *ns_inode;
7890         int error;
7891
7892         error = ns_get_path(&ns_path, task, ns_ops);
7893         if (!error) {
7894                 ns_inode = ns_path.dentry->d_inode;
7895                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7896                 ns_link_info->ino = ns_inode->i_ino;
7897                 path_put(&ns_path);
7898         }
7899 }
7900
7901 void perf_event_namespaces(struct task_struct *task)
7902 {
7903         struct perf_namespaces_event namespaces_event;
7904         struct perf_ns_link_info *ns_link_info;
7905
7906         if (!atomic_read(&nr_namespaces_events))
7907                 return;
7908
7909         namespaces_event = (struct perf_namespaces_event){
7910                 .task   = task,
7911                 .event_id  = {
7912                         .header = {
7913                                 .type = PERF_RECORD_NAMESPACES,
7914                                 .misc = 0,
7915                                 .size = sizeof(namespaces_event.event_id),
7916                         },
7917                         /* .pid */
7918                         /* .tid */
7919                         .nr_namespaces = NR_NAMESPACES,
7920                         /* .link_info[NR_NAMESPACES] */
7921                 },
7922         };
7923
7924         ns_link_info = namespaces_event.event_id.link_info;
7925
7926         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7927                                task, &mntns_operations);
7928
7929 #ifdef CONFIG_USER_NS
7930         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7931                                task, &userns_operations);
7932 #endif
7933 #ifdef CONFIG_NET_NS
7934         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7935                                task, &netns_operations);
7936 #endif
7937 #ifdef CONFIG_UTS_NS
7938         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7939                                task, &utsns_operations);
7940 #endif
7941 #ifdef CONFIG_IPC_NS
7942         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7943                                task, &ipcns_operations);
7944 #endif
7945 #ifdef CONFIG_PID_NS
7946         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7947                                task, &pidns_operations);
7948 #endif
7949 #ifdef CONFIG_CGROUPS
7950         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7951                                task, &cgroupns_operations);
7952 #endif
7953
7954         perf_iterate_sb(perf_event_namespaces_output,
7955                         &namespaces_event,
7956                         NULL);
7957 }
7958
7959 /*
7960  * cgroup tracking
7961  */
7962 #ifdef CONFIG_CGROUP_PERF
7963
7964 struct perf_cgroup_event {
7965         char                            *path;
7966         int                             path_size;
7967         struct {
7968                 struct perf_event_header        header;
7969                 u64                             id;
7970                 char                            path[];
7971         } event_id;
7972 };
7973
7974 static int perf_event_cgroup_match(struct perf_event *event)
7975 {
7976         return event->attr.cgroup;
7977 }
7978
7979 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7980 {
7981         struct perf_cgroup_event *cgroup_event = data;
7982         struct perf_output_handle handle;
7983         struct perf_sample_data sample;
7984         u16 header_size = cgroup_event->event_id.header.size;
7985         int ret;
7986
7987         if (!perf_event_cgroup_match(event))
7988                 return;
7989
7990         perf_event_header__init_id(&cgroup_event->event_id.header,
7991                                    &sample, event);
7992         ret = perf_output_begin(&handle, &sample, event,
7993                                 cgroup_event->event_id.header.size);
7994         if (ret)
7995                 goto out;
7996
7997         perf_output_put(&handle, cgroup_event->event_id);
7998         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7999
8000         perf_event__output_id_sample(event, &handle, &sample);
8001
8002         perf_output_end(&handle);
8003 out:
8004         cgroup_event->event_id.header.size = header_size;
8005 }
8006
8007 static void perf_event_cgroup(struct cgroup *cgrp)
8008 {
8009         struct perf_cgroup_event cgroup_event;
8010         char path_enomem[16] = "//enomem";
8011         char *pathname;
8012         size_t size;
8013
8014         if (!atomic_read(&nr_cgroup_events))
8015                 return;
8016
8017         cgroup_event = (struct perf_cgroup_event){
8018                 .event_id  = {
8019                         .header = {
8020                                 .type = PERF_RECORD_CGROUP,
8021                                 .misc = 0,
8022                                 .size = sizeof(cgroup_event.event_id),
8023                         },
8024                         .id = cgroup_id(cgrp),
8025                 },
8026         };
8027
8028         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8029         if (pathname == NULL) {
8030                 cgroup_event.path = path_enomem;
8031         } else {
8032                 /* just to be sure to have enough space for alignment */
8033                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8034                 cgroup_event.path = pathname;
8035         }
8036
8037         /*
8038          * Since our buffer works in 8 byte units we need to align our string
8039          * size to a multiple of 8. However, we must guarantee the tail end is
8040          * zero'd out to avoid leaking random bits to userspace.
8041          */
8042         size = strlen(cgroup_event.path) + 1;
8043         while (!IS_ALIGNED(size, sizeof(u64)))
8044                 cgroup_event.path[size++] = '\0';
8045
8046         cgroup_event.event_id.header.size += size;
8047         cgroup_event.path_size = size;
8048
8049         perf_iterate_sb(perf_event_cgroup_output,
8050                         &cgroup_event,
8051                         NULL);
8052
8053         kfree(pathname);
8054 }
8055
8056 #endif
8057
8058 /*
8059  * mmap tracking
8060  */
8061
8062 struct perf_mmap_event {
8063         struct vm_area_struct   *vma;
8064
8065         const char              *file_name;
8066         int                     file_size;
8067         int                     maj, min;
8068         u64                     ino;
8069         u64                     ino_generation;
8070         u32                     prot, flags;
8071         u8                      build_id[BUILD_ID_SIZE_MAX];
8072         u32                     build_id_size;
8073
8074         struct {
8075                 struct perf_event_header        header;
8076
8077                 u32                             pid;
8078                 u32                             tid;
8079                 u64                             start;
8080                 u64                             len;
8081                 u64                             pgoff;
8082         } event_id;
8083 };
8084
8085 static int perf_event_mmap_match(struct perf_event *event,
8086                                  void *data)
8087 {
8088         struct perf_mmap_event *mmap_event = data;
8089         struct vm_area_struct *vma = mmap_event->vma;
8090         int executable = vma->vm_flags & VM_EXEC;
8091
8092         return (!executable && event->attr.mmap_data) ||
8093                (executable && (event->attr.mmap || event->attr.mmap2));
8094 }
8095
8096 static void perf_event_mmap_output(struct perf_event *event,
8097                                    void *data)
8098 {
8099         struct perf_mmap_event *mmap_event = data;
8100         struct perf_output_handle handle;
8101         struct perf_sample_data sample;
8102         int size = mmap_event->event_id.header.size;
8103         u32 type = mmap_event->event_id.header.type;
8104         bool use_build_id;
8105         int ret;
8106
8107         if (!perf_event_mmap_match(event, data))
8108                 return;
8109
8110         if (event->attr.mmap2) {
8111                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8112                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8113                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8114                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8115                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8116                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8117                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8118         }
8119
8120         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8121         ret = perf_output_begin(&handle, &sample, event,
8122                                 mmap_event->event_id.header.size);
8123         if (ret)
8124                 goto out;
8125
8126         mmap_event->event_id.pid = perf_event_pid(event, current);
8127         mmap_event->event_id.tid = perf_event_tid(event, current);
8128
8129         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8130
8131         if (event->attr.mmap2 && use_build_id)
8132                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8133
8134         perf_output_put(&handle, mmap_event->event_id);
8135
8136         if (event->attr.mmap2) {
8137                 if (use_build_id) {
8138                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8139
8140                         __output_copy(&handle, size, 4);
8141                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8142                 } else {
8143                         perf_output_put(&handle, mmap_event->maj);
8144                         perf_output_put(&handle, mmap_event->min);
8145                         perf_output_put(&handle, mmap_event->ino);
8146                         perf_output_put(&handle, mmap_event->ino_generation);
8147                 }
8148                 perf_output_put(&handle, mmap_event->prot);
8149                 perf_output_put(&handle, mmap_event->flags);
8150         }
8151
8152         __output_copy(&handle, mmap_event->file_name,
8153                                    mmap_event->file_size);
8154
8155         perf_event__output_id_sample(event, &handle, &sample);
8156
8157         perf_output_end(&handle);
8158 out:
8159         mmap_event->event_id.header.size = size;
8160         mmap_event->event_id.header.type = type;
8161 }
8162
8163 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8164 {
8165         struct vm_area_struct *vma = mmap_event->vma;
8166         struct file *file = vma->vm_file;
8167         int maj = 0, min = 0;
8168         u64 ino = 0, gen = 0;
8169         u32 prot = 0, flags = 0;
8170         unsigned int size;
8171         char tmp[16];
8172         char *buf = NULL;
8173         char *name;
8174
8175         if (vma->vm_flags & VM_READ)
8176                 prot |= PROT_READ;
8177         if (vma->vm_flags & VM_WRITE)
8178                 prot |= PROT_WRITE;
8179         if (vma->vm_flags & VM_EXEC)
8180                 prot |= PROT_EXEC;
8181
8182         if (vma->vm_flags & VM_MAYSHARE)
8183                 flags = MAP_SHARED;
8184         else
8185                 flags = MAP_PRIVATE;
8186
8187         if (vma->vm_flags & VM_DENYWRITE)
8188                 flags |= MAP_DENYWRITE;
8189         if (vma->vm_flags & VM_MAYEXEC)
8190                 flags |= MAP_EXECUTABLE;
8191         if (vma->vm_flags & VM_LOCKED)
8192                 flags |= MAP_LOCKED;
8193         if (is_vm_hugetlb_page(vma))
8194                 flags |= MAP_HUGETLB;
8195
8196         if (file) {
8197                 struct inode *inode;
8198                 dev_t dev;
8199
8200                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8201                 if (!buf) {
8202                         name = "//enomem";
8203                         goto cpy_name;
8204                 }
8205                 /*
8206                  * d_path() works from the end of the rb backwards, so we
8207                  * need to add enough zero bytes after the string to handle
8208                  * the 64bit alignment we do later.
8209                  */
8210                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8211                 if (IS_ERR(name)) {
8212                         name = "//toolong";
8213                         goto cpy_name;
8214                 }
8215                 inode = file_inode(vma->vm_file);
8216                 dev = inode->i_sb->s_dev;
8217                 ino = inode->i_ino;
8218                 gen = inode->i_generation;
8219                 maj = MAJOR(dev);
8220                 min = MINOR(dev);
8221
8222                 goto got_name;
8223         } else {
8224                 if (vma->vm_ops && vma->vm_ops->name) {
8225                         name = (char *) vma->vm_ops->name(vma);
8226                         if (name)
8227                                 goto cpy_name;
8228                 }
8229
8230                 name = (char *)arch_vma_name(vma);
8231                 if (name)
8232                         goto cpy_name;
8233
8234                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8235                                 vma->vm_end >= vma->vm_mm->brk) {
8236                         name = "[heap]";
8237                         goto cpy_name;
8238                 }
8239                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8240                                 vma->vm_end >= vma->vm_mm->start_stack) {
8241                         name = "[stack]";
8242                         goto cpy_name;
8243                 }
8244
8245                 name = "//anon";
8246                 goto cpy_name;
8247         }
8248
8249 cpy_name:
8250         strlcpy(tmp, name, sizeof(tmp));
8251         name = tmp;
8252 got_name:
8253         /*
8254          * Since our buffer works in 8 byte units we need to align our string
8255          * size to a multiple of 8. However, we must guarantee the tail end is
8256          * zero'd out to avoid leaking random bits to userspace.
8257          */
8258         size = strlen(name)+1;
8259         while (!IS_ALIGNED(size, sizeof(u64)))
8260                 name[size++] = '\0';
8261
8262         mmap_event->file_name = name;
8263         mmap_event->file_size = size;
8264         mmap_event->maj = maj;
8265         mmap_event->min = min;
8266         mmap_event->ino = ino;
8267         mmap_event->ino_generation = gen;
8268         mmap_event->prot = prot;
8269         mmap_event->flags = flags;
8270
8271         if (!(vma->vm_flags & VM_EXEC))
8272                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8273
8274         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8275
8276         if (atomic_read(&nr_build_id_events))
8277                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8278
8279         perf_iterate_sb(perf_event_mmap_output,
8280                        mmap_event,
8281                        NULL);
8282
8283         kfree(buf);
8284 }
8285
8286 /*
8287  * Check whether inode and address range match filter criteria.
8288  */
8289 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8290                                      struct file *file, unsigned long offset,
8291                                      unsigned long size)
8292 {
8293         /* d_inode(NULL) won't be equal to any mapped user-space file */
8294         if (!filter->path.dentry)
8295                 return false;
8296
8297         if (d_inode(filter->path.dentry) != file_inode(file))
8298                 return false;
8299
8300         if (filter->offset > offset + size)
8301                 return false;
8302
8303         if (filter->offset + filter->size < offset)
8304                 return false;
8305
8306         return true;
8307 }
8308
8309 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8310                                         struct vm_area_struct *vma,
8311                                         struct perf_addr_filter_range *fr)
8312 {
8313         unsigned long vma_size = vma->vm_end - vma->vm_start;
8314         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8315         struct file *file = vma->vm_file;
8316
8317         if (!perf_addr_filter_match(filter, file, off, vma_size))
8318                 return false;
8319
8320         if (filter->offset < off) {
8321                 fr->start = vma->vm_start;
8322                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8323         } else {
8324                 fr->start = vma->vm_start + filter->offset - off;
8325                 fr->size = min(vma->vm_end - fr->start, filter->size);
8326         }
8327
8328         return true;
8329 }
8330
8331 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8332 {
8333         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8334         struct vm_area_struct *vma = data;
8335         struct perf_addr_filter *filter;
8336         unsigned int restart = 0, count = 0;
8337         unsigned long flags;
8338
8339         if (!has_addr_filter(event))
8340                 return;
8341
8342         if (!vma->vm_file)
8343                 return;
8344
8345         raw_spin_lock_irqsave(&ifh->lock, flags);
8346         list_for_each_entry(filter, &ifh->list, entry) {
8347                 if (perf_addr_filter_vma_adjust(filter, vma,
8348                                                 &event->addr_filter_ranges[count]))
8349                         restart++;
8350
8351                 count++;
8352         }
8353
8354         if (restart)
8355                 event->addr_filters_gen++;
8356         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8357
8358         if (restart)
8359                 perf_event_stop(event, 1);
8360 }
8361
8362 /*
8363  * Adjust all task's events' filters to the new vma
8364  */
8365 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8366 {
8367         struct perf_event_context *ctx;
8368         int ctxn;
8369
8370         /*
8371          * Data tracing isn't supported yet and as such there is no need
8372          * to keep track of anything that isn't related to executable code:
8373          */
8374         if (!(vma->vm_flags & VM_EXEC))
8375                 return;
8376
8377         rcu_read_lock();
8378         for_each_task_context_nr(ctxn) {
8379                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8380                 if (!ctx)
8381                         continue;
8382
8383                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8384         }
8385         rcu_read_unlock();
8386 }
8387
8388 void perf_event_mmap(struct vm_area_struct *vma)
8389 {
8390         struct perf_mmap_event mmap_event;
8391
8392         if (!atomic_read(&nr_mmap_events))
8393                 return;
8394
8395         mmap_event = (struct perf_mmap_event){
8396                 .vma    = vma,
8397                 /* .file_name */
8398                 /* .file_size */
8399                 .event_id  = {
8400                         .header = {
8401                                 .type = PERF_RECORD_MMAP,
8402                                 .misc = PERF_RECORD_MISC_USER,
8403                                 /* .size */
8404                         },
8405                         /* .pid */
8406                         /* .tid */
8407                         .start  = vma->vm_start,
8408                         .len    = vma->vm_end - vma->vm_start,
8409                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8410                 },
8411                 /* .maj (attr_mmap2 only) */
8412                 /* .min (attr_mmap2 only) */
8413                 /* .ino (attr_mmap2 only) */
8414                 /* .ino_generation (attr_mmap2 only) */
8415                 /* .prot (attr_mmap2 only) */
8416                 /* .flags (attr_mmap2 only) */
8417         };
8418
8419         perf_addr_filters_adjust(vma);
8420         perf_event_mmap_event(&mmap_event);
8421 }
8422
8423 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8424                           unsigned long size, u64 flags)
8425 {
8426         struct perf_output_handle handle;
8427         struct perf_sample_data sample;
8428         struct perf_aux_event {
8429                 struct perf_event_header        header;
8430                 u64                             offset;
8431                 u64                             size;
8432                 u64                             flags;
8433         } rec = {
8434                 .header = {
8435                         .type = PERF_RECORD_AUX,
8436                         .misc = 0,
8437                         .size = sizeof(rec),
8438                 },
8439                 .offset         = head,
8440                 .size           = size,
8441                 .flags          = flags,
8442         };
8443         int ret;
8444
8445         perf_event_header__init_id(&rec.header, &sample, event);
8446         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8447
8448         if (ret)
8449                 return;
8450
8451         perf_output_put(&handle, rec);
8452         perf_event__output_id_sample(event, &handle, &sample);
8453
8454         perf_output_end(&handle);
8455 }
8456
8457 /*
8458  * Lost/dropped samples logging
8459  */
8460 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8461 {
8462         struct perf_output_handle handle;
8463         struct perf_sample_data sample;
8464         int ret;
8465
8466         struct {
8467                 struct perf_event_header        header;
8468                 u64                             lost;
8469         } lost_samples_event = {
8470                 .header = {
8471                         .type = PERF_RECORD_LOST_SAMPLES,
8472                         .misc = 0,
8473                         .size = sizeof(lost_samples_event),
8474                 },
8475                 .lost           = lost,
8476         };
8477
8478         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8479
8480         ret = perf_output_begin(&handle, &sample, event,
8481                                 lost_samples_event.header.size);
8482         if (ret)
8483                 return;
8484
8485         perf_output_put(&handle, lost_samples_event);
8486         perf_event__output_id_sample(event, &handle, &sample);
8487         perf_output_end(&handle);
8488 }
8489
8490 /*
8491  * context_switch tracking
8492  */
8493
8494 struct perf_switch_event {
8495         struct task_struct      *task;
8496         struct task_struct      *next_prev;
8497
8498         struct {
8499                 struct perf_event_header        header;
8500                 u32                             next_prev_pid;
8501                 u32                             next_prev_tid;
8502         } event_id;
8503 };
8504
8505 static int perf_event_switch_match(struct perf_event *event)
8506 {
8507         return event->attr.context_switch;
8508 }
8509
8510 static void perf_event_switch_output(struct perf_event *event, void *data)
8511 {
8512         struct perf_switch_event *se = data;
8513         struct perf_output_handle handle;
8514         struct perf_sample_data sample;
8515         int ret;
8516
8517         if (!perf_event_switch_match(event))
8518                 return;
8519
8520         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8521         if (event->ctx->task) {
8522                 se->event_id.header.type = PERF_RECORD_SWITCH;
8523                 se->event_id.header.size = sizeof(se->event_id.header);
8524         } else {
8525                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8526                 se->event_id.header.size = sizeof(se->event_id);
8527                 se->event_id.next_prev_pid =
8528                                         perf_event_pid(event, se->next_prev);
8529                 se->event_id.next_prev_tid =
8530                                         perf_event_tid(event, se->next_prev);
8531         }
8532
8533         perf_event_header__init_id(&se->event_id.header, &sample, event);
8534
8535         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8536         if (ret)
8537                 return;
8538
8539         if (event->ctx->task)
8540                 perf_output_put(&handle, se->event_id.header);
8541         else
8542                 perf_output_put(&handle, se->event_id);
8543
8544         perf_event__output_id_sample(event, &handle, &sample);
8545
8546         perf_output_end(&handle);
8547 }
8548
8549 static void perf_event_switch(struct task_struct *task,
8550                               struct task_struct *next_prev, bool sched_in)
8551 {
8552         struct perf_switch_event switch_event;
8553
8554         /* N.B. caller checks nr_switch_events != 0 */
8555
8556         switch_event = (struct perf_switch_event){
8557                 .task           = task,
8558                 .next_prev      = next_prev,
8559                 .event_id       = {
8560                         .header = {
8561                                 /* .type */
8562                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8563                                 /* .size */
8564                         },
8565                         /* .next_prev_pid */
8566                         /* .next_prev_tid */
8567                 },
8568         };
8569
8570         if (!sched_in && task->state == TASK_RUNNING)
8571                 switch_event.event_id.header.misc |=
8572                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8573
8574         perf_iterate_sb(perf_event_switch_output,
8575                        &switch_event,
8576                        NULL);
8577 }
8578
8579 /*
8580  * IRQ throttle logging
8581  */
8582
8583 static void perf_log_throttle(struct perf_event *event, int enable)
8584 {
8585         struct perf_output_handle handle;
8586         struct perf_sample_data sample;
8587         int ret;
8588
8589         struct {
8590                 struct perf_event_header        header;
8591                 u64                             time;
8592                 u64                             id;
8593                 u64                             stream_id;
8594         } throttle_event = {
8595                 .header = {
8596                         .type = PERF_RECORD_THROTTLE,
8597                         .misc = 0,
8598                         .size = sizeof(throttle_event),
8599                 },
8600                 .time           = perf_event_clock(event),
8601                 .id             = primary_event_id(event),
8602                 .stream_id      = event->id,
8603         };
8604
8605         if (enable)
8606                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8607
8608         perf_event_header__init_id(&throttle_event.header, &sample, event);
8609
8610         ret = perf_output_begin(&handle, &sample, event,
8611                                 throttle_event.header.size);
8612         if (ret)
8613                 return;
8614
8615         perf_output_put(&handle, throttle_event);
8616         perf_event__output_id_sample(event, &handle, &sample);
8617         perf_output_end(&handle);
8618 }
8619
8620 /*
8621  * ksymbol register/unregister tracking
8622  */
8623
8624 struct perf_ksymbol_event {
8625         const char      *name;
8626         int             name_len;
8627         struct {
8628                 struct perf_event_header        header;
8629                 u64                             addr;
8630                 u32                             len;
8631                 u16                             ksym_type;
8632                 u16                             flags;
8633         } event_id;
8634 };
8635
8636 static int perf_event_ksymbol_match(struct perf_event *event)
8637 {
8638         return event->attr.ksymbol;
8639 }
8640
8641 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8642 {
8643         struct perf_ksymbol_event *ksymbol_event = data;
8644         struct perf_output_handle handle;
8645         struct perf_sample_data sample;
8646         int ret;
8647
8648         if (!perf_event_ksymbol_match(event))
8649                 return;
8650
8651         perf_event_header__init_id(&ksymbol_event->event_id.header,
8652                                    &sample, event);
8653         ret = perf_output_begin(&handle, &sample, event,
8654                                 ksymbol_event->event_id.header.size);
8655         if (ret)
8656                 return;
8657
8658         perf_output_put(&handle, ksymbol_event->event_id);
8659         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8660         perf_event__output_id_sample(event, &handle, &sample);
8661
8662         perf_output_end(&handle);
8663 }
8664
8665 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8666                         const char *sym)
8667 {
8668         struct perf_ksymbol_event ksymbol_event;
8669         char name[KSYM_NAME_LEN];
8670         u16 flags = 0;
8671         int name_len;
8672
8673         if (!atomic_read(&nr_ksymbol_events))
8674                 return;
8675
8676         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8677             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8678                 goto err;
8679
8680         strlcpy(name, sym, KSYM_NAME_LEN);
8681         name_len = strlen(name) + 1;
8682         while (!IS_ALIGNED(name_len, sizeof(u64)))
8683                 name[name_len++] = '\0';
8684         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8685
8686         if (unregister)
8687                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8688
8689         ksymbol_event = (struct perf_ksymbol_event){
8690                 .name = name,
8691                 .name_len = name_len,
8692                 .event_id = {
8693                         .header = {
8694                                 .type = PERF_RECORD_KSYMBOL,
8695                                 .size = sizeof(ksymbol_event.event_id) +
8696                                         name_len,
8697                         },
8698                         .addr = addr,
8699                         .len = len,
8700                         .ksym_type = ksym_type,
8701                         .flags = flags,
8702                 },
8703         };
8704
8705         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8706         return;
8707 err:
8708         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8709 }
8710
8711 /*
8712  * bpf program load/unload tracking
8713  */
8714
8715 struct perf_bpf_event {
8716         struct bpf_prog *prog;
8717         struct {
8718                 struct perf_event_header        header;
8719                 u16                             type;
8720                 u16                             flags;
8721                 u32                             id;
8722                 u8                              tag[BPF_TAG_SIZE];
8723         } event_id;
8724 };
8725
8726 static int perf_event_bpf_match(struct perf_event *event)
8727 {
8728         return event->attr.bpf_event;
8729 }
8730
8731 static void perf_event_bpf_output(struct perf_event *event, void *data)
8732 {
8733         struct perf_bpf_event *bpf_event = data;
8734         struct perf_output_handle handle;
8735         struct perf_sample_data sample;
8736         int ret;
8737
8738         if (!perf_event_bpf_match(event))
8739                 return;
8740
8741         perf_event_header__init_id(&bpf_event->event_id.header,
8742                                    &sample, event);
8743         ret = perf_output_begin(&handle, data, event,
8744                                 bpf_event->event_id.header.size);
8745         if (ret)
8746                 return;
8747
8748         perf_output_put(&handle, bpf_event->event_id);
8749         perf_event__output_id_sample(event, &handle, &sample);
8750
8751         perf_output_end(&handle);
8752 }
8753
8754 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8755                                          enum perf_bpf_event_type type)
8756 {
8757         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8758         int i;
8759
8760         if (prog->aux->func_cnt == 0) {
8761                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8762                                    (u64)(unsigned long)prog->bpf_func,
8763                                    prog->jited_len, unregister,
8764                                    prog->aux->ksym.name);
8765         } else {
8766                 for (i = 0; i < prog->aux->func_cnt; i++) {
8767                         struct bpf_prog *subprog = prog->aux->func[i];
8768
8769                         perf_event_ksymbol(
8770                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8771                                 (u64)(unsigned long)subprog->bpf_func,
8772                                 subprog->jited_len, unregister,
8773                                 prog->aux->ksym.name);
8774                 }
8775         }
8776 }
8777
8778 void perf_event_bpf_event(struct bpf_prog *prog,
8779                           enum perf_bpf_event_type type,
8780                           u16 flags)
8781 {
8782         struct perf_bpf_event bpf_event;
8783
8784         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8785             type >= PERF_BPF_EVENT_MAX)
8786                 return;
8787
8788         switch (type) {
8789         case PERF_BPF_EVENT_PROG_LOAD:
8790         case PERF_BPF_EVENT_PROG_UNLOAD:
8791                 if (atomic_read(&nr_ksymbol_events))
8792                         perf_event_bpf_emit_ksymbols(prog, type);
8793                 break;
8794         default:
8795                 break;
8796         }
8797
8798         if (!atomic_read(&nr_bpf_events))
8799                 return;
8800
8801         bpf_event = (struct perf_bpf_event){
8802                 .prog = prog,
8803                 .event_id = {
8804                         .header = {
8805                                 .type = PERF_RECORD_BPF_EVENT,
8806                                 .size = sizeof(bpf_event.event_id),
8807                         },
8808                         .type = type,
8809                         .flags = flags,
8810                         .id = prog->aux->id,
8811                 },
8812         };
8813
8814         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8815
8816         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8817         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8818 }
8819
8820 struct perf_text_poke_event {
8821         const void              *old_bytes;
8822         const void              *new_bytes;
8823         size_t                  pad;
8824         u16                     old_len;
8825         u16                     new_len;
8826
8827         struct {
8828                 struct perf_event_header        header;
8829
8830                 u64                             addr;
8831         } event_id;
8832 };
8833
8834 static int perf_event_text_poke_match(struct perf_event *event)
8835 {
8836         return event->attr.text_poke;
8837 }
8838
8839 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8840 {
8841         struct perf_text_poke_event *text_poke_event = data;
8842         struct perf_output_handle handle;
8843         struct perf_sample_data sample;
8844         u64 padding = 0;
8845         int ret;
8846
8847         if (!perf_event_text_poke_match(event))
8848                 return;
8849
8850         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8851
8852         ret = perf_output_begin(&handle, &sample, event,
8853                                 text_poke_event->event_id.header.size);
8854         if (ret)
8855                 return;
8856
8857         perf_output_put(&handle, text_poke_event->event_id);
8858         perf_output_put(&handle, text_poke_event->old_len);
8859         perf_output_put(&handle, text_poke_event->new_len);
8860
8861         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8862         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8863
8864         if (text_poke_event->pad)
8865                 __output_copy(&handle, &padding, text_poke_event->pad);
8866
8867         perf_event__output_id_sample(event, &handle, &sample);
8868
8869         perf_output_end(&handle);
8870 }
8871
8872 void perf_event_text_poke(const void *addr, const void *old_bytes,
8873                           size_t old_len, const void *new_bytes, size_t new_len)
8874 {
8875         struct perf_text_poke_event text_poke_event;
8876         size_t tot, pad;
8877
8878         if (!atomic_read(&nr_text_poke_events))
8879                 return;
8880
8881         tot  = sizeof(text_poke_event.old_len) + old_len;
8882         tot += sizeof(text_poke_event.new_len) + new_len;
8883         pad  = ALIGN(tot, sizeof(u64)) - tot;
8884
8885         text_poke_event = (struct perf_text_poke_event){
8886                 .old_bytes    = old_bytes,
8887                 .new_bytes    = new_bytes,
8888                 .pad          = pad,
8889                 .old_len      = old_len,
8890                 .new_len      = new_len,
8891                 .event_id  = {
8892                         .header = {
8893                                 .type = PERF_RECORD_TEXT_POKE,
8894                                 .misc = PERF_RECORD_MISC_KERNEL,
8895                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
8896                         },
8897                         .addr = (unsigned long)addr,
8898                 },
8899         };
8900
8901         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8902 }
8903
8904 void perf_event_itrace_started(struct perf_event *event)
8905 {
8906         event->attach_state |= PERF_ATTACH_ITRACE;
8907 }
8908
8909 static void perf_log_itrace_start(struct perf_event *event)
8910 {
8911         struct perf_output_handle handle;
8912         struct perf_sample_data sample;
8913         struct perf_aux_event {
8914                 struct perf_event_header        header;
8915                 u32                             pid;
8916                 u32                             tid;
8917         } rec;
8918         int ret;
8919
8920         if (event->parent)
8921                 event = event->parent;
8922
8923         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8924             event->attach_state & PERF_ATTACH_ITRACE)
8925                 return;
8926
8927         rec.header.type = PERF_RECORD_ITRACE_START;
8928         rec.header.misc = 0;
8929         rec.header.size = sizeof(rec);
8930         rec.pid = perf_event_pid(event, current);
8931         rec.tid = perf_event_tid(event, current);
8932
8933         perf_event_header__init_id(&rec.header, &sample, event);
8934         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8935
8936         if (ret)
8937                 return;
8938
8939         perf_output_put(&handle, rec);
8940         perf_event__output_id_sample(event, &handle, &sample);
8941
8942         perf_output_end(&handle);
8943 }
8944
8945 static int
8946 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8947 {
8948         struct hw_perf_event *hwc = &event->hw;
8949         int ret = 0;
8950         u64 seq;
8951
8952         seq = __this_cpu_read(perf_throttled_seq);
8953         if (seq != hwc->interrupts_seq) {
8954                 hwc->interrupts_seq = seq;
8955                 hwc->interrupts = 1;
8956         } else {
8957                 hwc->interrupts++;
8958                 if (unlikely(throttle
8959                              && hwc->interrupts >= max_samples_per_tick)) {
8960                         __this_cpu_inc(perf_throttled_count);
8961                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8962                         hwc->interrupts = MAX_INTERRUPTS;
8963                         perf_log_throttle(event, 0);
8964                         ret = 1;
8965                 }
8966         }
8967
8968         if (event->attr.freq) {
8969                 u64 now = perf_clock();
8970                 s64 delta = now - hwc->freq_time_stamp;
8971
8972                 hwc->freq_time_stamp = now;
8973
8974                 if (delta > 0 && delta < 2*TICK_NSEC)
8975                         perf_adjust_period(event, delta, hwc->last_period, true);
8976         }
8977
8978         return ret;
8979 }
8980
8981 int perf_event_account_interrupt(struct perf_event *event)
8982 {
8983         return __perf_event_account_interrupt(event, 1);
8984 }
8985
8986 /*
8987  * Generic event overflow handling, sampling.
8988  */
8989
8990 static int __perf_event_overflow(struct perf_event *event,
8991                                    int throttle, struct perf_sample_data *data,
8992                                    struct pt_regs *regs)
8993 {
8994         int events = atomic_read(&event->event_limit);
8995         int ret = 0;
8996
8997         /*
8998          * Non-sampling counters might still use the PMI to fold short
8999          * hardware counters, ignore those.
9000          */
9001         if (unlikely(!is_sampling_event(event)))
9002                 return 0;
9003
9004         ret = __perf_event_account_interrupt(event, throttle);
9005
9006         /*
9007          * XXX event_limit might not quite work as expected on inherited
9008          * events
9009          */
9010
9011         event->pending_kill = POLL_IN;
9012         if (events && atomic_dec_and_test(&event->event_limit)) {
9013                 ret = 1;
9014                 event->pending_kill = POLL_HUP;
9015
9016                 perf_event_disable_inatomic(event);
9017         }
9018
9019         READ_ONCE(event->overflow_handler)(event, data, regs);
9020
9021         if (*perf_event_fasync(event) && event->pending_kill) {
9022                 event->pending_wakeup = 1;
9023                 irq_work_queue(&event->pending);
9024         }
9025
9026         return ret;
9027 }
9028
9029 int perf_event_overflow(struct perf_event *event,
9030                           struct perf_sample_data *data,
9031                           struct pt_regs *regs)
9032 {
9033         return __perf_event_overflow(event, 1, data, regs);
9034 }
9035
9036 /*
9037  * Generic software event infrastructure
9038  */
9039
9040 struct swevent_htable {
9041         struct swevent_hlist            *swevent_hlist;
9042         struct mutex                    hlist_mutex;
9043         int                             hlist_refcount;
9044
9045         /* Recursion avoidance in each contexts */
9046         int                             recursion[PERF_NR_CONTEXTS];
9047 };
9048
9049 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9050
9051 /*
9052  * We directly increment event->count and keep a second value in
9053  * event->hw.period_left to count intervals. This period event
9054  * is kept in the range [-sample_period, 0] so that we can use the
9055  * sign as trigger.
9056  */
9057
9058 u64 perf_swevent_set_period(struct perf_event *event)
9059 {
9060         struct hw_perf_event *hwc = &event->hw;
9061         u64 period = hwc->last_period;
9062         u64 nr, offset;
9063         s64 old, val;
9064
9065         hwc->last_period = hwc->sample_period;
9066
9067 again:
9068         old = val = local64_read(&hwc->period_left);
9069         if (val < 0)
9070                 return 0;
9071
9072         nr = div64_u64(period + val, period);
9073         offset = nr * period;
9074         val -= offset;
9075         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9076                 goto again;
9077
9078         return nr;
9079 }
9080
9081 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9082                                     struct perf_sample_data *data,
9083                                     struct pt_regs *regs)
9084 {
9085         struct hw_perf_event *hwc = &event->hw;
9086         int throttle = 0;
9087
9088         if (!overflow)
9089                 overflow = perf_swevent_set_period(event);
9090
9091         if (hwc->interrupts == MAX_INTERRUPTS)
9092                 return;
9093
9094         for (; overflow; overflow--) {
9095                 if (__perf_event_overflow(event, throttle,
9096                                             data, regs)) {
9097                         /*
9098                          * We inhibit the overflow from happening when
9099                          * hwc->interrupts == MAX_INTERRUPTS.
9100                          */
9101                         break;
9102                 }
9103                 throttle = 1;
9104         }
9105 }
9106
9107 static void perf_swevent_event(struct perf_event *event, u64 nr,
9108                                struct perf_sample_data *data,
9109                                struct pt_regs *regs)
9110 {
9111         struct hw_perf_event *hwc = &event->hw;
9112
9113         local64_add(nr, &event->count);
9114
9115         if (!regs)
9116                 return;
9117
9118         if (!is_sampling_event(event))
9119                 return;
9120
9121         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9122                 data->period = nr;
9123                 return perf_swevent_overflow(event, 1, data, regs);
9124         } else
9125                 data->period = event->hw.last_period;
9126
9127         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9128                 return perf_swevent_overflow(event, 1, data, regs);
9129
9130         if (local64_add_negative(nr, &hwc->period_left))
9131                 return;
9132
9133         perf_swevent_overflow(event, 0, data, regs);
9134 }
9135
9136 static int perf_exclude_event(struct perf_event *event,
9137                               struct pt_regs *regs)
9138 {
9139         if (event->hw.state & PERF_HES_STOPPED)
9140                 return 1;
9141
9142         if (regs) {
9143                 if (event->attr.exclude_user && user_mode(regs))
9144                         return 1;
9145
9146                 if (event->attr.exclude_kernel && !user_mode(regs))
9147                         return 1;
9148         }
9149
9150         return 0;
9151 }
9152
9153 static int perf_swevent_match(struct perf_event *event,
9154                                 enum perf_type_id type,
9155                                 u32 event_id,
9156                                 struct perf_sample_data *data,
9157                                 struct pt_regs *regs)
9158 {
9159         if (event->attr.type != type)
9160                 return 0;
9161
9162         if (event->attr.config != event_id)
9163                 return 0;
9164
9165         if (perf_exclude_event(event, regs))
9166                 return 0;
9167
9168         return 1;
9169 }
9170
9171 static inline u64 swevent_hash(u64 type, u32 event_id)
9172 {
9173         u64 val = event_id | (type << 32);
9174
9175         return hash_64(val, SWEVENT_HLIST_BITS);
9176 }
9177
9178 static inline struct hlist_head *
9179 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9180 {
9181         u64 hash = swevent_hash(type, event_id);
9182
9183         return &hlist->heads[hash];
9184 }
9185
9186 /* For the read side: events when they trigger */
9187 static inline struct hlist_head *
9188 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9189 {
9190         struct swevent_hlist *hlist;
9191
9192         hlist = rcu_dereference(swhash->swevent_hlist);
9193         if (!hlist)
9194                 return NULL;
9195
9196         return __find_swevent_head(hlist, type, event_id);
9197 }
9198
9199 /* For the event head insertion and removal in the hlist */
9200 static inline struct hlist_head *
9201 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9202 {
9203         struct swevent_hlist *hlist;
9204         u32 event_id = event->attr.config;
9205         u64 type = event->attr.type;
9206
9207         /*
9208          * Event scheduling is always serialized against hlist allocation
9209          * and release. Which makes the protected version suitable here.
9210          * The context lock guarantees that.
9211          */
9212         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9213                                           lockdep_is_held(&event->ctx->lock));
9214         if (!hlist)
9215                 return NULL;
9216
9217         return __find_swevent_head(hlist, type, event_id);
9218 }
9219
9220 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9221                                     u64 nr,
9222                                     struct perf_sample_data *data,
9223                                     struct pt_regs *regs)
9224 {
9225         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9226         struct perf_event *event;
9227         struct hlist_head *head;
9228
9229         rcu_read_lock();
9230         head = find_swevent_head_rcu(swhash, type, event_id);
9231         if (!head)
9232                 goto end;
9233
9234         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9235                 if (perf_swevent_match(event, type, event_id, data, regs))
9236                         perf_swevent_event(event, nr, data, regs);
9237         }
9238 end:
9239         rcu_read_unlock();
9240 }
9241
9242 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9243
9244 int perf_swevent_get_recursion_context(void)
9245 {
9246         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9247
9248         return get_recursion_context(swhash->recursion);
9249 }
9250 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9251
9252 void perf_swevent_put_recursion_context(int rctx)
9253 {
9254         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9255
9256         put_recursion_context(swhash->recursion, rctx);
9257 }
9258
9259 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9260 {
9261         struct perf_sample_data data;
9262
9263         if (WARN_ON_ONCE(!regs))
9264                 return;
9265
9266         perf_sample_data_init(&data, addr, 0);
9267         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9268 }
9269
9270 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9271 {
9272         int rctx;
9273
9274         preempt_disable_notrace();
9275         rctx = perf_swevent_get_recursion_context();
9276         if (unlikely(rctx < 0))
9277                 goto fail;
9278
9279         ___perf_sw_event(event_id, nr, regs, addr);
9280
9281         perf_swevent_put_recursion_context(rctx);
9282 fail:
9283         preempt_enable_notrace();
9284 }
9285
9286 static void perf_swevent_read(struct perf_event *event)
9287 {
9288 }
9289
9290 static int perf_swevent_add(struct perf_event *event, int flags)
9291 {
9292         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9293         struct hw_perf_event *hwc = &event->hw;
9294         struct hlist_head *head;
9295
9296         if (is_sampling_event(event)) {
9297                 hwc->last_period = hwc->sample_period;
9298                 perf_swevent_set_period(event);
9299         }
9300
9301         hwc->state = !(flags & PERF_EF_START);
9302
9303         head = find_swevent_head(swhash, event);
9304         if (WARN_ON_ONCE(!head))
9305                 return -EINVAL;
9306
9307         hlist_add_head_rcu(&event->hlist_entry, head);
9308         perf_event_update_userpage(event);
9309
9310         return 0;
9311 }
9312
9313 static void perf_swevent_del(struct perf_event *event, int flags)
9314 {
9315         hlist_del_rcu(&event->hlist_entry);
9316 }
9317
9318 static void perf_swevent_start(struct perf_event *event, int flags)
9319 {
9320         event->hw.state = 0;
9321 }
9322
9323 static void perf_swevent_stop(struct perf_event *event, int flags)
9324 {
9325         event->hw.state = PERF_HES_STOPPED;
9326 }
9327
9328 /* Deref the hlist from the update side */
9329 static inline struct swevent_hlist *
9330 swevent_hlist_deref(struct swevent_htable *swhash)
9331 {
9332         return rcu_dereference_protected(swhash->swevent_hlist,
9333                                          lockdep_is_held(&swhash->hlist_mutex));
9334 }
9335
9336 static void swevent_hlist_release(struct swevent_htable *swhash)
9337 {
9338         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9339
9340         if (!hlist)
9341                 return;
9342
9343         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9344         kfree_rcu(hlist, rcu_head);
9345 }
9346
9347 static void swevent_hlist_put_cpu(int cpu)
9348 {
9349         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9350
9351         mutex_lock(&swhash->hlist_mutex);
9352
9353         if (!--swhash->hlist_refcount)
9354                 swevent_hlist_release(swhash);
9355
9356         mutex_unlock(&swhash->hlist_mutex);
9357 }
9358
9359 static void swevent_hlist_put(void)
9360 {
9361         int cpu;
9362
9363         for_each_possible_cpu(cpu)
9364                 swevent_hlist_put_cpu(cpu);
9365 }
9366
9367 static int swevent_hlist_get_cpu(int cpu)
9368 {
9369         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9370         int err = 0;
9371
9372         mutex_lock(&swhash->hlist_mutex);
9373         if (!swevent_hlist_deref(swhash) &&
9374             cpumask_test_cpu(cpu, perf_online_mask)) {
9375                 struct swevent_hlist *hlist;
9376
9377                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9378                 if (!hlist) {
9379                         err = -ENOMEM;
9380                         goto exit;
9381                 }
9382                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9383         }
9384         swhash->hlist_refcount++;
9385 exit:
9386         mutex_unlock(&swhash->hlist_mutex);
9387
9388         return err;
9389 }
9390
9391 static int swevent_hlist_get(void)
9392 {
9393         int err, cpu, failed_cpu;
9394
9395         mutex_lock(&pmus_lock);
9396         for_each_possible_cpu(cpu) {
9397                 err = swevent_hlist_get_cpu(cpu);
9398                 if (err) {
9399                         failed_cpu = cpu;
9400                         goto fail;
9401                 }
9402         }
9403         mutex_unlock(&pmus_lock);
9404         return 0;
9405 fail:
9406         for_each_possible_cpu(cpu) {
9407                 if (cpu == failed_cpu)
9408                         break;
9409                 swevent_hlist_put_cpu(cpu);
9410         }
9411         mutex_unlock(&pmus_lock);
9412         return err;
9413 }
9414
9415 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9416
9417 static void sw_perf_event_destroy(struct perf_event *event)
9418 {
9419         u64 event_id = event->attr.config;
9420
9421         WARN_ON(event->parent);
9422
9423         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9424         swevent_hlist_put();
9425 }
9426
9427 static int perf_swevent_init(struct perf_event *event)
9428 {
9429         u64 event_id = event->attr.config;
9430
9431         if (event->attr.type != PERF_TYPE_SOFTWARE)
9432                 return -ENOENT;
9433
9434         /*
9435          * no branch sampling for software events
9436          */
9437         if (has_branch_stack(event))
9438                 return -EOPNOTSUPP;
9439
9440         switch (event_id) {
9441         case PERF_COUNT_SW_CPU_CLOCK:
9442         case PERF_COUNT_SW_TASK_CLOCK:
9443                 return -ENOENT;
9444
9445         default:
9446                 break;
9447         }
9448
9449         if (event_id >= PERF_COUNT_SW_MAX)
9450                 return -ENOENT;
9451
9452         if (!event->parent) {
9453                 int err;
9454
9455                 err = swevent_hlist_get();
9456                 if (err)
9457                         return err;
9458
9459                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9460                 event->destroy = sw_perf_event_destroy;
9461         }
9462
9463         return 0;
9464 }
9465
9466 static struct pmu perf_swevent = {
9467         .task_ctx_nr    = perf_sw_context,
9468
9469         .capabilities   = PERF_PMU_CAP_NO_NMI,
9470
9471         .event_init     = perf_swevent_init,
9472         .add            = perf_swevent_add,
9473         .del            = perf_swevent_del,
9474         .start          = perf_swevent_start,
9475         .stop           = perf_swevent_stop,
9476         .read           = perf_swevent_read,
9477 };
9478
9479 #ifdef CONFIG_EVENT_TRACING
9480
9481 static int perf_tp_filter_match(struct perf_event *event,
9482                                 struct perf_sample_data *data)
9483 {
9484         void *record = data->raw->frag.data;
9485
9486         /* only top level events have filters set */
9487         if (event->parent)
9488                 event = event->parent;
9489
9490         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9491                 return 1;
9492         return 0;
9493 }
9494
9495 static int perf_tp_event_match(struct perf_event *event,
9496                                 struct perf_sample_data *data,
9497                                 struct pt_regs *regs)
9498 {
9499         if (event->hw.state & PERF_HES_STOPPED)
9500                 return 0;
9501         /*
9502          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9503          */
9504         if (event->attr.exclude_kernel && !user_mode(regs))
9505                 return 0;
9506
9507         if (!perf_tp_filter_match(event, data))
9508                 return 0;
9509
9510         return 1;
9511 }
9512
9513 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9514                                struct trace_event_call *call, u64 count,
9515                                struct pt_regs *regs, struct hlist_head *head,
9516                                struct task_struct *task)
9517 {
9518         if (bpf_prog_array_valid(call)) {
9519                 *(struct pt_regs **)raw_data = regs;
9520                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9521                         perf_swevent_put_recursion_context(rctx);
9522                         return;
9523                 }
9524         }
9525         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9526                       rctx, task);
9527 }
9528 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9529
9530 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9531                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9532                    struct task_struct *task)
9533 {
9534         struct perf_sample_data data;
9535         struct perf_event *event;
9536
9537         struct perf_raw_record raw = {
9538                 .frag = {
9539                         .size = entry_size,
9540                         .data = record,
9541                 },
9542         };
9543
9544         perf_sample_data_init(&data, 0, 0);
9545         data.raw = &raw;
9546
9547         perf_trace_buf_update(record, event_type);
9548
9549         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9550                 if (perf_tp_event_match(event, &data, regs))
9551                         perf_swevent_event(event, count, &data, regs);
9552         }
9553
9554         /*
9555          * If we got specified a target task, also iterate its context and
9556          * deliver this event there too.
9557          */
9558         if (task && task != current) {
9559                 struct perf_event_context *ctx;
9560                 struct trace_entry *entry = record;
9561
9562                 rcu_read_lock();
9563                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9564                 if (!ctx)
9565                         goto unlock;
9566
9567                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9568                         if (event->cpu != smp_processor_id())
9569                                 continue;
9570                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9571                                 continue;
9572                         if (event->attr.config != entry->type)
9573                                 continue;
9574                         if (perf_tp_event_match(event, &data, regs))
9575                                 perf_swevent_event(event, count, &data, regs);
9576                 }
9577 unlock:
9578                 rcu_read_unlock();
9579         }
9580
9581         perf_swevent_put_recursion_context(rctx);
9582 }
9583 EXPORT_SYMBOL_GPL(perf_tp_event);
9584
9585 static void tp_perf_event_destroy(struct perf_event *event)
9586 {
9587         perf_trace_destroy(event);
9588 }
9589
9590 static int perf_tp_event_init(struct perf_event *event)
9591 {
9592         int err;
9593
9594         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9595                 return -ENOENT;
9596
9597         /*
9598          * no branch sampling for tracepoint events
9599          */
9600         if (has_branch_stack(event))
9601                 return -EOPNOTSUPP;
9602
9603         err = perf_trace_init(event);
9604         if (err)
9605                 return err;
9606
9607         event->destroy = tp_perf_event_destroy;
9608
9609         return 0;
9610 }
9611
9612 static struct pmu perf_tracepoint = {
9613         .task_ctx_nr    = perf_sw_context,
9614
9615         .event_init     = perf_tp_event_init,
9616         .add            = perf_trace_add,
9617         .del            = perf_trace_del,
9618         .start          = perf_swevent_start,
9619         .stop           = perf_swevent_stop,
9620         .read           = perf_swevent_read,
9621 };
9622
9623 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9624 /*
9625  * Flags in config, used by dynamic PMU kprobe and uprobe
9626  * The flags should match following PMU_FORMAT_ATTR().
9627  *
9628  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9629  *                               if not set, create kprobe/uprobe
9630  *
9631  * The following values specify a reference counter (or semaphore in the
9632  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9633  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9634  *
9635  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9636  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9637  */
9638 enum perf_probe_config {
9639         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9640         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9641         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9642 };
9643
9644 PMU_FORMAT_ATTR(retprobe, "config:0");
9645 #endif
9646
9647 #ifdef CONFIG_KPROBE_EVENTS
9648 static struct attribute *kprobe_attrs[] = {
9649         &format_attr_retprobe.attr,
9650         NULL,
9651 };
9652
9653 static struct attribute_group kprobe_format_group = {
9654         .name = "format",
9655         .attrs = kprobe_attrs,
9656 };
9657
9658 static const struct attribute_group *kprobe_attr_groups[] = {
9659         &kprobe_format_group,
9660         NULL,
9661 };
9662
9663 static int perf_kprobe_event_init(struct perf_event *event);
9664 static struct pmu perf_kprobe = {
9665         .task_ctx_nr    = perf_sw_context,
9666         .event_init     = perf_kprobe_event_init,
9667         .add            = perf_trace_add,
9668         .del            = perf_trace_del,
9669         .start          = perf_swevent_start,
9670         .stop           = perf_swevent_stop,
9671         .read           = perf_swevent_read,
9672         .attr_groups    = kprobe_attr_groups,
9673 };
9674
9675 static int perf_kprobe_event_init(struct perf_event *event)
9676 {
9677         int err;
9678         bool is_retprobe;
9679
9680         if (event->attr.type != perf_kprobe.type)
9681                 return -ENOENT;
9682
9683         if (!perfmon_capable())
9684                 return -EACCES;
9685
9686         /*
9687          * no branch sampling for probe events
9688          */
9689         if (has_branch_stack(event))
9690                 return -EOPNOTSUPP;
9691
9692         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9693         err = perf_kprobe_init(event, is_retprobe);
9694         if (err)
9695                 return err;
9696
9697         event->destroy = perf_kprobe_destroy;
9698
9699         return 0;
9700 }
9701 #endif /* CONFIG_KPROBE_EVENTS */
9702
9703 #ifdef CONFIG_UPROBE_EVENTS
9704 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9705
9706 static struct attribute *uprobe_attrs[] = {
9707         &format_attr_retprobe.attr,
9708         &format_attr_ref_ctr_offset.attr,
9709         NULL,
9710 };
9711
9712 static struct attribute_group uprobe_format_group = {
9713         .name = "format",
9714         .attrs = uprobe_attrs,
9715 };
9716
9717 static const struct attribute_group *uprobe_attr_groups[] = {
9718         &uprobe_format_group,
9719         NULL,
9720 };
9721
9722 static int perf_uprobe_event_init(struct perf_event *event);
9723 static struct pmu perf_uprobe = {
9724         .task_ctx_nr    = perf_sw_context,
9725         .event_init     = perf_uprobe_event_init,
9726         .add            = perf_trace_add,
9727         .del            = perf_trace_del,
9728         .start          = perf_swevent_start,
9729         .stop           = perf_swevent_stop,
9730         .read           = perf_swevent_read,
9731         .attr_groups    = uprobe_attr_groups,
9732 };
9733
9734 static int perf_uprobe_event_init(struct perf_event *event)
9735 {
9736         int err;
9737         unsigned long ref_ctr_offset;
9738         bool is_retprobe;
9739
9740         if (event->attr.type != perf_uprobe.type)
9741                 return -ENOENT;
9742
9743         if (!perfmon_capable())
9744                 return -EACCES;
9745
9746         /*
9747          * no branch sampling for probe events
9748          */
9749         if (has_branch_stack(event))
9750                 return -EOPNOTSUPP;
9751
9752         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9753         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9754         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9755         if (err)
9756                 return err;
9757
9758         event->destroy = perf_uprobe_destroy;
9759
9760         return 0;
9761 }
9762 #endif /* CONFIG_UPROBE_EVENTS */
9763
9764 static inline void perf_tp_register(void)
9765 {
9766         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9767 #ifdef CONFIG_KPROBE_EVENTS
9768         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9769 #endif
9770 #ifdef CONFIG_UPROBE_EVENTS
9771         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9772 #endif
9773 }
9774
9775 static void perf_event_free_filter(struct perf_event *event)
9776 {
9777         ftrace_profile_free_filter(event);
9778 }
9779
9780 #ifdef CONFIG_BPF_SYSCALL
9781 static void bpf_overflow_handler(struct perf_event *event,
9782                                  struct perf_sample_data *data,
9783                                  struct pt_regs *regs)
9784 {
9785         struct bpf_perf_event_data_kern ctx = {
9786                 .data = data,
9787                 .event = event,
9788         };
9789         int ret = 0;
9790
9791         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9792         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9793                 goto out;
9794         rcu_read_lock();
9795         ret = BPF_PROG_RUN(event->prog, &ctx);
9796         rcu_read_unlock();
9797 out:
9798         __this_cpu_dec(bpf_prog_active);
9799         if (!ret)
9800                 return;
9801
9802         event->orig_overflow_handler(event, data, regs);
9803 }
9804
9805 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9806 {
9807         struct bpf_prog *prog;
9808
9809         if (event->overflow_handler_context)
9810                 /* hw breakpoint or kernel counter */
9811                 return -EINVAL;
9812
9813         if (event->prog)
9814                 return -EEXIST;
9815
9816         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9817         if (IS_ERR(prog))
9818                 return PTR_ERR(prog);
9819
9820         if (event->attr.precise_ip &&
9821             prog->call_get_stack &&
9822             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9823              event->attr.exclude_callchain_kernel ||
9824              event->attr.exclude_callchain_user)) {
9825                 /*
9826                  * On perf_event with precise_ip, calling bpf_get_stack()
9827                  * may trigger unwinder warnings and occasional crashes.
9828                  * bpf_get_[stack|stackid] works around this issue by using
9829                  * callchain attached to perf_sample_data. If the
9830                  * perf_event does not full (kernel and user) callchain
9831                  * attached to perf_sample_data, do not allow attaching BPF
9832                  * program that calls bpf_get_[stack|stackid].
9833                  */
9834                 bpf_prog_put(prog);
9835                 return -EPROTO;
9836         }
9837
9838         event->prog = prog;
9839         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9840         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9841         return 0;
9842 }
9843
9844 static void perf_event_free_bpf_handler(struct perf_event *event)
9845 {
9846         struct bpf_prog *prog = event->prog;
9847
9848         if (!prog)
9849                 return;
9850
9851         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9852         event->prog = NULL;
9853         bpf_prog_put(prog);
9854 }
9855 #else
9856 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9857 {
9858         return -EOPNOTSUPP;
9859 }
9860 static void perf_event_free_bpf_handler(struct perf_event *event)
9861 {
9862 }
9863 #endif
9864
9865 /*
9866  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9867  * with perf_event_open()
9868  */
9869 static inline bool perf_event_is_tracing(struct perf_event *event)
9870 {
9871         if (event->pmu == &perf_tracepoint)
9872                 return true;
9873 #ifdef CONFIG_KPROBE_EVENTS
9874         if (event->pmu == &perf_kprobe)
9875                 return true;
9876 #endif
9877 #ifdef CONFIG_UPROBE_EVENTS
9878         if (event->pmu == &perf_uprobe)
9879                 return true;
9880 #endif
9881         return false;
9882 }
9883
9884 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9885 {
9886         bool is_kprobe, is_tracepoint, is_syscall_tp;
9887         struct bpf_prog *prog;
9888         int ret;
9889
9890         if (!perf_event_is_tracing(event))
9891                 return perf_event_set_bpf_handler(event, prog_fd);
9892
9893         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9894         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9895         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9896         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9897                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9898                 return -EINVAL;
9899
9900         prog = bpf_prog_get(prog_fd);
9901         if (IS_ERR(prog))
9902                 return PTR_ERR(prog);
9903
9904         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9905             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9906             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9907                 /* valid fd, but invalid bpf program type */
9908                 bpf_prog_put(prog);
9909                 return -EINVAL;
9910         }
9911
9912         /* Kprobe override only works for kprobes, not uprobes. */
9913         if (prog->kprobe_override &&
9914             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9915                 bpf_prog_put(prog);
9916                 return -EINVAL;
9917         }
9918
9919         if (is_tracepoint || is_syscall_tp) {
9920                 int off = trace_event_get_offsets(event->tp_event);
9921
9922                 if (prog->aux->max_ctx_offset > off) {
9923                         bpf_prog_put(prog);
9924                         return -EACCES;
9925                 }
9926         }
9927
9928         ret = perf_event_attach_bpf_prog(event, prog);
9929         if (ret)
9930                 bpf_prog_put(prog);
9931         return ret;
9932 }
9933
9934 static void perf_event_free_bpf_prog(struct perf_event *event)
9935 {
9936         if (!perf_event_is_tracing(event)) {
9937                 perf_event_free_bpf_handler(event);
9938                 return;
9939         }
9940         perf_event_detach_bpf_prog(event);
9941 }
9942
9943 #else
9944
9945 static inline void perf_tp_register(void)
9946 {
9947 }
9948
9949 static void perf_event_free_filter(struct perf_event *event)
9950 {
9951 }
9952
9953 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9954 {
9955         return -ENOENT;
9956 }
9957
9958 static void perf_event_free_bpf_prog(struct perf_event *event)
9959 {
9960 }
9961 #endif /* CONFIG_EVENT_TRACING */
9962
9963 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9964 void perf_bp_event(struct perf_event *bp, void *data)
9965 {
9966         struct perf_sample_data sample;
9967         struct pt_regs *regs = data;
9968
9969         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9970
9971         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9972                 perf_swevent_event(bp, 1, &sample, regs);
9973 }
9974 #endif
9975
9976 /*
9977  * Allocate a new address filter
9978  */
9979 static struct perf_addr_filter *
9980 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9981 {
9982         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9983         struct perf_addr_filter *filter;
9984
9985         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9986         if (!filter)
9987                 return NULL;
9988
9989         INIT_LIST_HEAD(&filter->entry);
9990         list_add_tail(&filter->entry, filters);
9991
9992         return filter;
9993 }
9994
9995 static void free_filters_list(struct list_head *filters)
9996 {
9997         struct perf_addr_filter *filter, *iter;
9998
9999         list_for_each_entry_safe(filter, iter, filters, entry) {
10000                 path_put(&filter->path);
10001                 list_del(&filter->entry);
10002                 kfree(filter);
10003         }
10004 }
10005
10006 /*
10007  * Free existing address filters and optionally install new ones
10008  */
10009 static void perf_addr_filters_splice(struct perf_event *event,
10010                                      struct list_head *head)
10011 {
10012         unsigned long flags;
10013         LIST_HEAD(list);
10014
10015         if (!has_addr_filter(event))
10016                 return;
10017
10018         /* don't bother with children, they don't have their own filters */
10019         if (event->parent)
10020                 return;
10021
10022         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10023
10024         list_splice_init(&event->addr_filters.list, &list);
10025         if (head)
10026                 list_splice(head, &event->addr_filters.list);
10027
10028         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10029
10030         free_filters_list(&list);
10031 }
10032
10033 /*
10034  * Scan through mm's vmas and see if one of them matches the
10035  * @filter; if so, adjust filter's address range.
10036  * Called with mm::mmap_lock down for reading.
10037  */
10038 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10039                                    struct mm_struct *mm,
10040                                    struct perf_addr_filter_range *fr)
10041 {
10042         struct vm_area_struct *vma;
10043
10044         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10045                 if (!vma->vm_file)
10046                         continue;
10047
10048                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10049                         return;
10050         }
10051 }
10052
10053 /*
10054  * Update event's address range filters based on the
10055  * task's existing mappings, if any.
10056  */
10057 static void perf_event_addr_filters_apply(struct perf_event *event)
10058 {
10059         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10060         struct task_struct *task = READ_ONCE(event->ctx->task);
10061         struct perf_addr_filter *filter;
10062         struct mm_struct *mm = NULL;
10063         unsigned int count = 0;
10064         unsigned long flags;
10065
10066         /*
10067          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10068          * will stop on the parent's child_mutex that our caller is also holding
10069          */
10070         if (task == TASK_TOMBSTONE)
10071                 return;
10072
10073         if (ifh->nr_file_filters) {
10074                 mm = get_task_mm(event->ctx->task);
10075                 if (!mm)
10076                         goto restart;
10077
10078                 mmap_read_lock(mm);
10079         }
10080
10081         raw_spin_lock_irqsave(&ifh->lock, flags);
10082         list_for_each_entry(filter, &ifh->list, entry) {
10083                 if (filter->path.dentry) {
10084                         /*
10085                          * Adjust base offset if the filter is associated to a
10086                          * binary that needs to be mapped:
10087                          */
10088                         event->addr_filter_ranges[count].start = 0;
10089                         event->addr_filter_ranges[count].size = 0;
10090
10091                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10092                 } else {
10093                         event->addr_filter_ranges[count].start = filter->offset;
10094                         event->addr_filter_ranges[count].size  = filter->size;
10095                 }
10096
10097                 count++;
10098         }
10099
10100         event->addr_filters_gen++;
10101         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10102
10103         if (ifh->nr_file_filters) {
10104                 mmap_read_unlock(mm);
10105
10106                 mmput(mm);
10107         }
10108
10109 restart:
10110         perf_event_stop(event, 1);
10111 }
10112
10113 /*
10114  * Address range filtering: limiting the data to certain
10115  * instruction address ranges. Filters are ioctl()ed to us from
10116  * userspace as ascii strings.
10117  *
10118  * Filter string format:
10119  *
10120  * ACTION RANGE_SPEC
10121  * where ACTION is one of the
10122  *  * "filter": limit the trace to this region
10123  *  * "start": start tracing from this address
10124  *  * "stop": stop tracing at this address/region;
10125  * RANGE_SPEC is
10126  *  * for kernel addresses: <start address>[/<size>]
10127  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10128  *
10129  * if <size> is not specified or is zero, the range is treated as a single
10130  * address; not valid for ACTION=="filter".
10131  */
10132 enum {
10133         IF_ACT_NONE = -1,
10134         IF_ACT_FILTER,
10135         IF_ACT_START,
10136         IF_ACT_STOP,
10137         IF_SRC_FILE,
10138         IF_SRC_KERNEL,
10139         IF_SRC_FILEADDR,
10140         IF_SRC_KERNELADDR,
10141 };
10142
10143 enum {
10144         IF_STATE_ACTION = 0,
10145         IF_STATE_SOURCE,
10146         IF_STATE_END,
10147 };
10148
10149 static const match_table_t if_tokens = {
10150         { IF_ACT_FILTER,        "filter" },
10151         { IF_ACT_START,         "start" },
10152         { IF_ACT_STOP,          "stop" },
10153         { IF_SRC_FILE,          "%u/%u@%s" },
10154         { IF_SRC_KERNEL,        "%u/%u" },
10155         { IF_SRC_FILEADDR,      "%u@%s" },
10156         { IF_SRC_KERNELADDR,    "%u" },
10157         { IF_ACT_NONE,          NULL },
10158 };
10159
10160 /*
10161  * Address filter string parser
10162  */
10163 static int
10164 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10165                              struct list_head *filters)
10166 {
10167         struct perf_addr_filter *filter = NULL;
10168         char *start, *orig, *filename = NULL;
10169         substring_t args[MAX_OPT_ARGS];
10170         int state = IF_STATE_ACTION, token;
10171         unsigned int kernel = 0;
10172         int ret = -EINVAL;
10173
10174         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10175         if (!fstr)
10176                 return -ENOMEM;
10177
10178         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10179                 static const enum perf_addr_filter_action_t actions[] = {
10180                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10181                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10182                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10183                 };
10184                 ret = -EINVAL;
10185
10186                 if (!*start)
10187                         continue;
10188
10189                 /* filter definition begins */
10190                 if (state == IF_STATE_ACTION) {
10191                         filter = perf_addr_filter_new(event, filters);
10192                         if (!filter)
10193                                 goto fail;
10194                 }
10195
10196                 token = match_token(start, if_tokens, args);
10197                 switch (token) {
10198                 case IF_ACT_FILTER:
10199                 case IF_ACT_START:
10200                 case IF_ACT_STOP:
10201                         if (state != IF_STATE_ACTION)
10202                                 goto fail;
10203
10204                         filter->action = actions[token];
10205                         state = IF_STATE_SOURCE;
10206                         break;
10207
10208                 case IF_SRC_KERNELADDR:
10209                 case IF_SRC_KERNEL:
10210                         kernel = 1;
10211                         fallthrough;
10212
10213                 case IF_SRC_FILEADDR:
10214                 case IF_SRC_FILE:
10215                         if (state != IF_STATE_SOURCE)
10216                                 goto fail;
10217
10218                         *args[0].to = 0;
10219                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10220                         if (ret)
10221                                 goto fail;
10222
10223                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10224                                 *args[1].to = 0;
10225                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10226                                 if (ret)
10227                                         goto fail;
10228                         }
10229
10230                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10231                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10232
10233                                 kfree(filename);
10234                                 filename = match_strdup(&args[fpos]);
10235                                 if (!filename) {
10236                                         ret = -ENOMEM;
10237                                         goto fail;
10238                                 }
10239                         }
10240
10241                         state = IF_STATE_END;
10242                         break;
10243
10244                 default:
10245                         goto fail;
10246                 }
10247
10248                 /*
10249                  * Filter definition is fully parsed, validate and install it.
10250                  * Make sure that it doesn't contradict itself or the event's
10251                  * attribute.
10252                  */
10253                 if (state == IF_STATE_END) {
10254                         ret = -EINVAL;
10255                         if (kernel && event->attr.exclude_kernel)
10256                                 goto fail;
10257
10258                         /*
10259                          * ACTION "filter" must have a non-zero length region
10260                          * specified.
10261                          */
10262                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10263                             !filter->size)
10264                                 goto fail;
10265
10266                         if (!kernel) {
10267                                 if (!filename)
10268                                         goto fail;
10269
10270                                 /*
10271                                  * For now, we only support file-based filters
10272                                  * in per-task events; doing so for CPU-wide
10273                                  * events requires additional context switching
10274                                  * trickery, since same object code will be
10275                                  * mapped at different virtual addresses in
10276                                  * different processes.
10277                                  */
10278                                 ret = -EOPNOTSUPP;
10279                                 if (!event->ctx->task)
10280                                         goto fail;
10281
10282                                 /* look up the path and grab its inode */
10283                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10284                                                 &filter->path);
10285                                 if (ret)
10286                                         goto fail;
10287
10288                                 ret = -EINVAL;
10289                                 if (!filter->path.dentry ||
10290                                     !S_ISREG(d_inode(filter->path.dentry)
10291                                              ->i_mode))
10292                                         goto fail;
10293
10294                                 event->addr_filters.nr_file_filters++;
10295                         }
10296
10297                         /* ready to consume more filters */
10298                         state = IF_STATE_ACTION;
10299                         filter = NULL;
10300                 }
10301         }
10302
10303         if (state != IF_STATE_ACTION)
10304                 goto fail;
10305
10306         kfree(filename);
10307         kfree(orig);
10308
10309         return 0;
10310
10311 fail:
10312         kfree(filename);
10313         free_filters_list(filters);
10314         kfree(orig);
10315
10316         return ret;
10317 }
10318
10319 static int
10320 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10321 {
10322         LIST_HEAD(filters);
10323         int ret;
10324
10325         /*
10326          * Since this is called in perf_ioctl() path, we're already holding
10327          * ctx::mutex.
10328          */
10329         lockdep_assert_held(&event->ctx->mutex);
10330
10331         if (WARN_ON_ONCE(event->parent))
10332                 return -EINVAL;
10333
10334         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10335         if (ret)
10336                 goto fail_clear_files;
10337
10338         ret = event->pmu->addr_filters_validate(&filters);
10339         if (ret)
10340                 goto fail_free_filters;
10341
10342         /* remove existing filters, if any */
10343         perf_addr_filters_splice(event, &filters);
10344
10345         /* install new filters */
10346         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10347
10348         return ret;
10349
10350 fail_free_filters:
10351         free_filters_list(&filters);
10352
10353 fail_clear_files:
10354         event->addr_filters.nr_file_filters = 0;
10355
10356         return ret;
10357 }
10358
10359 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10360 {
10361         int ret = -EINVAL;
10362         char *filter_str;
10363
10364         filter_str = strndup_user(arg, PAGE_SIZE);
10365         if (IS_ERR(filter_str))
10366                 return PTR_ERR(filter_str);
10367
10368 #ifdef CONFIG_EVENT_TRACING
10369         if (perf_event_is_tracing(event)) {
10370                 struct perf_event_context *ctx = event->ctx;
10371
10372                 /*
10373                  * Beware, here be dragons!!
10374                  *
10375                  * the tracepoint muck will deadlock against ctx->mutex, but
10376                  * the tracepoint stuff does not actually need it. So
10377                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10378                  * already have a reference on ctx.
10379                  *
10380                  * This can result in event getting moved to a different ctx,
10381                  * but that does not affect the tracepoint state.
10382                  */
10383                 mutex_unlock(&ctx->mutex);
10384                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10385                 mutex_lock(&ctx->mutex);
10386         } else
10387 #endif
10388         if (has_addr_filter(event))
10389                 ret = perf_event_set_addr_filter(event, filter_str);
10390
10391         kfree(filter_str);
10392         return ret;
10393 }
10394
10395 /*
10396  * hrtimer based swevent callback
10397  */
10398
10399 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10400 {
10401         enum hrtimer_restart ret = HRTIMER_RESTART;
10402         struct perf_sample_data data;
10403         struct pt_regs *regs;
10404         struct perf_event *event;
10405         u64 period;
10406
10407         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10408
10409         if (event->state != PERF_EVENT_STATE_ACTIVE)
10410                 return HRTIMER_NORESTART;
10411
10412         event->pmu->read(event);
10413
10414         perf_sample_data_init(&data, 0, event->hw.last_period);
10415         regs = get_irq_regs();
10416
10417         if (regs && !perf_exclude_event(event, regs)) {
10418                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10419                         if (__perf_event_overflow(event, 1, &data, regs))
10420                                 ret = HRTIMER_NORESTART;
10421         }
10422
10423         period = max_t(u64, 10000, event->hw.sample_period);
10424         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10425
10426         return ret;
10427 }
10428
10429 static void perf_swevent_start_hrtimer(struct perf_event *event)
10430 {
10431         struct hw_perf_event *hwc = &event->hw;
10432         s64 period;
10433
10434         if (!is_sampling_event(event))
10435                 return;
10436
10437         period = local64_read(&hwc->period_left);
10438         if (period) {
10439                 if (period < 0)
10440                         period = 10000;
10441
10442                 local64_set(&hwc->period_left, 0);
10443         } else {
10444                 period = max_t(u64, 10000, hwc->sample_period);
10445         }
10446         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10447                       HRTIMER_MODE_REL_PINNED_HARD);
10448 }
10449
10450 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10451 {
10452         struct hw_perf_event *hwc = &event->hw;
10453
10454         if (is_sampling_event(event)) {
10455                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10456                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10457
10458                 hrtimer_cancel(&hwc->hrtimer);
10459         }
10460 }
10461
10462 static void perf_swevent_init_hrtimer(struct perf_event *event)
10463 {
10464         struct hw_perf_event *hwc = &event->hw;
10465
10466         if (!is_sampling_event(event))
10467                 return;
10468
10469         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10470         hwc->hrtimer.function = perf_swevent_hrtimer;
10471
10472         /*
10473          * Since hrtimers have a fixed rate, we can do a static freq->period
10474          * mapping and avoid the whole period adjust feedback stuff.
10475          */
10476         if (event->attr.freq) {
10477                 long freq = event->attr.sample_freq;
10478
10479                 event->attr.sample_period = NSEC_PER_SEC / freq;
10480                 hwc->sample_period = event->attr.sample_period;
10481                 local64_set(&hwc->period_left, hwc->sample_period);
10482                 hwc->last_period = hwc->sample_period;
10483                 event->attr.freq = 0;
10484         }
10485 }
10486
10487 /*
10488  * Software event: cpu wall time clock
10489  */
10490
10491 static void cpu_clock_event_update(struct perf_event *event)
10492 {
10493         s64 prev;
10494         u64 now;
10495
10496         now = local_clock();
10497         prev = local64_xchg(&event->hw.prev_count, now);
10498         local64_add(now - prev, &event->count);
10499 }
10500
10501 static void cpu_clock_event_start(struct perf_event *event, int flags)
10502 {
10503         local64_set(&event->hw.prev_count, local_clock());
10504         perf_swevent_start_hrtimer(event);
10505 }
10506
10507 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10508 {
10509         perf_swevent_cancel_hrtimer(event);
10510         cpu_clock_event_update(event);
10511 }
10512
10513 static int cpu_clock_event_add(struct perf_event *event, int flags)
10514 {
10515         if (flags & PERF_EF_START)
10516                 cpu_clock_event_start(event, flags);
10517         perf_event_update_userpage(event);
10518
10519         return 0;
10520 }
10521
10522 static void cpu_clock_event_del(struct perf_event *event, int flags)
10523 {
10524         cpu_clock_event_stop(event, flags);
10525 }
10526
10527 static void cpu_clock_event_read(struct perf_event *event)
10528 {
10529         cpu_clock_event_update(event);
10530 }
10531
10532 static int cpu_clock_event_init(struct perf_event *event)
10533 {
10534         if (event->attr.type != PERF_TYPE_SOFTWARE)
10535                 return -ENOENT;
10536
10537         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10538                 return -ENOENT;
10539
10540         /*
10541          * no branch sampling for software events
10542          */
10543         if (has_branch_stack(event))
10544                 return -EOPNOTSUPP;
10545
10546         perf_swevent_init_hrtimer(event);
10547
10548         return 0;
10549 }
10550
10551 static struct pmu perf_cpu_clock = {
10552         .task_ctx_nr    = perf_sw_context,
10553
10554         .capabilities   = PERF_PMU_CAP_NO_NMI,
10555
10556         .event_init     = cpu_clock_event_init,
10557         .add            = cpu_clock_event_add,
10558         .del            = cpu_clock_event_del,
10559         .start          = cpu_clock_event_start,
10560         .stop           = cpu_clock_event_stop,
10561         .read           = cpu_clock_event_read,
10562 };
10563
10564 /*
10565  * Software event: task time clock
10566  */
10567
10568 static void task_clock_event_update(struct perf_event *event, u64 now)
10569 {
10570         u64 prev;
10571         s64 delta;
10572
10573         prev = local64_xchg(&event->hw.prev_count, now);
10574         delta = now - prev;
10575         local64_add(delta, &event->count);
10576 }
10577
10578 static void task_clock_event_start(struct perf_event *event, int flags)
10579 {
10580         local64_set(&event->hw.prev_count, event->ctx->time);
10581         perf_swevent_start_hrtimer(event);
10582 }
10583
10584 static void task_clock_event_stop(struct perf_event *event, int flags)
10585 {
10586         perf_swevent_cancel_hrtimer(event);
10587         task_clock_event_update(event, event->ctx->time);
10588 }
10589
10590 static int task_clock_event_add(struct perf_event *event, int flags)
10591 {
10592         if (flags & PERF_EF_START)
10593                 task_clock_event_start(event, flags);
10594         perf_event_update_userpage(event);
10595
10596         return 0;
10597 }
10598
10599 static void task_clock_event_del(struct perf_event *event, int flags)
10600 {
10601         task_clock_event_stop(event, PERF_EF_UPDATE);
10602 }
10603
10604 static void task_clock_event_read(struct perf_event *event)
10605 {
10606         u64 now = perf_clock();
10607         u64 delta = now - event->ctx->timestamp;
10608         u64 time = event->ctx->time + delta;
10609
10610         task_clock_event_update(event, time);
10611 }
10612
10613 static int task_clock_event_init(struct perf_event *event)
10614 {
10615         if (event->attr.type != PERF_TYPE_SOFTWARE)
10616                 return -ENOENT;
10617
10618         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10619                 return -ENOENT;
10620
10621         /*
10622          * no branch sampling for software events
10623          */
10624         if (has_branch_stack(event))
10625                 return -EOPNOTSUPP;
10626
10627         perf_swevent_init_hrtimer(event);
10628
10629         return 0;
10630 }
10631
10632 static struct pmu perf_task_clock = {
10633         .task_ctx_nr    = perf_sw_context,
10634
10635         .capabilities   = PERF_PMU_CAP_NO_NMI,
10636
10637         .event_init     = task_clock_event_init,
10638         .add            = task_clock_event_add,
10639         .del            = task_clock_event_del,
10640         .start          = task_clock_event_start,
10641         .stop           = task_clock_event_stop,
10642         .read           = task_clock_event_read,
10643 };
10644
10645 static void perf_pmu_nop_void(struct pmu *pmu)
10646 {
10647 }
10648
10649 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10650 {
10651 }
10652
10653 static int perf_pmu_nop_int(struct pmu *pmu)
10654 {
10655         return 0;
10656 }
10657
10658 static int perf_event_nop_int(struct perf_event *event, u64 value)
10659 {
10660         return 0;
10661 }
10662
10663 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10664
10665 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10666 {
10667         __this_cpu_write(nop_txn_flags, flags);
10668
10669         if (flags & ~PERF_PMU_TXN_ADD)
10670                 return;
10671
10672         perf_pmu_disable(pmu);
10673 }
10674
10675 static int perf_pmu_commit_txn(struct pmu *pmu)
10676 {
10677         unsigned int flags = __this_cpu_read(nop_txn_flags);
10678
10679         __this_cpu_write(nop_txn_flags, 0);
10680
10681         if (flags & ~PERF_PMU_TXN_ADD)
10682                 return 0;
10683
10684         perf_pmu_enable(pmu);
10685         return 0;
10686 }
10687
10688 static void perf_pmu_cancel_txn(struct pmu *pmu)
10689 {
10690         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10691
10692         __this_cpu_write(nop_txn_flags, 0);
10693
10694         if (flags & ~PERF_PMU_TXN_ADD)
10695                 return;
10696
10697         perf_pmu_enable(pmu);
10698 }
10699
10700 static int perf_event_idx_default(struct perf_event *event)
10701 {
10702         return 0;
10703 }
10704
10705 /*
10706  * Ensures all contexts with the same task_ctx_nr have the same
10707  * pmu_cpu_context too.
10708  */
10709 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10710 {
10711         struct pmu *pmu;
10712
10713         if (ctxn < 0)
10714                 return NULL;
10715
10716         list_for_each_entry(pmu, &pmus, entry) {
10717                 if (pmu->task_ctx_nr == ctxn)
10718                         return pmu->pmu_cpu_context;
10719         }
10720
10721         return NULL;
10722 }
10723
10724 static void free_pmu_context(struct pmu *pmu)
10725 {
10726         /*
10727          * Static contexts such as perf_sw_context have a global lifetime
10728          * and may be shared between different PMUs. Avoid freeing them
10729          * when a single PMU is going away.
10730          */
10731         if (pmu->task_ctx_nr > perf_invalid_context)
10732                 return;
10733
10734         free_percpu(pmu->pmu_cpu_context);
10735 }
10736
10737 /*
10738  * Let userspace know that this PMU supports address range filtering:
10739  */
10740 static ssize_t nr_addr_filters_show(struct device *dev,
10741                                     struct device_attribute *attr,
10742                                     char *page)
10743 {
10744         struct pmu *pmu = dev_get_drvdata(dev);
10745
10746         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10747 }
10748 DEVICE_ATTR_RO(nr_addr_filters);
10749
10750 static struct idr pmu_idr;
10751
10752 static ssize_t
10753 type_show(struct device *dev, struct device_attribute *attr, char *page)
10754 {
10755         struct pmu *pmu = dev_get_drvdata(dev);
10756
10757         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10758 }
10759 static DEVICE_ATTR_RO(type);
10760
10761 static ssize_t
10762 perf_event_mux_interval_ms_show(struct device *dev,
10763                                 struct device_attribute *attr,
10764                                 char *page)
10765 {
10766         struct pmu *pmu = dev_get_drvdata(dev);
10767
10768         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10769 }
10770
10771 static DEFINE_MUTEX(mux_interval_mutex);
10772
10773 static ssize_t
10774 perf_event_mux_interval_ms_store(struct device *dev,
10775                                  struct device_attribute *attr,
10776                                  const char *buf, size_t count)
10777 {
10778         struct pmu *pmu = dev_get_drvdata(dev);
10779         int timer, cpu, ret;
10780
10781         ret = kstrtoint(buf, 0, &timer);
10782         if (ret)
10783                 return ret;
10784
10785         if (timer < 1)
10786                 return -EINVAL;
10787
10788         /* same value, noting to do */
10789         if (timer == pmu->hrtimer_interval_ms)
10790                 return count;
10791
10792         mutex_lock(&mux_interval_mutex);
10793         pmu->hrtimer_interval_ms = timer;
10794
10795         /* update all cpuctx for this PMU */
10796         cpus_read_lock();
10797         for_each_online_cpu(cpu) {
10798                 struct perf_cpu_context *cpuctx;
10799                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10800                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10801
10802                 cpu_function_call(cpu,
10803                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10804         }
10805         cpus_read_unlock();
10806         mutex_unlock(&mux_interval_mutex);
10807
10808         return count;
10809 }
10810 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10811
10812 static struct attribute *pmu_dev_attrs[] = {
10813         &dev_attr_type.attr,
10814         &dev_attr_perf_event_mux_interval_ms.attr,
10815         NULL,
10816 };
10817 ATTRIBUTE_GROUPS(pmu_dev);
10818
10819 static int pmu_bus_running;
10820 static struct bus_type pmu_bus = {
10821         .name           = "event_source",
10822         .dev_groups     = pmu_dev_groups,
10823 };
10824
10825 static void pmu_dev_release(struct device *dev)
10826 {
10827         kfree(dev);
10828 }
10829
10830 static int pmu_dev_alloc(struct pmu *pmu)
10831 {
10832         int ret = -ENOMEM;
10833
10834         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10835         if (!pmu->dev)
10836                 goto out;
10837
10838         pmu->dev->groups = pmu->attr_groups;
10839         device_initialize(pmu->dev);
10840         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10841         if (ret)
10842                 goto free_dev;
10843
10844         dev_set_drvdata(pmu->dev, pmu);
10845         pmu->dev->bus = &pmu_bus;
10846         pmu->dev->release = pmu_dev_release;
10847         ret = device_add(pmu->dev);
10848         if (ret)
10849                 goto free_dev;
10850
10851         /* For PMUs with address filters, throw in an extra attribute: */
10852         if (pmu->nr_addr_filters)
10853                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10854
10855         if (ret)
10856                 goto del_dev;
10857
10858         if (pmu->attr_update)
10859                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10860
10861         if (ret)
10862                 goto del_dev;
10863
10864 out:
10865         return ret;
10866
10867 del_dev:
10868         device_del(pmu->dev);
10869
10870 free_dev:
10871         put_device(pmu->dev);
10872         goto out;
10873 }
10874
10875 static struct lock_class_key cpuctx_mutex;
10876 static struct lock_class_key cpuctx_lock;
10877
10878 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10879 {
10880         int cpu, ret, max = PERF_TYPE_MAX;
10881
10882         mutex_lock(&pmus_lock);
10883         ret = -ENOMEM;
10884         pmu->pmu_disable_count = alloc_percpu(int);
10885         if (!pmu->pmu_disable_count)
10886                 goto unlock;
10887
10888         pmu->type = -1;
10889         if (!name)
10890                 goto skip_type;
10891         pmu->name = name;
10892
10893         if (type != PERF_TYPE_SOFTWARE) {
10894                 if (type >= 0)
10895                         max = type;
10896
10897                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10898                 if (ret < 0)
10899                         goto free_pdc;
10900
10901                 WARN_ON(type >= 0 && ret != type);
10902
10903                 type = ret;
10904         }
10905         pmu->type = type;
10906
10907         if (pmu_bus_running) {
10908                 ret = pmu_dev_alloc(pmu);
10909                 if (ret)
10910                         goto free_idr;
10911         }
10912
10913 skip_type:
10914         if (pmu->task_ctx_nr == perf_hw_context) {
10915                 static int hw_context_taken = 0;
10916
10917                 /*
10918                  * Other than systems with heterogeneous CPUs, it never makes
10919                  * sense for two PMUs to share perf_hw_context. PMUs which are
10920                  * uncore must use perf_invalid_context.
10921                  */
10922                 if (WARN_ON_ONCE(hw_context_taken &&
10923                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10924                         pmu->task_ctx_nr = perf_invalid_context;
10925
10926                 hw_context_taken = 1;
10927         }
10928
10929         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10930         if (pmu->pmu_cpu_context)
10931                 goto got_cpu_context;
10932
10933         ret = -ENOMEM;
10934         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10935         if (!pmu->pmu_cpu_context)
10936                 goto free_dev;
10937
10938         for_each_possible_cpu(cpu) {
10939                 struct perf_cpu_context *cpuctx;
10940
10941                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10942                 __perf_event_init_context(&cpuctx->ctx);
10943                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10944                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10945                 cpuctx->ctx.pmu = pmu;
10946                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10947
10948                 __perf_mux_hrtimer_init(cpuctx, cpu);
10949
10950                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10951                 cpuctx->heap = cpuctx->heap_default;
10952         }
10953
10954 got_cpu_context:
10955         if (!pmu->start_txn) {
10956                 if (pmu->pmu_enable) {
10957                         /*
10958                          * If we have pmu_enable/pmu_disable calls, install
10959                          * transaction stubs that use that to try and batch
10960                          * hardware accesses.
10961                          */
10962                         pmu->start_txn  = perf_pmu_start_txn;
10963                         pmu->commit_txn = perf_pmu_commit_txn;
10964                         pmu->cancel_txn = perf_pmu_cancel_txn;
10965                 } else {
10966                         pmu->start_txn  = perf_pmu_nop_txn;
10967                         pmu->commit_txn = perf_pmu_nop_int;
10968                         pmu->cancel_txn = perf_pmu_nop_void;
10969                 }
10970         }
10971
10972         if (!pmu->pmu_enable) {
10973                 pmu->pmu_enable  = perf_pmu_nop_void;
10974                 pmu->pmu_disable = perf_pmu_nop_void;
10975         }
10976
10977         if (!pmu->check_period)
10978                 pmu->check_period = perf_event_nop_int;
10979
10980         if (!pmu->event_idx)
10981                 pmu->event_idx = perf_event_idx_default;
10982
10983         /*
10984          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10985          * since these cannot be in the IDR. This way the linear search
10986          * is fast, provided a valid software event is provided.
10987          */
10988         if (type == PERF_TYPE_SOFTWARE || !name)
10989                 list_add_rcu(&pmu->entry, &pmus);
10990         else
10991                 list_add_tail_rcu(&pmu->entry, &pmus);
10992
10993         atomic_set(&pmu->exclusive_cnt, 0);
10994         ret = 0;
10995 unlock:
10996         mutex_unlock(&pmus_lock);
10997
10998         return ret;
10999
11000 free_dev:
11001         device_del(pmu->dev);
11002         put_device(pmu->dev);
11003
11004 free_idr:
11005         if (pmu->type != PERF_TYPE_SOFTWARE)
11006                 idr_remove(&pmu_idr, pmu->type);
11007
11008 free_pdc:
11009         free_percpu(pmu->pmu_disable_count);
11010         goto unlock;
11011 }
11012 EXPORT_SYMBOL_GPL(perf_pmu_register);
11013
11014 void perf_pmu_unregister(struct pmu *pmu)
11015 {
11016         mutex_lock(&pmus_lock);
11017         list_del_rcu(&pmu->entry);
11018
11019         /*
11020          * We dereference the pmu list under both SRCU and regular RCU, so
11021          * synchronize against both of those.
11022          */
11023         synchronize_srcu(&pmus_srcu);
11024         synchronize_rcu();
11025
11026         free_percpu(pmu->pmu_disable_count);
11027         if (pmu->type != PERF_TYPE_SOFTWARE)
11028                 idr_remove(&pmu_idr, pmu->type);
11029         if (pmu_bus_running) {
11030                 if (pmu->nr_addr_filters)
11031                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11032                 device_del(pmu->dev);
11033                 put_device(pmu->dev);
11034         }
11035         free_pmu_context(pmu);
11036         mutex_unlock(&pmus_lock);
11037 }
11038 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11039
11040 static inline bool has_extended_regs(struct perf_event *event)
11041 {
11042         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11043                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11044 }
11045
11046 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11047 {
11048         struct perf_event_context *ctx = NULL;
11049         int ret;
11050
11051         if (!try_module_get(pmu->module))
11052                 return -ENODEV;
11053
11054         /*
11055          * A number of pmu->event_init() methods iterate the sibling_list to,
11056          * for example, validate if the group fits on the PMU. Therefore,
11057          * if this is a sibling event, acquire the ctx->mutex to protect
11058          * the sibling_list.
11059          */
11060         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11061                 /*
11062                  * This ctx->mutex can nest when we're called through
11063                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11064                  */
11065                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11066                                                  SINGLE_DEPTH_NESTING);
11067                 BUG_ON(!ctx);
11068         }
11069
11070         event->pmu = pmu;
11071         ret = pmu->event_init(event);
11072
11073         if (ctx)
11074                 perf_event_ctx_unlock(event->group_leader, ctx);
11075
11076         if (!ret) {
11077                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11078                     has_extended_regs(event))
11079                         ret = -EOPNOTSUPP;
11080
11081                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11082                     event_has_any_exclude_flag(event))
11083                         ret = -EINVAL;
11084
11085                 if (ret && event->destroy)
11086                         event->destroy(event);
11087         }
11088
11089         if (ret)
11090                 module_put(pmu->module);
11091
11092         return ret;
11093 }
11094
11095 static struct pmu *perf_init_event(struct perf_event *event)
11096 {
11097         int idx, type, ret;
11098         struct pmu *pmu;
11099
11100         idx = srcu_read_lock(&pmus_srcu);
11101
11102         /* Try parent's PMU first: */
11103         if (event->parent && event->parent->pmu) {
11104                 pmu = event->parent->pmu;
11105                 ret = perf_try_init_event(pmu, event);
11106                 if (!ret)
11107                         goto unlock;
11108         }
11109
11110         /*
11111          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11112          * are often aliases for PERF_TYPE_RAW.
11113          */
11114         type = event->attr.type;
11115         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
11116                 type = PERF_TYPE_RAW;
11117
11118 again:
11119         rcu_read_lock();
11120         pmu = idr_find(&pmu_idr, type);
11121         rcu_read_unlock();
11122         if (pmu) {
11123                 ret = perf_try_init_event(pmu, event);
11124                 if (ret == -ENOENT && event->attr.type != type) {
11125                         type = event->attr.type;
11126                         goto again;
11127                 }
11128
11129                 if (ret)
11130                         pmu = ERR_PTR(ret);
11131
11132                 goto unlock;
11133         }
11134
11135         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11136                 ret = perf_try_init_event(pmu, event);
11137                 if (!ret)
11138                         goto unlock;
11139
11140                 if (ret != -ENOENT) {
11141                         pmu = ERR_PTR(ret);
11142                         goto unlock;
11143                 }
11144         }
11145         pmu = ERR_PTR(-ENOENT);
11146 unlock:
11147         srcu_read_unlock(&pmus_srcu, idx);
11148
11149         return pmu;
11150 }
11151
11152 static void attach_sb_event(struct perf_event *event)
11153 {
11154         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11155
11156         raw_spin_lock(&pel->lock);
11157         list_add_rcu(&event->sb_list, &pel->list);
11158         raw_spin_unlock(&pel->lock);
11159 }
11160
11161 /*
11162  * We keep a list of all !task (and therefore per-cpu) events
11163  * that need to receive side-band records.
11164  *
11165  * This avoids having to scan all the various PMU per-cpu contexts
11166  * looking for them.
11167  */
11168 static void account_pmu_sb_event(struct perf_event *event)
11169 {
11170         if (is_sb_event(event))
11171                 attach_sb_event(event);
11172 }
11173
11174 static void account_event_cpu(struct perf_event *event, int cpu)
11175 {
11176         if (event->parent)
11177                 return;
11178
11179         if (is_cgroup_event(event))
11180                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11181 }
11182
11183 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11184 static void account_freq_event_nohz(void)
11185 {
11186 #ifdef CONFIG_NO_HZ_FULL
11187         /* Lock so we don't race with concurrent unaccount */
11188         spin_lock(&nr_freq_lock);
11189         if (atomic_inc_return(&nr_freq_events) == 1)
11190                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11191         spin_unlock(&nr_freq_lock);
11192 #endif
11193 }
11194
11195 static void account_freq_event(void)
11196 {
11197         if (tick_nohz_full_enabled())
11198                 account_freq_event_nohz();
11199         else
11200                 atomic_inc(&nr_freq_events);
11201 }
11202
11203
11204 static void account_event(struct perf_event *event)
11205 {
11206         bool inc = false;
11207
11208         if (event->parent)
11209                 return;
11210
11211         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11212                 inc = true;
11213         if (event->attr.mmap || event->attr.mmap_data)
11214                 atomic_inc(&nr_mmap_events);
11215         if (event->attr.build_id)
11216                 atomic_inc(&nr_build_id_events);
11217         if (event->attr.comm)
11218                 atomic_inc(&nr_comm_events);
11219         if (event->attr.namespaces)
11220                 atomic_inc(&nr_namespaces_events);
11221         if (event->attr.cgroup)
11222                 atomic_inc(&nr_cgroup_events);
11223         if (event->attr.task)
11224                 atomic_inc(&nr_task_events);
11225         if (event->attr.freq)
11226                 account_freq_event();
11227         if (event->attr.context_switch) {
11228                 atomic_inc(&nr_switch_events);
11229                 inc = true;
11230         }
11231         if (has_branch_stack(event))
11232                 inc = true;
11233         if (is_cgroup_event(event))
11234                 inc = true;
11235         if (event->attr.ksymbol)
11236                 atomic_inc(&nr_ksymbol_events);
11237         if (event->attr.bpf_event)
11238                 atomic_inc(&nr_bpf_events);
11239         if (event->attr.text_poke)
11240                 atomic_inc(&nr_text_poke_events);
11241
11242         if (inc) {
11243                 /*
11244                  * We need the mutex here because static_branch_enable()
11245                  * must complete *before* the perf_sched_count increment
11246                  * becomes visible.
11247                  */
11248                 if (atomic_inc_not_zero(&perf_sched_count))
11249                         goto enabled;
11250
11251                 mutex_lock(&perf_sched_mutex);
11252                 if (!atomic_read(&perf_sched_count)) {
11253                         static_branch_enable(&perf_sched_events);
11254                         /*
11255                          * Guarantee that all CPUs observe they key change and
11256                          * call the perf scheduling hooks before proceeding to
11257                          * install events that need them.
11258                          */
11259                         synchronize_rcu();
11260                 }
11261                 /*
11262                  * Now that we have waited for the sync_sched(), allow further
11263                  * increments to by-pass the mutex.
11264                  */
11265                 atomic_inc(&perf_sched_count);
11266                 mutex_unlock(&perf_sched_mutex);
11267         }
11268 enabled:
11269
11270         account_event_cpu(event, event->cpu);
11271
11272         account_pmu_sb_event(event);
11273 }
11274
11275 /*
11276  * Allocate and initialize an event structure
11277  */
11278 static struct perf_event *
11279 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11280                  struct task_struct *task,
11281                  struct perf_event *group_leader,
11282                  struct perf_event *parent_event,
11283                  perf_overflow_handler_t overflow_handler,
11284                  void *context, int cgroup_fd)
11285 {
11286         struct pmu *pmu;
11287         struct perf_event *event;
11288         struct hw_perf_event *hwc;
11289         long err = -EINVAL;
11290
11291         if ((unsigned)cpu >= nr_cpu_ids) {
11292                 if (!task || cpu != -1)
11293                         return ERR_PTR(-EINVAL);
11294         }
11295
11296         event = kzalloc(sizeof(*event), GFP_KERNEL);
11297         if (!event)
11298                 return ERR_PTR(-ENOMEM);
11299
11300         /*
11301          * Single events are their own group leaders, with an
11302          * empty sibling list:
11303          */
11304         if (!group_leader)
11305                 group_leader = event;
11306
11307         mutex_init(&event->child_mutex);
11308         INIT_LIST_HEAD(&event->child_list);
11309
11310         INIT_LIST_HEAD(&event->event_entry);
11311         INIT_LIST_HEAD(&event->sibling_list);
11312         INIT_LIST_HEAD(&event->active_list);
11313         init_event_group(event);
11314         INIT_LIST_HEAD(&event->rb_entry);
11315         INIT_LIST_HEAD(&event->active_entry);
11316         INIT_LIST_HEAD(&event->addr_filters.list);
11317         INIT_HLIST_NODE(&event->hlist_entry);
11318
11319
11320         init_waitqueue_head(&event->waitq);
11321         event->pending_disable = -1;
11322         init_irq_work(&event->pending, perf_pending_event);
11323
11324         mutex_init(&event->mmap_mutex);
11325         raw_spin_lock_init(&event->addr_filters.lock);
11326
11327         atomic_long_set(&event->refcount, 1);
11328         event->cpu              = cpu;
11329         event->attr             = *attr;
11330         event->group_leader     = group_leader;
11331         event->pmu              = NULL;
11332         event->oncpu            = -1;
11333
11334         event->parent           = parent_event;
11335
11336         event->ns               = get_pid_ns(task_active_pid_ns(current));
11337         event->id               = atomic64_inc_return(&perf_event_id);
11338
11339         event->state            = PERF_EVENT_STATE_INACTIVE;
11340
11341         if (task) {
11342                 event->attach_state = PERF_ATTACH_TASK;
11343                 /*
11344                  * XXX pmu::event_init needs to know what task to account to
11345                  * and we cannot use the ctx information because we need the
11346                  * pmu before we get a ctx.
11347                  */
11348                 event->hw.target = get_task_struct(task);
11349         }
11350
11351         event->clock = &local_clock;
11352         if (parent_event)
11353                 event->clock = parent_event->clock;
11354
11355         if (!overflow_handler && parent_event) {
11356                 overflow_handler = parent_event->overflow_handler;
11357                 context = parent_event->overflow_handler_context;
11358 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11359                 if (overflow_handler == bpf_overflow_handler) {
11360                         struct bpf_prog *prog = parent_event->prog;
11361
11362                         bpf_prog_inc(prog);
11363                         event->prog = prog;
11364                         event->orig_overflow_handler =
11365                                 parent_event->orig_overflow_handler;
11366                 }
11367 #endif
11368         }
11369
11370         if (overflow_handler) {
11371                 event->overflow_handler = overflow_handler;
11372                 event->overflow_handler_context = context;
11373         } else if (is_write_backward(event)){
11374                 event->overflow_handler = perf_event_output_backward;
11375                 event->overflow_handler_context = NULL;
11376         } else {
11377                 event->overflow_handler = perf_event_output_forward;
11378                 event->overflow_handler_context = NULL;
11379         }
11380
11381         perf_event__state_init(event);
11382
11383         pmu = NULL;
11384
11385         hwc = &event->hw;
11386         hwc->sample_period = attr->sample_period;
11387         if (attr->freq && attr->sample_freq)
11388                 hwc->sample_period = 1;
11389         hwc->last_period = hwc->sample_period;
11390
11391         local64_set(&hwc->period_left, hwc->sample_period);
11392
11393         /*
11394          * We currently do not support PERF_SAMPLE_READ on inherited events.
11395          * See perf_output_read().
11396          */
11397         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11398                 goto err_ns;
11399
11400         if (!has_branch_stack(event))
11401                 event->attr.branch_sample_type = 0;
11402
11403         pmu = perf_init_event(event);
11404         if (IS_ERR(pmu)) {
11405                 err = PTR_ERR(pmu);
11406                 goto err_ns;
11407         }
11408
11409         /*
11410          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11411          * be different on other CPUs in the uncore mask.
11412          */
11413         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11414                 err = -EINVAL;
11415                 goto err_pmu;
11416         }
11417
11418         if (event->attr.aux_output &&
11419             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11420                 err = -EOPNOTSUPP;
11421                 goto err_pmu;
11422         }
11423
11424         if (cgroup_fd != -1) {
11425                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11426                 if (err)
11427                         goto err_pmu;
11428         }
11429
11430         err = exclusive_event_init(event);
11431         if (err)
11432                 goto err_pmu;
11433
11434         if (has_addr_filter(event)) {
11435                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11436                                                     sizeof(struct perf_addr_filter_range),
11437                                                     GFP_KERNEL);
11438                 if (!event->addr_filter_ranges) {
11439                         err = -ENOMEM;
11440                         goto err_per_task;
11441                 }
11442
11443                 /*
11444                  * Clone the parent's vma offsets: they are valid until exec()
11445                  * even if the mm is not shared with the parent.
11446                  */
11447                 if (event->parent) {
11448                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11449
11450                         raw_spin_lock_irq(&ifh->lock);
11451                         memcpy(event->addr_filter_ranges,
11452                                event->parent->addr_filter_ranges,
11453                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11454                         raw_spin_unlock_irq(&ifh->lock);
11455                 }
11456
11457                 /* force hw sync on the address filters */
11458                 event->addr_filters_gen = 1;
11459         }
11460
11461         if (!event->parent) {
11462                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11463                         err = get_callchain_buffers(attr->sample_max_stack);
11464                         if (err)
11465                                 goto err_addr_filters;
11466                 }
11467         }
11468
11469         err = security_perf_event_alloc(event);
11470         if (err)
11471                 goto err_callchain_buffer;
11472
11473         /* symmetric to unaccount_event() in _free_event() */
11474         account_event(event);
11475
11476         return event;
11477
11478 err_callchain_buffer:
11479         if (!event->parent) {
11480                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11481                         put_callchain_buffers();
11482         }
11483 err_addr_filters:
11484         kfree(event->addr_filter_ranges);
11485
11486 err_per_task:
11487         exclusive_event_destroy(event);
11488
11489 err_pmu:
11490         if (is_cgroup_event(event))
11491                 perf_detach_cgroup(event);
11492         if (event->destroy)
11493                 event->destroy(event);
11494         module_put(pmu->module);
11495 err_ns:
11496         if (event->ns)
11497                 put_pid_ns(event->ns);
11498         if (event->hw.target)
11499                 put_task_struct(event->hw.target);
11500         kfree(event);
11501
11502         return ERR_PTR(err);
11503 }
11504
11505 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11506                           struct perf_event_attr *attr)
11507 {
11508         u32 size;
11509         int ret;
11510
11511         /* Zero the full structure, so that a short copy will be nice. */
11512         memset(attr, 0, sizeof(*attr));
11513
11514         ret = get_user(size, &uattr->size);
11515         if (ret)
11516                 return ret;
11517
11518         /* ABI compatibility quirk: */
11519         if (!size)
11520                 size = PERF_ATTR_SIZE_VER0;
11521         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11522                 goto err_size;
11523
11524         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11525         if (ret) {
11526                 if (ret == -E2BIG)
11527                         goto err_size;
11528                 return ret;
11529         }
11530
11531         attr->size = size;
11532
11533         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11534                 return -EINVAL;
11535
11536         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11537                 return -EINVAL;
11538
11539         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11540                 return -EINVAL;
11541
11542         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11543                 u64 mask = attr->branch_sample_type;
11544
11545                 /* only using defined bits */
11546                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11547                         return -EINVAL;
11548
11549                 /* at least one branch bit must be set */
11550                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11551                         return -EINVAL;
11552
11553                 /* propagate priv level, when not set for branch */
11554                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11555
11556                         /* exclude_kernel checked on syscall entry */
11557                         if (!attr->exclude_kernel)
11558                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11559
11560                         if (!attr->exclude_user)
11561                                 mask |= PERF_SAMPLE_BRANCH_USER;
11562
11563                         if (!attr->exclude_hv)
11564                                 mask |= PERF_SAMPLE_BRANCH_HV;
11565                         /*
11566                          * adjust user setting (for HW filter setup)
11567                          */
11568                         attr->branch_sample_type = mask;
11569                 }
11570                 /* privileged levels capture (kernel, hv): check permissions */
11571                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11572                         ret = perf_allow_kernel(attr);
11573                         if (ret)
11574                                 return ret;
11575                 }
11576         }
11577
11578         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11579                 ret = perf_reg_validate(attr->sample_regs_user);
11580                 if (ret)
11581                         return ret;
11582         }
11583
11584         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11585                 if (!arch_perf_have_user_stack_dump())
11586                         return -ENOSYS;
11587
11588                 /*
11589                  * We have __u32 type for the size, but so far
11590                  * we can only use __u16 as maximum due to the
11591                  * __u16 sample size limit.
11592                  */
11593                 if (attr->sample_stack_user >= USHRT_MAX)
11594                         return -EINVAL;
11595                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11596                         return -EINVAL;
11597         }
11598
11599         if (!attr->sample_max_stack)
11600                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11601
11602         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11603                 ret = perf_reg_validate(attr->sample_regs_intr);
11604
11605 #ifndef CONFIG_CGROUP_PERF
11606         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11607                 return -EINVAL;
11608 #endif
11609         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11610             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11611                 return -EINVAL;
11612
11613 out:
11614         return ret;
11615
11616 err_size:
11617         put_user(sizeof(*attr), &uattr->size);
11618         ret = -E2BIG;
11619         goto out;
11620 }
11621
11622 static int
11623 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11624 {
11625         struct perf_buffer *rb = NULL;
11626         int ret = -EINVAL;
11627
11628         if (!output_event)
11629                 goto set;
11630
11631         /* don't allow circular references */
11632         if (event == output_event)
11633                 goto out;
11634
11635         /*
11636          * Don't allow cross-cpu buffers
11637          */
11638         if (output_event->cpu != event->cpu)
11639                 goto out;
11640
11641         /*
11642          * If its not a per-cpu rb, it must be the same task.
11643          */
11644         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11645                 goto out;
11646
11647         /*
11648          * Mixing clocks in the same buffer is trouble you don't need.
11649          */
11650         if (output_event->clock != event->clock)
11651                 goto out;
11652
11653         /*
11654          * Either writing ring buffer from beginning or from end.
11655          * Mixing is not allowed.
11656          */
11657         if (is_write_backward(output_event) != is_write_backward(event))
11658                 goto out;
11659
11660         /*
11661          * If both events generate aux data, they must be on the same PMU
11662          */
11663         if (has_aux(event) && has_aux(output_event) &&
11664             event->pmu != output_event->pmu)
11665                 goto out;
11666
11667 set:
11668         mutex_lock(&event->mmap_mutex);
11669         /* Can't redirect output if we've got an active mmap() */
11670         if (atomic_read(&event->mmap_count))
11671                 goto unlock;
11672
11673         if (output_event) {
11674                 /* get the rb we want to redirect to */
11675                 rb = ring_buffer_get(output_event);
11676                 if (!rb)
11677                         goto unlock;
11678         }
11679
11680         ring_buffer_attach(event, rb);
11681
11682         ret = 0;
11683 unlock:
11684         mutex_unlock(&event->mmap_mutex);
11685
11686 out:
11687         return ret;
11688 }
11689
11690 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11691 {
11692         if (b < a)
11693                 swap(a, b);
11694
11695         mutex_lock(a);
11696         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11697 }
11698
11699 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11700 {
11701         bool nmi_safe = false;
11702
11703         switch (clk_id) {
11704         case CLOCK_MONOTONIC:
11705                 event->clock = &ktime_get_mono_fast_ns;
11706                 nmi_safe = true;
11707                 break;
11708
11709         case CLOCK_MONOTONIC_RAW:
11710                 event->clock = &ktime_get_raw_fast_ns;
11711                 nmi_safe = true;
11712                 break;
11713
11714         case CLOCK_REALTIME:
11715                 event->clock = &ktime_get_real_ns;
11716                 break;
11717
11718         case CLOCK_BOOTTIME:
11719                 event->clock = &ktime_get_boottime_ns;
11720                 break;
11721
11722         case CLOCK_TAI:
11723                 event->clock = &ktime_get_clocktai_ns;
11724                 break;
11725
11726         default:
11727                 return -EINVAL;
11728         }
11729
11730         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11731                 return -EINVAL;
11732
11733         return 0;
11734 }
11735
11736 /*
11737  * Variation on perf_event_ctx_lock_nested(), except we take two context
11738  * mutexes.
11739  */
11740 static struct perf_event_context *
11741 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11742                              struct perf_event_context *ctx)
11743 {
11744         struct perf_event_context *gctx;
11745
11746 again:
11747         rcu_read_lock();
11748         gctx = READ_ONCE(group_leader->ctx);
11749         if (!refcount_inc_not_zero(&gctx->refcount)) {
11750                 rcu_read_unlock();
11751                 goto again;
11752         }
11753         rcu_read_unlock();
11754
11755         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11756
11757         if (group_leader->ctx != gctx) {
11758                 mutex_unlock(&ctx->mutex);
11759                 mutex_unlock(&gctx->mutex);
11760                 put_ctx(gctx);
11761                 goto again;
11762         }
11763
11764         return gctx;
11765 }
11766
11767 /**
11768  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11769  *
11770  * @attr_uptr:  event_id type attributes for monitoring/sampling
11771  * @pid:                target pid
11772  * @cpu:                target cpu
11773  * @group_fd:           group leader event fd
11774  */
11775 SYSCALL_DEFINE5(perf_event_open,
11776                 struct perf_event_attr __user *, attr_uptr,
11777                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11778 {
11779         struct perf_event *group_leader = NULL, *output_event = NULL;
11780         struct perf_event *event, *sibling;
11781         struct perf_event_attr attr;
11782         struct perf_event_context *ctx, *gctx;
11783         struct file *event_file = NULL;
11784         struct fd group = {NULL, 0};
11785         struct task_struct *task = NULL;
11786         struct pmu *pmu;
11787         int event_fd;
11788         int move_group = 0;
11789         int err;
11790         int f_flags = O_RDWR;
11791         int cgroup_fd = -1;
11792
11793         /* for future expandability... */
11794         if (flags & ~PERF_FLAG_ALL)
11795                 return -EINVAL;
11796
11797         /* Do we allow access to perf_event_open(2) ? */
11798         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11799         if (err)
11800                 return err;
11801
11802         err = perf_copy_attr(attr_uptr, &attr);
11803         if (err)
11804                 return err;
11805
11806         if (!attr.exclude_kernel) {
11807                 err = perf_allow_kernel(&attr);
11808                 if (err)
11809                         return err;
11810         }
11811
11812         if (attr.namespaces) {
11813                 if (!perfmon_capable())
11814                         return -EACCES;
11815         }
11816
11817         if (attr.freq) {
11818                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11819                         return -EINVAL;
11820         } else {
11821                 if (attr.sample_period & (1ULL << 63))
11822                         return -EINVAL;
11823         }
11824
11825         /* Only privileged users can get physical addresses */
11826         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11827                 err = perf_allow_kernel(&attr);
11828                 if (err)
11829                         return err;
11830         }
11831
11832         err = security_locked_down(LOCKDOWN_PERF);
11833         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11834                 /* REGS_INTR can leak data, lockdown must prevent this */
11835                 return err;
11836
11837         err = 0;
11838
11839         /*
11840          * In cgroup mode, the pid argument is used to pass the fd
11841          * opened to the cgroup directory in cgroupfs. The cpu argument
11842          * designates the cpu on which to monitor threads from that
11843          * cgroup.
11844          */
11845         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11846                 return -EINVAL;
11847
11848         if (flags & PERF_FLAG_FD_CLOEXEC)
11849                 f_flags |= O_CLOEXEC;
11850
11851         event_fd = get_unused_fd_flags(f_flags);
11852         if (event_fd < 0)
11853                 return event_fd;
11854
11855         if (group_fd != -1) {
11856                 err = perf_fget_light(group_fd, &group);
11857                 if (err)
11858                         goto err_fd;
11859                 group_leader = group.file->private_data;
11860                 if (flags & PERF_FLAG_FD_OUTPUT)
11861                         output_event = group_leader;
11862                 if (flags & PERF_FLAG_FD_NO_GROUP)
11863                         group_leader = NULL;
11864         }
11865
11866         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11867                 task = find_lively_task_by_vpid(pid);
11868                 if (IS_ERR(task)) {
11869                         err = PTR_ERR(task);
11870                         goto err_group_fd;
11871                 }
11872         }
11873
11874         if (task && group_leader &&
11875             group_leader->attr.inherit != attr.inherit) {
11876                 err = -EINVAL;
11877                 goto err_task;
11878         }
11879
11880         if (flags & PERF_FLAG_PID_CGROUP)
11881                 cgroup_fd = pid;
11882
11883         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11884                                  NULL, NULL, cgroup_fd);
11885         if (IS_ERR(event)) {
11886                 err = PTR_ERR(event);
11887                 goto err_task;
11888         }
11889
11890         if (is_sampling_event(event)) {
11891                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11892                         err = -EOPNOTSUPP;
11893                         goto err_alloc;
11894                 }
11895         }
11896
11897         /*
11898          * Special case software events and allow them to be part of
11899          * any hardware group.
11900          */
11901         pmu = event->pmu;
11902
11903         if (attr.use_clockid) {
11904                 err = perf_event_set_clock(event, attr.clockid);
11905                 if (err)
11906                         goto err_alloc;
11907         }
11908
11909         if (pmu->task_ctx_nr == perf_sw_context)
11910                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11911
11912         if (group_leader) {
11913                 if (is_software_event(event) &&
11914                     !in_software_context(group_leader)) {
11915                         /*
11916                          * If the event is a sw event, but the group_leader
11917                          * is on hw context.
11918                          *
11919                          * Allow the addition of software events to hw
11920                          * groups, this is safe because software events
11921                          * never fail to schedule.
11922                          */
11923                         pmu = group_leader->ctx->pmu;
11924                 } else if (!is_software_event(event) &&
11925                            is_software_event(group_leader) &&
11926                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11927                         /*
11928                          * In case the group is a pure software group, and we
11929                          * try to add a hardware event, move the whole group to
11930                          * the hardware context.
11931                          */
11932                         move_group = 1;
11933                 }
11934         }
11935
11936         /*
11937          * Get the target context (task or percpu):
11938          */
11939         ctx = find_get_context(pmu, task, event);
11940         if (IS_ERR(ctx)) {
11941                 err = PTR_ERR(ctx);
11942                 goto err_alloc;
11943         }
11944
11945         /*
11946          * Look up the group leader (we will attach this event to it):
11947          */
11948         if (group_leader) {
11949                 err = -EINVAL;
11950
11951                 /*
11952                  * Do not allow a recursive hierarchy (this new sibling
11953                  * becoming part of another group-sibling):
11954                  */
11955                 if (group_leader->group_leader != group_leader)
11956                         goto err_context;
11957
11958                 /* All events in a group should have the same clock */
11959                 if (group_leader->clock != event->clock)
11960                         goto err_context;
11961
11962                 /*
11963                  * Make sure we're both events for the same CPU;
11964                  * grouping events for different CPUs is broken; since
11965                  * you can never concurrently schedule them anyhow.
11966                  */
11967                 if (group_leader->cpu != event->cpu)
11968                         goto err_context;
11969
11970                 /*
11971                  * Make sure we're both on the same task, or both
11972                  * per-CPU events.
11973                  */
11974                 if (group_leader->ctx->task != ctx->task)
11975                         goto err_context;
11976
11977                 /*
11978                  * Do not allow to attach to a group in a different task
11979                  * or CPU context. If we're moving SW events, we'll fix
11980                  * this up later, so allow that.
11981                  */
11982                 if (!move_group && group_leader->ctx != ctx)
11983                         goto err_context;
11984
11985                 /*
11986                  * Only a group leader can be exclusive or pinned
11987                  */
11988                 if (attr.exclusive || attr.pinned)
11989                         goto err_context;
11990         }
11991
11992         if (output_event) {
11993                 err = perf_event_set_output(event, output_event);
11994                 if (err)
11995                         goto err_context;
11996         }
11997
11998         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11999                                         f_flags);
12000         if (IS_ERR(event_file)) {
12001                 err = PTR_ERR(event_file);
12002                 event_file = NULL;
12003                 goto err_context;
12004         }
12005
12006         if (task) {
12007                 err = down_read_interruptible(&task->signal->exec_update_lock);
12008                 if (err)
12009                         goto err_file;
12010
12011                 /*
12012                  * Preserve ptrace permission check for backwards compatibility.
12013                  *
12014                  * We must hold exec_update_lock across this and any potential
12015                  * perf_install_in_context() call for this new event to
12016                  * serialize against exec() altering our credentials (and the
12017                  * perf_event_exit_task() that could imply).
12018                  */
12019                 err = -EACCES;
12020                 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12021                         goto err_cred;
12022         }
12023
12024         if (move_group) {
12025                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12026
12027                 if (gctx->task == TASK_TOMBSTONE) {
12028                         err = -ESRCH;
12029                         goto err_locked;
12030                 }
12031
12032                 /*
12033                  * Check if we raced against another sys_perf_event_open() call
12034                  * moving the software group underneath us.
12035                  */
12036                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12037                         /*
12038                          * If someone moved the group out from under us, check
12039                          * if this new event wound up on the same ctx, if so
12040                          * its the regular !move_group case, otherwise fail.
12041                          */
12042                         if (gctx != ctx) {
12043                                 err = -EINVAL;
12044                                 goto err_locked;
12045                         } else {
12046                                 perf_event_ctx_unlock(group_leader, gctx);
12047                                 move_group = 0;
12048                         }
12049                 }
12050
12051                 /*
12052                  * Failure to create exclusive events returns -EBUSY.
12053                  */
12054                 err = -EBUSY;
12055                 if (!exclusive_event_installable(group_leader, ctx))
12056                         goto err_locked;
12057
12058                 for_each_sibling_event(sibling, group_leader) {
12059                         if (!exclusive_event_installable(sibling, ctx))
12060                                 goto err_locked;
12061                 }
12062         } else {
12063                 mutex_lock(&ctx->mutex);
12064         }
12065
12066         if (ctx->task == TASK_TOMBSTONE) {
12067                 err = -ESRCH;
12068                 goto err_locked;
12069         }
12070
12071         if (!perf_event_validate_size(event)) {
12072                 err = -E2BIG;
12073                 goto err_locked;
12074         }
12075
12076         if (!task) {
12077                 /*
12078                  * Check if the @cpu we're creating an event for is online.
12079                  *
12080                  * We use the perf_cpu_context::ctx::mutex to serialize against
12081                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12082                  */
12083                 struct perf_cpu_context *cpuctx =
12084                         container_of(ctx, struct perf_cpu_context, ctx);
12085
12086                 if (!cpuctx->online) {
12087                         err = -ENODEV;
12088                         goto err_locked;
12089                 }
12090         }
12091
12092         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12093                 err = -EINVAL;
12094                 goto err_locked;
12095         }
12096
12097         /*
12098          * Must be under the same ctx::mutex as perf_install_in_context(),
12099          * because we need to serialize with concurrent event creation.
12100          */
12101         if (!exclusive_event_installable(event, ctx)) {
12102                 err = -EBUSY;
12103                 goto err_locked;
12104         }
12105
12106         WARN_ON_ONCE(ctx->parent_ctx);
12107
12108         /*
12109          * This is the point on no return; we cannot fail hereafter. This is
12110          * where we start modifying current state.
12111          */
12112
12113         if (move_group) {
12114                 /*
12115                  * See perf_event_ctx_lock() for comments on the details
12116                  * of swizzling perf_event::ctx.
12117                  */
12118                 perf_remove_from_context(group_leader, 0);
12119                 put_ctx(gctx);
12120
12121                 for_each_sibling_event(sibling, group_leader) {
12122                         perf_remove_from_context(sibling, 0);
12123                         put_ctx(gctx);
12124                 }
12125
12126                 /*
12127                  * Wait for everybody to stop referencing the events through
12128                  * the old lists, before installing it on new lists.
12129                  */
12130                 synchronize_rcu();
12131
12132                 /*
12133                  * Install the group siblings before the group leader.
12134                  *
12135                  * Because a group leader will try and install the entire group
12136                  * (through the sibling list, which is still in-tact), we can
12137                  * end up with siblings installed in the wrong context.
12138                  *
12139                  * By installing siblings first we NO-OP because they're not
12140                  * reachable through the group lists.
12141                  */
12142                 for_each_sibling_event(sibling, group_leader) {
12143                         perf_event__state_init(sibling);
12144                         perf_install_in_context(ctx, sibling, sibling->cpu);
12145                         get_ctx(ctx);
12146                 }
12147
12148                 /*
12149                  * Removing from the context ends up with disabled
12150                  * event. What we want here is event in the initial
12151                  * startup state, ready to be add into new context.
12152                  */
12153                 perf_event__state_init(group_leader);
12154                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12155                 get_ctx(ctx);
12156         }
12157
12158         /*
12159          * Precalculate sample_data sizes; do while holding ctx::mutex such
12160          * that we're serialized against further additions and before
12161          * perf_install_in_context() which is the point the event is active and
12162          * can use these values.
12163          */
12164         perf_event__header_size(event);
12165         perf_event__id_header_size(event);
12166
12167         event->owner = current;
12168
12169         perf_install_in_context(ctx, event, event->cpu);
12170         perf_unpin_context(ctx);
12171
12172         if (move_group)
12173                 perf_event_ctx_unlock(group_leader, gctx);
12174         mutex_unlock(&ctx->mutex);
12175
12176         if (task) {
12177                 up_read(&task->signal->exec_update_lock);
12178                 put_task_struct(task);
12179         }
12180
12181         mutex_lock(&current->perf_event_mutex);
12182         list_add_tail(&event->owner_entry, &current->perf_event_list);
12183         mutex_unlock(&current->perf_event_mutex);
12184
12185         /*
12186          * Drop the reference on the group_event after placing the
12187          * new event on the sibling_list. This ensures destruction
12188          * of the group leader will find the pointer to itself in
12189          * perf_group_detach().
12190          */
12191         fdput(group);
12192         fd_install(event_fd, event_file);
12193         return event_fd;
12194
12195 err_locked:
12196         if (move_group)
12197                 perf_event_ctx_unlock(group_leader, gctx);
12198         mutex_unlock(&ctx->mutex);
12199 err_cred:
12200         if (task)
12201                 up_read(&task->signal->exec_update_lock);
12202 err_file:
12203         fput(event_file);
12204 err_context:
12205         perf_unpin_context(ctx);
12206         put_ctx(ctx);
12207 err_alloc:
12208         /*
12209          * If event_file is set, the fput() above will have called ->release()
12210          * and that will take care of freeing the event.
12211          */
12212         if (!event_file)
12213                 free_event(event);
12214 err_task:
12215         if (task)
12216                 put_task_struct(task);
12217 err_group_fd:
12218         fdput(group);
12219 err_fd:
12220         put_unused_fd(event_fd);
12221         return err;
12222 }
12223
12224 /**
12225  * perf_event_create_kernel_counter
12226  *
12227  * @attr: attributes of the counter to create
12228  * @cpu: cpu in which the counter is bound
12229  * @task: task to profile (NULL for percpu)
12230  */
12231 struct perf_event *
12232 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12233                                  struct task_struct *task,
12234                                  perf_overflow_handler_t overflow_handler,
12235                                  void *context)
12236 {
12237         struct perf_event_context *ctx;
12238         struct perf_event *event;
12239         int err;
12240
12241         /*
12242          * Grouping is not supported for kernel events, neither is 'AUX',
12243          * make sure the caller's intentions are adjusted.
12244          */
12245         if (attr->aux_output)
12246                 return ERR_PTR(-EINVAL);
12247
12248         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12249                                  overflow_handler, context, -1);
12250         if (IS_ERR(event)) {
12251                 err = PTR_ERR(event);
12252                 goto err;
12253         }
12254
12255         /* Mark owner so we could distinguish it from user events. */
12256         event->owner = TASK_TOMBSTONE;
12257
12258         /*
12259          * Get the target context (task or percpu):
12260          */
12261         ctx = find_get_context(event->pmu, task, event);
12262         if (IS_ERR(ctx)) {
12263                 err = PTR_ERR(ctx);
12264                 goto err_free;
12265         }
12266
12267         WARN_ON_ONCE(ctx->parent_ctx);
12268         mutex_lock(&ctx->mutex);
12269         if (ctx->task == TASK_TOMBSTONE) {
12270                 err = -ESRCH;
12271                 goto err_unlock;
12272         }
12273
12274         if (!task) {
12275                 /*
12276                  * Check if the @cpu we're creating an event for is online.
12277                  *
12278                  * We use the perf_cpu_context::ctx::mutex to serialize against
12279                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12280                  */
12281                 struct perf_cpu_context *cpuctx =
12282                         container_of(ctx, struct perf_cpu_context, ctx);
12283                 if (!cpuctx->online) {
12284                         err = -ENODEV;
12285                         goto err_unlock;
12286                 }
12287         }
12288
12289         if (!exclusive_event_installable(event, ctx)) {
12290                 err = -EBUSY;
12291                 goto err_unlock;
12292         }
12293
12294         perf_install_in_context(ctx, event, event->cpu);
12295         perf_unpin_context(ctx);
12296         mutex_unlock(&ctx->mutex);
12297
12298         return event;
12299
12300 err_unlock:
12301         mutex_unlock(&ctx->mutex);
12302         perf_unpin_context(ctx);
12303         put_ctx(ctx);
12304 err_free:
12305         free_event(event);
12306 err:
12307         return ERR_PTR(err);
12308 }
12309 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12310
12311 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12312 {
12313         struct perf_event_context *src_ctx;
12314         struct perf_event_context *dst_ctx;
12315         struct perf_event *event, *tmp;
12316         LIST_HEAD(events);
12317
12318         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12319         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12320
12321         /*
12322          * See perf_event_ctx_lock() for comments on the details
12323          * of swizzling perf_event::ctx.
12324          */
12325         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12326         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12327                                  event_entry) {
12328                 perf_remove_from_context(event, 0);
12329                 unaccount_event_cpu(event, src_cpu);
12330                 put_ctx(src_ctx);
12331                 list_add(&event->migrate_entry, &events);
12332         }
12333
12334         /*
12335          * Wait for the events to quiesce before re-instating them.
12336          */
12337         synchronize_rcu();
12338
12339         /*
12340          * Re-instate events in 2 passes.
12341          *
12342          * Skip over group leaders and only install siblings on this first
12343          * pass, siblings will not get enabled without a leader, however a
12344          * leader will enable its siblings, even if those are still on the old
12345          * context.
12346          */
12347         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12348                 if (event->group_leader == event)
12349                         continue;
12350
12351                 list_del(&event->migrate_entry);
12352                 if (event->state >= PERF_EVENT_STATE_OFF)
12353                         event->state = PERF_EVENT_STATE_INACTIVE;
12354                 account_event_cpu(event, dst_cpu);
12355                 perf_install_in_context(dst_ctx, event, dst_cpu);
12356                 get_ctx(dst_ctx);
12357         }
12358
12359         /*
12360          * Once all the siblings are setup properly, install the group leaders
12361          * to make it go.
12362          */
12363         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12364                 list_del(&event->migrate_entry);
12365                 if (event->state >= PERF_EVENT_STATE_OFF)
12366                         event->state = PERF_EVENT_STATE_INACTIVE;
12367                 account_event_cpu(event, dst_cpu);
12368                 perf_install_in_context(dst_ctx, event, dst_cpu);
12369                 get_ctx(dst_ctx);
12370         }
12371         mutex_unlock(&dst_ctx->mutex);
12372         mutex_unlock(&src_ctx->mutex);
12373 }
12374 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12375
12376 static void sync_child_event(struct perf_event *child_event,
12377                                struct task_struct *child)
12378 {
12379         struct perf_event *parent_event = child_event->parent;
12380         u64 child_val;
12381
12382         if (child_event->attr.inherit_stat)
12383                 perf_event_read_event(child_event, child);
12384
12385         child_val = perf_event_count(child_event);
12386
12387         /*
12388          * Add back the child's count to the parent's count:
12389          */
12390         atomic64_add(child_val, &parent_event->child_count);
12391         atomic64_add(child_event->total_time_enabled,
12392                      &parent_event->child_total_time_enabled);
12393         atomic64_add(child_event->total_time_running,
12394                      &parent_event->child_total_time_running);
12395 }
12396
12397 static void
12398 perf_event_exit_event(struct perf_event *child_event,
12399                       struct perf_event_context *child_ctx,
12400                       struct task_struct *child)
12401 {
12402         struct perf_event *parent_event = child_event->parent;
12403
12404         /*
12405          * Do not destroy the 'original' grouping; because of the context
12406          * switch optimization the original events could've ended up in a
12407          * random child task.
12408          *
12409          * If we were to destroy the original group, all group related
12410          * operations would cease to function properly after this random
12411          * child dies.
12412          *
12413          * Do destroy all inherited groups, we don't care about those
12414          * and being thorough is better.
12415          */
12416         raw_spin_lock_irq(&child_ctx->lock);
12417         WARN_ON_ONCE(child_ctx->is_active);
12418
12419         if (parent_event)
12420                 perf_group_detach(child_event);
12421         list_del_event(child_event, child_ctx);
12422         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12423         raw_spin_unlock_irq(&child_ctx->lock);
12424
12425         /*
12426          * Parent events are governed by their filedesc, retain them.
12427          */
12428         if (!parent_event) {
12429                 perf_event_wakeup(child_event);
12430                 return;
12431         }
12432         /*
12433          * Child events can be cleaned up.
12434          */
12435
12436         sync_child_event(child_event, child);
12437
12438         /*
12439          * Remove this event from the parent's list
12440          */
12441         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12442         mutex_lock(&parent_event->child_mutex);
12443         list_del_init(&child_event->child_list);
12444         mutex_unlock(&parent_event->child_mutex);
12445
12446         /*
12447          * Kick perf_poll() for is_event_hup().
12448          */
12449         perf_event_wakeup(parent_event);
12450         free_event(child_event);
12451         put_event(parent_event);
12452 }
12453
12454 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12455 {
12456         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12457         struct perf_event *child_event, *next;
12458
12459         WARN_ON_ONCE(child != current);
12460
12461         child_ctx = perf_pin_task_context(child, ctxn);
12462         if (!child_ctx)
12463                 return;
12464
12465         /*
12466          * In order to reduce the amount of tricky in ctx tear-down, we hold
12467          * ctx::mutex over the entire thing. This serializes against almost
12468          * everything that wants to access the ctx.
12469          *
12470          * The exception is sys_perf_event_open() /
12471          * perf_event_create_kernel_count() which does find_get_context()
12472          * without ctx::mutex (it cannot because of the move_group double mutex
12473          * lock thing). See the comments in perf_install_in_context().
12474          */
12475         mutex_lock(&child_ctx->mutex);
12476
12477         /*
12478          * In a single ctx::lock section, de-schedule the events and detach the
12479          * context from the task such that we cannot ever get it scheduled back
12480          * in.
12481          */
12482         raw_spin_lock_irq(&child_ctx->lock);
12483         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12484
12485         /*
12486          * Now that the context is inactive, destroy the task <-> ctx relation
12487          * and mark the context dead.
12488          */
12489         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12490         put_ctx(child_ctx); /* cannot be last */
12491         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12492         put_task_struct(current); /* cannot be last */
12493
12494         clone_ctx = unclone_ctx(child_ctx);
12495         raw_spin_unlock_irq(&child_ctx->lock);
12496
12497         if (clone_ctx)
12498                 put_ctx(clone_ctx);
12499
12500         /*
12501          * Report the task dead after unscheduling the events so that we
12502          * won't get any samples after PERF_RECORD_EXIT. We can however still
12503          * get a few PERF_RECORD_READ events.
12504          */
12505         perf_event_task(child, child_ctx, 0);
12506
12507         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12508                 perf_event_exit_event(child_event, child_ctx, child);
12509
12510         mutex_unlock(&child_ctx->mutex);
12511
12512         put_ctx(child_ctx);
12513 }
12514
12515 /*
12516  * When a child task exits, feed back event values to parent events.
12517  *
12518  * Can be called with exec_update_lock held when called from
12519  * setup_new_exec().
12520  */
12521 void perf_event_exit_task(struct task_struct *child)
12522 {
12523         struct perf_event *event, *tmp;
12524         int ctxn;
12525
12526         mutex_lock(&child->perf_event_mutex);
12527         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12528                                  owner_entry) {
12529                 list_del_init(&event->owner_entry);
12530
12531                 /*
12532                  * Ensure the list deletion is visible before we clear
12533                  * the owner, closes a race against perf_release() where
12534                  * we need to serialize on the owner->perf_event_mutex.
12535                  */
12536                 smp_store_release(&event->owner, NULL);
12537         }
12538         mutex_unlock(&child->perf_event_mutex);
12539
12540         for_each_task_context_nr(ctxn)
12541                 perf_event_exit_task_context(child, ctxn);
12542
12543         /*
12544          * The perf_event_exit_task_context calls perf_event_task
12545          * with child's task_ctx, which generates EXIT events for
12546          * child contexts and sets child->perf_event_ctxp[] to NULL.
12547          * At this point we need to send EXIT events to cpu contexts.
12548          */
12549         perf_event_task(child, NULL, 0);
12550 }
12551
12552 static void perf_free_event(struct perf_event *event,
12553                             struct perf_event_context *ctx)
12554 {
12555         struct perf_event *parent = event->parent;
12556
12557         if (WARN_ON_ONCE(!parent))
12558                 return;
12559
12560         mutex_lock(&parent->child_mutex);
12561         list_del_init(&event->child_list);
12562         mutex_unlock(&parent->child_mutex);
12563
12564         put_event(parent);
12565
12566         raw_spin_lock_irq(&ctx->lock);
12567         perf_group_detach(event);
12568         list_del_event(event, ctx);
12569         raw_spin_unlock_irq(&ctx->lock);
12570         free_event(event);
12571 }
12572
12573 /*
12574  * Free a context as created by inheritance by perf_event_init_task() below,
12575  * used by fork() in case of fail.
12576  *
12577  * Even though the task has never lived, the context and events have been
12578  * exposed through the child_list, so we must take care tearing it all down.
12579  */
12580 void perf_event_free_task(struct task_struct *task)
12581 {
12582         struct perf_event_context *ctx;
12583         struct perf_event *event, *tmp;
12584         int ctxn;
12585
12586         for_each_task_context_nr(ctxn) {
12587                 ctx = task->perf_event_ctxp[ctxn];
12588                 if (!ctx)
12589                         continue;
12590
12591                 mutex_lock(&ctx->mutex);
12592                 raw_spin_lock_irq(&ctx->lock);
12593                 /*
12594                  * Destroy the task <-> ctx relation and mark the context dead.
12595                  *
12596                  * This is important because even though the task hasn't been
12597                  * exposed yet the context has been (through child_list).
12598                  */
12599                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12600                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12601                 put_task_struct(task); /* cannot be last */
12602                 raw_spin_unlock_irq(&ctx->lock);
12603
12604                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12605                         perf_free_event(event, ctx);
12606
12607                 mutex_unlock(&ctx->mutex);
12608
12609                 /*
12610                  * perf_event_release_kernel() could've stolen some of our
12611                  * child events and still have them on its free_list. In that
12612                  * case we must wait for these events to have been freed (in
12613                  * particular all their references to this task must've been
12614                  * dropped).
12615                  *
12616                  * Without this copy_process() will unconditionally free this
12617                  * task (irrespective of its reference count) and
12618                  * _free_event()'s put_task_struct(event->hw.target) will be a
12619                  * use-after-free.
12620                  *
12621                  * Wait for all events to drop their context reference.
12622                  */
12623                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12624                 put_ctx(ctx); /* must be last */
12625         }
12626 }
12627
12628 void perf_event_delayed_put(struct task_struct *task)
12629 {
12630         int ctxn;
12631
12632         for_each_task_context_nr(ctxn)
12633                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12634 }
12635
12636 struct file *perf_event_get(unsigned int fd)
12637 {
12638         struct file *file = fget(fd);
12639         if (!file)
12640                 return ERR_PTR(-EBADF);
12641
12642         if (file->f_op != &perf_fops) {
12643                 fput(file);
12644                 return ERR_PTR(-EBADF);
12645         }
12646
12647         return file;
12648 }
12649
12650 const struct perf_event *perf_get_event(struct file *file)
12651 {
12652         if (file->f_op != &perf_fops)
12653                 return ERR_PTR(-EINVAL);
12654
12655         return file->private_data;
12656 }
12657
12658 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12659 {
12660         if (!event)
12661                 return ERR_PTR(-EINVAL);
12662
12663         return &event->attr;
12664 }
12665
12666 /*
12667  * Inherit an event from parent task to child task.
12668  *
12669  * Returns:
12670  *  - valid pointer on success
12671  *  - NULL for orphaned events
12672  *  - IS_ERR() on error
12673  */
12674 static struct perf_event *
12675 inherit_event(struct perf_event *parent_event,
12676               struct task_struct *parent,
12677               struct perf_event_context *parent_ctx,
12678               struct task_struct *child,
12679               struct perf_event *group_leader,
12680               struct perf_event_context *child_ctx)
12681 {
12682         enum perf_event_state parent_state = parent_event->state;
12683         struct perf_event *child_event;
12684         unsigned long flags;
12685
12686         /*
12687          * Instead of creating recursive hierarchies of events,
12688          * we link inherited events back to the original parent,
12689          * which has a filp for sure, which we use as the reference
12690          * count:
12691          */
12692         if (parent_event->parent)
12693                 parent_event = parent_event->parent;
12694
12695         child_event = perf_event_alloc(&parent_event->attr,
12696                                            parent_event->cpu,
12697                                            child,
12698                                            group_leader, parent_event,
12699                                            NULL, NULL, -1);
12700         if (IS_ERR(child_event))
12701                 return child_event;
12702
12703
12704         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12705             !child_ctx->task_ctx_data) {
12706                 struct pmu *pmu = child_event->pmu;
12707
12708                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12709                 if (!child_ctx->task_ctx_data) {
12710                         free_event(child_event);
12711                         return ERR_PTR(-ENOMEM);
12712                 }
12713         }
12714
12715         /*
12716          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12717          * must be under the same lock in order to serialize against
12718          * perf_event_release_kernel(), such that either we must observe
12719          * is_orphaned_event() or they will observe us on the child_list.
12720          */
12721         mutex_lock(&parent_event->child_mutex);
12722         if (is_orphaned_event(parent_event) ||
12723             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12724                 mutex_unlock(&parent_event->child_mutex);
12725                 /* task_ctx_data is freed with child_ctx */
12726                 free_event(child_event);
12727                 return NULL;
12728         }
12729
12730         get_ctx(child_ctx);
12731
12732         /*
12733          * Make the child state follow the state of the parent event,
12734          * not its attr.disabled bit.  We hold the parent's mutex,
12735          * so we won't race with perf_event_{en, dis}able_family.
12736          */
12737         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12738                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12739         else
12740                 child_event->state = PERF_EVENT_STATE_OFF;
12741
12742         if (parent_event->attr.freq) {
12743                 u64 sample_period = parent_event->hw.sample_period;
12744                 struct hw_perf_event *hwc = &child_event->hw;
12745
12746                 hwc->sample_period = sample_period;
12747                 hwc->last_period   = sample_period;
12748
12749                 local64_set(&hwc->period_left, sample_period);
12750         }
12751
12752         child_event->ctx = child_ctx;
12753         child_event->overflow_handler = parent_event->overflow_handler;
12754         child_event->overflow_handler_context
12755                 = parent_event->overflow_handler_context;
12756
12757         /*
12758          * Precalculate sample_data sizes
12759          */
12760         perf_event__header_size(child_event);
12761         perf_event__id_header_size(child_event);
12762
12763         /*
12764          * Link it up in the child's context:
12765          */
12766         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12767         add_event_to_ctx(child_event, child_ctx);
12768         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12769
12770         /*
12771          * Link this into the parent event's child list
12772          */
12773         list_add_tail(&child_event->child_list, &parent_event->child_list);
12774         mutex_unlock(&parent_event->child_mutex);
12775
12776         return child_event;
12777 }
12778
12779 /*
12780  * Inherits an event group.
12781  *
12782  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12783  * This matches with perf_event_release_kernel() removing all child events.
12784  *
12785  * Returns:
12786  *  - 0 on success
12787  *  - <0 on error
12788  */
12789 static int inherit_group(struct perf_event *parent_event,
12790               struct task_struct *parent,
12791               struct perf_event_context *parent_ctx,
12792               struct task_struct *child,
12793               struct perf_event_context *child_ctx)
12794 {
12795         struct perf_event *leader;
12796         struct perf_event *sub;
12797         struct perf_event *child_ctr;
12798
12799         leader = inherit_event(parent_event, parent, parent_ctx,
12800                                  child, NULL, child_ctx);
12801         if (IS_ERR(leader))
12802                 return PTR_ERR(leader);
12803         /*
12804          * @leader can be NULL here because of is_orphaned_event(). In this
12805          * case inherit_event() will create individual events, similar to what
12806          * perf_group_detach() would do anyway.
12807          */
12808         for_each_sibling_event(sub, parent_event) {
12809                 child_ctr = inherit_event(sub, parent, parent_ctx,
12810                                             child, leader, child_ctx);
12811                 if (IS_ERR(child_ctr))
12812                         return PTR_ERR(child_ctr);
12813
12814                 if (sub->aux_event == parent_event && child_ctr &&
12815                     !perf_get_aux_event(child_ctr, leader))
12816                         return -EINVAL;
12817         }
12818         return 0;
12819 }
12820
12821 /*
12822  * Creates the child task context and tries to inherit the event-group.
12823  *
12824  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12825  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12826  * consistent with perf_event_release_kernel() removing all child events.
12827  *
12828  * Returns:
12829  *  - 0 on success
12830  *  - <0 on error
12831  */
12832 static int
12833 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12834                    struct perf_event_context *parent_ctx,
12835                    struct task_struct *child, int ctxn,
12836                    int *inherited_all)
12837 {
12838         int ret;
12839         struct perf_event_context *child_ctx;
12840
12841         if (!event->attr.inherit) {
12842                 *inherited_all = 0;
12843                 return 0;
12844         }
12845
12846         child_ctx = child->perf_event_ctxp[ctxn];
12847         if (!child_ctx) {
12848                 /*
12849                  * This is executed from the parent task context, so
12850                  * inherit events that have been marked for cloning.
12851                  * First allocate and initialize a context for the
12852                  * child.
12853                  */
12854                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12855                 if (!child_ctx)
12856                         return -ENOMEM;
12857
12858                 child->perf_event_ctxp[ctxn] = child_ctx;
12859         }
12860
12861         ret = inherit_group(event, parent, parent_ctx,
12862                             child, child_ctx);
12863
12864         if (ret)
12865                 *inherited_all = 0;
12866
12867         return ret;
12868 }
12869
12870 /*
12871  * Initialize the perf_event context in task_struct
12872  */
12873 static int perf_event_init_context(struct task_struct *child, int ctxn)
12874 {
12875         struct perf_event_context *child_ctx, *parent_ctx;
12876         struct perf_event_context *cloned_ctx;
12877         struct perf_event *event;
12878         struct task_struct *parent = current;
12879         int inherited_all = 1;
12880         unsigned long flags;
12881         int ret = 0;
12882
12883         if (likely(!parent->perf_event_ctxp[ctxn]))
12884                 return 0;
12885
12886         /*
12887          * If the parent's context is a clone, pin it so it won't get
12888          * swapped under us.
12889          */
12890         parent_ctx = perf_pin_task_context(parent, ctxn);
12891         if (!parent_ctx)
12892                 return 0;
12893
12894         /*
12895          * No need to check if parent_ctx != NULL here; since we saw
12896          * it non-NULL earlier, the only reason for it to become NULL
12897          * is if we exit, and since we're currently in the middle of
12898          * a fork we can't be exiting at the same time.
12899          */
12900
12901         /*
12902          * Lock the parent list. No need to lock the child - not PID
12903          * hashed yet and not running, so nobody can access it.
12904          */
12905         mutex_lock(&parent_ctx->mutex);
12906
12907         /*
12908          * We dont have to disable NMIs - we are only looking at
12909          * the list, not manipulating it:
12910          */
12911         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12912                 ret = inherit_task_group(event, parent, parent_ctx,
12913                                          child, ctxn, &inherited_all);
12914                 if (ret)
12915                         goto out_unlock;
12916         }
12917
12918         /*
12919          * We can't hold ctx->lock when iterating the ->flexible_group list due
12920          * to allocations, but we need to prevent rotation because
12921          * rotate_ctx() will change the list from interrupt context.
12922          */
12923         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12924         parent_ctx->rotate_disable = 1;
12925         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12926
12927         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12928                 ret = inherit_task_group(event, parent, parent_ctx,
12929                                          child, ctxn, &inherited_all);
12930                 if (ret)
12931                         goto out_unlock;
12932         }
12933
12934         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12935         parent_ctx->rotate_disable = 0;
12936
12937         child_ctx = child->perf_event_ctxp[ctxn];
12938
12939         if (child_ctx && inherited_all) {
12940                 /*
12941                  * Mark the child context as a clone of the parent
12942                  * context, or of whatever the parent is a clone of.
12943                  *
12944                  * Note that if the parent is a clone, the holding of
12945                  * parent_ctx->lock avoids it from being uncloned.
12946                  */
12947                 cloned_ctx = parent_ctx->parent_ctx;
12948                 if (cloned_ctx) {
12949                         child_ctx->parent_ctx = cloned_ctx;
12950                         child_ctx->parent_gen = parent_ctx->parent_gen;
12951                 } else {
12952                         child_ctx->parent_ctx = parent_ctx;
12953                         child_ctx->parent_gen = parent_ctx->generation;
12954                 }
12955                 get_ctx(child_ctx->parent_ctx);
12956         }
12957
12958         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12959 out_unlock:
12960         mutex_unlock(&parent_ctx->mutex);
12961
12962         perf_unpin_context(parent_ctx);
12963         put_ctx(parent_ctx);
12964
12965         return ret;
12966 }
12967
12968 /*
12969  * Initialize the perf_event context in task_struct
12970  */
12971 int perf_event_init_task(struct task_struct *child)
12972 {
12973         int ctxn, ret;
12974
12975         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12976         mutex_init(&child->perf_event_mutex);
12977         INIT_LIST_HEAD(&child->perf_event_list);
12978
12979         for_each_task_context_nr(ctxn) {
12980                 ret = perf_event_init_context(child, ctxn);
12981                 if (ret) {
12982                         perf_event_free_task(child);
12983                         return ret;
12984                 }
12985         }
12986
12987         return 0;
12988 }
12989
12990 static void __init perf_event_init_all_cpus(void)
12991 {
12992         struct swevent_htable *swhash;
12993         int cpu;
12994
12995         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12996
12997         for_each_possible_cpu(cpu) {
12998                 swhash = &per_cpu(swevent_htable, cpu);
12999                 mutex_init(&swhash->hlist_mutex);
13000                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13001
13002                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13003                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13004
13005 #ifdef CONFIG_CGROUP_PERF
13006                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13007 #endif
13008                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13009         }
13010 }
13011
13012 static void perf_swevent_init_cpu(unsigned int cpu)
13013 {
13014         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13015
13016         mutex_lock(&swhash->hlist_mutex);
13017         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13018                 struct swevent_hlist *hlist;
13019
13020                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13021                 WARN_ON(!hlist);
13022                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13023         }
13024         mutex_unlock(&swhash->hlist_mutex);
13025 }
13026
13027 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13028 static void __perf_event_exit_context(void *__info)
13029 {
13030         struct perf_event_context *ctx = __info;
13031         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13032         struct perf_event *event;
13033
13034         raw_spin_lock(&ctx->lock);
13035         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13036         list_for_each_entry(event, &ctx->event_list, event_entry)
13037                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13038         raw_spin_unlock(&ctx->lock);
13039 }
13040
13041 static void perf_event_exit_cpu_context(int cpu)
13042 {
13043         struct perf_cpu_context *cpuctx;
13044         struct perf_event_context *ctx;
13045         struct pmu *pmu;
13046
13047         mutex_lock(&pmus_lock);
13048         list_for_each_entry(pmu, &pmus, entry) {
13049                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13050                 ctx = &cpuctx->ctx;
13051
13052                 mutex_lock(&ctx->mutex);
13053                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13054                 cpuctx->online = 0;
13055                 mutex_unlock(&ctx->mutex);
13056         }
13057         cpumask_clear_cpu(cpu, perf_online_mask);
13058         mutex_unlock(&pmus_lock);
13059 }
13060 #else
13061
13062 static void perf_event_exit_cpu_context(int cpu) { }
13063
13064 #endif
13065
13066 int perf_event_init_cpu(unsigned int cpu)
13067 {
13068         struct perf_cpu_context *cpuctx;
13069         struct perf_event_context *ctx;
13070         struct pmu *pmu;
13071
13072         perf_swevent_init_cpu(cpu);
13073
13074         mutex_lock(&pmus_lock);
13075         cpumask_set_cpu(cpu, perf_online_mask);
13076         list_for_each_entry(pmu, &pmus, entry) {
13077                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13078                 ctx = &cpuctx->ctx;
13079
13080                 mutex_lock(&ctx->mutex);
13081                 cpuctx->online = 1;
13082                 mutex_unlock(&ctx->mutex);
13083         }
13084         mutex_unlock(&pmus_lock);
13085
13086         return 0;
13087 }
13088
13089 int perf_event_exit_cpu(unsigned int cpu)
13090 {
13091         perf_event_exit_cpu_context(cpu);
13092         return 0;
13093 }
13094
13095 static int
13096 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13097 {
13098         int cpu;
13099
13100         for_each_online_cpu(cpu)
13101                 perf_event_exit_cpu(cpu);
13102
13103         return NOTIFY_OK;
13104 }
13105
13106 /*
13107  * Run the perf reboot notifier at the very last possible moment so that
13108  * the generic watchdog code runs as long as possible.
13109  */
13110 static struct notifier_block perf_reboot_notifier = {
13111         .notifier_call = perf_reboot,
13112         .priority = INT_MIN,
13113 };
13114
13115 void __init perf_event_init(void)
13116 {
13117         int ret;
13118
13119         idr_init(&pmu_idr);
13120
13121         perf_event_init_all_cpus();
13122         init_srcu_struct(&pmus_srcu);
13123         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13124         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13125         perf_pmu_register(&perf_task_clock, NULL, -1);
13126         perf_tp_register();
13127         perf_event_init_cpu(smp_processor_id());
13128         register_reboot_notifier(&perf_reboot_notifier);
13129
13130         ret = init_hw_breakpoint();
13131         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13132
13133         /*
13134          * Build time assertion that we keep the data_head at the intended
13135          * location.  IOW, validation we got the __reserved[] size right.
13136          */
13137         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13138                      != 1024);
13139 }
13140
13141 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13142                               char *page)
13143 {
13144         struct perf_pmu_events_attr *pmu_attr =
13145                 container_of(attr, struct perf_pmu_events_attr, attr);
13146
13147         if (pmu_attr->event_str)
13148                 return sprintf(page, "%s\n", pmu_attr->event_str);
13149
13150         return 0;
13151 }
13152 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13153
13154 static int __init perf_event_sysfs_init(void)
13155 {
13156         struct pmu *pmu;
13157         int ret;
13158
13159         mutex_lock(&pmus_lock);
13160
13161         ret = bus_register(&pmu_bus);
13162         if (ret)
13163                 goto unlock;
13164
13165         list_for_each_entry(pmu, &pmus, entry) {
13166                 if (!pmu->name || pmu->type < 0)
13167                         continue;
13168
13169                 ret = pmu_dev_alloc(pmu);
13170                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13171         }
13172         pmu_bus_running = 1;
13173         ret = 0;
13174
13175 unlock:
13176         mutex_unlock(&pmus_lock);
13177
13178         return ret;
13179 }
13180 device_initcall(perf_event_sysfs_init);
13181
13182 #ifdef CONFIG_CGROUP_PERF
13183 static struct cgroup_subsys_state *
13184 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13185 {
13186         struct perf_cgroup *jc;
13187
13188         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13189         if (!jc)
13190                 return ERR_PTR(-ENOMEM);
13191
13192         jc->info = alloc_percpu(struct perf_cgroup_info);
13193         if (!jc->info) {
13194                 kfree(jc);
13195                 return ERR_PTR(-ENOMEM);
13196         }
13197
13198         return &jc->css;
13199 }
13200
13201 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13202 {
13203         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13204
13205         free_percpu(jc->info);
13206         kfree(jc);
13207 }
13208
13209 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13210 {
13211         perf_event_cgroup(css->cgroup);
13212         return 0;
13213 }
13214
13215 static int __perf_cgroup_move(void *info)
13216 {
13217         struct task_struct *task = info;
13218         rcu_read_lock();
13219         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13220         rcu_read_unlock();
13221         return 0;
13222 }
13223
13224 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13225 {
13226         struct task_struct *task;
13227         struct cgroup_subsys_state *css;
13228
13229         cgroup_taskset_for_each(task, css, tset)
13230                 task_function_call(task, __perf_cgroup_move, task);
13231 }
13232
13233 struct cgroup_subsys perf_event_cgrp_subsys = {
13234         .css_alloc      = perf_cgroup_css_alloc,
13235         .css_free       = perf_cgroup_css_free,
13236         .css_online     = perf_cgroup_css_online,
13237         .attach         = perf_cgroup_attach,
13238         /*
13239          * Implicitly enable on dfl hierarchy so that perf events can
13240          * always be filtered by cgroup2 path as long as perf_event
13241          * controller is not mounted on a legacy hierarchy.
13242          */
13243         .implicit_on_dfl = true,
13244         .threaded       = true,
13245 };
13246 #endif /* CONFIG_CGROUP_PERF */