Merge tag 'pidfd.v5.17-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner...
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 /*
678  * UP store-release, load-acquire
679  */
680
681 #define __store_release(ptr, val)                                       \
682 do {                                                                    \
683         barrier();                                                      \
684         WRITE_ONCE(*(ptr), (val));                                      \
685 } while (0)
686
687 #define __load_acquire(ptr)                                             \
688 ({                                                                      \
689         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
690         barrier();                                                      \
691         ___p;                                                           \
692 })
693
694 #ifdef CONFIG_CGROUP_PERF
695
696 static inline bool
697 perf_cgroup_match(struct perf_event *event)
698 {
699         struct perf_event_context *ctx = event->ctx;
700         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
701
702         /* @event doesn't care about cgroup */
703         if (!event->cgrp)
704                 return true;
705
706         /* wants specific cgroup scope but @cpuctx isn't associated with any */
707         if (!cpuctx->cgrp)
708                 return false;
709
710         /*
711          * Cgroup scoping is recursive.  An event enabled for a cgroup is
712          * also enabled for all its descendant cgroups.  If @cpuctx's
713          * cgroup is a descendant of @event's (the test covers identity
714          * case), it's a match.
715          */
716         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
717                                     event->cgrp->css.cgroup);
718 }
719
720 static inline void perf_detach_cgroup(struct perf_event *event)
721 {
722         css_put(&event->cgrp->css);
723         event->cgrp = NULL;
724 }
725
726 static inline int is_cgroup_event(struct perf_event *event)
727 {
728         return event->cgrp != NULL;
729 }
730
731 static inline u64 perf_cgroup_event_time(struct perf_event *event)
732 {
733         struct perf_cgroup_info *t;
734
735         t = per_cpu_ptr(event->cgrp->info, event->cpu);
736         return t->time;
737 }
738
739 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
740 {
741         struct perf_cgroup_info *t;
742
743         t = per_cpu_ptr(event->cgrp->info, event->cpu);
744         if (!__load_acquire(&t->active))
745                 return t->time;
746         now += READ_ONCE(t->timeoffset);
747         return now;
748 }
749
750 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
751 {
752         if (adv)
753                 info->time += now - info->timestamp;
754         info->timestamp = now;
755         /*
756          * see update_context_time()
757          */
758         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
759 }
760
761 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
762 {
763         struct perf_cgroup *cgrp = cpuctx->cgrp;
764         struct cgroup_subsys_state *css;
765         struct perf_cgroup_info *info;
766
767         if (cgrp) {
768                 u64 now = perf_clock();
769
770                 for (css = &cgrp->css; css; css = css->parent) {
771                         cgrp = container_of(css, struct perf_cgroup, css);
772                         info = this_cpu_ptr(cgrp->info);
773
774                         __update_cgrp_time(info, now, true);
775                         if (final)
776                                 __store_release(&info->active, 0);
777                 }
778         }
779 }
780
781 static inline void update_cgrp_time_from_event(struct perf_event *event)
782 {
783         struct perf_cgroup_info *info;
784         struct perf_cgroup *cgrp;
785
786         /*
787          * ensure we access cgroup data only when needed and
788          * when we know the cgroup is pinned (css_get)
789          */
790         if (!is_cgroup_event(event))
791                 return;
792
793         cgrp = perf_cgroup_from_task(current, event->ctx);
794         /*
795          * Do not update time when cgroup is not active
796          */
797         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup)) {
798                 info = this_cpu_ptr(event->cgrp->info);
799                 __update_cgrp_time(info, perf_clock(), true);
800         }
801 }
802
803 static inline void
804 perf_cgroup_set_timestamp(struct task_struct *task,
805                           struct perf_event_context *ctx)
806 {
807         struct perf_cgroup *cgrp;
808         struct perf_cgroup_info *info;
809         struct cgroup_subsys_state *css;
810
811         /*
812          * ctx->lock held by caller
813          * ensure we do not access cgroup data
814          * unless we have the cgroup pinned (css_get)
815          */
816         if (!task || !ctx->nr_cgroups)
817                 return;
818
819         cgrp = perf_cgroup_from_task(task, ctx);
820
821         for (css = &cgrp->css; css; css = css->parent) {
822                 cgrp = container_of(css, struct perf_cgroup, css);
823                 info = this_cpu_ptr(cgrp->info);
824                 __update_cgrp_time(info, ctx->timestamp, false);
825                 __store_release(&info->active, 1);
826         }
827 }
828
829 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
830
831 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
832 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
833
834 /*
835  * reschedule events based on the cgroup constraint of task.
836  *
837  * mode SWOUT : schedule out everything
838  * mode SWIN : schedule in based on cgroup for next
839  */
840 static void perf_cgroup_switch(struct task_struct *task, int mode)
841 {
842         struct perf_cpu_context *cpuctx, *tmp;
843         struct list_head *list;
844         unsigned long flags;
845
846         /*
847          * Disable interrupts and preemption to avoid this CPU's
848          * cgrp_cpuctx_entry to change under us.
849          */
850         local_irq_save(flags);
851
852         list = this_cpu_ptr(&cgrp_cpuctx_list);
853         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
854                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
855
856                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
857                 perf_pmu_disable(cpuctx->ctx.pmu);
858
859                 if (mode & PERF_CGROUP_SWOUT) {
860                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
861                         /*
862                          * must not be done before ctxswout due
863                          * to event_filter_match() in event_sched_out()
864                          */
865                         cpuctx->cgrp = NULL;
866                 }
867
868                 if (mode & PERF_CGROUP_SWIN) {
869                         WARN_ON_ONCE(cpuctx->cgrp);
870                         /*
871                          * set cgrp before ctxsw in to allow
872                          * event_filter_match() to not have to pass
873                          * task around
874                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
875                          * because cgorup events are only per-cpu
876                          */
877                         cpuctx->cgrp = perf_cgroup_from_task(task,
878                                                              &cpuctx->ctx);
879                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
880                 }
881                 perf_pmu_enable(cpuctx->ctx.pmu);
882                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
883         }
884
885         local_irq_restore(flags);
886 }
887
888 static inline void perf_cgroup_sched_out(struct task_struct *task,
889                                          struct task_struct *next)
890 {
891         struct perf_cgroup *cgrp1;
892         struct perf_cgroup *cgrp2 = NULL;
893
894         rcu_read_lock();
895         /*
896          * we come here when we know perf_cgroup_events > 0
897          * we do not need to pass the ctx here because we know
898          * we are holding the rcu lock
899          */
900         cgrp1 = perf_cgroup_from_task(task, NULL);
901         cgrp2 = perf_cgroup_from_task(next, NULL);
902
903         /*
904          * only schedule out current cgroup events if we know
905          * that we are switching to a different cgroup. Otherwise,
906          * do no touch the cgroup events.
907          */
908         if (cgrp1 != cgrp2)
909                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
910
911         rcu_read_unlock();
912 }
913
914 static inline void perf_cgroup_sched_in(struct task_struct *prev,
915                                         struct task_struct *task)
916 {
917         struct perf_cgroup *cgrp1;
918         struct perf_cgroup *cgrp2 = NULL;
919
920         rcu_read_lock();
921         /*
922          * we come here when we know perf_cgroup_events > 0
923          * we do not need to pass the ctx here because we know
924          * we are holding the rcu lock
925          */
926         cgrp1 = perf_cgroup_from_task(task, NULL);
927         cgrp2 = perf_cgroup_from_task(prev, NULL);
928
929         /*
930          * only need to schedule in cgroup events if we are changing
931          * cgroup during ctxsw. Cgroup events were not scheduled
932          * out of ctxsw out if that was not the case.
933          */
934         if (cgrp1 != cgrp2)
935                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
936
937         rcu_read_unlock();
938 }
939
940 static int perf_cgroup_ensure_storage(struct perf_event *event,
941                                 struct cgroup_subsys_state *css)
942 {
943         struct perf_cpu_context *cpuctx;
944         struct perf_event **storage;
945         int cpu, heap_size, ret = 0;
946
947         /*
948          * Allow storage to have sufficent space for an iterator for each
949          * possibly nested cgroup plus an iterator for events with no cgroup.
950          */
951         for (heap_size = 1; css; css = css->parent)
952                 heap_size++;
953
954         for_each_possible_cpu(cpu) {
955                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
956                 if (heap_size <= cpuctx->heap_size)
957                         continue;
958
959                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
960                                        GFP_KERNEL, cpu_to_node(cpu));
961                 if (!storage) {
962                         ret = -ENOMEM;
963                         break;
964                 }
965
966                 raw_spin_lock_irq(&cpuctx->ctx.lock);
967                 if (cpuctx->heap_size < heap_size) {
968                         swap(cpuctx->heap, storage);
969                         if (storage == cpuctx->heap_default)
970                                 storage = NULL;
971                         cpuctx->heap_size = heap_size;
972                 }
973                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
974
975                 kfree(storage);
976         }
977
978         return ret;
979 }
980
981 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
982                                       struct perf_event_attr *attr,
983                                       struct perf_event *group_leader)
984 {
985         struct perf_cgroup *cgrp;
986         struct cgroup_subsys_state *css;
987         struct fd f = fdget(fd);
988         int ret = 0;
989
990         if (!f.file)
991                 return -EBADF;
992
993         css = css_tryget_online_from_dir(f.file->f_path.dentry,
994                                          &perf_event_cgrp_subsys);
995         if (IS_ERR(css)) {
996                 ret = PTR_ERR(css);
997                 goto out;
998         }
999
1000         ret = perf_cgroup_ensure_storage(event, css);
1001         if (ret)
1002                 goto out;
1003
1004         cgrp = container_of(css, struct perf_cgroup, css);
1005         event->cgrp = cgrp;
1006
1007         /*
1008          * all events in a group must monitor
1009          * the same cgroup because a task belongs
1010          * to only one perf cgroup at a time
1011          */
1012         if (group_leader && group_leader->cgrp != cgrp) {
1013                 perf_detach_cgroup(event);
1014                 ret = -EINVAL;
1015         }
1016 out:
1017         fdput(f);
1018         return ret;
1019 }
1020
1021 static inline void
1022 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1023 {
1024         struct perf_cpu_context *cpuctx;
1025
1026         if (!is_cgroup_event(event))
1027                 return;
1028
1029         /*
1030          * Because cgroup events are always per-cpu events,
1031          * @ctx == &cpuctx->ctx.
1032          */
1033         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1034
1035         /*
1036          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1037          * matching the event's cgroup, we must do this for every new event,
1038          * because if the first would mismatch, the second would not try again
1039          * and we would leave cpuctx->cgrp unset.
1040          */
1041         if (ctx->is_active && !cpuctx->cgrp) {
1042                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1043
1044                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1045                         cpuctx->cgrp = cgrp;
1046         }
1047
1048         if (ctx->nr_cgroups++)
1049                 return;
1050
1051         list_add(&cpuctx->cgrp_cpuctx_entry,
1052                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1053 }
1054
1055 static inline void
1056 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1057 {
1058         struct perf_cpu_context *cpuctx;
1059
1060         if (!is_cgroup_event(event))
1061                 return;
1062
1063         /*
1064          * Because cgroup events are always per-cpu events,
1065          * @ctx == &cpuctx->ctx.
1066          */
1067         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1068
1069         if (--ctx->nr_cgroups)
1070                 return;
1071
1072         if (ctx->is_active && cpuctx->cgrp)
1073                 cpuctx->cgrp = NULL;
1074
1075         list_del(&cpuctx->cgrp_cpuctx_entry);
1076 }
1077
1078 #else /* !CONFIG_CGROUP_PERF */
1079
1080 static inline bool
1081 perf_cgroup_match(struct perf_event *event)
1082 {
1083         return true;
1084 }
1085
1086 static inline void perf_detach_cgroup(struct perf_event *event)
1087 {}
1088
1089 static inline int is_cgroup_event(struct perf_event *event)
1090 {
1091         return 0;
1092 }
1093
1094 static inline void update_cgrp_time_from_event(struct perf_event *event)
1095 {
1096 }
1097
1098 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1099                                                 bool final)
1100 {
1101 }
1102
1103 static inline void perf_cgroup_sched_out(struct task_struct *task,
1104                                          struct task_struct *next)
1105 {
1106 }
1107
1108 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1109                                         struct task_struct *task)
1110 {
1111 }
1112
1113 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1114                                       struct perf_event_attr *attr,
1115                                       struct perf_event *group_leader)
1116 {
1117         return -EINVAL;
1118 }
1119
1120 static inline void
1121 perf_cgroup_set_timestamp(struct task_struct *task,
1122                           struct perf_event_context *ctx)
1123 {
1124 }
1125
1126 static inline void
1127 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1128 {
1129 }
1130
1131 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1132 {
1133         return 0;
1134 }
1135
1136 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1137 {
1138         return 0;
1139 }
1140
1141 static inline void
1142 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1143 {
1144 }
1145
1146 static inline void
1147 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1148 {
1149 }
1150 #endif
1151
1152 /*
1153  * set default to be dependent on timer tick just
1154  * like original code
1155  */
1156 #define PERF_CPU_HRTIMER (1000 / HZ)
1157 /*
1158  * function must be called with interrupts disabled
1159  */
1160 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1161 {
1162         struct perf_cpu_context *cpuctx;
1163         bool rotations;
1164
1165         lockdep_assert_irqs_disabled();
1166
1167         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1168         rotations = perf_rotate_context(cpuctx);
1169
1170         raw_spin_lock(&cpuctx->hrtimer_lock);
1171         if (rotations)
1172                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1173         else
1174                 cpuctx->hrtimer_active = 0;
1175         raw_spin_unlock(&cpuctx->hrtimer_lock);
1176
1177         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1178 }
1179
1180 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1181 {
1182         struct hrtimer *timer = &cpuctx->hrtimer;
1183         struct pmu *pmu = cpuctx->ctx.pmu;
1184         u64 interval;
1185
1186         /* no multiplexing needed for SW PMU */
1187         if (pmu->task_ctx_nr == perf_sw_context)
1188                 return;
1189
1190         /*
1191          * check default is sane, if not set then force to
1192          * default interval (1/tick)
1193          */
1194         interval = pmu->hrtimer_interval_ms;
1195         if (interval < 1)
1196                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1197
1198         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1199
1200         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1201         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1202         timer->function = perf_mux_hrtimer_handler;
1203 }
1204
1205 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1206 {
1207         struct hrtimer *timer = &cpuctx->hrtimer;
1208         struct pmu *pmu = cpuctx->ctx.pmu;
1209         unsigned long flags;
1210
1211         /* not for SW PMU */
1212         if (pmu->task_ctx_nr == perf_sw_context)
1213                 return 0;
1214
1215         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1216         if (!cpuctx->hrtimer_active) {
1217                 cpuctx->hrtimer_active = 1;
1218                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1219                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1220         }
1221         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1222
1223         return 0;
1224 }
1225
1226 void perf_pmu_disable(struct pmu *pmu)
1227 {
1228         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1229         if (!(*count)++)
1230                 pmu->pmu_disable(pmu);
1231 }
1232
1233 void perf_pmu_enable(struct pmu *pmu)
1234 {
1235         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1236         if (!--(*count))
1237                 pmu->pmu_enable(pmu);
1238 }
1239
1240 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1241
1242 /*
1243  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1244  * perf_event_task_tick() are fully serialized because they're strictly cpu
1245  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1246  * disabled, while perf_event_task_tick is called from IRQ context.
1247  */
1248 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1249 {
1250         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1251
1252         lockdep_assert_irqs_disabled();
1253
1254         WARN_ON(!list_empty(&ctx->active_ctx_list));
1255
1256         list_add(&ctx->active_ctx_list, head);
1257 }
1258
1259 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1260 {
1261         lockdep_assert_irqs_disabled();
1262
1263         WARN_ON(list_empty(&ctx->active_ctx_list));
1264
1265         list_del_init(&ctx->active_ctx_list);
1266 }
1267
1268 static void get_ctx(struct perf_event_context *ctx)
1269 {
1270         refcount_inc(&ctx->refcount);
1271 }
1272
1273 static void *alloc_task_ctx_data(struct pmu *pmu)
1274 {
1275         if (pmu->task_ctx_cache)
1276                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1277
1278         return NULL;
1279 }
1280
1281 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1282 {
1283         if (pmu->task_ctx_cache && task_ctx_data)
1284                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1285 }
1286
1287 static void free_ctx(struct rcu_head *head)
1288 {
1289         struct perf_event_context *ctx;
1290
1291         ctx = container_of(head, struct perf_event_context, rcu_head);
1292         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1293         kfree(ctx);
1294 }
1295
1296 static void put_ctx(struct perf_event_context *ctx)
1297 {
1298         if (refcount_dec_and_test(&ctx->refcount)) {
1299                 if (ctx->parent_ctx)
1300                         put_ctx(ctx->parent_ctx);
1301                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1302                         put_task_struct(ctx->task);
1303                 call_rcu(&ctx->rcu_head, free_ctx);
1304         }
1305 }
1306
1307 /*
1308  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1309  * perf_pmu_migrate_context() we need some magic.
1310  *
1311  * Those places that change perf_event::ctx will hold both
1312  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1313  *
1314  * Lock ordering is by mutex address. There are two other sites where
1315  * perf_event_context::mutex nests and those are:
1316  *
1317  *  - perf_event_exit_task_context()    [ child , 0 ]
1318  *      perf_event_exit_event()
1319  *        put_event()                   [ parent, 1 ]
1320  *
1321  *  - perf_event_init_context()         [ parent, 0 ]
1322  *      inherit_task_group()
1323  *        inherit_group()
1324  *          inherit_event()
1325  *            perf_event_alloc()
1326  *              perf_init_event()
1327  *                perf_try_init_event() [ child , 1 ]
1328  *
1329  * While it appears there is an obvious deadlock here -- the parent and child
1330  * nesting levels are inverted between the two. This is in fact safe because
1331  * life-time rules separate them. That is an exiting task cannot fork, and a
1332  * spawning task cannot (yet) exit.
1333  *
1334  * But remember that these are parent<->child context relations, and
1335  * migration does not affect children, therefore these two orderings should not
1336  * interact.
1337  *
1338  * The change in perf_event::ctx does not affect children (as claimed above)
1339  * because the sys_perf_event_open() case will install a new event and break
1340  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1341  * concerned with cpuctx and that doesn't have children.
1342  *
1343  * The places that change perf_event::ctx will issue:
1344  *
1345  *   perf_remove_from_context();
1346  *   synchronize_rcu();
1347  *   perf_install_in_context();
1348  *
1349  * to affect the change. The remove_from_context() + synchronize_rcu() should
1350  * quiesce the event, after which we can install it in the new location. This
1351  * means that only external vectors (perf_fops, prctl) can perturb the event
1352  * while in transit. Therefore all such accessors should also acquire
1353  * perf_event_context::mutex to serialize against this.
1354  *
1355  * However; because event->ctx can change while we're waiting to acquire
1356  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1357  * function.
1358  *
1359  * Lock order:
1360  *    exec_update_lock
1361  *      task_struct::perf_event_mutex
1362  *        perf_event_context::mutex
1363  *          perf_event::child_mutex;
1364  *            perf_event_context::lock
1365  *          perf_event::mmap_mutex
1366  *          mmap_lock
1367  *            perf_addr_filters_head::lock
1368  *
1369  *    cpu_hotplug_lock
1370  *      pmus_lock
1371  *        cpuctx->mutex / perf_event_context::mutex
1372  */
1373 static struct perf_event_context *
1374 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1375 {
1376         struct perf_event_context *ctx;
1377
1378 again:
1379         rcu_read_lock();
1380         ctx = READ_ONCE(event->ctx);
1381         if (!refcount_inc_not_zero(&ctx->refcount)) {
1382                 rcu_read_unlock();
1383                 goto again;
1384         }
1385         rcu_read_unlock();
1386
1387         mutex_lock_nested(&ctx->mutex, nesting);
1388         if (event->ctx != ctx) {
1389                 mutex_unlock(&ctx->mutex);
1390                 put_ctx(ctx);
1391                 goto again;
1392         }
1393
1394         return ctx;
1395 }
1396
1397 static inline struct perf_event_context *
1398 perf_event_ctx_lock(struct perf_event *event)
1399 {
1400         return perf_event_ctx_lock_nested(event, 0);
1401 }
1402
1403 static void perf_event_ctx_unlock(struct perf_event *event,
1404                                   struct perf_event_context *ctx)
1405 {
1406         mutex_unlock(&ctx->mutex);
1407         put_ctx(ctx);
1408 }
1409
1410 /*
1411  * This must be done under the ctx->lock, such as to serialize against
1412  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1413  * calling scheduler related locks and ctx->lock nests inside those.
1414  */
1415 static __must_check struct perf_event_context *
1416 unclone_ctx(struct perf_event_context *ctx)
1417 {
1418         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1419
1420         lockdep_assert_held(&ctx->lock);
1421
1422         if (parent_ctx)
1423                 ctx->parent_ctx = NULL;
1424         ctx->generation++;
1425
1426         return parent_ctx;
1427 }
1428
1429 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1430                                 enum pid_type type)
1431 {
1432         u32 nr;
1433         /*
1434          * only top level events have the pid namespace they were created in
1435          */
1436         if (event->parent)
1437                 event = event->parent;
1438
1439         nr = __task_pid_nr_ns(p, type, event->ns);
1440         /* avoid -1 if it is idle thread or runs in another ns */
1441         if (!nr && !pid_alive(p))
1442                 nr = -1;
1443         return nr;
1444 }
1445
1446 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1447 {
1448         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1449 }
1450
1451 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1452 {
1453         return perf_event_pid_type(event, p, PIDTYPE_PID);
1454 }
1455
1456 /*
1457  * If we inherit events we want to return the parent event id
1458  * to userspace.
1459  */
1460 static u64 primary_event_id(struct perf_event *event)
1461 {
1462         u64 id = event->id;
1463
1464         if (event->parent)
1465                 id = event->parent->id;
1466
1467         return id;
1468 }
1469
1470 /*
1471  * Get the perf_event_context for a task and lock it.
1472  *
1473  * This has to cope with the fact that until it is locked,
1474  * the context could get moved to another task.
1475  */
1476 static struct perf_event_context *
1477 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1478 {
1479         struct perf_event_context *ctx;
1480
1481 retry:
1482         /*
1483          * One of the few rules of preemptible RCU is that one cannot do
1484          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1485          * part of the read side critical section was irqs-enabled -- see
1486          * rcu_read_unlock_special().
1487          *
1488          * Since ctx->lock nests under rq->lock we must ensure the entire read
1489          * side critical section has interrupts disabled.
1490          */
1491         local_irq_save(*flags);
1492         rcu_read_lock();
1493         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1494         if (ctx) {
1495                 /*
1496                  * If this context is a clone of another, it might
1497                  * get swapped for another underneath us by
1498                  * perf_event_task_sched_out, though the
1499                  * rcu_read_lock() protects us from any context
1500                  * getting freed.  Lock the context and check if it
1501                  * got swapped before we could get the lock, and retry
1502                  * if so.  If we locked the right context, then it
1503                  * can't get swapped on us any more.
1504                  */
1505                 raw_spin_lock(&ctx->lock);
1506                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1507                         raw_spin_unlock(&ctx->lock);
1508                         rcu_read_unlock();
1509                         local_irq_restore(*flags);
1510                         goto retry;
1511                 }
1512
1513                 if (ctx->task == TASK_TOMBSTONE ||
1514                     !refcount_inc_not_zero(&ctx->refcount)) {
1515                         raw_spin_unlock(&ctx->lock);
1516                         ctx = NULL;
1517                 } else {
1518                         WARN_ON_ONCE(ctx->task != task);
1519                 }
1520         }
1521         rcu_read_unlock();
1522         if (!ctx)
1523                 local_irq_restore(*flags);
1524         return ctx;
1525 }
1526
1527 /*
1528  * Get the context for a task and increment its pin_count so it
1529  * can't get swapped to another task.  This also increments its
1530  * reference count so that the context can't get freed.
1531  */
1532 static struct perf_event_context *
1533 perf_pin_task_context(struct task_struct *task, int ctxn)
1534 {
1535         struct perf_event_context *ctx;
1536         unsigned long flags;
1537
1538         ctx = perf_lock_task_context(task, ctxn, &flags);
1539         if (ctx) {
1540                 ++ctx->pin_count;
1541                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1542         }
1543         return ctx;
1544 }
1545
1546 static void perf_unpin_context(struct perf_event_context *ctx)
1547 {
1548         unsigned long flags;
1549
1550         raw_spin_lock_irqsave(&ctx->lock, flags);
1551         --ctx->pin_count;
1552         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1553 }
1554
1555 /*
1556  * Update the record of the current time in a context.
1557  */
1558 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1559 {
1560         u64 now = perf_clock();
1561
1562         if (adv)
1563                 ctx->time += now - ctx->timestamp;
1564         ctx->timestamp = now;
1565
1566         /*
1567          * The above: time' = time + (now - timestamp), can be re-arranged
1568          * into: time` = now + (time - timestamp), which gives a single value
1569          * offset to compute future time without locks on.
1570          *
1571          * See perf_event_time_now(), which can be used from NMI context where
1572          * it's (obviously) not possible to acquire ctx->lock in order to read
1573          * both the above values in a consistent manner.
1574          */
1575         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1576 }
1577
1578 static void update_context_time(struct perf_event_context *ctx)
1579 {
1580         __update_context_time(ctx, true);
1581 }
1582
1583 static u64 perf_event_time(struct perf_event *event)
1584 {
1585         struct perf_event_context *ctx = event->ctx;
1586
1587         if (unlikely(!ctx))
1588                 return 0;
1589
1590         if (is_cgroup_event(event))
1591                 return perf_cgroup_event_time(event);
1592
1593         return ctx->time;
1594 }
1595
1596 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1597 {
1598         struct perf_event_context *ctx = event->ctx;
1599
1600         if (unlikely(!ctx))
1601                 return 0;
1602
1603         if (is_cgroup_event(event))
1604                 return perf_cgroup_event_time_now(event, now);
1605
1606         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1607                 return ctx->time;
1608
1609         now += READ_ONCE(ctx->timeoffset);
1610         return now;
1611 }
1612
1613 static enum event_type_t get_event_type(struct perf_event *event)
1614 {
1615         struct perf_event_context *ctx = event->ctx;
1616         enum event_type_t event_type;
1617
1618         lockdep_assert_held(&ctx->lock);
1619
1620         /*
1621          * It's 'group type', really, because if our group leader is
1622          * pinned, so are we.
1623          */
1624         if (event->group_leader != event)
1625                 event = event->group_leader;
1626
1627         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1628         if (!ctx->task)
1629                 event_type |= EVENT_CPU;
1630
1631         return event_type;
1632 }
1633
1634 /*
1635  * Helper function to initialize event group nodes.
1636  */
1637 static void init_event_group(struct perf_event *event)
1638 {
1639         RB_CLEAR_NODE(&event->group_node);
1640         event->group_index = 0;
1641 }
1642
1643 /*
1644  * Extract pinned or flexible groups from the context
1645  * based on event attrs bits.
1646  */
1647 static struct perf_event_groups *
1648 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1649 {
1650         if (event->attr.pinned)
1651                 return &ctx->pinned_groups;
1652         else
1653                 return &ctx->flexible_groups;
1654 }
1655
1656 /*
1657  * Helper function to initializes perf_event_group trees.
1658  */
1659 static void perf_event_groups_init(struct perf_event_groups *groups)
1660 {
1661         groups->tree = RB_ROOT;
1662         groups->index = 0;
1663 }
1664
1665 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1666 {
1667         struct cgroup *cgroup = NULL;
1668
1669 #ifdef CONFIG_CGROUP_PERF
1670         if (event->cgrp)
1671                 cgroup = event->cgrp->css.cgroup;
1672 #endif
1673
1674         return cgroup;
1675 }
1676
1677 /*
1678  * Compare function for event groups;
1679  *
1680  * Implements complex key that first sorts by CPU and then by virtual index
1681  * which provides ordering when rotating groups for the same CPU.
1682  */
1683 static __always_inline int
1684 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1685                       const u64 left_group_index, const struct perf_event *right)
1686 {
1687         if (left_cpu < right->cpu)
1688                 return -1;
1689         if (left_cpu > right->cpu)
1690                 return 1;
1691
1692 #ifdef CONFIG_CGROUP_PERF
1693         {
1694                 const struct cgroup *right_cgroup = event_cgroup(right);
1695
1696                 if (left_cgroup != right_cgroup) {
1697                         if (!left_cgroup) {
1698                                 /*
1699                                  * Left has no cgroup but right does, no
1700                                  * cgroups come first.
1701                                  */
1702                                 return -1;
1703                         }
1704                         if (!right_cgroup) {
1705                                 /*
1706                                  * Right has no cgroup but left does, no
1707                                  * cgroups come first.
1708                                  */
1709                                 return 1;
1710                         }
1711                         /* Two dissimilar cgroups, order by id. */
1712                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1713                                 return -1;
1714
1715                         return 1;
1716                 }
1717         }
1718 #endif
1719
1720         if (left_group_index < right->group_index)
1721                 return -1;
1722         if (left_group_index > right->group_index)
1723                 return 1;
1724
1725         return 0;
1726 }
1727
1728 #define __node_2_pe(node) \
1729         rb_entry((node), struct perf_event, group_node)
1730
1731 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1732 {
1733         struct perf_event *e = __node_2_pe(a);
1734         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1735                                      __node_2_pe(b)) < 0;
1736 }
1737
1738 struct __group_key {
1739         int cpu;
1740         struct cgroup *cgroup;
1741 };
1742
1743 static inline int __group_cmp(const void *key, const struct rb_node *node)
1744 {
1745         const struct __group_key *a = key;
1746         const struct perf_event *b = __node_2_pe(node);
1747
1748         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1749         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1750 }
1751
1752 /*
1753  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1754  * key (see perf_event_groups_less). This places it last inside the CPU
1755  * subtree.
1756  */
1757 static void
1758 perf_event_groups_insert(struct perf_event_groups *groups,
1759                          struct perf_event *event)
1760 {
1761         event->group_index = ++groups->index;
1762
1763         rb_add(&event->group_node, &groups->tree, __group_less);
1764 }
1765
1766 /*
1767  * Helper function to insert event into the pinned or flexible groups.
1768  */
1769 static void
1770 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1771 {
1772         struct perf_event_groups *groups;
1773
1774         groups = get_event_groups(event, ctx);
1775         perf_event_groups_insert(groups, event);
1776 }
1777
1778 /*
1779  * Delete a group from a tree.
1780  */
1781 static void
1782 perf_event_groups_delete(struct perf_event_groups *groups,
1783                          struct perf_event *event)
1784 {
1785         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1786                      RB_EMPTY_ROOT(&groups->tree));
1787
1788         rb_erase(&event->group_node, &groups->tree);
1789         init_event_group(event);
1790 }
1791
1792 /*
1793  * Helper function to delete event from its groups.
1794  */
1795 static void
1796 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1797 {
1798         struct perf_event_groups *groups;
1799
1800         groups = get_event_groups(event, ctx);
1801         perf_event_groups_delete(groups, event);
1802 }
1803
1804 /*
1805  * Get the leftmost event in the cpu/cgroup subtree.
1806  */
1807 static struct perf_event *
1808 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1809                         struct cgroup *cgrp)
1810 {
1811         struct __group_key key = {
1812                 .cpu = cpu,
1813                 .cgroup = cgrp,
1814         };
1815         struct rb_node *node;
1816
1817         node = rb_find_first(&key, &groups->tree, __group_cmp);
1818         if (node)
1819                 return __node_2_pe(node);
1820
1821         return NULL;
1822 }
1823
1824 /*
1825  * Like rb_entry_next_safe() for the @cpu subtree.
1826  */
1827 static struct perf_event *
1828 perf_event_groups_next(struct perf_event *event)
1829 {
1830         struct __group_key key = {
1831                 .cpu = event->cpu,
1832                 .cgroup = event_cgroup(event),
1833         };
1834         struct rb_node *next;
1835
1836         next = rb_next_match(&key, &event->group_node, __group_cmp);
1837         if (next)
1838                 return __node_2_pe(next);
1839
1840         return NULL;
1841 }
1842
1843 /*
1844  * Iterate through the whole groups tree.
1845  */
1846 #define perf_event_groups_for_each(event, groups)                       \
1847         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1848                                 typeof(*event), group_node); event;     \
1849                 event = rb_entry_safe(rb_next(&event->group_node),      \
1850                                 typeof(*event), group_node))
1851
1852 /*
1853  * Add an event from the lists for its context.
1854  * Must be called with ctx->mutex and ctx->lock held.
1855  */
1856 static void
1857 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1858 {
1859         lockdep_assert_held(&ctx->lock);
1860
1861         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1862         event->attach_state |= PERF_ATTACH_CONTEXT;
1863
1864         event->tstamp = perf_event_time(event);
1865
1866         /*
1867          * If we're a stand alone event or group leader, we go to the context
1868          * list, group events are kept attached to the group so that
1869          * perf_group_detach can, at all times, locate all siblings.
1870          */
1871         if (event->group_leader == event) {
1872                 event->group_caps = event->event_caps;
1873                 add_event_to_groups(event, ctx);
1874         }
1875
1876         list_add_rcu(&event->event_entry, &ctx->event_list);
1877         ctx->nr_events++;
1878         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1879                 ctx->nr_user++;
1880         if (event->attr.inherit_stat)
1881                 ctx->nr_stat++;
1882
1883         if (event->state > PERF_EVENT_STATE_OFF)
1884                 perf_cgroup_event_enable(event, ctx);
1885
1886         ctx->generation++;
1887 }
1888
1889 /*
1890  * Initialize event state based on the perf_event_attr::disabled.
1891  */
1892 static inline void perf_event__state_init(struct perf_event *event)
1893 {
1894         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1895                                               PERF_EVENT_STATE_INACTIVE;
1896 }
1897
1898 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1899 {
1900         int entry = sizeof(u64); /* value */
1901         int size = 0;
1902         int nr = 1;
1903
1904         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1905                 size += sizeof(u64);
1906
1907         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1908                 size += sizeof(u64);
1909
1910         if (event->attr.read_format & PERF_FORMAT_ID)
1911                 entry += sizeof(u64);
1912
1913         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1914                 nr += nr_siblings;
1915                 size += sizeof(u64);
1916         }
1917
1918         size += entry * nr;
1919         event->read_size = size;
1920 }
1921
1922 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1923 {
1924         struct perf_sample_data *data;
1925         u16 size = 0;
1926
1927         if (sample_type & PERF_SAMPLE_IP)
1928                 size += sizeof(data->ip);
1929
1930         if (sample_type & PERF_SAMPLE_ADDR)
1931                 size += sizeof(data->addr);
1932
1933         if (sample_type & PERF_SAMPLE_PERIOD)
1934                 size += sizeof(data->period);
1935
1936         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1937                 size += sizeof(data->weight.full);
1938
1939         if (sample_type & PERF_SAMPLE_READ)
1940                 size += event->read_size;
1941
1942         if (sample_type & PERF_SAMPLE_DATA_SRC)
1943                 size += sizeof(data->data_src.val);
1944
1945         if (sample_type & PERF_SAMPLE_TRANSACTION)
1946                 size += sizeof(data->txn);
1947
1948         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1949                 size += sizeof(data->phys_addr);
1950
1951         if (sample_type & PERF_SAMPLE_CGROUP)
1952                 size += sizeof(data->cgroup);
1953
1954         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1955                 size += sizeof(data->data_page_size);
1956
1957         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1958                 size += sizeof(data->code_page_size);
1959
1960         event->header_size = size;
1961 }
1962
1963 /*
1964  * Called at perf_event creation and when events are attached/detached from a
1965  * group.
1966  */
1967 static void perf_event__header_size(struct perf_event *event)
1968 {
1969         __perf_event_read_size(event,
1970                                event->group_leader->nr_siblings);
1971         __perf_event_header_size(event, event->attr.sample_type);
1972 }
1973
1974 static void perf_event__id_header_size(struct perf_event *event)
1975 {
1976         struct perf_sample_data *data;
1977         u64 sample_type = event->attr.sample_type;
1978         u16 size = 0;
1979
1980         if (sample_type & PERF_SAMPLE_TID)
1981                 size += sizeof(data->tid_entry);
1982
1983         if (sample_type & PERF_SAMPLE_TIME)
1984                 size += sizeof(data->time);
1985
1986         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1987                 size += sizeof(data->id);
1988
1989         if (sample_type & PERF_SAMPLE_ID)
1990                 size += sizeof(data->id);
1991
1992         if (sample_type & PERF_SAMPLE_STREAM_ID)
1993                 size += sizeof(data->stream_id);
1994
1995         if (sample_type & PERF_SAMPLE_CPU)
1996                 size += sizeof(data->cpu_entry);
1997
1998         event->id_header_size = size;
1999 }
2000
2001 static bool perf_event_validate_size(struct perf_event *event)
2002 {
2003         /*
2004          * The values computed here will be over-written when we actually
2005          * attach the event.
2006          */
2007         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
2008         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
2009         perf_event__id_header_size(event);
2010
2011         /*
2012          * Sum the lot; should not exceed the 64k limit we have on records.
2013          * Conservative limit to allow for callchains and other variable fields.
2014          */
2015         if (event->read_size + event->header_size +
2016             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
2017                 return false;
2018
2019         return true;
2020 }
2021
2022 static void perf_group_attach(struct perf_event *event)
2023 {
2024         struct perf_event *group_leader = event->group_leader, *pos;
2025
2026         lockdep_assert_held(&event->ctx->lock);
2027
2028         /*
2029          * We can have double attach due to group movement in perf_event_open.
2030          */
2031         if (event->attach_state & PERF_ATTACH_GROUP)
2032                 return;
2033
2034         event->attach_state |= PERF_ATTACH_GROUP;
2035
2036         if (group_leader == event)
2037                 return;
2038
2039         WARN_ON_ONCE(group_leader->ctx != event->ctx);
2040
2041         group_leader->group_caps &= event->event_caps;
2042
2043         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
2044         group_leader->nr_siblings++;
2045
2046         perf_event__header_size(group_leader);
2047
2048         for_each_sibling_event(pos, group_leader)
2049                 perf_event__header_size(pos);
2050 }
2051
2052 /*
2053  * Remove an event from the lists for its context.
2054  * Must be called with ctx->mutex and ctx->lock held.
2055  */
2056 static void
2057 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2058 {
2059         WARN_ON_ONCE(event->ctx != ctx);
2060         lockdep_assert_held(&ctx->lock);
2061
2062         /*
2063          * We can have double detach due to exit/hot-unplug + close.
2064          */
2065         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2066                 return;
2067
2068         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2069
2070         ctx->nr_events--;
2071         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2072                 ctx->nr_user--;
2073         if (event->attr.inherit_stat)
2074                 ctx->nr_stat--;
2075
2076         list_del_rcu(&event->event_entry);
2077
2078         if (event->group_leader == event)
2079                 del_event_from_groups(event, ctx);
2080
2081         /*
2082          * If event was in error state, then keep it
2083          * that way, otherwise bogus counts will be
2084          * returned on read(). The only way to get out
2085          * of error state is by explicit re-enabling
2086          * of the event
2087          */
2088         if (event->state > PERF_EVENT_STATE_OFF) {
2089                 perf_cgroup_event_disable(event, ctx);
2090                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2091         }
2092
2093         ctx->generation++;
2094 }
2095
2096 static int
2097 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2098 {
2099         if (!has_aux(aux_event))
2100                 return 0;
2101
2102         if (!event->pmu->aux_output_match)
2103                 return 0;
2104
2105         return event->pmu->aux_output_match(aux_event);
2106 }
2107
2108 static void put_event(struct perf_event *event);
2109 static void event_sched_out(struct perf_event *event,
2110                             struct perf_cpu_context *cpuctx,
2111                             struct perf_event_context *ctx);
2112
2113 static void perf_put_aux_event(struct perf_event *event)
2114 {
2115         struct perf_event_context *ctx = event->ctx;
2116         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2117         struct perf_event *iter;
2118
2119         /*
2120          * If event uses aux_event tear down the link
2121          */
2122         if (event->aux_event) {
2123                 iter = event->aux_event;
2124                 event->aux_event = NULL;
2125                 put_event(iter);
2126                 return;
2127         }
2128
2129         /*
2130          * If the event is an aux_event, tear down all links to
2131          * it from other events.
2132          */
2133         for_each_sibling_event(iter, event->group_leader) {
2134                 if (iter->aux_event != event)
2135                         continue;
2136
2137                 iter->aux_event = NULL;
2138                 put_event(event);
2139
2140                 /*
2141                  * If it's ACTIVE, schedule it out and put it into ERROR
2142                  * state so that we don't try to schedule it again. Note
2143                  * that perf_event_enable() will clear the ERROR status.
2144                  */
2145                 event_sched_out(iter, cpuctx, ctx);
2146                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2147         }
2148 }
2149
2150 static bool perf_need_aux_event(struct perf_event *event)
2151 {
2152         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2153 }
2154
2155 static int perf_get_aux_event(struct perf_event *event,
2156                               struct perf_event *group_leader)
2157 {
2158         /*
2159          * Our group leader must be an aux event if we want to be
2160          * an aux_output. This way, the aux event will precede its
2161          * aux_output events in the group, and therefore will always
2162          * schedule first.
2163          */
2164         if (!group_leader)
2165                 return 0;
2166
2167         /*
2168          * aux_output and aux_sample_size are mutually exclusive.
2169          */
2170         if (event->attr.aux_output && event->attr.aux_sample_size)
2171                 return 0;
2172
2173         if (event->attr.aux_output &&
2174             !perf_aux_output_match(event, group_leader))
2175                 return 0;
2176
2177         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2178                 return 0;
2179
2180         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2181                 return 0;
2182
2183         /*
2184          * Link aux_outputs to their aux event; this is undone in
2185          * perf_group_detach() by perf_put_aux_event(). When the
2186          * group in torn down, the aux_output events loose their
2187          * link to the aux_event and can't schedule any more.
2188          */
2189         event->aux_event = group_leader;
2190
2191         return 1;
2192 }
2193
2194 static inline struct list_head *get_event_list(struct perf_event *event)
2195 {
2196         struct perf_event_context *ctx = event->ctx;
2197         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2198 }
2199
2200 /*
2201  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2202  * cannot exist on their own, schedule them out and move them into the ERROR
2203  * state. Also see _perf_event_enable(), it will not be able to recover
2204  * this ERROR state.
2205  */
2206 static inline void perf_remove_sibling_event(struct perf_event *event)
2207 {
2208         struct perf_event_context *ctx = event->ctx;
2209         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2210
2211         event_sched_out(event, cpuctx, ctx);
2212         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2213 }
2214
2215 static void perf_group_detach(struct perf_event *event)
2216 {
2217         struct perf_event *leader = event->group_leader;
2218         struct perf_event *sibling, *tmp;
2219         struct perf_event_context *ctx = event->ctx;
2220
2221         lockdep_assert_held(&ctx->lock);
2222
2223         /*
2224          * We can have double detach due to exit/hot-unplug + close.
2225          */
2226         if (!(event->attach_state & PERF_ATTACH_GROUP))
2227                 return;
2228
2229         event->attach_state &= ~PERF_ATTACH_GROUP;
2230
2231         perf_put_aux_event(event);
2232
2233         /*
2234          * If this is a sibling, remove it from its group.
2235          */
2236         if (leader != event) {
2237                 list_del_init(&event->sibling_list);
2238                 event->group_leader->nr_siblings--;
2239                 goto out;
2240         }
2241
2242         /*
2243          * If this was a group event with sibling events then
2244          * upgrade the siblings to singleton events by adding them
2245          * to whatever list we are on.
2246          */
2247         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2248
2249                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2250                         perf_remove_sibling_event(sibling);
2251
2252                 sibling->group_leader = sibling;
2253                 list_del_init(&sibling->sibling_list);
2254
2255                 /* Inherit group flags from the previous leader */
2256                 sibling->group_caps = event->group_caps;
2257
2258                 if (!RB_EMPTY_NODE(&event->group_node)) {
2259                         add_event_to_groups(sibling, event->ctx);
2260
2261                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2262                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2263                 }
2264
2265                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2266         }
2267
2268 out:
2269         for_each_sibling_event(tmp, leader)
2270                 perf_event__header_size(tmp);
2271
2272         perf_event__header_size(leader);
2273 }
2274
2275 static void sync_child_event(struct perf_event *child_event);
2276
2277 static void perf_child_detach(struct perf_event *event)
2278 {
2279         struct perf_event *parent_event = event->parent;
2280
2281         if (!(event->attach_state & PERF_ATTACH_CHILD))
2282                 return;
2283
2284         event->attach_state &= ~PERF_ATTACH_CHILD;
2285
2286         if (WARN_ON_ONCE(!parent_event))
2287                 return;
2288
2289         lockdep_assert_held(&parent_event->child_mutex);
2290
2291         sync_child_event(event);
2292         list_del_init(&event->child_list);
2293 }
2294
2295 static bool is_orphaned_event(struct perf_event *event)
2296 {
2297         return event->state == PERF_EVENT_STATE_DEAD;
2298 }
2299
2300 static inline int __pmu_filter_match(struct perf_event *event)
2301 {
2302         struct pmu *pmu = event->pmu;
2303         return pmu->filter_match ? pmu->filter_match(event) : 1;
2304 }
2305
2306 /*
2307  * Check whether we should attempt to schedule an event group based on
2308  * PMU-specific filtering. An event group can consist of HW and SW events,
2309  * potentially with a SW leader, so we must check all the filters, to
2310  * determine whether a group is schedulable:
2311  */
2312 static inline int pmu_filter_match(struct perf_event *event)
2313 {
2314         struct perf_event *sibling;
2315
2316         if (!__pmu_filter_match(event))
2317                 return 0;
2318
2319         for_each_sibling_event(sibling, event) {
2320                 if (!__pmu_filter_match(sibling))
2321                         return 0;
2322         }
2323
2324         return 1;
2325 }
2326
2327 static inline int
2328 event_filter_match(struct perf_event *event)
2329 {
2330         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2331                perf_cgroup_match(event) && pmu_filter_match(event);
2332 }
2333
2334 static void
2335 event_sched_out(struct perf_event *event,
2336                   struct perf_cpu_context *cpuctx,
2337                   struct perf_event_context *ctx)
2338 {
2339         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2340
2341         WARN_ON_ONCE(event->ctx != ctx);
2342         lockdep_assert_held(&ctx->lock);
2343
2344         if (event->state != PERF_EVENT_STATE_ACTIVE)
2345                 return;
2346
2347         /*
2348          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2349          * we can schedule events _OUT_ individually through things like
2350          * __perf_remove_from_context().
2351          */
2352         list_del_init(&event->active_list);
2353
2354         perf_pmu_disable(event->pmu);
2355
2356         event->pmu->del(event, 0);
2357         event->oncpu = -1;
2358
2359         if (READ_ONCE(event->pending_disable) >= 0) {
2360                 WRITE_ONCE(event->pending_disable, -1);
2361                 perf_cgroup_event_disable(event, ctx);
2362                 state = PERF_EVENT_STATE_OFF;
2363         }
2364         perf_event_set_state(event, state);
2365
2366         if (!is_software_event(event))
2367                 cpuctx->active_oncpu--;
2368         if (!--ctx->nr_active)
2369                 perf_event_ctx_deactivate(ctx);
2370         if (event->attr.freq && event->attr.sample_freq)
2371                 ctx->nr_freq--;
2372         if (event->attr.exclusive || !cpuctx->active_oncpu)
2373                 cpuctx->exclusive = 0;
2374
2375         perf_pmu_enable(event->pmu);
2376 }
2377
2378 static void
2379 group_sched_out(struct perf_event *group_event,
2380                 struct perf_cpu_context *cpuctx,
2381                 struct perf_event_context *ctx)
2382 {
2383         struct perf_event *event;
2384
2385         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2386                 return;
2387
2388         perf_pmu_disable(ctx->pmu);
2389
2390         event_sched_out(group_event, cpuctx, ctx);
2391
2392         /*
2393          * Schedule out siblings (if any):
2394          */
2395         for_each_sibling_event(event, group_event)
2396                 event_sched_out(event, cpuctx, ctx);
2397
2398         perf_pmu_enable(ctx->pmu);
2399 }
2400
2401 #define DETACH_GROUP    0x01UL
2402 #define DETACH_CHILD    0x02UL
2403
2404 /*
2405  * Cross CPU call to remove a performance event
2406  *
2407  * We disable the event on the hardware level first. After that we
2408  * remove it from the context list.
2409  */
2410 static void
2411 __perf_remove_from_context(struct perf_event *event,
2412                            struct perf_cpu_context *cpuctx,
2413                            struct perf_event_context *ctx,
2414                            void *info)
2415 {
2416         unsigned long flags = (unsigned long)info;
2417
2418         if (ctx->is_active & EVENT_TIME) {
2419                 update_context_time(ctx);
2420                 update_cgrp_time_from_cpuctx(cpuctx, false);
2421         }
2422
2423         event_sched_out(event, cpuctx, ctx);
2424         if (flags & DETACH_GROUP)
2425                 perf_group_detach(event);
2426         if (flags & DETACH_CHILD)
2427                 perf_child_detach(event);
2428         list_del_event(event, ctx);
2429
2430         if (!ctx->nr_events && ctx->is_active) {
2431                 if (ctx == &cpuctx->ctx)
2432                         update_cgrp_time_from_cpuctx(cpuctx, true);
2433
2434                 ctx->is_active = 0;
2435                 ctx->rotate_necessary = 0;
2436                 if (ctx->task) {
2437                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2438                         cpuctx->task_ctx = NULL;
2439                 }
2440         }
2441 }
2442
2443 /*
2444  * Remove the event from a task's (or a CPU's) list of events.
2445  *
2446  * If event->ctx is a cloned context, callers must make sure that
2447  * every task struct that event->ctx->task could possibly point to
2448  * remains valid.  This is OK when called from perf_release since
2449  * that only calls us on the top-level context, which can't be a clone.
2450  * When called from perf_event_exit_task, it's OK because the
2451  * context has been detached from its task.
2452  */
2453 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2454 {
2455         struct perf_event_context *ctx = event->ctx;
2456
2457         lockdep_assert_held(&ctx->mutex);
2458
2459         /*
2460          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2461          * to work in the face of TASK_TOMBSTONE, unlike every other
2462          * event_function_call() user.
2463          */
2464         raw_spin_lock_irq(&ctx->lock);
2465         /*
2466          * Cgroup events are per-cpu events, and must IPI because of
2467          * cgrp_cpuctx_list.
2468          */
2469         if (!ctx->is_active && !is_cgroup_event(event)) {
2470                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2471                                            ctx, (void *)flags);
2472                 raw_spin_unlock_irq(&ctx->lock);
2473                 return;
2474         }
2475         raw_spin_unlock_irq(&ctx->lock);
2476
2477         event_function_call(event, __perf_remove_from_context, (void *)flags);
2478 }
2479
2480 /*
2481  * Cross CPU call to disable a performance event
2482  */
2483 static void __perf_event_disable(struct perf_event *event,
2484                                  struct perf_cpu_context *cpuctx,
2485                                  struct perf_event_context *ctx,
2486                                  void *info)
2487 {
2488         if (event->state < PERF_EVENT_STATE_INACTIVE)
2489                 return;
2490
2491         if (ctx->is_active & EVENT_TIME) {
2492                 update_context_time(ctx);
2493                 update_cgrp_time_from_event(event);
2494         }
2495
2496         if (event == event->group_leader)
2497                 group_sched_out(event, cpuctx, ctx);
2498         else
2499                 event_sched_out(event, cpuctx, ctx);
2500
2501         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2502         perf_cgroup_event_disable(event, ctx);
2503 }
2504
2505 /*
2506  * Disable an event.
2507  *
2508  * If event->ctx is a cloned context, callers must make sure that
2509  * every task struct that event->ctx->task could possibly point to
2510  * remains valid.  This condition is satisfied when called through
2511  * perf_event_for_each_child or perf_event_for_each because they
2512  * hold the top-level event's child_mutex, so any descendant that
2513  * goes to exit will block in perf_event_exit_event().
2514  *
2515  * When called from perf_pending_event it's OK because event->ctx
2516  * is the current context on this CPU and preemption is disabled,
2517  * hence we can't get into perf_event_task_sched_out for this context.
2518  */
2519 static void _perf_event_disable(struct perf_event *event)
2520 {
2521         struct perf_event_context *ctx = event->ctx;
2522
2523         raw_spin_lock_irq(&ctx->lock);
2524         if (event->state <= PERF_EVENT_STATE_OFF) {
2525                 raw_spin_unlock_irq(&ctx->lock);
2526                 return;
2527         }
2528         raw_spin_unlock_irq(&ctx->lock);
2529
2530         event_function_call(event, __perf_event_disable, NULL);
2531 }
2532
2533 void perf_event_disable_local(struct perf_event *event)
2534 {
2535         event_function_local(event, __perf_event_disable, NULL);
2536 }
2537
2538 /*
2539  * Strictly speaking kernel users cannot create groups and therefore this
2540  * interface does not need the perf_event_ctx_lock() magic.
2541  */
2542 void perf_event_disable(struct perf_event *event)
2543 {
2544         struct perf_event_context *ctx;
2545
2546         ctx = perf_event_ctx_lock(event);
2547         _perf_event_disable(event);
2548         perf_event_ctx_unlock(event, ctx);
2549 }
2550 EXPORT_SYMBOL_GPL(perf_event_disable);
2551
2552 void perf_event_disable_inatomic(struct perf_event *event)
2553 {
2554         WRITE_ONCE(event->pending_disable, smp_processor_id());
2555         /* can fail, see perf_pending_event_disable() */
2556         irq_work_queue(&event->pending);
2557 }
2558
2559 #define MAX_INTERRUPTS (~0ULL)
2560
2561 static void perf_log_throttle(struct perf_event *event, int enable);
2562 static void perf_log_itrace_start(struct perf_event *event);
2563
2564 static int
2565 event_sched_in(struct perf_event *event,
2566                  struct perf_cpu_context *cpuctx,
2567                  struct perf_event_context *ctx)
2568 {
2569         int ret = 0;
2570
2571         WARN_ON_ONCE(event->ctx != ctx);
2572
2573         lockdep_assert_held(&ctx->lock);
2574
2575         if (event->state <= PERF_EVENT_STATE_OFF)
2576                 return 0;
2577
2578         WRITE_ONCE(event->oncpu, smp_processor_id());
2579         /*
2580          * Order event::oncpu write to happen before the ACTIVE state is
2581          * visible. This allows perf_event_{stop,read}() to observe the correct
2582          * ->oncpu if it sees ACTIVE.
2583          */
2584         smp_wmb();
2585         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2586
2587         /*
2588          * Unthrottle events, since we scheduled we might have missed several
2589          * ticks already, also for a heavily scheduling task there is little
2590          * guarantee it'll get a tick in a timely manner.
2591          */
2592         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2593                 perf_log_throttle(event, 1);
2594                 event->hw.interrupts = 0;
2595         }
2596
2597         perf_pmu_disable(event->pmu);
2598
2599         perf_log_itrace_start(event);
2600
2601         if (event->pmu->add(event, PERF_EF_START)) {
2602                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2603                 event->oncpu = -1;
2604                 ret = -EAGAIN;
2605                 goto out;
2606         }
2607
2608         if (!is_software_event(event))
2609                 cpuctx->active_oncpu++;
2610         if (!ctx->nr_active++)
2611                 perf_event_ctx_activate(ctx);
2612         if (event->attr.freq && event->attr.sample_freq)
2613                 ctx->nr_freq++;
2614
2615         if (event->attr.exclusive)
2616                 cpuctx->exclusive = 1;
2617
2618 out:
2619         perf_pmu_enable(event->pmu);
2620
2621         return ret;
2622 }
2623
2624 static int
2625 group_sched_in(struct perf_event *group_event,
2626                struct perf_cpu_context *cpuctx,
2627                struct perf_event_context *ctx)
2628 {
2629         struct perf_event *event, *partial_group = NULL;
2630         struct pmu *pmu = ctx->pmu;
2631
2632         if (group_event->state == PERF_EVENT_STATE_OFF)
2633                 return 0;
2634
2635         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2636
2637         if (event_sched_in(group_event, cpuctx, ctx))
2638                 goto error;
2639
2640         /*
2641          * Schedule in siblings as one group (if any):
2642          */
2643         for_each_sibling_event(event, group_event) {
2644                 if (event_sched_in(event, cpuctx, ctx)) {
2645                         partial_group = event;
2646                         goto group_error;
2647                 }
2648         }
2649
2650         if (!pmu->commit_txn(pmu))
2651                 return 0;
2652
2653 group_error:
2654         /*
2655          * Groups can be scheduled in as one unit only, so undo any
2656          * partial group before returning:
2657          * The events up to the failed event are scheduled out normally.
2658          */
2659         for_each_sibling_event(event, group_event) {
2660                 if (event == partial_group)
2661                         break;
2662
2663                 event_sched_out(event, cpuctx, ctx);
2664         }
2665         event_sched_out(group_event, cpuctx, ctx);
2666
2667 error:
2668         pmu->cancel_txn(pmu);
2669         return -EAGAIN;
2670 }
2671
2672 /*
2673  * Work out whether we can put this event group on the CPU now.
2674  */
2675 static int group_can_go_on(struct perf_event *event,
2676                            struct perf_cpu_context *cpuctx,
2677                            int can_add_hw)
2678 {
2679         /*
2680          * Groups consisting entirely of software events can always go on.
2681          */
2682         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2683                 return 1;
2684         /*
2685          * If an exclusive group is already on, no other hardware
2686          * events can go on.
2687          */
2688         if (cpuctx->exclusive)
2689                 return 0;
2690         /*
2691          * If this group is exclusive and there are already
2692          * events on the CPU, it can't go on.
2693          */
2694         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2695                 return 0;
2696         /*
2697          * Otherwise, try to add it if all previous groups were able
2698          * to go on.
2699          */
2700         return can_add_hw;
2701 }
2702
2703 static void add_event_to_ctx(struct perf_event *event,
2704                                struct perf_event_context *ctx)
2705 {
2706         list_add_event(event, ctx);
2707         perf_group_attach(event);
2708 }
2709
2710 static void ctx_sched_out(struct perf_event_context *ctx,
2711                           struct perf_cpu_context *cpuctx,
2712                           enum event_type_t event_type);
2713 static void
2714 ctx_sched_in(struct perf_event_context *ctx,
2715              struct perf_cpu_context *cpuctx,
2716              enum event_type_t event_type,
2717              struct task_struct *task);
2718
2719 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2720                                struct perf_event_context *ctx,
2721                                enum event_type_t event_type)
2722 {
2723         if (!cpuctx->task_ctx)
2724                 return;
2725
2726         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2727                 return;
2728
2729         ctx_sched_out(ctx, cpuctx, event_type);
2730 }
2731
2732 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2733                                 struct perf_event_context *ctx,
2734                                 struct task_struct *task)
2735 {
2736         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2737         if (ctx)
2738                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2739         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2740         if (ctx)
2741                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2742 }
2743
2744 /*
2745  * We want to maintain the following priority of scheduling:
2746  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2747  *  - task pinned (EVENT_PINNED)
2748  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2749  *  - task flexible (EVENT_FLEXIBLE).
2750  *
2751  * In order to avoid unscheduling and scheduling back in everything every
2752  * time an event is added, only do it for the groups of equal priority and
2753  * below.
2754  *
2755  * This can be called after a batch operation on task events, in which case
2756  * event_type is a bit mask of the types of events involved. For CPU events,
2757  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2758  */
2759 static void ctx_resched(struct perf_cpu_context *cpuctx,
2760                         struct perf_event_context *task_ctx,
2761                         enum event_type_t event_type)
2762 {
2763         enum event_type_t ctx_event_type;
2764         bool cpu_event = !!(event_type & EVENT_CPU);
2765
2766         /*
2767          * If pinned groups are involved, flexible groups also need to be
2768          * scheduled out.
2769          */
2770         if (event_type & EVENT_PINNED)
2771                 event_type |= EVENT_FLEXIBLE;
2772
2773         ctx_event_type = event_type & EVENT_ALL;
2774
2775         perf_pmu_disable(cpuctx->ctx.pmu);
2776         if (task_ctx)
2777                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2778
2779         /*
2780          * Decide which cpu ctx groups to schedule out based on the types
2781          * of events that caused rescheduling:
2782          *  - EVENT_CPU: schedule out corresponding groups;
2783          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2784          *  - otherwise, do nothing more.
2785          */
2786         if (cpu_event)
2787                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2788         else if (ctx_event_type & EVENT_PINNED)
2789                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2790
2791         perf_event_sched_in(cpuctx, task_ctx, current);
2792         perf_pmu_enable(cpuctx->ctx.pmu);
2793 }
2794
2795 void perf_pmu_resched(struct pmu *pmu)
2796 {
2797         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2798         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2799
2800         perf_ctx_lock(cpuctx, task_ctx);
2801         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2802         perf_ctx_unlock(cpuctx, task_ctx);
2803 }
2804
2805 /*
2806  * Cross CPU call to install and enable a performance event
2807  *
2808  * Very similar to remote_function() + event_function() but cannot assume that
2809  * things like ctx->is_active and cpuctx->task_ctx are set.
2810  */
2811 static int  __perf_install_in_context(void *info)
2812 {
2813         struct perf_event *event = info;
2814         struct perf_event_context *ctx = event->ctx;
2815         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2816         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2817         bool reprogram = true;
2818         int ret = 0;
2819
2820         raw_spin_lock(&cpuctx->ctx.lock);
2821         if (ctx->task) {
2822                 raw_spin_lock(&ctx->lock);
2823                 task_ctx = ctx;
2824
2825                 reprogram = (ctx->task == current);
2826
2827                 /*
2828                  * If the task is running, it must be running on this CPU,
2829                  * otherwise we cannot reprogram things.
2830                  *
2831                  * If its not running, we don't care, ctx->lock will
2832                  * serialize against it becoming runnable.
2833                  */
2834                 if (task_curr(ctx->task) && !reprogram) {
2835                         ret = -ESRCH;
2836                         goto unlock;
2837                 }
2838
2839                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2840         } else if (task_ctx) {
2841                 raw_spin_lock(&task_ctx->lock);
2842         }
2843
2844 #ifdef CONFIG_CGROUP_PERF
2845         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2846                 /*
2847                  * If the current cgroup doesn't match the event's
2848                  * cgroup, we should not try to schedule it.
2849                  */
2850                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2851                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2852                                         event->cgrp->css.cgroup);
2853         }
2854 #endif
2855
2856         if (reprogram) {
2857                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2858                 add_event_to_ctx(event, ctx);
2859                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2860         } else {
2861                 add_event_to_ctx(event, ctx);
2862         }
2863
2864 unlock:
2865         perf_ctx_unlock(cpuctx, task_ctx);
2866
2867         return ret;
2868 }
2869
2870 static bool exclusive_event_installable(struct perf_event *event,
2871                                         struct perf_event_context *ctx);
2872
2873 /*
2874  * Attach a performance event to a context.
2875  *
2876  * Very similar to event_function_call, see comment there.
2877  */
2878 static void
2879 perf_install_in_context(struct perf_event_context *ctx,
2880                         struct perf_event *event,
2881                         int cpu)
2882 {
2883         struct task_struct *task = READ_ONCE(ctx->task);
2884
2885         lockdep_assert_held(&ctx->mutex);
2886
2887         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2888
2889         if (event->cpu != -1)
2890                 event->cpu = cpu;
2891
2892         /*
2893          * Ensures that if we can observe event->ctx, both the event and ctx
2894          * will be 'complete'. See perf_iterate_sb_cpu().
2895          */
2896         smp_store_release(&event->ctx, ctx);
2897
2898         /*
2899          * perf_event_attr::disabled events will not run and can be initialized
2900          * without IPI. Except when this is the first event for the context, in
2901          * that case we need the magic of the IPI to set ctx->is_active.
2902          * Similarly, cgroup events for the context also needs the IPI to
2903          * manipulate the cgrp_cpuctx_list.
2904          *
2905          * The IOC_ENABLE that is sure to follow the creation of a disabled
2906          * event will issue the IPI and reprogram the hardware.
2907          */
2908         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2909             ctx->nr_events && !is_cgroup_event(event)) {
2910                 raw_spin_lock_irq(&ctx->lock);
2911                 if (ctx->task == TASK_TOMBSTONE) {
2912                         raw_spin_unlock_irq(&ctx->lock);
2913                         return;
2914                 }
2915                 add_event_to_ctx(event, ctx);
2916                 raw_spin_unlock_irq(&ctx->lock);
2917                 return;
2918         }
2919
2920         if (!task) {
2921                 cpu_function_call(cpu, __perf_install_in_context, event);
2922                 return;
2923         }
2924
2925         /*
2926          * Should not happen, we validate the ctx is still alive before calling.
2927          */
2928         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2929                 return;
2930
2931         /*
2932          * Installing events is tricky because we cannot rely on ctx->is_active
2933          * to be set in case this is the nr_events 0 -> 1 transition.
2934          *
2935          * Instead we use task_curr(), which tells us if the task is running.
2936          * However, since we use task_curr() outside of rq::lock, we can race
2937          * against the actual state. This means the result can be wrong.
2938          *
2939          * If we get a false positive, we retry, this is harmless.
2940          *
2941          * If we get a false negative, things are complicated. If we are after
2942          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2943          * value must be correct. If we're before, it doesn't matter since
2944          * perf_event_context_sched_in() will program the counter.
2945          *
2946          * However, this hinges on the remote context switch having observed
2947          * our task->perf_event_ctxp[] store, such that it will in fact take
2948          * ctx::lock in perf_event_context_sched_in().
2949          *
2950          * We do this by task_function_call(), if the IPI fails to hit the task
2951          * we know any future context switch of task must see the
2952          * perf_event_ctpx[] store.
2953          */
2954
2955         /*
2956          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2957          * task_cpu() load, such that if the IPI then does not find the task
2958          * running, a future context switch of that task must observe the
2959          * store.
2960          */
2961         smp_mb();
2962 again:
2963         if (!task_function_call(task, __perf_install_in_context, event))
2964                 return;
2965
2966         raw_spin_lock_irq(&ctx->lock);
2967         task = ctx->task;
2968         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2969                 /*
2970                  * Cannot happen because we already checked above (which also
2971                  * cannot happen), and we hold ctx->mutex, which serializes us
2972                  * against perf_event_exit_task_context().
2973                  */
2974                 raw_spin_unlock_irq(&ctx->lock);
2975                 return;
2976         }
2977         /*
2978          * If the task is not running, ctx->lock will avoid it becoming so,
2979          * thus we can safely install the event.
2980          */
2981         if (task_curr(task)) {
2982                 raw_spin_unlock_irq(&ctx->lock);
2983                 goto again;
2984         }
2985         add_event_to_ctx(event, ctx);
2986         raw_spin_unlock_irq(&ctx->lock);
2987 }
2988
2989 /*
2990  * Cross CPU call to enable a performance event
2991  */
2992 static void __perf_event_enable(struct perf_event *event,
2993                                 struct perf_cpu_context *cpuctx,
2994                                 struct perf_event_context *ctx,
2995                                 void *info)
2996 {
2997         struct perf_event *leader = event->group_leader;
2998         struct perf_event_context *task_ctx;
2999
3000         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3001             event->state <= PERF_EVENT_STATE_ERROR)
3002                 return;
3003
3004         if (ctx->is_active)
3005                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3006
3007         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3008         perf_cgroup_event_enable(event, ctx);
3009
3010         if (!ctx->is_active)
3011                 return;
3012
3013         if (!event_filter_match(event)) {
3014                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3015                 return;
3016         }
3017
3018         /*
3019          * If the event is in a group and isn't the group leader,
3020          * then don't put it on unless the group is on.
3021          */
3022         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
3023                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3024                 return;
3025         }
3026
3027         task_ctx = cpuctx->task_ctx;
3028         if (ctx->task)
3029                 WARN_ON_ONCE(task_ctx != ctx);
3030
3031         ctx_resched(cpuctx, task_ctx, get_event_type(event));
3032 }
3033
3034 /*
3035  * Enable an event.
3036  *
3037  * If event->ctx is a cloned context, callers must make sure that
3038  * every task struct that event->ctx->task could possibly point to
3039  * remains valid.  This condition is satisfied when called through
3040  * perf_event_for_each_child or perf_event_for_each as described
3041  * for perf_event_disable.
3042  */
3043 static void _perf_event_enable(struct perf_event *event)
3044 {
3045         struct perf_event_context *ctx = event->ctx;
3046
3047         raw_spin_lock_irq(&ctx->lock);
3048         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3049             event->state <  PERF_EVENT_STATE_ERROR) {
3050 out:
3051                 raw_spin_unlock_irq(&ctx->lock);
3052                 return;
3053         }
3054
3055         /*
3056          * If the event is in error state, clear that first.
3057          *
3058          * That way, if we see the event in error state below, we know that it
3059          * has gone back into error state, as distinct from the task having
3060          * been scheduled away before the cross-call arrived.
3061          */
3062         if (event->state == PERF_EVENT_STATE_ERROR) {
3063                 /*
3064                  * Detached SIBLING events cannot leave ERROR state.
3065                  */
3066                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3067                     event->group_leader == event)
3068                         goto out;
3069
3070                 event->state = PERF_EVENT_STATE_OFF;
3071         }
3072         raw_spin_unlock_irq(&ctx->lock);
3073
3074         event_function_call(event, __perf_event_enable, NULL);
3075 }
3076
3077 /*
3078  * See perf_event_disable();
3079  */
3080 void perf_event_enable(struct perf_event *event)
3081 {
3082         struct perf_event_context *ctx;
3083
3084         ctx = perf_event_ctx_lock(event);
3085         _perf_event_enable(event);
3086         perf_event_ctx_unlock(event, ctx);
3087 }
3088 EXPORT_SYMBOL_GPL(perf_event_enable);
3089
3090 struct stop_event_data {
3091         struct perf_event       *event;
3092         unsigned int            restart;
3093 };
3094
3095 static int __perf_event_stop(void *info)
3096 {
3097         struct stop_event_data *sd = info;
3098         struct perf_event *event = sd->event;
3099
3100         /* if it's already INACTIVE, do nothing */
3101         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3102                 return 0;
3103
3104         /* matches smp_wmb() in event_sched_in() */
3105         smp_rmb();
3106
3107         /*
3108          * There is a window with interrupts enabled before we get here,
3109          * so we need to check again lest we try to stop another CPU's event.
3110          */
3111         if (READ_ONCE(event->oncpu) != smp_processor_id())
3112                 return -EAGAIN;
3113
3114         event->pmu->stop(event, PERF_EF_UPDATE);
3115
3116         /*
3117          * May race with the actual stop (through perf_pmu_output_stop()),
3118          * but it is only used for events with AUX ring buffer, and such
3119          * events will refuse to restart because of rb::aux_mmap_count==0,
3120          * see comments in perf_aux_output_begin().
3121          *
3122          * Since this is happening on an event-local CPU, no trace is lost
3123          * while restarting.
3124          */
3125         if (sd->restart)
3126                 event->pmu->start(event, 0);
3127
3128         return 0;
3129 }
3130
3131 static int perf_event_stop(struct perf_event *event, int restart)
3132 {
3133         struct stop_event_data sd = {
3134                 .event          = event,
3135                 .restart        = restart,
3136         };
3137         int ret = 0;
3138
3139         do {
3140                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3141                         return 0;
3142
3143                 /* matches smp_wmb() in event_sched_in() */
3144                 smp_rmb();
3145
3146                 /*
3147                  * We only want to restart ACTIVE events, so if the event goes
3148                  * inactive here (event->oncpu==-1), there's nothing more to do;
3149                  * fall through with ret==-ENXIO.
3150                  */
3151                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3152                                         __perf_event_stop, &sd);
3153         } while (ret == -EAGAIN);
3154
3155         return ret;
3156 }
3157
3158 /*
3159  * In order to contain the amount of racy and tricky in the address filter
3160  * configuration management, it is a two part process:
3161  *
3162  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3163  *      we update the addresses of corresponding vmas in
3164  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3165  * (p2) when an event is scheduled in (pmu::add), it calls
3166  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3167  *      if the generation has changed since the previous call.
3168  *
3169  * If (p1) happens while the event is active, we restart it to force (p2).
3170  *
3171  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3172  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3173  *     ioctl;
3174  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3175  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3176  *     for reading;
3177  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3178  *     of exec.
3179  */
3180 void perf_event_addr_filters_sync(struct perf_event *event)
3181 {
3182         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3183
3184         if (!has_addr_filter(event))
3185                 return;
3186
3187         raw_spin_lock(&ifh->lock);
3188         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3189                 event->pmu->addr_filters_sync(event);
3190                 event->hw.addr_filters_gen = event->addr_filters_gen;
3191         }
3192         raw_spin_unlock(&ifh->lock);
3193 }
3194 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3195
3196 static int _perf_event_refresh(struct perf_event *event, int refresh)
3197 {
3198         /*
3199          * not supported on inherited events
3200          */
3201         if (event->attr.inherit || !is_sampling_event(event))
3202                 return -EINVAL;
3203
3204         atomic_add(refresh, &event->event_limit);
3205         _perf_event_enable(event);
3206
3207         return 0;
3208 }
3209
3210 /*
3211  * See perf_event_disable()
3212  */
3213 int perf_event_refresh(struct perf_event *event, int refresh)
3214 {
3215         struct perf_event_context *ctx;
3216         int ret;
3217
3218         ctx = perf_event_ctx_lock(event);
3219         ret = _perf_event_refresh(event, refresh);
3220         perf_event_ctx_unlock(event, ctx);
3221
3222         return ret;
3223 }
3224 EXPORT_SYMBOL_GPL(perf_event_refresh);
3225
3226 static int perf_event_modify_breakpoint(struct perf_event *bp,
3227                                          struct perf_event_attr *attr)
3228 {
3229         int err;
3230
3231         _perf_event_disable(bp);
3232
3233         err = modify_user_hw_breakpoint_check(bp, attr, true);
3234
3235         if (!bp->attr.disabled)
3236                 _perf_event_enable(bp);
3237
3238         return err;
3239 }
3240
3241 /*
3242  * Copy event-type-independent attributes that may be modified.
3243  */
3244 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3245                                         const struct perf_event_attr *from)
3246 {
3247         to->sig_data = from->sig_data;
3248 }
3249
3250 static int perf_event_modify_attr(struct perf_event *event,
3251                                   struct perf_event_attr *attr)
3252 {
3253         int (*func)(struct perf_event *, struct perf_event_attr *);
3254         struct perf_event *child;
3255         int err;
3256
3257         if (event->attr.type != attr->type)
3258                 return -EINVAL;
3259
3260         switch (event->attr.type) {
3261         case PERF_TYPE_BREAKPOINT:
3262                 func = perf_event_modify_breakpoint;
3263                 break;
3264         default:
3265                 /* Place holder for future additions. */
3266                 return -EOPNOTSUPP;
3267         }
3268
3269         WARN_ON_ONCE(event->ctx->parent_ctx);
3270
3271         mutex_lock(&event->child_mutex);
3272         /*
3273          * Event-type-independent attributes must be copied before event-type
3274          * modification, which will validate that final attributes match the
3275          * source attributes after all relevant attributes have been copied.
3276          */
3277         perf_event_modify_copy_attr(&event->attr, attr);
3278         err = func(event, attr);
3279         if (err)
3280                 goto out;
3281         list_for_each_entry(child, &event->child_list, child_list) {
3282                 perf_event_modify_copy_attr(&child->attr, attr);
3283                 err = func(child, attr);
3284                 if (err)
3285                         goto out;
3286         }
3287 out:
3288         mutex_unlock(&event->child_mutex);
3289         return err;
3290 }
3291
3292 static void ctx_sched_out(struct perf_event_context *ctx,
3293                           struct perf_cpu_context *cpuctx,
3294                           enum event_type_t event_type)
3295 {
3296         struct perf_event *event, *tmp;
3297         int is_active = ctx->is_active;
3298
3299         lockdep_assert_held(&ctx->lock);
3300
3301         if (likely(!ctx->nr_events)) {
3302                 /*
3303                  * See __perf_remove_from_context().
3304                  */
3305                 WARN_ON_ONCE(ctx->is_active);
3306                 if (ctx->task)
3307                         WARN_ON_ONCE(cpuctx->task_ctx);
3308                 return;
3309         }
3310
3311         /*
3312          * Always update time if it was set; not only when it changes.
3313          * Otherwise we can 'forget' to update time for any but the last
3314          * context we sched out. For example:
3315          *
3316          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3317          *   ctx_sched_out(.event_type = EVENT_PINNED)
3318          *
3319          * would only update time for the pinned events.
3320          */
3321         if (is_active & EVENT_TIME) {
3322                 /* update (and stop) ctx time */
3323                 update_context_time(ctx);
3324                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3325                 /*
3326                  * CPU-release for the below ->is_active store,
3327                  * see __load_acquire() in perf_event_time_now()
3328                  */
3329                 barrier();
3330         }
3331
3332         ctx->is_active &= ~event_type;
3333         if (!(ctx->is_active & EVENT_ALL))
3334                 ctx->is_active = 0;
3335
3336         if (ctx->task) {
3337                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3338                 if (!ctx->is_active)
3339                         cpuctx->task_ctx = NULL;
3340         }
3341
3342         is_active ^= ctx->is_active; /* changed bits */
3343
3344         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3345                 return;
3346
3347         perf_pmu_disable(ctx->pmu);
3348         if (is_active & EVENT_PINNED) {
3349                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3350                         group_sched_out(event, cpuctx, ctx);
3351         }
3352
3353         if (is_active & EVENT_FLEXIBLE) {
3354                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3355                         group_sched_out(event, cpuctx, ctx);
3356
3357                 /*
3358                  * Since we cleared EVENT_FLEXIBLE, also clear
3359                  * rotate_necessary, is will be reset by
3360                  * ctx_flexible_sched_in() when needed.
3361                  */
3362                 ctx->rotate_necessary = 0;
3363         }
3364         perf_pmu_enable(ctx->pmu);
3365 }
3366
3367 /*
3368  * Test whether two contexts are equivalent, i.e. whether they have both been
3369  * cloned from the same version of the same context.
3370  *
3371  * Equivalence is measured using a generation number in the context that is
3372  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3373  * and list_del_event().
3374  */
3375 static int context_equiv(struct perf_event_context *ctx1,
3376                          struct perf_event_context *ctx2)
3377 {
3378         lockdep_assert_held(&ctx1->lock);
3379         lockdep_assert_held(&ctx2->lock);
3380
3381         /* Pinning disables the swap optimization */
3382         if (ctx1->pin_count || ctx2->pin_count)
3383                 return 0;
3384
3385         /* If ctx1 is the parent of ctx2 */
3386         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3387                 return 1;
3388
3389         /* If ctx2 is the parent of ctx1 */
3390         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3391                 return 1;
3392
3393         /*
3394          * If ctx1 and ctx2 have the same parent; we flatten the parent
3395          * hierarchy, see perf_event_init_context().
3396          */
3397         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3398                         ctx1->parent_gen == ctx2->parent_gen)
3399                 return 1;
3400
3401         /* Unmatched */
3402         return 0;
3403 }
3404
3405 static void __perf_event_sync_stat(struct perf_event *event,
3406                                      struct perf_event *next_event)
3407 {
3408         u64 value;
3409
3410         if (!event->attr.inherit_stat)
3411                 return;
3412
3413         /*
3414          * Update the event value, we cannot use perf_event_read()
3415          * because we're in the middle of a context switch and have IRQs
3416          * disabled, which upsets smp_call_function_single(), however
3417          * we know the event must be on the current CPU, therefore we
3418          * don't need to use it.
3419          */
3420         if (event->state == PERF_EVENT_STATE_ACTIVE)
3421                 event->pmu->read(event);
3422
3423         perf_event_update_time(event);
3424
3425         /*
3426          * In order to keep per-task stats reliable we need to flip the event
3427          * values when we flip the contexts.
3428          */
3429         value = local64_read(&next_event->count);
3430         value = local64_xchg(&event->count, value);
3431         local64_set(&next_event->count, value);
3432
3433         swap(event->total_time_enabled, next_event->total_time_enabled);
3434         swap(event->total_time_running, next_event->total_time_running);
3435
3436         /*
3437          * Since we swizzled the values, update the user visible data too.
3438          */
3439         perf_event_update_userpage(event);
3440         perf_event_update_userpage(next_event);
3441 }
3442
3443 static void perf_event_sync_stat(struct perf_event_context *ctx,
3444                                    struct perf_event_context *next_ctx)
3445 {
3446         struct perf_event *event, *next_event;
3447
3448         if (!ctx->nr_stat)
3449                 return;
3450
3451         update_context_time(ctx);
3452
3453         event = list_first_entry(&ctx->event_list,
3454                                    struct perf_event, event_entry);
3455
3456         next_event = list_first_entry(&next_ctx->event_list,
3457                                         struct perf_event, event_entry);
3458
3459         while (&event->event_entry != &ctx->event_list &&
3460                &next_event->event_entry != &next_ctx->event_list) {
3461
3462                 __perf_event_sync_stat(event, next_event);
3463
3464                 event = list_next_entry(event, event_entry);
3465                 next_event = list_next_entry(next_event, event_entry);
3466         }
3467 }
3468
3469 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3470                                          struct task_struct *next)
3471 {
3472         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3473         struct perf_event_context *next_ctx;
3474         struct perf_event_context *parent, *next_parent;
3475         struct perf_cpu_context *cpuctx;
3476         int do_switch = 1;
3477         struct pmu *pmu;
3478
3479         if (likely(!ctx))
3480                 return;
3481
3482         pmu = ctx->pmu;
3483         cpuctx = __get_cpu_context(ctx);
3484         if (!cpuctx->task_ctx)
3485                 return;
3486
3487         rcu_read_lock();
3488         next_ctx = next->perf_event_ctxp[ctxn];
3489         if (!next_ctx)
3490                 goto unlock;
3491
3492         parent = rcu_dereference(ctx->parent_ctx);
3493         next_parent = rcu_dereference(next_ctx->parent_ctx);
3494
3495         /* If neither context have a parent context; they cannot be clones. */
3496         if (!parent && !next_parent)
3497                 goto unlock;
3498
3499         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3500                 /*
3501                  * Looks like the two contexts are clones, so we might be
3502                  * able to optimize the context switch.  We lock both
3503                  * contexts and check that they are clones under the
3504                  * lock (including re-checking that neither has been
3505                  * uncloned in the meantime).  It doesn't matter which
3506                  * order we take the locks because no other cpu could
3507                  * be trying to lock both of these tasks.
3508                  */
3509                 raw_spin_lock(&ctx->lock);
3510                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3511                 if (context_equiv(ctx, next_ctx)) {
3512
3513                         WRITE_ONCE(ctx->task, next);
3514                         WRITE_ONCE(next_ctx->task, task);
3515
3516                         perf_pmu_disable(pmu);
3517
3518                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3519                                 pmu->sched_task(ctx, false);
3520
3521                         /*
3522                          * PMU specific parts of task perf context can require
3523                          * additional synchronization. As an example of such
3524                          * synchronization see implementation details of Intel
3525                          * LBR call stack data profiling;
3526                          */
3527                         if (pmu->swap_task_ctx)
3528                                 pmu->swap_task_ctx(ctx, next_ctx);
3529                         else
3530                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3531
3532                         perf_pmu_enable(pmu);
3533
3534                         /*
3535                          * RCU_INIT_POINTER here is safe because we've not
3536                          * modified the ctx and the above modification of
3537                          * ctx->task and ctx->task_ctx_data are immaterial
3538                          * since those values are always verified under
3539                          * ctx->lock which we're now holding.
3540                          */
3541                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3542                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3543
3544                         do_switch = 0;
3545
3546                         perf_event_sync_stat(ctx, next_ctx);
3547                 }
3548                 raw_spin_unlock(&next_ctx->lock);
3549                 raw_spin_unlock(&ctx->lock);
3550         }
3551 unlock:
3552         rcu_read_unlock();
3553
3554         if (do_switch) {
3555                 raw_spin_lock(&ctx->lock);
3556                 perf_pmu_disable(pmu);
3557
3558                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3559                         pmu->sched_task(ctx, false);
3560                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3561
3562                 perf_pmu_enable(pmu);
3563                 raw_spin_unlock(&ctx->lock);
3564         }
3565 }
3566
3567 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3568
3569 void perf_sched_cb_dec(struct pmu *pmu)
3570 {
3571         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3572
3573         this_cpu_dec(perf_sched_cb_usages);
3574
3575         if (!--cpuctx->sched_cb_usage)
3576                 list_del(&cpuctx->sched_cb_entry);
3577 }
3578
3579
3580 void perf_sched_cb_inc(struct pmu *pmu)
3581 {
3582         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3583
3584         if (!cpuctx->sched_cb_usage++)
3585                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3586
3587         this_cpu_inc(perf_sched_cb_usages);
3588 }
3589
3590 /*
3591  * This function provides the context switch callback to the lower code
3592  * layer. It is invoked ONLY when the context switch callback is enabled.
3593  *
3594  * This callback is relevant even to per-cpu events; for example multi event
3595  * PEBS requires this to provide PID/TID information. This requires we flush
3596  * all queued PEBS records before we context switch to a new task.
3597  */
3598 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3599 {
3600         struct pmu *pmu;
3601
3602         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3603
3604         if (WARN_ON_ONCE(!pmu->sched_task))
3605                 return;
3606
3607         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3608         perf_pmu_disable(pmu);
3609
3610         pmu->sched_task(cpuctx->task_ctx, sched_in);
3611
3612         perf_pmu_enable(pmu);
3613         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3614 }
3615
3616 static void perf_pmu_sched_task(struct task_struct *prev,
3617                                 struct task_struct *next,
3618                                 bool sched_in)
3619 {
3620         struct perf_cpu_context *cpuctx;
3621
3622         if (prev == next)
3623                 return;
3624
3625         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3626                 /* will be handled in perf_event_context_sched_in/out */
3627                 if (cpuctx->task_ctx)
3628                         continue;
3629
3630                 __perf_pmu_sched_task(cpuctx, sched_in);
3631         }
3632 }
3633
3634 static void perf_event_switch(struct task_struct *task,
3635                               struct task_struct *next_prev, bool sched_in);
3636
3637 #define for_each_task_context_nr(ctxn)                                  \
3638         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3639
3640 /*
3641  * Called from scheduler to remove the events of the current task,
3642  * with interrupts disabled.
3643  *
3644  * We stop each event and update the event value in event->count.
3645  *
3646  * This does not protect us against NMI, but disable()
3647  * sets the disabled bit in the control field of event _before_
3648  * accessing the event control register. If a NMI hits, then it will
3649  * not restart the event.
3650  */
3651 void __perf_event_task_sched_out(struct task_struct *task,
3652                                  struct task_struct *next)
3653 {
3654         int ctxn;
3655
3656         if (__this_cpu_read(perf_sched_cb_usages))
3657                 perf_pmu_sched_task(task, next, false);
3658
3659         if (atomic_read(&nr_switch_events))
3660                 perf_event_switch(task, next, false);
3661
3662         for_each_task_context_nr(ctxn)
3663                 perf_event_context_sched_out(task, ctxn, next);
3664
3665         /*
3666          * if cgroup events exist on this CPU, then we need
3667          * to check if we have to switch out PMU state.
3668          * cgroup event are system-wide mode only
3669          */
3670         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3671                 perf_cgroup_sched_out(task, next);
3672 }
3673
3674 /*
3675  * Called with IRQs disabled
3676  */
3677 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3678                               enum event_type_t event_type)
3679 {
3680         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3681 }
3682
3683 static bool perf_less_group_idx(const void *l, const void *r)
3684 {
3685         const struct perf_event *le = *(const struct perf_event **)l;
3686         const struct perf_event *re = *(const struct perf_event **)r;
3687
3688         return le->group_index < re->group_index;
3689 }
3690
3691 static void swap_ptr(void *l, void *r)
3692 {
3693         void **lp = l, **rp = r;
3694
3695         swap(*lp, *rp);
3696 }
3697
3698 static const struct min_heap_callbacks perf_min_heap = {
3699         .elem_size = sizeof(struct perf_event *),
3700         .less = perf_less_group_idx,
3701         .swp = swap_ptr,
3702 };
3703
3704 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3705 {
3706         struct perf_event **itrs = heap->data;
3707
3708         if (event) {
3709                 itrs[heap->nr] = event;
3710                 heap->nr++;
3711         }
3712 }
3713
3714 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3715                                 struct perf_event_groups *groups, int cpu,
3716                                 int (*func)(struct perf_event *, void *),
3717                                 void *data)
3718 {
3719 #ifdef CONFIG_CGROUP_PERF
3720         struct cgroup_subsys_state *css = NULL;
3721 #endif
3722         /* Space for per CPU and/or any CPU event iterators. */
3723         struct perf_event *itrs[2];
3724         struct min_heap event_heap;
3725         struct perf_event **evt;
3726         int ret;
3727
3728         if (cpuctx) {
3729                 event_heap = (struct min_heap){
3730                         .data = cpuctx->heap,
3731                         .nr = 0,
3732                         .size = cpuctx->heap_size,
3733                 };
3734
3735                 lockdep_assert_held(&cpuctx->ctx.lock);
3736
3737 #ifdef CONFIG_CGROUP_PERF
3738                 if (cpuctx->cgrp)
3739                         css = &cpuctx->cgrp->css;
3740 #endif
3741         } else {
3742                 event_heap = (struct min_heap){
3743                         .data = itrs,
3744                         .nr = 0,
3745                         .size = ARRAY_SIZE(itrs),
3746                 };
3747                 /* Events not within a CPU context may be on any CPU. */
3748                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3749         }
3750         evt = event_heap.data;
3751
3752         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3753
3754 #ifdef CONFIG_CGROUP_PERF
3755         for (; css; css = css->parent)
3756                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3757 #endif
3758
3759         min_heapify_all(&event_heap, &perf_min_heap);
3760
3761         while (event_heap.nr) {
3762                 ret = func(*evt, data);
3763                 if (ret)
3764                         return ret;
3765
3766                 *evt = perf_event_groups_next(*evt);
3767                 if (*evt)
3768                         min_heapify(&event_heap, 0, &perf_min_heap);
3769                 else
3770                         min_heap_pop(&event_heap, &perf_min_heap);
3771         }
3772
3773         return 0;
3774 }
3775
3776 /*
3777  * Because the userpage is strictly per-event (there is no concept of context,
3778  * so there cannot be a context indirection), every userpage must be updated
3779  * when context time starts :-(
3780  *
3781  * IOW, we must not miss EVENT_TIME edges.
3782  */
3783 static inline bool event_update_userpage(struct perf_event *event)
3784 {
3785         if (likely(!atomic_read(&event->mmap_count)))
3786                 return false;
3787
3788         perf_event_update_time(event);
3789         perf_event_update_userpage(event);
3790
3791         return true;
3792 }
3793
3794 static inline void group_update_userpage(struct perf_event *group_event)
3795 {
3796         struct perf_event *event;
3797
3798         if (!event_update_userpage(group_event))
3799                 return;
3800
3801         for_each_sibling_event(event, group_event)
3802                 event_update_userpage(event);
3803 }
3804
3805 static int merge_sched_in(struct perf_event *event, void *data)
3806 {
3807         struct perf_event_context *ctx = event->ctx;
3808         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3809         int *can_add_hw = data;
3810
3811         if (event->state <= PERF_EVENT_STATE_OFF)
3812                 return 0;
3813
3814         if (!event_filter_match(event))
3815                 return 0;
3816
3817         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3818                 if (!group_sched_in(event, cpuctx, ctx))
3819                         list_add_tail(&event->active_list, get_event_list(event));
3820         }
3821
3822         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823                 *can_add_hw = 0;
3824                 if (event->attr.pinned) {
3825                         perf_cgroup_event_disable(event, ctx);
3826                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3827                 } else {
3828                         ctx->rotate_necessary = 1;
3829                         perf_mux_hrtimer_restart(cpuctx);
3830                         group_update_userpage(event);
3831                 }
3832         }
3833
3834         return 0;
3835 }
3836
3837 static void
3838 ctx_pinned_sched_in(struct perf_event_context *ctx,
3839                     struct perf_cpu_context *cpuctx)
3840 {
3841         int can_add_hw = 1;
3842
3843         if (ctx != &cpuctx->ctx)
3844                 cpuctx = NULL;
3845
3846         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3847                            smp_processor_id(),
3848                            merge_sched_in, &can_add_hw);
3849 }
3850
3851 static void
3852 ctx_flexible_sched_in(struct perf_event_context *ctx,
3853                       struct perf_cpu_context *cpuctx)
3854 {
3855         int can_add_hw = 1;
3856
3857         if (ctx != &cpuctx->ctx)
3858                 cpuctx = NULL;
3859
3860         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3861                            smp_processor_id(),
3862                            merge_sched_in, &can_add_hw);
3863 }
3864
3865 static void
3866 ctx_sched_in(struct perf_event_context *ctx,
3867              struct perf_cpu_context *cpuctx,
3868              enum event_type_t event_type,
3869              struct task_struct *task)
3870 {
3871         int is_active = ctx->is_active;
3872
3873         lockdep_assert_held(&ctx->lock);
3874
3875         if (likely(!ctx->nr_events))
3876                 return;
3877
3878         if (is_active ^ EVENT_TIME) {
3879                 /* start ctx time */
3880                 __update_context_time(ctx, false);
3881                 perf_cgroup_set_timestamp(task, ctx);
3882                 /*
3883                  * CPU-release for the below ->is_active store,
3884                  * see __load_acquire() in perf_event_time_now()
3885                  */
3886                 barrier();
3887         }
3888
3889         ctx->is_active |= (event_type | EVENT_TIME);
3890         if (ctx->task) {
3891                 if (!is_active)
3892                         cpuctx->task_ctx = ctx;
3893                 else
3894                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3895         }
3896
3897         is_active ^= ctx->is_active; /* changed bits */
3898
3899         /*
3900          * First go through the list and put on any pinned groups
3901          * in order to give them the best chance of going on.
3902          */
3903         if (is_active & EVENT_PINNED)
3904                 ctx_pinned_sched_in(ctx, cpuctx);
3905
3906         /* Then walk through the lower prio flexible groups */
3907         if (is_active & EVENT_FLEXIBLE)
3908                 ctx_flexible_sched_in(ctx, cpuctx);
3909 }
3910
3911 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3912                              enum event_type_t event_type,
3913                              struct task_struct *task)
3914 {
3915         struct perf_event_context *ctx = &cpuctx->ctx;
3916
3917         ctx_sched_in(ctx, cpuctx, event_type, task);
3918 }
3919
3920 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3921                                         struct task_struct *task)
3922 {
3923         struct perf_cpu_context *cpuctx;
3924         struct pmu *pmu;
3925
3926         cpuctx = __get_cpu_context(ctx);
3927
3928         /*
3929          * HACK: for HETEROGENEOUS the task context might have switched to a
3930          * different PMU, force (re)set the context,
3931          */
3932         pmu = ctx->pmu = cpuctx->ctx.pmu;
3933
3934         if (cpuctx->task_ctx == ctx) {
3935                 if (cpuctx->sched_cb_usage)
3936                         __perf_pmu_sched_task(cpuctx, true);
3937                 return;
3938         }
3939
3940         perf_ctx_lock(cpuctx, ctx);
3941         /*
3942          * We must check ctx->nr_events while holding ctx->lock, such
3943          * that we serialize against perf_install_in_context().
3944          */
3945         if (!ctx->nr_events)
3946                 goto unlock;
3947
3948         perf_pmu_disable(pmu);
3949         /*
3950          * We want to keep the following priority order:
3951          * cpu pinned (that don't need to move), task pinned,
3952          * cpu flexible, task flexible.
3953          *
3954          * However, if task's ctx is not carrying any pinned
3955          * events, no need to flip the cpuctx's events around.
3956          */
3957         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3958                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3959         perf_event_sched_in(cpuctx, ctx, task);
3960
3961         if (cpuctx->sched_cb_usage && pmu->sched_task)
3962                 pmu->sched_task(cpuctx->task_ctx, true);
3963
3964         perf_pmu_enable(pmu);
3965
3966 unlock:
3967         perf_ctx_unlock(cpuctx, ctx);
3968 }
3969
3970 /*
3971  * Called from scheduler to add the events of the current task
3972  * with interrupts disabled.
3973  *
3974  * We restore the event value and then enable it.
3975  *
3976  * This does not protect us against NMI, but enable()
3977  * sets the enabled bit in the control field of event _before_
3978  * accessing the event control register. If a NMI hits, then it will
3979  * keep the event running.
3980  */
3981 void __perf_event_task_sched_in(struct task_struct *prev,
3982                                 struct task_struct *task)
3983 {
3984         struct perf_event_context *ctx;
3985         int ctxn;
3986
3987         /*
3988          * If cgroup events exist on this CPU, then we need to check if we have
3989          * to switch in PMU state; cgroup event are system-wide mode only.
3990          *
3991          * Since cgroup events are CPU events, we must schedule these in before
3992          * we schedule in the task events.
3993          */
3994         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3995                 perf_cgroup_sched_in(prev, task);
3996
3997         for_each_task_context_nr(ctxn) {
3998                 ctx = task->perf_event_ctxp[ctxn];
3999                 if (likely(!ctx))
4000                         continue;
4001
4002                 perf_event_context_sched_in(ctx, task);
4003         }
4004
4005         if (atomic_read(&nr_switch_events))
4006                 perf_event_switch(task, prev, true);
4007
4008         if (__this_cpu_read(perf_sched_cb_usages))
4009                 perf_pmu_sched_task(prev, task, true);
4010 }
4011
4012 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4013 {
4014         u64 frequency = event->attr.sample_freq;
4015         u64 sec = NSEC_PER_SEC;
4016         u64 divisor, dividend;
4017
4018         int count_fls, nsec_fls, frequency_fls, sec_fls;
4019
4020         count_fls = fls64(count);
4021         nsec_fls = fls64(nsec);
4022         frequency_fls = fls64(frequency);
4023         sec_fls = 30;
4024
4025         /*
4026          * We got @count in @nsec, with a target of sample_freq HZ
4027          * the target period becomes:
4028          *
4029          *             @count * 10^9
4030          * period = -------------------
4031          *          @nsec * sample_freq
4032          *
4033          */
4034
4035         /*
4036          * Reduce accuracy by one bit such that @a and @b converge
4037          * to a similar magnitude.
4038          */
4039 #define REDUCE_FLS(a, b)                \
4040 do {                                    \
4041         if (a##_fls > b##_fls) {        \
4042                 a >>= 1;                \
4043                 a##_fls--;              \
4044         } else {                        \
4045                 b >>= 1;                \
4046                 b##_fls--;              \
4047         }                               \
4048 } while (0)
4049
4050         /*
4051          * Reduce accuracy until either term fits in a u64, then proceed with
4052          * the other, so that finally we can do a u64/u64 division.
4053          */
4054         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4055                 REDUCE_FLS(nsec, frequency);
4056                 REDUCE_FLS(sec, count);
4057         }
4058
4059         if (count_fls + sec_fls > 64) {
4060                 divisor = nsec * frequency;
4061
4062                 while (count_fls + sec_fls > 64) {
4063                         REDUCE_FLS(count, sec);
4064                         divisor >>= 1;
4065                 }
4066
4067                 dividend = count * sec;
4068         } else {
4069                 dividend = count * sec;
4070
4071                 while (nsec_fls + frequency_fls > 64) {
4072                         REDUCE_FLS(nsec, frequency);
4073                         dividend >>= 1;
4074                 }
4075
4076                 divisor = nsec * frequency;
4077         }
4078
4079         if (!divisor)
4080                 return dividend;
4081
4082         return div64_u64(dividend, divisor);
4083 }
4084
4085 static DEFINE_PER_CPU(int, perf_throttled_count);
4086 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4087
4088 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4089 {
4090         struct hw_perf_event *hwc = &event->hw;
4091         s64 period, sample_period;
4092         s64 delta;
4093
4094         period = perf_calculate_period(event, nsec, count);
4095
4096         delta = (s64)(period - hwc->sample_period);
4097         delta = (delta + 7) / 8; /* low pass filter */
4098
4099         sample_period = hwc->sample_period + delta;
4100
4101         if (!sample_period)
4102                 sample_period = 1;
4103
4104         hwc->sample_period = sample_period;
4105
4106         if (local64_read(&hwc->period_left) > 8*sample_period) {
4107                 if (disable)
4108                         event->pmu->stop(event, PERF_EF_UPDATE);
4109
4110                 local64_set(&hwc->period_left, 0);
4111
4112                 if (disable)
4113                         event->pmu->start(event, PERF_EF_RELOAD);
4114         }
4115 }
4116
4117 /*
4118  * combine freq adjustment with unthrottling to avoid two passes over the
4119  * events. At the same time, make sure, having freq events does not change
4120  * the rate of unthrottling as that would introduce bias.
4121  */
4122 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4123                                            int needs_unthr)
4124 {
4125         struct perf_event *event;
4126         struct hw_perf_event *hwc;
4127         u64 now, period = TICK_NSEC;
4128         s64 delta;
4129
4130         /*
4131          * only need to iterate over all events iff:
4132          * - context have events in frequency mode (needs freq adjust)
4133          * - there are events to unthrottle on this cpu
4134          */
4135         if (!(ctx->nr_freq || needs_unthr))
4136                 return;
4137
4138         raw_spin_lock(&ctx->lock);
4139         perf_pmu_disable(ctx->pmu);
4140
4141         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4142                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4143                         continue;
4144
4145                 if (!event_filter_match(event))
4146                         continue;
4147
4148                 perf_pmu_disable(event->pmu);
4149
4150                 hwc = &event->hw;
4151
4152                 if (hwc->interrupts == MAX_INTERRUPTS) {
4153                         hwc->interrupts = 0;
4154                         perf_log_throttle(event, 1);
4155                         event->pmu->start(event, 0);
4156                 }
4157
4158                 if (!event->attr.freq || !event->attr.sample_freq)
4159                         goto next;
4160
4161                 /*
4162                  * stop the event and update event->count
4163                  */
4164                 event->pmu->stop(event, PERF_EF_UPDATE);
4165
4166                 now = local64_read(&event->count);
4167                 delta = now - hwc->freq_count_stamp;
4168                 hwc->freq_count_stamp = now;
4169
4170                 /*
4171                  * restart the event
4172                  * reload only if value has changed
4173                  * we have stopped the event so tell that
4174                  * to perf_adjust_period() to avoid stopping it
4175                  * twice.
4176                  */
4177                 if (delta > 0)
4178                         perf_adjust_period(event, period, delta, false);
4179
4180                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4181         next:
4182                 perf_pmu_enable(event->pmu);
4183         }
4184
4185         perf_pmu_enable(ctx->pmu);
4186         raw_spin_unlock(&ctx->lock);
4187 }
4188
4189 /*
4190  * Move @event to the tail of the @ctx's elegible events.
4191  */
4192 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4193 {
4194         /*
4195          * Rotate the first entry last of non-pinned groups. Rotation might be
4196          * disabled by the inheritance code.
4197          */
4198         if (ctx->rotate_disable)
4199                 return;
4200
4201         perf_event_groups_delete(&ctx->flexible_groups, event);
4202         perf_event_groups_insert(&ctx->flexible_groups, event);
4203 }
4204
4205 /* pick an event from the flexible_groups to rotate */
4206 static inline struct perf_event *
4207 ctx_event_to_rotate(struct perf_event_context *ctx)
4208 {
4209         struct perf_event *event;
4210
4211         /* pick the first active flexible event */
4212         event = list_first_entry_or_null(&ctx->flexible_active,
4213                                          struct perf_event, active_list);
4214
4215         /* if no active flexible event, pick the first event */
4216         if (!event) {
4217                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4218                                       typeof(*event), group_node);
4219         }
4220
4221         /*
4222          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4223          * finds there are unschedulable events, it will set it again.
4224          */
4225         ctx->rotate_necessary = 0;
4226
4227         return event;
4228 }
4229
4230 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4231 {
4232         struct perf_event *cpu_event = NULL, *task_event = NULL;
4233         struct perf_event_context *task_ctx = NULL;
4234         int cpu_rotate, task_rotate;
4235
4236         /*
4237          * Since we run this from IRQ context, nobody can install new
4238          * events, thus the event count values are stable.
4239          */
4240
4241         cpu_rotate = cpuctx->ctx.rotate_necessary;
4242         task_ctx = cpuctx->task_ctx;
4243         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4244
4245         if (!(cpu_rotate || task_rotate))
4246                 return false;
4247
4248         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4249         perf_pmu_disable(cpuctx->ctx.pmu);
4250
4251         if (task_rotate)
4252                 task_event = ctx_event_to_rotate(task_ctx);
4253         if (cpu_rotate)
4254                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4255
4256         /*
4257          * As per the order given at ctx_resched() first 'pop' task flexible
4258          * and then, if needed CPU flexible.
4259          */
4260         if (task_event || (task_ctx && cpu_event))
4261                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4262         if (cpu_event)
4263                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4264
4265         if (task_event)
4266                 rotate_ctx(task_ctx, task_event);
4267         if (cpu_event)
4268                 rotate_ctx(&cpuctx->ctx, cpu_event);
4269
4270         perf_event_sched_in(cpuctx, task_ctx, current);
4271
4272         perf_pmu_enable(cpuctx->ctx.pmu);
4273         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4274
4275         return true;
4276 }
4277
4278 void perf_event_task_tick(void)
4279 {
4280         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4281         struct perf_event_context *ctx, *tmp;
4282         int throttled;
4283
4284         lockdep_assert_irqs_disabled();
4285
4286         __this_cpu_inc(perf_throttled_seq);
4287         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4288         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4289
4290         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4291                 perf_adjust_freq_unthr_context(ctx, throttled);
4292 }
4293
4294 static int event_enable_on_exec(struct perf_event *event,
4295                                 struct perf_event_context *ctx)
4296 {
4297         if (!event->attr.enable_on_exec)
4298                 return 0;
4299
4300         event->attr.enable_on_exec = 0;
4301         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4302                 return 0;
4303
4304         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4305
4306         return 1;
4307 }
4308
4309 /*
4310  * Enable all of a task's events that have been marked enable-on-exec.
4311  * This expects task == current.
4312  */
4313 static void perf_event_enable_on_exec(int ctxn)
4314 {
4315         struct perf_event_context *ctx, *clone_ctx = NULL;
4316         enum event_type_t event_type = 0;
4317         struct perf_cpu_context *cpuctx;
4318         struct perf_event *event;
4319         unsigned long flags;
4320         int enabled = 0;
4321
4322         local_irq_save(flags);
4323         ctx = current->perf_event_ctxp[ctxn];
4324         if (!ctx || !ctx->nr_events)
4325                 goto out;
4326
4327         cpuctx = __get_cpu_context(ctx);
4328         perf_ctx_lock(cpuctx, ctx);
4329         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4330         list_for_each_entry(event, &ctx->event_list, event_entry) {
4331                 enabled |= event_enable_on_exec(event, ctx);
4332                 event_type |= get_event_type(event);
4333         }
4334
4335         /*
4336          * Unclone and reschedule this context if we enabled any event.
4337          */
4338         if (enabled) {
4339                 clone_ctx = unclone_ctx(ctx);
4340                 ctx_resched(cpuctx, ctx, event_type);
4341         } else {
4342                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4343         }
4344         perf_ctx_unlock(cpuctx, ctx);
4345
4346 out:
4347         local_irq_restore(flags);
4348
4349         if (clone_ctx)
4350                 put_ctx(clone_ctx);
4351 }
4352
4353 static void perf_remove_from_owner(struct perf_event *event);
4354 static void perf_event_exit_event(struct perf_event *event,
4355                                   struct perf_event_context *ctx);
4356
4357 /*
4358  * Removes all events from the current task that have been marked
4359  * remove-on-exec, and feeds their values back to parent events.
4360  */
4361 static void perf_event_remove_on_exec(int ctxn)
4362 {
4363         struct perf_event_context *ctx, *clone_ctx = NULL;
4364         struct perf_event *event, *next;
4365         LIST_HEAD(free_list);
4366         unsigned long flags;
4367         bool modified = false;
4368
4369         ctx = perf_pin_task_context(current, ctxn);
4370         if (!ctx)
4371                 return;
4372
4373         mutex_lock(&ctx->mutex);
4374
4375         if (WARN_ON_ONCE(ctx->task != current))
4376                 goto unlock;
4377
4378         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4379                 if (!event->attr.remove_on_exec)
4380                         continue;
4381
4382                 if (!is_kernel_event(event))
4383                         perf_remove_from_owner(event);
4384
4385                 modified = true;
4386
4387                 perf_event_exit_event(event, ctx);
4388         }
4389
4390         raw_spin_lock_irqsave(&ctx->lock, flags);
4391         if (modified)
4392                 clone_ctx = unclone_ctx(ctx);
4393         --ctx->pin_count;
4394         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4395
4396 unlock:
4397         mutex_unlock(&ctx->mutex);
4398
4399         put_ctx(ctx);
4400         if (clone_ctx)
4401                 put_ctx(clone_ctx);
4402 }
4403
4404 struct perf_read_data {
4405         struct perf_event *event;
4406         bool group;
4407         int ret;
4408 };
4409
4410 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4411 {
4412         u16 local_pkg, event_pkg;
4413
4414         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4415                 int local_cpu = smp_processor_id();
4416
4417                 event_pkg = topology_physical_package_id(event_cpu);
4418                 local_pkg = topology_physical_package_id(local_cpu);
4419
4420                 if (event_pkg == local_pkg)
4421                         return local_cpu;
4422         }
4423
4424         return event_cpu;
4425 }
4426
4427 /*
4428  * Cross CPU call to read the hardware event
4429  */
4430 static void __perf_event_read(void *info)
4431 {
4432         struct perf_read_data *data = info;
4433         struct perf_event *sub, *event = data->event;
4434         struct perf_event_context *ctx = event->ctx;
4435         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4436         struct pmu *pmu = event->pmu;
4437
4438         /*
4439          * If this is a task context, we need to check whether it is
4440          * the current task context of this cpu.  If not it has been
4441          * scheduled out before the smp call arrived.  In that case
4442          * event->count would have been updated to a recent sample
4443          * when the event was scheduled out.
4444          */
4445         if (ctx->task && cpuctx->task_ctx != ctx)
4446                 return;
4447
4448         raw_spin_lock(&ctx->lock);
4449         if (ctx->is_active & EVENT_TIME) {
4450                 update_context_time(ctx);
4451                 update_cgrp_time_from_event(event);
4452         }
4453
4454         perf_event_update_time(event);
4455         if (data->group)
4456                 perf_event_update_sibling_time(event);
4457
4458         if (event->state != PERF_EVENT_STATE_ACTIVE)
4459                 goto unlock;
4460
4461         if (!data->group) {
4462                 pmu->read(event);
4463                 data->ret = 0;
4464                 goto unlock;
4465         }
4466
4467         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4468
4469         pmu->read(event);
4470
4471         for_each_sibling_event(sub, event) {
4472                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4473                         /*
4474                          * Use sibling's PMU rather than @event's since
4475                          * sibling could be on different (eg: software) PMU.
4476                          */
4477                         sub->pmu->read(sub);
4478                 }
4479         }
4480
4481         data->ret = pmu->commit_txn(pmu);
4482
4483 unlock:
4484         raw_spin_unlock(&ctx->lock);
4485 }
4486
4487 static inline u64 perf_event_count(struct perf_event *event)
4488 {
4489         return local64_read(&event->count) + atomic64_read(&event->child_count);
4490 }
4491
4492 static void calc_timer_values(struct perf_event *event,
4493                                 u64 *now,
4494                                 u64 *enabled,
4495                                 u64 *running)
4496 {
4497         u64 ctx_time;
4498
4499         *now = perf_clock();
4500         ctx_time = perf_event_time_now(event, *now);
4501         __perf_update_times(event, ctx_time, enabled, running);
4502 }
4503
4504 /*
4505  * NMI-safe method to read a local event, that is an event that
4506  * is:
4507  *   - either for the current task, or for this CPU
4508  *   - does not have inherit set, for inherited task events
4509  *     will not be local and we cannot read them atomically
4510  *   - must not have a pmu::count method
4511  */
4512 int perf_event_read_local(struct perf_event *event, u64 *value,
4513                           u64 *enabled, u64 *running)
4514 {
4515         unsigned long flags;
4516         int ret = 0;
4517
4518         /*
4519          * Disabling interrupts avoids all counter scheduling (context
4520          * switches, timer based rotation and IPIs).
4521          */
4522         local_irq_save(flags);
4523
4524         /*
4525          * It must not be an event with inherit set, we cannot read
4526          * all child counters from atomic context.
4527          */
4528         if (event->attr.inherit) {
4529                 ret = -EOPNOTSUPP;
4530                 goto out;
4531         }
4532
4533         /* If this is a per-task event, it must be for current */
4534         if ((event->attach_state & PERF_ATTACH_TASK) &&
4535             event->hw.target != current) {
4536                 ret = -EINVAL;
4537                 goto out;
4538         }
4539
4540         /* If this is a per-CPU event, it must be for this CPU */
4541         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4542             event->cpu != smp_processor_id()) {
4543                 ret = -EINVAL;
4544                 goto out;
4545         }
4546
4547         /* If this is a pinned event it must be running on this CPU */
4548         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4549                 ret = -EBUSY;
4550                 goto out;
4551         }
4552
4553         /*
4554          * If the event is currently on this CPU, its either a per-task event,
4555          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4556          * oncpu == -1).
4557          */
4558         if (event->oncpu == smp_processor_id())
4559                 event->pmu->read(event);
4560
4561         *value = local64_read(&event->count);
4562         if (enabled || running) {
4563                 u64 __enabled, __running, __now;;
4564
4565                 calc_timer_values(event, &__now, &__enabled, &__running);
4566                 if (enabled)
4567                         *enabled = __enabled;
4568                 if (running)
4569                         *running = __running;
4570         }
4571 out:
4572         local_irq_restore(flags);
4573
4574         return ret;
4575 }
4576
4577 static int perf_event_read(struct perf_event *event, bool group)
4578 {
4579         enum perf_event_state state = READ_ONCE(event->state);
4580         int event_cpu, ret = 0;
4581
4582         /*
4583          * If event is enabled and currently active on a CPU, update the
4584          * value in the event structure:
4585          */
4586 again:
4587         if (state == PERF_EVENT_STATE_ACTIVE) {
4588                 struct perf_read_data data;
4589
4590                 /*
4591                  * Orders the ->state and ->oncpu loads such that if we see
4592                  * ACTIVE we must also see the right ->oncpu.
4593                  *
4594                  * Matches the smp_wmb() from event_sched_in().
4595                  */
4596                 smp_rmb();
4597
4598                 event_cpu = READ_ONCE(event->oncpu);
4599                 if ((unsigned)event_cpu >= nr_cpu_ids)
4600                         return 0;
4601
4602                 data = (struct perf_read_data){
4603                         .event = event,
4604                         .group = group,
4605                         .ret = 0,
4606                 };
4607
4608                 preempt_disable();
4609                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4610
4611                 /*
4612                  * Purposely ignore the smp_call_function_single() return
4613                  * value.
4614                  *
4615                  * If event_cpu isn't a valid CPU it means the event got
4616                  * scheduled out and that will have updated the event count.
4617                  *
4618                  * Therefore, either way, we'll have an up-to-date event count
4619                  * after this.
4620                  */
4621                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4622                 preempt_enable();
4623                 ret = data.ret;
4624
4625         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4626                 struct perf_event_context *ctx = event->ctx;
4627                 unsigned long flags;
4628
4629                 raw_spin_lock_irqsave(&ctx->lock, flags);
4630                 state = event->state;
4631                 if (state != PERF_EVENT_STATE_INACTIVE) {
4632                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4633                         goto again;
4634                 }
4635
4636                 /*
4637                  * May read while context is not active (e.g., thread is
4638                  * blocked), in that case we cannot update context time
4639                  */
4640                 if (ctx->is_active & EVENT_TIME) {
4641                         update_context_time(ctx);
4642                         update_cgrp_time_from_event(event);
4643                 }
4644
4645                 perf_event_update_time(event);
4646                 if (group)
4647                         perf_event_update_sibling_time(event);
4648                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4649         }
4650
4651         return ret;
4652 }
4653
4654 /*
4655  * Initialize the perf_event context in a task_struct:
4656  */
4657 static void __perf_event_init_context(struct perf_event_context *ctx)
4658 {
4659         raw_spin_lock_init(&ctx->lock);
4660         mutex_init(&ctx->mutex);
4661         INIT_LIST_HEAD(&ctx->active_ctx_list);
4662         perf_event_groups_init(&ctx->pinned_groups);
4663         perf_event_groups_init(&ctx->flexible_groups);
4664         INIT_LIST_HEAD(&ctx->event_list);
4665         INIT_LIST_HEAD(&ctx->pinned_active);
4666         INIT_LIST_HEAD(&ctx->flexible_active);
4667         refcount_set(&ctx->refcount, 1);
4668 }
4669
4670 static struct perf_event_context *
4671 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4672 {
4673         struct perf_event_context *ctx;
4674
4675         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4676         if (!ctx)
4677                 return NULL;
4678
4679         __perf_event_init_context(ctx);
4680         if (task)
4681                 ctx->task = get_task_struct(task);
4682         ctx->pmu = pmu;
4683
4684         return ctx;
4685 }
4686
4687 static struct task_struct *
4688 find_lively_task_by_vpid(pid_t vpid)
4689 {
4690         struct task_struct *task;
4691
4692         rcu_read_lock();
4693         if (!vpid)
4694                 task = current;
4695         else
4696                 task = find_task_by_vpid(vpid);
4697         if (task)
4698                 get_task_struct(task);
4699         rcu_read_unlock();
4700
4701         if (!task)
4702                 return ERR_PTR(-ESRCH);
4703
4704         return task;
4705 }
4706
4707 /*
4708  * Returns a matching context with refcount and pincount.
4709  */
4710 static struct perf_event_context *
4711 find_get_context(struct pmu *pmu, struct task_struct *task,
4712                 struct perf_event *event)
4713 {
4714         struct perf_event_context *ctx, *clone_ctx = NULL;
4715         struct perf_cpu_context *cpuctx;
4716         void *task_ctx_data = NULL;
4717         unsigned long flags;
4718         int ctxn, err;
4719         int cpu = event->cpu;
4720
4721         if (!task) {
4722                 /* Must be root to operate on a CPU event: */
4723                 err = perf_allow_cpu(&event->attr);
4724                 if (err)
4725                         return ERR_PTR(err);
4726
4727                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4728                 ctx = &cpuctx->ctx;
4729                 get_ctx(ctx);
4730                 raw_spin_lock_irqsave(&ctx->lock, flags);
4731                 ++ctx->pin_count;
4732                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4733
4734                 return ctx;
4735         }
4736
4737         err = -EINVAL;
4738         ctxn = pmu->task_ctx_nr;
4739         if (ctxn < 0)
4740                 goto errout;
4741
4742         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4743                 task_ctx_data = alloc_task_ctx_data(pmu);
4744                 if (!task_ctx_data) {
4745                         err = -ENOMEM;
4746                         goto errout;
4747                 }
4748         }
4749
4750 retry:
4751         ctx = perf_lock_task_context(task, ctxn, &flags);
4752         if (ctx) {
4753                 clone_ctx = unclone_ctx(ctx);
4754                 ++ctx->pin_count;
4755
4756                 if (task_ctx_data && !ctx->task_ctx_data) {
4757                         ctx->task_ctx_data = task_ctx_data;
4758                         task_ctx_data = NULL;
4759                 }
4760                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4761
4762                 if (clone_ctx)
4763                         put_ctx(clone_ctx);
4764         } else {
4765                 ctx = alloc_perf_context(pmu, task);
4766                 err = -ENOMEM;
4767                 if (!ctx)
4768                         goto errout;
4769
4770                 if (task_ctx_data) {
4771                         ctx->task_ctx_data = task_ctx_data;
4772                         task_ctx_data = NULL;
4773                 }
4774
4775                 err = 0;
4776                 mutex_lock(&task->perf_event_mutex);
4777                 /*
4778                  * If it has already passed perf_event_exit_task().
4779                  * we must see PF_EXITING, it takes this mutex too.
4780                  */
4781                 if (task->flags & PF_EXITING)
4782                         err = -ESRCH;
4783                 else if (task->perf_event_ctxp[ctxn])
4784                         err = -EAGAIN;
4785                 else {
4786                         get_ctx(ctx);
4787                         ++ctx->pin_count;
4788                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4789                 }
4790                 mutex_unlock(&task->perf_event_mutex);
4791
4792                 if (unlikely(err)) {
4793                         put_ctx(ctx);
4794
4795                         if (err == -EAGAIN)
4796                                 goto retry;
4797                         goto errout;
4798                 }
4799         }
4800
4801         free_task_ctx_data(pmu, task_ctx_data);
4802         return ctx;
4803
4804 errout:
4805         free_task_ctx_data(pmu, task_ctx_data);
4806         return ERR_PTR(err);
4807 }
4808
4809 static void perf_event_free_filter(struct perf_event *event);
4810
4811 static void free_event_rcu(struct rcu_head *head)
4812 {
4813         struct perf_event *event;
4814
4815         event = container_of(head, struct perf_event, rcu_head);
4816         if (event->ns)
4817                 put_pid_ns(event->ns);
4818         perf_event_free_filter(event);
4819         kmem_cache_free(perf_event_cache, event);
4820 }
4821
4822 static void ring_buffer_attach(struct perf_event *event,
4823                                struct perf_buffer *rb);
4824
4825 static void detach_sb_event(struct perf_event *event)
4826 {
4827         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4828
4829         raw_spin_lock(&pel->lock);
4830         list_del_rcu(&event->sb_list);
4831         raw_spin_unlock(&pel->lock);
4832 }
4833
4834 static bool is_sb_event(struct perf_event *event)
4835 {
4836         struct perf_event_attr *attr = &event->attr;
4837
4838         if (event->parent)
4839                 return false;
4840
4841         if (event->attach_state & PERF_ATTACH_TASK)
4842                 return false;
4843
4844         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4845             attr->comm || attr->comm_exec ||
4846             attr->task || attr->ksymbol ||
4847             attr->context_switch || attr->text_poke ||
4848             attr->bpf_event)
4849                 return true;
4850         return false;
4851 }
4852
4853 static void unaccount_pmu_sb_event(struct perf_event *event)
4854 {
4855         if (is_sb_event(event))
4856                 detach_sb_event(event);
4857 }
4858
4859 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4860 {
4861         if (event->parent)
4862                 return;
4863
4864         if (is_cgroup_event(event))
4865                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4866 }
4867
4868 #ifdef CONFIG_NO_HZ_FULL
4869 static DEFINE_SPINLOCK(nr_freq_lock);
4870 #endif
4871
4872 static void unaccount_freq_event_nohz(void)
4873 {
4874 #ifdef CONFIG_NO_HZ_FULL
4875         spin_lock(&nr_freq_lock);
4876         if (atomic_dec_and_test(&nr_freq_events))
4877                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4878         spin_unlock(&nr_freq_lock);
4879 #endif
4880 }
4881
4882 static void unaccount_freq_event(void)
4883 {
4884         if (tick_nohz_full_enabled())
4885                 unaccount_freq_event_nohz();
4886         else
4887                 atomic_dec(&nr_freq_events);
4888 }
4889
4890 static void unaccount_event(struct perf_event *event)
4891 {
4892         bool dec = false;
4893
4894         if (event->parent)
4895                 return;
4896
4897         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4898                 dec = true;
4899         if (event->attr.mmap || event->attr.mmap_data)
4900                 atomic_dec(&nr_mmap_events);
4901         if (event->attr.build_id)
4902                 atomic_dec(&nr_build_id_events);
4903         if (event->attr.comm)
4904                 atomic_dec(&nr_comm_events);
4905         if (event->attr.namespaces)
4906                 atomic_dec(&nr_namespaces_events);
4907         if (event->attr.cgroup)
4908                 atomic_dec(&nr_cgroup_events);
4909         if (event->attr.task)
4910                 atomic_dec(&nr_task_events);
4911         if (event->attr.freq)
4912                 unaccount_freq_event();
4913         if (event->attr.context_switch) {
4914                 dec = true;
4915                 atomic_dec(&nr_switch_events);
4916         }
4917         if (is_cgroup_event(event))
4918                 dec = true;
4919         if (has_branch_stack(event))
4920                 dec = true;
4921         if (event->attr.ksymbol)
4922                 atomic_dec(&nr_ksymbol_events);
4923         if (event->attr.bpf_event)
4924                 atomic_dec(&nr_bpf_events);
4925         if (event->attr.text_poke)
4926                 atomic_dec(&nr_text_poke_events);
4927
4928         if (dec) {
4929                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4930                         schedule_delayed_work(&perf_sched_work, HZ);
4931         }
4932
4933         unaccount_event_cpu(event, event->cpu);
4934
4935         unaccount_pmu_sb_event(event);
4936 }
4937
4938 static void perf_sched_delayed(struct work_struct *work)
4939 {
4940         mutex_lock(&perf_sched_mutex);
4941         if (atomic_dec_and_test(&perf_sched_count))
4942                 static_branch_disable(&perf_sched_events);
4943         mutex_unlock(&perf_sched_mutex);
4944 }
4945
4946 /*
4947  * The following implement mutual exclusion of events on "exclusive" pmus
4948  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4949  * at a time, so we disallow creating events that might conflict, namely:
4950  *
4951  *  1) cpu-wide events in the presence of per-task events,
4952  *  2) per-task events in the presence of cpu-wide events,
4953  *  3) two matching events on the same context.
4954  *
4955  * The former two cases are handled in the allocation path (perf_event_alloc(),
4956  * _free_event()), the latter -- before the first perf_install_in_context().
4957  */
4958 static int exclusive_event_init(struct perf_event *event)
4959 {
4960         struct pmu *pmu = event->pmu;
4961
4962         if (!is_exclusive_pmu(pmu))
4963                 return 0;
4964
4965         /*
4966          * Prevent co-existence of per-task and cpu-wide events on the
4967          * same exclusive pmu.
4968          *
4969          * Negative pmu::exclusive_cnt means there are cpu-wide
4970          * events on this "exclusive" pmu, positive means there are
4971          * per-task events.
4972          *
4973          * Since this is called in perf_event_alloc() path, event::ctx
4974          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4975          * to mean "per-task event", because unlike other attach states it
4976          * never gets cleared.
4977          */
4978         if (event->attach_state & PERF_ATTACH_TASK) {
4979                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4980                         return -EBUSY;
4981         } else {
4982                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4983                         return -EBUSY;
4984         }
4985
4986         return 0;
4987 }
4988
4989 static void exclusive_event_destroy(struct perf_event *event)
4990 {
4991         struct pmu *pmu = event->pmu;
4992
4993         if (!is_exclusive_pmu(pmu))
4994                 return;
4995
4996         /* see comment in exclusive_event_init() */
4997         if (event->attach_state & PERF_ATTACH_TASK)
4998                 atomic_dec(&pmu->exclusive_cnt);
4999         else
5000                 atomic_inc(&pmu->exclusive_cnt);
5001 }
5002
5003 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5004 {
5005         if ((e1->pmu == e2->pmu) &&
5006             (e1->cpu == e2->cpu ||
5007              e1->cpu == -1 ||
5008              e2->cpu == -1))
5009                 return true;
5010         return false;
5011 }
5012
5013 static bool exclusive_event_installable(struct perf_event *event,
5014                                         struct perf_event_context *ctx)
5015 {
5016         struct perf_event *iter_event;
5017         struct pmu *pmu = event->pmu;
5018
5019         lockdep_assert_held(&ctx->mutex);
5020
5021         if (!is_exclusive_pmu(pmu))
5022                 return true;
5023
5024         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5025                 if (exclusive_event_match(iter_event, event))
5026                         return false;
5027         }
5028
5029         return true;
5030 }
5031
5032 static void perf_addr_filters_splice(struct perf_event *event,
5033                                        struct list_head *head);
5034
5035 static void _free_event(struct perf_event *event)
5036 {
5037         irq_work_sync(&event->pending);
5038
5039         unaccount_event(event);
5040
5041         security_perf_event_free(event);
5042
5043         if (event->rb) {
5044                 /*
5045                  * Can happen when we close an event with re-directed output.
5046                  *
5047                  * Since we have a 0 refcount, perf_mmap_close() will skip
5048                  * over us; possibly making our ring_buffer_put() the last.
5049                  */
5050                 mutex_lock(&event->mmap_mutex);
5051                 ring_buffer_attach(event, NULL);
5052                 mutex_unlock(&event->mmap_mutex);
5053         }
5054
5055         if (is_cgroup_event(event))
5056                 perf_detach_cgroup(event);
5057
5058         if (!event->parent) {
5059                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5060                         put_callchain_buffers();
5061         }
5062
5063         perf_event_free_bpf_prog(event);
5064         perf_addr_filters_splice(event, NULL);
5065         kfree(event->addr_filter_ranges);
5066
5067         if (event->destroy)
5068                 event->destroy(event);
5069
5070         /*
5071          * Must be after ->destroy(), due to uprobe_perf_close() using
5072          * hw.target.
5073          */
5074         if (event->hw.target)
5075                 put_task_struct(event->hw.target);
5076
5077         /*
5078          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5079          * all task references must be cleaned up.
5080          */
5081         if (event->ctx)
5082                 put_ctx(event->ctx);
5083
5084         exclusive_event_destroy(event);
5085         module_put(event->pmu->module);
5086
5087         call_rcu(&event->rcu_head, free_event_rcu);
5088 }
5089
5090 /*
5091  * Used to free events which have a known refcount of 1, such as in error paths
5092  * where the event isn't exposed yet and inherited events.
5093  */
5094 static void free_event(struct perf_event *event)
5095 {
5096         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5097                                 "unexpected event refcount: %ld; ptr=%p\n",
5098                                 atomic_long_read(&event->refcount), event)) {
5099                 /* leak to avoid use-after-free */
5100                 return;
5101         }
5102
5103         _free_event(event);
5104 }
5105
5106 /*
5107  * Remove user event from the owner task.
5108  */
5109 static void perf_remove_from_owner(struct perf_event *event)
5110 {
5111         struct task_struct *owner;
5112
5113         rcu_read_lock();
5114         /*
5115          * Matches the smp_store_release() in perf_event_exit_task(). If we
5116          * observe !owner it means the list deletion is complete and we can
5117          * indeed free this event, otherwise we need to serialize on
5118          * owner->perf_event_mutex.
5119          */
5120         owner = READ_ONCE(event->owner);
5121         if (owner) {
5122                 /*
5123                  * Since delayed_put_task_struct() also drops the last
5124                  * task reference we can safely take a new reference
5125                  * while holding the rcu_read_lock().
5126                  */
5127                 get_task_struct(owner);
5128         }
5129         rcu_read_unlock();
5130
5131         if (owner) {
5132                 /*
5133                  * If we're here through perf_event_exit_task() we're already
5134                  * holding ctx->mutex which would be an inversion wrt. the
5135                  * normal lock order.
5136                  *
5137                  * However we can safely take this lock because its the child
5138                  * ctx->mutex.
5139                  */
5140                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5141
5142                 /*
5143                  * We have to re-check the event->owner field, if it is cleared
5144                  * we raced with perf_event_exit_task(), acquiring the mutex
5145                  * ensured they're done, and we can proceed with freeing the
5146                  * event.
5147                  */
5148                 if (event->owner) {
5149                         list_del_init(&event->owner_entry);
5150                         smp_store_release(&event->owner, NULL);
5151                 }
5152                 mutex_unlock(&owner->perf_event_mutex);
5153                 put_task_struct(owner);
5154         }
5155 }
5156
5157 static void put_event(struct perf_event *event)
5158 {
5159         if (!atomic_long_dec_and_test(&event->refcount))
5160                 return;
5161
5162         _free_event(event);
5163 }
5164
5165 /*
5166  * Kill an event dead; while event:refcount will preserve the event
5167  * object, it will not preserve its functionality. Once the last 'user'
5168  * gives up the object, we'll destroy the thing.
5169  */
5170 int perf_event_release_kernel(struct perf_event *event)
5171 {
5172         struct perf_event_context *ctx = event->ctx;
5173         struct perf_event *child, *tmp;
5174         LIST_HEAD(free_list);
5175
5176         /*
5177          * If we got here through err_file: fput(event_file); we will not have
5178          * attached to a context yet.
5179          */
5180         if (!ctx) {
5181                 WARN_ON_ONCE(event->attach_state &
5182                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5183                 goto no_ctx;
5184         }
5185
5186         if (!is_kernel_event(event))
5187                 perf_remove_from_owner(event);
5188
5189         ctx = perf_event_ctx_lock(event);
5190         WARN_ON_ONCE(ctx->parent_ctx);
5191         perf_remove_from_context(event, DETACH_GROUP);
5192
5193         raw_spin_lock_irq(&ctx->lock);
5194         /*
5195          * Mark this event as STATE_DEAD, there is no external reference to it
5196          * anymore.
5197          *
5198          * Anybody acquiring event->child_mutex after the below loop _must_
5199          * also see this, most importantly inherit_event() which will avoid
5200          * placing more children on the list.
5201          *
5202          * Thus this guarantees that we will in fact observe and kill _ALL_
5203          * child events.
5204          */
5205         event->state = PERF_EVENT_STATE_DEAD;
5206         raw_spin_unlock_irq(&ctx->lock);
5207
5208         perf_event_ctx_unlock(event, ctx);
5209
5210 again:
5211         mutex_lock(&event->child_mutex);
5212         list_for_each_entry(child, &event->child_list, child_list) {
5213
5214                 /*
5215                  * Cannot change, child events are not migrated, see the
5216                  * comment with perf_event_ctx_lock_nested().
5217                  */
5218                 ctx = READ_ONCE(child->ctx);
5219                 /*
5220                  * Since child_mutex nests inside ctx::mutex, we must jump
5221                  * through hoops. We start by grabbing a reference on the ctx.
5222                  *
5223                  * Since the event cannot get freed while we hold the
5224                  * child_mutex, the context must also exist and have a !0
5225                  * reference count.
5226                  */
5227                 get_ctx(ctx);
5228
5229                 /*
5230                  * Now that we have a ctx ref, we can drop child_mutex, and
5231                  * acquire ctx::mutex without fear of it going away. Then we
5232                  * can re-acquire child_mutex.
5233                  */
5234                 mutex_unlock(&event->child_mutex);
5235                 mutex_lock(&ctx->mutex);
5236                 mutex_lock(&event->child_mutex);
5237
5238                 /*
5239                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5240                  * state, if child is still the first entry, it didn't get freed
5241                  * and we can continue doing so.
5242                  */
5243                 tmp = list_first_entry_or_null(&event->child_list,
5244                                                struct perf_event, child_list);
5245                 if (tmp == child) {
5246                         perf_remove_from_context(child, DETACH_GROUP);
5247                         list_move(&child->child_list, &free_list);
5248                         /*
5249                          * This matches the refcount bump in inherit_event();
5250                          * this can't be the last reference.
5251                          */
5252                         put_event(event);
5253                 }
5254
5255                 mutex_unlock(&event->child_mutex);
5256                 mutex_unlock(&ctx->mutex);
5257                 put_ctx(ctx);
5258                 goto again;
5259         }
5260         mutex_unlock(&event->child_mutex);
5261
5262         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5263                 void *var = &child->ctx->refcount;
5264
5265                 list_del(&child->child_list);
5266                 free_event(child);
5267
5268                 /*
5269                  * Wake any perf_event_free_task() waiting for this event to be
5270                  * freed.
5271                  */
5272                 smp_mb(); /* pairs with wait_var_event() */
5273                 wake_up_var(var);
5274         }
5275
5276 no_ctx:
5277         put_event(event); /* Must be the 'last' reference */
5278         return 0;
5279 }
5280 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5281
5282 /*
5283  * Called when the last reference to the file is gone.
5284  */
5285 static int perf_release(struct inode *inode, struct file *file)
5286 {
5287         perf_event_release_kernel(file->private_data);
5288         return 0;
5289 }
5290
5291 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5292 {
5293         struct perf_event *child;
5294         u64 total = 0;
5295
5296         *enabled = 0;
5297         *running = 0;
5298
5299         mutex_lock(&event->child_mutex);
5300
5301         (void)perf_event_read(event, false);
5302         total += perf_event_count(event);
5303
5304         *enabled += event->total_time_enabled +
5305                         atomic64_read(&event->child_total_time_enabled);
5306         *running += event->total_time_running +
5307                         atomic64_read(&event->child_total_time_running);
5308
5309         list_for_each_entry(child, &event->child_list, child_list) {
5310                 (void)perf_event_read(child, false);
5311                 total += perf_event_count(child);
5312                 *enabled += child->total_time_enabled;
5313                 *running += child->total_time_running;
5314         }
5315         mutex_unlock(&event->child_mutex);
5316
5317         return total;
5318 }
5319
5320 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5321 {
5322         struct perf_event_context *ctx;
5323         u64 count;
5324
5325         ctx = perf_event_ctx_lock(event);
5326         count = __perf_event_read_value(event, enabled, running);
5327         perf_event_ctx_unlock(event, ctx);
5328
5329         return count;
5330 }
5331 EXPORT_SYMBOL_GPL(perf_event_read_value);
5332
5333 static int __perf_read_group_add(struct perf_event *leader,
5334                                         u64 read_format, u64 *values)
5335 {
5336         struct perf_event_context *ctx = leader->ctx;
5337         struct perf_event *sub;
5338         unsigned long flags;
5339         int n = 1; /* skip @nr */
5340         int ret;
5341
5342         ret = perf_event_read(leader, true);
5343         if (ret)
5344                 return ret;
5345
5346         raw_spin_lock_irqsave(&ctx->lock, flags);
5347
5348         /*
5349          * Since we co-schedule groups, {enabled,running} times of siblings
5350          * will be identical to those of the leader, so we only publish one
5351          * set.
5352          */
5353         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5354                 values[n++] += leader->total_time_enabled +
5355                         atomic64_read(&leader->child_total_time_enabled);
5356         }
5357
5358         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5359                 values[n++] += leader->total_time_running +
5360                         atomic64_read(&leader->child_total_time_running);
5361         }
5362
5363         /*
5364          * Write {count,id} tuples for every sibling.
5365          */
5366         values[n++] += perf_event_count(leader);
5367         if (read_format & PERF_FORMAT_ID)
5368                 values[n++] = primary_event_id(leader);
5369
5370         for_each_sibling_event(sub, leader) {
5371                 values[n++] += perf_event_count(sub);
5372                 if (read_format & PERF_FORMAT_ID)
5373                         values[n++] = primary_event_id(sub);
5374         }
5375
5376         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5377         return 0;
5378 }
5379
5380 static int perf_read_group(struct perf_event *event,
5381                                    u64 read_format, char __user *buf)
5382 {
5383         struct perf_event *leader = event->group_leader, *child;
5384         struct perf_event_context *ctx = leader->ctx;
5385         int ret;
5386         u64 *values;
5387
5388         lockdep_assert_held(&ctx->mutex);
5389
5390         values = kzalloc(event->read_size, GFP_KERNEL);
5391         if (!values)
5392                 return -ENOMEM;
5393
5394         values[0] = 1 + leader->nr_siblings;
5395
5396         /*
5397          * By locking the child_mutex of the leader we effectively
5398          * lock the child list of all siblings.. XXX explain how.
5399          */
5400         mutex_lock(&leader->child_mutex);
5401
5402         ret = __perf_read_group_add(leader, read_format, values);
5403         if (ret)
5404                 goto unlock;
5405
5406         list_for_each_entry(child, &leader->child_list, child_list) {
5407                 ret = __perf_read_group_add(child, read_format, values);
5408                 if (ret)
5409                         goto unlock;
5410         }
5411
5412         mutex_unlock(&leader->child_mutex);
5413
5414         ret = event->read_size;
5415         if (copy_to_user(buf, values, event->read_size))
5416                 ret = -EFAULT;
5417         goto out;
5418
5419 unlock:
5420         mutex_unlock(&leader->child_mutex);
5421 out:
5422         kfree(values);
5423         return ret;
5424 }
5425
5426 static int perf_read_one(struct perf_event *event,
5427                                  u64 read_format, char __user *buf)
5428 {
5429         u64 enabled, running;
5430         u64 values[4];
5431         int n = 0;
5432
5433         values[n++] = __perf_event_read_value(event, &enabled, &running);
5434         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5435                 values[n++] = enabled;
5436         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5437                 values[n++] = running;
5438         if (read_format & PERF_FORMAT_ID)
5439                 values[n++] = primary_event_id(event);
5440
5441         if (copy_to_user(buf, values, n * sizeof(u64)))
5442                 return -EFAULT;
5443
5444         return n * sizeof(u64);
5445 }
5446
5447 static bool is_event_hup(struct perf_event *event)
5448 {
5449         bool no_children;
5450
5451         if (event->state > PERF_EVENT_STATE_EXIT)
5452                 return false;
5453
5454         mutex_lock(&event->child_mutex);
5455         no_children = list_empty(&event->child_list);
5456         mutex_unlock(&event->child_mutex);
5457         return no_children;
5458 }
5459
5460 /*
5461  * Read the performance event - simple non blocking version for now
5462  */
5463 static ssize_t
5464 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5465 {
5466         u64 read_format = event->attr.read_format;
5467         int ret;
5468
5469         /*
5470          * Return end-of-file for a read on an event that is in
5471          * error state (i.e. because it was pinned but it couldn't be
5472          * scheduled on to the CPU at some point).
5473          */
5474         if (event->state == PERF_EVENT_STATE_ERROR)
5475                 return 0;
5476
5477         if (count < event->read_size)
5478                 return -ENOSPC;
5479
5480         WARN_ON_ONCE(event->ctx->parent_ctx);
5481         if (read_format & PERF_FORMAT_GROUP)
5482                 ret = perf_read_group(event, read_format, buf);
5483         else
5484                 ret = perf_read_one(event, read_format, buf);
5485
5486         return ret;
5487 }
5488
5489 static ssize_t
5490 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5491 {
5492         struct perf_event *event = file->private_data;
5493         struct perf_event_context *ctx;
5494         int ret;
5495
5496         ret = security_perf_event_read(event);
5497         if (ret)
5498                 return ret;
5499
5500         ctx = perf_event_ctx_lock(event);
5501         ret = __perf_read(event, buf, count);
5502         perf_event_ctx_unlock(event, ctx);
5503
5504         return ret;
5505 }
5506
5507 static __poll_t perf_poll(struct file *file, poll_table *wait)
5508 {
5509         struct perf_event *event = file->private_data;
5510         struct perf_buffer *rb;
5511         __poll_t events = EPOLLHUP;
5512
5513         poll_wait(file, &event->waitq, wait);
5514
5515         if (is_event_hup(event))
5516                 return events;
5517
5518         /*
5519          * Pin the event->rb by taking event->mmap_mutex; otherwise
5520          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5521          */
5522         mutex_lock(&event->mmap_mutex);
5523         rb = event->rb;
5524         if (rb)
5525                 events = atomic_xchg(&rb->poll, 0);
5526         mutex_unlock(&event->mmap_mutex);
5527         return events;
5528 }
5529
5530 static void _perf_event_reset(struct perf_event *event)
5531 {
5532         (void)perf_event_read(event, false);
5533         local64_set(&event->count, 0);
5534         perf_event_update_userpage(event);
5535 }
5536
5537 /* Assume it's not an event with inherit set. */
5538 u64 perf_event_pause(struct perf_event *event, bool reset)
5539 {
5540         struct perf_event_context *ctx;
5541         u64 count;
5542
5543         ctx = perf_event_ctx_lock(event);
5544         WARN_ON_ONCE(event->attr.inherit);
5545         _perf_event_disable(event);
5546         count = local64_read(&event->count);
5547         if (reset)
5548                 local64_set(&event->count, 0);
5549         perf_event_ctx_unlock(event, ctx);
5550
5551         return count;
5552 }
5553 EXPORT_SYMBOL_GPL(perf_event_pause);
5554
5555 /*
5556  * Holding the top-level event's child_mutex means that any
5557  * descendant process that has inherited this event will block
5558  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5559  * task existence requirements of perf_event_enable/disable.
5560  */
5561 static void perf_event_for_each_child(struct perf_event *event,
5562                                         void (*func)(struct perf_event *))
5563 {
5564         struct perf_event *child;
5565
5566         WARN_ON_ONCE(event->ctx->parent_ctx);
5567
5568         mutex_lock(&event->child_mutex);
5569         func(event);
5570         list_for_each_entry(child, &event->child_list, child_list)
5571                 func(child);
5572         mutex_unlock(&event->child_mutex);
5573 }
5574
5575 static void perf_event_for_each(struct perf_event *event,
5576                                   void (*func)(struct perf_event *))
5577 {
5578         struct perf_event_context *ctx = event->ctx;
5579         struct perf_event *sibling;
5580
5581         lockdep_assert_held(&ctx->mutex);
5582
5583         event = event->group_leader;
5584
5585         perf_event_for_each_child(event, func);
5586         for_each_sibling_event(sibling, event)
5587                 perf_event_for_each_child(sibling, func);
5588 }
5589
5590 static void __perf_event_period(struct perf_event *event,
5591                                 struct perf_cpu_context *cpuctx,
5592                                 struct perf_event_context *ctx,
5593                                 void *info)
5594 {
5595         u64 value = *((u64 *)info);
5596         bool active;
5597
5598         if (event->attr.freq) {
5599                 event->attr.sample_freq = value;
5600         } else {
5601                 event->attr.sample_period = value;
5602                 event->hw.sample_period = value;
5603         }
5604
5605         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5606         if (active) {
5607                 perf_pmu_disable(ctx->pmu);
5608                 /*
5609                  * We could be throttled; unthrottle now to avoid the tick
5610                  * trying to unthrottle while we already re-started the event.
5611                  */
5612                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5613                         event->hw.interrupts = 0;
5614                         perf_log_throttle(event, 1);
5615                 }
5616                 event->pmu->stop(event, PERF_EF_UPDATE);
5617         }
5618
5619         local64_set(&event->hw.period_left, 0);
5620
5621         if (active) {
5622                 event->pmu->start(event, PERF_EF_RELOAD);
5623                 perf_pmu_enable(ctx->pmu);
5624         }
5625 }
5626
5627 static int perf_event_check_period(struct perf_event *event, u64 value)
5628 {
5629         return event->pmu->check_period(event, value);
5630 }
5631
5632 static int _perf_event_period(struct perf_event *event, u64 value)
5633 {
5634         if (!is_sampling_event(event))
5635                 return -EINVAL;
5636
5637         if (!value)
5638                 return -EINVAL;
5639
5640         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5641                 return -EINVAL;
5642
5643         if (perf_event_check_period(event, value))
5644                 return -EINVAL;
5645
5646         if (!event->attr.freq && (value & (1ULL << 63)))
5647                 return -EINVAL;
5648
5649         event_function_call(event, __perf_event_period, &value);
5650
5651         return 0;
5652 }
5653
5654 int perf_event_period(struct perf_event *event, u64 value)
5655 {
5656         struct perf_event_context *ctx;
5657         int ret;
5658
5659         ctx = perf_event_ctx_lock(event);
5660         ret = _perf_event_period(event, value);
5661         perf_event_ctx_unlock(event, ctx);
5662
5663         return ret;
5664 }
5665 EXPORT_SYMBOL_GPL(perf_event_period);
5666
5667 static const struct file_operations perf_fops;
5668
5669 static inline int perf_fget_light(int fd, struct fd *p)
5670 {
5671         struct fd f = fdget(fd);
5672         if (!f.file)
5673                 return -EBADF;
5674
5675         if (f.file->f_op != &perf_fops) {
5676                 fdput(f);
5677                 return -EBADF;
5678         }
5679         *p = f;
5680         return 0;
5681 }
5682
5683 static int perf_event_set_output(struct perf_event *event,
5684                                  struct perf_event *output_event);
5685 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5686 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5687                           struct perf_event_attr *attr);
5688
5689 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5690 {
5691         void (*func)(struct perf_event *);
5692         u32 flags = arg;
5693
5694         switch (cmd) {
5695         case PERF_EVENT_IOC_ENABLE:
5696                 func = _perf_event_enable;
5697                 break;
5698         case PERF_EVENT_IOC_DISABLE:
5699                 func = _perf_event_disable;
5700                 break;
5701         case PERF_EVENT_IOC_RESET:
5702                 func = _perf_event_reset;
5703                 break;
5704
5705         case PERF_EVENT_IOC_REFRESH:
5706                 return _perf_event_refresh(event, arg);
5707
5708         case PERF_EVENT_IOC_PERIOD:
5709         {
5710                 u64 value;
5711
5712                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5713                         return -EFAULT;
5714
5715                 return _perf_event_period(event, value);
5716         }
5717         case PERF_EVENT_IOC_ID:
5718         {
5719                 u64 id = primary_event_id(event);
5720
5721                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5722                         return -EFAULT;
5723                 return 0;
5724         }
5725
5726         case PERF_EVENT_IOC_SET_OUTPUT:
5727         {
5728                 int ret;
5729                 if (arg != -1) {
5730                         struct perf_event *output_event;
5731                         struct fd output;
5732                         ret = perf_fget_light(arg, &output);
5733                         if (ret)
5734                                 return ret;
5735                         output_event = output.file->private_data;
5736                         ret = perf_event_set_output(event, output_event);
5737                         fdput(output);
5738                 } else {
5739                         ret = perf_event_set_output(event, NULL);
5740                 }
5741                 return ret;
5742         }
5743
5744         case PERF_EVENT_IOC_SET_FILTER:
5745                 return perf_event_set_filter(event, (void __user *)arg);
5746
5747         case PERF_EVENT_IOC_SET_BPF:
5748         {
5749                 struct bpf_prog *prog;
5750                 int err;
5751
5752                 prog = bpf_prog_get(arg);
5753                 if (IS_ERR(prog))
5754                         return PTR_ERR(prog);
5755
5756                 err = perf_event_set_bpf_prog(event, prog, 0);
5757                 if (err) {
5758                         bpf_prog_put(prog);
5759                         return err;
5760                 }
5761
5762                 return 0;
5763         }
5764
5765         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5766                 struct perf_buffer *rb;
5767
5768                 rcu_read_lock();
5769                 rb = rcu_dereference(event->rb);
5770                 if (!rb || !rb->nr_pages) {
5771                         rcu_read_unlock();
5772                         return -EINVAL;
5773                 }
5774                 rb_toggle_paused(rb, !!arg);
5775                 rcu_read_unlock();
5776                 return 0;
5777         }
5778
5779         case PERF_EVENT_IOC_QUERY_BPF:
5780                 return perf_event_query_prog_array(event, (void __user *)arg);
5781
5782         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5783                 struct perf_event_attr new_attr;
5784                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5785                                          &new_attr);
5786
5787                 if (err)
5788                         return err;
5789
5790                 return perf_event_modify_attr(event,  &new_attr);
5791         }
5792         default:
5793                 return -ENOTTY;
5794         }
5795
5796         if (flags & PERF_IOC_FLAG_GROUP)
5797                 perf_event_for_each(event, func);
5798         else
5799                 perf_event_for_each_child(event, func);
5800
5801         return 0;
5802 }
5803
5804 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5805 {
5806         struct perf_event *event = file->private_data;
5807         struct perf_event_context *ctx;
5808         long ret;
5809
5810         /* Treat ioctl like writes as it is likely a mutating operation. */
5811         ret = security_perf_event_write(event);
5812         if (ret)
5813                 return ret;
5814
5815         ctx = perf_event_ctx_lock(event);
5816         ret = _perf_ioctl(event, cmd, arg);
5817         perf_event_ctx_unlock(event, ctx);
5818
5819         return ret;
5820 }
5821
5822 #ifdef CONFIG_COMPAT
5823 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5824                                 unsigned long arg)
5825 {
5826         switch (_IOC_NR(cmd)) {
5827         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5828         case _IOC_NR(PERF_EVENT_IOC_ID):
5829         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5830         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5831                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5832                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5833                         cmd &= ~IOCSIZE_MASK;
5834                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5835                 }
5836                 break;
5837         }
5838         return perf_ioctl(file, cmd, arg);
5839 }
5840 #else
5841 # define perf_compat_ioctl NULL
5842 #endif
5843
5844 int perf_event_task_enable(void)
5845 {
5846         struct perf_event_context *ctx;
5847         struct perf_event *event;
5848
5849         mutex_lock(&current->perf_event_mutex);
5850         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5851                 ctx = perf_event_ctx_lock(event);
5852                 perf_event_for_each_child(event, _perf_event_enable);
5853                 perf_event_ctx_unlock(event, ctx);
5854         }
5855         mutex_unlock(&current->perf_event_mutex);
5856
5857         return 0;
5858 }
5859
5860 int perf_event_task_disable(void)
5861 {
5862         struct perf_event_context *ctx;
5863         struct perf_event *event;
5864
5865         mutex_lock(&current->perf_event_mutex);
5866         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5867                 ctx = perf_event_ctx_lock(event);
5868                 perf_event_for_each_child(event, _perf_event_disable);
5869                 perf_event_ctx_unlock(event, ctx);
5870         }
5871         mutex_unlock(&current->perf_event_mutex);
5872
5873         return 0;
5874 }
5875
5876 static int perf_event_index(struct perf_event *event)
5877 {
5878         if (event->hw.state & PERF_HES_STOPPED)
5879                 return 0;
5880
5881         if (event->state != PERF_EVENT_STATE_ACTIVE)
5882                 return 0;
5883
5884         return event->pmu->event_idx(event);
5885 }
5886
5887 static void perf_event_init_userpage(struct perf_event *event)
5888 {
5889         struct perf_event_mmap_page *userpg;
5890         struct perf_buffer *rb;
5891
5892         rcu_read_lock();
5893         rb = rcu_dereference(event->rb);
5894         if (!rb)
5895                 goto unlock;
5896
5897         userpg = rb->user_page;
5898
5899         /* Allow new userspace to detect that bit 0 is deprecated */
5900         userpg->cap_bit0_is_deprecated = 1;
5901         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5902         userpg->data_offset = PAGE_SIZE;
5903         userpg->data_size = perf_data_size(rb);
5904
5905 unlock:
5906         rcu_read_unlock();
5907 }
5908
5909 void __weak arch_perf_update_userpage(
5910         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5911 {
5912 }
5913
5914 /*
5915  * Callers need to ensure there can be no nesting of this function, otherwise
5916  * the seqlock logic goes bad. We can not serialize this because the arch
5917  * code calls this from NMI context.
5918  */
5919 void perf_event_update_userpage(struct perf_event *event)
5920 {
5921         struct perf_event_mmap_page *userpg;
5922         struct perf_buffer *rb;
5923         u64 enabled, running, now;
5924
5925         rcu_read_lock();
5926         rb = rcu_dereference(event->rb);
5927         if (!rb)
5928                 goto unlock;
5929
5930         /*
5931          * compute total_time_enabled, total_time_running
5932          * based on snapshot values taken when the event
5933          * was last scheduled in.
5934          *
5935          * we cannot simply called update_context_time()
5936          * because of locking issue as we can be called in
5937          * NMI context
5938          */
5939         calc_timer_values(event, &now, &enabled, &running);
5940
5941         userpg = rb->user_page;
5942         /*
5943          * Disable preemption to guarantee consistent time stamps are stored to
5944          * the user page.
5945          */
5946         preempt_disable();
5947         ++userpg->lock;
5948         barrier();
5949         userpg->index = perf_event_index(event);
5950         userpg->offset = perf_event_count(event);
5951         if (userpg->index)
5952                 userpg->offset -= local64_read(&event->hw.prev_count);
5953
5954         userpg->time_enabled = enabled +
5955                         atomic64_read(&event->child_total_time_enabled);
5956
5957         userpg->time_running = running +
5958                         atomic64_read(&event->child_total_time_running);
5959
5960         arch_perf_update_userpage(event, userpg, now);
5961
5962         barrier();
5963         ++userpg->lock;
5964         preempt_enable();
5965 unlock:
5966         rcu_read_unlock();
5967 }
5968 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5969
5970 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5971 {
5972         struct perf_event *event = vmf->vma->vm_file->private_data;
5973         struct perf_buffer *rb;
5974         vm_fault_t ret = VM_FAULT_SIGBUS;
5975
5976         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5977                 if (vmf->pgoff == 0)
5978                         ret = 0;
5979                 return ret;
5980         }
5981
5982         rcu_read_lock();
5983         rb = rcu_dereference(event->rb);
5984         if (!rb)
5985                 goto unlock;
5986
5987         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5988                 goto unlock;
5989
5990         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5991         if (!vmf->page)
5992                 goto unlock;
5993
5994         get_page(vmf->page);
5995         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5996         vmf->page->index   = vmf->pgoff;
5997
5998         ret = 0;
5999 unlock:
6000         rcu_read_unlock();
6001
6002         return ret;
6003 }
6004
6005 static void ring_buffer_attach(struct perf_event *event,
6006                                struct perf_buffer *rb)
6007 {
6008         struct perf_buffer *old_rb = NULL;
6009         unsigned long flags;
6010
6011         WARN_ON_ONCE(event->parent);
6012
6013         if (event->rb) {
6014                 /*
6015                  * Should be impossible, we set this when removing
6016                  * event->rb_entry and wait/clear when adding event->rb_entry.
6017                  */
6018                 WARN_ON_ONCE(event->rcu_pending);
6019
6020                 old_rb = event->rb;
6021                 spin_lock_irqsave(&old_rb->event_lock, flags);
6022                 list_del_rcu(&event->rb_entry);
6023                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6024
6025                 event->rcu_batches = get_state_synchronize_rcu();
6026                 event->rcu_pending = 1;
6027         }
6028
6029         if (rb) {
6030                 if (event->rcu_pending) {
6031                         cond_synchronize_rcu(event->rcu_batches);
6032                         event->rcu_pending = 0;
6033                 }
6034
6035                 spin_lock_irqsave(&rb->event_lock, flags);
6036                 list_add_rcu(&event->rb_entry, &rb->event_list);
6037                 spin_unlock_irqrestore(&rb->event_lock, flags);
6038         }
6039
6040         /*
6041          * Avoid racing with perf_mmap_close(AUX): stop the event
6042          * before swizzling the event::rb pointer; if it's getting
6043          * unmapped, its aux_mmap_count will be 0 and it won't
6044          * restart. See the comment in __perf_pmu_output_stop().
6045          *
6046          * Data will inevitably be lost when set_output is done in
6047          * mid-air, but then again, whoever does it like this is
6048          * not in for the data anyway.
6049          */
6050         if (has_aux(event))
6051                 perf_event_stop(event, 0);
6052
6053         rcu_assign_pointer(event->rb, rb);
6054
6055         if (old_rb) {
6056                 ring_buffer_put(old_rb);
6057                 /*
6058                  * Since we detached before setting the new rb, so that we
6059                  * could attach the new rb, we could have missed a wakeup.
6060                  * Provide it now.
6061                  */
6062                 wake_up_all(&event->waitq);
6063         }
6064 }
6065
6066 static void ring_buffer_wakeup(struct perf_event *event)
6067 {
6068         struct perf_buffer *rb;
6069
6070         if (event->parent)
6071                 event = event->parent;
6072
6073         rcu_read_lock();
6074         rb = rcu_dereference(event->rb);
6075         if (rb) {
6076                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6077                         wake_up_all(&event->waitq);
6078         }
6079         rcu_read_unlock();
6080 }
6081
6082 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6083 {
6084         struct perf_buffer *rb;
6085
6086         if (event->parent)
6087                 event = event->parent;
6088
6089         rcu_read_lock();
6090         rb = rcu_dereference(event->rb);
6091         if (rb) {
6092                 if (!refcount_inc_not_zero(&rb->refcount))
6093                         rb = NULL;
6094         }
6095         rcu_read_unlock();
6096
6097         return rb;
6098 }
6099
6100 void ring_buffer_put(struct perf_buffer *rb)
6101 {
6102         if (!refcount_dec_and_test(&rb->refcount))
6103                 return;
6104
6105         WARN_ON_ONCE(!list_empty(&rb->event_list));
6106
6107         call_rcu(&rb->rcu_head, rb_free_rcu);
6108 }
6109
6110 static void perf_mmap_open(struct vm_area_struct *vma)
6111 {
6112         struct perf_event *event = vma->vm_file->private_data;
6113
6114         atomic_inc(&event->mmap_count);
6115         atomic_inc(&event->rb->mmap_count);
6116
6117         if (vma->vm_pgoff)
6118                 atomic_inc(&event->rb->aux_mmap_count);
6119
6120         if (event->pmu->event_mapped)
6121                 event->pmu->event_mapped(event, vma->vm_mm);
6122 }
6123
6124 static void perf_pmu_output_stop(struct perf_event *event);
6125
6126 /*
6127  * A buffer can be mmap()ed multiple times; either directly through the same
6128  * event, or through other events by use of perf_event_set_output().
6129  *
6130  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6131  * the buffer here, where we still have a VM context. This means we need
6132  * to detach all events redirecting to us.
6133  */
6134 static void perf_mmap_close(struct vm_area_struct *vma)
6135 {
6136         struct perf_event *event = vma->vm_file->private_data;
6137         struct perf_buffer *rb = ring_buffer_get(event);
6138         struct user_struct *mmap_user = rb->mmap_user;
6139         int mmap_locked = rb->mmap_locked;
6140         unsigned long size = perf_data_size(rb);
6141         bool detach_rest = false;
6142
6143         if (event->pmu->event_unmapped)
6144                 event->pmu->event_unmapped(event, vma->vm_mm);
6145
6146         /*
6147          * rb->aux_mmap_count will always drop before rb->mmap_count and
6148          * event->mmap_count, so it is ok to use event->mmap_mutex to
6149          * serialize with perf_mmap here.
6150          */
6151         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6152             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6153                 /*
6154                  * Stop all AUX events that are writing to this buffer,
6155                  * so that we can free its AUX pages and corresponding PMU
6156                  * data. Note that after rb::aux_mmap_count dropped to zero,
6157                  * they won't start any more (see perf_aux_output_begin()).
6158                  */
6159                 perf_pmu_output_stop(event);
6160
6161                 /* now it's safe to free the pages */
6162                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6163                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6164
6165                 /* this has to be the last one */
6166                 rb_free_aux(rb);
6167                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6168
6169                 mutex_unlock(&event->mmap_mutex);
6170         }
6171
6172         if (atomic_dec_and_test(&rb->mmap_count))
6173                 detach_rest = true;
6174
6175         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6176                 goto out_put;
6177
6178         ring_buffer_attach(event, NULL);
6179         mutex_unlock(&event->mmap_mutex);
6180
6181         /* If there's still other mmap()s of this buffer, we're done. */
6182         if (!detach_rest)
6183                 goto out_put;
6184
6185         /*
6186          * No other mmap()s, detach from all other events that might redirect
6187          * into the now unreachable buffer. Somewhat complicated by the
6188          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6189          */
6190 again:
6191         rcu_read_lock();
6192         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6193                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6194                         /*
6195                          * This event is en-route to free_event() which will
6196                          * detach it and remove it from the list.
6197                          */
6198                         continue;
6199                 }
6200                 rcu_read_unlock();
6201
6202                 mutex_lock(&event->mmap_mutex);
6203                 /*
6204                  * Check we didn't race with perf_event_set_output() which can
6205                  * swizzle the rb from under us while we were waiting to
6206                  * acquire mmap_mutex.
6207                  *
6208                  * If we find a different rb; ignore this event, a next
6209                  * iteration will no longer find it on the list. We have to
6210                  * still restart the iteration to make sure we're not now
6211                  * iterating the wrong list.
6212                  */
6213                 if (event->rb == rb)
6214                         ring_buffer_attach(event, NULL);
6215
6216                 mutex_unlock(&event->mmap_mutex);
6217                 put_event(event);
6218
6219                 /*
6220                  * Restart the iteration; either we're on the wrong list or
6221                  * destroyed its integrity by doing a deletion.
6222                  */
6223                 goto again;
6224         }
6225         rcu_read_unlock();
6226
6227         /*
6228          * It could be there's still a few 0-ref events on the list; they'll
6229          * get cleaned up by free_event() -- they'll also still have their
6230          * ref on the rb and will free it whenever they are done with it.
6231          *
6232          * Aside from that, this buffer is 'fully' detached and unmapped,
6233          * undo the VM accounting.
6234          */
6235
6236         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6237                         &mmap_user->locked_vm);
6238         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6239         free_uid(mmap_user);
6240
6241 out_put:
6242         ring_buffer_put(rb); /* could be last */
6243 }
6244
6245 static const struct vm_operations_struct perf_mmap_vmops = {
6246         .open           = perf_mmap_open,
6247         .close          = perf_mmap_close, /* non mergeable */
6248         .fault          = perf_mmap_fault,
6249         .page_mkwrite   = perf_mmap_fault,
6250 };
6251
6252 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6253 {
6254         struct perf_event *event = file->private_data;
6255         unsigned long user_locked, user_lock_limit;
6256         struct user_struct *user = current_user();
6257         struct perf_buffer *rb = NULL;
6258         unsigned long locked, lock_limit;
6259         unsigned long vma_size;
6260         unsigned long nr_pages;
6261         long user_extra = 0, extra = 0;
6262         int ret = 0, flags = 0;
6263
6264         /*
6265          * Don't allow mmap() of inherited per-task counters. This would
6266          * create a performance issue due to all children writing to the
6267          * same rb.
6268          */
6269         if (event->cpu == -1 && event->attr.inherit)
6270                 return -EINVAL;
6271
6272         if (!(vma->vm_flags & VM_SHARED))
6273                 return -EINVAL;
6274
6275         ret = security_perf_event_read(event);
6276         if (ret)
6277                 return ret;
6278
6279         vma_size = vma->vm_end - vma->vm_start;
6280
6281         if (vma->vm_pgoff == 0) {
6282                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6283         } else {
6284                 /*
6285                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6286                  * mapped, all subsequent mappings should have the same size
6287                  * and offset. Must be above the normal perf buffer.
6288                  */
6289                 u64 aux_offset, aux_size;
6290
6291                 if (!event->rb)
6292                         return -EINVAL;
6293
6294                 nr_pages = vma_size / PAGE_SIZE;
6295
6296                 mutex_lock(&event->mmap_mutex);
6297                 ret = -EINVAL;
6298
6299                 rb = event->rb;
6300                 if (!rb)
6301                         goto aux_unlock;
6302
6303                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6304                 aux_size = READ_ONCE(rb->user_page->aux_size);
6305
6306                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6307                         goto aux_unlock;
6308
6309                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6310                         goto aux_unlock;
6311
6312                 /* already mapped with a different offset */
6313                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6314                         goto aux_unlock;
6315
6316                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6317                         goto aux_unlock;
6318
6319                 /* already mapped with a different size */
6320                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6321                         goto aux_unlock;
6322
6323                 if (!is_power_of_2(nr_pages))
6324                         goto aux_unlock;
6325
6326                 if (!atomic_inc_not_zero(&rb->mmap_count))
6327                         goto aux_unlock;
6328
6329                 if (rb_has_aux(rb)) {
6330                         atomic_inc(&rb->aux_mmap_count);
6331                         ret = 0;
6332                         goto unlock;
6333                 }
6334
6335                 atomic_set(&rb->aux_mmap_count, 1);
6336                 user_extra = nr_pages;
6337
6338                 goto accounting;
6339         }
6340
6341         /*
6342          * If we have rb pages ensure they're a power-of-two number, so we
6343          * can do bitmasks instead of modulo.
6344          */
6345         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6346                 return -EINVAL;
6347
6348         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6349                 return -EINVAL;
6350
6351         WARN_ON_ONCE(event->ctx->parent_ctx);
6352 again:
6353         mutex_lock(&event->mmap_mutex);
6354         if (event->rb) {
6355                 if (event->rb->nr_pages != nr_pages) {
6356                         ret = -EINVAL;
6357                         goto unlock;
6358                 }
6359
6360                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6361                         /*
6362                          * Raced against perf_mmap_close() through
6363                          * perf_event_set_output(). Try again, hope for better
6364                          * luck.
6365                          */
6366                         mutex_unlock(&event->mmap_mutex);
6367                         goto again;
6368                 }
6369
6370                 goto unlock;
6371         }
6372
6373         user_extra = nr_pages + 1;
6374
6375 accounting:
6376         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6377
6378         /*
6379          * Increase the limit linearly with more CPUs:
6380          */
6381         user_lock_limit *= num_online_cpus();
6382
6383         user_locked = atomic_long_read(&user->locked_vm);
6384
6385         /*
6386          * sysctl_perf_event_mlock may have changed, so that
6387          *     user->locked_vm > user_lock_limit
6388          */
6389         if (user_locked > user_lock_limit)
6390                 user_locked = user_lock_limit;
6391         user_locked += user_extra;
6392
6393         if (user_locked > user_lock_limit) {
6394                 /*
6395                  * charge locked_vm until it hits user_lock_limit;
6396                  * charge the rest from pinned_vm
6397                  */
6398                 extra = user_locked - user_lock_limit;
6399                 user_extra -= extra;
6400         }
6401
6402         lock_limit = rlimit(RLIMIT_MEMLOCK);
6403         lock_limit >>= PAGE_SHIFT;
6404         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6405
6406         if ((locked > lock_limit) && perf_is_paranoid() &&
6407                 !capable(CAP_IPC_LOCK)) {
6408                 ret = -EPERM;
6409                 goto unlock;
6410         }
6411
6412         WARN_ON(!rb && event->rb);
6413
6414         if (vma->vm_flags & VM_WRITE)
6415                 flags |= RING_BUFFER_WRITABLE;
6416
6417         if (!rb) {
6418                 rb = rb_alloc(nr_pages,
6419                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6420                               event->cpu, flags);
6421
6422                 if (!rb) {
6423                         ret = -ENOMEM;
6424                         goto unlock;
6425                 }
6426
6427                 atomic_set(&rb->mmap_count, 1);
6428                 rb->mmap_user = get_current_user();
6429                 rb->mmap_locked = extra;
6430
6431                 ring_buffer_attach(event, rb);
6432
6433                 perf_event_update_time(event);
6434                 perf_event_init_userpage(event);
6435                 perf_event_update_userpage(event);
6436         } else {
6437                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6438                                    event->attr.aux_watermark, flags);
6439                 if (!ret)
6440                         rb->aux_mmap_locked = extra;
6441         }
6442
6443 unlock:
6444         if (!ret) {
6445                 atomic_long_add(user_extra, &user->locked_vm);
6446                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6447
6448                 atomic_inc(&event->mmap_count);
6449         } else if (rb) {
6450                 atomic_dec(&rb->mmap_count);
6451         }
6452 aux_unlock:
6453         mutex_unlock(&event->mmap_mutex);
6454
6455         /*
6456          * Since pinned accounting is per vm we cannot allow fork() to copy our
6457          * vma.
6458          */
6459         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6460         vma->vm_ops = &perf_mmap_vmops;
6461
6462         if (event->pmu->event_mapped)
6463                 event->pmu->event_mapped(event, vma->vm_mm);
6464
6465         return ret;
6466 }
6467
6468 static int perf_fasync(int fd, struct file *filp, int on)
6469 {
6470         struct inode *inode = file_inode(filp);
6471         struct perf_event *event = filp->private_data;
6472         int retval;
6473
6474         inode_lock(inode);
6475         retval = fasync_helper(fd, filp, on, &event->fasync);
6476         inode_unlock(inode);
6477
6478         if (retval < 0)
6479                 return retval;
6480
6481         return 0;
6482 }
6483
6484 static const struct file_operations perf_fops = {
6485         .llseek                 = no_llseek,
6486         .release                = perf_release,
6487         .read                   = perf_read,
6488         .poll                   = perf_poll,
6489         .unlocked_ioctl         = perf_ioctl,
6490         .compat_ioctl           = perf_compat_ioctl,
6491         .mmap                   = perf_mmap,
6492         .fasync                 = perf_fasync,
6493 };
6494
6495 /*
6496  * Perf event wakeup
6497  *
6498  * If there's data, ensure we set the poll() state and publish everything
6499  * to user-space before waking everybody up.
6500  */
6501
6502 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6503 {
6504         /* only the parent has fasync state */
6505         if (event->parent)
6506                 event = event->parent;
6507         return &event->fasync;
6508 }
6509
6510 void perf_event_wakeup(struct perf_event *event)
6511 {
6512         ring_buffer_wakeup(event);
6513
6514         if (event->pending_kill) {
6515                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6516                 event->pending_kill = 0;
6517         }
6518 }
6519
6520 static void perf_sigtrap(struct perf_event *event)
6521 {
6522         /*
6523          * We'd expect this to only occur if the irq_work is delayed and either
6524          * ctx->task or current has changed in the meantime. This can be the
6525          * case on architectures that do not implement arch_irq_work_raise().
6526          */
6527         if (WARN_ON_ONCE(event->ctx->task != current))
6528                 return;
6529
6530         /*
6531          * perf_pending_event() can race with the task exiting.
6532          */
6533         if (current->flags & PF_EXITING)
6534                 return;
6535
6536         force_sig_perf((void __user *)event->pending_addr,
6537                        event->attr.type, event->attr.sig_data);
6538 }
6539
6540 static void perf_pending_event_disable(struct perf_event *event)
6541 {
6542         int cpu = READ_ONCE(event->pending_disable);
6543
6544         if (cpu < 0)
6545                 return;
6546
6547         if (cpu == smp_processor_id()) {
6548                 WRITE_ONCE(event->pending_disable, -1);
6549
6550                 if (event->attr.sigtrap) {
6551                         perf_sigtrap(event);
6552                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6553                         return;
6554                 }
6555
6556                 perf_event_disable_local(event);
6557                 return;
6558         }
6559
6560         /*
6561          *  CPU-A                       CPU-B
6562          *
6563          *  perf_event_disable_inatomic()
6564          *    @pending_disable = CPU-A;
6565          *    irq_work_queue();
6566          *
6567          *  sched-out
6568          *    @pending_disable = -1;
6569          *
6570          *                              sched-in
6571          *                              perf_event_disable_inatomic()
6572          *                                @pending_disable = CPU-B;
6573          *                                irq_work_queue(); // FAILS
6574          *
6575          *  irq_work_run()
6576          *    perf_pending_event()
6577          *
6578          * But the event runs on CPU-B and wants disabling there.
6579          */
6580         irq_work_queue_on(&event->pending, cpu);
6581 }
6582
6583 static void perf_pending_event(struct irq_work *entry)
6584 {
6585         struct perf_event *event = container_of(entry, struct perf_event, pending);
6586         int rctx;
6587
6588         rctx = perf_swevent_get_recursion_context();
6589         /*
6590          * If we 'fail' here, that's OK, it means recursion is already disabled
6591          * and we won't recurse 'further'.
6592          */
6593
6594         perf_pending_event_disable(event);
6595
6596         if (event->pending_wakeup) {
6597                 event->pending_wakeup = 0;
6598                 perf_event_wakeup(event);
6599         }
6600
6601         if (rctx >= 0)
6602                 perf_swevent_put_recursion_context(rctx);
6603 }
6604
6605 #ifdef CONFIG_GUEST_PERF_EVENTS
6606 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6607
6608 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6609 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6610 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6611
6612 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6613 {
6614         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6615                 return;
6616
6617         rcu_assign_pointer(perf_guest_cbs, cbs);
6618         static_call_update(__perf_guest_state, cbs->state);
6619         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6620
6621         /* Implementing ->handle_intel_pt_intr is optional. */
6622         if (cbs->handle_intel_pt_intr)
6623                 static_call_update(__perf_guest_handle_intel_pt_intr,
6624                                    cbs->handle_intel_pt_intr);
6625 }
6626 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6627
6628 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6629 {
6630         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6631                 return;
6632
6633         rcu_assign_pointer(perf_guest_cbs, NULL);
6634         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6635         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6636         static_call_update(__perf_guest_handle_intel_pt_intr,
6637                            (void *)&__static_call_return0);
6638         synchronize_rcu();
6639 }
6640 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6641 #endif
6642
6643 static void
6644 perf_output_sample_regs(struct perf_output_handle *handle,
6645                         struct pt_regs *regs, u64 mask)
6646 {
6647         int bit;
6648         DECLARE_BITMAP(_mask, 64);
6649
6650         bitmap_from_u64(_mask, mask);
6651         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6652                 u64 val;
6653
6654                 val = perf_reg_value(regs, bit);
6655                 perf_output_put(handle, val);
6656         }
6657 }
6658
6659 static void perf_sample_regs_user(struct perf_regs *regs_user,
6660                                   struct pt_regs *regs)
6661 {
6662         if (user_mode(regs)) {
6663                 regs_user->abi = perf_reg_abi(current);
6664                 regs_user->regs = regs;
6665         } else if (!(current->flags & PF_KTHREAD)) {
6666                 perf_get_regs_user(regs_user, regs);
6667         } else {
6668                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6669                 regs_user->regs = NULL;
6670         }
6671 }
6672
6673 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6674                                   struct pt_regs *regs)
6675 {
6676         regs_intr->regs = regs;
6677         regs_intr->abi  = perf_reg_abi(current);
6678 }
6679
6680
6681 /*
6682  * Get remaining task size from user stack pointer.
6683  *
6684  * It'd be better to take stack vma map and limit this more
6685  * precisely, but there's no way to get it safely under interrupt,
6686  * so using TASK_SIZE as limit.
6687  */
6688 static u64 perf_ustack_task_size(struct pt_regs *regs)
6689 {
6690         unsigned long addr = perf_user_stack_pointer(regs);
6691
6692         if (!addr || addr >= TASK_SIZE)
6693                 return 0;
6694
6695         return TASK_SIZE - addr;
6696 }
6697
6698 static u16
6699 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6700                         struct pt_regs *regs)
6701 {
6702         u64 task_size;
6703
6704         /* No regs, no stack pointer, no dump. */
6705         if (!regs)
6706                 return 0;
6707
6708         /*
6709          * Check if we fit in with the requested stack size into the:
6710          * - TASK_SIZE
6711          *   If we don't, we limit the size to the TASK_SIZE.
6712          *
6713          * - remaining sample size
6714          *   If we don't, we customize the stack size to
6715          *   fit in to the remaining sample size.
6716          */
6717
6718         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6719         stack_size = min(stack_size, (u16) task_size);
6720
6721         /* Current header size plus static size and dynamic size. */
6722         header_size += 2 * sizeof(u64);
6723
6724         /* Do we fit in with the current stack dump size? */
6725         if ((u16) (header_size + stack_size) < header_size) {
6726                 /*
6727                  * If we overflow the maximum size for the sample,
6728                  * we customize the stack dump size to fit in.
6729                  */
6730                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6731                 stack_size = round_up(stack_size, sizeof(u64));
6732         }
6733
6734         return stack_size;
6735 }
6736
6737 static void
6738 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6739                           struct pt_regs *regs)
6740 {
6741         /* Case of a kernel thread, nothing to dump */
6742         if (!regs) {
6743                 u64 size = 0;
6744                 perf_output_put(handle, size);
6745         } else {
6746                 unsigned long sp;
6747                 unsigned int rem;
6748                 u64 dyn_size;
6749                 mm_segment_t fs;
6750
6751                 /*
6752                  * We dump:
6753                  * static size
6754                  *   - the size requested by user or the best one we can fit
6755                  *     in to the sample max size
6756                  * data
6757                  *   - user stack dump data
6758                  * dynamic size
6759                  *   - the actual dumped size
6760                  */
6761
6762                 /* Static size. */
6763                 perf_output_put(handle, dump_size);
6764
6765                 /* Data. */
6766                 sp = perf_user_stack_pointer(regs);
6767                 fs = force_uaccess_begin();
6768                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6769                 force_uaccess_end(fs);
6770                 dyn_size = dump_size - rem;
6771
6772                 perf_output_skip(handle, rem);
6773
6774                 /* Dynamic size. */
6775                 perf_output_put(handle, dyn_size);
6776         }
6777 }
6778
6779 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6780                                           struct perf_sample_data *data,
6781                                           size_t size)
6782 {
6783         struct perf_event *sampler = event->aux_event;
6784         struct perf_buffer *rb;
6785
6786         data->aux_size = 0;
6787
6788         if (!sampler)
6789                 goto out;
6790
6791         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6792                 goto out;
6793
6794         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6795                 goto out;
6796
6797         rb = ring_buffer_get(sampler);
6798         if (!rb)
6799                 goto out;
6800
6801         /*
6802          * If this is an NMI hit inside sampling code, don't take
6803          * the sample. See also perf_aux_sample_output().
6804          */
6805         if (READ_ONCE(rb->aux_in_sampling)) {
6806                 data->aux_size = 0;
6807         } else {
6808                 size = min_t(size_t, size, perf_aux_size(rb));
6809                 data->aux_size = ALIGN(size, sizeof(u64));
6810         }
6811         ring_buffer_put(rb);
6812
6813 out:
6814         return data->aux_size;
6815 }
6816
6817 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6818                                  struct perf_event *event,
6819                                  struct perf_output_handle *handle,
6820                                  unsigned long size)
6821 {
6822         unsigned long flags;
6823         long ret;
6824
6825         /*
6826          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6827          * paths. If we start calling them in NMI context, they may race with
6828          * the IRQ ones, that is, for example, re-starting an event that's just
6829          * been stopped, which is why we're using a separate callback that
6830          * doesn't change the event state.
6831          *
6832          * IRQs need to be disabled to prevent IPIs from racing with us.
6833          */
6834         local_irq_save(flags);
6835         /*
6836          * Guard against NMI hits inside the critical section;
6837          * see also perf_prepare_sample_aux().
6838          */
6839         WRITE_ONCE(rb->aux_in_sampling, 1);
6840         barrier();
6841
6842         ret = event->pmu->snapshot_aux(event, handle, size);
6843
6844         barrier();
6845         WRITE_ONCE(rb->aux_in_sampling, 0);
6846         local_irq_restore(flags);
6847
6848         return ret;
6849 }
6850
6851 static void perf_aux_sample_output(struct perf_event *event,
6852                                    struct perf_output_handle *handle,
6853                                    struct perf_sample_data *data)
6854 {
6855         struct perf_event *sampler = event->aux_event;
6856         struct perf_buffer *rb;
6857         unsigned long pad;
6858         long size;
6859
6860         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6861                 return;
6862
6863         rb = ring_buffer_get(sampler);
6864         if (!rb)
6865                 return;
6866
6867         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6868
6869         /*
6870          * An error here means that perf_output_copy() failed (returned a
6871          * non-zero surplus that it didn't copy), which in its current
6872          * enlightened implementation is not possible. If that changes, we'd
6873          * like to know.
6874          */
6875         if (WARN_ON_ONCE(size < 0))
6876                 goto out_put;
6877
6878         /*
6879          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6880          * perf_prepare_sample_aux(), so should not be more than that.
6881          */
6882         pad = data->aux_size - size;
6883         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6884                 pad = 8;
6885
6886         if (pad) {
6887                 u64 zero = 0;
6888                 perf_output_copy(handle, &zero, pad);
6889         }
6890
6891 out_put:
6892         ring_buffer_put(rb);
6893 }
6894
6895 static void __perf_event_header__init_id(struct perf_event_header *header,
6896                                          struct perf_sample_data *data,
6897                                          struct perf_event *event)
6898 {
6899         u64 sample_type = event->attr.sample_type;
6900
6901         data->type = sample_type;
6902         header->size += event->id_header_size;
6903
6904         if (sample_type & PERF_SAMPLE_TID) {
6905                 /* namespace issues */
6906                 data->tid_entry.pid = perf_event_pid(event, current);
6907                 data->tid_entry.tid = perf_event_tid(event, current);
6908         }
6909
6910         if (sample_type & PERF_SAMPLE_TIME)
6911                 data->time = perf_event_clock(event);
6912
6913         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6914                 data->id = primary_event_id(event);
6915
6916         if (sample_type & PERF_SAMPLE_STREAM_ID)
6917                 data->stream_id = event->id;
6918
6919         if (sample_type & PERF_SAMPLE_CPU) {
6920                 data->cpu_entry.cpu      = raw_smp_processor_id();
6921                 data->cpu_entry.reserved = 0;
6922         }
6923 }
6924
6925 void perf_event_header__init_id(struct perf_event_header *header,
6926                                 struct perf_sample_data *data,
6927                                 struct perf_event *event)
6928 {
6929         if (event->attr.sample_id_all)
6930                 __perf_event_header__init_id(header, data, event);
6931 }
6932
6933 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6934                                            struct perf_sample_data *data)
6935 {
6936         u64 sample_type = data->type;
6937
6938         if (sample_type & PERF_SAMPLE_TID)
6939                 perf_output_put(handle, data->tid_entry);
6940
6941         if (sample_type & PERF_SAMPLE_TIME)
6942                 perf_output_put(handle, data->time);
6943
6944         if (sample_type & PERF_SAMPLE_ID)
6945                 perf_output_put(handle, data->id);
6946
6947         if (sample_type & PERF_SAMPLE_STREAM_ID)
6948                 perf_output_put(handle, data->stream_id);
6949
6950         if (sample_type & PERF_SAMPLE_CPU)
6951                 perf_output_put(handle, data->cpu_entry);
6952
6953         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6954                 perf_output_put(handle, data->id);
6955 }
6956
6957 void perf_event__output_id_sample(struct perf_event *event,
6958                                   struct perf_output_handle *handle,
6959                                   struct perf_sample_data *sample)
6960 {
6961         if (event->attr.sample_id_all)
6962                 __perf_event__output_id_sample(handle, sample);
6963 }
6964
6965 static void perf_output_read_one(struct perf_output_handle *handle,
6966                                  struct perf_event *event,
6967                                  u64 enabled, u64 running)
6968 {
6969         u64 read_format = event->attr.read_format;
6970         u64 values[4];
6971         int n = 0;
6972
6973         values[n++] = perf_event_count(event);
6974         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6975                 values[n++] = enabled +
6976                         atomic64_read(&event->child_total_time_enabled);
6977         }
6978         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6979                 values[n++] = running +
6980                         atomic64_read(&event->child_total_time_running);
6981         }
6982         if (read_format & PERF_FORMAT_ID)
6983                 values[n++] = primary_event_id(event);
6984
6985         __output_copy(handle, values, n * sizeof(u64));
6986 }
6987
6988 static void perf_output_read_group(struct perf_output_handle *handle,
6989                             struct perf_event *event,
6990                             u64 enabled, u64 running)
6991 {
6992         struct perf_event *leader = event->group_leader, *sub;
6993         u64 read_format = event->attr.read_format;
6994         u64 values[5];
6995         int n = 0;
6996
6997         values[n++] = 1 + leader->nr_siblings;
6998
6999         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7000                 values[n++] = enabled;
7001
7002         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7003                 values[n++] = running;
7004
7005         if ((leader != event) &&
7006             (leader->state == PERF_EVENT_STATE_ACTIVE))
7007                 leader->pmu->read(leader);
7008
7009         values[n++] = perf_event_count(leader);
7010         if (read_format & PERF_FORMAT_ID)
7011                 values[n++] = primary_event_id(leader);
7012
7013         __output_copy(handle, values, n * sizeof(u64));
7014
7015         for_each_sibling_event(sub, leader) {
7016                 n = 0;
7017
7018                 if ((sub != event) &&
7019                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7020                         sub->pmu->read(sub);
7021
7022                 values[n++] = perf_event_count(sub);
7023                 if (read_format & PERF_FORMAT_ID)
7024                         values[n++] = primary_event_id(sub);
7025
7026                 __output_copy(handle, values, n * sizeof(u64));
7027         }
7028 }
7029
7030 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7031                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7032
7033 /*
7034  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7035  *
7036  * The problem is that its both hard and excessively expensive to iterate the
7037  * child list, not to mention that its impossible to IPI the children running
7038  * on another CPU, from interrupt/NMI context.
7039  */
7040 static void perf_output_read(struct perf_output_handle *handle,
7041                              struct perf_event *event)
7042 {
7043         u64 enabled = 0, running = 0, now;
7044         u64 read_format = event->attr.read_format;
7045
7046         /*
7047          * compute total_time_enabled, total_time_running
7048          * based on snapshot values taken when the event
7049          * was last scheduled in.
7050          *
7051          * we cannot simply called update_context_time()
7052          * because of locking issue as we are called in
7053          * NMI context
7054          */
7055         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7056                 calc_timer_values(event, &now, &enabled, &running);
7057
7058         if (event->attr.read_format & PERF_FORMAT_GROUP)
7059                 perf_output_read_group(handle, event, enabled, running);
7060         else
7061                 perf_output_read_one(handle, event, enabled, running);
7062 }
7063
7064 static inline bool perf_sample_save_hw_index(struct perf_event *event)
7065 {
7066         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
7067 }
7068
7069 void perf_output_sample(struct perf_output_handle *handle,
7070                         struct perf_event_header *header,
7071                         struct perf_sample_data *data,
7072                         struct perf_event *event)
7073 {
7074         u64 sample_type = data->type;
7075
7076         perf_output_put(handle, *header);
7077
7078         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7079                 perf_output_put(handle, data->id);
7080
7081         if (sample_type & PERF_SAMPLE_IP)
7082                 perf_output_put(handle, data->ip);
7083
7084         if (sample_type & PERF_SAMPLE_TID)
7085                 perf_output_put(handle, data->tid_entry);
7086
7087         if (sample_type & PERF_SAMPLE_TIME)
7088                 perf_output_put(handle, data->time);
7089
7090         if (sample_type & PERF_SAMPLE_ADDR)
7091                 perf_output_put(handle, data->addr);
7092
7093         if (sample_type & PERF_SAMPLE_ID)
7094                 perf_output_put(handle, data->id);
7095
7096         if (sample_type & PERF_SAMPLE_STREAM_ID)
7097                 perf_output_put(handle, data->stream_id);
7098
7099         if (sample_type & PERF_SAMPLE_CPU)
7100                 perf_output_put(handle, data->cpu_entry);
7101
7102         if (sample_type & PERF_SAMPLE_PERIOD)
7103                 perf_output_put(handle, data->period);
7104
7105         if (sample_type & PERF_SAMPLE_READ)
7106                 perf_output_read(handle, event);
7107
7108         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7109                 int size = 1;
7110
7111                 size += data->callchain->nr;
7112                 size *= sizeof(u64);
7113                 __output_copy(handle, data->callchain, size);
7114         }
7115
7116         if (sample_type & PERF_SAMPLE_RAW) {
7117                 struct perf_raw_record *raw = data->raw;
7118
7119                 if (raw) {
7120                         struct perf_raw_frag *frag = &raw->frag;
7121
7122                         perf_output_put(handle, raw->size);
7123                         do {
7124                                 if (frag->copy) {
7125                                         __output_custom(handle, frag->copy,
7126                                                         frag->data, frag->size);
7127                                 } else {
7128                                         __output_copy(handle, frag->data,
7129                                                       frag->size);
7130                                 }
7131                                 if (perf_raw_frag_last(frag))
7132                                         break;
7133                                 frag = frag->next;
7134                         } while (1);
7135                         if (frag->pad)
7136                                 __output_skip(handle, NULL, frag->pad);
7137                 } else {
7138                         struct {
7139                                 u32     size;
7140                                 u32     data;
7141                         } raw = {
7142                                 .size = sizeof(u32),
7143                                 .data = 0,
7144                         };
7145                         perf_output_put(handle, raw);
7146                 }
7147         }
7148
7149         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7150                 if (data->br_stack) {
7151                         size_t size;
7152
7153                         size = data->br_stack->nr
7154                              * sizeof(struct perf_branch_entry);
7155
7156                         perf_output_put(handle, data->br_stack->nr);
7157                         if (perf_sample_save_hw_index(event))
7158                                 perf_output_put(handle, data->br_stack->hw_idx);
7159                         perf_output_copy(handle, data->br_stack->entries, size);
7160                 } else {
7161                         /*
7162                          * we always store at least the value of nr
7163                          */
7164                         u64 nr = 0;
7165                         perf_output_put(handle, nr);
7166                 }
7167         }
7168
7169         if (sample_type & PERF_SAMPLE_REGS_USER) {
7170                 u64 abi = data->regs_user.abi;
7171
7172                 /*
7173                  * If there are no regs to dump, notice it through
7174                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7175                  */
7176                 perf_output_put(handle, abi);
7177
7178                 if (abi) {
7179                         u64 mask = event->attr.sample_regs_user;
7180                         perf_output_sample_regs(handle,
7181                                                 data->regs_user.regs,
7182                                                 mask);
7183                 }
7184         }
7185
7186         if (sample_type & PERF_SAMPLE_STACK_USER) {
7187                 perf_output_sample_ustack(handle,
7188                                           data->stack_user_size,
7189                                           data->regs_user.regs);
7190         }
7191
7192         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7193                 perf_output_put(handle, data->weight.full);
7194
7195         if (sample_type & PERF_SAMPLE_DATA_SRC)
7196                 perf_output_put(handle, data->data_src.val);
7197
7198         if (sample_type & PERF_SAMPLE_TRANSACTION)
7199                 perf_output_put(handle, data->txn);
7200
7201         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7202                 u64 abi = data->regs_intr.abi;
7203                 /*
7204                  * If there are no regs to dump, notice it through
7205                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7206                  */
7207                 perf_output_put(handle, abi);
7208
7209                 if (abi) {
7210                         u64 mask = event->attr.sample_regs_intr;
7211
7212                         perf_output_sample_regs(handle,
7213                                                 data->regs_intr.regs,
7214                                                 mask);
7215                 }
7216         }
7217
7218         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7219                 perf_output_put(handle, data->phys_addr);
7220
7221         if (sample_type & PERF_SAMPLE_CGROUP)
7222                 perf_output_put(handle, data->cgroup);
7223
7224         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7225                 perf_output_put(handle, data->data_page_size);
7226
7227         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7228                 perf_output_put(handle, data->code_page_size);
7229
7230         if (sample_type & PERF_SAMPLE_AUX) {
7231                 perf_output_put(handle, data->aux_size);
7232
7233                 if (data->aux_size)
7234                         perf_aux_sample_output(event, handle, data);
7235         }
7236
7237         if (!event->attr.watermark) {
7238                 int wakeup_events = event->attr.wakeup_events;
7239
7240                 if (wakeup_events) {
7241                         struct perf_buffer *rb = handle->rb;
7242                         int events = local_inc_return(&rb->events);
7243
7244                         if (events >= wakeup_events) {
7245                                 local_sub(wakeup_events, &rb->events);
7246                                 local_inc(&rb->wakeup);
7247                         }
7248                 }
7249         }
7250 }
7251
7252 static u64 perf_virt_to_phys(u64 virt)
7253 {
7254         u64 phys_addr = 0;
7255
7256         if (!virt)
7257                 return 0;
7258
7259         if (virt >= TASK_SIZE) {
7260                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7261                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7262                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7263                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7264         } else {
7265                 /*
7266                  * Walking the pages tables for user address.
7267                  * Interrupts are disabled, so it prevents any tear down
7268                  * of the page tables.
7269                  * Try IRQ-safe get_user_page_fast_only first.
7270                  * If failed, leave phys_addr as 0.
7271                  */
7272                 if (current->mm != NULL) {
7273                         struct page *p;
7274
7275                         pagefault_disable();
7276                         if (get_user_page_fast_only(virt, 0, &p)) {
7277                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7278                                 put_page(p);
7279                         }
7280                         pagefault_enable();
7281                 }
7282         }
7283
7284         return phys_addr;
7285 }
7286
7287 /*
7288  * Return the pagetable size of a given virtual address.
7289  */
7290 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7291 {
7292         u64 size = 0;
7293
7294 #ifdef CONFIG_HAVE_FAST_GUP
7295         pgd_t *pgdp, pgd;
7296         p4d_t *p4dp, p4d;
7297         pud_t *pudp, pud;
7298         pmd_t *pmdp, pmd;
7299         pte_t *ptep, pte;
7300
7301         pgdp = pgd_offset(mm, addr);
7302         pgd = READ_ONCE(*pgdp);
7303         if (pgd_none(pgd))
7304                 return 0;
7305
7306         if (pgd_leaf(pgd))
7307                 return pgd_leaf_size(pgd);
7308
7309         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7310         p4d = READ_ONCE(*p4dp);
7311         if (!p4d_present(p4d))
7312                 return 0;
7313
7314         if (p4d_leaf(p4d))
7315                 return p4d_leaf_size(p4d);
7316
7317         pudp = pud_offset_lockless(p4dp, p4d, addr);
7318         pud = READ_ONCE(*pudp);
7319         if (!pud_present(pud))
7320                 return 0;
7321
7322         if (pud_leaf(pud))
7323                 return pud_leaf_size(pud);
7324
7325         pmdp = pmd_offset_lockless(pudp, pud, addr);
7326         pmd = READ_ONCE(*pmdp);
7327         if (!pmd_present(pmd))
7328                 return 0;
7329
7330         if (pmd_leaf(pmd))
7331                 return pmd_leaf_size(pmd);
7332
7333         ptep = pte_offset_map(&pmd, addr);
7334         pte = ptep_get_lockless(ptep);
7335         if (pte_present(pte))
7336                 size = pte_leaf_size(pte);
7337         pte_unmap(ptep);
7338 #endif /* CONFIG_HAVE_FAST_GUP */
7339
7340         return size;
7341 }
7342
7343 static u64 perf_get_page_size(unsigned long addr)
7344 {
7345         struct mm_struct *mm;
7346         unsigned long flags;
7347         u64 size;
7348
7349         if (!addr)
7350                 return 0;
7351
7352         /*
7353          * Software page-table walkers must disable IRQs,
7354          * which prevents any tear down of the page tables.
7355          */
7356         local_irq_save(flags);
7357
7358         mm = current->mm;
7359         if (!mm) {
7360                 /*
7361                  * For kernel threads and the like, use init_mm so that
7362                  * we can find kernel memory.
7363                  */
7364                 mm = &init_mm;
7365         }
7366
7367         size = perf_get_pgtable_size(mm, addr);
7368
7369         local_irq_restore(flags);
7370
7371         return size;
7372 }
7373
7374 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7375
7376 struct perf_callchain_entry *
7377 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7378 {
7379         bool kernel = !event->attr.exclude_callchain_kernel;
7380         bool user   = !event->attr.exclude_callchain_user;
7381         /* Disallow cross-task user callchains. */
7382         bool crosstask = event->ctx->task && event->ctx->task != current;
7383         const u32 max_stack = event->attr.sample_max_stack;
7384         struct perf_callchain_entry *callchain;
7385
7386         if (!kernel && !user)
7387                 return &__empty_callchain;
7388
7389         callchain = get_perf_callchain(regs, 0, kernel, user,
7390                                        max_stack, crosstask, true);
7391         return callchain ?: &__empty_callchain;
7392 }
7393
7394 void perf_prepare_sample(struct perf_event_header *header,
7395                          struct perf_sample_data *data,
7396                          struct perf_event *event,
7397                          struct pt_regs *regs)
7398 {
7399         u64 sample_type = event->attr.sample_type;
7400
7401         header->type = PERF_RECORD_SAMPLE;
7402         header->size = sizeof(*header) + event->header_size;
7403
7404         header->misc = 0;
7405         header->misc |= perf_misc_flags(regs);
7406
7407         __perf_event_header__init_id(header, data, event);
7408
7409         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7410                 data->ip = perf_instruction_pointer(regs);
7411
7412         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7413                 int size = 1;
7414
7415                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7416                         data->callchain = perf_callchain(event, regs);
7417
7418                 size += data->callchain->nr;
7419
7420                 header->size += size * sizeof(u64);
7421         }
7422
7423         if (sample_type & PERF_SAMPLE_RAW) {
7424                 struct perf_raw_record *raw = data->raw;
7425                 int size;
7426
7427                 if (raw) {
7428                         struct perf_raw_frag *frag = &raw->frag;
7429                         u32 sum = 0;
7430
7431                         do {
7432                                 sum += frag->size;
7433                                 if (perf_raw_frag_last(frag))
7434                                         break;
7435                                 frag = frag->next;
7436                         } while (1);
7437
7438                         size = round_up(sum + sizeof(u32), sizeof(u64));
7439                         raw->size = size - sizeof(u32);
7440                         frag->pad = raw->size - sum;
7441                 } else {
7442                         size = sizeof(u64);
7443                 }
7444
7445                 header->size += size;
7446         }
7447
7448         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7449                 int size = sizeof(u64); /* nr */
7450                 if (data->br_stack) {
7451                         if (perf_sample_save_hw_index(event))
7452                                 size += sizeof(u64);
7453
7454                         size += data->br_stack->nr
7455                               * sizeof(struct perf_branch_entry);
7456                 }
7457                 header->size += size;
7458         }
7459
7460         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7461                 perf_sample_regs_user(&data->regs_user, regs);
7462
7463         if (sample_type & PERF_SAMPLE_REGS_USER) {
7464                 /* regs dump ABI info */
7465                 int size = sizeof(u64);
7466
7467                 if (data->regs_user.regs) {
7468                         u64 mask = event->attr.sample_regs_user;
7469                         size += hweight64(mask) * sizeof(u64);
7470                 }
7471
7472                 header->size += size;
7473         }
7474
7475         if (sample_type & PERF_SAMPLE_STACK_USER) {
7476                 /*
7477                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7478                  * processed as the last one or have additional check added
7479                  * in case new sample type is added, because we could eat
7480                  * up the rest of the sample size.
7481                  */
7482                 u16 stack_size = event->attr.sample_stack_user;
7483                 u16 size = sizeof(u64);
7484
7485                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7486                                                      data->regs_user.regs);
7487
7488                 /*
7489                  * If there is something to dump, add space for the dump
7490                  * itself and for the field that tells the dynamic size,
7491                  * which is how many have been actually dumped.
7492                  */
7493                 if (stack_size)
7494                         size += sizeof(u64) + stack_size;
7495
7496                 data->stack_user_size = stack_size;
7497                 header->size += size;
7498         }
7499
7500         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7501                 /* regs dump ABI info */
7502                 int size = sizeof(u64);
7503
7504                 perf_sample_regs_intr(&data->regs_intr, regs);
7505
7506                 if (data->regs_intr.regs) {
7507                         u64 mask = event->attr.sample_regs_intr;
7508
7509                         size += hweight64(mask) * sizeof(u64);
7510                 }
7511
7512                 header->size += size;
7513         }
7514
7515         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7516                 data->phys_addr = perf_virt_to_phys(data->addr);
7517
7518 #ifdef CONFIG_CGROUP_PERF
7519         if (sample_type & PERF_SAMPLE_CGROUP) {
7520                 struct cgroup *cgrp;
7521
7522                 /* protected by RCU */
7523                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7524                 data->cgroup = cgroup_id(cgrp);
7525         }
7526 #endif
7527
7528         /*
7529          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7530          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7531          * but the value will not dump to the userspace.
7532          */
7533         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7534                 data->data_page_size = perf_get_page_size(data->addr);
7535
7536         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7537                 data->code_page_size = perf_get_page_size(data->ip);
7538
7539         if (sample_type & PERF_SAMPLE_AUX) {
7540                 u64 size;
7541
7542                 header->size += sizeof(u64); /* size */
7543
7544                 /*
7545                  * Given the 16bit nature of header::size, an AUX sample can
7546                  * easily overflow it, what with all the preceding sample bits.
7547                  * Make sure this doesn't happen by using up to U16_MAX bytes
7548                  * per sample in total (rounded down to 8 byte boundary).
7549                  */
7550                 size = min_t(size_t, U16_MAX - header->size,
7551                              event->attr.aux_sample_size);
7552                 size = rounddown(size, 8);
7553                 size = perf_prepare_sample_aux(event, data, size);
7554
7555                 WARN_ON_ONCE(size + header->size > U16_MAX);
7556                 header->size += size;
7557         }
7558         /*
7559          * If you're adding more sample types here, you likely need to do
7560          * something about the overflowing header::size, like repurpose the
7561          * lowest 3 bits of size, which should be always zero at the moment.
7562          * This raises a more important question, do we really need 512k sized
7563          * samples and why, so good argumentation is in order for whatever you
7564          * do here next.
7565          */
7566         WARN_ON_ONCE(header->size & 7);
7567 }
7568
7569 static __always_inline int
7570 __perf_event_output(struct perf_event *event,
7571                     struct perf_sample_data *data,
7572                     struct pt_regs *regs,
7573                     int (*output_begin)(struct perf_output_handle *,
7574                                         struct perf_sample_data *,
7575                                         struct perf_event *,
7576                                         unsigned int))
7577 {
7578         struct perf_output_handle handle;
7579         struct perf_event_header header;
7580         int err;
7581
7582         /* protect the callchain buffers */
7583         rcu_read_lock();
7584
7585         perf_prepare_sample(&header, data, event, regs);
7586
7587         err = output_begin(&handle, data, event, header.size);
7588         if (err)
7589                 goto exit;
7590
7591         perf_output_sample(&handle, &header, data, event);
7592
7593         perf_output_end(&handle);
7594
7595 exit:
7596         rcu_read_unlock();
7597         return err;
7598 }
7599
7600 void
7601 perf_event_output_forward(struct perf_event *event,
7602                          struct perf_sample_data *data,
7603                          struct pt_regs *regs)
7604 {
7605         __perf_event_output(event, data, regs, perf_output_begin_forward);
7606 }
7607
7608 void
7609 perf_event_output_backward(struct perf_event *event,
7610                            struct perf_sample_data *data,
7611                            struct pt_regs *regs)
7612 {
7613         __perf_event_output(event, data, regs, perf_output_begin_backward);
7614 }
7615
7616 int
7617 perf_event_output(struct perf_event *event,
7618                   struct perf_sample_data *data,
7619                   struct pt_regs *regs)
7620 {
7621         return __perf_event_output(event, data, regs, perf_output_begin);
7622 }
7623
7624 /*
7625  * read event_id
7626  */
7627
7628 struct perf_read_event {
7629         struct perf_event_header        header;
7630
7631         u32                             pid;
7632         u32                             tid;
7633 };
7634
7635 static void
7636 perf_event_read_event(struct perf_event *event,
7637                         struct task_struct *task)
7638 {
7639         struct perf_output_handle handle;
7640         struct perf_sample_data sample;
7641         struct perf_read_event read_event = {
7642                 .header = {
7643                         .type = PERF_RECORD_READ,
7644                         .misc = 0,
7645                         .size = sizeof(read_event) + event->read_size,
7646                 },
7647                 .pid = perf_event_pid(event, task),
7648                 .tid = perf_event_tid(event, task),
7649         };
7650         int ret;
7651
7652         perf_event_header__init_id(&read_event.header, &sample, event);
7653         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7654         if (ret)
7655                 return;
7656
7657         perf_output_put(&handle, read_event);
7658         perf_output_read(&handle, event);
7659         perf_event__output_id_sample(event, &handle, &sample);
7660
7661         perf_output_end(&handle);
7662 }
7663
7664 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7665
7666 static void
7667 perf_iterate_ctx(struct perf_event_context *ctx,
7668                    perf_iterate_f output,
7669                    void *data, bool all)
7670 {
7671         struct perf_event *event;
7672
7673         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7674                 if (!all) {
7675                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7676                                 continue;
7677                         if (!event_filter_match(event))
7678                                 continue;
7679                 }
7680
7681                 output(event, data);
7682         }
7683 }
7684
7685 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7686 {
7687         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7688         struct perf_event *event;
7689
7690         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7691                 /*
7692                  * Skip events that are not fully formed yet; ensure that
7693                  * if we observe event->ctx, both event and ctx will be
7694                  * complete enough. See perf_install_in_context().
7695                  */
7696                 if (!smp_load_acquire(&event->ctx))
7697                         continue;
7698
7699                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7700                         continue;
7701                 if (!event_filter_match(event))
7702                         continue;
7703                 output(event, data);
7704         }
7705 }
7706
7707 /*
7708  * Iterate all events that need to receive side-band events.
7709  *
7710  * For new callers; ensure that account_pmu_sb_event() includes
7711  * your event, otherwise it might not get delivered.
7712  */
7713 static void
7714 perf_iterate_sb(perf_iterate_f output, void *data,
7715                struct perf_event_context *task_ctx)
7716 {
7717         struct perf_event_context *ctx;
7718         int ctxn;
7719
7720         rcu_read_lock();
7721         preempt_disable();
7722
7723         /*
7724          * If we have task_ctx != NULL we only notify the task context itself.
7725          * The task_ctx is set only for EXIT events before releasing task
7726          * context.
7727          */
7728         if (task_ctx) {
7729                 perf_iterate_ctx(task_ctx, output, data, false);
7730                 goto done;
7731         }
7732
7733         perf_iterate_sb_cpu(output, data);
7734
7735         for_each_task_context_nr(ctxn) {
7736                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7737                 if (ctx)
7738                         perf_iterate_ctx(ctx, output, data, false);
7739         }
7740 done:
7741         preempt_enable();
7742         rcu_read_unlock();
7743 }
7744
7745 /*
7746  * Clear all file-based filters at exec, they'll have to be
7747  * re-instated when/if these objects are mmapped again.
7748  */
7749 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7750 {
7751         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7752         struct perf_addr_filter *filter;
7753         unsigned int restart = 0, count = 0;
7754         unsigned long flags;
7755
7756         if (!has_addr_filter(event))
7757                 return;
7758
7759         raw_spin_lock_irqsave(&ifh->lock, flags);
7760         list_for_each_entry(filter, &ifh->list, entry) {
7761                 if (filter->path.dentry) {
7762                         event->addr_filter_ranges[count].start = 0;
7763                         event->addr_filter_ranges[count].size = 0;
7764                         restart++;
7765                 }
7766
7767                 count++;
7768         }
7769
7770         if (restart)
7771                 event->addr_filters_gen++;
7772         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7773
7774         if (restart)
7775                 perf_event_stop(event, 1);
7776 }
7777
7778 void perf_event_exec(void)
7779 {
7780         struct perf_event_context *ctx;
7781         int ctxn;
7782
7783         for_each_task_context_nr(ctxn) {
7784                 perf_event_enable_on_exec(ctxn);
7785                 perf_event_remove_on_exec(ctxn);
7786
7787                 rcu_read_lock();
7788                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7789                 if (ctx) {
7790                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7791                                          NULL, true);
7792                 }
7793                 rcu_read_unlock();
7794         }
7795 }
7796
7797 struct remote_output {
7798         struct perf_buffer      *rb;
7799         int                     err;
7800 };
7801
7802 static void __perf_event_output_stop(struct perf_event *event, void *data)
7803 {
7804         struct perf_event *parent = event->parent;
7805         struct remote_output *ro = data;
7806         struct perf_buffer *rb = ro->rb;
7807         struct stop_event_data sd = {
7808                 .event  = event,
7809         };
7810
7811         if (!has_aux(event))
7812                 return;
7813
7814         if (!parent)
7815                 parent = event;
7816
7817         /*
7818          * In case of inheritance, it will be the parent that links to the
7819          * ring-buffer, but it will be the child that's actually using it.
7820          *
7821          * We are using event::rb to determine if the event should be stopped,
7822          * however this may race with ring_buffer_attach() (through set_output),
7823          * which will make us skip the event that actually needs to be stopped.
7824          * So ring_buffer_attach() has to stop an aux event before re-assigning
7825          * its rb pointer.
7826          */
7827         if (rcu_dereference(parent->rb) == rb)
7828                 ro->err = __perf_event_stop(&sd);
7829 }
7830
7831 static int __perf_pmu_output_stop(void *info)
7832 {
7833         struct perf_event *event = info;
7834         struct pmu *pmu = event->ctx->pmu;
7835         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7836         struct remote_output ro = {
7837                 .rb     = event->rb,
7838         };
7839
7840         rcu_read_lock();
7841         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7842         if (cpuctx->task_ctx)
7843                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7844                                    &ro, false);
7845         rcu_read_unlock();
7846
7847         return ro.err;
7848 }
7849
7850 static void perf_pmu_output_stop(struct perf_event *event)
7851 {
7852         struct perf_event *iter;
7853         int err, cpu;
7854
7855 restart:
7856         rcu_read_lock();
7857         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7858                 /*
7859                  * For per-CPU events, we need to make sure that neither they
7860                  * nor their children are running; for cpu==-1 events it's
7861                  * sufficient to stop the event itself if it's active, since
7862                  * it can't have children.
7863                  */
7864                 cpu = iter->cpu;
7865                 if (cpu == -1)
7866                         cpu = READ_ONCE(iter->oncpu);
7867
7868                 if (cpu == -1)
7869                         continue;
7870
7871                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7872                 if (err == -EAGAIN) {
7873                         rcu_read_unlock();
7874                         goto restart;
7875                 }
7876         }
7877         rcu_read_unlock();
7878 }
7879
7880 /*
7881  * task tracking -- fork/exit
7882  *
7883  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7884  */
7885
7886 struct perf_task_event {
7887         struct task_struct              *task;
7888         struct perf_event_context       *task_ctx;
7889
7890         struct {
7891                 struct perf_event_header        header;
7892
7893                 u32                             pid;
7894                 u32                             ppid;
7895                 u32                             tid;
7896                 u32                             ptid;
7897                 u64                             time;
7898         } event_id;
7899 };
7900
7901 static int perf_event_task_match(struct perf_event *event)
7902 {
7903         return event->attr.comm  || event->attr.mmap ||
7904                event->attr.mmap2 || event->attr.mmap_data ||
7905                event->attr.task;
7906 }
7907
7908 static void perf_event_task_output(struct perf_event *event,
7909                                    void *data)
7910 {
7911         struct perf_task_event *task_event = data;
7912         struct perf_output_handle handle;
7913         struct perf_sample_data sample;
7914         struct task_struct *task = task_event->task;
7915         int ret, size = task_event->event_id.header.size;
7916
7917         if (!perf_event_task_match(event))
7918                 return;
7919
7920         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7921
7922         ret = perf_output_begin(&handle, &sample, event,
7923                                 task_event->event_id.header.size);
7924         if (ret)
7925                 goto out;
7926
7927         task_event->event_id.pid = perf_event_pid(event, task);
7928         task_event->event_id.tid = perf_event_tid(event, task);
7929
7930         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7931                 task_event->event_id.ppid = perf_event_pid(event,
7932                                                         task->real_parent);
7933                 task_event->event_id.ptid = perf_event_pid(event,
7934                                                         task->real_parent);
7935         } else {  /* PERF_RECORD_FORK */
7936                 task_event->event_id.ppid = perf_event_pid(event, current);
7937                 task_event->event_id.ptid = perf_event_tid(event, current);
7938         }
7939
7940         task_event->event_id.time = perf_event_clock(event);
7941
7942         perf_output_put(&handle, task_event->event_id);
7943
7944         perf_event__output_id_sample(event, &handle, &sample);
7945
7946         perf_output_end(&handle);
7947 out:
7948         task_event->event_id.header.size = size;
7949 }
7950
7951 static void perf_event_task(struct task_struct *task,
7952                               struct perf_event_context *task_ctx,
7953                               int new)
7954 {
7955         struct perf_task_event task_event;
7956
7957         if (!atomic_read(&nr_comm_events) &&
7958             !atomic_read(&nr_mmap_events) &&
7959             !atomic_read(&nr_task_events))
7960                 return;
7961
7962         task_event = (struct perf_task_event){
7963                 .task     = task,
7964                 .task_ctx = task_ctx,
7965                 .event_id    = {
7966                         .header = {
7967                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7968                                 .misc = 0,
7969                                 .size = sizeof(task_event.event_id),
7970                         },
7971                         /* .pid  */
7972                         /* .ppid */
7973                         /* .tid  */
7974                         /* .ptid */
7975                         /* .time */
7976                 },
7977         };
7978
7979         perf_iterate_sb(perf_event_task_output,
7980                        &task_event,
7981                        task_ctx);
7982 }
7983
7984 void perf_event_fork(struct task_struct *task)
7985 {
7986         perf_event_task(task, NULL, 1);
7987         perf_event_namespaces(task);
7988 }
7989
7990 /*
7991  * comm tracking
7992  */
7993
7994 struct perf_comm_event {
7995         struct task_struct      *task;
7996         char                    *comm;
7997         int                     comm_size;
7998
7999         struct {
8000                 struct perf_event_header        header;
8001
8002                 u32                             pid;
8003                 u32                             tid;
8004         } event_id;
8005 };
8006
8007 static int perf_event_comm_match(struct perf_event *event)
8008 {
8009         return event->attr.comm;
8010 }
8011
8012 static void perf_event_comm_output(struct perf_event *event,
8013                                    void *data)
8014 {
8015         struct perf_comm_event *comm_event = data;
8016         struct perf_output_handle handle;
8017         struct perf_sample_data sample;
8018         int size = comm_event->event_id.header.size;
8019         int ret;
8020
8021         if (!perf_event_comm_match(event))
8022                 return;
8023
8024         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8025         ret = perf_output_begin(&handle, &sample, event,
8026                                 comm_event->event_id.header.size);
8027
8028         if (ret)
8029                 goto out;
8030
8031         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8032         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8033
8034         perf_output_put(&handle, comm_event->event_id);
8035         __output_copy(&handle, comm_event->comm,
8036                                    comm_event->comm_size);
8037
8038         perf_event__output_id_sample(event, &handle, &sample);
8039
8040         perf_output_end(&handle);
8041 out:
8042         comm_event->event_id.header.size = size;
8043 }
8044
8045 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8046 {
8047         char comm[TASK_COMM_LEN];
8048         unsigned int size;
8049
8050         memset(comm, 0, sizeof(comm));
8051         strlcpy(comm, comm_event->task->comm, sizeof(comm));
8052         size = ALIGN(strlen(comm)+1, sizeof(u64));
8053
8054         comm_event->comm = comm;
8055         comm_event->comm_size = size;
8056
8057         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8058
8059         perf_iterate_sb(perf_event_comm_output,
8060                        comm_event,
8061                        NULL);
8062 }
8063
8064 void perf_event_comm(struct task_struct *task, bool exec)
8065 {
8066         struct perf_comm_event comm_event;
8067
8068         if (!atomic_read(&nr_comm_events))
8069                 return;
8070
8071         comm_event = (struct perf_comm_event){
8072                 .task   = task,
8073                 /* .comm      */
8074                 /* .comm_size */
8075                 .event_id  = {
8076                         .header = {
8077                                 .type = PERF_RECORD_COMM,
8078                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8079                                 /* .size */
8080                         },
8081                         /* .pid */
8082                         /* .tid */
8083                 },
8084         };
8085
8086         perf_event_comm_event(&comm_event);
8087 }
8088
8089 /*
8090  * namespaces tracking
8091  */
8092
8093 struct perf_namespaces_event {
8094         struct task_struct              *task;
8095
8096         struct {
8097                 struct perf_event_header        header;
8098
8099                 u32                             pid;
8100                 u32                             tid;
8101                 u64                             nr_namespaces;
8102                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8103         } event_id;
8104 };
8105
8106 static int perf_event_namespaces_match(struct perf_event *event)
8107 {
8108         return event->attr.namespaces;
8109 }
8110
8111 static void perf_event_namespaces_output(struct perf_event *event,
8112                                          void *data)
8113 {
8114         struct perf_namespaces_event *namespaces_event = data;
8115         struct perf_output_handle handle;
8116         struct perf_sample_data sample;
8117         u16 header_size = namespaces_event->event_id.header.size;
8118         int ret;
8119
8120         if (!perf_event_namespaces_match(event))
8121                 return;
8122
8123         perf_event_header__init_id(&namespaces_event->event_id.header,
8124                                    &sample, event);
8125         ret = perf_output_begin(&handle, &sample, event,
8126                                 namespaces_event->event_id.header.size);
8127         if (ret)
8128                 goto out;
8129
8130         namespaces_event->event_id.pid = perf_event_pid(event,
8131                                                         namespaces_event->task);
8132         namespaces_event->event_id.tid = perf_event_tid(event,
8133                                                         namespaces_event->task);
8134
8135         perf_output_put(&handle, namespaces_event->event_id);
8136
8137         perf_event__output_id_sample(event, &handle, &sample);
8138
8139         perf_output_end(&handle);
8140 out:
8141         namespaces_event->event_id.header.size = header_size;
8142 }
8143
8144 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8145                                    struct task_struct *task,
8146                                    const struct proc_ns_operations *ns_ops)
8147 {
8148         struct path ns_path;
8149         struct inode *ns_inode;
8150         int error;
8151
8152         error = ns_get_path(&ns_path, task, ns_ops);
8153         if (!error) {
8154                 ns_inode = ns_path.dentry->d_inode;
8155                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8156                 ns_link_info->ino = ns_inode->i_ino;
8157                 path_put(&ns_path);
8158         }
8159 }
8160
8161 void perf_event_namespaces(struct task_struct *task)
8162 {
8163         struct perf_namespaces_event namespaces_event;
8164         struct perf_ns_link_info *ns_link_info;
8165
8166         if (!atomic_read(&nr_namespaces_events))
8167                 return;
8168
8169         namespaces_event = (struct perf_namespaces_event){
8170                 .task   = task,
8171                 .event_id  = {
8172                         .header = {
8173                                 .type = PERF_RECORD_NAMESPACES,
8174                                 .misc = 0,
8175                                 .size = sizeof(namespaces_event.event_id),
8176                         },
8177                         /* .pid */
8178                         /* .tid */
8179                         .nr_namespaces = NR_NAMESPACES,
8180                         /* .link_info[NR_NAMESPACES] */
8181                 },
8182         };
8183
8184         ns_link_info = namespaces_event.event_id.link_info;
8185
8186         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8187                                task, &mntns_operations);
8188
8189 #ifdef CONFIG_USER_NS
8190         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8191                                task, &userns_operations);
8192 #endif
8193 #ifdef CONFIG_NET_NS
8194         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8195                                task, &netns_operations);
8196 #endif
8197 #ifdef CONFIG_UTS_NS
8198         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8199                                task, &utsns_operations);
8200 #endif
8201 #ifdef CONFIG_IPC_NS
8202         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8203                                task, &ipcns_operations);
8204 #endif
8205 #ifdef CONFIG_PID_NS
8206         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8207                                task, &pidns_operations);
8208 #endif
8209 #ifdef CONFIG_CGROUPS
8210         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8211                                task, &cgroupns_operations);
8212 #endif
8213
8214         perf_iterate_sb(perf_event_namespaces_output,
8215                         &namespaces_event,
8216                         NULL);
8217 }
8218
8219 /*
8220  * cgroup tracking
8221  */
8222 #ifdef CONFIG_CGROUP_PERF
8223
8224 struct perf_cgroup_event {
8225         char                            *path;
8226         int                             path_size;
8227         struct {
8228                 struct perf_event_header        header;
8229                 u64                             id;
8230                 char                            path[];
8231         } event_id;
8232 };
8233
8234 static int perf_event_cgroup_match(struct perf_event *event)
8235 {
8236         return event->attr.cgroup;
8237 }
8238
8239 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8240 {
8241         struct perf_cgroup_event *cgroup_event = data;
8242         struct perf_output_handle handle;
8243         struct perf_sample_data sample;
8244         u16 header_size = cgroup_event->event_id.header.size;
8245         int ret;
8246
8247         if (!perf_event_cgroup_match(event))
8248                 return;
8249
8250         perf_event_header__init_id(&cgroup_event->event_id.header,
8251                                    &sample, event);
8252         ret = perf_output_begin(&handle, &sample, event,
8253                                 cgroup_event->event_id.header.size);
8254         if (ret)
8255                 goto out;
8256
8257         perf_output_put(&handle, cgroup_event->event_id);
8258         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8259
8260         perf_event__output_id_sample(event, &handle, &sample);
8261
8262         perf_output_end(&handle);
8263 out:
8264         cgroup_event->event_id.header.size = header_size;
8265 }
8266
8267 static void perf_event_cgroup(struct cgroup *cgrp)
8268 {
8269         struct perf_cgroup_event cgroup_event;
8270         char path_enomem[16] = "//enomem";
8271         char *pathname;
8272         size_t size;
8273
8274         if (!atomic_read(&nr_cgroup_events))
8275                 return;
8276
8277         cgroup_event = (struct perf_cgroup_event){
8278                 .event_id  = {
8279                         .header = {
8280                                 .type = PERF_RECORD_CGROUP,
8281                                 .misc = 0,
8282                                 .size = sizeof(cgroup_event.event_id),
8283                         },
8284                         .id = cgroup_id(cgrp),
8285                 },
8286         };
8287
8288         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8289         if (pathname == NULL) {
8290                 cgroup_event.path = path_enomem;
8291         } else {
8292                 /* just to be sure to have enough space for alignment */
8293                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8294                 cgroup_event.path = pathname;
8295         }
8296
8297         /*
8298          * Since our buffer works in 8 byte units we need to align our string
8299          * size to a multiple of 8. However, we must guarantee the tail end is
8300          * zero'd out to avoid leaking random bits to userspace.
8301          */
8302         size = strlen(cgroup_event.path) + 1;
8303         while (!IS_ALIGNED(size, sizeof(u64)))
8304                 cgroup_event.path[size++] = '\0';
8305
8306         cgroup_event.event_id.header.size += size;
8307         cgroup_event.path_size = size;
8308
8309         perf_iterate_sb(perf_event_cgroup_output,
8310                         &cgroup_event,
8311                         NULL);
8312
8313         kfree(pathname);
8314 }
8315
8316 #endif
8317
8318 /*
8319  * mmap tracking
8320  */
8321
8322 struct perf_mmap_event {
8323         struct vm_area_struct   *vma;
8324
8325         const char              *file_name;
8326         int                     file_size;
8327         int                     maj, min;
8328         u64                     ino;
8329         u64                     ino_generation;
8330         u32                     prot, flags;
8331         u8                      build_id[BUILD_ID_SIZE_MAX];
8332         u32                     build_id_size;
8333
8334         struct {
8335                 struct perf_event_header        header;
8336
8337                 u32                             pid;
8338                 u32                             tid;
8339                 u64                             start;
8340                 u64                             len;
8341                 u64                             pgoff;
8342         } event_id;
8343 };
8344
8345 static int perf_event_mmap_match(struct perf_event *event,
8346                                  void *data)
8347 {
8348         struct perf_mmap_event *mmap_event = data;
8349         struct vm_area_struct *vma = mmap_event->vma;
8350         int executable = vma->vm_flags & VM_EXEC;
8351
8352         return (!executable && event->attr.mmap_data) ||
8353                (executable && (event->attr.mmap || event->attr.mmap2));
8354 }
8355
8356 static void perf_event_mmap_output(struct perf_event *event,
8357                                    void *data)
8358 {
8359         struct perf_mmap_event *mmap_event = data;
8360         struct perf_output_handle handle;
8361         struct perf_sample_data sample;
8362         int size = mmap_event->event_id.header.size;
8363         u32 type = mmap_event->event_id.header.type;
8364         bool use_build_id;
8365         int ret;
8366
8367         if (!perf_event_mmap_match(event, data))
8368                 return;
8369
8370         if (event->attr.mmap2) {
8371                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8372                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8373                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8374                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8375                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8376                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8377                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8378         }
8379
8380         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8381         ret = perf_output_begin(&handle, &sample, event,
8382                                 mmap_event->event_id.header.size);
8383         if (ret)
8384                 goto out;
8385
8386         mmap_event->event_id.pid = perf_event_pid(event, current);
8387         mmap_event->event_id.tid = perf_event_tid(event, current);
8388
8389         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8390
8391         if (event->attr.mmap2 && use_build_id)
8392                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8393
8394         perf_output_put(&handle, mmap_event->event_id);
8395
8396         if (event->attr.mmap2) {
8397                 if (use_build_id) {
8398                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8399
8400                         __output_copy(&handle, size, 4);
8401                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8402                 } else {
8403                         perf_output_put(&handle, mmap_event->maj);
8404                         perf_output_put(&handle, mmap_event->min);
8405                         perf_output_put(&handle, mmap_event->ino);
8406                         perf_output_put(&handle, mmap_event->ino_generation);
8407                 }
8408                 perf_output_put(&handle, mmap_event->prot);
8409                 perf_output_put(&handle, mmap_event->flags);
8410         }
8411
8412         __output_copy(&handle, mmap_event->file_name,
8413                                    mmap_event->file_size);
8414
8415         perf_event__output_id_sample(event, &handle, &sample);
8416
8417         perf_output_end(&handle);
8418 out:
8419         mmap_event->event_id.header.size = size;
8420         mmap_event->event_id.header.type = type;
8421 }
8422
8423 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8424 {
8425         struct vm_area_struct *vma = mmap_event->vma;
8426         struct file *file = vma->vm_file;
8427         int maj = 0, min = 0;
8428         u64 ino = 0, gen = 0;
8429         u32 prot = 0, flags = 0;
8430         unsigned int size;
8431         char tmp[16];
8432         char *buf = NULL;
8433         char *name;
8434
8435         if (vma->vm_flags & VM_READ)
8436                 prot |= PROT_READ;
8437         if (vma->vm_flags & VM_WRITE)
8438                 prot |= PROT_WRITE;
8439         if (vma->vm_flags & VM_EXEC)
8440                 prot |= PROT_EXEC;
8441
8442         if (vma->vm_flags & VM_MAYSHARE)
8443                 flags = MAP_SHARED;
8444         else
8445                 flags = MAP_PRIVATE;
8446
8447         if (vma->vm_flags & VM_LOCKED)
8448                 flags |= MAP_LOCKED;
8449         if (is_vm_hugetlb_page(vma))
8450                 flags |= MAP_HUGETLB;
8451
8452         if (file) {
8453                 struct inode *inode;
8454                 dev_t dev;
8455
8456                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8457                 if (!buf) {
8458                         name = "//enomem";
8459                         goto cpy_name;
8460                 }
8461                 /*
8462                  * d_path() works from the end of the rb backwards, so we
8463                  * need to add enough zero bytes after the string to handle
8464                  * the 64bit alignment we do later.
8465                  */
8466                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8467                 if (IS_ERR(name)) {
8468                         name = "//toolong";
8469                         goto cpy_name;
8470                 }
8471                 inode = file_inode(vma->vm_file);
8472                 dev = inode->i_sb->s_dev;
8473                 ino = inode->i_ino;
8474                 gen = inode->i_generation;
8475                 maj = MAJOR(dev);
8476                 min = MINOR(dev);
8477
8478                 goto got_name;
8479         } else {
8480                 if (vma->vm_ops && vma->vm_ops->name) {
8481                         name = (char *) vma->vm_ops->name(vma);
8482                         if (name)
8483                                 goto cpy_name;
8484                 }
8485
8486                 name = (char *)arch_vma_name(vma);
8487                 if (name)
8488                         goto cpy_name;
8489
8490                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8491                                 vma->vm_end >= vma->vm_mm->brk) {
8492                         name = "[heap]";
8493                         goto cpy_name;
8494                 }
8495                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8496                                 vma->vm_end >= vma->vm_mm->start_stack) {
8497                         name = "[stack]";
8498                         goto cpy_name;
8499                 }
8500
8501                 name = "//anon";
8502                 goto cpy_name;
8503         }
8504
8505 cpy_name:
8506         strlcpy(tmp, name, sizeof(tmp));
8507         name = tmp;
8508 got_name:
8509         /*
8510          * Since our buffer works in 8 byte units we need to align our string
8511          * size to a multiple of 8. However, we must guarantee the tail end is
8512          * zero'd out to avoid leaking random bits to userspace.
8513          */
8514         size = strlen(name)+1;
8515         while (!IS_ALIGNED(size, sizeof(u64)))
8516                 name[size++] = '\0';
8517
8518         mmap_event->file_name = name;
8519         mmap_event->file_size = size;
8520         mmap_event->maj = maj;
8521         mmap_event->min = min;
8522         mmap_event->ino = ino;
8523         mmap_event->ino_generation = gen;
8524         mmap_event->prot = prot;
8525         mmap_event->flags = flags;
8526
8527         if (!(vma->vm_flags & VM_EXEC))
8528                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8529
8530         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8531
8532         if (atomic_read(&nr_build_id_events))
8533                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8534
8535         perf_iterate_sb(perf_event_mmap_output,
8536                        mmap_event,
8537                        NULL);
8538
8539         kfree(buf);
8540 }
8541
8542 /*
8543  * Check whether inode and address range match filter criteria.
8544  */
8545 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8546                                      struct file *file, unsigned long offset,
8547                                      unsigned long size)
8548 {
8549         /* d_inode(NULL) won't be equal to any mapped user-space file */
8550         if (!filter->path.dentry)
8551                 return false;
8552
8553         if (d_inode(filter->path.dentry) != file_inode(file))
8554                 return false;
8555
8556         if (filter->offset > offset + size)
8557                 return false;
8558
8559         if (filter->offset + filter->size < offset)
8560                 return false;
8561
8562         return true;
8563 }
8564
8565 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8566                                         struct vm_area_struct *vma,
8567                                         struct perf_addr_filter_range *fr)
8568 {
8569         unsigned long vma_size = vma->vm_end - vma->vm_start;
8570         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8571         struct file *file = vma->vm_file;
8572
8573         if (!perf_addr_filter_match(filter, file, off, vma_size))
8574                 return false;
8575
8576         if (filter->offset < off) {
8577                 fr->start = vma->vm_start;
8578                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8579         } else {
8580                 fr->start = vma->vm_start + filter->offset - off;
8581                 fr->size = min(vma->vm_end - fr->start, filter->size);
8582         }
8583
8584         return true;
8585 }
8586
8587 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8588 {
8589         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8590         struct vm_area_struct *vma = data;
8591         struct perf_addr_filter *filter;
8592         unsigned int restart = 0, count = 0;
8593         unsigned long flags;
8594
8595         if (!has_addr_filter(event))
8596                 return;
8597
8598         if (!vma->vm_file)
8599                 return;
8600
8601         raw_spin_lock_irqsave(&ifh->lock, flags);
8602         list_for_each_entry(filter, &ifh->list, entry) {
8603                 if (perf_addr_filter_vma_adjust(filter, vma,
8604                                                 &event->addr_filter_ranges[count]))
8605                         restart++;
8606
8607                 count++;
8608         }
8609
8610         if (restart)
8611                 event->addr_filters_gen++;
8612         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8613
8614         if (restart)
8615                 perf_event_stop(event, 1);
8616 }
8617
8618 /*
8619  * Adjust all task's events' filters to the new vma
8620  */
8621 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8622 {
8623         struct perf_event_context *ctx;
8624         int ctxn;
8625
8626         /*
8627          * Data tracing isn't supported yet and as such there is no need
8628          * to keep track of anything that isn't related to executable code:
8629          */
8630         if (!(vma->vm_flags & VM_EXEC))
8631                 return;
8632
8633         rcu_read_lock();
8634         for_each_task_context_nr(ctxn) {
8635                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8636                 if (!ctx)
8637                         continue;
8638
8639                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8640         }
8641         rcu_read_unlock();
8642 }
8643
8644 void perf_event_mmap(struct vm_area_struct *vma)
8645 {
8646         struct perf_mmap_event mmap_event;
8647
8648         if (!atomic_read(&nr_mmap_events))
8649                 return;
8650
8651         mmap_event = (struct perf_mmap_event){
8652                 .vma    = vma,
8653                 /* .file_name */
8654                 /* .file_size */
8655                 .event_id  = {
8656                         .header = {
8657                                 .type = PERF_RECORD_MMAP,
8658                                 .misc = PERF_RECORD_MISC_USER,
8659                                 /* .size */
8660                         },
8661                         /* .pid */
8662                         /* .tid */
8663                         .start  = vma->vm_start,
8664                         .len    = vma->vm_end - vma->vm_start,
8665                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8666                 },
8667                 /* .maj (attr_mmap2 only) */
8668                 /* .min (attr_mmap2 only) */
8669                 /* .ino (attr_mmap2 only) */
8670                 /* .ino_generation (attr_mmap2 only) */
8671                 /* .prot (attr_mmap2 only) */
8672                 /* .flags (attr_mmap2 only) */
8673         };
8674
8675         perf_addr_filters_adjust(vma);
8676         perf_event_mmap_event(&mmap_event);
8677 }
8678
8679 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8680                           unsigned long size, u64 flags)
8681 {
8682         struct perf_output_handle handle;
8683         struct perf_sample_data sample;
8684         struct perf_aux_event {
8685                 struct perf_event_header        header;
8686                 u64                             offset;
8687                 u64                             size;
8688                 u64                             flags;
8689         } rec = {
8690                 .header = {
8691                         .type = PERF_RECORD_AUX,
8692                         .misc = 0,
8693                         .size = sizeof(rec),
8694                 },
8695                 .offset         = head,
8696                 .size           = size,
8697                 .flags          = flags,
8698         };
8699         int ret;
8700
8701         perf_event_header__init_id(&rec.header, &sample, event);
8702         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8703
8704         if (ret)
8705                 return;
8706
8707         perf_output_put(&handle, rec);
8708         perf_event__output_id_sample(event, &handle, &sample);
8709
8710         perf_output_end(&handle);
8711 }
8712
8713 /*
8714  * Lost/dropped samples logging
8715  */
8716 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8717 {
8718         struct perf_output_handle handle;
8719         struct perf_sample_data sample;
8720         int ret;
8721
8722         struct {
8723                 struct perf_event_header        header;
8724                 u64                             lost;
8725         } lost_samples_event = {
8726                 .header = {
8727                         .type = PERF_RECORD_LOST_SAMPLES,
8728                         .misc = 0,
8729                         .size = sizeof(lost_samples_event),
8730                 },
8731                 .lost           = lost,
8732         };
8733
8734         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8735
8736         ret = perf_output_begin(&handle, &sample, event,
8737                                 lost_samples_event.header.size);
8738         if (ret)
8739                 return;
8740
8741         perf_output_put(&handle, lost_samples_event);
8742         perf_event__output_id_sample(event, &handle, &sample);
8743         perf_output_end(&handle);
8744 }
8745
8746 /*
8747  * context_switch tracking
8748  */
8749
8750 struct perf_switch_event {
8751         struct task_struct      *task;
8752         struct task_struct      *next_prev;
8753
8754         struct {
8755                 struct perf_event_header        header;
8756                 u32                             next_prev_pid;
8757                 u32                             next_prev_tid;
8758         } event_id;
8759 };
8760
8761 static int perf_event_switch_match(struct perf_event *event)
8762 {
8763         return event->attr.context_switch;
8764 }
8765
8766 static void perf_event_switch_output(struct perf_event *event, void *data)
8767 {
8768         struct perf_switch_event *se = data;
8769         struct perf_output_handle handle;
8770         struct perf_sample_data sample;
8771         int ret;
8772
8773         if (!perf_event_switch_match(event))
8774                 return;
8775
8776         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8777         if (event->ctx->task) {
8778                 se->event_id.header.type = PERF_RECORD_SWITCH;
8779                 se->event_id.header.size = sizeof(se->event_id.header);
8780         } else {
8781                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8782                 se->event_id.header.size = sizeof(se->event_id);
8783                 se->event_id.next_prev_pid =
8784                                         perf_event_pid(event, se->next_prev);
8785                 se->event_id.next_prev_tid =
8786                                         perf_event_tid(event, se->next_prev);
8787         }
8788
8789         perf_event_header__init_id(&se->event_id.header, &sample, event);
8790
8791         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8792         if (ret)
8793                 return;
8794
8795         if (event->ctx->task)
8796                 perf_output_put(&handle, se->event_id.header);
8797         else
8798                 perf_output_put(&handle, se->event_id);
8799
8800         perf_event__output_id_sample(event, &handle, &sample);
8801
8802         perf_output_end(&handle);
8803 }
8804
8805 static void perf_event_switch(struct task_struct *task,
8806                               struct task_struct *next_prev, bool sched_in)
8807 {
8808         struct perf_switch_event switch_event;
8809
8810         /* N.B. caller checks nr_switch_events != 0 */
8811
8812         switch_event = (struct perf_switch_event){
8813                 .task           = task,
8814                 .next_prev      = next_prev,
8815                 .event_id       = {
8816                         .header = {
8817                                 /* .type */
8818                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8819                                 /* .size */
8820                         },
8821                         /* .next_prev_pid */
8822                         /* .next_prev_tid */
8823                 },
8824         };
8825
8826         if (!sched_in && task->on_rq) {
8827                 switch_event.event_id.header.misc |=
8828                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8829         }
8830
8831         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8832 }
8833
8834 /*
8835  * IRQ throttle logging
8836  */
8837
8838 static void perf_log_throttle(struct perf_event *event, int enable)
8839 {
8840         struct perf_output_handle handle;
8841         struct perf_sample_data sample;
8842         int ret;
8843
8844         struct {
8845                 struct perf_event_header        header;
8846                 u64                             time;
8847                 u64                             id;
8848                 u64                             stream_id;
8849         } throttle_event = {
8850                 .header = {
8851                         .type = PERF_RECORD_THROTTLE,
8852                         .misc = 0,
8853                         .size = sizeof(throttle_event),
8854                 },
8855                 .time           = perf_event_clock(event),
8856                 .id             = primary_event_id(event),
8857                 .stream_id      = event->id,
8858         };
8859
8860         if (enable)
8861                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8862
8863         perf_event_header__init_id(&throttle_event.header, &sample, event);
8864
8865         ret = perf_output_begin(&handle, &sample, event,
8866                                 throttle_event.header.size);
8867         if (ret)
8868                 return;
8869
8870         perf_output_put(&handle, throttle_event);
8871         perf_event__output_id_sample(event, &handle, &sample);
8872         perf_output_end(&handle);
8873 }
8874
8875 /*
8876  * ksymbol register/unregister tracking
8877  */
8878
8879 struct perf_ksymbol_event {
8880         const char      *name;
8881         int             name_len;
8882         struct {
8883                 struct perf_event_header        header;
8884                 u64                             addr;
8885                 u32                             len;
8886                 u16                             ksym_type;
8887                 u16                             flags;
8888         } event_id;
8889 };
8890
8891 static int perf_event_ksymbol_match(struct perf_event *event)
8892 {
8893         return event->attr.ksymbol;
8894 }
8895
8896 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8897 {
8898         struct perf_ksymbol_event *ksymbol_event = data;
8899         struct perf_output_handle handle;
8900         struct perf_sample_data sample;
8901         int ret;
8902
8903         if (!perf_event_ksymbol_match(event))
8904                 return;
8905
8906         perf_event_header__init_id(&ksymbol_event->event_id.header,
8907                                    &sample, event);
8908         ret = perf_output_begin(&handle, &sample, event,
8909                                 ksymbol_event->event_id.header.size);
8910         if (ret)
8911                 return;
8912
8913         perf_output_put(&handle, ksymbol_event->event_id);
8914         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8915         perf_event__output_id_sample(event, &handle, &sample);
8916
8917         perf_output_end(&handle);
8918 }
8919
8920 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8921                         const char *sym)
8922 {
8923         struct perf_ksymbol_event ksymbol_event;
8924         char name[KSYM_NAME_LEN];
8925         u16 flags = 0;
8926         int name_len;
8927
8928         if (!atomic_read(&nr_ksymbol_events))
8929                 return;
8930
8931         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8932             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8933                 goto err;
8934
8935         strlcpy(name, sym, KSYM_NAME_LEN);
8936         name_len = strlen(name) + 1;
8937         while (!IS_ALIGNED(name_len, sizeof(u64)))
8938                 name[name_len++] = '\0';
8939         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8940
8941         if (unregister)
8942                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8943
8944         ksymbol_event = (struct perf_ksymbol_event){
8945                 .name = name,
8946                 .name_len = name_len,
8947                 .event_id = {
8948                         .header = {
8949                                 .type = PERF_RECORD_KSYMBOL,
8950                                 .size = sizeof(ksymbol_event.event_id) +
8951                                         name_len,
8952                         },
8953                         .addr = addr,
8954                         .len = len,
8955                         .ksym_type = ksym_type,
8956                         .flags = flags,
8957                 },
8958         };
8959
8960         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8961         return;
8962 err:
8963         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8964 }
8965
8966 /*
8967  * bpf program load/unload tracking
8968  */
8969
8970 struct perf_bpf_event {
8971         struct bpf_prog *prog;
8972         struct {
8973                 struct perf_event_header        header;
8974                 u16                             type;
8975                 u16                             flags;
8976                 u32                             id;
8977                 u8                              tag[BPF_TAG_SIZE];
8978         } event_id;
8979 };
8980
8981 static int perf_event_bpf_match(struct perf_event *event)
8982 {
8983         return event->attr.bpf_event;
8984 }
8985
8986 static void perf_event_bpf_output(struct perf_event *event, void *data)
8987 {
8988         struct perf_bpf_event *bpf_event = data;
8989         struct perf_output_handle handle;
8990         struct perf_sample_data sample;
8991         int ret;
8992
8993         if (!perf_event_bpf_match(event))
8994                 return;
8995
8996         perf_event_header__init_id(&bpf_event->event_id.header,
8997                                    &sample, event);
8998         ret = perf_output_begin(&handle, data, event,
8999                                 bpf_event->event_id.header.size);
9000         if (ret)
9001                 return;
9002
9003         perf_output_put(&handle, bpf_event->event_id);
9004         perf_event__output_id_sample(event, &handle, &sample);
9005
9006         perf_output_end(&handle);
9007 }
9008
9009 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9010                                          enum perf_bpf_event_type type)
9011 {
9012         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9013         int i;
9014
9015         if (prog->aux->func_cnt == 0) {
9016                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9017                                    (u64)(unsigned long)prog->bpf_func,
9018                                    prog->jited_len, unregister,
9019                                    prog->aux->ksym.name);
9020         } else {
9021                 for (i = 0; i < prog->aux->func_cnt; i++) {
9022                         struct bpf_prog *subprog = prog->aux->func[i];
9023
9024                         perf_event_ksymbol(
9025                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9026                                 (u64)(unsigned long)subprog->bpf_func,
9027                                 subprog->jited_len, unregister,
9028                                 prog->aux->ksym.name);
9029                 }
9030         }
9031 }
9032
9033 void perf_event_bpf_event(struct bpf_prog *prog,
9034                           enum perf_bpf_event_type type,
9035                           u16 flags)
9036 {
9037         struct perf_bpf_event bpf_event;
9038
9039         if (type <= PERF_BPF_EVENT_UNKNOWN ||
9040             type >= PERF_BPF_EVENT_MAX)
9041                 return;
9042
9043         switch (type) {
9044         case PERF_BPF_EVENT_PROG_LOAD:
9045         case PERF_BPF_EVENT_PROG_UNLOAD:
9046                 if (atomic_read(&nr_ksymbol_events))
9047                         perf_event_bpf_emit_ksymbols(prog, type);
9048                 break;
9049         default:
9050                 break;
9051         }
9052
9053         if (!atomic_read(&nr_bpf_events))
9054                 return;
9055
9056         bpf_event = (struct perf_bpf_event){
9057                 .prog = prog,
9058                 .event_id = {
9059                         .header = {
9060                                 .type = PERF_RECORD_BPF_EVENT,
9061                                 .size = sizeof(bpf_event.event_id),
9062                         },
9063                         .type = type,
9064                         .flags = flags,
9065                         .id = prog->aux->id,
9066                 },
9067         };
9068
9069         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9070
9071         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9072         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9073 }
9074
9075 struct perf_text_poke_event {
9076         const void              *old_bytes;
9077         const void              *new_bytes;
9078         size_t                  pad;
9079         u16                     old_len;
9080         u16                     new_len;
9081
9082         struct {
9083                 struct perf_event_header        header;
9084
9085                 u64                             addr;
9086         } event_id;
9087 };
9088
9089 static int perf_event_text_poke_match(struct perf_event *event)
9090 {
9091         return event->attr.text_poke;
9092 }
9093
9094 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9095 {
9096         struct perf_text_poke_event *text_poke_event = data;
9097         struct perf_output_handle handle;
9098         struct perf_sample_data sample;
9099         u64 padding = 0;
9100         int ret;
9101
9102         if (!perf_event_text_poke_match(event))
9103                 return;
9104
9105         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9106
9107         ret = perf_output_begin(&handle, &sample, event,
9108                                 text_poke_event->event_id.header.size);
9109         if (ret)
9110                 return;
9111
9112         perf_output_put(&handle, text_poke_event->event_id);
9113         perf_output_put(&handle, text_poke_event->old_len);
9114         perf_output_put(&handle, text_poke_event->new_len);
9115
9116         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9117         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9118
9119         if (text_poke_event->pad)
9120                 __output_copy(&handle, &padding, text_poke_event->pad);
9121
9122         perf_event__output_id_sample(event, &handle, &sample);
9123
9124         perf_output_end(&handle);
9125 }
9126
9127 void perf_event_text_poke(const void *addr, const void *old_bytes,
9128                           size_t old_len, const void *new_bytes, size_t new_len)
9129 {
9130         struct perf_text_poke_event text_poke_event;
9131         size_t tot, pad;
9132
9133         if (!atomic_read(&nr_text_poke_events))
9134                 return;
9135
9136         tot  = sizeof(text_poke_event.old_len) + old_len;
9137         tot += sizeof(text_poke_event.new_len) + new_len;
9138         pad  = ALIGN(tot, sizeof(u64)) - tot;
9139
9140         text_poke_event = (struct perf_text_poke_event){
9141                 .old_bytes    = old_bytes,
9142                 .new_bytes    = new_bytes,
9143                 .pad          = pad,
9144                 .old_len      = old_len,
9145                 .new_len      = new_len,
9146                 .event_id  = {
9147                         .header = {
9148                                 .type = PERF_RECORD_TEXT_POKE,
9149                                 .misc = PERF_RECORD_MISC_KERNEL,
9150                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9151                         },
9152                         .addr = (unsigned long)addr,
9153                 },
9154         };
9155
9156         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9157 }
9158
9159 void perf_event_itrace_started(struct perf_event *event)
9160 {
9161         event->attach_state |= PERF_ATTACH_ITRACE;
9162 }
9163
9164 static void perf_log_itrace_start(struct perf_event *event)
9165 {
9166         struct perf_output_handle handle;
9167         struct perf_sample_data sample;
9168         struct perf_aux_event {
9169                 struct perf_event_header        header;
9170                 u32                             pid;
9171                 u32                             tid;
9172         } rec;
9173         int ret;
9174
9175         if (event->parent)
9176                 event = event->parent;
9177
9178         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9179             event->attach_state & PERF_ATTACH_ITRACE)
9180                 return;
9181
9182         rec.header.type = PERF_RECORD_ITRACE_START;
9183         rec.header.misc = 0;
9184         rec.header.size = sizeof(rec);
9185         rec.pid = perf_event_pid(event, current);
9186         rec.tid = perf_event_tid(event, current);
9187
9188         perf_event_header__init_id(&rec.header, &sample, event);
9189         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9190
9191         if (ret)
9192                 return;
9193
9194         perf_output_put(&handle, rec);
9195         perf_event__output_id_sample(event, &handle, &sample);
9196
9197         perf_output_end(&handle);
9198 }
9199
9200 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9201 {
9202         struct perf_output_handle handle;
9203         struct perf_sample_data sample;
9204         struct perf_aux_event {
9205                 struct perf_event_header        header;
9206                 u64                             hw_id;
9207         } rec;
9208         int ret;
9209
9210         if (event->parent)
9211                 event = event->parent;
9212
9213         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9214         rec.header.misc = 0;
9215         rec.header.size = sizeof(rec);
9216         rec.hw_id       = hw_id;
9217
9218         perf_event_header__init_id(&rec.header, &sample, event);
9219         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9220
9221         if (ret)
9222                 return;
9223
9224         perf_output_put(&handle, rec);
9225         perf_event__output_id_sample(event, &handle, &sample);
9226
9227         perf_output_end(&handle);
9228 }
9229
9230 static int
9231 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9232 {
9233         struct hw_perf_event *hwc = &event->hw;
9234         int ret = 0;
9235         u64 seq;
9236
9237         seq = __this_cpu_read(perf_throttled_seq);
9238         if (seq != hwc->interrupts_seq) {
9239                 hwc->interrupts_seq = seq;
9240                 hwc->interrupts = 1;
9241         } else {
9242                 hwc->interrupts++;
9243                 if (unlikely(throttle
9244                              && hwc->interrupts >= max_samples_per_tick)) {
9245                         __this_cpu_inc(perf_throttled_count);
9246                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9247                         hwc->interrupts = MAX_INTERRUPTS;
9248                         perf_log_throttle(event, 0);
9249                         ret = 1;
9250                 }
9251         }
9252
9253         if (event->attr.freq) {
9254                 u64 now = perf_clock();
9255                 s64 delta = now - hwc->freq_time_stamp;
9256
9257                 hwc->freq_time_stamp = now;
9258
9259                 if (delta > 0 && delta < 2*TICK_NSEC)
9260                         perf_adjust_period(event, delta, hwc->last_period, true);
9261         }
9262
9263         return ret;
9264 }
9265
9266 int perf_event_account_interrupt(struct perf_event *event)
9267 {
9268         return __perf_event_account_interrupt(event, 1);
9269 }
9270
9271 /*
9272  * Generic event overflow handling, sampling.
9273  */
9274
9275 static int __perf_event_overflow(struct perf_event *event,
9276                                    int throttle, struct perf_sample_data *data,
9277                                    struct pt_regs *regs)
9278 {
9279         int events = atomic_read(&event->event_limit);
9280         int ret = 0;
9281
9282         /*
9283          * Non-sampling counters might still use the PMI to fold short
9284          * hardware counters, ignore those.
9285          */
9286         if (unlikely(!is_sampling_event(event)))
9287                 return 0;
9288
9289         ret = __perf_event_account_interrupt(event, throttle);
9290
9291         /*
9292          * XXX event_limit might not quite work as expected on inherited
9293          * events
9294          */
9295
9296         event->pending_kill = POLL_IN;
9297         if (events && atomic_dec_and_test(&event->event_limit)) {
9298                 ret = 1;
9299                 event->pending_kill = POLL_HUP;
9300                 event->pending_addr = data->addr;
9301
9302                 perf_event_disable_inatomic(event);
9303         }
9304
9305         READ_ONCE(event->overflow_handler)(event, data, regs);
9306
9307         if (*perf_event_fasync(event) && event->pending_kill) {
9308                 event->pending_wakeup = 1;
9309                 irq_work_queue(&event->pending);
9310         }
9311
9312         return ret;
9313 }
9314
9315 int perf_event_overflow(struct perf_event *event,
9316                           struct perf_sample_data *data,
9317                           struct pt_regs *regs)
9318 {
9319         return __perf_event_overflow(event, 1, data, regs);
9320 }
9321
9322 /*
9323  * Generic software event infrastructure
9324  */
9325
9326 struct swevent_htable {
9327         struct swevent_hlist            *swevent_hlist;
9328         struct mutex                    hlist_mutex;
9329         int                             hlist_refcount;
9330
9331         /* Recursion avoidance in each contexts */
9332         int                             recursion[PERF_NR_CONTEXTS];
9333 };
9334
9335 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9336
9337 /*
9338  * We directly increment event->count and keep a second value in
9339  * event->hw.period_left to count intervals. This period event
9340  * is kept in the range [-sample_period, 0] so that we can use the
9341  * sign as trigger.
9342  */
9343
9344 u64 perf_swevent_set_period(struct perf_event *event)
9345 {
9346         struct hw_perf_event *hwc = &event->hw;
9347         u64 period = hwc->last_period;
9348         u64 nr, offset;
9349         s64 old, val;
9350
9351         hwc->last_period = hwc->sample_period;
9352
9353 again:
9354         old = val = local64_read(&hwc->period_left);
9355         if (val < 0)
9356                 return 0;
9357
9358         nr = div64_u64(period + val, period);
9359         offset = nr * period;
9360         val -= offset;
9361         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9362                 goto again;
9363
9364         return nr;
9365 }
9366
9367 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9368                                     struct perf_sample_data *data,
9369                                     struct pt_regs *regs)
9370 {
9371         struct hw_perf_event *hwc = &event->hw;
9372         int throttle = 0;
9373
9374         if (!overflow)
9375                 overflow = perf_swevent_set_period(event);
9376
9377         if (hwc->interrupts == MAX_INTERRUPTS)
9378                 return;
9379
9380         for (; overflow; overflow--) {
9381                 if (__perf_event_overflow(event, throttle,
9382                                             data, regs)) {
9383                         /*
9384                          * We inhibit the overflow from happening when
9385                          * hwc->interrupts == MAX_INTERRUPTS.
9386                          */
9387                         break;
9388                 }
9389                 throttle = 1;
9390         }
9391 }
9392
9393 static void perf_swevent_event(struct perf_event *event, u64 nr,
9394                                struct perf_sample_data *data,
9395                                struct pt_regs *regs)
9396 {
9397         struct hw_perf_event *hwc = &event->hw;
9398
9399         local64_add(nr, &event->count);
9400
9401         if (!regs)
9402                 return;
9403
9404         if (!is_sampling_event(event))
9405                 return;
9406
9407         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9408                 data->period = nr;
9409                 return perf_swevent_overflow(event, 1, data, regs);
9410         } else
9411                 data->period = event->hw.last_period;
9412
9413         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9414                 return perf_swevent_overflow(event, 1, data, regs);
9415
9416         if (local64_add_negative(nr, &hwc->period_left))
9417                 return;
9418
9419         perf_swevent_overflow(event, 0, data, regs);
9420 }
9421
9422 static int perf_exclude_event(struct perf_event *event,
9423                               struct pt_regs *regs)
9424 {
9425         if (event->hw.state & PERF_HES_STOPPED)
9426                 return 1;
9427
9428         if (regs) {
9429                 if (event->attr.exclude_user && user_mode(regs))
9430                         return 1;
9431
9432                 if (event->attr.exclude_kernel && !user_mode(regs))
9433                         return 1;
9434         }
9435
9436         return 0;
9437 }
9438
9439 static int perf_swevent_match(struct perf_event *event,
9440                                 enum perf_type_id type,
9441                                 u32 event_id,
9442                                 struct perf_sample_data *data,
9443                                 struct pt_regs *regs)
9444 {
9445         if (event->attr.type != type)
9446                 return 0;
9447
9448         if (event->attr.config != event_id)
9449                 return 0;
9450
9451         if (perf_exclude_event(event, regs))
9452                 return 0;
9453
9454         return 1;
9455 }
9456
9457 static inline u64 swevent_hash(u64 type, u32 event_id)
9458 {
9459         u64 val = event_id | (type << 32);
9460
9461         return hash_64(val, SWEVENT_HLIST_BITS);
9462 }
9463
9464 static inline struct hlist_head *
9465 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9466 {
9467         u64 hash = swevent_hash(type, event_id);
9468
9469         return &hlist->heads[hash];
9470 }
9471
9472 /* For the read side: events when they trigger */
9473 static inline struct hlist_head *
9474 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9475 {
9476         struct swevent_hlist *hlist;
9477
9478         hlist = rcu_dereference(swhash->swevent_hlist);
9479         if (!hlist)
9480                 return NULL;
9481
9482         return __find_swevent_head(hlist, type, event_id);
9483 }
9484
9485 /* For the event head insertion and removal in the hlist */
9486 static inline struct hlist_head *
9487 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9488 {
9489         struct swevent_hlist *hlist;
9490         u32 event_id = event->attr.config;
9491         u64 type = event->attr.type;
9492
9493         /*
9494          * Event scheduling is always serialized against hlist allocation
9495          * and release. Which makes the protected version suitable here.
9496          * The context lock guarantees that.
9497          */
9498         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9499                                           lockdep_is_held(&event->ctx->lock));
9500         if (!hlist)
9501                 return NULL;
9502
9503         return __find_swevent_head(hlist, type, event_id);
9504 }
9505
9506 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9507                                     u64 nr,
9508                                     struct perf_sample_data *data,
9509                                     struct pt_regs *regs)
9510 {
9511         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9512         struct perf_event *event;
9513         struct hlist_head *head;
9514
9515         rcu_read_lock();
9516         head = find_swevent_head_rcu(swhash, type, event_id);
9517         if (!head)
9518                 goto end;
9519
9520         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9521                 if (perf_swevent_match(event, type, event_id, data, regs))
9522                         perf_swevent_event(event, nr, data, regs);
9523         }
9524 end:
9525         rcu_read_unlock();
9526 }
9527
9528 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9529
9530 int perf_swevent_get_recursion_context(void)
9531 {
9532         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9533
9534         return get_recursion_context(swhash->recursion);
9535 }
9536 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9537
9538 void perf_swevent_put_recursion_context(int rctx)
9539 {
9540         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9541
9542         put_recursion_context(swhash->recursion, rctx);
9543 }
9544
9545 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9546 {
9547         struct perf_sample_data data;
9548
9549         if (WARN_ON_ONCE(!regs))
9550                 return;
9551
9552         perf_sample_data_init(&data, addr, 0);
9553         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9554 }
9555
9556 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9557 {
9558         int rctx;
9559
9560         preempt_disable_notrace();
9561         rctx = perf_swevent_get_recursion_context();
9562         if (unlikely(rctx < 0))
9563                 goto fail;
9564
9565         ___perf_sw_event(event_id, nr, regs, addr);
9566
9567         perf_swevent_put_recursion_context(rctx);
9568 fail:
9569         preempt_enable_notrace();
9570 }
9571
9572 static void perf_swevent_read(struct perf_event *event)
9573 {
9574 }
9575
9576 static int perf_swevent_add(struct perf_event *event, int flags)
9577 {
9578         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9579         struct hw_perf_event *hwc = &event->hw;
9580         struct hlist_head *head;
9581
9582         if (is_sampling_event(event)) {
9583                 hwc->last_period = hwc->sample_period;
9584                 perf_swevent_set_period(event);
9585         }
9586
9587         hwc->state = !(flags & PERF_EF_START);
9588
9589         head = find_swevent_head(swhash, event);
9590         if (WARN_ON_ONCE(!head))
9591                 return -EINVAL;
9592
9593         hlist_add_head_rcu(&event->hlist_entry, head);
9594         perf_event_update_userpage(event);
9595
9596         return 0;
9597 }
9598
9599 static void perf_swevent_del(struct perf_event *event, int flags)
9600 {
9601         hlist_del_rcu(&event->hlist_entry);
9602 }
9603
9604 static void perf_swevent_start(struct perf_event *event, int flags)
9605 {
9606         event->hw.state = 0;
9607 }
9608
9609 static void perf_swevent_stop(struct perf_event *event, int flags)
9610 {
9611         event->hw.state = PERF_HES_STOPPED;
9612 }
9613
9614 /* Deref the hlist from the update side */
9615 static inline struct swevent_hlist *
9616 swevent_hlist_deref(struct swevent_htable *swhash)
9617 {
9618         return rcu_dereference_protected(swhash->swevent_hlist,
9619                                          lockdep_is_held(&swhash->hlist_mutex));
9620 }
9621
9622 static void swevent_hlist_release(struct swevent_htable *swhash)
9623 {
9624         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9625
9626         if (!hlist)
9627                 return;
9628
9629         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9630         kfree_rcu(hlist, rcu_head);
9631 }
9632
9633 static void swevent_hlist_put_cpu(int cpu)
9634 {
9635         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9636
9637         mutex_lock(&swhash->hlist_mutex);
9638
9639         if (!--swhash->hlist_refcount)
9640                 swevent_hlist_release(swhash);
9641
9642         mutex_unlock(&swhash->hlist_mutex);
9643 }
9644
9645 static void swevent_hlist_put(void)
9646 {
9647         int cpu;
9648
9649         for_each_possible_cpu(cpu)
9650                 swevent_hlist_put_cpu(cpu);
9651 }
9652
9653 static int swevent_hlist_get_cpu(int cpu)
9654 {
9655         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9656         int err = 0;
9657
9658         mutex_lock(&swhash->hlist_mutex);
9659         if (!swevent_hlist_deref(swhash) &&
9660             cpumask_test_cpu(cpu, perf_online_mask)) {
9661                 struct swevent_hlist *hlist;
9662
9663                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9664                 if (!hlist) {
9665                         err = -ENOMEM;
9666                         goto exit;
9667                 }
9668                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9669         }
9670         swhash->hlist_refcount++;
9671 exit:
9672         mutex_unlock(&swhash->hlist_mutex);
9673
9674         return err;
9675 }
9676
9677 static int swevent_hlist_get(void)
9678 {
9679         int err, cpu, failed_cpu;
9680
9681         mutex_lock(&pmus_lock);
9682         for_each_possible_cpu(cpu) {
9683                 err = swevent_hlist_get_cpu(cpu);
9684                 if (err) {
9685                         failed_cpu = cpu;
9686                         goto fail;
9687                 }
9688         }
9689         mutex_unlock(&pmus_lock);
9690         return 0;
9691 fail:
9692         for_each_possible_cpu(cpu) {
9693                 if (cpu == failed_cpu)
9694                         break;
9695                 swevent_hlist_put_cpu(cpu);
9696         }
9697         mutex_unlock(&pmus_lock);
9698         return err;
9699 }
9700
9701 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9702
9703 static void sw_perf_event_destroy(struct perf_event *event)
9704 {
9705         u64 event_id = event->attr.config;
9706
9707         WARN_ON(event->parent);
9708
9709         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9710         swevent_hlist_put();
9711 }
9712
9713 static int perf_swevent_init(struct perf_event *event)
9714 {
9715         u64 event_id = event->attr.config;
9716
9717         if (event->attr.type != PERF_TYPE_SOFTWARE)
9718                 return -ENOENT;
9719
9720         /*
9721          * no branch sampling for software events
9722          */
9723         if (has_branch_stack(event))
9724                 return -EOPNOTSUPP;
9725
9726         switch (event_id) {
9727         case PERF_COUNT_SW_CPU_CLOCK:
9728         case PERF_COUNT_SW_TASK_CLOCK:
9729                 return -ENOENT;
9730
9731         default:
9732                 break;
9733         }
9734
9735         if (event_id >= PERF_COUNT_SW_MAX)
9736                 return -ENOENT;
9737
9738         if (!event->parent) {
9739                 int err;
9740
9741                 err = swevent_hlist_get();
9742                 if (err)
9743                         return err;
9744
9745                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9746                 event->destroy = sw_perf_event_destroy;
9747         }
9748
9749         return 0;
9750 }
9751
9752 static struct pmu perf_swevent = {
9753         .task_ctx_nr    = perf_sw_context,
9754
9755         .capabilities   = PERF_PMU_CAP_NO_NMI,
9756
9757         .event_init     = perf_swevent_init,
9758         .add            = perf_swevent_add,
9759         .del            = perf_swevent_del,
9760         .start          = perf_swevent_start,
9761         .stop           = perf_swevent_stop,
9762         .read           = perf_swevent_read,
9763 };
9764
9765 #ifdef CONFIG_EVENT_TRACING
9766
9767 static int perf_tp_filter_match(struct perf_event *event,
9768                                 struct perf_sample_data *data)
9769 {
9770         void *record = data->raw->frag.data;
9771
9772         /* only top level events have filters set */
9773         if (event->parent)
9774                 event = event->parent;
9775
9776         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9777                 return 1;
9778         return 0;
9779 }
9780
9781 static int perf_tp_event_match(struct perf_event *event,
9782                                 struct perf_sample_data *data,
9783                                 struct pt_regs *regs)
9784 {
9785         if (event->hw.state & PERF_HES_STOPPED)
9786                 return 0;
9787         /*
9788          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9789          */
9790         if (event->attr.exclude_kernel && !user_mode(regs))
9791                 return 0;
9792
9793         if (!perf_tp_filter_match(event, data))
9794                 return 0;
9795
9796         return 1;
9797 }
9798
9799 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9800                                struct trace_event_call *call, u64 count,
9801                                struct pt_regs *regs, struct hlist_head *head,
9802                                struct task_struct *task)
9803 {
9804         if (bpf_prog_array_valid(call)) {
9805                 *(struct pt_regs **)raw_data = regs;
9806                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9807                         perf_swevent_put_recursion_context(rctx);
9808                         return;
9809                 }
9810         }
9811         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9812                       rctx, task);
9813 }
9814 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9815
9816 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9817                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9818                    struct task_struct *task)
9819 {
9820         struct perf_sample_data data;
9821         struct perf_event *event;
9822
9823         struct perf_raw_record raw = {
9824                 .frag = {
9825                         .size = entry_size,
9826                         .data = record,
9827                 },
9828         };
9829
9830         perf_sample_data_init(&data, 0, 0);
9831         data.raw = &raw;
9832
9833         perf_trace_buf_update(record, event_type);
9834
9835         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9836                 if (perf_tp_event_match(event, &data, regs))
9837                         perf_swevent_event(event, count, &data, regs);
9838         }
9839
9840         /*
9841          * If we got specified a target task, also iterate its context and
9842          * deliver this event there too.
9843          */
9844         if (task && task != current) {
9845                 struct perf_event_context *ctx;
9846                 struct trace_entry *entry = record;
9847
9848                 rcu_read_lock();
9849                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9850                 if (!ctx)
9851                         goto unlock;
9852
9853                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9854                         if (event->cpu != smp_processor_id())
9855                                 continue;
9856                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9857                                 continue;
9858                         if (event->attr.config != entry->type)
9859                                 continue;
9860                         /* Cannot deliver synchronous signal to other task. */
9861                         if (event->attr.sigtrap)
9862                                 continue;
9863                         if (perf_tp_event_match(event, &data, regs))
9864                                 perf_swevent_event(event, count, &data, regs);
9865                 }
9866 unlock:
9867                 rcu_read_unlock();
9868         }
9869
9870         perf_swevent_put_recursion_context(rctx);
9871 }
9872 EXPORT_SYMBOL_GPL(perf_tp_event);
9873
9874 static void tp_perf_event_destroy(struct perf_event *event)
9875 {
9876         perf_trace_destroy(event);
9877 }
9878
9879 static int perf_tp_event_init(struct perf_event *event)
9880 {
9881         int err;
9882
9883         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9884                 return -ENOENT;
9885
9886         /*
9887          * no branch sampling for tracepoint events
9888          */
9889         if (has_branch_stack(event))
9890                 return -EOPNOTSUPP;
9891
9892         err = perf_trace_init(event);
9893         if (err)
9894                 return err;
9895
9896         event->destroy = tp_perf_event_destroy;
9897
9898         return 0;
9899 }
9900
9901 static struct pmu perf_tracepoint = {
9902         .task_ctx_nr    = perf_sw_context,
9903
9904         .event_init     = perf_tp_event_init,
9905         .add            = perf_trace_add,
9906         .del            = perf_trace_del,
9907         .start          = perf_swevent_start,
9908         .stop           = perf_swevent_stop,
9909         .read           = perf_swevent_read,
9910 };
9911
9912 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9913 /*
9914  * Flags in config, used by dynamic PMU kprobe and uprobe
9915  * The flags should match following PMU_FORMAT_ATTR().
9916  *
9917  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9918  *                               if not set, create kprobe/uprobe
9919  *
9920  * The following values specify a reference counter (or semaphore in the
9921  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9922  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9923  *
9924  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9925  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9926  */
9927 enum perf_probe_config {
9928         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9929         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9930         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9931 };
9932
9933 PMU_FORMAT_ATTR(retprobe, "config:0");
9934 #endif
9935
9936 #ifdef CONFIG_KPROBE_EVENTS
9937 static struct attribute *kprobe_attrs[] = {
9938         &format_attr_retprobe.attr,
9939         NULL,
9940 };
9941
9942 static struct attribute_group kprobe_format_group = {
9943         .name = "format",
9944         .attrs = kprobe_attrs,
9945 };
9946
9947 static const struct attribute_group *kprobe_attr_groups[] = {
9948         &kprobe_format_group,
9949         NULL,
9950 };
9951
9952 static int perf_kprobe_event_init(struct perf_event *event);
9953 static struct pmu perf_kprobe = {
9954         .task_ctx_nr    = perf_sw_context,
9955         .event_init     = perf_kprobe_event_init,
9956         .add            = perf_trace_add,
9957         .del            = perf_trace_del,
9958         .start          = perf_swevent_start,
9959         .stop           = perf_swevent_stop,
9960         .read           = perf_swevent_read,
9961         .attr_groups    = kprobe_attr_groups,
9962 };
9963
9964 static int perf_kprobe_event_init(struct perf_event *event)
9965 {
9966         int err;
9967         bool is_retprobe;
9968
9969         if (event->attr.type != perf_kprobe.type)
9970                 return -ENOENT;
9971
9972         if (!perfmon_capable())
9973                 return -EACCES;
9974
9975         /*
9976          * no branch sampling for probe events
9977          */
9978         if (has_branch_stack(event))
9979                 return -EOPNOTSUPP;
9980
9981         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9982         err = perf_kprobe_init(event, is_retprobe);
9983         if (err)
9984                 return err;
9985
9986         event->destroy = perf_kprobe_destroy;
9987
9988         return 0;
9989 }
9990 #endif /* CONFIG_KPROBE_EVENTS */
9991
9992 #ifdef CONFIG_UPROBE_EVENTS
9993 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9994
9995 static struct attribute *uprobe_attrs[] = {
9996         &format_attr_retprobe.attr,
9997         &format_attr_ref_ctr_offset.attr,
9998         NULL,
9999 };
10000
10001 static struct attribute_group uprobe_format_group = {
10002         .name = "format",
10003         .attrs = uprobe_attrs,
10004 };
10005
10006 static const struct attribute_group *uprobe_attr_groups[] = {
10007         &uprobe_format_group,
10008         NULL,
10009 };
10010
10011 static int perf_uprobe_event_init(struct perf_event *event);
10012 static struct pmu perf_uprobe = {
10013         .task_ctx_nr    = perf_sw_context,
10014         .event_init     = perf_uprobe_event_init,
10015         .add            = perf_trace_add,
10016         .del            = perf_trace_del,
10017         .start          = perf_swevent_start,
10018         .stop           = perf_swevent_stop,
10019         .read           = perf_swevent_read,
10020         .attr_groups    = uprobe_attr_groups,
10021 };
10022
10023 static int perf_uprobe_event_init(struct perf_event *event)
10024 {
10025         int err;
10026         unsigned long ref_ctr_offset;
10027         bool is_retprobe;
10028
10029         if (event->attr.type != perf_uprobe.type)
10030                 return -ENOENT;
10031
10032         if (!perfmon_capable())
10033                 return -EACCES;
10034
10035         /*
10036          * no branch sampling for probe events
10037          */
10038         if (has_branch_stack(event))
10039                 return -EOPNOTSUPP;
10040
10041         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10042         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10043         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10044         if (err)
10045                 return err;
10046
10047         event->destroy = perf_uprobe_destroy;
10048
10049         return 0;
10050 }
10051 #endif /* CONFIG_UPROBE_EVENTS */
10052
10053 static inline void perf_tp_register(void)
10054 {
10055         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10056 #ifdef CONFIG_KPROBE_EVENTS
10057         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10058 #endif
10059 #ifdef CONFIG_UPROBE_EVENTS
10060         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10061 #endif
10062 }
10063
10064 static void perf_event_free_filter(struct perf_event *event)
10065 {
10066         ftrace_profile_free_filter(event);
10067 }
10068
10069 #ifdef CONFIG_BPF_SYSCALL
10070 static void bpf_overflow_handler(struct perf_event *event,
10071                                  struct perf_sample_data *data,
10072                                  struct pt_regs *regs)
10073 {
10074         struct bpf_perf_event_data_kern ctx = {
10075                 .data = data,
10076                 .event = event,
10077         };
10078         struct bpf_prog *prog;
10079         int ret = 0;
10080
10081         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10082         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10083                 goto out;
10084         rcu_read_lock();
10085         prog = READ_ONCE(event->prog);
10086         if (prog)
10087                 ret = bpf_prog_run(prog, &ctx);
10088         rcu_read_unlock();
10089 out:
10090         __this_cpu_dec(bpf_prog_active);
10091         if (!ret)
10092                 return;
10093
10094         event->orig_overflow_handler(event, data, regs);
10095 }
10096
10097 static int perf_event_set_bpf_handler(struct perf_event *event,
10098                                       struct bpf_prog *prog,
10099                                       u64 bpf_cookie)
10100 {
10101         if (event->overflow_handler_context)
10102                 /* hw breakpoint or kernel counter */
10103                 return -EINVAL;
10104
10105         if (event->prog)
10106                 return -EEXIST;
10107
10108         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10109                 return -EINVAL;
10110
10111         if (event->attr.precise_ip &&
10112             prog->call_get_stack &&
10113             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10114              event->attr.exclude_callchain_kernel ||
10115              event->attr.exclude_callchain_user)) {
10116                 /*
10117                  * On perf_event with precise_ip, calling bpf_get_stack()
10118                  * may trigger unwinder warnings and occasional crashes.
10119                  * bpf_get_[stack|stackid] works around this issue by using
10120                  * callchain attached to perf_sample_data. If the
10121                  * perf_event does not full (kernel and user) callchain
10122                  * attached to perf_sample_data, do not allow attaching BPF
10123                  * program that calls bpf_get_[stack|stackid].
10124                  */
10125                 return -EPROTO;
10126         }
10127
10128         event->prog = prog;
10129         event->bpf_cookie = bpf_cookie;
10130         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10131         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10132         return 0;
10133 }
10134
10135 static void perf_event_free_bpf_handler(struct perf_event *event)
10136 {
10137         struct bpf_prog *prog = event->prog;
10138
10139         if (!prog)
10140                 return;
10141
10142         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10143         event->prog = NULL;
10144         bpf_prog_put(prog);
10145 }
10146 #else
10147 static int perf_event_set_bpf_handler(struct perf_event *event,
10148                                       struct bpf_prog *prog,
10149                                       u64 bpf_cookie)
10150 {
10151         return -EOPNOTSUPP;
10152 }
10153 static void perf_event_free_bpf_handler(struct perf_event *event)
10154 {
10155 }
10156 #endif
10157
10158 /*
10159  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10160  * with perf_event_open()
10161  */
10162 static inline bool perf_event_is_tracing(struct perf_event *event)
10163 {
10164         if (event->pmu == &perf_tracepoint)
10165                 return true;
10166 #ifdef CONFIG_KPROBE_EVENTS
10167         if (event->pmu == &perf_kprobe)
10168                 return true;
10169 #endif
10170 #ifdef CONFIG_UPROBE_EVENTS
10171         if (event->pmu == &perf_uprobe)
10172                 return true;
10173 #endif
10174         return false;
10175 }
10176
10177 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10178                             u64 bpf_cookie)
10179 {
10180         bool is_kprobe, is_tracepoint, is_syscall_tp;
10181
10182         if (!perf_event_is_tracing(event))
10183                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10184
10185         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10186         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10187         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10188         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10189                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10190                 return -EINVAL;
10191
10192         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10193             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10194             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10195                 return -EINVAL;
10196
10197         /* Kprobe override only works for kprobes, not uprobes. */
10198         if (prog->kprobe_override &&
10199             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10200                 return -EINVAL;
10201
10202         if (is_tracepoint || is_syscall_tp) {
10203                 int off = trace_event_get_offsets(event->tp_event);
10204
10205                 if (prog->aux->max_ctx_offset > off)
10206                         return -EACCES;
10207         }
10208
10209         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10210 }
10211
10212 void perf_event_free_bpf_prog(struct perf_event *event)
10213 {
10214         if (!perf_event_is_tracing(event)) {
10215                 perf_event_free_bpf_handler(event);
10216                 return;
10217         }
10218         perf_event_detach_bpf_prog(event);
10219 }
10220
10221 #else
10222
10223 static inline void perf_tp_register(void)
10224 {
10225 }
10226
10227 static void perf_event_free_filter(struct perf_event *event)
10228 {
10229 }
10230
10231 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10232                             u64 bpf_cookie)
10233 {
10234         return -ENOENT;
10235 }
10236
10237 void perf_event_free_bpf_prog(struct perf_event *event)
10238 {
10239 }
10240 #endif /* CONFIG_EVENT_TRACING */
10241
10242 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10243 void perf_bp_event(struct perf_event *bp, void *data)
10244 {
10245         struct perf_sample_data sample;
10246         struct pt_regs *regs = data;
10247
10248         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10249
10250         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10251                 perf_swevent_event(bp, 1, &sample, regs);
10252 }
10253 #endif
10254
10255 /*
10256  * Allocate a new address filter
10257  */
10258 static struct perf_addr_filter *
10259 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10260 {
10261         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10262         struct perf_addr_filter *filter;
10263
10264         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10265         if (!filter)
10266                 return NULL;
10267
10268         INIT_LIST_HEAD(&filter->entry);
10269         list_add_tail(&filter->entry, filters);
10270
10271         return filter;
10272 }
10273
10274 static void free_filters_list(struct list_head *filters)
10275 {
10276         struct perf_addr_filter *filter, *iter;
10277
10278         list_for_each_entry_safe(filter, iter, filters, entry) {
10279                 path_put(&filter->path);
10280                 list_del(&filter->entry);
10281                 kfree(filter);
10282         }
10283 }
10284
10285 /*
10286  * Free existing address filters and optionally install new ones
10287  */
10288 static void perf_addr_filters_splice(struct perf_event *event,
10289                                      struct list_head *head)
10290 {
10291         unsigned long flags;
10292         LIST_HEAD(list);
10293
10294         if (!has_addr_filter(event))
10295                 return;
10296
10297         /* don't bother with children, they don't have their own filters */
10298         if (event->parent)
10299                 return;
10300
10301         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10302
10303         list_splice_init(&event->addr_filters.list, &list);
10304         if (head)
10305                 list_splice(head, &event->addr_filters.list);
10306
10307         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10308
10309         free_filters_list(&list);
10310 }
10311
10312 /*
10313  * Scan through mm's vmas and see if one of them matches the
10314  * @filter; if so, adjust filter's address range.
10315  * Called with mm::mmap_lock down for reading.
10316  */
10317 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10318                                    struct mm_struct *mm,
10319                                    struct perf_addr_filter_range *fr)
10320 {
10321         struct vm_area_struct *vma;
10322
10323         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10324                 if (!vma->vm_file)
10325                         continue;
10326
10327                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10328                         return;
10329         }
10330 }
10331
10332 /*
10333  * Update event's address range filters based on the
10334  * task's existing mappings, if any.
10335  */
10336 static void perf_event_addr_filters_apply(struct perf_event *event)
10337 {
10338         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10339         struct task_struct *task = READ_ONCE(event->ctx->task);
10340         struct perf_addr_filter *filter;
10341         struct mm_struct *mm = NULL;
10342         unsigned int count = 0;
10343         unsigned long flags;
10344
10345         /*
10346          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10347          * will stop on the parent's child_mutex that our caller is also holding
10348          */
10349         if (task == TASK_TOMBSTONE)
10350                 return;
10351
10352         if (ifh->nr_file_filters) {
10353                 mm = get_task_mm(task);
10354                 if (!mm)
10355                         goto restart;
10356
10357                 mmap_read_lock(mm);
10358         }
10359
10360         raw_spin_lock_irqsave(&ifh->lock, flags);
10361         list_for_each_entry(filter, &ifh->list, entry) {
10362                 if (filter->path.dentry) {
10363                         /*
10364                          * Adjust base offset if the filter is associated to a
10365                          * binary that needs to be mapped:
10366                          */
10367                         event->addr_filter_ranges[count].start = 0;
10368                         event->addr_filter_ranges[count].size = 0;
10369
10370                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10371                 } else {
10372                         event->addr_filter_ranges[count].start = filter->offset;
10373                         event->addr_filter_ranges[count].size  = filter->size;
10374                 }
10375
10376                 count++;
10377         }
10378
10379         event->addr_filters_gen++;
10380         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10381
10382         if (ifh->nr_file_filters) {
10383                 mmap_read_unlock(mm);
10384
10385                 mmput(mm);
10386         }
10387
10388 restart:
10389         perf_event_stop(event, 1);
10390 }
10391
10392 /*
10393  * Address range filtering: limiting the data to certain
10394  * instruction address ranges. Filters are ioctl()ed to us from
10395  * userspace as ascii strings.
10396  *
10397  * Filter string format:
10398  *
10399  * ACTION RANGE_SPEC
10400  * where ACTION is one of the
10401  *  * "filter": limit the trace to this region
10402  *  * "start": start tracing from this address
10403  *  * "stop": stop tracing at this address/region;
10404  * RANGE_SPEC is
10405  *  * for kernel addresses: <start address>[/<size>]
10406  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10407  *
10408  * if <size> is not specified or is zero, the range is treated as a single
10409  * address; not valid for ACTION=="filter".
10410  */
10411 enum {
10412         IF_ACT_NONE = -1,
10413         IF_ACT_FILTER,
10414         IF_ACT_START,
10415         IF_ACT_STOP,
10416         IF_SRC_FILE,
10417         IF_SRC_KERNEL,
10418         IF_SRC_FILEADDR,
10419         IF_SRC_KERNELADDR,
10420 };
10421
10422 enum {
10423         IF_STATE_ACTION = 0,
10424         IF_STATE_SOURCE,
10425         IF_STATE_END,
10426 };
10427
10428 static const match_table_t if_tokens = {
10429         { IF_ACT_FILTER,        "filter" },
10430         { IF_ACT_START,         "start" },
10431         { IF_ACT_STOP,          "stop" },
10432         { IF_SRC_FILE,          "%u/%u@%s" },
10433         { IF_SRC_KERNEL,        "%u/%u" },
10434         { IF_SRC_FILEADDR,      "%u@%s" },
10435         { IF_SRC_KERNELADDR,    "%u" },
10436         { IF_ACT_NONE,          NULL },
10437 };
10438
10439 /*
10440  * Address filter string parser
10441  */
10442 static int
10443 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10444                              struct list_head *filters)
10445 {
10446         struct perf_addr_filter *filter = NULL;
10447         char *start, *orig, *filename = NULL;
10448         substring_t args[MAX_OPT_ARGS];
10449         int state = IF_STATE_ACTION, token;
10450         unsigned int kernel = 0;
10451         int ret = -EINVAL;
10452
10453         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10454         if (!fstr)
10455                 return -ENOMEM;
10456
10457         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10458                 static const enum perf_addr_filter_action_t actions[] = {
10459                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10460                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10461                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10462                 };
10463                 ret = -EINVAL;
10464
10465                 if (!*start)
10466                         continue;
10467
10468                 /* filter definition begins */
10469                 if (state == IF_STATE_ACTION) {
10470                         filter = perf_addr_filter_new(event, filters);
10471                         if (!filter)
10472                                 goto fail;
10473                 }
10474
10475                 token = match_token(start, if_tokens, args);
10476                 switch (token) {
10477                 case IF_ACT_FILTER:
10478                 case IF_ACT_START:
10479                 case IF_ACT_STOP:
10480                         if (state != IF_STATE_ACTION)
10481                                 goto fail;
10482
10483                         filter->action = actions[token];
10484                         state = IF_STATE_SOURCE;
10485                         break;
10486
10487                 case IF_SRC_KERNELADDR:
10488                 case IF_SRC_KERNEL:
10489                         kernel = 1;
10490                         fallthrough;
10491
10492                 case IF_SRC_FILEADDR:
10493                 case IF_SRC_FILE:
10494                         if (state != IF_STATE_SOURCE)
10495                                 goto fail;
10496
10497                         *args[0].to = 0;
10498                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10499                         if (ret)
10500                                 goto fail;
10501
10502                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10503                                 *args[1].to = 0;
10504                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10505                                 if (ret)
10506                                         goto fail;
10507                         }
10508
10509                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10510                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10511
10512                                 kfree(filename);
10513                                 filename = match_strdup(&args[fpos]);
10514                                 if (!filename) {
10515                                         ret = -ENOMEM;
10516                                         goto fail;
10517                                 }
10518                         }
10519
10520                         state = IF_STATE_END;
10521                         break;
10522
10523                 default:
10524                         goto fail;
10525                 }
10526
10527                 /*
10528                  * Filter definition is fully parsed, validate and install it.
10529                  * Make sure that it doesn't contradict itself or the event's
10530                  * attribute.
10531                  */
10532                 if (state == IF_STATE_END) {
10533                         ret = -EINVAL;
10534                         if (kernel && event->attr.exclude_kernel)
10535                                 goto fail;
10536
10537                         /*
10538                          * ACTION "filter" must have a non-zero length region
10539                          * specified.
10540                          */
10541                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10542                             !filter->size)
10543                                 goto fail;
10544
10545                         if (!kernel) {
10546                                 if (!filename)
10547                                         goto fail;
10548
10549                                 /*
10550                                  * For now, we only support file-based filters
10551                                  * in per-task events; doing so for CPU-wide
10552                                  * events requires additional context switching
10553                                  * trickery, since same object code will be
10554                                  * mapped at different virtual addresses in
10555                                  * different processes.
10556                                  */
10557                                 ret = -EOPNOTSUPP;
10558                                 if (!event->ctx->task)
10559                                         goto fail;
10560
10561                                 /* look up the path and grab its inode */
10562                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10563                                                 &filter->path);
10564                                 if (ret)
10565                                         goto fail;
10566
10567                                 ret = -EINVAL;
10568                                 if (!filter->path.dentry ||
10569                                     !S_ISREG(d_inode(filter->path.dentry)
10570                                              ->i_mode))
10571                                         goto fail;
10572
10573                                 event->addr_filters.nr_file_filters++;
10574                         }
10575
10576                         /* ready to consume more filters */
10577                         state = IF_STATE_ACTION;
10578                         filter = NULL;
10579                 }
10580         }
10581
10582         if (state != IF_STATE_ACTION)
10583                 goto fail;
10584
10585         kfree(filename);
10586         kfree(orig);
10587
10588         return 0;
10589
10590 fail:
10591         kfree(filename);
10592         free_filters_list(filters);
10593         kfree(orig);
10594
10595         return ret;
10596 }
10597
10598 static int
10599 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10600 {
10601         LIST_HEAD(filters);
10602         int ret;
10603
10604         /*
10605          * Since this is called in perf_ioctl() path, we're already holding
10606          * ctx::mutex.
10607          */
10608         lockdep_assert_held(&event->ctx->mutex);
10609
10610         if (WARN_ON_ONCE(event->parent))
10611                 return -EINVAL;
10612
10613         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10614         if (ret)
10615                 goto fail_clear_files;
10616
10617         ret = event->pmu->addr_filters_validate(&filters);
10618         if (ret)
10619                 goto fail_free_filters;
10620
10621         /* remove existing filters, if any */
10622         perf_addr_filters_splice(event, &filters);
10623
10624         /* install new filters */
10625         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10626
10627         return ret;
10628
10629 fail_free_filters:
10630         free_filters_list(&filters);
10631
10632 fail_clear_files:
10633         event->addr_filters.nr_file_filters = 0;
10634
10635         return ret;
10636 }
10637
10638 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10639 {
10640         int ret = -EINVAL;
10641         char *filter_str;
10642
10643         filter_str = strndup_user(arg, PAGE_SIZE);
10644         if (IS_ERR(filter_str))
10645                 return PTR_ERR(filter_str);
10646
10647 #ifdef CONFIG_EVENT_TRACING
10648         if (perf_event_is_tracing(event)) {
10649                 struct perf_event_context *ctx = event->ctx;
10650
10651                 /*
10652                  * Beware, here be dragons!!
10653                  *
10654                  * the tracepoint muck will deadlock against ctx->mutex, but
10655                  * the tracepoint stuff does not actually need it. So
10656                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10657                  * already have a reference on ctx.
10658                  *
10659                  * This can result in event getting moved to a different ctx,
10660                  * but that does not affect the tracepoint state.
10661                  */
10662                 mutex_unlock(&ctx->mutex);
10663                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10664                 mutex_lock(&ctx->mutex);
10665         } else
10666 #endif
10667         if (has_addr_filter(event))
10668                 ret = perf_event_set_addr_filter(event, filter_str);
10669
10670         kfree(filter_str);
10671         return ret;
10672 }
10673
10674 /*
10675  * hrtimer based swevent callback
10676  */
10677
10678 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10679 {
10680         enum hrtimer_restart ret = HRTIMER_RESTART;
10681         struct perf_sample_data data;
10682         struct pt_regs *regs;
10683         struct perf_event *event;
10684         u64 period;
10685
10686         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10687
10688         if (event->state != PERF_EVENT_STATE_ACTIVE)
10689                 return HRTIMER_NORESTART;
10690
10691         event->pmu->read(event);
10692
10693         perf_sample_data_init(&data, 0, event->hw.last_period);
10694         regs = get_irq_regs();
10695
10696         if (regs && !perf_exclude_event(event, regs)) {
10697                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10698                         if (__perf_event_overflow(event, 1, &data, regs))
10699                                 ret = HRTIMER_NORESTART;
10700         }
10701
10702         period = max_t(u64, 10000, event->hw.sample_period);
10703         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10704
10705         return ret;
10706 }
10707
10708 static void perf_swevent_start_hrtimer(struct perf_event *event)
10709 {
10710         struct hw_perf_event *hwc = &event->hw;
10711         s64 period;
10712
10713         if (!is_sampling_event(event))
10714                 return;
10715
10716         period = local64_read(&hwc->period_left);
10717         if (period) {
10718                 if (period < 0)
10719                         period = 10000;
10720
10721                 local64_set(&hwc->period_left, 0);
10722         } else {
10723                 period = max_t(u64, 10000, hwc->sample_period);
10724         }
10725         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10726                       HRTIMER_MODE_REL_PINNED_HARD);
10727 }
10728
10729 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10730 {
10731         struct hw_perf_event *hwc = &event->hw;
10732
10733         if (is_sampling_event(event)) {
10734                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10735                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10736
10737                 hrtimer_cancel(&hwc->hrtimer);
10738         }
10739 }
10740
10741 static void perf_swevent_init_hrtimer(struct perf_event *event)
10742 {
10743         struct hw_perf_event *hwc = &event->hw;
10744
10745         if (!is_sampling_event(event))
10746                 return;
10747
10748         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10749         hwc->hrtimer.function = perf_swevent_hrtimer;
10750
10751         /*
10752          * Since hrtimers have a fixed rate, we can do a static freq->period
10753          * mapping and avoid the whole period adjust feedback stuff.
10754          */
10755         if (event->attr.freq) {
10756                 long freq = event->attr.sample_freq;
10757
10758                 event->attr.sample_period = NSEC_PER_SEC / freq;
10759                 hwc->sample_period = event->attr.sample_period;
10760                 local64_set(&hwc->period_left, hwc->sample_period);
10761                 hwc->last_period = hwc->sample_period;
10762                 event->attr.freq = 0;
10763         }
10764 }
10765
10766 /*
10767  * Software event: cpu wall time clock
10768  */
10769
10770 static void cpu_clock_event_update(struct perf_event *event)
10771 {
10772         s64 prev;
10773         u64 now;
10774
10775         now = local_clock();
10776         prev = local64_xchg(&event->hw.prev_count, now);
10777         local64_add(now - prev, &event->count);
10778 }
10779
10780 static void cpu_clock_event_start(struct perf_event *event, int flags)
10781 {
10782         local64_set(&event->hw.prev_count, local_clock());
10783         perf_swevent_start_hrtimer(event);
10784 }
10785
10786 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10787 {
10788         perf_swevent_cancel_hrtimer(event);
10789         cpu_clock_event_update(event);
10790 }
10791
10792 static int cpu_clock_event_add(struct perf_event *event, int flags)
10793 {
10794         if (flags & PERF_EF_START)
10795                 cpu_clock_event_start(event, flags);
10796         perf_event_update_userpage(event);
10797
10798         return 0;
10799 }
10800
10801 static void cpu_clock_event_del(struct perf_event *event, int flags)
10802 {
10803         cpu_clock_event_stop(event, flags);
10804 }
10805
10806 static void cpu_clock_event_read(struct perf_event *event)
10807 {
10808         cpu_clock_event_update(event);
10809 }
10810
10811 static int cpu_clock_event_init(struct perf_event *event)
10812 {
10813         if (event->attr.type != PERF_TYPE_SOFTWARE)
10814                 return -ENOENT;
10815
10816         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10817                 return -ENOENT;
10818
10819         /*
10820          * no branch sampling for software events
10821          */
10822         if (has_branch_stack(event))
10823                 return -EOPNOTSUPP;
10824
10825         perf_swevent_init_hrtimer(event);
10826
10827         return 0;
10828 }
10829
10830 static struct pmu perf_cpu_clock = {
10831         .task_ctx_nr    = perf_sw_context,
10832
10833         .capabilities   = PERF_PMU_CAP_NO_NMI,
10834
10835         .event_init     = cpu_clock_event_init,
10836         .add            = cpu_clock_event_add,
10837         .del            = cpu_clock_event_del,
10838         .start          = cpu_clock_event_start,
10839         .stop           = cpu_clock_event_stop,
10840         .read           = cpu_clock_event_read,
10841 };
10842
10843 /*
10844  * Software event: task time clock
10845  */
10846
10847 static void task_clock_event_update(struct perf_event *event, u64 now)
10848 {
10849         u64 prev;
10850         s64 delta;
10851
10852         prev = local64_xchg(&event->hw.prev_count, now);
10853         delta = now - prev;
10854         local64_add(delta, &event->count);
10855 }
10856
10857 static void task_clock_event_start(struct perf_event *event, int flags)
10858 {
10859         local64_set(&event->hw.prev_count, event->ctx->time);
10860         perf_swevent_start_hrtimer(event);
10861 }
10862
10863 static void task_clock_event_stop(struct perf_event *event, int flags)
10864 {
10865         perf_swevent_cancel_hrtimer(event);
10866         task_clock_event_update(event, event->ctx->time);
10867 }
10868
10869 static int task_clock_event_add(struct perf_event *event, int flags)
10870 {
10871         if (flags & PERF_EF_START)
10872                 task_clock_event_start(event, flags);
10873         perf_event_update_userpage(event);
10874
10875         return 0;
10876 }
10877
10878 static void task_clock_event_del(struct perf_event *event, int flags)
10879 {
10880         task_clock_event_stop(event, PERF_EF_UPDATE);
10881 }
10882
10883 static void task_clock_event_read(struct perf_event *event)
10884 {
10885         u64 now = perf_clock();
10886         u64 delta = now - event->ctx->timestamp;
10887         u64 time = event->ctx->time + delta;
10888
10889         task_clock_event_update(event, time);
10890 }
10891
10892 static int task_clock_event_init(struct perf_event *event)
10893 {
10894         if (event->attr.type != PERF_TYPE_SOFTWARE)
10895                 return -ENOENT;
10896
10897         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10898                 return -ENOENT;
10899
10900         /*
10901          * no branch sampling for software events
10902          */
10903         if (has_branch_stack(event))
10904                 return -EOPNOTSUPP;
10905
10906         perf_swevent_init_hrtimer(event);
10907
10908         return 0;
10909 }
10910
10911 static struct pmu perf_task_clock = {
10912         .task_ctx_nr    = perf_sw_context,
10913
10914         .capabilities   = PERF_PMU_CAP_NO_NMI,
10915
10916         .event_init     = task_clock_event_init,
10917         .add            = task_clock_event_add,
10918         .del            = task_clock_event_del,
10919         .start          = task_clock_event_start,
10920         .stop           = task_clock_event_stop,
10921         .read           = task_clock_event_read,
10922 };
10923
10924 static void perf_pmu_nop_void(struct pmu *pmu)
10925 {
10926 }
10927
10928 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10929 {
10930 }
10931
10932 static int perf_pmu_nop_int(struct pmu *pmu)
10933 {
10934         return 0;
10935 }
10936
10937 static int perf_event_nop_int(struct perf_event *event, u64 value)
10938 {
10939         return 0;
10940 }
10941
10942 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10943
10944 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10945 {
10946         __this_cpu_write(nop_txn_flags, flags);
10947
10948         if (flags & ~PERF_PMU_TXN_ADD)
10949                 return;
10950
10951         perf_pmu_disable(pmu);
10952 }
10953
10954 static int perf_pmu_commit_txn(struct pmu *pmu)
10955 {
10956         unsigned int flags = __this_cpu_read(nop_txn_flags);
10957
10958         __this_cpu_write(nop_txn_flags, 0);
10959
10960         if (flags & ~PERF_PMU_TXN_ADD)
10961                 return 0;
10962
10963         perf_pmu_enable(pmu);
10964         return 0;
10965 }
10966
10967 static void perf_pmu_cancel_txn(struct pmu *pmu)
10968 {
10969         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10970
10971         __this_cpu_write(nop_txn_flags, 0);
10972
10973         if (flags & ~PERF_PMU_TXN_ADD)
10974                 return;
10975
10976         perf_pmu_enable(pmu);
10977 }
10978
10979 static int perf_event_idx_default(struct perf_event *event)
10980 {
10981         return 0;
10982 }
10983
10984 /*
10985  * Ensures all contexts with the same task_ctx_nr have the same
10986  * pmu_cpu_context too.
10987  */
10988 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10989 {
10990         struct pmu *pmu;
10991
10992         if (ctxn < 0)
10993                 return NULL;
10994
10995         list_for_each_entry(pmu, &pmus, entry) {
10996                 if (pmu->task_ctx_nr == ctxn)
10997                         return pmu->pmu_cpu_context;
10998         }
10999
11000         return NULL;
11001 }
11002
11003 static void free_pmu_context(struct pmu *pmu)
11004 {
11005         /*
11006          * Static contexts such as perf_sw_context have a global lifetime
11007          * and may be shared between different PMUs. Avoid freeing them
11008          * when a single PMU is going away.
11009          */
11010         if (pmu->task_ctx_nr > perf_invalid_context)
11011                 return;
11012
11013         free_percpu(pmu->pmu_cpu_context);
11014 }
11015
11016 /*
11017  * Let userspace know that this PMU supports address range filtering:
11018  */
11019 static ssize_t nr_addr_filters_show(struct device *dev,
11020                                     struct device_attribute *attr,
11021                                     char *page)
11022 {
11023         struct pmu *pmu = dev_get_drvdata(dev);
11024
11025         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11026 }
11027 DEVICE_ATTR_RO(nr_addr_filters);
11028
11029 static struct idr pmu_idr;
11030
11031 static ssize_t
11032 type_show(struct device *dev, struct device_attribute *attr, char *page)
11033 {
11034         struct pmu *pmu = dev_get_drvdata(dev);
11035
11036         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
11037 }
11038 static DEVICE_ATTR_RO(type);
11039
11040 static ssize_t
11041 perf_event_mux_interval_ms_show(struct device *dev,
11042                                 struct device_attribute *attr,
11043                                 char *page)
11044 {
11045         struct pmu *pmu = dev_get_drvdata(dev);
11046
11047         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
11048 }
11049
11050 static DEFINE_MUTEX(mux_interval_mutex);
11051
11052 static ssize_t
11053 perf_event_mux_interval_ms_store(struct device *dev,
11054                                  struct device_attribute *attr,
11055                                  const char *buf, size_t count)
11056 {
11057         struct pmu *pmu = dev_get_drvdata(dev);
11058         int timer, cpu, ret;
11059
11060         ret = kstrtoint(buf, 0, &timer);
11061         if (ret)
11062                 return ret;
11063
11064         if (timer < 1)
11065                 return -EINVAL;
11066
11067         /* same value, noting to do */
11068         if (timer == pmu->hrtimer_interval_ms)
11069                 return count;
11070
11071         mutex_lock(&mux_interval_mutex);
11072         pmu->hrtimer_interval_ms = timer;
11073
11074         /* update all cpuctx for this PMU */
11075         cpus_read_lock();
11076         for_each_online_cpu(cpu) {
11077                 struct perf_cpu_context *cpuctx;
11078                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11079                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11080
11081                 cpu_function_call(cpu,
11082                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11083         }
11084         cpus_read_unlock();
11085         mutex_unlock(&mux_interval_mutex);
11086
11087         return count;
11088 }
11089 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11090
11091 static struct attribute *pmu_dev_attrs[] = {
11092         &dev_attr_type.attr,
11093         &dev_attr_perf_event_mux_interval_ms.attr,
11094         NULL,
11095 };
11096 ATTRIBUTE_GROUPS(pmu_dev);
11097
11098 static int pmu_bus_running;
11099 static struct bus_type pmu_bus = {
11100         .name           = "event_source",
11101         .dev_groups     = pmu_dev_groups,
11102 };
11103
11104 static void pmu_dev_release(struct device *dev)
11105 {
11106         kfree(dev);
11107 }
11108
11109 static int pmu_dev_alloc(struct pmu *pmu)
11110 {
11111         int ret = -ENOMEM;
11112
11113         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11114         if (!pmu->dev)
11115                 goto out;
11116
11117         pmu->dev->groups = pmu->attr_groups;
11118         device_initialize(pmu->dev);
11119         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11120         if (ret)
11121                 goto free_dev;
11122
11123         dev_set_drvdata(pmu->dev, pmu);
11124         pmu->dev->bus = &pmu_bus;
11125         pmu->dev->release = pmu_dev_release;
11126         ret = device_add(pmu->dev);
11127         if (ret)
11128                 goto free_dev;
11129
11130         /* For PMUs with address filters, throw in an extra attribute: */
11131         if (pmu->nr_addr_filters)
11132                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11133
11134         if (ret)
11135                 goto del_dev;
11136
11137         if (pmu->attr_update)
11138                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11139
11140         if (ret)
11141                 goto del_dev;
11142
11143 out:
11144         return ret;
11145
11146 del_dev:
11147         device_del(pmu->dev);
11148
11149 free_dev:
11150         put_device(pmu->dev);
11151         goto out;
11152 }
11153
11154 static struct lock_class_key cpuctx_mutex;
11155 static struct lock_class_key cpuctx_lock;
11156
11157 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11158 {
11159         int cpu, ret, max = PERF_TYPE_MAX;
11160
11161         mutex_lock(&pmus_lock);
11162         ret = -ENOMEM;
11163         pmu->pmu_disable_count = alloc_percpu(int);
11164         if (!pmu->pmu_disable_count)
11165                 goto unlock;
11166
11167         pmu->type = -1;
11168         if (!name)
11169                 goto skip_type;
11170         pmu->name = name;
11171
11172         if (type != PERF_TYPE_SOFTWARE) {
11173                 if (type >= 0)
11174                         max = type;
11175
11176                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11177                 if (ret < 0)
11178                         goto free_pdc;
11179
11180                 WARN_ON(type >= 0 && ret != type);
11181
11182                 type = ret;
11183         }
11184         pmu->type = type;
11185
11186         if (pmu_bus_running) {
11187                 ret = pmu_dev_alloc(pmu);
11188                 if (ret)
11189                         goto free_idr;
11190         }
11191
11192 skip_type:
11193         if (pmu->task_ctx_nr == perf_hw_context) {
11194                 static int hw_context_taken = 0;
11195
11196                 /*
11197                  * Other than systems with heterogeneous CPUs, it never makes
11198                  * sense for two PMUs to share perf_hw_context. PMUs which are
11199                  * uncore must use perf_invalid_context.
11200                  */
11201                 if (WARN_ON_ONCE(hw_context_taken &&
11202                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11203                         pmu->task_ctx_nr = perf_invalid_context;
11204
11205                 hw_context_taken = 1;
11206         }
11207
11208         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11209         if (pmu->pmu_cpu_context)
11210                 goto got_cpu_context;
11211
11212         ret = -ENOMEM;
11213         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11214         if (!pmu->pmu_cpu_context)
11215                 goto free_dev;
11216
11217         for_each_possible_cpu(cpu) {
11218                 struct perf_cpu_context *cpuctx;
11219
11220                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11221                 __perf_event_init_context(&cpuctx->ctx);
11222                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11223                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11224                 cpuctx->ctx.pmu = pmu;
11225                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11226
11227                 __perf_mux_hrtimer_init(cpuctx, cpu);
11228
11229                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11230                 cpuctx->heap = cpuctx->heap_default;
11231         }
11232
11233 got_cpu_context:
11234         if (!pmu->start_txn) {
11235                 if (pmu->pmu_enable) {
11236                         /*
11237                          * If we have pmu_enable/pmu_disable calls, install
11238                          * transaction stubs that use that to try and batch
11239                          * hardware accesses.
11240                          */
11241                         pmu->start_txn  = perf_pmu_start_txn;
11242                         pmu->commit_txn = perf_pmu_commit_txn;
11243                         pmu->cancel_txn = perf_pmu_cancel_txn;
11244                 } else {
11245                         pmu->start_txn  = perf_pmu_nop_txn;
11246                         pmu->commit_txn = perf_pmu_nop_int;
11247                         pmu->cancel_txn = perf_pmu_nop_void;
11248                 }
11249         }
11250
11251         if (!pmu->pmu_enable) {
11252                 pmu->pmu_enable  = perf_pmu_nop_void;
11253                 pmu->pmu_disable = perf_pmu_nop_void;
11254         }
11255
11256         if (!pmu->check_period)
11257                 pmu->check_period = perf_event_nop_int;
11258
11259         if (!pmu->event_idx)
11260                 pmu->event_idx = perf_event_idx_default;
11261
11262         /*
11263          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11264          * since these cannot be in the IDR. This way the linear search
11265          * is fast, provided a valid software event is provided.
11266          */
11267         if (type == PERF_TYPE_SOFTWARE || !name)
11268                 list_add_rcu(&pmu->entry, &pmus);
11269         else
11270                 list_add_tail_rcu(&pmu->entry, &pmus);
11271
11272         atomic_set(&pmu->exclusive_cnt, 0);
11273         ret = 0;
11274 unlock:
11275         mutex_unlock(&pmus_lock);
11276
11277         return ret;
11278
11279 free_dev:
11280         device_del(pmu->dev);
11281         put_device(pmu->dev);
11282
11283 free_idr:
11284         if (pmu->type != PERF_TYPE_SOFTWARE)
11285                 idr_remove(&pmu_idr, pmu->type);
11286
11287 free_pdc:
11288         free_percpu(pmu->pmu_disable_count);
11289         goto unlock;
11290 }
11291 EXPORT_SYMBOL_GPL(perf_pmu_register);
11292
11293 void perf_pmu_unregister(struct pmu *pmu)
11294 {
11295         mutex_lock(&pmus_lock);
11296         list_del_rcu(&pmu->entry);
11297
11298         /*
11299          * We dereference the pmu list under both SRCU and regular RCU, so
11300          * synchronize against both of those.
11301          */
11302         synchronize_srcu(&pmus_srcu);
11303         synchronize_rcu();
11304
11305         free_percpu(pmu->pmu_disable_count);
11306         if (pmu->type != PERF_TYPE_SOFTWARE)
11307                 idr_remove(&pmu_idr, pmu->type);
11308         if (pmu_bus_running) {
11309                 if (pmu->nr_addr_filters)
11310                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11311                 device_del(pmu->dev);
11312                 put_device(pmu->dev);
11313         }
11314         free_pmu_context(pmu);
11315         mutex_unlock(&pmus_lock);
11316 }
11317 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11318
11319 static inline bool has_extended_regs(struct perf_event *event)
11320 {
11321         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11322                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11323 }
11324
11325 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11326 {
11327         struct perf_event_context *ctx = NULL;
11328         int ret;
11329
11330         if (!try_module_get(pmu->module))
11331                 return -ENODEV;
11332
11333         /*
11334          * A number of pmu->event_init() methods iterate the sibling_list to,
11335          * for example, validate if the group fits on the PMU. Therefore,
11336          * if this is a sibling event, acquire the ctx->mutex to protect
11337          * the sibling_list.
11338          */
11339         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11340                 /*
11341                  * This ctx->mutex can nest when we're called through
11342                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11343                  */
11344                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11345                                                  SINGLE_DEPTH_NESTING);
11346                 BUG_ON(!ctx);
11347         }
11348
11349         event->pmu = pmu;
11350         ret = pmu->event_init(event);
11351
11352         if (ctx)
11353                 perf_event_ctx_unlock(event->group_leader, ctx);
11354
11355         if (!ret) {
11356                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11357                     has_extended_regs(event))
11358                         ret = -EOPNOTSUPP;
11359
11360                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11361                     event_has_any_exclude_flag(event))
11362                         ret = -EINVAL;
11363
11364                 if (ret && event->destroy)
11365                         event->destroy(event);
11366         }
11367
11368         if (ret)
11369                 module_put(pmu->module);
11370
11371         return ret;
11372 }
11373
11374 static struct pmu *perf_init_event(struct perf_event *event)
11375 {
11376         bool extended_type = false;
11377         int idx, type, ret;
11378         struct pmu *pmu;
11379
11380         idx = srcu_read_lock(&pmus_srcu);
11381
11382         /* Try parent's PMU first: */
11383         if (event->parent && event->parent->pmu) {
11384                 pmu = event->parent->pmu;
11385                 ret = perf_try_init_event(pmu, event);
11386                 if (!ret)
11387                         goto unlock;
11388         }
11389
11390         /*
11391          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11392          * are often aliases for PERF_TYPE_RAW.
11393          */
11394         type = event->attr.type;
11395         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11396                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11397                 if (!type) {
11398                         type = PERF_TYPE_RAW;
11399                 } else {
11400                         extended_type = true;
11401                         event->attr.config &= PERF_HW_EVENT_MASK;
11402                 }
11403         }
11404
11405 again:
11406         rcu_read_lock();
11407         pmu = idr_find(&pmu_idr, type);
11408         rcu_read_unlock();
11409         if (pmu) {
11410                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11411                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11412                         goto fail;
11413
11414                 ret = perf_try_init_event(pmu, event);
11415                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11416                         type = event->attr.type;
11417                         goto again;
11418                 }
11419
11420                 if (ret)
11421                         pmu = ERR_PTR(ret);
11422
11423                 goto unlock;
11424         }
11425
11426         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11427                 ret = perf_try_init_event(pmu, event);
11428                 if (!ret)
11429                         goto unlock;
11430
11431                 if (ret != -ENOENT) {
11432                         pmu = ERR_PTR(ret);
11433                         goto unlock;
11434                 }
11435         }
11436 fail:
11437         pmu = ERR_PTR(-ENOENT);
11438 unlock:
11439         srcu_read_unlock(&pmus_srcu, idx);
11440
11441         return pmu;
11442 }
11443
11444 static void attach_sb_event(struct perf_event *event)
11445 {
11446         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11447
11448         raw_spin_lock(&pel->lock);
11449         list_add_rcu(&event->sb_list, &pel->list);
11450         raw_spin_unlock(&pel->lock);
11451 }
11452
11453 /*
11454  * We keep a list of all !task (and therefore per-cpu) events
11455  * that need to receive side-band records.
11456  *
11457  * This avoids having to scan all the various PMU per-cpu contexts
11458  * looking for them.
11459  */
11460 static void account_pmu_sb_event(struct perf_event *event)
11461 {
11462         if (is_sb_event(event))
11463                 attach_sb_event(event);
11464 }
11465
11466 static void account_event_cpu(struct perf_event *event, int cpu)
11467 {
11468         if (event->parent)
11469                 return;
11470
11471         if (is_cgroup_event(event))
11472                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11473 }
11474
11475 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11476 static void account_freq_event_nohz(void)
11477 {
11478 #ifdef CONFIG_NO_HZ_FULL
11479         /* Lock so we don't race with concurrent unaccount */
11480         spin_lock(&nr_freq_lock);
11481         if (atomic_inc_return(&nr_freq_events) == 1)
11482                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11483         spin_unlock(&nr_freq_lock);
11484 #endif
11485 }
11486
11487 static void account_freq_event(void)
11488 {
11489         if (tick_nohz_full_enabled())
11490                 account_freq_event_nohz();
11491         else
11492                 atomic_inc(&nr_freq_events);
11493 }
11494
11495
11496 static void account_event(struct perf_event *event)
11497 {
11498         bool inc = false;
11499
11500         if (event->parent)
11501                 return;
11502
11503         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11504                 inc = true;
11505         if (event->attr.mmap || event->attr.mmap_data)
11506                 atomic_inc(&nr_mmap_events);
11507         if (event->attr.build_id)
11508                 atomic_inc(&nr_build_id_events);
11509         if (event->attr.comm)
11510                 atomic_inc(&nr_comm_events);
11511         if (event->attr.namespaces)
11512                 atomic_inc(&nr_namespaces_events);
11513         if (event->attr.cgroup)
11514                 atomic_inc(&nr_cgroup_events);
11515         if (event->attr.task)
11516                 atomic_inc(&nr_task_events);
11517         if (event->attr.freq)
11518                 account_freq_event();
11519         if (event->attr.context_switch) {
11520                 atomic_inc(&nr_switch_events);
11521                 inc = true;
11522         }
11523         if (has_branch_stack(event))
11524                 inc = true;
11525         if (is_cgroup_event(event))
11526                 inc = true;
11527         if (event->attr.ksymbol)
11528                 atomic_inc(&nr_ksymbol_events);
11529         if (event->attr.bpf_event)
11530                 atomic_inc(&nr_bpf_events);
11531         if (event->attr.text_poke)
11532                 atomic_inc(&nr_text_poke_events);
11533
11534         if (inc) {
11535                 /*
11536                  * We need the mutex here because static_branch_enable()
11537                  * must complete *before* the perf_sched_count increment
11538                  * becomes visible.
11539                  */
11540                 if (atomic_inc_not_zero(&perf_sched_count))
11541                         goto enabled;
11542
11543                 mutex_lock(&perf_sched_mutex);
11544                 if (!atomic_read(&perf_sched_count)) {
11545                         static_branch_enable(&perf_sched_events);
11546                         /*
11547                          * Guarantee that all CPUs observe they key change and
11548                          * call the perf scheduling hooks before proceeding to
11549                          * install events that need them.
11550                          */
11551                         synchronize_rcu();
11552                 }
11553                 /*
11554                  * Now that we have waited for the sync_sched(), allow further
11555                  * increments to by-pass the mutex.
11556                  */
11557                 atomic_inc(&perf_sched_count);
11558                 mutex_unlock(&perf_sched_mutex);
11559         }
11560 enabled:
11561
11562         account_event_cpu(event, event->cpu);
11563
11564         account_pmu_sb_event(event);
11565 }
11566
11567 /*
11568  * Allocate and initialize an event structure
11569  */
11570 static struct perf_event *
11571 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11572                  struct task_struct *task,
11573                  struct perf_event *group_leader,
11574                  struct perf_event *parent_event,
11575                  perf_overflow_handler_t overflow_handler,
11576                  void *context, int cgroup_fd)
11577 {
11578         struct pmu *pmu;
11579         struct perf_event *event;
11580         struct hw_perf_event *hwc;
11581         long err = -EINVAL;
11582         int node;
11583
11584         if ((unsigned)cpu >= nr_cpu_ids) {
11585                 if (!task || cpu != -1)
11586                         return ERR_PTR(-EINVAL);
11587         }
11588         if (attr->sigtrap && !task) {
11589                 /* Requires a task: avoid signalling random tasks. */
11590                 return ERR_PTR(-EINVAL);
11591         }
11592
11593         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11594         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11595                                       node);
11596         if (!event)
11597                 return ERR_PTR(-ENOMEM);
11598
11599         /*
11600          * Single events are their own group leaders, with an
11601          * empty sibling list:
11602          */
11603         if (!group_leader)
11604                 group_leader = event;
11605
11606         mutex_init(&event->child_mutex);
11607         INIT_LIST_HEAD(&event->child_list);
11608
11609         INIT_LIST_HEAD(&event->event_entry);
11610         INIT_LIST_HEAD(&event->sibling_list);
11611         INIT_LIST_HEAD(&event->active_list);
11612         init_event_group(event);
11613         INIT_LIST_HEAD(&event->rb_entry);
11614         INIT_LIST_HEAD(&event->active_entry);
11615         INIT_LIST_HEAD(&event->addr_filters.list);
11616         INIT_HLIST_NODE(&event->hlist_entry);
11617
11618
11619         init_waitqueue_head(&event->waitq);
11620         event->pending_disable = -1;
11621         init_irq_work(&event->pending, perf_pending_event);
11622
11623         mutex_init(&event->mmap_mutex);
11624         raw_spin_lock_init(&event->addr_filters.lock);
11625
11626         atomic_long_set(&event->refcount, 1);
11627         event->cpu              = cpu;
11628         event->attr             = *attr;
11629         event->group_leader     = group_leader;
11630         event->pmu              = NULL;
11631         event->oncpu            = -1;
11632
11633         event->parent           = parent_event;
11634
11635         event->ns               = get_pid_ns(task_active_pid_ns(current));
11636         event->id               = atomic64_inc_return(&perf_event_id);
11637
11638         event->state            = PERF_EVENT_STATE_INACTIVE;
11639
11640         if (event->attr.sigtrap)
11641                 atomic_set(&event->event_limit, 1);
11642
11643         if (task) {
11644                 event->attach_state = PERF_ATTACH_TASK;
11645                 /*
11646                  * XXX pmu::event_init needs to know what task to account to
11647                  * and we cannot use the ctx information because we need the
11648                  * pmu before we get a ctx.
11649                  */
11650                 event->hw.target = get_task_struct(task);
11651         }
11652
11653         event->clock = &local_clock;
11654         if (parent_event)
11655                 event->clock = parent_event->clock;
11656
11657         if (!overflow_handler && parent_event) {
11658                 overflow_handler = parent_event->overflow_handler;
11659                 context = parent_event->overflow_handler_context;
11660 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11661                 if (overflow_handler == bpf_overflow_handler) {
11662                         struct bpf_prog *prog = parent_event->prog;
11663
11664                         bpf_prog_inc(prog);
11665                         event->prog = prog;
11666                         event->orig_overflow_handler =
11667                                 parent_event->orig_overflow_handler;
11668                 }
11669 #endif
11670         }
11671
11672         if (overflow_handler) {
11673                 event->overflow_handler = overflow_handler;
11674                 event->overflow_handler_context = context;
11675         } else if (is_write_backward(event)){
11676                 event->overflow_handler = perf_event_output_backward;
11677                 event->overflow_handler_context = NULL;
11678         } else {
11679                 event->overflow_handler = perf_event_output_forward;
11680                 event->overflow_handler_context = NULL;
11681         }
11682
11683         perf_event__state_init(event);
11684
11685         pmu = NULL;
11686
11687         hwc = &event->hw;
11688         hwc->sample_period = attr->sample_period;
11689         if (attr->freq && attr->sample_freq)
11690                 hwc->sample_period = 1;
11691         hwc->last_period = hwc->sample_period;
11692
11693         local64_set(&hwc->period_left, hwc->sample_period);
11694
11695         /*
11696          * We currently do not support PERF_SAMPLE_READ on inherited events.
11697          * See perf_output_read().
11698          */
11699         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11700                 goto err_ns;
11701
11702         if (!has_branch_stack(event))
11703                 event->attr.branch_sample_type = 0;
11704
11705         pmu = perf_init_event(event);
11706         if (IS_ERR(pmu)) {
11707                 err = PTR_ERR(pmu);
11708                 goto err_ns;
11709         }
11710
11711         /*
11712          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11713          * be different on other CPUs in the uncore mask.
11714          */
11715         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11716                 err = -EINVAL;
11717                 goto err_pmu;
11718         }
11719
11720         if (event->attr.aux_output &&
11721             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11722                 err = -EOPNOTSUPP;
11723                 goto err_pmu;
11724         }
11725
11726         if (cgroup_fd != -1) {
11727                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11728                 if (err)
11729                         goto err_pmu;
11730         }
11731
11732         err = exclusive_event_init(event);
11733         if (err)
11734                 goto err_pmu;
11735
11736         if (has_addr_filter(event)) {
11737                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11738                                                     sizeof(struct perf_addr_filter_range),
11739                                                     GFP_KERNEL);
11740                 if (!event->addr_filter_ranges) {
11741                         err = -ENOMEM;
11742                         goto err_per_task;
11743                 }
11744
11745                 /*
11746                  * Clone the parent's vma offsets: they are valid until exec()
11747                  * even if the mm is not shared with the parent.
11748                  */
11749                 if (event->parent) {
11750                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11751
11752                         raw_spin_lock_irq(&ifh->lock);
11753                         memcpy(event->addr_filter_ranges,
11754                                event->parent->addr_filter_ranges,
11755                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11756                         raw_spin_unlock_irq(&ifh->lock);
11757                 }
11758
11759                 /* force hw sync on the address filters */
11760                 event->addr_filters_gen = 1;
11761         }
11762
11763         if (!event->parent) {
11764                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11765                         err = get_callchain_buffers(attr->sample_max_stack);
11766                         if (err)
11767                                 goto err_addr_filters;
11768                 }
11769         }
11770
11771         err = security_perf_event_alloc(event);
11772         if (err)
11773                 goto err_callchain_buffer;
11774
11775         /* symmetric to unaccount_event() in _free_event() */
11776         account_event(event);
11777
11778         return event;
11779
11780 err_callchain_buffer:
11781         if (!event->parent) {
11782                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11783                         put_callchain_buffers();
11784         }
11785 err_addr_filters:
11786         kfree(event->addr_filter_ranges);
11787
11788 err_per_task:
11789         exclusive_event_destroy(event);
11790
11791 err_pmu:
11792         if (is_cgroup_event(event))
11793                 perf_detach_cgroup(event);
11794         if (event->destroy)
11795                 event->destroy(event);
11796         module_put(pmu->module);
11797 err_ns:
11798         if (event->ns)
11799                 put_pid_ns(event->ns);
11800         if (event->hw.target)
11801                 put_task_struct(event->hw.target);
11802         kmem_cache_free(perf_event_cache, event);
11803
11804         return ERR_PTR(err);
11805 }
11806
11807 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11808                           struct perf_event_attr *attr)
11809 {
11810         u32 size;
11811         int ret;
11812
11813         /* Zero the full structure, so that a short copy will be nice. */
11814         memset(attr, 0, sizeof(*attr));
11815
11816         ret = get_user(size, &uattr->size);
11817         if (ret)
11818                 return ret;
11819
11820         /* ABI compatibility quirk: */
11821         if (!size)
11822                 size = PERF_ATTR_SIZE_VER0;
11823         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11824                 goto err_size;
11825
11826         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11827         if (ret) {
11828                 if (ret == -E2BIG)
11829                         goto err_size;
11830                 return ret;
11831         }
11832
11833         attr->size = size;
11834
11835         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11836                 return -EINVAL;
11837
11838         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11839                 return -EINVAL;
11840
11841         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11842                 return -EINVAL;
11843
11844         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11845                 u64 mask = attr->branch_sample_type;
11846
11847                 /* only using defined bits */
11848                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11849                         return -EINVAL;
11850
11851                 /* at least one branch bit must be set */
11852                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11853                         return -EINVAL;
11854
11855                 /* propagate priv level, when not set for branch */
11856                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11857
11858                         /* exclude_kernel checked on syscall entry */
11859                         if (!attr->exclude_kernel)
11860                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11861
11862                         if (!attr->exclude_user)
11863                                 mask |= PERF_SAMPLE_BRANCH_USER;
11864
11865                         if (!attr->exclude_hv)
11866                                 mask |= PERF_SAMPLE_BRANCH_HV;
11867                         /*
11868                          * adjust user setting (for HW filter setup)
11869                          */
11870                         attr->branch_sample_type = mask;
11871                 }
11872                 /* privileged levels capture (kernel, hv): check permissions */
11873                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11874                         ret = perf_allow_kernel(attr);
11875                         if (ret)
11876                                 return ret;
11877                 }
11878         }
11879
11880         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11881                 ret = perf_reg_validate(attr->sample_regs_user);
11882                 if (ret)
11883                         return ret;
11884         }
11885
11886         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11887                 if (!arch_perf_have_user_stack_dump())
11888                         return -ENOSYS;
11889
11890                 /*
11891                  * We have __u32 type for the size, but so far
11892                  * we can only use __u16 as maximum due to the
11893                  * __u16 sample size limit.
11894                  */
11895                 if (attr->sample_stack_user >= USHRT_MAX)
11896                         return -EINVAL;
11897                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11898                         return -EINVAL;
11899         }
11900
11901         if (!attr->sample_max_stack)
11902                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11903
11904         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11905                 ret = perf_reg_validate(attr->sample_regs_intr);
11906
11907 #ifndef CONFIG_CGROUP_PERF
11908         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11909                 return -EINVAL;
11910 #endif
11911         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11912             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11913                 return -EINVAL;
11914
11915         if (!attr->inherit && attr->inherit_thread)
11916                 return -EINVAL;
11917
11918         if (attr->remove_on_exec && attr->enable_on_exec)
11919                 return -EINVAL;
11920
11921         if (attr->sigtrap && !attr->remove_on_exec)
11922                 return -EINVAL;
11923
11924 out:
11925         return ret;
11926
11927 err_size:
11928         put_user(sizeof(*attr), &uattr->size);
11929         ret = -E2BIG;
11930         goto out;
11931 }
11932
11933 static int
11934 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11935 {
11936         struct perf_buffer *rb = NULL;
11937         int ret = -EINVAL;
11938
11939         if (!output_event)
11940                 goto set;
11941
11942         /* don't allow circular references */
11943         if (event == output_event)
11944                 goto out;
11945
11946         /*
11947          * Don't allow cross-cpu buffers
11948          */
11949         if (output_event->cpu != event->cpu)
11950                 goto out;
11951
11952         /*
11953          * If its not a per-cpu rb, it must be the same task.
11954          */
11955         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11956                 goto out;
11957
11958         /*
11959          * Mixing clocks in the same buffer is trouble you don't need.
11960          */
11961         if (output_event->clock != event->clock)
11962                 goto out;
11963
11964         /*
11965          * Either writing ring buffer from beginning or from end.
11966          * Mixing is not allowed.
11967          */
11968         if (is_write_backward(output_event) != is_write_backward(event))
11969                 goto out;
11970
11971         /*
11972          * If both events generate aux data, they must be on the same PMU
11973          */
11974         if (has_aux(event) && has_aux(output_event) &&
11975             event->pmu != output_event->pmu)
11976                 goto out;
11977
11978 set:
11979         mutex_lock(&event->mmap_mutex);
11980         /* Can't redirect output if we've got an active mmap() */
11981         if (atomic_read(&event->mmap_count))
11982                 goto unlock;
11983
11984         if (output_event) {
11985                 /* get the rb we want to redirect to */
11986                 rb = ring_buffer_get(output_event);
11987                 if (!rb)
11988                         goto unlock;
11989         }
11990
11991         ring_buffer_attach(event, rb);
11992
11993         ret = 0;
11994 unlock:
11995         mutex_unlock(&event->mmap_mutex);
11996
11997 out:
11998         return ret;
11999 }
12000
12001 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12002 {
12003         if (b < a)
12004                 swap(a, b);
12005
12006         mutex_lock(a);
12007         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12008 }
12009
12010 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12011 {
12012         bool nmi_safe = false;
12013
12014         switch (clk_id) {
12015         case CLOCK_MONOTONIC:
12016                 event->clock = &ktime_get_mono_fast_ns;
12017                 nmi_safe = true;
12018                 break;
12019
12020         case CLOCK_MONOTONIC_RAW:
12021                 event->clock = &ktime_get_raw_fast_ns;
12022                 nmi_safe = true;
12023                 break;
12024
12025         case CLOCK_REALTIME:
12026                 event->clock = &ktime_get_real_ns;
12027                 break;
12028
12029         case CLOCK_BOOTTIME:
12030                 event->clock = &ktime_get_boottime_ns;
12031                 break;
12032
12033         case CLOCK_TAI:
12034                 event->clock = &ktime_get_clocktai_ns;
12035                 break;
12036
12037         default:
12038                 return -EINVAL;
12039         }
12040
12041         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12042                 return -EINVAL;
12043
12044         return 0;
12045 }
12046
12047 /*
12048  * Variation on perf_event_ctx_lock_nested(), except we take two context
12049  * mutexes.
12050  */
12051 static struct perf_event_context *
12052 __perf_event_ctx_lock_double(struct perf_event *group_leader,
12053                              struct perf_event_context *ctx)
12054 {
12055         struct perf_event_context *gctx;
12056
12057 again:
12058         rcu_read_lock();
12059         gctx = READ_ONCE(group_leader->ctx);
12060         if (!refcount_inc_not_zero(&gctx->refcount)) {
12061                 rcu_read_unlock();
12062                 goto again;
12063         }
12064         rcu_read_unlock();
12065
12066         mutex_lock_double(&gctx->mutex, &ctx->mutex);
12067
12068         if (group_leader->ctx != gctx) {
12069                 mutex_unlock(&ctx->mutex);
12070                 mutex_unlock(&gctx->mutex);
12071                 put_ctx(gctx);
12072                 goto again;
12073         }
12074
12075         return gctx;
12076 }
12077
12078 static bool
12079 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12080 {
12081         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12082         bool is_capable = perfmon_capable();
12083
12084         if (attr->sigtrap) {
12085                 /*
12086                  * perf_event_attr::sigtrap sends signals to the other task.
12087                  * Require the current task to also have CAP_KILL.
12088                  */
12089                 rcu_read_lock();
12090                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12091                 rcu_read_unlock();
12092
12093                 /*
12094                  * If the required capabilities aren't available, checks for
12095                  * ptrace permissions: upgrade to ATTACH, since sending signals
12096                  * can effectively change the target task.
12097                  */
12098                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12099         }
12100
12101         /*
12102          * Preserve ptrace permission check for backwards compatibility. The
12103          * ptrace check also includes checks that the current task and other
12104          * task have matching uids, and is therefore not done here explicitly.
12105          */
12106         return is_capable || ptrace_may_access(task, ptrace_mode);
12107 }
12108
12109 /**
12110  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12111  *
12112  * @attr_uptr:  event_id type attributes for monitoring/sampling
12113  * @pid:                target pid
12114  * @cpu:                target cpu
12115  * @group_fd:           group leader event fd
12116  * @flags:              perf event open flags
12117  */
12118 SYSCALL_DEFINE5(perf_event_open,
12119                 struct perf_event_attr __user *, attr_uptr,
12120                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12121 {
12122         struct perf_event *group_leader = NULL, *output_event = NULL;
12123         struct perf_event *event, *sibling;
12124         struct perf_event_attr attr;
12125         struct perf_event_context *ctx, *gctx;
12126         struct file *event_file = NULL;
12127         struct fd group = {NULL, 0};
12128         struct task_struct *task = NULL;
12129         struct pmu *pmu;
12130         int event_fd;
12131         int move_group = 0;
12132         int err;
12133         int f_flags = O_RDWR;
12134         int cgroup_fd = -1;
12135
12136         /* for future expandability... */
12137         if (flags & ~PERF_FLAG_ALL)
12138                 return -EINVAL;
12139
12140         /* Do we allow access to perf_event_open(2) ? */
12141         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12142         if (err)
12143                 return err;
12144
12145         err = perf_copy_attr(attr_uptr, &attr);
12146         if (err)
12147                 return err;
12148
12149         if (!attr.exclude_kernel) {
12150                 err = perf_allow_kernel(&attr);
12151                 if (err)
12152                         return err;
12153         }
12154
12155         if (attr.namespaces) {
12156                 if (!perfmon_capable())
12157                         return -EACCES;
12158         }
12159
12160         if (attr.freq) {
12161                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12162                         return -EINVAL;
12163         } else {
12164                 if (attr.sample_period & (1ULL << 63))
12165                         return -EINVAL;
12166         }
12167
12168         /* Only privileged users can get physical addresses */
12169         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12170                 err = perf_allow_kernel(&attr);
12171                 if (err)
12172                         return err;
12173         }
12174
12175         /* REGS_INTR can leak data, lockdown must prevent this */
12176         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12177                 err = security_locked_down(LOCKDOWN_PERF);
12178                 if (err)
12179                         return err;
12180         }
12181
12182         /*
12183          * In cgroup mode, the pid argument is used to pass the fd
12184          * opened to the cgroup directory in cgroupfs. The cpu argument
12185          * designates the cpu on which to monitor threads from that
12186          * cgroup.
12187          */
12188         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12189                 return -EINVAL;
12190
12191         if (flags & PERF_FLAG_FD_CLOEXEC)
12192                 f_flags |= O_CLOEXEC;
12193
12194         event_fd = get_unused_fd_flags(f_flags);
12195         if (event_fd < 0)
12196                 return event_fd;
12197
12198         if (group_fd != -1) {
12199                 err = perf_fget_light(group_fd, &group);
12200                 if (err)
12201                         goto err_fd;
12202                 group_leader = group.file->private_data;
12203                 if (flags & PERF_FLAG_FD_OUTPUT)
12204                         output_event = group_leader;
12205                 if (flags & PERF_FLAG_FD_NO_GROUP)
12206                         group_leader = NULL;
12207         }
12208
12209         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12210                 task = find_lively_task_by_vpid(pid);
12211                 if (IS_ERR(task)) {
12212                         err = PTR_ERR(task);
12213                         goto err_group_fd;
12214                 }
12215         }
12216
12217         if (task && group_leader &&
12218             group_leader->attr.inherit != attr.inherit) {
12219                 err = -EINVAL;
12220                 goto err_task;
12221         }
12222
12223         if (flags & PERF_FLAG_PID_CGROUP)
12224                 cgroup_fd = pid;
12225
12226         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12227                                  NULL, NULL, cgroup_fd);
12228         if (IS_ERR(event)) {
12229                 err = PTR_ERR(event);
12230                 goto err_task;
12231         }
12232
12233         if (is_sampling_event(event)) {
12234                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12235                         err = -EOPNOTSUPP;
12236                         goto err_alloc;
12237                 }
12238         }
12239
12240         /*
12241          * Special case software events and allow them to be part of
12242          * any hardware group.
12243          */
12244         pmu = event->pmu;
12245
12246         if (attr.use_clockid) {
12247                 err = perf_event_set_clock(event, attr.clockid);
12248                 if (err)
12249                         goto err_alloc;
12250         }
12251
12252         if (pmu->task_ctx_nr == perf_sw_context)
12253                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12254
12255         if (group_leader) {
12256                 if (is_software_event(event) &&
12257                     !in_software_context(group_leader)) {
12258                         /*
12259                          * If the event is a sw event, but the group_leader
12260                          * is on hw context.
12261                          *
12262                          * Allow the addition of software events to hw
12263                          * groups, this is safe because software events
12264                          * never fail to schedule.
12265                          */
12266                         pmu = group_leader->ctx->pmu;
12267                 } else if (!is_software_event(event) &&
12268                            is_software_event(group_leader) &&
12269                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12270                         /*
12271                          * In case the group is a pure software group, and we
12272                          * try to add a hardware event, move the whole group to
12273                          * the hardware context.
12274                          */
12275                         move_group = 1;
12276                 }
12277         }
12278
12279         /*
12280          * Get the target context (task or percpu):
12281          */
12282         ctx = find_get_context(pmu, task, event);
12283         if (IS_ERR(ctx)) {
12284                 err = PTR_ERR(ctx);
12285                 goto err_alloc;
12286         }
12287
12288         /*
12289          * Look up the group leader (we will attach this event to it):
12290          */
12291         if (group_leader) {
12292                 err = -EINVAL;
12293
12294                 /*
12295                  * Do not allow a recursive hierarchy (this new sibling
12296                  * becoming part of another group-sibling):
12297                  */
12298                 if (group_leader->group_leader != group_leader)
12299                         goto err_context;
12300
12301                 /* All events in a group should have the same clock */
12302                 if (group_leader->clock != event->clock)
12303                         goto err_context;
12304
12305                 /*
12306                  * Make sure we're both events for the same CPU;
12307                  * grouping events for different CPUs is broken; since
12308                  * you can never concurrently schedule them anyhow.
12309                  */
12310                 if (group_leader->cpu != event->cpu)
12311                         goto err_context;
12312
12313                 /*
12314                  * Make sure we're both on the same task, or both
12315                  * per-CPU events.
12316                  */
12317                 if (group_leader->ctx->task != ctx->task)
12318                         goto err_context;
12319
12320                 /*
12321                  * Do not allow to attach to a group in a different task
12322                  * or CPU context. If we're moving SW events, we'll fix
12323                  * this up later, so allow that.
12324                  */
12325                 if (!move_group && group_leader->ctx != ctx)
12326                         goto err_context;
12327
12328                 /*
12329                  * Only a group leader can be exclusive or pinned
12330                  */
12331                 if (attr.exclusive || attr.pinned)
12332                         goto err_context;
12333         }
12334
12335         if (output_event) {
12336                 err = perf_event_set_output(event, output_event);
12337                 if (err)
12338                         goto err_context;
12339         }
12340
12341         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12342                                         f_flags);
12343         if (IS_ERR(event_file)) {
12344                 err = PTR_ERR(event_file);
12345                 event_file = NULL;
12346                 goto err_context;
12347         }
12348
12349         if (task) {
12350                 err = down_read_interruptible(&task->signal->exec_update_lock);
12351                 if (err)
12352                         goto err_file;
12353
12354                 /*
12355                  * We must hold exec_update_lock across this and any potential
12356                  * perf_install_in_context() call for this new event to
12357                  * serialize against exec() altering our credentials (and the
12358                  * perf_event_exit_task() that could imply).
12359                  */
12360                 err = -EACCES;
12361                 if (!perf_check_permission(&attr, task))
12362                         goto err_cred;
12363         }
12364
12365         if (move_group) {
12366                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12367
12368                 if (gctx->task == TASK_TOMBSTONE) {
12369                         err = -ESRCH;
12370                         goto err_locked;
12371                 }
12372
12373                 /*
12374                  * Check if we raced against another sys_perf_event_open() call
12375                  * moving the software group underneath us.
12376                  */
12377                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12378                         /*
12379                          * If someone moved the group out from under us, check
12380                          * if this new event wound up on the same ctx, if so
12381                          * its the regular !move_group case, otherwise fail.
12382                          */
12383                         if (gctx != ctx) {
12384                                 err = -EINVAL;
12385                                 goto err_locked;
12386                         } else {
12387                                 perf_event_ctx_unlock(group_leader, gctx);
12388                                 move_group = 0;
12389                         }
12390                 }
12391
12392                 /*
12393                  * Failure to create exclusive events returns -EBUSY.
12394                  */
12395                 err = -EBUSY;
12396                 if (!exclusive_event_installable(group_leader, ctx))
12397                         goto err_locked;
12398
12399                 for_each_sibling_event(sibling, group_leader) {
12400                         if (!exclusive_event_installable(sibling, ctx))
12401                                 goto err_locked;
12402                 }
12403         } else {
12404                 mutex_lock(&ctx->mutex);
12405         }
12406
12407         if (ctx->task == TASK_TOMBSTONE) {
12408                 err = -ESRCH;
12409                 goto err_locked;
12410         }
12411
12412         if (!perf_event_validate_size(event)) {
12413                 err = -E2BIG;
12414                 goto err_locked;
12415         }
12416
12417         if (!task) {
12418                 /*
12419                  * Check if the @cpu we're creating an event for is online.
12420                  *
12421                  * We use the perf_cpu_context::ctx::mutex to serialize against
12422                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12423                  */
12424                 struct perf_cpu_context *cpuctx =
12425                         container_of(ctx, struct perf_cpu_context, ctx);
12426
12427                 if (!cpuctx->online) {
12428                         err = -ENODEV;
12429                         goto err_locked;
12430                 }
12431         }
12432
12433         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12434                 err = -EINVAL;
12435                 goto err_locked;
12436         }
12437
12438         /*
12439          * Must be under the same ctx::mutex as perf_install_in_context(),
12440          * because we need to serialize with concurrent event creation.
12441          */
12442         if (!exclusive_event_installable(event, ctx)) {
12443                 err = -EBUSY;
12444                 goto err_locked;
12445         }
12446
12447         WARN_ON_ONCE(ctx->parent_ctx);
12448
12449         /*
12450          * This is the point on no return; we cannot fail hereafter. This is
12451          * where we start modifying current state.
12452          */
12453
12454         if (move_group) {
12455                 /*
12456                  * See perf_event_ctx_lock() for comments on the details
12457                  * of swizzling perf_event::ctx.
12458                  */
12459                 perf_remove_from_context(group_leader, 0);
12460                 put_ctx(gctx);
12461
12462                 for_each_sibling_event(sibling, group_leader) {
12463                         perf_remove_from_context(sibling, 0);
12464                         put_ctx(gctx);
12465                 }
12466
12467                 /*
12468                  * Wait for everybody to stop referencing the events through
12469                  * the old lists, before installing it on new lists.
12470                  */
12471                 synchronize_rcu();
12472
12473                 /*
12474                  * Install the group siblings before the group leader.
12475                  *
12476                  * Because a group leader will try and install the entire group
12477                  * (through the sibling list, which is still in-tact), we can
12478                  * end up with siblings installed in the wrong context.
12479                  *
12480                  * By installing siblings first we NO-OP because they're not
12481                  * reachable through the group lists.
12482                  */
12483                 for_each_sibling_event(sibling, group_leader) {
12484                         perf_event__state_init(sibling);
12485                         perf_install_in_context(ctx, sibling, sibling->cpu);
12486                         get_ctx(ctx);
12487                 }
12488
12489                 /*
12490                  * Removing from the context ends up with disabled
12491                  * event. What we want here is event in the initial
12492                  * startup state, ready to be add into new context.
12493                  */
12494                 perf_event__state_init(group_leader);
12495                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12496                 get_ctx(ctx);
12497         }
12498
12499         /*
12500          * Precalculate sample_data sizes; do while holding ctx::mutex such
12501          * that we're serialized against further additions and before
12502          * perf_install_in_context() which is the point the event is active and
12503          * can use these values.
12504          */
12505         perf_event__header_size(event);
12506         perf_event__id_header_size(event);
12507
12508         event->owner = current;
12509
12510         perf_install_in_context(ctx, event, event->cpu);
12511         perf_unpin_context(ctx);
12512
12513         if (move_group)
12514                 perf_event_ctx_unlock(group_leader, gctx);
12515         mutex_unlock(&ctx->mutex);
12516
12517         if (task) {
12518                 up_read(&task->signal->exec_update_lock);
12519                 put_task_struct(task);
12520         }
12521
12522         mutex_lock(&current->perf_event_mutex);
12523         list_add_tail(&event->owner_entry, &current->perf_event_list);
12524         mutex_unlock(&current->perf_event_mutex);
12525
12526         /*
12527          * Drop the reference on the group_event after placing the
12528          * new event on the sibling_list. This ensures destruction
12529          * of the group leader will find the pointer to itself in
12530          * perf_group_detach().
12531          */
12532         fdput(group);
12533         fd_install(event_fd, event_file);
12534         return event_fd;
12535
12536 err_locked:
12537         if (move_group)
12538                 perf_event_ctx_unlock(group_leader, gctx);
12539         mutex_unlock(&ctx->mutex);
12540 err_cred:
12541         if (task)
12542                 up_read(&task->signal->exec_update_lock);
12543 err_file:
12544         fput(event_file);
12545 err_context:
12546         perf_unpin_context(ctx);
12547         put_ctx(ctx);
12548 err_alloc:
12549         /*
12550          * If event_file is set, the fput() above will have called ->release()
12551          * and that will take care of freeing the event.
12552          */
12553         if (!event_file)
12554                 free_event(event);
12555 err_task:
12556         if (task)
12557                 put_task_struct(task);
12558 err_group_fd:
12559         fdput(group);
12560 err_fd:
12561         put_unused_fd(event_fd);
12562         return err;
12563 }
12564
12565 /**
12566  * perf_event_create_kernel_counter
12567  *
12568  * @attr: attributes of the counter to create
12569  * @cpu: cpu in which the counter is bound
12570  * @task: task to profile (NULL for percpu)
12571  * @overflow_handler: callback to trigger when we hit the event
12572  * @context: context data could be used in overflow_handler callback
12573  */
12574 struct perf_event *
12575 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12576                                  struct task_struct *task,
12577                                  perf_overflow_handler_t overflow_handler,
12578                                  void *context)
12579 {
12580         struct perf_event_context *ctx;
12581         struct perf_event *event;
12582         int err;
12583
12584         /*
12585          * Grouping is not supported for kernel events, neither is 'AUX',
12586          * make sure the caller's intentions are adjusted.
12587          */
12588         if (attr->aux_output)
12589                 return ERR_PTR(-EINVAL);
12590
12591         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12592                                  overflow_handler, context, -1);
12593         if (IS_ERR(event)) {
12594                 err = PTR_ERR(event);
12595                 goto err;
12596         }
12597
12598         /* Mark owner so we could distinguish it from user events. */
12599         event->owner = TASK_TOMBSTONE;
12600
12601         /*
12602          * Get the target context (task or percpu):
12603          */
12604         ctx = find_get_context(event->pmu, task, event);
12605         if (IS_ERR(ctx)) {
12606                 err = PTR_ERR(ctx);
12607                 goto err_free;
12608         }
12609
12610         WARN_ON_ONCE(ctx->parent_ctx);
12611         mutex_lock(&ctx->mutex);
12612         if (ctx->task == TASK_TOMBSTONE) {
12613                 err = -ESRCH;
12614                 goto err_unlock;
12615         }
12616
12617         if (!task) {
12618                 /*
12619                  * Check if the @cpu we're creating an event for is online.
12620                  *
12621                  * We use the perf_cpu_context::ctx::mutex to serialize against
12622                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12623                  */
12624                 struct perf_cpu_context *cpuctx =
12625                         container_of(ctx, struct perf_cpu_context, ctx);
12626                 if (!cpuctx->online) {
12627                         err = -ENODEV;
12628                         goto err_unlock;
12629                 }
12630         }
12631
12632         if (!exclusive_event_installable(event, ctx)) {
12633                 err = -EBUSY;
12634                 goto err_unlock;
12635         }
12636
12637         perf_install_in_context(ctx, event, event->cpu);
12638         perf_unpin_context(ctx);
12639         mutex_unlock(&ctx->mutex);
12640
12641         return event;
12642
12643 err_unlock:
12644         mutex_unlock(&ctx->mutex);
12645         perf_unpin_context(ctx);
12646         put_ctx(ctx);
12647 err_free:
12648         free_event(event);
12649 err:
12650         return ERR_PTR(err);
12651 }
12652 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12653
12654 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12655 {
12656         struct perf_event_context *src_ctx;
12657         struct perf_event_context *dst_ctx;
12658         struct perf_event *event, *tmp;
12659         LIST_HEAD(events);
12660
12661         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12662         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12663
12664         /*
12665          * See perf_event_ctx_lock() for comments on the details
12666          * of swizzling perf_event::ctx.
12667          */
12668         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12669         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12670                                  event_entry) {
12671                 perf_remove_from_context(event, 0);
12672                 unaccount_event_cpu(event, src_cpu);
12673                 put_ctx(src_ctx);
12674                 list_add(&event->migrate_entry, &events);
12675         }
12676
12677         /*
12678          * Wait for the events to quiesce before re-instating them.
12679          */
12680         synchronize_rcu();
12681
12682         /*
12683          * Re-instate events in 2 passes.
12684          *
12685          * Skip over group leaders and only install siblings on this first
12686          * pass, siblings will not get enabled without a leader, however a
12687          * leader will enable its siblings, even if those are still on the old
12688          * context.
12689          */
12690         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12691                 if (event->group_leader == event)
12692                         continue;
12693
12694                 list_del(&event->migrate_entry);
12695                 if (event->state >= PERF_EVENT_STATE_OFF)
12696                         event->state = PERF_EVENT_STATE_INACTIVE;
12697                 account_event_cpu(event, dst_cpu);
12698                 perf_install_in_context(dst_ctx, event, dst_cpu);
12699                 get_ctx(dst_ctx);
12700         }
12701
12702         /*
12703          * Once all the siblings are setup properly, install the group leaders
12704          * to make it go.
12705          */
12706         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12707                 list_del(&event->migrate_entry);
12708                 if (event->state >= PERF_EVENT_STATE_OFF)
12709                         event->state = PERF_EVENT_STATE_INACTIVE;
12710                 account_event_cpu(event, dst_cpu);
12711                 perf_install_in_context(dst_ctx, event, dst_cpu);
12712                 get_ctx(dst_ctx);
12713         }
12714         mutex_unlock(&dst_ctx->mutex);
12715         mutex_unlock(&src_ctx->mutex);
12716 }
12717 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12718
12719 static void sync_child_event(struct perf_event *child_event)
12720 {
12721         struct perf_event *parent_event = child_event->parent;
12722         u64 child_val;
12723
12724         if (child_event->attr.inherit_stat) {
12725                 struct task_struct *task = child_event->ctx->task;
12726
12727                 if (task && task != TASK_TOMBSTONE)
12728                         perf_event_read_event(child_event, task);
12729         }
12730
12731         child_val = perf_event_count(child_event);
12732
12733         /*
12734          * Add back the child's count to the parent's count:
12735          */
12736         atomic64_add(child_val, &parent_event->child_count);
12737         atomic64_add(child_event->total_time_enabled,
12738                      &parent_event->child_total_time_enabled);
12739         atomic64_add(child_event->total_time_running,
12740                      &parent_event->child_total_time_running);
12741 }
12742
12743 static void
12744 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12745 {
12746         struct perf_event *parent_event = event->parent;
12747         unsigned long detach_flags = 0;
12748
12749         if (parent_event) {
12750                 /*
12751                  * Do not destroy the 'original' grouping; because of the
12752                  * context switch optimization the original events could've
12753                  * ended up in a random child task.
12754                  *
12755                  * If we were to destroy the original group, all group related
12756                  * operations would cease to function properly after this
12757                  * random child dies.
12758                  *
12759                  * Do destroy all inherited groups, we don't care about those
12760                  * and being thorough is better.
12761                  */
12762                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12763                 mutex_lock(&parent_event->child_mutex);
12764         }
12765
12766         perf_remove_from_context(event, detach_flags);
12767
12768         raw_spin_lock_irq(&ctx->lock);
12769         if (event->state > PERF_EVENT_STATE_EXIT)
12770                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12771         raw_spin_unlock_irq(&ctx->lock);
12772
12773         /*
12774          * Child events can be freed.
12775          */
12776         if (parent_event) {
12777                 mutex_unlock(&parent_event->child_mutex);
12778                 /*
12779                  * Kick perf_poll() for is_event_hup();
12780                  */
12781                 perf_event_wakeup(parent_event);
12782                 free_event(event);
12783                 put_event(parent_event);
12784                 return;
12785         }
12786
12787         /*
12788          * Parent events are governed by their filedesc, retain them.
12789          */
12790         perf_event_wakeup(event);
12791 }
12792
12793 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12794 {
12795         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12796         struct perf_event *child_event, *next;
12797
12798         WARN_ON_ONCE(child != current);
12799
12800         child_ctx = perf_pin_task_context(child, ctxn);
12801         if (!child_ctx)
12802                 return;
12803
12804         /*
12805          * In order to reduce the amount of tricky in ctx tear-down, we hold
12806          * ctx::mutex over the entire thing. This serializes against almost
12807          * everything that wants to access the ctx.
12808          *
12809          * The exception is sys_perf_event_open() /
12810          * perf_event_create_kernel_count() which does find_get_context()
12811          * without ctx::mutex (it cannot because of the move_group double mutex
12812          * lock thing). See the comments in perf_install_in_context().
12813          */
12814         mutex_lock(&child_ctx->mutex);
12815
12816         /*
12817          * In a single ctx::lock section, de-schedule the events and detach the
12818          * context from the task such that we cannot ever get it scheduled back
12819          * in.
12820          */
12821         raw_spin_lock_irq(&child_ctx->lock);
12822         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12823
12824         /*
12825          * Now that the context is inactive, destroy the task <-> ctx relation
12826          * and mark the context dead.
12827          */
12828         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12829         put_ctx(child_ctx); /* cannot be last */
12830         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12831         put_task_struct(current); /* cannot be last */
12832
12833         clone_ctx = unclone_ctx(child_ctx);
12834         raw_spin_unlock_irq(&child_ctx->lock);
12835
12836         if (clone_ctx)
12837                 put_ctx(clone_ctx);
12838
12839         /*
12840          * Report the task dead after unscheduling the events so that we
12841          * won't get any samples after PERF_RECORD_EXIT. We can however still
12842          * get a few PERF_RECORD_READ events.
12843          */
12844         perf_event_task(child, child_ctx, 0);
12845
12846         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12847                 perf_event_exit_event(child_event, child_ctx);
12848
12849         mutex_unlock(&child_ctx->mutex);
12850
12851         put_ctx(child_ctx);
12852 }
12853
12854 /*
12855  * When a child task exits, feed back event values to parent events.
12856  *
12857  * Can be called with exec_update_lock held when called from
12858  * setup_new_exec().
12859  */
12860 void perf_event_exit_task(struct task_struct *child)
12861 {
12862         struct perf_event *event, *tmp;
12863         int ctxn;
12864
12865         mutex_lock(&child->perf_event_mutex);
12866         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12867                                  owner_entry) {
12868                 list_del_init(&event->owner_entry);
12869
12870                 /*
12871                  * Ensure the list deletion is visible before we clear
12872                  * the owner, closes a race against perf_release() where
12873                  * we need to serialize on the owner->perf_event_mutex.
12874                  */
12875                 smp_store_release(&event->owner, NULL);
12876         }
12877         mutex_unlock(&child->perf_event_mutex);
12878
12879         for_each_task_context_nr(ctxn)
12880                 perf_event_exit_task_context(child, ctxn);
12881
12882         /*
12883          * The perf_event_exit_task_context calls perf_event_task
12884          * with child's task_ctx, which generates EXIT events for
12885          * child contexts and sets child->perf_event_ctxp[] to NULL.
12886          * At this point we need to send EXIT events to cpu contexts.
12887          */
12888         perf_event_task(child, NULL, 0);
12889 }
12890
12891 static void perf_free_event(struct perf_event *event,
12892                             struct perf_event_context *ctx)
12893 {
12894         struct perf_event *parent = event->parent;
12895
12896         if (WARN_ON_ONCE(!parent))
12897                 return;
12898
12899         mutex_lock(&parent->child_mutex);
12900         list_del_init(&event->child_list);
12901         mutex_unlock(&parent->child_mutex);
12902
12903         put_event(parent);
12904
12905         raw_spin_lock_irq(&ctx->lock);
12906         perf_group_detach(event);
12907         list_del_event(event, ctx);
12908         raw_spin_unlock_irq(&ctx->lock);
12909         free_event(event);
12910 }
12911
12912 /*
12913  * Free a context as created by inheritance by perf_event_init_task() below,
12914  * used by fork() in case of fail.
12915  *
12916  * Even though the task has never lived, the context and events have been
12917  * exposed through the child_list, so we must take care tearing it all down.
12918  */
12919 void perf_event_free_task(struct task_struct *task)
12920 {
12921         struct perf_event_context *ctx;
12922         struct perf_event *event, *tmp;
12923         int ctxn;
12924
12925         for_each_task_context_nr(ctxn) {
12926                 ctx = task->perf_event_ctxp[ctxn];
12927                 if (!ctx)
12928                         continue;
12929
12930                 mutex_lock(&ctx->mutex);
12931                 raw_spin_lock_irq(&ctx->lock);
12932                 /*
12933                  * Destroy the task <-> ctx relation and mark the context dead.
12934                  *
12935                  * This is important because even though the task hasn't been
12936                  * exposed yet the context has been (through child_list).
12937                  */
12938                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12939                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12940                 put_task_struct(task); /* cannot be last */
12941                 raw_spin_unlock_irq(&ctx->lock);
12942
12943                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12944                         perf_free_event(event, ctx);
12945
12946                 mutex_unlock(&ctx->mutex);
12947
12948                 /*
12949                  * perf_event_release_kernel() could've stolen some of our
12950                  * child events and still have them on its free_list. In that
12951                  * case we must wait for these events to have been freed (in
12952                  * particular all their references to this task must've been
12953                  * dropped).
12954                  *
12955                  * Without this copy_process() will unconditionally free this
12956                  * task (irrespective of its reference count) and
12957                  * _free_event()'s put_task_struct(event->hw.target) will be a
12958                  * use-after-free.
12959                  *
12960                  * Wait for all events to drop their context reference.
12961                  */
12962                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12963                 put_ctx(ctx); /* must be last */
12964         }
12965 }
12966
12967 void perf_event_delayed_put(struct task_struct *task)
12968 {
12969         int ctxn;
12970
12971         for_each_task_context_nr(ctxn)
12972                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12973 }
12974
12975 struct file *perf_event_get(unsigned int fd)
12976 {
12977         struct file *file = fget(fd);
12978         if (!file)
12979                 return ERR_PTR(-EBADF);
12980
12981         if (file->f_op != &perf_fops) {
12982                 fput(file);
12983                 return ERR_PTR(-EBADF);
12984         }
12985
12986         return file;
12987 }
12988
12989 const struct perf_event *perf_get_event(struct file *file)
12990 {
12991         if (file->f_op != &perf_fops)
12992                 return ERR_PTR(-EINVAL);
12993
12994         return file->private_data;
12995 }
12996
12997 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12998 {
12999         if (!event)
13000                 return ERR_PTR(-EINVAL);
13001
13002         return &event->attr;
13003 }
13004
13005 /*
13006  * Inherit an event from parent task to child task.
13007  *
13008  * Returns:
13009  *  - valid pointer on success
13010  *  - NULL for orphaned events
13011  *  - IS_ERR() on error
13012  */
13013 static struct perf_event *
13014 inherit_event(struct perf_event *parent_event,
13015               struct task_struct *parent,
13016               struct perf_event_context *parent_ctx,
13017               struct task_struct *child,
13018               struct perf_event *group_leader,
13019               struct perf_event_context *child_ctx)
13020 {
13021         enum perf_event_state parent_state = parent_event->state;
13022         struct perf_event *child_event;
13023         unsigned long flags;
13024
13025         /*
13026          * Instead of creating recursive hierarchies of events,
13027          * we link inherited events back to the original parent,
13028          * which has a filp for sure, which we use as the reference
13029          * count:
13030          */
13031         if (parent_event->parent)
13032                 parent_event = parent_event->parent;
13033
13034         child_event = perf_event_alloc(&parent_event->attr,
13035                                            parent_event->cpu,
13036                                            child,
13037                                            group_leader, parent_event,
13038                                            NULL, NULL, -1);
13039         if (IS_ERR(child_event))
13040                 return child_event;
13041
13042
13043         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
13044             !child_ctx->task_ctx_data) {
13045                 struct pmu *pmu = child_event->pmu;
13046
13047                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
13048                 if (!child_ctx->task_ctx_data) {
13049                         free_event(child_event);
13050                         return ERR_PTR(-ENOMEM);
13051                 }
13052         }
13053
13054         /*
13055          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13056          * must be under the same lock in order to serialize against
13057          * perf_event_release_kernel(), such that either we must observe
13058          * is_orphaned_event() or they will observe us on the child_list.
13059          */
13060         mutex_lock(&parent_event->child_mutex);
13061         if (is_orphaned_event(parent_event) ||
13062             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13063                 mutex_unlock(&parent_event->child_mutex);
13064                 /* task_ctx_data is freed with child_ctx */
13065                 free_event(child_event);
13066                 return NULL;
13067         }
13068
13069         get_ctx(child_ctx);
13070
13071         /*
13072          * Make the child state follow the state of the parent event,
13073          * not its attr.disabled bit.  We hold the parent's mutex,
13074          * so we won't race with perf_event_{en, dis}able_family.
13075          */
13076         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13077                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13078         else
13079                 child_event->state = PERF_EVENT_STATE_OFF;
13080
13081         if (parent_event->attr.freq) {
13082                 u64 sample_period = parent_event->hw.sample_period;
13083                 struct hw_perf_event *hwc = &child_event->hw;
13084
13085                 hwc->sample_period = sample_period;
13086                 hwc->last_period   = sample_period;
13087
13088                 local64_set(&hwc->period_left, sample_period);
13089         }
13090
13091         child_event->ctx = child_ctx;
13092         child_event->overflow_handler = parent_event->overflow_handler;
13093         child_event->overflow_handler_context
13094                 = parent_event->overflow_handler_context;
13095
13096         /*
13097          * Precalculate sample_data sizes
13098          */
13099         perf_event__header_size(child_event);
13100         perf_event__id_header_size(child_event);
13101
13102         /*
13103          * Link it up in the child's context:
13104          */
13105         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13106         add_event_to_ctx(child_event, child_ctx);
13107         child_event->attach_state |= PERF_ATTACH_CHILD;
13108         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13109
13110         /*
13111          * Link this into the parent event's child list
13112          */
13113         list_add_tail(&child_event->child_list, &parent_event->child_list);
13114         mutex_unlock(&parent_event->child_mutex);
13115
13116         return child_event;
13117 }
13118
13119 /*
13120  * Inherits an event group.
13121  *
13122  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13123  * This matches with perf_event_release_kernel() removing all child events.
13124  *
13125  * Returns:
13126  *  - 0 on success
13127  *  - <0 on error
13128  */
13129 static int inherit_group(struct perf_event *parent_event,
13130               struct task_struct *parent,
13131               struct perf_event_context *parent_ctx,
13132               struct task_struct *child,
13133               struct perf_event_context *child_ctx)
13134 {
13135         struct perf_event *leader;
13136         struct perf_event *sub;
13137         struct perf_event *child_ctr;
13138
13139         leader = inherit_event(parent_event, parent, parent_ctx,
13140                                  child, NULL, child_ctx);
13141         if (IS_ERR(leader))
13142                 return PTR_ERR(leader);
13143         /*
13144          * @leader can be NULL here because of is_orphaned_event(). In this
13145          * case inherit_event() will create individual events, similar to what
13146          * perf_group_detach() would do anyway.
13147          */
13148         for_each_sibling_event(sub, parent_event) {
13149                 child_ctr = inherit_event(sub, parent, parent_ctx,
13150                                             child, leader, child_ctx);
13151                 if (IS_ERR(child_ctr))
13152                         return PTR_ERR(child_ctr);
13153
13154                 if (sub->aux_event == parent_event && child_ctr &&
13155                     !perf_get_aux_event(child_ctr, leader))
13156                         return -EINVAL;
13157         }
13158         return 0;
13159 }
13160
13161 /*
13162  * Creates the child task context and tries to inherit the event-group.
13163  *
13164  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13165  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13166  * consistent with perf_event_release_kernel() removing all child events.
13167  *
13168  * Returns:
13169  *  - 0 on success
13170  *  - <0 on error
13171  */
13172 static int
13173 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13174                    struct perf_event_context *parent_ctx,
13175                    struct task_struct *child, int ctxn,
13176                    u64 clone_flags, int *inherited_all)
13177 {
13178         int ret;
13179         struct perf_event_context *child_ctx;
13180
13181         if (!event->attr.inherit ||
13182             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13183             /* Do not inherit if sigtrap and signal handlers were cleared. */
13184             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13185                 *inherited_all = 0;
13186                 return 0;
13187         }
13188
13189         child_ctx = child->perf_event_ctxp[ctxn];
13190         if (!child_ctx) {
13191                 /*
13192                  * This is executed from the parent task context, so
13193                  * inherit events that have been marked for cloning.
13194                  * First allocate and initialize a context for the
13195                  * child.
13196                  */
13197                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13198                 if (!child_ctx)
13199                         return -ENOMEM;
13200
13201                 child->perf_event_ctxp[ctxn] = child_ctx;
13202         }
13203
13204         ret = inherit_group(event, parent, parent_ctx,
13205                             child, child_ctx);
13206
13207         if (ret)
13208                 *inherited_all = 0;
13209
13210         return ret;
13211 }
13212
13213 /*
13214  * Initialize the perf_event context in task_struct
13215  */
13216 static int perf_event_init_context(struct task_struct *child, int ctxn,
13217                                    u64 clone_flags)
13218 {
13219         struct perf_event_context *child_ctx, *parent_ctx;
13220         struct perf_event_context *cloned_ctx;
13221         struct perf_event *event;
13222         struct task_struct *parent = current;
13223         int inherited_all = 1;
13224         unsigned long flags;
13225         int ret = 0;
13226
13227         if (likely(!parent->perf_event_ctxp[ctxn]))
13228                 return 0;
13229
13230         /*
13231          * If the parent's context is a clone, pin it so it won't get
13232          * swapped under us.
13233          */
13234         parent_ctx = perf_pin_task_context(parent, ctxn);
13235         if (!parent_ctx)
13236                 return 0;
13237
13238         /*
13239          * No need to check if parent_ctx != NULL here; since we saw
13240          * it non-NULL earlier, the only reason for it to become NULL
13241          * is if we exit, and since we're currently in the middle of
13242          * a fork we can't be exiting at the same time.
13243          */
13244
13245         /*
13246          * Lock the parent list. No need to lock the child - not PID
13247          * hashed yet and not running, so nobody can access it.
13248          */
13249         mutex_lock(&parent_ctx->mutex);
13250
13251         /*
13252          * We dont have to disable NMIs - we are only looking at
13253          * the list, not manipulating it:
13254          */
13255         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13256                 ret = inherit_task_group(event, parent, parent_ctx,
13257                                          child, ctxn, clone_flags,
13258                                          &inherited_all);
13259                 if (ret)
13260                         goto out_unlock;
13261         }
13262
13263         /*
13264          * We can't hold ctx->lock when iterating the ->flexible_group list due
13265          * to allocations, but we need to prevent rotation because
13266          * rotate_ctx() will change the list from interrupt context.
13267          */
13268         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13269         parent_ctx->rotate_disable = 1;
13270         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13271
13272         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13273                 ret = inherit_task_group(event, parent, parent_ctx,
13274                                          child, ctxn, clone_flags,
13275                                          &inherited_all);
13276                 if (ret)
13277                         goto out_unlock;
13278         }
13279
13280         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13281         parent_ctx->rotate_disable = 0;
13282
13283         child_ctx = child->perf_event_ctxp[ctxn];
13284
13285         if (child_ctx && inherited_all) {
13286                 /*
13287                  * Mark the child context as a clone of the parent
13288                  * context, or of whatever the parent is a clone of.
13289                  *
13290                  * Note that if the parent is a clone, the holding of
13291                  * parent_ctx->lock avoids it from being uncloned.
13292                  */
13293                 cloned_ctx = parent_ctx->parent_ctx;
13294                 if (cloned_ctx) {
13295                         child_ctx->parent_ctx = cloned_ctx;
13296                         child_ctx->parent_gen = parent_ctx->parent_gen;
13297                 } else {
13298                         child_ctx->parent_ctx = parent_ctx;
13299                         child_ctx->parent_gen = parent_ctx->generation;
13300                 }
13301                 get_ctx(child_ctx->parent_ctx);
13302         }
13303
13304         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13305 out_unlock:
13306         mutex_unlock(&parent_ctx->mutex);
13307
13308         perf_unpin_context(parent_ctx);
13309         put_ctx(parent_ctx);
13310
13311         return ret;
13312 }
13313
13314 /*
13315  * Initialize the perf_event context in task_struct
13316  */
13317 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13318 {
13319         int ctxn, ret;
13320
13321         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13322         mutex_init(&child->perf_event_mutex);
13323         INIT_LIST_HEAD(&child->perf_event_list);
13324
13325         for_each_task_context_nr(ctxn) {
13326                 ret = perf_event_init_context(child, ctxn, clone_flags);
13327                 if (ret) {
13328                         perf_event_free_task(child);
13329                         return ret;
13330                 }
13331         }
13332
13333         return 0;
13334 }
13335
13336 static void __init perf_event_init_all_cpus(void)
13337 {
13338         struct swevent_htable *swhash;
13339         int cpu;
13340
13341         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13342
13343         for_each_possible_cpu(cpu) {
13344                 swhash = &per_cpu(swevent_htable, cpu);
13345                 mutex_init(&swhash->hlist_mutex);
13346                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13347
13348                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13349                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13350
13351 #ifdef CONFIG_CGROUP_PERF
13352                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13353 #endif
13354                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13355         }
13356 }
13357
13358 static void perf_swevent_init_cpu(unsigned int cpu)
13359 {
13360         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13361
13362         mutex_lock(&swhash->hlist_mutex);
13363         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13364                 struct swevent_hlist *hlist;
13365
13366                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13367                 WARN_ON(!hlist);
13368                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13369         }
13370         mutex_unlock(&swhash->hlist_mutex);
13371 }
13372
13373 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13374 static void __perf_event_exit_context(void *__info)
13375 {
13376         struct perf_event_context *ctx = __info;
13377         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13378         struct perf_event *event;
13379
13380         raw_spin_lock(&ctx->lock);
13381         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13382         list_for_each_entry(event, &ctx->event_list, event_entry)
13383                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13384         raw_spin_unlock(&ctx->lock);
13385 }
13386
13387 static void perf_event_exit_cpu_context(int cpu)
13388 {
13389         struct perf_cpu_context *cpuctx;
13390         struct perf_event_context *ctx;
13391         struct pmu *pmu;
13392
13393         mutex_lock(&pmus_lock);
13394         list_for_each_entry(pmu, &pmus, entry) {
13395                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13396                 ctx = &cpuctx->ctx;
13397
13398                 mutex_lock(&ctx->mutex);
13399                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13400                 cpuctx->online = 0;
13401                 mutex_unlock(&ctx->mutex);
13402         }
13403         cpumask_clear_cpu(cpu, perf_online_mask);
13404         mutex_unlock(&pmus_lock);
13405 }
13406 #else
13407
13408 static void perf_event_exit_cpu_context(int cpu) { }
13409
13410 #endif
13411
13412 int perf_event_init_cpu(unsigned int cpu)
13413 {
13414         struct perf_cpu_context *cpuctx;
13415         struct perf_event_context *ctx;
13416         struct pmu *pmu;
13417
13418         perf_swevent_init_cpu(cpu);
13419
13420         mutex_lock(&pmus_lock);
13421         cpumask_set_cpu(cpu, perf_online_mask);
13422         list_for_each_entry(pmu, &pmus, entry) {
13423                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13424                 ctx = &cpuctx->ctx;
13425
13426                 mutex_lock(&ctx->mutex);
13427                 cpuctx->online = 1;
13428                 mutex_unlock(&ctx->mutex);
13429         }
13430         mutex_unlock(&pmus_lock);
13431
13432         return 0;
13433 }
13434
13435 int perf_event_exit_cpu(unsigned int cpu)
13436 {
13437         perf_event_exit_cpu_context(cpu);
13438         return 0;
13439 }
13440
13441 static int
13442 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13443 {
13444         int cpu;
13445
13446         for_each_online_cpu(cpu)
13447                 perf_event_exit_cpu(cpu);
13448
13449         return NOTIFY_OK;
13450 }
13451
13452 /*
13453  * Run the perf reboot notifier at the very last possible moment so that
13454  * the generic watchdog code runs as long as possible.
13455  */
13456 static struct notifier_block perf_reboot_notifier = {
13457         .notifier_call = perf_reboot,
13458         .priority = INT_MIN,
13459 };
13460
13461 void __init perf_event_init(void)
13462 {
13463         int ret;
13464
13465         idr_init(&pmu_idr);
13466
13467         perf_event_init_all_cpus();
13468         init_srcu_struct(&pmus_srcu);
13469         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13470         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13471         perf_pmu_register(&perf_task_clock, NULL, -1);
13472         perf_tp_register();
13473         perf_event_init_cpu(smp_processor_id());
13474         register_reboot_notifier(&perf_reboot_notifier);
13475
13476         ret = init_hw_breakpoint();
13477         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13478
13479         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13480
13481         /*
13482          * Build time assertion that we keep the data_head at the intended
13483          * location.  IOW, validation we got the __reserved[] size right.
13484          */
13485         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13486                      != 1024);
13487 }
13488
13489 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13490                               char *page)
13491 {
13492         struct perf_pmu_events_attr *pmu_attr =
13493                 container_of(attr, struct perf_pmu_events_attr, attr);
13494
13495         if (pmu_attr->event_str)
13496                 return sprintf(page, "%s\n", pmu_attr->event_str);
13497
13498         return 0;
13499 }
13500 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13501
13502 static int __init perf_event_sysfs_init(void)
13503 {
13504         struct pmu *pmu;
13505         int ret;
13506
13507         mutex_lock(&pmus_lock);
13508
13509         ret = bus_register(&pmu_bus);
13510         if (ret)
13511                 goto unlock;
13512
13513         list_for_each_entry(pmu, &pmus, entry) {
13514                 if (!pmu->name || pmu->type < 0)
13515                         continue;
13516
13517                 ret = pmu_dev_alloc(pmu);
13518                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13519         }
13520         pmu_bus_running = 1;
13521         ret = 0;
13522
13523 unlock:
13524         mutex_unlock(&pmus_lock);
13525
13526         return ret;
13527 }
13528 device_initcall(perf_event_sysfs_init);
13529
13530 #ifdef CONFIG_CGROUP_PERF
13531 static struct cgroup_subsys_state *
13532 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13533 {
13534         struct perf_cgroup *jc;
13535
13536         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13537         if (!jc)
13538                 return ERR_PTR(-ENOMEM);
13539
13540         jc->info = alloc_percpu(struct perf_cgroup_info);
13541         if (!jc->info) {
13542                 kfree(jc);
13543                 return ERR_PTR(-ENOMEM);
13544         }
13545
13546         return &jc->css;
13547 }
13548
13549 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13550 {
13551         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13552
13553         free_percpu(jc->info);
13554         kfree(jc);
13555 }
13556
13557 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13558 {
13559         perf_event_cgroup(css->cgroup);
13560         return 0;
13561 }
13562
13563 static int __perf_cgroup_move(void *info)
13564 {
13565         struct task_struct *task = info;
13566         rcu_read_lock();
13567         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13568         rcu_read_unlock();
13569         return 0;
13570 }
13571
13572 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13573 {
13574         struct task_struct *task;
13575         struct cgroup_subsys_state *css;
13576
13577         cgroup_taskset_for_each(task, css, tset)
13578                 task_function_call(task, __perf_cgroup_move, task);
13579 }
13580
13581 struct cgroup_subsys perf_event_cgrp_subsys = {
13582         .css_alloc      = perf_cgroup_css_alloc,
13583         .css_free       = perf_cgroup_css_free,
13584         .css_online     = perf_cgroup_css_online,
13585         .attach         = perf_cgroup_attach,
13586         /*
13587          * Implicitly enable on dfl hierarchy so that perf events can
13588          * always be filtered by cgroup2 path as long as perf_event
13589          * controller is not mounted on a legacy hierarchy.
13590          */
13591         .implicit_on_dfl = true,
13592         .threaded       = true,
13593 };
13594 #endif /* CONFIG_CGROUP_PERF */
13595
13596 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);