Merge tag 'mmc-v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/ulfh/mmc
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @func:       the function to be called
136  * @info:       the function call argument
137  *
138  * Calls the function @func on the remote cpu.
139  *
140  * returns: @func return value or -ENXIO when the cpu is offline
141  */
142 static int cpu_function_call(int cpu, remote_function_f func, void *info)
143 {
144         struct remote_function_call data = {
145                 .p      = NULL,
146                 .func   = func,
147                 .info   = info,
148                 .ret    = -ENXIO, /* No such CPU */
149         };
150
151         smp_call_function_single(cpu, remote_function, &data, 1);
152
153         return data.ret;
154 }
155
156 static inline struct perf_cpu_context *
157 __get_cpu_context(struct perf_event_context *ctx)
158 {
159         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
160 }
161
162 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
163                           struct perf_event_context *ctx)
164 {
165         raw_spin_lock(&cpuctx->ctx.lock);
166         if (ctx)
167                 raw_spin_lock(&ctx->lock);
168 }
169
170 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
171                             struct perf_event_context *ctx)
172 {
173         if (ctx)
174                 raw_spin_unlock(&ctx->lock);
175         raw_spin_unlock(&cpuctx->ctx.lock);
176 }
177
178 #define TASK_TOMBSTONE ((void *)-1L)
179
180 static bool is_kernel_event(struct perf_event *event)
181 {
182         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
183 }
184
185 /*
186  * On task ctx scheduling...
187  *
188  * When !ctx->nr_events a task context will not be scheduled. This means
189  * we can disable the scheduler hooks (for performance) without leaving
190  * pending task ctx state.
191  *
192  * This however results in two special cases:
193  *
194  *  - removing the last event from a task ctx; this is relatively straight
195  *    forward and is done in __perf_remove_from_context.
196  *
197  *  - adding the first event to a task ctx; this is tricky because we cannot
198  *    rely on ctx->is_active and therefore cannot use event_function_call().
199  *    See perf_install_in_context().
200  *
201  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
202  */
203
204 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
205                         struct perf_event_context *, void *);
206
207 struct event_function_struct {
208         struct perf_event *event;
209         event_f func;
210         void *data;
211 };
212
213 static int event_function(void *info)
214 {
215         struct event_function_struct *efs = info;
216         struct perf_event *event = efs->event;
217         struct perf_event_context *ctx = event->ctx;
218         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
219         struct perf_event_context *task_ctx = cpuctx->task_ctx;
220         int ret = 0;
221
222         lockdep_assert_irqs_disabled();
223
224         perf_ctx_lock(cpuctx, task_ctx);
225         /*
226          * Since we do the IPI call without holding ctx->lock things can have
227          * changed, double check we hit the task we set out to hit.
228          */
229         if (ctx->task) {
230                 if (ctx->task != current) {
231                         ret = -ESRCH;
232                         goto unlock;
233                 }
234
235                 /*
236                  * We only use event_function_call() on established contexts,
237                  * and event_function() is only ever called when active (or
238                  * rather, we'll have bailed in task_function_call() or the
239                  * above ctx->task != current test), therefore we must have
240                  * ctx->is_active here.
241                  */
242                 WARN_ON_ONCE(!ctx->is_active);
243                 /*
244                  * And since we have ctx->is_active, cpuctx->task_ctx must
245                  * match.
246                  */
247                 WARN_ON_ONCE(task_ctx != ctx);
248         } else {
249                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
250         }
251
252         efs->func(event, cpuctx, ctx, efs->data);
253 unlock:
254         perf_ctx_unlock(cpuctx, task_ctx);
255
256         return ret;
257 }
258
259 static void event_function_call(struct perf_event *event, event_f func, void *data)
260 {
261         struct perf_event_context *ctx = event->ctx;
262         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
263         struct event_function_struct efs = {
264                 .event = event,
265                 .func = func,
266                 .data = data,
267         };
268
269         if (!event->parent) {
270                 /*
271                  * If this is a !child event, we must hold ctx::mutex to
272                  * stabilize the event->ctx relation. See
273                  * perf_event_ctx_lock().
274                  */
275                 lockdep_assert_held(&ctx->mutex);
276         }
277
278         if (!task) {
279                 cpu_function_call(event->cpu, event_function, &efs);
280                 return;
281         }
282
283         if (task == TASK_TOMBSTONE)
284                 return;
285
286 again:
287         if (!task_function_call(task, event_function, &efs))
288                 return;
289
290         raw_spin_lock_irq(&ctx->lock);
291         /*
292          * Reload the task pointer, it might have been changed by
293          * a concurrent perf_event_context_sched_out().
294          */
295         task = ctx->task;
296         if (task == TASK_TOMBSTONE) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 return;
299         }
300         if (ctx->is_active) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 goto again;
303         }
304         func(event, NULL, ctx, data);
305         raw_spin_unlock_irq(&ctx->lock);
306 }
307
308 /*
309  * Similar to event_function_call() + event_function(), but hard assumes IRQs
310  * are already disabled and we're on the right CPU.
311  */
312 static void event_function_local(struct perf_event *event, event_f func, void *data)
313 {
314         struct perf_event_context *ctx = event->ctx;
315         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
316         struct task_struct *task = READ_ONCE(ctx->task);
317         struct perf_event_context *task_ctx = NULL;
318
319         lockdep_assert_irqs_disabled();
320
321         if (task) {
322                 if (task == TASK_TOMBSTONE)
323                         return;
324
325                 task_ctx = ctx;
326         }
327
328         perf_ctx_lock(cpuctx, task_ctx);
329
330         task = ctx->task;
331         if (task == TASK_TOMBSTONE)
332                 goto unlock;
333
334         if (task) {
335                 /*
336                  * We must be either inactive or active and the right task,
337                  * otherwise we're screwed, since we cannot IPI to somewhere
338                  * else.
339                  */
340                 if (ctx->is_active) {
341                         if (WARN_ON_ONCE(task != current))
342                                 goto unlock;
343
344                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
345                                 goto unlock;
346                 }
347         } else {
348                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
349         }
350
351         func(event, cpuctx, ctx, data);
352 unlock:
353         perf_ctx_unlock(cpuctx, task_ctx);
354 }
355
356 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
357                        PERF_FLAG_FD_OUTPUT  |\
358                        PERF_FLAG_PID_CGROUP |\
359                        PERF_FLAG_FD_CLOEXEC)
360
361 /*
362  * branch priv levels that need permission checks
363  */
364 #define PERF_SAMPLE_BRANCH_PERM_PLM \
365         (PERF_SAMPLE_BRANCH_KERNEL |\
366          PERF_SAMPLE_BRANCH_HV)
367
368 enum event_type_t {
369         EVENT_FLEXIBLE = 0x1,
370         EVENT_PINNED = 0x2,
371         EVENT_TIME = 0x4,
372         /* see ctx_resched() for details */
373         EVENT_CPU = 0x8,
374         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
375 };
376
377 /*
378  * perf_sched_events : >0 events exist
379  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
380  */
381
382 static void perf_sched_delayed(struct work_struct *work);
383 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
384 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
385 static DEFINE_MUTEX(perf_sched_mutex);
386 static atomic_t perf_sched_count;
387
388 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
389 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
390 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
391
392 static atomic_t nr_mmap_events __read_mostly;
393 static atomic_t nr_comm_events __read_mostly;
394 static atomic_t nr_namespaces_events __read_mostly;
395 static atomic_t nr_task_events __read_mostly;
396 static atomic_t nr_freq_events __read_mostly;
397 static atomic_t nr_switch_events __read_mostly;
398 static atomic_t nr_ksymbol_events __read_mostly;
399 static atomic_t nr_bpf_events __read_mostly;
400 static atomic_t nr_cgroup_events __read_mostly;
401 static atomic_t nr_text_poke_events __read_mostly;
402 static atomic_t nr_build_id_events __read_mostly;
403
404 static LIST_HEAD(pmus);
405 static DEFINE_MUTEX(pmus_lock);
406 static struct srcu_struct pmus_srcu;
407 static cpumask_var_t perf_online_mask;
408 static struct kmem_cache *perf_event_cache;
409
410 /*
411  * perf event paranoia level:
412  *  -1 - not paranoid at all
413  *   0 - disallow raw tracepoint access for unpriv
414  *   1 - disallow cpu events for unpriv
415  *   2 - disallow kernel profiling for unpriv
416  */
417 int sysctl_perf_event_paranoid __read_mostly = 2;
418
419 /* Minimum for 512 kiB + 1 user control page */
420 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
421
422 /*
423  * max perf event sample rate
424  */
425 #define DEFAULT_MAX_SAMPLE_RATE         100000
426 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
427 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
428
429 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
430
431 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
432 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
433
434 static int perf_sample_allowed_ns __read_mostly =
435         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
436
437 static void update_perf_cpu_limits(void)
438 {
439         u64 tmp = perf_sample_period_ns;
440
441         tmp *= sysctl_perf_cpu_time_max_percent;
442         tmp = div_u64(tmp, 100);
443         if (!tmp)
444                 tmp = 1;
445
446         WRITE_ONCE(perf_sample_allowed_ns, tmp);
447 }
448
449 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
450
451 int perf_proc_update_handler(struct ctl_table *table, int write,
452                 void *buffer, size_t *lenp, loff_t *ppos)
453 {
454         int ret;
455         int perf_cpu = sysctl_perf_cpu_time_max_percent;
456         /*
457          * If throttling is disabled don't allow the write:
458          */
459         if (write && (perf_cpu == 100 || perf_cpu == 0))
460                 return -EINVAL;
461
462         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
463         if (ret || !write)
464                 return ret;
465
466         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
467         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468         update_perf_cpu_limits();
469
470         return 0;
471 }
472
473 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
474
475 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
476                 void *buffer, size_t *lenp, loff_t *ppos)
477 {
478         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
479
480         if (ret || !write)
481                 return ret;
482
483         if (sysctl_perf_cpu_time_max_percent == 100 ||
484             sysctl_perf_cpu_time_max_percent == 0) {
485                 printk(KERN_WARNING
486                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
487                 WRITE_ONCE(perf_sample_allowed_ns, 0);
488         } else {
489                 update_perf_cpu_limits();
490         }
491
492         return 0;
493 }
494
495 /*
496  * perf samples are done in some very critical code paths (NMIs).
497  * If they take too much CPU time, the system can lock up and not
498  * get any real work done.  This will drop the sample rate when
499  * we detect that events are taking too long.
500  */
501 #define NR_ACCUMULATED_SAMPLES 128
502 static DEFINE_PER_CPU(u64, running_sample_length);
503
504 static u64 __report_avg;
505 static u64 __report_allowed;
506
507 static void perf_duration_warn(struct irq_work *w)
508 {
509         printk_ratelimited(KERN_INFO
510                 "perf: interrupt took too long (%lld > %lld), lowering "
511                 "kernel.perf_event_max_sample_rate to %d\n",
512                 __report_avg, __report_allowed,
513                 sysctl_perf_event_sample_rate);
514 }
515
516 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
517
518 void perf_sample_event_took(u64 sample_len_ns)
519 {
520         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
521         u64 running_len;
522         u64 avg_len;
523         u32 max;
524
525         if (max_len == 0)
526                 return;
527
528         /* Decay the counter by 1 average sample. */
529         running_len = __this_cpu_read(running_sample_length);
530         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
531         running_len += sample_len_ns;
532         __this_cpu_write(running_sample_length, running_len);
533
534         /*
535          * Note: this will be biased artifically low until we have
536          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
537          * from having to maintain a count.
538          */
539         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
540         if (avg_len <= max_len)
541                 return;
542
543         __report_avg = avg_len;
544         __report_allowed = max_len;
545
546         /*
547          * Compute a throttle threshold 25% below the current duration.
548          */
549         avg_len += avg_len / 4;
550         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
551         if (avg_len < max)
552                 max /= (u32)avg_len;
553         else
554                 max = 1;
555
556         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
557         WRITE_ONCE(max_samples_per_tick, max);
558
559         sysctl_perf_event_sample_rate = max * HZ;
560         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
561
562         if (!irq_work_queue(&perf_duration_work)) {
563                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
564                              "kernel.perf_event_max_sample_rate to %d\n",
565                              __report_avg, __report_allowed,
566                              sysctl_perf_event_sample_rate);
567         }
568 }
569
570 static atomic64_t perf_event_id;
571
572 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
573                               enum event_type_t event_type);
574
575 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
576                              enum event_type_t event_type,
577                              struct task_struct *task);
578
579 static void update_context_time(struct perf_event_context *ctx);
580 static u64 perf_event_time(struct perf_event *event);
581
582 void __weak perf_event_print_debug(void)        { }
583
584 extern __weak const char *perf_pmu_name(void)
585 {
586         return "pmu";
587 }
588
589 static inline u64 perf_clock(void)
590 {
591         return local_clock();
592 }
593
594 static inline u64 perf_event_clock(struct perf_event *event)
595 {
596         return event->clock();
597 }
598
599 /*
600  * State based event timekeeping...
601  *
602  * The basic idea is to use event->state to determine which (if any) time
603  * fields to increment with the current delta. This means we only need to
604  * update timestamps when we change state or when they are explicitly requested
605  * (read).
606  *
607  * Event groups make things a little more complicated, but not terribly so. The
608  * rules for a group are that if the group leader is OFF the entire group is
609  * OFF, irrespecive of what the group member states are. This results in
610  * __perf_effective_state().
611  *
612  * A futher ramification is that when a group leader flips between OFF and
613  * !OFF, we need to update all group member times.
614  *
615  *
616  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
617  * need to make sure the relevant context time is updated before we try and
618  * update our timestamps.
619  */
620
621 static __always_inline enum perf_event_state
622 __perf_effective_state(struct perf_event *event)
623 {
624         struct perf_event *leader = event->group_leader;
625
626         if (leader->state <= PERF_EVENT_STATE_OFF)
627                 return leader->state;
628
629         return event->state;
630 }
631
632 static __always_inline void
633 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
634 {
635         enum perf_event_state state = __perf_effective_state(event);
636         u64 delta = now - event->tstamp;
637
638         *enabled = event->total_time_enabled;
639         if (state >= PERF_EVENT_STATE_INACTIVE)
640                 *enabled += delta;
641
642         *running = event->total_time_running;
643         if (state >= PERF_EVENT_STATE_ACTIVE)
644                 *running += delta;
645 }
646
647 static void perf_event_update_time(struct perf_event *event)
648 {
649         u64 now = perf_event_time(event);
650
651         __perf_update_times(event, now, &event->total_time_enabled,
652                                         &event->total_time_running);
653         event->tstamp = now;
654 }
655
656 static void perf_event_update_sibling_time(struct perf_event *leader)
657 {
658         struct perf_event *sibling;
659
660         for_each_sibling_event(sibling, leader)
661                 perf_event_update_time(sibling);
662 }
663
664 static void
665 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
666 {
667         if (event->state == state)
668                 return;
669
670         perf_event_update_time(event);
671         /*
672          * If a group leader gets enabled/disabled all its siblings
673          * are affected too.
674          */
675         if ((event->state < 0) ^ (state < 0))
676                 perf_event_update_sibling_time(event);
677
678         WRITE_ONCE(event->state, state);
679 }
680
681 #ifdef CONFIG_CGROUP_PERF
682
683 static inline bool
684 perf_cgroup_match(struct perf_event *event)
685 {
686         struct perf_event_context *ctx = event->ctx;
687         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
688
689         /* @event doesn't care about cgroup */
690         if (!event->cgrp)
691                 return true;
692
693         /* wants specific cgroup scope but @cpuctx isn't associated with any */
694         if (!cpuctx->cgrp)
695                 return false;
696
697         /*
698          * Cgroup scoping is recursive.  An event enabled for a cgroup is
699          * also enabled for all its descendant cgroups.  If @cpuctx's
700          * cgroup is a descendant of @event's (the test covers identity
701          * case), it's a match.
702          */
703         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
704                                     event->cgrp->css.cgroup);
705 }
706
707 static inline void perf_detach_cgroup(struct perf_event *event)
708 {
709         css_put(&event->cgrp->css);
710         event->cgrp = NULL;
711 }
712
713 static inline int is_cgroup_event(struct perf_event *event)
714 {
715         return event->cgrp != NULL;
716 }
717
718 static inline u64 perf_cgroup_event_time(struct perf_event *event)
719 {
720         struct perf_cgroup_info *t;
721
722         t = per_cpu_ptr(event->cgrp->info, event->cpu);
723         return t->time;
724 }
725
726 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
727 {
728         struct perf_cgroup_info *info;
729         u64 now;
730
731         now = perf_clock();
732
733         info = this_cpu_ptr(cgrp->info);
734
735         info->time += now - info->timestamp;
736         info->timestamp = now;
737 }
738
739 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
740 {
741         struct perf_cgroup *cgrp = cpuctx->cgrp;
742         struct cgroup_subsys_state *css;
743
744         if (cgrp) {
745                 for (css = &cgrp->css; css; css = css->parent) {
746                         cgrp = container_of(css, struct perf_cgroup, css);
747                         __update_cgrp_time(cgrp);
748                 }
749         }
750 }
751
752 static inline void update_cgrp_time_from_event(struct perf_event *event)
753 {
754         struct perf_cgroup *cgrp;
755
756         /*
757          * ensure we access cgroup data only when needed and
758          * when we know the cgroup is pinned (css_get)
759          */
760         if (!is_cgroup_event(event))
761                 return;
762
763         cgrp = perf_cgroup_from_task(current, event->ctx);
764         /*
765          * Do not update time when cgroup is not active
766          */
767         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
768                 __update_cgrp_time(event->cgrp);
769 }
770
771 static inline void
772 perf_cgroup_set_timestamp(struct task_struct *task,
773                           struct perf_event_context *ctx)
774 {
775         struct perf_cgroup *cgrp;
776         struct perf_cgroup_info *info;
777         struct cgroup_subsys_state *css;
778
779         /*
780          * ctx->lock held by caller
781          * ensure we do not access cgroup data
782          * unless we have the cgroup pinned (css_get)
783          */
784         if (!task || !ctx->nr_cgroups)
785                 return;
786
787         cgrp = perf_cgroup_from_task(task, ctx);
788
789         for (css = &cgrp->css; css; css = css->parent) {
790                 cgrp = container_of(css, struct perf_cgroup, css);
791                 info = this_cpu_ptr(cgrp->info);
792                 info->timestamp = ctx->timestamp;
793         }
794 }
795
796 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
797
798 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
799 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
800
801 /*
802  * reschedule events based on the cgroup constraint of task.
803  *
804  * mode SWOUT : schedule out everything
805  * mode SWIN : schedule in based on cgroup for next
806  */
807 static void perf_cgroup_switch(struct task_struct *task, int mode)
808 {
809         struct perf_cpu_context *cpuctx;
810         struct list_head *list;
811         unsigned long flags;
812
813         /*
814          * Disable interrupts and preemption to avoid this CPU's
815          * cgrp_cpuctx_entry to change under us.
816          */
817         local_irq_save(flags);
818
819         list = this_cpu_ptr(&cgrp_cpuctx_list);
820         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
821                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
822
823                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
824                 perf_pmu_disable(cpuctx->ctx.pmu);
825
826                 if (mode & PERF_CGROUP_SWOUT) {
827                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
828                         /*
829                          * must not be done before ctxswout due
830                          * to event_filter_match() in event_sched_out()
831                          */
832                         cpuctx->cgrp = NULL;
833                 }
834
835                 if (mode & PERF_CGROUP_SWIN) {
836                         WARN_ON_ONCE(cpuctx->cgrp);
837                         /*
838                          * set cgrp before ctxsw in to allow
839                          * event_filter_match() to not have to pass
840                          * task around
841                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
842                          * because cgorup events are only per-cpu
843                          */
844                         cpuctx->cgrp = perf_cgroup_from_task(task,
845                                                              &cpuctx->ctx);
846                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
847                 }
848                 perf_pmu_enable(cpuctx->ctx.pmu);
849                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
850         }
851
852         local_irq_restore(flags);
853 }
854
855 static inline void perf_cgroup_sched_out(struct task_struct *task,
856                                          struct task_struct *next)
857 {
858         struct perf_cgroup *cgrp1;
859         struct perf_cgroup *cgrp2 = NULL;
860
861         rcu_read_lock();
862         /*
863          * we come here when we know perf_cgroup_events > 0
864          * we do not need to pass the ctx here because we know
865          * we are holding the rcu lock
866          */
867         cgrp1 = perf_cgroup_from_task(task, NULL);
868         cgrp2 = perf_cgroup_from_task(next, NULL);
869
870         /*
871          * only schedule out current cgroup events if we know
872          * that we are switching to a different cgroup. Otherwise,
873          * do no touch the cgroup events.
874          */
875         if (cgrp1 != cgrp2)
876                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
877
878         rcu_read_unlock();
879 }
880
881 static inline void perf_cgroup_sched_in(struct task_struct *prev,
882                                         struct task_struct *task)
883 {
884         struct perf_cgroup *cgrp1;
885         struct perf_cgroup *cgrp2 = NULL;
886
887         rcu_read_lock();
888         /*
889          * we come here when we know perf_cgroup_events > 0
890          * we do not need to pass the ctx here because we know
891          * we are holding the rcu lock
892          */
893         cgrp1 = perf_cgroup_from_task(task, NULL);
894         cgrp2 = perf_cgroup_from_task(prev, NULL);
895
896         /*
897          * only need to schedule in cgroup events if we are changing
898          * cgroup during ctxsw. Cgroup events were not scheduled
899          * out of ctxsw out if that was not the case.
900          */
901         if (cgrp1 != cgrp2)
902                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
903
904         rcu_read_unlock();
905 }
906
907 static int perf_cgroup_ensure_storage(struct perf_event *event,
908                                 struct cgroup_subsys_state *css)
909 {
910         struct perf_cpu_context *cpuctx;
911         struct perf_event **storage;
912         int cpu, heap_size, ret = 0;
913
914         /*
915          * Allow storage to have sufficent space for an iterator for each
916          * possibly nested cgroup plus an iterator for events with no cgroup.
917          */
918         for (heap_size = 1; css; css = css->parent)
919                 heap_size++;
920
921         for_each_possible_cpu(cpu) {
922                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
923                 if (heap_size <= cpuctx->heap_size)
924                         continue;
925
926                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
927                                        GFP_KERNEL, cpu_to_node(cpu));
928                 if (!storage) {
929                         ret = -ENOMEM;
930                         break;
931                 }
932
933                 raw_spin_lock_irq(&cpuctx->ctx.lock);
934                 if (cpuctx->heap_size < heap_size) {
935                         swap(cpuctx->heap, storage);
936                         if (storage == cpuctx->heap_default)
937                                 storage = NULL;
938                         cpuctx->heap_size = heap_size;
939                 }
940                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
941
942                 kfree(storage);
943         }
944
945         return ret;
946 }
947
948 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
949                                       struct perf_event_attr *attr,
950                                       struct perf_event *group_leader)
951 {
952         struct perf_cgroup *cgrp;
953         struct cgroup_subsys_state *css;
954         struct fd f = fdget(fd);
955         int ret = 0;
956
957         if (!f.file)
958                 return -EBADF;
959
960         css = css_tryget_online_from_dir(f.file->f_path.dentry,
961                                          &perf_event_cgrp_subsys);
962         if (IS_ERR(css)) {
963                 ret = PTR_ERR(css);
964                 goto out;
965         }
966
967         ret = perf_cgroup_ensure_storage(event, css);
968         if (ret)
969                 goto out;
970
971         cgrp = container_of(css, struct perf_cgroup, css);
972         event->cgrp = cgrp;
973
974         /*
975          * all events in a group must monitor
976          * the same cgroup because a task belongs
977          * to only one perf cgroup at a time
978          */
979         if (group_leader && group_leader->cgrp != cgrp) {
980                 perf_detach_cgroup(event);
981                 ret = -EINVAL;
982         }
983 out:
984         fdput(f);
985         return ret;
986 }
987
988 static inline void
989 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
990 {
991         struct perf_cgroup_info *t;
992         t = per_cpu_ptr(event->cgrp->info, event->cpu);
993         event->shadow_ctx_time = now - t->timestamp;
994 }
995
996 static inline void
997 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
998 {
999         struct perf_cpu_context *cpuctx;
1000
1001         if (!is_cgroup_event(event))
1002                 return;
1003
1004         /*
1005          * Because cgroup events are always per-cpu events,
1006          * @ctx == &cpuctx->ctx.
1007          */
1008         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1009
1010         /*
1011          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1012          * matching the event's cgroup, we must do this for every new event,
1013          * because if the first would mismatch, the second would not try again
1014          * and we would leave cpuctx->cgrp unset.
1015          */
1016         if (ctx->is_active && !cpuctx->cgrp) {
1017                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1018
1019                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1020                         cpuctx->cgrp = cgrp;
1021         }
1022
1023         if (ctx->nr_cgroups++)
1024                 return;
1025
1026         list_add(&cpuctx->cgrp_cpuctx_entry,
1027                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1028 }
1029
1030 static inline void
1031 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1032 {
1033         struct perf_cpu_context *cpuctx;
1034
1035         if (!is_cgroup_event(event))
1036                 return;
1037
1038         /*
1039          * Because cgroup events are always per-cpu events,
1040          * @ctx == &cpuctx->ctx.
1041          */
1042         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1043
1044         if (--ctx->nr_cgroups)
1045                 return;
1046
1047         if (ctx->is_active && cpuctx->cgrp)
1048                 cpuctx->cgrp = NULL;
1049
1050         list_del(&cpuctx->cgrp_cpuctx_entry);
1051 }
1052
1053 #else /* !CONFIG_CGROUP_PERF */
1054
1055 static inline bool
1056 perf_cgroup_match(struct perf_event *event)
1057 {
1058         return true;
1059 }
1060
1061 static inline void perf_detach_cgroup(struct perf_event *event)
1062 {}
1063
1064 static inline int is_cgroup_event(struct perf_event *event)
1065 {
1066         return 0;
1067 }
1068
1069 static inline void update_cgrp_time_from_event(struct perf_event *event)
1070 {
1071 }
1072
1073 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1074 {
1075 }
1076
1077 static inline void perf_cgroup_sched_out(struct task_struct *task,
1078                                          struct task_struct *next)
1079 {
1080 }
1081
1082 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1083                                         struct task_struct *task)
1084 {
1085 }
1086
1087 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1088                                       struct perf_event_attr *attr,
1089                                       struct perf_event *group_leader)
1090 {
1091         return -EINVAL;
1092 }
1093
1094 static inline void
1095 perf_cgroup_set_timestamp(struct task_struct *task,
1096                           struct perf_event_context *ctx)
1097 {
1098 }
1099
1100 static inline void
1101 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1102 {
1103 }
1104
1105 static inline void
1106 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1107 {
1108 }
1109
1110 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1111 {
1112         return 0;
1113 }
1114
1115 static inline void
1116 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1117 {
1118 }
1119
1120 static inline void
1121 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1122 {
1123 }
1124 #endif
1125
1126 /*
1127  * set default to be dependent on timer tick just
1128  * like original code
1129  */
1130 #define PERF_CPU_HRTIMER (1000 / HZ)
1131 /*
1132  * function must be called with interrupts disabled
1133  */
1134 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1135 {
1136         struct perf_cpu_context *cpuctx;
1137         bool rotations;
1138
1139         lockdep_assert_irqs_disabled();
1140
1141         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1142         rotations = perf_rotate_context(cpuctx);
1143
1144         raw_spin_lock(&cpuctx->hrtimer_lock);
1145         if (rotations)
1146                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1147         else
1148                 cpuctx->hrtimer_active = 0;
1149         raw_spin_unlock(&cpuctx->hrtimer_lock);
1150
1151         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1152 }
1153
1154 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1155 {
1156         struct hrtimer *timer = &cpuctx->hrtimer;
1157         struct pmu *pmu = cpuctx->ctx.pmu;
1158         u64 interval;
1159
1160         /* no multiplexing needed for SW PMU */
1161         if (pmu->task_ctx_nr == perf_sw_context)
1162                 return;
1163
1164         /*
1165          * check default is sane, if not set then force to
1166          * default interval (1/tick)
1167          */
1168         interval = pmu->hrtimer_interval_ms;
1169         if (interval < 1)
1170                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1171
1172         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1173
1174         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1175         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1176         timer->function = perf_mux_hrtimer_handler;
1177 }
1178
1179 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1180 {
1181         struct hrtimer *timer = &cpuctx->hrtimer;
1182         struct pmu *pmu = cpuctx->ctx.pmu;
1183         unsigned long flags;
1184
1185         /* not for SW PMU */
1186         if (pmu->task_ctx_nr == perf_sw_context)
1187                 return 0;
1188
1189         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1190         if (!cpuctx->hrtimer_active) {
1191                 cpuctx->hrtimer_active = 1;
1192                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1193                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1194         }
1195         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1196
1197         return 0;
1198 }
1199
1200 void perf_pmu_disable(struct pmu *pmu)
1201 {
1202         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1203         if (!(*count)++)
1204                 pmu->pmu_disable(pmu);
1205 }
1206
1207 void perf_pmu_enable(struct pmu *pmu)
1208 {
1209         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1210         if (!--(*count))
1211                 pmu->pmu_enable(pmu);
1212 }
1213
1214 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1215
1216 /*
1217  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1218  * perf_event_task_tick() are fully serialized because they're strictly cpu
1219  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1220  * disabled, while perf_event_task_tick is called from IRQ context.
1221  */
1222 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1223 {
1224         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1225
1226         lockdep_assert_irqs_disabled();
1227
1228         WARN_ON(!list_empty(&ctx->active_ctx_list));
1229
1230         list_add(&ctx->active_ctx_list, head);
1231 }
1232
1233 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1234 {
1235         lockdep_assert_irqs_disabled();
1236
1237         WARN_ON(list_empty(&ctx->active_ctx_list));
1238
1239         list_del_init(&ctx->active_ctx_list);
1240 }
1241
1242 static void get_ctx(struct perf_event_context *ctx)
1243 {
1244         refcount_inc(&ctx->refcount);
1245 }
1246
1247 static void *alloc_task_ctx_data(struct pmu *pmu)
1248 {
1249         if (pmu->task_ctx_cache)
1250                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1251
1252         return NULL;
1253 }
1254
1255 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1256 {
1257         if (pmu->task_ctx_cache && task_ctx_data)
1258                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1259 }
1260
1261 static void free_ctx(struct rcu_head *head)
1262 {
1263         struct perf_event_context *ctx;
1264
1265         ctx = container_of(head, struct perf_event_context, rcu_head);
1266         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1267         kfree(ctx);
1268 }
1269
1270 static void put_ctx(struct perf_event_context *ctx)
1271 {
1272         if (refcount_dec_and_test(&ctx->refcount)) {
1273                 if (ctx->parent_ctx)
1274                         put_ctx(ctx->parent_ctx);
1275                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1276                         put_task_struct(ctx->task);
1277                 call_rcu(&ctx->rcu_head, free_ctx);
1278         }
1279 }
1280
1281 /*
1282  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1283  * perf_pmu_migrate_context() we need some magic.
1284  *
1285  * Those places that change perf_event::ctx will hold both
1286  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1287  *
1288  * Lock ordering is by mutex address. There are two other sites where
1289  * perf_event_context::mutex nests and those are:
1290  *
1291  *  - perf_event_exit_task_context()    [ child , 0 ]
1292  *      perf_event_exit_event()
1293  *        put_event()                   [ parent, 1 ]
1294  *
1295  *  - perf_event_init_context()         [ parent, 0 ]
1296  *      inherit_task_group()
1297  *        inherit_group()
1298  *          inherit_event()
1299  *            perf_event_alloc()
1300  *              perf_init_event()
1301  *                perf_try_init_event() [ child , 1 ]
1302  *
1303  * While it appears there is an obvious deadlock here -- the parent and child
1304  * nesting levels are inverted between the two. This is in fact safe because
1305  * life-time rules separate them. That is an exiting task cannot fork, and a
1306  * spawning task cannot (yet) exit.
1307  *
1308  * But remember that these are parent<->child context relations, and
1309  * migration does not affect children, therefore these two orderings should not
1310  * interact.
1311  *
1312  * The change in perf_event::ctx does not affect children (as claimed above)
1313  * because the sys_perf_event_open() case will install a new event and break
1314  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1315  * concerned with cpuctx and that doesn't have children.
1316  *
1317  * The places that change perf_event::ctx will issue:
1318  *
1319  *   perf_remove_from_context();
1320  *   synchronize_rcu();
1321  *   perf_install_in_context();
1322  *
1323  * to affect the change. The remove_from_context() + synchronize_rcu() should
1324  * quiesce the event, after which we can install it in the new location. This
1325  * means that only external vectors (perf_fops, prctl) can perturb the event
1326  * while in transit. Therefore all such accessors should also acquire
1327  * perf_event_context::mutex to serialize against this.
1328  *
1329  * However; because event->ctx can change while we're waiting to acquire
1330  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1331  * function.
1332  *
1333  * Lock order:
1334  *    exec_update_lock
1335  *      task_struct::perf_event_mutex
1336  *        perf_event_context::mutex
1337  *          perf_event::child_mutex;
1338  *            perf_event_context::lock
1339  *          perf_event::mmap_mutex
1340  *          mmap_lock
1341  *            perf_addr_filters_head::lock
1342  *
1343  *    cpu_hotplug_lock
1344  *      pmus_lock
1345  *        cpuctx->mutex / perf_event_context::mutex
1346  */
1347 static struct perf_event_context *
1348 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1349 {
1350         struct perf_event_context *ctx;
1351
1352 again:
1353         rcu_read_lock();
1354         ctx = READ_ONCE(event->ctx);
1355         if (!refcount_inc_not_zero(&ctx->refcount)) {
1356                 rcu_read_unlock();
1357                 goto again;
1358         }
1359         rcu_read_unlock();
1360
1361         mutex_lock_nested(&ctx->mutex, nesting);
1362         if (event->ctx != ctx) {
1363                 mutex_unlock(&ctx->mutex);
1364                 put_ctx(ctx);
1365                 goto again;
1366         }
1367
1368         return ctx;
1369 }
1370
1371 static inline struct perf_event_context *
1372 perf_event_ctx_lock(struct perf_event *event)
1373 {
1374         return perf_event_ctx_lock_nested(event, 0);
1375 }
1376
1377 static void perf_event_ctx_unlock(struct perf_event *event,
1378                                   struct perf_event_context *ctx)
1379 {
1380         mutex_unlock(&ctx->mutex);
1381         put_ctx(ctx);
1382 }
1383
1384 /*
1385  * This must be done under the ctx->lock, such as to serialize against
1386  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1387  * calling scheduler related locks and ctx->lock nests inside those.
1388  */
1389 static __must_check struct perf_event_context *
1390 unclone_ctx(struct perf_event_context *ctx)
1391 {
1392         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1393
1394         lockdep_assert_held(&ctx->lock);
1395
1396         if (parent_ctx)
1397                 ctx->parent_ctx = NULL;
1398         ctx->generation++;
1399
1400         return parent_ctx;
1401 }
1402
1403 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1404                                 enum pid_type type)
1405 {
1406         u32 nr;
1407         /*
1408          * only top level events have the pid namespace they were created in
1409          */
1410         if (event->parent)
1411                 event = event->parent;
1412
1413         nr = __task_pid_nr_ns(p, type, event->ns);
1414         /* avoid -1 if it is idle thread or runs in another ns */
1415         if (!nr && !pid_alive(p))
1416                 nr = -1;
1417         return nr;
1418 }
1419
1420 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1421 {
1422         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1423 }
1424
1425 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1426 {
1427         return perf_event_pid_type(event, p, PIDTYPE_PID);
1428 }
1429
1430 /*
1431  * If we inherit events we want to return the parent event id
1432  * to userspace.
1433  */
1434 static u64 primary_event_id(struct perf_event *event)
1435 {
1436         u64 id = event->id;
1437
1438         if (event->parent)
1439                 id = event->parent->id;
1440
1441         return id;
1442 }
1443
1444 /*
1445  * Get the perf_event_context for a task and lock it.
1446  *
1447  * This has to cope with the fact that until it is locked,
1448  * the context could get moved to another task.
1449  */
1450 static struct perf_event_context *
1451 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1452 {
1453         struct perf_event_context *ctx;
1454
1455 retry:
1456         /*
1457          * One of the few rules of preemptible RCU is that one cannot do
1458          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1459          * part of the read side critical section was irqs-enabled -- see
1460          * rcu_read_unlock_special().
1461          *
1462          * Since ctx->lock nests under rq->lock we must ensure the entire read
1463          * side critical section has interrupts disabled.
1464          */
1465         local_irq_save(*flags);
1466         rcu_read_lock();
1467         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1468         if (ctx) {
1469                 /*
1470                  * If this context is a clone of another, it might
1471                  * get swapped for another underneath us by
1472                  * perf_event_task_sched_out, though the
1473                  * rcu_read_lock() protects us from any context
1474                  * getting freed.  Lock the context and check if it
1475                  * got swapped before we could get the lock, and retry
1476                  * if so.  If we locked the right context, then it
1477                  * can't get swapped on us any more.
1478                  */
1479                 raw_spin_lock(&ctx->lock);
1480                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1481                         raw_spin_unlock(&ctx->lock);
1482                         rcu_read_unlock();
1483                         local_irq_restore(*flags);
1484                         goto retry;
1485                 }
1486
1487                 if (ctx->task == TASK_TOMBSTONE ||
1488                     !refcount_inc_not_zero(&ctx->refcount)) {
1489                         raw_spin_unlock(&ctx->lock);
1490                         ctx = NULL;
1491                 } else {
1492                         WARN_ON_ONCE(ctx->task != task);
1493                 }
1494         }
1495         rcu_read_unlock();
1496         if (!ctx)
1497                 local_irq_restore(*flags);
1498         return ctx;
1499 }
1500
1501 /*
1502  * Get the context for a task and increment its pin_count so it
1503  * can't get swapped to another task.  This also increments its
1504  * reference count so that the context can't get freed.
1505  */
1506 static struct perf_event_context *
1507 perf_pin_task_context(struct task_struct *task, int ctxn)
1508 {
1509         struct perf_event_context *ctx;
1510         unsigned long flags;
1511
1512         ctx = perf_lock_task_context(task, ctxn, &flags);
1513         if (ctx) {
1514                 ++ctx->pin_count;
1515                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1516         }
1517         return ctx;
1518 }
1519
1520 static void perf_unpin_context(struct perf_event_context *ctx)
1521 {
1522         unsigned long flags;
1523
1524         raw_spin_lock_irqsave(&ctx->lock, flags);
1525         --ctx->pin_count;
1526         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1527 }
1528
1529 /*
1530  * Update the record of the current time in a context.
1531  */
1532 static void update_context_time(struct perf_event_context *ctx)
1533 {
1534         u64 now = perf_clock();
1535
1536         ctx->time += now - ctx->timestamp;
1537         ctx->timestamp = now;
1538 }
1539
1540 static u64 perf_event_time(struct perf_event *event)
1541 {
1542         struct perf_event_context *ctx = event->ctx;
1543
1544         if (is_cgroup_event(event))
1545                 return perf_cgroup_event_time(event);
1546
1547         return ctx ? ctx->time : 0;
1548 }
1549
1550 static enum event_type_t get_event_type(struct perf_event *event)
1551 {
1552         struct perf_event_context *ctx = event->ctx;
1553         enum event_type_t event_type;
1554
1555         lockdep_assert_held(&ctx->lock);
1556
1557         /*
1558          * It's 'group type', really, because if our group leader is
1559          * pinned, so are we.
1560          */
1561         if (event->group_leader != event)
1562                 event = event->group_leader;
1563
1564         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1565         if (!ctx->task)
1566                 event_type |= EVENT_CPU;
1567
1568         return event_type;
1569 }
1570
1571 /*
1572  * Helper function to initialize event group nodes.
1573  */
1574 static void init_event_group(struct perf_event *event)
1575 {
1576         RB_CLEAR_NODE(&event->group_node);
1577         event->group_index = 0;
1578 }
1579
1580 /*
1581  * Extract pinned or flexible groups from the context
1582  * based on event attrs bits.
1583  */
1584 static struct perf_event_groups *
1585 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1586 {
1587         if (event->attr.pinned)
1588                 return &ctx->pinned_groups;
1589         else
1590                 return &ctx->flexible_groups;
1591 }
1592
1593 /*
1594  * Helper function to initializes perf_event_group trees.
1595  */
1596 static void perf_event_groups_init(struct perf_event_groups *groups)
1597 {
1598         groups->tree = RB_ROOT;
1599         groups->index = 0;
1600 }
1601
1602 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1603 {
1604         struct cgroup *cgroup = NULL;
1605
1606 #ifdef CONFIG_CGROUP_PERF
1607         if (event->cgrp)
1608                 cgroup = event->cgrp->css.cgroup;
1609 #endif
1610
1611         return cgroup;
1612 }
1613
1614 /*
1615  * Compare function for event groups;
1616  *
1617  * Implements complex key that first sorts by CPU and then by virtual index
1618  * which provides ordering when rotating groups for the same CPU.
1619  */
1620 static __always_inline int
1621 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1622                       const u64 left_group_index, const struct perf_event *right)
1623 {
1624         if (left_cpu < right->cpu)
1625                 return -1;
1626         if (left_cpu > right->cpu)
1627                 return 1;
1628
1629 #ifdef CONFIG_CGROUP_PERF
1630         {
1631                 const struct cgroup *right_cgroup = event_cgroup(right);
1632
1633                 if (left_cgroup != right_cgroup) {
1634                         if (!left_cgroup) {
1635                                 /*
1636                                  * Left has no cgroup but right does, no
1637                                  * cgroups come first.
1638                                  */
1639                                 return -1;
1640                         }
1641                         if (!right_cgroup) {
1642                                 /*
1643                                  * Right has no cgroup but left does, no
1644                                  * cgroups come first.
1645                                  */
1646                                 return 1;
1647                         }
1648                         /* Two dissimilar cgroups, order by id. */
1649                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1650                                 return -1;
1651
1652                         return 1;
1653                 }
1654         }
1655 #endif
1656
1657         if (left_group_index < right->group_index)
1658                 return -1;
1659         if (left_group_index > right->group_index)
1660                 return 1;
1661
1662         return 0;
1663 }
1664
1665 #define __node_2_pe(node) \
1666         rb_entry((node), struct perf_event, group_node)
1667
1668 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1669 {
1670         struct perf_event *e = __node_2_pe(a);
1671         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1672                                      __node_2_pe(b)) < 0;
1673 }
1674
1675 struct __group_key {
1676         int cpu;
1677         struct cgroup *cgroup;
1678 };
1679
1680 static inline int __group_cmp(const void *key, const struct rb_node *node)
1681 {
1682         const struct __group_key *a = key;
1683         const struct perf_event *b = __node_2_pe(node);
1684
1685         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1686         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1687 }
1688
1689 /*
1690  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1691  * key (see perf_event_groups_less). This places it last inside the CPU
1692  * subtree.
1693  */
1694 static void
1695 perf_event_groups_insert(struct perf_event_groups *groups,
1696                          struct perf_event *event)
1697 {
1698         event->group_index = ++groups->index;
1699
1700         rb_add(&event->group_node, &groups->tree, __group_less);
1701 }
1702
1703 /*
1704  * Helper function to insert event into the pinned or flexible groups.
1705  */
1706 static void
1707 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1708 {
1709         struct perf_event_groups *groups;
1710
1711         groups = get_event_groups(event, ctx);
1712         perf_event_groups_insert(groups, event);
1713 }
1714
1715 /*
1716  * Delete a group from a tree.
1717  */
1718 static void
1719 perf_event_groups_delete(struct perf_event_groups *groups,
1720                          struct perf_event *event)
1721 {
1722         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1723                      RB_EMPTY_ROOT(&groups->tree));
1724
1725         rb_erase(&event->group_node, &groups->tree);
1726         init_event_group(event);
1727 }
1728
1729 /*
1730  * Helper function to delete event from its groups.
1731  */
1732 static void
1733 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1734 {
1735         struct perf_event_groups *groups;
1736
1737         groups = get_event_groups(event, ctx);
1738         perf_event_groups_delete(groups, event);
1739 }
1740
1741 /*
1742  * Get the leftmost event in the cpu/cgroup subtree.
1743  */
1744 static struct perf_event *
1745 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1746                         struct cgroup *cgrp)
1747 {
1748         struct __group_key key = {
1749                 .cpu = cpu,
1750                 .cgroup = cgrp,
1751         };
1752         struct rb_node *node;
1753
1754         node = rb_find_first(&key, &groups->tree, __group_cmp);
1755         if (node)
1756                 return __node_2_pe(node);
1757
1758         return NULL;
1759 }
1760
1761 /*
1762  * Like rb_entry_next_safe() for the @cpu subtree.
1763  */
1764 static struct perf_event *
1765 perf_event_groups_next(struct perf_event *event)
1766 {
1767         struct __group_key key = {
1768                 .cpu = event->cpu,
1769                 .cgroup = event_cgroup(event),
1770         };
1771         struct rb_node *next;
1772
1773         next = rb_next_match(&key, &event->group_node, __group_cmp);
1774         if (next)
1775                 return __node_2_pe(next);
1776
1777         return NULL;
1778 }
1779
1780 /*
1781  * Iterate through the whole groups tree.
1782  */
1783 #define perf_event_groups_for_each(event, groups)                       \
1784         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1785                                 typeof(*event), group_node); event;     \
1786                 event = rb_entry_safe(rb_next(&event->group_node),      \
1787                                 typeof(*event), group_node))
1788
1789 /*
1790  * Add an event from the lists for its context.
1791  * Must be called with ctx->mutex and ctx->lock held.
1792  */
1793 static void
1794 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1795 {
1796         lockdep_assert_held(&ctx->lock);
1797
1798         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1799         event->attach_state |= PERF_ATTACH_CONTEXT;
1800
1801         event->tstamp = perf_event_time(event);
1802
1803         /*
1804          * If we're a stand alone event or group leader, we go to the context
1805          * list, group events are kept attached to the group so that
1806          * perf_group_detach can, at all times, locate all siblings.
1807          */
1808         if (event->group_leader == event) {
1809                 event->group_caps = event->event_caps;
1810                 add_event_to_groups(event, ctx);
1811         }
1812
1813         list_add_rcu(&event->event_entry, &ctx->event_list);
1814         ctx->nr_events++;
1815         if (event->attr.inherit_stat)
1816                 ctx->nr_stat++;
1817
1818         if (event->state > PERF_EVENT_STATE_OFF)
1819                 perf_cgroup_event_enable(event, ctx);
1820
1821         ctx->generation++;
1822 }
1823
1824 /*
1825  * Initialize event state based on the perf_event_attr::disabled.
1826  */
1827 static inline void perf_event__state_init(struct perf_event *event)
1828 {
1829         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1830                                               PERF_EVENT_STATE_INACTIVE;
1831 }
1832
1833 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1834 {
1835         int entry = sizeof(u64); /* value */
1836         int size = 0;
1837         int nr = 1;
1838
1839         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1840                 size += sizeof(u64);
1841
1842         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1843                 size += sizeof(u64);
1844
1845         if (event->attr.read_format & PERF_FORMAT_ID)
1846                 entry += sizeof(u64);
1847
1848         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1849                 nr += nr_siblings;
1850                 size += sizeof(u64);
1851         }
1852
1853         size += entry * nr;
1854         event->read_size = size;
1855 }
1856
1857 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1858 {
1859         struct perf_sample_data *data;
1860         u16 size = 0;
1861
1862         if (sample_type & PERF_SAMPLE_IP)
1863                 size += sizeof(data->ip);
1864
1865         if (sample_type & PERF_SAMPLE_ADDR)
1866                 size += sizeof(data->addr);
1867
1868         if (sample_type & PERF_SAMPLE_PERIOD)
1869                 size += sizeof(data->period);
1870
1871         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1872                 size += sizeof(data->weight.full);
1873
1874         if (sample_type & PERF_SAMPLE_READ)
1875                 size += event->read_size;
1876
1877         if (sample_type & PERF_SAMPLE_DATA_SRC)
1878                 size += sizeof(data->data_src.val);
1879
1880         if (sample_type & PERF_SAMPLE_TRANSACTION)
1881                 size += sizeof(data->txn);
1882
1883         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1884                 size += sizeof(data->phys_addr);
1885
1886         if (sample_type & PERF_SAMPLE_CGROUP)
1887                 size += sizeof(data->cgroup);
1888
1889         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1890                 size += sizeof(data->data_page_size);
1891
1892         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1893                 size += sizeof(data->code_page_size);
1894
1895         event->header_size = size;
1896 }
1897
1898 /*
1899  * Called at perf_event creation and when events are attached/detached from a
1900  * group.
1901  */
1902 static void perf_event__header_size(struct perf_event *event)
1903 {
1904         __perf_event_read_size(event,
1905                                event->group_leader->nr_siblings);
1906         __perf_event_header_size(event, event->attr.sample_type);
1907 }
1908
1909 static void perf_event__id_header_size(struct perf_event *event)
1910 {
1911         struct perf_sample_data *data;
1912         u64 sample_type = event->attr.sample_type;
1913         u16 size = 0;
1914
1915         if (sample_type & PERF_SAMPLE_TID)
1916                 size += sizeof(data->tid_entry);
1917
1918         if (sample_type & PERF_SAMPLE_TIME)
1919                 size += sizeof(data->time);
1920
1921         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1922                 size += sizeof(data->id);
1923
1924         if (sample_type & PERF_SAMPLE_ID)
1925                 size += sizeof(data->id);
1926
1927         if (sample_type & PERF_SAMPLE_STREAM_ID)
1928                 size += sizeof(data->stream_id);
1929
1930         if (sample_type & PERF_SAMPLE_CPU)
1931                 size += sizeof(data->cpu_entry);
1932
1933         event->id_header_size = size;
1934 }
1935
1936 static bool perf_event_validate_size(struct perf_event *event)
1937 {
1938         /*
1939          * The values computed here will be over-written when we actually
1940          * attach the event.
1941          */
1942         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1943         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1944         perf_event__id_header_size(event);
1945
1946         /*
1947          * Sum the lot; should not exceed the 64k limit we have on records.
1948          * Conservative limit to allow for callchains and other variable fields.
1949          */
1950         if (event->read_size + event->header_size +
1951             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1952                 return false;
1953
1954         return true;
1955 }
1956
1957 static void perf_group_attach(struct perf_event *event)
1958 {
1959         struct perf_event *group_leader = event->group_leader, *pos;
1960
1961         lockdep_assert_held(&event->ctx->lock);
1962
1963         /*
1964          * We can have double attach due to group movement in perf_event_open.
1965          */
1966         if (event->attach_state & PERF_ATTACH_GROUP)
1967                 return;
1968
1969         event->attach_state |= PERF_ATTACH_GROUP;
1970
1971         if (group_leader == event)
1972                 return;
1973
1974         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1975
1976         group_leader->group_caps &= event->event_caps;
1977
1978         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1979         group_leader->nr_siblings++;
1980
1981         perf_event__header_size(group_leader);
1982
1983         for_each_sibling_event(pos, group_leader)
1984                 perf_event__header_size(pos);
1985 }
1986
1987 /*
1988  * Remove an event from the lists for its context.
1989  * Must be called with ctx->mutex and ctx->lock held.
1990  */
1991 static void
1992 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1993 {
1994         WARN_ON_ONCE(event->ctx != ctx);
1995         lockdep_assert_held(&ctx->lock);
1996
1997         /*
1998          * We can have double detach due to exit/hot-unplug + close.
1999          */
2000         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2001                 return;
2002
2003         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2004
2005         ctx->nr_events--;
2006         if (event->attr.inherit_stat)
2007                 ctx->nr_stat--;
2008
2009         list_del_rcu(&event->event_entry);
2010
2011         if (event->group_leader == event)
2012                 del_event_from_groups(event, ctx);
2013
2014         /*
2015          * If event was in error state, then keep it
2016          * that way, otherwise bogus counts will be
2017          * returned on read(). The only way to get out
2018          * of error state is by explicit re-enabling
2019          * of the event
2020          */
2021         if (event->state > PERF_EVENT_STATE_OFF) {
2022                 perf_cgroup_event_disable(event, ctx);
2023                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2024         }
2025
2026         ctx->generation++;
2027 }
2028
2029 static int
2030 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2031 {
2032         if (!has_aux(aux_event))
2033                 return 0;
2034
2035         if (!event->pmu->aux_output_match)
2036                 return 0;
2037
2038         return event->pmu->aux_output_match(aux_event);
2039 }
2040
2041 static void put_event(struct perf_event *event);
2042 static void event_sched_out(struct perf_event *event,
2043                             struct perf_cpu_context *cpuctx,
2044                             struct perf_event_context *ctx);
2045
2046 static void perf_put_aux_event(struct perf_event *event)
2047 {
2048         struct perf_event_context *ctx = event->ctx;
2049         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2050         struct perf_event *iter;
2051
2052         /*
2053          * If event uses aux_event tear down the link
2054          */
2055         if (event->aux_event) {
2056                 iter = event->aux_event;
2057                 event->aux_event = NULL;
2058                 put_event(iter);
2059                 return;
2060         }
2061
2062         /*
2063          * If the event is an aux_event, tear down all links to
2064          * it from other events.
2065          */
2066         for_each_sibling_event(iter, event->group_leader) {
2067                 if (iter->aux_event != event)
2068                         continue;
2069
2070                 iter->aux_event = NULL;
2071                 put_event(event);
2072
2073                 /*
2074                  * If it's ACTIVE, schedule it out and put it into ERROR
2075                  * state so that we don't try to schedule it again. Note
2076                  * that perf_event_enable() will clear the ERROR status.
2077                  */
2078                 event_sched_out(iter, cpuctx, ctx);
2079                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2080         }
2081 }
2082
2083 static bool perf_need_aux_event(struct perf_event *event)
2084 {
2085         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2086 }
2087
2088 static int perf_get_aux_event(struct perf_event *event,
2089                               struct perf_event *group_leader)
2090 {
2091         /*
2092          * Our group leader must be an aux event if we want to be
2093          * an aux_output. This way, the aux event will precede its
2094          * aux_output events in the group, and therefore will always
2095          * schedule first.
2096          */
2097         if (!group_leader)
2098                 return 0;
2099
2100         /*
2101          * aux_output and aux_sample_size are mutually exclusive.
2102          */
2103         if (event->attr.aux_output && event->attr.aux_sample_size)
2104                 return 0;
2105
2106         if (event->attr.aux_output &&
2107             !perf_aux_output_match(event, group_leader))
2108                 return 0;
2109
2110         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2111                 return 0;
2112
2113         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2114                 return 0;
2115
2116         /*
2117          * Link aux_outputs to their aux event; this is undone in
2118          * perf_group_detach() by perf_put_aux_event(). When the
2119          * group in torn down, the aux_output events loose their
2120          * link to the aux_event and can't schedule any more.
2121          */
2122         event->aux_event = group_leader;
2123
2124         return 1;
2125 }
2126
2127 static inline struct list_head *get_event_list(struct perf_event *event)
2128 {
2129         struct perf_event_context *ctx = event->ctx;
2130         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2131 }
2132
2133 /*
2134  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2135  * cannot exist on their own, schedule them out and move them into the ERROR
2136  * state. Also see _perf_event_enable(), it will not be able to recover
2137  * this ERROR state.
2138  */
2139 static inline void perf_remove_sibling_event(struct perf_event *event)
2140 {
2141         struct perf_event_context *ctx = event->ctx;
2142         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2143
2144         event_sched_out(event, cpuctx, ctx);
2145         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2146 }
2147
2148 static void perf_group_detach(struct perf_event *event)
2149 {
2150         struct perf_event *leader = event->group_leader;
2151         struct perf_event *sibling, *tmp;
2152         struct perf_event_context *ctx = event->ctx;
2153
2154         lockdep_assert_held(&ctx->lock);
2155
2156         /*
2157          * We can have double detach due to exit/hot-unplug + close.
2158          */
2159         if (!(event->attach_state & PERF_ATTACH_GROUP))
2160                 return;
2161
2162         event->attach_state &= ~PERF_ATTACH_GROUP;
2163
2164         perf_put_aux_event(event);
2165
2166         /*
2167          * If this is a sibling, remove it from its group.
2168          */
2169         if (leader != event) {
2170                 list_del_init(&event->sibling_list);
2171                 event->group_leader->nr_siblings--;
2172                 goto out;
2173         }
2174
2175         /*
2176          * If this was a group event with sibling events then
2177          * upgrade the siblings to singleton events by adding them
2178          * to whatever list we are on.
2179          */
2180         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2181
2182                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2183                         perf_remove_sibling_event(sibling);
2184
2185                 sibling->group_leader = sibling;
2186                 list_del_init(&sibling->sibling_list);
2187
2188                 /* Inherit group flags from the previous leader */
2189                 sibling->group_caps = event->group_caps;
2190
2191                 if (!RB_EMPTY_NODE(&event->group_node)) {
2192                         add_event_to_groups(sibling, event->ctx);
2193
2194                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2195                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2196                 }
2197
2198                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2199         }
2200
2201 out:
2202         for_each_sibling_event(tmp, leader)
2203                 perf_event__header_size(tmp);
2204
2205         perf_event__header_size(leader);
2206 }
2207
2208 static void sync_child_event(struct perf_event *child_event);
2209
2210 static void perf_child_detach(struct perf_event *event)
2211 {
2212         struct perf_event *parent_event = event->parent;
2213
2214         if (!(event->attach_state & PERF_ATTACH_CHILD))
2215                 return;
2216
2217         event->attach_state &= ~PERF_ATTACH_CHILD;
2218
2219         if (WARN_ON_ONCE(!parent_event))
2220                 return;
2221
2222         lockdep_assert_held(&parent_event->child_mutex);
2223
2224         sync_child_event(event);
2225         list_del_init(&event->child_list);
2226 }
2227
2228 static bool is_orphaned_event(struct perf_event *event)
2229 {
2230         return event->state == PERF_EVENT_STATE_DEAD;
2231 }
2232
2233 static inline int __pmu_filter_match(struct perf_event *event)
2234 {
2235         struct pmu *pmu = event->pmu;
2236         return pmu->filter_match ? pmu->filter_match(event) : 1;
2237 }
2238
2239 /*
2240  * Check whether we should attempt to schedule an event group based on
2241  * PMU-specific filtering. An event group can consist of HW and SW events,
2242  * potentially with a SW leader, so we must check all the filters, to
2243  * determine whether a group is schedulable:
2244  */
2245 static inline int pmu_filter_match(struct perf_event *event)
2246 {
2247         struct perf_event *sibling;
2248
2249         if (!__pmu_filter_match(event))
2250                 return 0;
2251
2252         for_each_sibling_event(sibling, event) {
2253                 if (!__pmu_filter_match(sibling))
2254                         return 0;
2255         }
2256
2257         return 1;
2258 }
2259
2260 static inline int
2261 event_filter_match(struct perf_event *event)
2262 {
2263         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2264                perf_cgroup_match(event) && pmu_filter_match(event);
2265 }
2266
2267 static void
2268 event_sched_out(struct perf_event *event,
2269                   struct perf_cpu_context *cpuctx,
2270                   struct perf_event_context *ctx)
2271 {
2272         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2273
2274         WARN_ON_ONCE(event->ctx != ctx);
2275         lockdep_assert_held(&ctx->lock);
2276
2277         if (event->state != PERF_EVENT_STATE_ACTIVE)
2278                 return;
2279
2280         /*
2281          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2282          * we can schedule events _OUT_ individually through things like
2283          * __perf_remove_from_context().
2284          */
2285         list_del_init(&event->active_list);
2286
2287         perf_pmu_disable(event->pmu);
2288
2289         event->pmu->del(event, 0);
2290         event->oncpu = -1;
2291
2292         if (READ_ONCE(event->pending_disable) >= 0) {
2293                 WRITE_ONCE(event->pending_disable, -1);
2294                 perf_cgroup_event_disable(event, ctx);
2295                 state = PERF_EVENT_STATE_OFF;
2296         }
2297         perf_event_set_state(event, state);
2298
2299         if (!is_software_event(event))
2300                 cpuctx->active_oncpu--;
2301         if (!--ctx->nr_active)
2302                 perf_event_ctx_deactivate(ctx);
2303         if (event->attr.freq && event->attr.sample_freq)
2304                 ctx->nr_freq--;
2305         if (event->attr.exclusive || !cpuctx->active_oncpu)
2306                 cpuctx->exclusive = 0;
2307
2308         perf_pmu_enable(event->pmu);
2309 }
2310
2311 static void
2312 group_sched_out(struct perf_event *group_event,
2313                 struct perf_cpu_context *cpuctx,
2314                 struct perf_event_context *ctx)
2315 {
2316         struct perf_event *event;
2317
2318         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2319                 return;
2320
2321         perf_pmu_disable(ctx->pmu);
2322
2323         event_sched_out(group_event, cpuctx, ctx);
2324
2325         /*
2326          * Schedule out siblings (if any):
2327          */
2328         for_each_sibling_event(event, group_event)
2329                 event_sched_out(event, cpuctx, ctx);
2330
2331         perf_pmu_enable(ctx->pmu);
2332 }
2333
2334 #define DETACH_GROUP    0x01UL
2335 #define DETACH_CHILD    0x02UL
2336
2337 /*
2338  * Cross CPU call to remove a performance event
2339  *
2340  * We disable the event on the hardware level first. After that we
2341  * remove it from the context list.
2342  */
2343 static void
2344 __perf_remove_from_context(struct perf_event *event,
2345                            struct perf_cpu_context *cpuctx,
2346                            struct perf_event_context *ctx,
2347                            void *info)
2348 {
2349         unsigned long flags = (unsigned long)info;
2350
2351         if (ctx->is_active & EVENT_TIME) {
2352                 update_context_time(ctx);
2353                 update_cgrp_time_from_cpuctx(cpuctx);
2354         }
2355
2356         event_sched_out(event, cpuctx, ctx);
2357         if (flags & DETACH_GROUP)
2358                 perf_group_detach(event);
2359         if (flags & DETACH_CHILD)
2360                 perf_child_detach(event);
2361         list_del_event(event, ctx);
2362
2363         if (!ctx->nr_events && ctx->is_active) {
2364                 ctx->is_active = 0;
2365                 ctx->rotate_necessary = 0;
2366                 if (ctx->task) {
2367                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2368                         cpuctx->task_ctx = NULL;
2369                 }
2370         }
2371 }
2372
2373 /*
2374  * Remove the event from a task's (or a CPU's) list of events.
2375  *
2376  * If event->ctx is a cloned context, callers must make sure that
2377  * every task struct that event->ctx->task could possibly point to
2378  * remains valid.  This is OK when called from perf_release since
2379  * that only calls us on the top-level context, which can't be a clone.
2380  * When called from perf_event_exit_task, it's OK because the
2381  * context has been detached from its task.
2382  */
2383 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2384 {
2385         struct perf_event_context *ctx = event->ctx;
2386
2387         lockdep_assert_held(&ctx->mutex);
2388
2389         /*
2390          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2391          * to work in the face of TASK_TOMBSTONE, unlike every other
2392          * event_function_call() user.
2393          */
2394         raw_spin_lock_irq(&ctx->lock);
2395         if (!ctx->is_active) {
2396                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2397                                            ctx, (void *)flags);
2398                 raw_spin_unlock_irq(&ctx->lock);
2399                 return;
2400         }
2401         raw_spin_unlock_irq(&ctx->lock);
2402
2403         event_function_call(event, __perf_remove_from_context, (void *)flags);
2404 }
2405
2406 /*
2407  * Cross CPU call to disable a performance event
2408  */
2409 static void __perf_event_disable(struct perf_event *event,
2410                                  struct perf_cpu_context *cpuctx,
2411                                  struct perf_event_context *ctx,
2412                                  void *info)
2413 {
2414         if (event->state < PERF_EVENT_STATE_INACTIVE)
2415                 return;
2416
2417         if (ctx->is_active & EVENT_TIME) {
2418                 update_context_time(ctx);
2419                 update_cgrp_time_from_event(event);
2420         }
2421
2422         if (event == event->group_leader)
2423                 group_sched_out(event, cpuctx, ctx);
2424         else
2425                 event_sched_out(event, cpuctx, ctx);
2426
2427         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2428         perf_cgroup_event_disable(event, ctx);
2429 }
2430
2431 /*
2432  * Disable an event.
2433  *
2434  * If event->ctx is a cloned context, callers must make sure that
2435  * every task struct that event->ctx->task could possibly point to
2436  * remains valid.  This condition is satisfied when called through
2437  * perf_event_for_each_child or perf_event_for_each because they
2438  * hold the top-level event's child_mutex, so any descendant that
2439  * goes to exit will block in perf_event_exit_event().
2440  *
2441  * When called from perf_pending_event it's OK because event->ctx
2442  * is the current context on this CPU and preemption is disabled,
2443  * hence we can't get into perf_event_task_sched_out for this context.
2444  */
2445 static void _perf_event_disable(struct perf_event *event)
2446 {
2447         struct perf_event_context *ctx = event->ctx;
2448
2449         raw_spin_lock_irq(&ctx->lock);
2450         if (event->state <= PERF_EVENT_STATE_OFF) {
2451                 raw_spin_unlock_irq(&ctx->lock);
2452                 return;
2453         }
2454         raw_spin_unlock_irq(&ctx->lock);
2455
2456         event_function_call(event, __perf_event_disable, NULL);
2457 }
2458
2459 void perf_event_disable_local(struct perf_event *event)
2460 {
2461         event_function_local(event, __perf_event_disable, NULL);
2462 }
2463
2464 /*
2465  * Strictly speaking kernel users cannot create groups and therefore this
2466  * interface does not need the perf_event_ctx_lock() magic.
2467  */
2468 void perf_event_disable(struct perf_event *event)
2469 {
2470         struct perf_event_context *ctx;
2471
2472         ctx = perf_event_ctx_lock(event);
2473         _perf_event_disable(event);
2474         perf_event_ctx_unlock(event, ctx);
2475 }
2476 EXPORT_SYMBOL_GPL(perf_event_disable);
2477
2478 void perf_event_disable_inatomic(struct perf_event *event)
2479 {
2480         WRITE_ONCE(event->pending_disable, smp_processor_id());
2481         /* can fail, see perf_pending_event_disable() */
2482         irq_work_queue(&event->pending);
2483 }
2484
2485 static void perf_set_shadow_time(struct perf_event *event,
2486                                  struct perf_event_context *ctx)
2487 {
2488         /*
2489          * use the correct time source for the time snapshot
2490          *
2491          * We could get by without this by leveraging the
2492          * fact that to get to this function, the caller
2493          * has most likely already called update_context_time()
2494          * and update_cgrp_time_xx() and thus both timestamp
2495          * are identical (or very close). Given that tstamp is,
2496          * already adjusted for cgroup, we could say that:
2497          *    tstamp - ctx->timestamp
2498          * is equivalent to
2499          *    tstamp - cgrp->timestamp.
2500          *
2501          * Then, in perf_output_read(), the calculation would
2502          * work with no changes because:
2503          * - event is guaranteed scheduled in
2504          * - no scheduled out in between
2505          * - thus the timestamp would be the same
2506          *
2507          * But this is a bit hairy.
2508          *
2509          * So instead, we have an explicit cgroup call to remain
2510          * within the time source all along. We believe it
2511          * is cleaner and simpler to understand.
2512          */
2513         if (is_cgroup_event(event))
2514                 perf_cgroup_set_shadow_time(event, event->tstamp);
2515         else
2516                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2517 }
2518
2519 #define MAX_INTERRUPTS (~0ULL)
2520
2521 static void perf_log_throttle(struct perf_event *event, int enable);
2522 static void perf_log_itrace_start(struct perf_event *event);
2523
2524 static int
2525 event_sched_in(struct perf_event *event,
2526                  struct perf_cpu_context *cpuctx,
2527                  struct perf_event_context *ctx)
2528 {
2529         int ret = 0;
2530
2531         WARN_ON_ONCE(event->ctx != ctx);
2532
2533         lockdep_assert_held(&ctx->lock);
2534
2535         if (event->state <= PERF_EVENT_STATE_OFF)
2536                 return 0;
2537
2538         WRITE_ONCE(event->oncpu, smp_processor_id());
2539         /*
2540          * Order event::oncpu write to happen before the ACTIVE state is
2541          * visible. This allows perf_event_{stop,read}() to observe the correct
2542          * ->oncpu if it sees ACTIVE.
2543          */
2544         smp_wmb();
2545         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2546
2547         /*
2548          * Unthrottle events, since we scheduled we might have missed several
2549          * ticks already, also for a heavily scheduling task there is little
2550          * guarantee it'll get a tick in a timely manner.
2551          */
2552         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2553                 perf_log_throttle(event, 1);
2554                 event->hw.interrupts = 0;
2555         }
2556
2557         perf_pmu_disable(event->pmu);
2558
2559         perf_set_shadow_time(event, ctx);
2560
2561         perf_log_itrace_start(event);
2562
2563         if (event->pmu->add(event, PERF_EF_START)) {
2564                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2565                 event->oncpu = -1;
2566                 ret = -EAGAIN;
2567                 goto out;
2568         }
2569
2570         if (!is_software_event(event))
2571                 cpuctx->active_oncpu++;
2572         if (!ctx->nr_active++)
2573                 perf_event_ctx_activate(ctx);
2574         if (event->attr.freq && event->attr.sample_freq)
2575                 ctx->nr_freq++;
2576
2577         if (event->attr.exclusive)
2578                 cpuctx->exclusive = 1;
2579
2580 out:
2581         perf_pmu_enable(event->pmu);
2582
2583         return ret;
2584 }
2585
2586 static int
2587 group_sched_in(struct perf_event *group_event,
2588                struct perf_cpu_context *cpuctx,
2589                struct perf_event_context *ctx)
2590 {
2591         struct perf_event *event, *partial_group = NULL;
2592         struct pmu *pmu = ctx->pmu;
2593
2594         if (group_event->state == PERF_EVENT_STATE_OFF)
2595                 return 0;
2596
2597         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2598
2599         if (event_sched_in(group_event, cpuctx, ctx))
2600                 goto error;
2601
2602         /*
2603          * Schedule in siblings as one group (if any):
2604          */
2605         for_each_sibling_event(event, group_event) {
2606                 if (event_sched_in(event, cpuctx, ctx)) {
2607                         partial_group = event;
2608                         goto group_error;
2609                 }
2610         }
2611
2612         if (!pmu->commit_txn(pmu))
2613                 return 0;
2614
2615 group_error:
2616         /*
2617          * Groups can be scheduled in as one unit only, so undo any
2618          * partial group before returning:
2619          * The events up to the failed event are scheduled out normally.
2620          */
2621         for_each_sibling_event(event, group_event) {
2622                 if (event == partial_group)
2623                         break;
2624
2625                 event_sched_out(event, cpuctx, ctx);
2626         }
2627         event_sched_out(group_event, cpuctx, ctx);
2628
2629 error:
2630         pmu->cancel_txn(pmu);
2631         return -EAGAIN;
2632 }
2633
2634 /*
2635  * Work out whether we can put this event group on the CPU now.
2636  */
2637 static int group_can_go_on(struct perf_event *event,
2638                            struct perf_cpu_context *cpuctx,
2639                            int can_add_hw)
2640 {
2641         /*
2642          * Groups consisting entirely of software events can always go on.
2643          */
2644         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2645                 return 1;
2646         /*
2647          * If an exclusive group is already on, no other hardware
2648          * events can go on.
2649          */
2650         if (cpuctx->exclusive)
2651                 return 0;
2652         /*
2653          * If this group is exclusive and there are already
2654          * events on the CPU, it can't go on.
2655          */
2656         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2657                 return 0;
2658         /*
2659          * Otherwise, try to add it if all previous groups were able
2660          * to go on.
2661          */
2662         return can_add_hw;
2663 }
2664
2665 static void add_event_to_ctx(struct perf_event *event,
2666                                struct perf_event_context *ctx)
2667 {
2668         list_add_event(event, ctx);
2669         perf_group_attach(event);
2670 }
2671
2672 static void ctx_sched_out(struct perf_event_context *ctx,
2673                           struct perf_cpu_context *cpuctx,
2674                           enum event_type_t event_type);
2675 static void
2676 ctx_sched_in(struct perf_event_context *ctx,
2677              struct perf_cpu_context *cpuctx,
2678              enum event_type_t event_type,
2679              struct task_struct *task);
2680
2681 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2682                                struct perf_event_context *ctx,
2683                                enum event_type_t event_type)
2684 {
2685         if (!cpuctx->task_ctx)
2686                 return;
2687
2688         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2689                 return;
2690
2691         ctx_sched_out(ctx, cpuctx, event_type);
2692 }
2693
2694 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2695                                 struct perf_event_context *ctx,
2696                                 struct task_struct *task)
2697 {
2698         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2699         if (ctx)
2700                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2701         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2702         if (ctx)
2703                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2704 }
2705
2706 /*
2707  * We want to maintain the following priority of scheduling:
2708  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2709  *  - task pinned (EVENT_PINNED)
2710  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2711  *  - task flexible (EVENT_FLEXIBLE).
2712  *
2713  * In order to avoid unscheduling and scheduling back in everything every
2714  * time an event is added, only do it for the groups of equal priority and
2715  * below.
2716  *
2717  * This can be called after a batch operation on task events, in which case
2718  * event_type is a bit mask of the types of events involved. For CPU events,
2719  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2720  */
2721 static void ctx_resched(struct perf_cpu_context *cpuctx,
2722                         struct perf_event_context *task_ctx,
2723                         enum event_type_t event_type)
2724 {
2725         enum event_type_t ctx_event_type;
2726         bool cpu_event = !!(event_type & EVENT_CPU);
2727
2728         /*
2729          * If pinned groups are involved, flexible groups also need to be
2730          * scheduled out.
2731          */
2732         if (event_type & EVENT_PINNED)
2733                 event_type |= EVENT_FLEXIBLE;
2734
2735         ctx_event_type = event_type & EVENT_ALL;
2736
2737         perf_pmu_disable(cpuctx->ctx.pmu);
2738         if (task_ctx)
2739                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2740
2741         /*
2742          * Decide which cpu ctx groups to schedule out based on the types
2743          * of events that caused rescheduling:
2744          *  - EVENT_CPU: schedule out corresponding groups;
2745          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2746          *  - otherwise, do nothing more.
2747          */
2748         if (cpu_event)
2749                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2750         else if (ctx_event_type & EVENT_PINNED)
2751                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2752
2753         perf_event_sched_in(cpuctx, task_ctx, current);
2754         perf_pmu_enable(cpuctx->ctx.pmu);
2755 }
2756
2757 void perf_pmu_resched(struct pmu *pmu)
2758 {
2759         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2760         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2761
2762         perf_ctx_lock(cpuctx, task_ctx);
2763         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2764         perf_ctx_unlock(cpuctx, task_ctx);
2765 }
2766
2767 /*
2768  * Cross CPU call to install and enable a performance event
2769  *
2770  * Very similar to remote_function() + event_function() but cannot assume that
2771  * things like ctx->is_active and cpuctx->task_ctx are set.
2772  */
2773 static int  __perf_install_in_context(void *info)
2774 {
2775         struct perf_event *event = info;
2776         struct perf_event_context *ctx = event->ctx;
2777         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2778         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2779         bool reprogram = true;
2780         int ret = 0;
2781
2782         raw_spin_lock(&cpuctx->ctx.lock);
2783         if (ctx->task) {
2784                 raw_spin_lock(&ctx->lock);
2785                 task_ctx = ctx;
2786
2787                 reprogram = (ctx->task == current);
2788
2789                 /*
2790                  * If the task is running, it must be running on this CPU,
2791                  * otherwise we cannot reprogram things.
2792                  *
2793                  * If its not running, we don't care, ctx->lock will
2794                  * serialize against it becoming runnable.
2795                  */
2796                 if (task_curr(ctx->task) && !reprogram) {
2797                         ret = -ESRCH;
2798                         goto unlock;
2799                 }
2800
2801                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2802         } else if (task_ctx) {
2803                 raw_spin_lock(&task_ctx->lock);
2804         }
2805
2806 #ifdef CONFIG_CGROUP_PERF
2807         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2808                 /*
2809                  * If the current cgroup doesn't match the event's
2810                  * cgroup, we should not try to schedule it.
2811                  */
2812                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2813                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2814                                         event->cgrp->css.cgroup);
2815         }
2816 #endif
2817
2818         if (reprogram) {
2819                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2820                 add_event_to_ctx(event, ctx);
2821                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2822         } else {
2823                 add_event_to_ctx(event, ctx);
2824         }
2825
2826 unlock:
2827         perf_ctx_unlock(cpuctx, task_ctx);
2828
2829         return ret;
2830 }
2831
2832 static bool exclusive_event_installable(struct perf_event *event,
2833                                         struct perf_event_context *ctx);
2834
2835 /*
2836  * Attach a performance event to a context.
2837  *
2838  * Very similar to event_function_call, see comment there.
2839  */
2840 static void
2841 perf_install_in_context(struct perf_event_context *ctx,
2842                         struct perf_event *event,
2843                         int cpu)
2844 {
2845         struct task_struct *task = READ_ONCE(ctx->task);
2846
2847         lockdep_assert_held(&ctx->mutex);
2848
2849         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2850
2851         if (event->cpu != -1)
2852                 event->cpu = cpu;
2853
2854         /*
2855          * Ensures that if we can observe event->ctx, both the event and ctx
2856          * will be 'complete'. See perf_iterate_sb_cpu().
2857          */
2858         smp_store_release(&event->ctx, ctx);
2859
2860         /*
2861          * perf_event_attr::disabled events will not run and can be initialized
2862          * without IPI. Except when this is the first event for the context, in
2863          * that case we need the magic of the IPI to set ctx->is_active.
2864          *
2865          * The IOC_ENABLE that is sure to follow the creation of a disabled
2866          * event will issue the IPI and reprogram the hardware.
2867          */
2868         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2869                 raw_spin_lock_irq(&ctx->lock);
2870                 if (ctx->task == TASK_TOMBSTONE) {
2871                         raw_spin_unlock_irq(&ctx->lock);
2872                         return;
2873                 }
2874                 add_event_to_ctx(event, ctx);
2875                 raw_spin_unlock_irq(&ctx->lock);
2876                 return;
2877         }
2878
2879         if (!task) {
2880                 cpu_function_call(cpu, __perf_install_in_context, event);
2881                 return;
2882         }
2883
2884         /*
2885          * Should not happen, we validate the ctx is still alive before calling.
2886          */
2887         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2888                 return;
2889
2890         /*
2891          * Installing events is tricky because we cannot rely on ctx->is_active
2892          * to be set in case this is the nr_events 0 -> 1 transition.
2893          *
2894          * Instead we use task_curr(), which tells us if the task is running.
2895          * However, since we use task_curr() outside of rq::lock, we can race
2896          * against the actual state. This means the result can be wrong.
2897          *
2898          * If we get a false positive, we retry, this is harmless.
2899          *
2900          * If we get a false negative, things are complicated. If we are after
2901          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2902          * value must be correct. If we're before, it doesn't matter since
2903          * perf_event_context_sched_in() will program the counter.
2904          *
2905          * However, this hinges on the remote context switch having observed
2906          * our task->perf_event_ctxp[] store, such that it will in fact take
2907          * ctx::lock in perf_event_context_sched_in().
2908          *
2909          * We do this by task_function_call(), if the IPI fails to hit the task
2910          * we know any future context switch of task must see the
2911          * perf_event_ctpx[] store.
2912          */
2913
2914         /*
2915          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2916          * task_cpu() load, such that if the IPI then does not find the task
2917          * running, a future context switch of that task must observe the
2918          * store.
2919          */
2920         smp_mb();
2921 again:
2922         if (!task_function_call(task, __perf_install_in_context, event))
2923                 return;
2924
2925         raw_spin_lock_irq(&ctx->lock);
2926         task = ctx->task;
2927         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2928                 /*
2929                  * Cannot happen because we already checked above (which also
2930                  * cannot happen), and we hold ctx->mutex, which serializes us
2931                  * against perf_event_exit_task_context().
2932                  */
2933                 raw_spin_unlock_irq(&ctx->lock);
2934                 return;
2935         }
2936         /*
2937          * If the task is not running, ctx->lock will avoid it becoming so,
2938          * thus we can safely install the event.
2939          */
2940         if (task_curr(task)) {
2941                 raw_spin_unlock_irq(&ctx->lock);
2942                 goto again;
2943         }
2944         add_event_to_ctx(event, ctx);
2945         raw_spin_unlock_irq(&ctx->lock);
2946 }
2947
2948 /*
2949  * Cross CPU call to enable a performance event
2950  */
2951 static void __perf_event_enable(struct perf_event *event,
2952                                 struct perf_cpu_context *cpuctx,
2953                                 struct perf_event_context *ctx,
2954                                 void *info)
2955 {
2956         struct perf_event *leader = event->group_leader;
2957         struct perf_event_context *task_ctx;
2958
2959         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2960             event->state <= PERF_EVENT_STATE_ERROR)
2961                 return;
2962
2963         if (ctx->is_active)
2964                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2965
2966         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2967         perf_cgroup_event_enable(event, ctx);
2968
2969         if (!ctx->is_active)
2970                 return;
2971
2972         if (!event_filter_match(event)) {
2973                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2974                 return;
2975         }
2976
2977         /*
2978          * If the event is in a group and isn't the group leader,
2979          * then don't put it on unless the group is on.
2980          */
2981         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2982                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2983                 return;
2984         }
2985
2986         task_ctx = cpuctx->task_ctx;
2987         if (ctx->task)
2988                 WARN_ON_ONCE(task_ctx != ctx);
2989
2990         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2991 }
2992
2993 /*
2994  * Enable an event.
2995  *
2996  * If event->ctx is a cloned context, callers must make sure that
2997  * every task struct that event->ctx->task could possibly point to
2998  * remains valid.  This condition is satisfied when called through
2999  * perf_event_for_each_child or perf_event_for_each as described
3000  * for perf_event_disable.
3001  */
3002 static void _perf_event_enable(struct perf_event *event)
3003 {
3004         struct perf_event_context *ctx = event->ctx;
3005
3006         raw_spin_lock_irq(&ctx->lock);
3007         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3008             event->state <  PERF_EVENT_STATE_ERROR) {
3009 out:
3010                 raw_spin_unlock_irq(&ctx->lock);
3011                 return;
3012         }
3013
3014         /*
3015          * If the event is in error state, clear that first.
3016          *
3017          * That way, if we see the event in error state below, we know that it
3018          * has gone back into error state, as distinct from the task having
3019          * been scheduled away before the cross-call arrived.
3020          */
3021         if (event->state == PERF_EVENT_STATE_ERROR) {
3022                 /*
3023                  * Detached SIBLING events cannot leave ERROR state.
3024                  */
3025                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3026                     event->group_leader == event)
3027                         goto out;
3028
3029                 event->state = PERF_EVENT_STATE_OFF;
3030         }
3031         raw_spin_unlock_irq(&ctx->lock);
3032
3033         event_function_call(event, __perf_event_enable, NULL);
3034 }
3035
3036 /*
3037  * See perf_event_disable();
3038  */
3039 void perf_event_enable(struct perf_event *event)
3040 {
3041         struct perf_event_context *ctx;
3042
3043         ctx = perf_event_ctx_lock(event);
3044         _perf_event_enable(event);
3045         perf_event_ctx_unlock(event, ctx);
3046 }
3047 EXPORT_SYMBOL_GPL(perf_event_enable);
3048
3049 struct stop_event_data {
3050         struct perf_event       *event;
3051         unsigned int            restart;
3052 };
3053
3054 static int __perf_event_stop(void *info)
3055 {
3056         struct stop_event_data *sd = info;
3057         struct perf_event *event = sd->event;
3058
3059         /* if it's already INACTIVE, do nothing */
3060         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3061                 return 0;
3062
3063         /* matches smp_wmb() in event_sched_in() */
3064         smp_rmb();
3065
3066         /*
3067          * There is a window with interrupts enabled before we get here,
3068          * so we need to check again lest we try to stop another CPU's event.
3069          */
3070         if (READ_ONCE(event->oncpu) != smp_processor_id())
3071                 return -EAGAIN;
3072
3073         event->pmu->stop(event, PERF_EF_UPDATE);
3074
3075         /*
3076          * May race with the actual stop (through perf_pmu_output_stop()),
3077          * but it is only used for events with AUX ring buffer, and such
3078          * events will refuse to restart because of rb::aux_mmap_count==0,
3079          * see comments in perf_aux_output_begin().
3080          *
3081          * Since this is happening on an event-local CPU, no trace is lost
3082          * while restarting.
3083          */
3084         if (sd->restart)
3085                 event->pmu->start(event, 0);
3086
3087         return 0;
3088 }
3089
3090 static int perf_event_stop(struct perf_event *event, int restart)
3091 {
3092         struct stop_event_data sd = {
3093                 .event          = event,
3094                 .restart        = restart,
3095         };
3096         int ret = 0;
3097
3098         do {
3099                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3100                         return 0;
3101
3102                 /* matches smp_wmb() in event_sched_in() */
3103                 smp_rmb();
3104
3105                 /*
3106                  * We only want to restart ACTIVE events, so if the event goes
3107                  * inactive here (event->oncpu==-1), there's nothing more to do;
3108                  * fall through with ret==-ENXIO.
3109                  */
3110                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3111                                         __perf_event_stop, &sd);
3112         } while (ret == -EAGAIN);
3113
3114         return ret;
3115 }
3116
3117 /*
3118  * In order to contain the amount of racy and tricky in the address filter
3119  * configuration management, it is a two part process:
3120  *
3121  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3122  *      we update the addresses of corresponding vmas in
3123  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3124  * (p2) when an event is scheduled in (pmu::add), it calls
3125  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3126  *      if the generation has changed since the previous call.
3127  *
3128  * If (p1) happens while the event is active, we restart it to force (p2).
3129  *
3130  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3131  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3132  *     ioctl;
3133  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3134  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3135  *     for reading;
3136  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3137  *     of exec.
3138  */
3139 void perf_event_addr_filters_sync(struct perf_event *event)
3140 {
3141         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3142
3143         if (!has_addr_filter(event))
3144                 return;
3145
3146         raw_spin_lock(&ifh->lock);
3147         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3148                 event->pmu->addr_filters_sync(event);
3149                 event->hw.addr_filters_gen = event->addr_filters_gen;
3150         }
3151         raw_spin_unlock(&ifh->lock);
3152 }
3153 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3154
3155 static int _perf_event_refresh(struct perf_event *event, int refresh)
3156 {
3157         /*
3158          * not supported on inherited events
3159          */
3160         if (event->attr.inherit || !is_sampling_event(event))
3161                 return -EINVAL;
3162
3163         atomic_add(refresh, &event->event_limit);
3164         _perf_event_enable(event);
3165
3166         return 0;
3167 }
3168
3169 /*
3170  * See perf_event_disable()
3171  */
3172 int perf_event_refresh(struct perf_event *event, int refresh)
3173 {
3174         struct perf_event_context *ctx;
3175         int ret;
3176
3177         ctx = perf_event_ctx_lock(event);
3178         ret = _perf_event_refresh(event, refresh);
3179         perf_event_ctx_unlock(event, ctx);
3180
3181         return ret;
3182 }
3183 EXPORT_SYMBOL_GPL(perf_event_refresh);
3184
3185 static int perf_event_modify_breakpoint(struct perf_event *bp,
3186                                          struct perf_event_attr *attr)
3187 {
3188         int err;
3189
3190         _perf_event_disable(bp);
3191
3192         err = modify_user_hw_breakpoint_check(bp, attr, true);
3193
3194         if (!bp->attr.disabled)
3195                 _perf_event_enable(bp);
3196
3197         return err;
3198 }
3199
3200 static int perf_event_modify_attr(struct perf_event *event,
3201                                   struct perf_event_attr *attr)
3202 {
3203         int (*func)(struct perf_event *, struct perf_event_attr *);
3204         struct perf_event *child;
3205         int err;
3206
3207         if (event->attr.type != attr->type)
3208                 return -EINVAL;
3209
3210         switch (event->attr.type) {
3211         case PERF_TYPE_BREAKPOINT:
3212                 func = perf_event_modify_breakpoint;
3213                 break;
3214         default:
3215                 /* Place holder for future additions. */
3216                 return -EOPNOTSUPP;
3217         }
3218
3219         WARN_ON_ONCE(event->ctx->parent_ctx);
3220
3221         mutex_lock(&event->child_mutex);
3222         err = func(event, attr);
3223         if (err)
3224                 goto out;
3225         list_for_each_entry(child, &event->child_list, child_list) {
3226                 err = func(child, attr);
3227                 if (err)
3228                         goto out;
3229         }
3230 out:
3231         mutex_unlock(&event->child_mutex);
3232         return err;
3233 }
3234
3235 static void ctx_sched_out(struct perf_event_context *ctx,
3236                           struct perf_cpu_context *cpuctx,
3237                           enum event_type_t event_type)
3238 {
3239         struct perf_event *event, *tmp;
3240         int is_active = ctx->is_active;
3241
3242         lockdep_assert_held(&ctx->lock);
3243
3244         if (likely(!ctx->nr_events)) {
3245                 /*
3246                  * See __perf_remove_from_context().
3247                  */
3248                 WARN_ON_ONCE(ctx->is_active);
3249                 if (ctx->task)
3250                         WARN_ON_ONCE(cpuctx->task_ctx);
3251                 return;
3252         }
3253
3254         ctx->is_active &= ~event_type;
3255         if (!(ctx->is_active & EVENT_ALL))
3256                 ctx->is_active = 0;
3257
3258         if (ctx->task) {
3259                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3260                 if (!ctx->is_active)
3261                         cpuctx->task_ctx = NULL;
3262         }
3263
3264         /*
3265          * Always update time if it was set; not only when it changes.
3266          * Otherwise we can 'forget' to update time for any but the last
3267          * context we sched out. For example:
3268          *
3269          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3270          *   ctx_sched_out(.event_type = EVENT_PINNED)
3271          *
3272          * would only update time for the pinned events.
3273          */
3274         if (is_active & EVENT_TIME) {
3275                 /* update (and stop) ctx time */
3276                 update_context_time(ctx);
3277                 update_cgrp_time_from_cpuctx(cpuctx);
3278         }
3279
3280         is_active ^= ctx->is_active; /* changed bits */
3281
3282         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3283                 return;
3284
3285         perf_pmu_disable(ctx->pmu);
3286         if (is_active & EVENT_PINNED) {
3287                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3288                         group_sched_out(event, cpuctx, ctx);
3289         }
3290
3291         if (is_active & EVENT_FLEXIBLE) {
3292                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3293                         group_sched_out(event, cpuctx, ctx);
3294
3295                 /*
3296                  * Since we cleared EVENT_FLEXIBLE, also clear
3297                  * rotate_necessary, is will be reset by
3298                  * ctx_flexible_sched_in() when needed.
3299                  */
3300                 ctx->rotate_necessary = 0;
3301         }
3302         perf_pmu_enable(ctx->pmu);
3303 }
3304
3305 /*
3306  * Test whether two contexts are equivalent, i.e. whether they have both been
3307  * cloned from the same version of the same context.
3308  *
3309  * Equivalence is measured using a generation number in the context that is
3310  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3311  * and list_del_event().
3312  */
3313 static int context_equiv(struct perf_event_context *ctx1,
3314                          struct perf_event_context *ctx2)
3315 {
3316         lockdep_assert_held(&ctx1->lock);
3317         lockdep_assert_held(&ctx2->lock);
3318
3319         /* Pinning disables the swap optimization */
3320         if (ctx1->pin_count || ctx2->pin_count)
3321                 return 0;
3322
3323         /* If ctx1 is the parent of ctx2 */
3324         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3325                 return 1;
3326
3327         /* If ctx2 is the parent of ctx1 */
3328         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3329                 return 1;
3330
3331         /*
3332          * If ctx1 and ctx2 have the same parent; we flatten the parent
3333          * hierarchy, see perf_event_init_context().
3334          */
3335         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3336                         ctx1->parent_gen == ctx2->parent_gen)
3337                 return 1;
3338
3339         /* Unmatched */
3340         return 0;
3341 }
3342
3343 static void __perf_event_sync_stat(struct perf_event *event,
3344                                      struct perf_event *next_event)
3345 {
3346         u64 value;
3347
3348         if (!event->attr.inherit_stat)
3349                 return;
3350
3351         /*
3352          * Update the event value, we cannot use perf_event_read()
3353          * because we're in the middle of a context switch and have IRQs
3354          * disabled, which upsets smp_call_function_single(), however
3355          * we know the event must be on the current CPU, therefore we
3356          * don't need to use it.
3357          */
3358         if (event->state == PERF_EVENT_STATE_ACTIVE)
3359                 event->pmu->read(event);
3360
3361         perf_event_update_time(event);
3362
3363         /*
3364          * In order to keep per-task stats reliable we need to flip the event
3365          * values when we flip the contexts.
3366          */
3367         value = local64_read(&next_event->count);
3368         value = local64_xchg(&event->count, value);
3369         local64_set(&next_event->count, value);
3370
3371         swap(event->total_time_enabled, next_event->total_time_enabled);
3372         swap(event->total_time_running, next_event->total_time_running);
3373
3374         /*
3375          * Since we swizzled the values, update the user visible data too.
3376          */
3377         perf_event_update_userpage(event);
3378         perf_event_update_userpage(next_event);
3379 }
3380
3381 static void perf_event_sync_stat(struct perf_event_context *ctx,
3382                                    struct perf_event_context *next_ctx)
3383 {
3384         struct perf_event *event, *next_event;
3385
3386         if (!ctx->nr_stat)
3387                 return;
3388
3389         update_context_time(ctx);
3390
3391         event = list_first_entry(&ctx->event_list,
3392                                    struct perf_event, event_entry);
3393
3394         next_event = list_first_entry(&next_ctx->event_list,
3395                                         struct perf_event, event_entry);
3396
3397         while (&event->event_entry != &ctx->event_list &&
3398                &next_event->event_entry != &next_ctx->event_list) {
3399
3400                 __perf_event_sync_stat(event, next_event);
3401
3402                 event = list_next_entry(event, event_entry);
3403                 next_event = list_next_entry(next_event, event_entry);
3404         }
3405 }
3406
3407 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3408                                          struct task_struct *next)
3409 {
3410         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3411         struct perf_event_context *next_ctx;
3412         struct perf_event_context *parent, *next_parent;
3413         struct perf_cpu_context *cpuctx;
3414         int do_switch = 1;
3415         struct pmu *pmu;
3416
3417         if (likely(!ctx))
3418                 return;
3419
3420         pmu = ctx->pmu;
3421         cpuctx = __get_cpu_context(ctx);
3422         if (!cpuctx->task_ctx)
3423                 return;
3424
3425         rcu_read_lock();
3426         next_ctx = next->perf_event_ctxp[ctxn];
3427         if (!next_ctx)
3428                 goto unlock;
3429
3430         parent = rcu_dereference(ctx->parent_ctx);
3431         next_parent = rcu_dereference(next_ctx->parent_ctx);
3432
3433         /* If neither context have a parent context; they cannot be clones. */
3434         if (!parent && !next_parent)
3435                 goto unlock;
3436
3437         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3438                 /*
3439                  * Looks like the two contexts are clones, so we might be
3440                  * able to optimize the context switch.  We lock both
3441                  * contexts and check that they are clones under the
3442                  * lock (including re-checking that neither has been
3443                  * uncloned in the meantime).  It doesn't matter which
3444                  * order we take the locks because no other cpu could
3445                  * be trying to lock both of these tasks.
3446                  */
3447                 raw_spin_lock(&ctx->lock);
3448                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3449                 if (context_equiv(ctx, next_ctx)) {
3450
3451                         WRITE_ONCE(ctx->task, next);
3452                         WRITE_ONCE(next_ctx->task, task);
3453
3454                         perf_pmu_disable(pmu);
3455
3456                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3457                                 pmu->sched_task(ctx, false);
3458
3459                         /*
3460                          * PMU specific parts of task perf context can require
3461                          * additional synchronization. As an example of such
3462                          * synchronization see implementation details of Intel
3463                          * LBR call stack data profiling;
3464                          */
3465                         if (pmu->swap_task_ctx)
3466                                 pmu->swap_task_ctx(ctx, next_ctx);
3467                         else
3468                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3469
3470                         perf_pmu_enable(pmu);
3471
3472                         /*
3473                          * RCU_INIT_POINTER here is safe because we've not
3474                          * modified the ctx and the above modification of
3475                          * ctx->task and ctx->task_ctx_data are immaterial
3476                          * since those values are always verified under
3477                          * ctx->lock which we're now holding.
3478                          */
3479                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3480                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3481
3482                         do_switch = 0;
3483
3484                         perf_event_sync_stat(ctx, next_ctx);
3485                 }
3486                 raw_spin_unlock(&next_ctx->lock);
3487                 raw_spin_unlock(&ctx->lock);
3488         }
3489 unlock:
3490         rcu_read_unlock();
3491
3492         if (do_switch) {
3493                 raw_spin_lock(&ctx->lock);
3494                 perf_pmu_disable(pmu);
3495
3496                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3497                         pmu->sched_task(ctx, false);
3498                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3499
3500                 perf_pmu_enable(pmu);
3501                 raw_spin_unlock(&ctx->lock);
3502         }
3503 }
3504
3505 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3506
3507 void perf_sched_cb_dec(struct pmu *pmu)
3508 {
3509         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3510
3511         this_cpu_dec(perf_sched_cb_usages);
3512
3513         if (!--cpuctx->sched_cb_usage)
3514                 list_del(&cpuctx->sched_cb_entry);
3515 }
3516
3517
3518 void perf_sched_cb_inc(struct pmu *pmu)
3519 {
3520         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3521
3522         if (!cpuctx->sched_cb_usage++)
3523                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3524
3525         this_cpu_inc(perf_sched_cb_usages);
3526 }
3527
3528 /*
3529  * This function provides the context switch callback to the lower code
3530  * layer. It is invoked ONLY when the context switch callback is enabled.
3531  *
3532  * This callback is relevant even to per-cpu events; for example multi event
3533  * PEBS requires this to provide PID/TID information. This requires we flush
3534  * all queued PEBS records before we context switch to a new task.
3535  */
3536 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3537 {
3538         struct pmu *pmu;
3539
3540         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3541
3542         if (WARN_ON_ONCE(!pmu->sched_task))
3543                 return;
3544
3545         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3546         perf_pmu_disable(pmu);
3547
3548         pmu->sched_task(cpuctx->task_ctx, sched_in);
3549
3550         perf_pmu_enable(pmu);
3551         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3552 }
3553
3554 static void perf_pmu_sched_task(struct task_struct *prev,
3555                                 struct task_struct *next,
3556                                 bool sched_in)
3557 {
3558         struct perf_cpu_context *cpuctx;
3559
3560         if (prev == next)
3561                 return;
3562
3563         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3564                 /* will be handled in perf_event_context_sched_in/out */
3565                 if (cpuctx->task_ctx)
3566                         continue;
3567
3568                 __perf_pmu_sched_task(cpuctx, sched_in);
3569         }
3570 }
3571
3572 static void perf_event_switch(struct task_struct *task,
3573                               struct task_struct *next_prev, bool sched_in);
3574
3575 #define for_each_task_context_nr(ctxn)                                  \
3576         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3577
3578 /*
3579  * Called from scheduler to remove the events of the current task,
3580  * with interrupts disabled.
3581  *
3582  * We stop each event and update the event value in event->count.
3583  *
3584  * This does not protect us against NMI, but disable()
3585  * sets the disabled bit in the control field of event _before_
3586  * accessing the event control register. If a NMI hits, then it will
3587  * not restart the event.
3588  */
3589 void __perf_event_task_sched_out(struct task_struct *task,
3590                                  struct task_struct *next)
3591 {
3592         int ctxn;
3593
3594         if (__this_cpu_read(perf_sched_cb_usages))
3595                 perf_pmu_sched_task(task, next, false);
3596
3597         if (atomic_read(&nr_switch_events))
3598                 perf_event_switch(task, next, false);
3599
3600         for_each_task_context_nr(ctxn)
3601                 perf_event_context_sched_out(task, ctxn, next);
3602
3603         /*
3604          * if cgroup events exist on this CPU, then we need
3605          * to check if we have to switch out PMU state.
3606          * cgroup event are system-wide mode only
3607          */
3608         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3609                 perf_cgroup_sched_out(task, next);
3610 }
3611
3612 /*
3613  * Called with IRQs disabled
3614  */
3615 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3616                               enum event_type_t event_type)
3617 {
3618         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3619 }
3620
3621 static bool perf_less_group_idx(const void *l, const void *r)
3622 {
3623         const struct perf_event *le = *(const struct perf_event **)l;
3624         const struct perf_event *re = *(const struct perf_event **)r;
3625
3626         return le->group_index < re->group_index;
3627 }
3628
3629 static void swap_ptr(void *l, void *r)
3630 {
3631         void **lp = l, **rp = r;
3632
3633         swap(*lp, *rp);
3634 }
3635
3636 static const struct min_heap_callbacks perf_min_heap = {
3637         .elem_size = sizeof(struct perf_event *),
3638         .less = perf_less_group_idx,
3639         .swp = swap_ptr,
3640 };
3641
3642 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3643 {
3644         struct perf_event **itrs = heap->data;
3645
3646         if (event) {
3647                 itrs[heap->nr] = event;
3648                 heap->nr++;
3649         }
3650 }
3651
3652 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3653                                 struct perf_event_groups *groups, int cpu,
3654                                 int (*func)(struct perf_event *, void *),
3655                                 void *data)
3656 {
3657 #ifdef CONFIG_CGROUP_PERF
3658         struct cgroup_subsys_state *css = NULL;
3659 #endif
3660         /* Space for per CPU and/or any CPU event iterators. */
3661         struct perf_event *itrs[2];
3662         struct min_heap event_heap;
3663         struct perf_event **evt;
3664         int ret;
3665
3666         if (cpuctx) {
3667                 event_heap = (struct min_heap){
3668                         .data = cpuctx->heap,
3669                         .nr = 0,
3670                         .size = cpuctx->heap_size,
3671                 };
3672
3673                 lockdep_assert_held(&cpuctx->ctx.lock);
3674
3675 #ifdef CONFIG_CGROUP_PERF
3676                 if (cpuctx->cgrp)
3677                         css = &cpuctx->cgrp->css;
3678 #endif
3679         } else {
3680                 event_heap = (struct min_heap){
3681                         .data = itrs,
3682                         .nr = 0,
3683                         .size = ARRAY_SIZE(itrs),
3684                 };
3685                 /* Events not within a CPU context may be on any CPU. */
3686                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3687         }
3688         evt = event_heap.data;
3689
3690         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3691
3692 #ifdef CONFIG_CGROUP_PERF
3693         for (; css; css = css->parent)
3694                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3695 #endif
3696
3697         min_heapify_all(&event_heap, &perf_min_heap);
3698
3699         while (event_heap.nr) {
3700                 ret = func(*evt, data);
3701                 if (ret)
3702                         return ret;
3703
3704                 *evt = perf_event_groups_next(*evt);
3705                 if (*evt)
3706                         min_heapify(&event_heap, 0, &perf_min_heap);
3707                 else
3708                         min_heap_pop(&event_heap, &perf_min_heap);
3709         }
3710
3711         return 0;
3712 }
3713
3714 static int merge_sched_in(struct perf_event *event, void *data)
3715 {
3716         struct perf_event_context *ctx = event->ctx;
3717         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3718         int *can_add_hw = data;
3719
3720         if (event->state <= PERF_EVENT_STATE_OFF)
3721                 return 0;
3722
3723         if (!event_filter_match(event))
3724                 return 0;
3725
3726         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3727                 if (!group_sched_in(event, cpuctx, ctx))
3728                         list_add_tail(&event->active_list, get_event_list(event));
3729         }
3730
3731         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3732                 if (event->attr.pinned) {
3733                         perf_cgroup_event_disable(event, ctx);
3734                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3735                 }
3736
3737                 *can_add_hw = 0;
3738                 ctx->rotate_necessary = 1;
3739                 perf_mux_hrtimer_restart(cpuctx);
3740         }
3741
3742         return 0;
3743 }
3744
3745 static void
3746 ctx_pinned_sched_in(struct perf_event_context *ctx,
3747                     struct perf_cpu_context *cpuctx)
3748 {
3749         int can_add_hw = 1;
3750
3751         if (ctx != &cpuctx->ctx)
3752                 cpuctx = NULL;
3753
3754         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3755                            smp_processor_id(),
3756                            merge_sched_in, &can_add_hw);
3757 }
3758
3759 static void
3760 ctx_flexible_sched_in(struct perf_event_context *ctx,
3761                       struct perf_cpu_context *cpuctx)
3762 {
3763         int can_add_hw = 1;
3764
3765         if (ctx != &cpuctx->ctx)
3766                 cpuctx = NULL;
3767
3768         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3769                            smp_processor_id(),
3770                            merge_sched_in, &can_add_hw);
3771 }
3772
3773 static void
3774 ctx_sched_in(struct perf_event_context *ctx,
3775              struct perf_cpu_context *cpuctx,
3776              enum event_type_t event_type,
3777              struct task_struct *task)
3778 {
3779         int is_active = ctx->is_active;
3780         u64 now;
3781
3782         lockdep_assert_held(&ctx->lock);
3783
3784         if (likely(!ctx->nr_events))
3785                 return;
3786
3787         ctx->is_active |= (event_type | EVENT_TIME);
3788         if (ctx->task) {
3789                 if (!is_active)
3790                         cpuctx->task_ctx = ctx;
3791                 else
3792                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3793         }
3794
3795         is_active ^= ctx->is_active; /* changed bits */
3796
3797         if (is_active & EVENT_TIME) {
3798                 /* start ctx time */
3799                 now = perf_clock();
3800                 ctx->timestamp = now;
3801                 perf_cgroup_set_timestamp(task, ctx);
3802         }
3803
3804         /*
3805          * First go through the list and put on any pinned groups
3806          * in order to give them the best chance of going on.
3807          */
3808         if (is_active & EVENT_PINNED)
3809                 ctx_pinned_sched_in(ctx, cpuctx);
3810
3811         /* Then walk through the lower prio flexible groups */
3812         if (is_active & EVENT_FLEXIBLE)
3813                 ctx_flexible_sched_in(ctx, cpuctx);
3814 }
3815
3816 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3817                              enum event_type_t event_type,
3818                              struct task_struct *task)
3819 {
3820         struct perf_event_context *ctx = &cpuctx->ctx;
3821
3822         ctx_sched_in(ctx, cpuctx, event_type, task);
3823 }
3824
3825 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3826                                         struct task_struct *task)
3827 {
3828         struct perf_cpu_context *cpuctx;
3829         struct pmu *pmu = ctx->pmu;
3830
3831         cpuctx = __get_cpu_context(ctx);
3832         if (cpuctx->task_ctx == ctx) {
3833                 if (cpuctx->sched_cb_usage)
3834                         __perf_pmu_sched_task(cpuctx, true);
3835                 return;
3836         }
3837
3838         perf_ctx_lock(cpuctx, ctx);
3839         /*
3840          * We must check ctx->nr_events while holding ctx->lock, such
3841          * that we serialize against perf_install_in_context().
3842          */
3843         if (!ctx->nr_events)
3844                 goto unlock;
3845
3846         perf_pmu_disable(pmu);
3847         /*
3848          * We want to keep the following priority order:
3849          * cpu pinned (that don't need to move), task pinned,
3850          * cpu flexible, task flexible.
3851          *
3852          * However, if task's ctx is not carrying any pinned
3853          * events, no need to flip the cpuctx's events around.
3854          */
3855         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3856                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3857         perf_event_sched_in(cpuctx, ctx, task);
3858
3859         if (cpuctx->sched_cb_usage && pmu->sched_task)
3860                 pmu->sched_task(cpuctx->task_ctx, true);
3861
3862         perf_pmu_enable(pmu);
3863
3864 unlock:
3865         perf_ctx_unlock(cpuctx, ctx);
3866 }
3867
3868 /*
3869  * Called from scheduler to add the events of the current task
3870  * with interrupts disabled.
3871  *
3872  * We restore the event value and then enable it.
3873  *
3874  * This does not protect us against NMI, but enable()
3875  * sets the enabled bit in the control field of event _before_
3876  * accessing the event control register. If a NMI hits, then it will
3877  * keep the event running.
3878  */
3879 void __perf_event_task_sched_in(struct task_struct *prev,
3880                                 struct task_struct *task)
3881 {
3882         struct perf_event_context *ctx;
3883         int ctxn;
3884
3885         /*
3886          * If cgroup events exist on this CPU, then we need to check if we have
3887          * to switch in PMU state; cgroup event are system-wide mode only.
3888          *
3889          * Since cgroup events are CPU events, we must schedule these in before
3890          * we schedule in the task events.
3891          */
3892         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3893                 perf_cgroup_sched_in(prev, task);
3894
3895         for_each_task_context_nr(ctxn) {
3896                 ctx = task->perf_event_ctxp[ctxn];
3897                 if (likely(!ctx))
3898                         continue;
3899
3900                 perf_event_context_sched_in(ctx, task);
3901         }
3902
3903         if (atomic_read(&nr_switch_events))
3904                 perf_event_switch(task, prev, true);
3905
3906         if (__this_cpu_read(perf_sched_cb_usages))
3907                 perf_pmu_sched_task(prev, task, true);
3908 }
3909
3910 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3911 {
3912         u64 frequency = event->attr.sample_freq;
3913         u64 sec = NSEC_PER_SEC;
3914         u64 divisor, dividend;
3915
3916         int count_fls, nsec_fls, frequency_fls, sec_fls;
3917
3918         count_fls = fls64(count);
3919         nsec_fls = fls64(nsec);
3920         frequency_fls = fls64(frequency);
3921         sec_fls = 30;
3922
3923         /*
3924          * We got @count in @nsec, with a target of sample_freq HZ
3925          * the target period becomes:
3926          *
3927          *             @count * 10^9
3928          * period = -------------------
3929          *          @nsec * sample_freq
3930          *
3931          */
3932
3933         /*
3934          * Reduce accuracy by one bit such that @a and @b converge
3935          * to a similar magnitude.
3936          */
3937 #define REDUCE_FLS(a, b)                \
3938 do {                                    \
3939         if (a##_fls > b##_fls) {        \
3940                 a >>= 1;                \
3941                 a##_fls--;              \
3942         } else {                        \
3943                 b >>= 1;                \
3944                 b##_fls--;              \
3945         }                               \
3946 } while (0)
3947
3948         /*
3949          * Reduce accuracy until either term fits in a u64, then proceed with
3950          * the other, so that finally we can do a u64/u64 division.
3951          */
3952         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3953                 REDUCE_FLS(nsec, frequency);
3954                 REDUCE_FLS(sec, count);
3955         }
3956
3957         if (count_fls + sec_fls > 64) {
3958                 divisor = nsec * frequency;
3959
3960                 while (count_fls + sec_fls > 64) {
3961                         REDUCE_FLS(count, sec);
3962                         divisor >>= 1;
3963                 }
3964
3965                 dividend = count * sec;
3966         } else {
3967                 dividend = count * sec;
3968
3969                 while (nsec_fls + frequency_fls > 64) {
3970                         REDUCE_FLS(nsec, frequency);
3971                         dividend >>= 1;
3972                 }
3973
3974                 divisor = nsec * frequency;
3975         }
3976
3977         if (!divisor)
3978                 return dividend;
3979
3980         return div64_u64(dividend, divisor);
3981 }
3982
3983 static DEFINE_PER_CPU(int, perf_throttled_count);
3984 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3985
3986 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3987 {
3988         struct hw_perf_event *hwc = &event->hw;
3989         s64 period, sample_period;
3990         s64 delta;
3991
3992         period = perf_calculate_period(event, nsec, count);
3993
3994         delta = (s64)(period - hwc->sample_period);
3995         delta = (delta + 7) / 8; /* low pass filter */
3996
3997         sample_period = hwc->sample_period + delta;
3998
3999         if (!sample_period)
4000                 sample_period = 1;
4001
4002         hwc->sample_period = sample_period;
4003
4004         if (local64_read(&hwc->period_left) > 8*sample_period) {
4005                 if (disable)
4006                         event->pmu->stop(event, PERF_EF_UPDATE);
4007
4008                 local64_set(&hwc->period_left, 0);
4009
4010                 if (disable)
4011                         event->pmu->start(event, PERF_EF_RELOAD);
4012         }
4013 }
4014
4015 /*
4016  * combine freq adjustment with unthrottling to avoid two passes over the
4017  * events. At the same time, make sure, having freq events does not change
4018  * the rate of unthrottling as that would introduce bias.
4019  */
4020 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4021                                            int needs_unthr)
4022 {
4023         struct perf_event *event;
4024         struct hw_perf_event *hwc;
4025         u64 now, period = TICK_NSEC;
4026         s64 delta;
4027
4028         /*
4029          * only need to iterate over all events iff:
4030          * - context have events in frequency mode (needs freq adjust)
4031          * - there are events to unthrottle on this cpu
4032          */
4033         if (!(ctx->nr_freq || needs_unthr))
4034                 return;
4035
4036         raw_spin_lock(&ctx->lock);
4037         perf_pmu_disable(ctx->pmu);
4038
4039         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4040                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4041                         continue;
4042
4043                 if (!event_filter_match(event))
4044                         continue;
4045
4046                 perf_pmu_disable(event->pmu);
4047
4048                 hwc = &event->hw;
4049
4050                 if (hwc->interrupts == MAX_INTERRUPTS) {
4051                         hwc->interrupts = 0;
4052                         perf_log_throttle(event, 1);
4053                         event->pmu->start(event, 0);
4054                 }
4055
4056                 if (!event->attr.freq || !event->attr.sample_freq)
4057                         goto next;
4058
4059                 /*
4060                  * stop the event and update event->count
4061                  */
4062                 event->pmu->stop(event, PERF_EF_UPDATE);
4063
4064                 now = local64_read(&event->count);
4065                 delta = now - hwc->freq_count_stamp;
4066                 hwc->freq_count_stamp = now;
4067
4068                 /*
4069                  * restart the event
4070                  * reload only if value has changed
4071                  * we have stopped the event so tell that
4072                  * to perf_adjust_period() to avoid stopping it
4073                  * twice.
4074                  */
4075                 if (delta > 0)
4076                         perf_adjust_period(event, period, delta, false);
4077
4078                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4079         next:
4080                 perf_pmu_enable(event->pmu);
4081         }
4082
4083         perf_pmu_enable(ctx->pmu);
4084         raw_spin_unlock(&ctx->lock);
4085 }
4086
4087 /*
4088  * Move @event to the tail of the @ctx's elegible events.
4089  */
4090 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4091 {
4092         /*
4093          * Rotate the first entry last of non-pinned groups. Rotation might be
4094          * disabled by the inheritance code.
4095          */
4096         if (ctx->rotate_disable)
4097                 return;
4098
4099         perf_event_groups_delete(&ctx->flexible_groups, event);
4100         perf_event_groups_insert(&ctx->flexible_groups, event);
4101 }
4102
4103 /* pick an event from the flexible_groups to rotate */
4104 static inline struct perf_event *
4105 ctx_event_to_rotate(struct perf_event_context *ctx)
4106 {
4107         struct perf_event *event;
4108
4109         /* pick the first active flexible event */
4110         event = list_first_entry_or_null(&ctx->flexible_active,
4111                                          struct perf_event, active_list);
4112
4113         /* if no active flexible event, pick the first event */
4114         if (!event) {
4115                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4116                                       typeof(*event), group_node);
4117         }
4118
4119         /*
4120          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4121          * finds there are unschedulable events, it will set it again.
4122          */
4123         ctx->rotate_necessary = 0;
4124
4125         return event;
4126 }
4127
4128 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4129 {
4130         struct perf_event *cpu_event = NULL, *task_event = NULL;
4131         struct perf_event_context *task_ctx = NULL;
4132         int cpu_rotate, task_rotate;
4133
4134         /*
4135          * Since we run this from IRQ context, nobody can install new
4136          * events, thus the event count values are stable.
4137          */
4138
4139         cpu_rotate = cpuctx->ctx.rotate_necessary;
4140         task_ctx = cpuctx->task_ctx;
4141         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4142
4143         if (!(cpu_rotate || task_rotate))
4144                 return false;
4145
4146         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4147         perf_pmu_disable(cpuctx->ctx.pmu);
4148
4149         if (task_rotate)
4150                 task_event = ctx_event_to_rotate(task_ctx);
4151         if (cpu_rotate)
4152                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4153
4154         /*
4155          * As per the order given at ctx_resched() first 'pop' task flexible
4156          * and then, if needed CPU flexible.
4157          */
4158         if (task_event || (task_ctx && cpu_event))
4159                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4160         if (cpu_event)
4161                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4162
4163         if (task_event)
4164                 rotate_ctx(task_ctx, task_event);
4165         if (cpu_event)
4166                 rotate_ctx(&cpuctx->ctx, cpu_event);
4167
4168         perf_event_sched_in(cpuctx, task_ctx, current);
4169
4170         perf_pmu_enable(cpuctx->ctx.pmu);
4171         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4172
4173         return true;
4174 }
4175
4176 void perf_event_task_tick(void)
4177 {
4178         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4179         struct perf_event_context *ctx, *tmp;
4180         int throttled;
4181
4182         lockdep_assert_irqs_disabled();
4183
4184         __this_cpu_inc(perf_throttled_seq);
4185         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4186         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4187
4188         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4189                 perf_adjust_freq_unthr_context(ctx, throttled);
4190 }
4191
4192 static int event_enable_on_exec(struct perf_event *event,
4193                                 struct perf_event_context *ctx)
4194 {
4195         if (!event->attr.enable_on_exec)
4196                 return 0;
4197
4198         event->attr.enable_on_exec = 0;
4199         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4200                 return 0;
4201
4202         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4203
4204         return 1;
4205 }
4206
4207 /*
4208  * Enable all of a task's events that have been marked enable-on-exec.
4209  * This expects task == current.
4210  */
4211 static void perf_event_enable_on_exec(int ctxn)
4212 {
4213         struct perf_event_context *ctx, *clone_ctx = NULL;
4214         enum event_type_t event_type = 0;
4215         struct perf_cpu_context *cpuctx;
4216         struct perf_event *event;
4217         unsigned long flags;
4218         int enabled = 0;
4219
4220         local_irq_save(flags);
4221         ctx = current->perf_event_ctxp[ctxn];
4222         if (!ctx || !ctx->nr_events)
4223                 goto out;
4224
4225         cpuctx = __get_cpu_context(ctx);
4226         perf_ctx_lock(cpuctx, ctx);
4227         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4228         list_for_each_entry(event, &ctx->event_list, event_entry) {
4229                 enabled |= event_enable_on_exec(event, ctx);
4230                 event_type |= get_event_type(event);
4231         }
4232
4233         /*
4234          * Unclone and reschedule this context if we enabled any event.
4235          */
4236         if (enabled) {
4237                 clone_ctx = unclone_ctx(ctx);
4238                 ctx_resched(cpuctx, ctx, event_type);
4239         } else {
4240                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4241         }
4242         perf_ctx_unlock(cpuctx, ctx);
4243
4244 out:
4245         local_irq_restore(flags);
4246
4247         if (clone_ctx)
4248                 put_ctx(clone_ctx);
4249 }
4250
4251 static void perf_remove_from_owner(struct perf_event *event);
4252 static void perf_event_exit_event(struct perf_event *event,
4253                                   struct perf_event_context *ctx);
4254
4255 /*
4256  * Removes all events from the current task that have been marked
4257  * remove-on-exec, and feeds their values back to parent events.
4258  */
4259 static void perf_event_remove_on_exec(int ctxn)
4260 {
4261         struct perf_event_context *ctx, *clone_ctx = NULL;
4262         struct perf_event *event, *next;
4263         LIST_HEAD(free_list);
4264         unsigned long flags;
4265         bool modified = false;
4266
4267         ctx = perf_pin_task_context(current, ctxn);
4268         if (!ctx)
4269                 return;
4270
4271         mutex_lock(&ctx->mutex);
4272
4273         if (WARN_ON_ONCE(ctx->task != current))
4274                 goto unlock;
4275
4276         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4277                 if (!event->attr.remove_on_exec)
4278                         continue;
4279
4280                 if (!is_kernel_event(event))
4281                         perf_remove_from_owner(event);
4282
4283                 modified = true;
4284
4285                 perf_event_exit_event(event, ctx);
4286         }
4287
4288         raw_spin_lock_irqsave(&ctx->lock, flags);
4289         if (modified)
4290                 clone_ctx = unclone_ctx(ctx);
4291         --ctx->pin_count;
4292         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4293
4294 unlock:
4295         mutex_unlock(&ctx->mutex);
4296
4297         put_ctx(ctx);
4298         if (clone_ctx)
4299                 put_ctx(clone_ctx);
4300 }
4301
4302 struct perf_read_data {
4303         struct perf_event *event;
4304         bool group;
4305         int ret;
4306 };
4307
4308 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4309 {
4310         u16 local_pkg, event_pkg;
4311
4312         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4313                 int local_cpu = smp_processor_id();
4314
4315                 event_pkg = topology_physical_package_id(event_cpu);
4316                 local_pkg = topology_physical_package_id(local_cpu);
4317
4318                 if (event_pkg == local_pkg)
4319                         return local_cpu;
4320         }
4321
4322         return event_cpu;
4323 }
4324
4325 /*
4326  * Cross CPU call to read the hardware event
4327  */
4328 static void __perf_event_read(void *info)
4329 {
4330         struct perf_read_data *data = info;
4331         struct perf_event *sub, *event = data->event;
4332         struct perf_event_context *ctx = event->ctx;
4333         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4334         struct pmu *pmu = event->pmu;
4335
4336         /*
4337          * If this is a task context, we need to check whether it is
4338          * the current task context of this cpu.  If not it has been
4339          * scheduled out before the smp call arrived.  In that case
4340          * event->count would have been updated to a recent sample
4341          * when the event was scheduled out.
4342          */
4343         if (ctx->task && cpuctx->task_ctx != ctx)
4344                 return;
4345
4346         raw_spin_lock(&ctx->lock);
4347         if (ctx->is_active & EVENT_TIME) {
4348                 update_context_time(ctx);
4349                 update_cgrp_time_from_event(event);
4350         }
4351
4352         perf_event_update_time(event);
4353         if (data->group)
4354                 perf_event_update_sibling_time(event);
4355
4356         if (event->state != PERF_EVENT_STATE_ACTIVE)
4357                 goto unlock;
4358
4359         if (!data->group) {
4360                 pmu->read(event);
4361                 data->ret = 0;
4362                 goto unlock;
4363         }
4364
4365         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4366
4367         pmu->read(event);
4368
4369         for_each_sibling_event(sub, event) {
4370                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4371                         /*
4372                          * Use sibling's PMU rather than @event's since
4373                          * sibling could be on different (eg: software) PMU.
4374                          */
4375                         sub->pmu->read(sub);
4376                 }
4377         }
4378
4379         data->ret = pmu->commit_txn(pmu);
4380
4381 unlock:
4382         raw_spin_unlock(&ctx->lock);
4383 }
4384
4385 static inline u64 perf_event_count(struct perf_event *event)
4386 {
4387         return local64_read(&event->count) + atomic64_read(&event->child_count);
4388 }
4389
4390 /*
4391  * NMI-safe method to read a local event, that is an event that
4392  * is:
4393  *   - either for the current task, or for this CPU
4394  *   - does not have inherit set, for inherited task events
4395  *     will not be local and we cannot read them atomically
4396  *   - must not have a pmu::count method
4397  */
4398 int perf_event_read_local(struct perf_event *event, u64 *value,
4399                           u64 *enabled, u64 *running)
4400 {
4401         unsigned long flags;
4402         int ret = 0;
4403
4404         /*
4405          * Disabling interrupts avoids all counter scheduling (context
4406          * switches, timer based rotation and IPIs).
4407          */
4408         local_irq_save(flags);
4409
4410         /*
4411          * It must not be an event with inherit set, we cannot read
4412          * all child counters from atomic context.
4413          */
4414         if (event->attr.inherit) {
4415                 ret = -EOPNOTSUPP;
4416                 goto out;
4417         }
4418
4419         /* If this is a per-task event, it must be for current */
4420         if ((event->attach_state & PERF_ATTACH_TASK) &&
4421             event->hw.target != current) {
4422                 ret = -EINVAL;
4423                 goto out;
4424         }
4425
4426         /* If this is a per-CPU event, it must be for this CPU */
4427         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4428             event->cpu != smp_processor_id()) {
4429                 ret = -EINVAL;
4430                 goto out;
4431         }
4432
4433         /* If this is a pinned event it must be running on this CPU */
4434         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4435                 ret = -EBUSY;
4436                 goto out;
4437         }
4438
4439         /*
4440          * If the event is currently on this CPU, its either a per-task event,
4441          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4442          * oncpu == -1).
4443          */
4444         if (event->oncpu == smp_processor_id())
4445                 event->pmu->read(event);
4446
4447         *value = local64_read(&event->count);
4448         if (enabled || running) {
4449                 u64 now = event->shadow_ctx_time + perf_clock();
4450                 u64 __enabled, __running;
4451
4452                 __perf_update_times(event, now, &__enabled, &__running);
4453                 if (enabled)
4454                         *enabled = __enabled;
4455                 if (running)
4456                         *running = __running;
4457         }
4458 out:
4459         local_irq_restore(flags);
4460
4461         return ret;
4462 }
4463
4464 static int perf_event_read(struct perf_event *event, bool group)
4465 {
4466         enum perf_event_state state = READ_ONCE(event->state);
4467         int event_cpu, ret = 0;
4468
4469         /*
4470          * If event is enabled and currently active on a CPU, update the
4471          * value in the event structure:
4472          */
4473 again:
4474         if (state == PERF_EVENT_STATE_ACTIVE) {
4475                 struct perf_read_data data;
4476
4477                 /*
4478                  * Orders the ->state and ->oncpu loads such that if we see
4479                  * ACTIVE we must also see the right ->oncpu.
4480                  *
4481                  * Matches the smp_wmb() from event_sched_in().
4482                  */
4483                 smp_rmb();
4484
4485                 event_cpu = READ_ONCE(event->oncpu);
4486                 if ((unsigned)event_cpu >= nr_cpu_ids)
4487                         return 0;
4488
4489                 data = (struct perf_read_data){
4490                         .event = event,
4491                         .group = group,
4492                         .ret = 0,
4493                 };
4494
4495                 preempt_disable();
4496                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4497
4498                 /*
4499                  * Purposely ignore the smp_call_function_single() return
4500                  * value.
4501                  *
4502                  * If event_cpu isn't a valid CPU it means the event got
4503                  * scheduled out and that will have updated the event count.
4504                  *
4505                  * Therefore, either way, we'll have an up-to-date event count
4506                  * after this.
4507                  */
4508                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4509                 preempt_enable();
4510                 ret = data.ret;
4511
4512         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4513                 struct perf_event_context *ctx = event->ctx;
4514                 unsigned long flags;
4515
4516                 raw_spin_lock_irqsave(&ctx->lock, flags);
4517                 state = event->state;
4518                 if (state != PERF_EVENT_STATE_INACTIVE) {
4519                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4520                         goto again;
4521                 }
4522
4523                 /*
4524                  * May read while context is not active (e.g., thread is
4525                  * blocked), in that case we cannot update context time
4526                  */
4527                 if (ctx->is_active & EVENT_TIME) {
4528                         update_context_time(ctx);
4529                         update_cgrp_time_from_event(event);
4530                 }
4531
4532                 perf_event_update_time(event);
4533                 if (group)
4534                         perf_event_update_sibling_time(event);
4535                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4536         }
4537
4538         return ret;
4539 }
4540
4541 /*
4542  * Initialize the perf_event context in a task_struct:
4543  */
4544 static void __perf_event_init_context(struct perf_event_context *ctx)
4545 {
4546         raw_spin_lock_init(&ctx->lock);
4547         mutex_init(&ctx->mutex);
4548         INIT_LIST_HEAD(&ctx->active_ctx_list);
4549         perf_event_groups_init(&ctx->pinned_groups);
4550         perf_event_groups_init(&ctx->flexible_groups);
4551         INIT_LIST_HEAD(&ctx->event_list);
4552         INIT_LIST_HEAD(&ctx->pinned_active);
4553         INIT_LIST_HEAD(&ctx->flexible_active);
4554         refcount_set(&ctx->refcount, 1);
4555 }
4556
4557 static struct perf_event_context *
4558 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4559 {
4560         struct perf_event_context *ctx;
4561
4562         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4563         if (!ctx)
4564                 return NULL;
4565
4566         __perf_event_init_context(ctx);
4567         if (task)
4568                 ctx->task = get_task_struct(task);
4569         ctx->pmu = pmu;
4570
4571         return ctx;
4572 }
4573
4574 static struct task_struct *
4575 find_lively_task_by_vpid(pid_t vpid)
4576 {
4577         struct task_struct *task;
4578
4579         rcu_read_lock();
4580         if (!vpid)
4581                 task = current;
4582         else
4583                 task = find_task_by_vpid(vpid);
4584         if (task)
4585                 get_task_struct(task);
4586         rcu_read_unlock();
4587
4588         if (!task)
4589                 return ERR_PTR(-ESRCH);
4590
4591         return task;
4592 }
4593
4594 /*
4595  * Returns a matching context with refcount and pincount.
4596  */
4597 static struct perf_event_context *
4598 find_get_context(struct pmu *pmu, struct task_struct *task,
4599                 struct perf_event *event)
4600 {
4601         struct perf_event_context *ctx, *clone_ctx = NULL;
4602         struct perf_cpu_context *cpuctx;
4603         void *task_ctx_data = NULL;
4604         unsigned long flags;
4605         int ctxn, err;
4606         int cpu = event->cpu;
4607
4608         if (!task) {
4609                 /* Must be root to operate on a CPU event: */
4610                 err = perf_allow_cpu(&event->attr);
4611                 if (err)
4612                         return ERR_PTR(err);
4613
4614                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4615                 ctx = &cpuctx->ctx;
4616                 get_ctx(ctx);
4617                 ++ctx->pin_count;
4618
4619                 return ctx;
4620         }
4621
4622         err = -EINVAL;
4623         ctxn = pmu->task_ctx_nr;
4624         if (ctxn < 0)
4625                 goto errout;
4626
4627         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4628                 task_ctx_data = alloc_task_ctx_data(pmu);
4629                 if (!task_ctx_data) {
4630                         err = -ENOMEM;
4631                         goto errout;
4632                 }
4633         }
4634
4635 retry:
4636         ctx = perf_lock_task_context(task, ctxn, &flags);
4637         if (ctx) {
4638                 clone_ctx = unclone_ctx(ctx);
4639                 ++ctx->pin_count;
4640
4641                 if (task_ctx_data && !ctx->task_ctx_data) {
4642                         ctx->task_ctx_data = task_ctx_data;
4643                         task_ctx_data = NULL;
4644                 }
4645                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4646
4647                 if (clone_ctx)
4648                         put_ctx(clone_ctx);
4649         } else {
4650                 ctx = alloc_perf_context(pmu, task);
4651                 err = -ENOMEM;
4652                 if (!ctx)
4653                         goto errout;
4654
4655                 if (task_ctx_data) {
4656                         ctx->task_ctx_data = task_ctx_data;
4657                         task_ctx_data = NULL;
4658                 }
4659
4660                 err = 0;
4661                 mutex_lock(&task->perf_event_mutex);
4662                 /*
4663                  * If it has already passed perf_event_exit_task().
4664                  * we must see PF_EXITING, it takes this mutex too.
4665                  */
4666                 if (task->flags & PF_EXITING)
4667                         err = -ESRCH;
4668                 else if (task->perf_event_ctxp[ctxn])
4669                         err = -EAGAIN;
4670                 else {
4671                         get_ctx(ctx);
4672                         ++ctx->pin_count;
4673                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4674                 }
4675                 mutex_unlock(&task->perf_event_mutex);
4676
4677                 if (unlikely(err)) {
4678                         put_ctx(ctx);
4679
4680                         if (err == -EAGAIN)
4681                                 goto retry;
4682                         goto errout;
4683                 }
4684         }
4685
4686         free_task_ctx_data(pmu, task_ctx_data);
4687         return ctx;
4688
4689 errout:
4690         free_task_ctx_data(pmu, task_ctx_data);
4691         return ERR_PTR(err);
4692 }
4693
4694 static void perf_event_free_filter(struct perf_event *event);
4695 static void perf_event_free_bpf_prog(struct perf_event *event);
4696
4697 static void free_event_rcu(struct rcu_head *head)
4698 {
4699         struct perf_event *event;
4700
4701         event = container_of(head, struct perf_event, rcu_head);
4702         if (event->ns)
4703                 put_pid_ns(event->ns);
4704         perf_event_free_filter(event);
4705         kmem_cache_free(perf_event_cache, event);
4706 }
4707
4708 static void ring_buffer_attach(struct perf_event *event,
4709                                struct perf_buffer *rb);
4710
4711 static void detach_sb_event(struct perf_event *event)
4712 {
4713         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4714
4715         raw_spin_lock(&pel->lock);
4716         list_del_rcu(&event->sb_list);
4717         raw_spin_unlock(&pel->lock);
4718 }
4719
4720 static bool is_sb_event(struct perf_event *event)
4721 {
4722         struct perf_event_attr *attr = &event->attr;
4723
4724         if (event->parent)
4725                 return false;
4726
4727         if (event->attach_state & PERF_ATTACH_TASK)
4728                 return false;
4729
4730         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4731             attr->comm || attr->comm_exec ||
4732             attr->task || attr->ksymbol ||
4733             attr->context_switch || attr->text_poke ||
4734             attr->bpf_event)
4735                 return true;
4736         return false;
4737 }
4738
4739 static void unaccount_pmu_sb_event(struct perf_event *event)
4740 {
4741         if (is_sb_event(event))
4742                 detach_sb_event(event);
4743 }
4744
4745 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4746 {
4747         if (event->parent)
4748                 return;
4749
4750         if (is_cgroup_event(event))
4751                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4752 }
4753
4754 #ifdef CONFIG_NO_HZ_FULL
4755 static DEFINE_SPINLOCK(nr_freq_lock);
4756 #endif
4757
4758 static void unaccount_freq_event_nohz(void)
4759 {
4760 #ifdef CONFIG_NO_HZ_FULL
4761         spin_lock(&nr_freq_lock);
4762         if (atomic_dec_and_test(&nr_freq_events))
4763                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4764         spin_unlock(&nr_freq_lock);
4765 #endif
4766 }
4767
4768 static void unaccount_freq_event(void)
4769 {
4770         if (tick_nohz_full_enabled())
4771                 unaccount_freq_event_nohz();
4772         else
4773                 atomic_dec(&nr_freq_events);
4774 }
4775
4776 static void unaccount_event(struct perf_event *event)
4777 {
4778         bool dec = false;
4779
4780         if (event->parent)
4781                 return;
4782
4783         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4784                 dec = true;
4785         if (event->attr.mmap || event->attr.mmap_data)
4786                 atomic_dec(&nr_mmap_events);
4787         if (event->attr.build_id)
4788                 atomic_dec(&nr_build_id_events);
4789         if (event->attr.comm)
4790                 atomic_dec(&nr_comm_events);
4791         if (event->attr.namespaces)
4792                 atomic_dec(&nr_namespaces_events);
4793         if (event->attr.cgroup)
4794                 atomic_dec(&nr_cgroup_events);
4795         if (event->attr.task)
4796                 atomic_dec(&nr_task_events);
4797         if (event->attr.freq)
4798                 unaccount_freq_event();
4799         if (event->attr.context_switch) {
4800                 dec = true;
4801                 atomic_dec(&nr_switch_events);
4802         }
4803         if (is_cgroup_event(event))
4804                 dec = true;
4805         if (has_branch_stack(event))
4806                 dec = true;
4807         if (event->attr.ksymbol)
4808                 atomic_dec(&nr_ksymbol_events);
4809         if (event->attr.bpf_event)
4810                 atomic_dec(&nr_bpf_events);
4811         if (event->attr.text_poke)
4812                 atomic_dec(&nr_text_poke_events);
4813
4814         if (dec) {
4815                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4816                         schedule_delayed_work(&perf_sched_work, HZ);
4817         }
4818
4819         unaccount_event_cpu(event, event->cpu);
4820
4821         unaccount_pmu_sb_event(event);
4822 }
4823
4824 static void perf_sched_delayed(struct work_struct *work)
4825 {
4826         mutex_lock(&perf_sched_mutex);
4827         if (atomic_dec_and_test(&perf_sched_count))
4828                 static_branch_disable(&perf_sched_events);
4829         mutex_unlock(&perf_sched_mutex);
4830 }
4831
4832 /*
4833  * The following implement mutual exclusion of events on "exclusive" pmus
4834  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4835  * at a time, so we disallow creating events that might conflict, namely:
4836  *
4837  *  1) cpu-wide events in the presence of per-task events,
4838  *  2) per-task events in the presence of cpu-wide events,
4839  *  3) two matching events on the same context.
4840  *
4841  * The former two cases are handled in the allocation path (perf_event_alloc(),
4842  * _free_event()), the latter -- before the first perf_install_in_context().
4843  */
4844 static int exclusive_event_init(struct perf_event *event)
4845 {
4846         struct pmu *pmu = event->pmu;
4847
4848         if (!is_exclusive_pmu(pmu))
4849                 return 0;
4850
4851         /*
4852          * Prevent co-existence of per-task and cpu-wide events on the
4853          * same exclusive pmu.
4854          *
4855          * Negative pmu::exclusive_cnt means there are cpu-wide
4856          * events on this "exclusive" pmu, positive means there are
4857          * per-task events.
4858          *
4859          * Since this is called in perf_event_alloc() path, event::ctx
4860          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4861          * to mean "per-task event", because unlike other attach states it
4862          * never gets cleared.
4863          */
4864         if (event->attach_state & PERF_ATTACH_TASK) {
4865                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4866                         return -EBUSY;
4867         } else {
4868                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4869                         return -EBUSY;
4870         }
4871
4872         return 0;
4873 }
4874
4875 static void exclusive_event_destroy(struct perf_event *event)
4876 {
4877         struct pmu *pmu = event->pmu;
4878
4879         if (!is_exclusive_pmu(pmu))
4880                 return;
4881
4882         /* see comment in exclusive_event_init() */
4883         if (event->attach_state & PERF_ATTACH_TASK)
4884                 atomic_dec(&pmu->exclusive_cnt);
4885         else
4886                 atomic_inc(&pmu->exclusive_cnt);
4887 }
4888
4889 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4890 {
4891         if ((e1->pmu == e2->pmu) &&
4892             (e1->cpu == e2->cpu ||
4893              e1->cpu == -1 ||
4894              e2->cpu == -1))
4895                 return true;
4896         return false;
4897 }
4898
4899 static bool exclusive_event_installable(struct perf_event *event,
4900                                         struct perf_event_context *ctx)
4901 {
4902         struct perf_event *iter_event;
4903         struct pmu *pmu = event->pmu;
4904
4905         lockdep_assert_held(&ctx->mutex);
4906
4907         if (!is_exclusive_pmu(pmu))
4908                 return true;
4909
4910         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4911                 if (exclusive_event_match(iter_event, event))
4912                         return false;
4913         }
4914
4915         return true;
4916 }
4917
4918 static void perf_addr_filters_splice(struct perf_event *event,
4919                                        struct list_head *head);
4920
4921 static void _free_event(struct perf_event *event)
4922 {
4923         irq_work_sync(&event->pending);
4924
4925         unaccount_event(event);
4926
4927         security_perf_event_free(event);
4928
4929         if (event->rb) {
4930                 /*
4931                  * Can happen when we close an event with re-directed output.
4932                  *
4933                  * Since we have a 0 refcount, perf_mmap_close() will skip
4934                  * over us; possibly making our ring_buffer_put() the last.
4935                  */
4936                 mutex_lock(&event->mmap_mutex);
4937                 ring_buffer_attach(event, NULL);
4938                 mutex_unlock(&event->mmap_mutex);
4939         }
4940
4941         if (is_cgroup_event(event))
4942                 perf_detach_cgroup(event);
4943
4944         if (!event->parent) {
4945                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4946                         put_callchain_buffers();
4947         }
4948
4949         perf_event_free_bpf_prog(event);
4950         perf_addr_filters_splice(event, NULL);
4951         kfree(event->addr_filter_ranges);
4952
4953         if (event->destroy)
4954                 event->destroy(event);
4955
4956         /*
4957          * Must be after ->destroy(), due to uprobe_perf_close() using
4958          * hw.target.
4959          */
4960         if (event->hw.target)
4961                 put_task_struct(event->hw.target);
4962
4963         /*
4964          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4965          * all task references must be cleaned up.
4966          */
4967         if (event->ctx)
4968                 put_ctx(event->ctx);
4969
4970         exclusive_event_destroy(event);
4971         module_put(event->pmu->module);
4972
4973         call_rcu(&event->rcu_head, free_event_rcu);
4974 }
4975
4976 /*
4977  * Used to free events which have a known refcount of 1, such as in error paths
4978  * where the event isn't exposed yet and inherited events.
4979  */
4980 static void free_event(struct perf_event *event)
4981 {
4982         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4983                                 "unexpected event refcount: %ld; ptr=%p\n",
4984                                 atomic_long_read(&event->refcount), event)) {
4985                 /* leak to avoid use-after-free */
4986                 return;
4987         }
4988
4989         _free_event(event);
4990 }
4991
4992 /*
4993  * Remove user event from the owner task.
4994  */
4995 static void perf_remove_from_owner(struct perf_event *event)
4996 {
4997         struct task_struct *owner;
4998
4999         rcu_read_lock();
5000         /*
5001          * Matches the smp_store_release() in perf_event_exit_task(). If we
5002          * observe !owner it means the list deletion is complete and we can
5003          * indeed free this event, otherwise we need to serialize on
5004          * owner->perf_event_mutex.
5005          */
5006         owner = READ_ONCE(event->owner);
5007         if (owner) {
5008                 /*
5009                  * Since delayed_put_task_struct() also drops the last
5010                  * task reference we can safely take a new reference
5011                  * while holding the rcu_read_lock().
5012                  */
5013                 get_task_struct(owner);
5014         }
5015         rcu_read_unlock();
5016
5017         if (owner) {
5018                 /*
5019                  * If we're here through perf_event_exit_task() we're already
5020                  * holding ctx->mutex which would be an inversion wrt. the
5021                  * normal lock order.
5022                  *
5023                  * However we can safely take this lock because its the child
5024                  * ctx->mutex.
5025                  */
5026                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5027
5028                 /*
5029                  * We have to re-check the event->owner field, if it is cleared
5030                  * we raced with perf_event_exit_task(), acquiring the mutex
5031                  * ensured they're done, and we can proceed with freeing the
5032                  * event.
5033                  */
5034                 if (event->owner) {
5035                         list_del_init(&event->owner_entry);
5036                         smp_store_release(&event->owner, NULL);
5037                 }
5038                 mutex_unlock(&owner->perf_event_mutex);
5039                 put_task_struct(owner);
5040         }
5041 }
5042
5043 static void put_event(struct perf_event *event)
5044 {
5045         if (!atomic_long_dec_and_test(&event->refcount))
5046                 return;
5047
5048         _free_event(event);
5049 }
5050
5051 /*
5052  * Kill an event dead; while event:refcount will preserve the event
5053  * object, it will not preserve its functionality. Once the last 'user'
5054  * gives up the object, we'll destroy the thing.
5055  */
5056 int perf_event_release_kernel(struct perf_event *event)
5057 {
5058         struct perf_event_context *ctx = event->ctx;
5059         struct perf_event *child, *tmp;
5060         LIST_HEAD(free_list);
5061
5062         /*
5063          * If we got here through err_file: fput(event_file); we will not have
5064          * attached to a context yet.
5065          */
5066         if (!ctx) {
5067                 WARN_ON_ONCE(event->attach_state &
5068                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5069                 goto no_ctx;
5070         }
5071
5072         if (!is_kernel_event(event))
5073                 perf_remove_from_owner(event);
5074
5075         ctx = perf_event_ctx_lock(event);
5076         WARN_ON_ONCE(ctx->parent_ctx);
5077         perf_remove_from_context(event, DETACH_GROUP);
5078
5079         raw_spin_lock_irq(&ctx->lock);
5080         /*
5081          * Mark this event as STATE_DEAD, there is no external reference to it
5082          * anymore.
5083          *
5084          * Anybody acquiring event->child_mutex after the below loop _must_
5085          * also see this, most importantly inherit_event() which will avoid
5086          * placing more children on the list.
5087          *
5088          * Thus this guarantees that we will in fact observe and kill _ALL_
5089          * child events.
5090          */
5091         event->state = PERF_EVENT_STATE_DEAD;
5092         raw_spin_unlock_irq(&ctx->lock);
5093
5094         perf_event_ctx_unlock(event, ctx);
5095
5096 again:
5097         mutex_lock(&event->child_mutex);
5098         list_for_each_entry(child, &event->child_list, child_list) {
5099
5100                 /*
5101                  * Cannot change, child events are not migrated, see the
5102                  * comment with perf_event_ctx_lock_nested().
5103                  */
5104                 ctx = READ_ONCE(child->ctx);
5105                 /*
5106                  * Since child_mutex nests inside ctx::mutex, we must jump
5107                  * through hoops. We start by grabbing a reference on the ctx.
5108                  *
5109                  * Since the event cannot get freed while we hold the
5110                  * child_mutex, the context must also exist and have a !0
5111                  * reference count.
5112                  */
5113                 get_ctx(ctx);
5114
5115                 /*
5116                  * Now that we have a ctx ref, we can drop child_mutex, and
5117                  * acquire ctx::mutex without fear of it going away. Then we
5118                  * can re-acquire child_mutex.
5119                  */
5120                 mutex_unlock(&event->child_mutex);
5121                 mutex_lock(&ctx->mutex);
5122                 mutex_lock(&event->child_mutex);
5123
5124                 /*
5125                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5126                  * state, if child is still the first entry, it didn't get freed
5127                  * and we can continue doing so.
5128                  */
5129                 tmp = list_first_entry_or_null(&event->child_list,
5130                                                struct perf_event, child_list);
5131                 if (tmp == child) {
5132                         perf_remove_from_context(child, DETACH_GROUP);
5133                         list_move(&child->child_list, &free_list);
5134                         /*
5135                          * This matches the refcount bump in inherit_event();
5136                          * this can't be the last reference.
5137                          */
5138                         put_event(event);
5139                 }
5140
5141                 mutex_unlock(&event->child_mutex);
5142                 mutex_unlock(&ctx->mutex);
5143                 put_ctx(ctx);
5144                 goto again;
5145         }
5146         mutex_unlock(&event->child_mutex);
5147
5148         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5149                 void *var = &child->ctx->refcount;
5150
5151                 list_del(&child->child_list);
5152                 free_event(child);
5153
5154                 /*
5155                  * Wake any perf_event_free_task() waiting for this event to be
5156                  * freed.
5157                  */
5158                 smp_mb(); /* pairs with wait_var_event() */
5159                 wake_up_var(var);
5160         }
5161
5162 no_ctx:
5163         put_event(event); /* Must be the 'last' reference */
5164         return 0;
5165 }
5166 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5167
5168 /*
5169  * Called when the last reference to the file is gone.
5170  */
5171 static int perf_release(struct inode *inode, struct file *file)
5172 {
5173         perf_event_release_kernel(file->private_data);
5174         return 0;
5175 }
5176
5177 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5178 {
5179         struct perf_event *child;
5180         u64 total = 0;
5181
5182         *enabled = 0;
5183         *running = 0;
5184
5185         mutex_lock(&event->child_mutex);
5186
5187         (void)perf_event_read(event, false);
5188         total += perf_event_count(event);
5189
5190         *enabled += event->total_time_enabled +
5191                         atomic64_read(&event->child_total_time_enabled);
5192         *running += event->total_time_running +
5193                         atomic64_read(&event->child_total_time_running);
5194
5195         list_for_each_entry(child, &event->child_list, child_list) {
5196                 (void)perf_event_read(child, false);
5197                 total += perf_event_count(child);
5198                 *enabled += child->total_time_enabled;
5199                 *running += child->total_time_running;
5200         }
5201         mutex_unlock(&event->child_mutex);
5202
5203         return total;
5204 }
5205
5206 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5207 {
5208         struct perf_event_context *ctx;
5209         u64 count;
5210
5211         ctx = perf_event_ctx_lock(event);
5212         count = __perf_event_read_value(event, enabled, running);
5213         perf_event_ctx_unlock(event, ctx);
5214
5215         return count;
5216 }
5217 EXPORT_SYMBOL_GPL(perf_event_read_value);
5218
5219 static int __perf_read_group_add(struct perf_event *leader,
5220                                         u64 read_format, u64 *values)
5221 {
5222         struct perf_event_context *ctx = leader->ctx;
5223         struct perf_event *sub;
5224         unsigned long flags;
5225         int n = 1; /* skip @nr */
5226         int ret;
5227
5228         ret = perf_event_read(leader, true);
5229         if (ret)
5230                 return ret;
5231
5232         raw_spin_lock_irqsave(&ctx->lock, flags);
5233
5234         /*
5235          * Since we co-schedule groups, {enabled,running} times of siblings
5236          * will be identical to those of the leader, so we only publish one
5237          * set.
5238          */
5239         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5240                 values[n++] += leader->total_time_enabled +
5241                         atomic64_read(&leader->child_total_time_enabled);
5242         }
5243
5244         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5245                 values[n++] += leader->total_time_running +
5246                         atomic64_read(&leader->child_total_time_running);
5247         }
5248
5249         /*
5250          * Write {count,id} tuples for every sibling.
5251          */
5252         values[n++] += perf_event_count(leader);
5253         if (read_format & PERF_FORMAT_ID)
5254                 values[n++] = primary_event_id(leader);
5255
5256         for_each_sibling_event(sub, leader) {
5257                 values[n++] += perf_event_count(sub);
5258                 if (read_format & PERF_FORMAT_ID)
5259                         values[n++] = primary_event_id(sub);
5260         }
5261
5262         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5263         return 0;
5264 }
5265
5266 static int perf_read_group(struct perf_event *event,
5267                                    u64 read_format, char __user *buf)
5268 {
5269         struct perf_event *leader = event->group_leader, *child;
5270         struct perf_event_context *ctx = leader->ctx;
5271         int ret;
5272         u64 *values;
5273
5274         lockdep_assert_held(&ctx->mutex);
5275
5276         values = kzalloc(event->read_size, GFP_KERNEL);
5277         if (!values)
5278                 return -ENOMEM;
5279
5280         values[0] = 1 + leader->nr_siblings;
5281
5282         /*
5283          * By locking the child_mutex of the leader we effectively
5284          * lock the child list of all siblings.. XXX explain how.
5285          */
5286         mutex_lock(&leader->child_mutex);
5287
5288         ret = __perf_read_group_add(leader, read_format, values);
5289         if (ret)
5290                 goto unlock;
5291
5292         list_for_each_entry(child, &leader->child_list, child_list) {
5293                 ret = __perf_read_group_add(child, read_format, values);
5294                 if (ret)
5295                         goto unlock;
5296         }
5297
5298         mutex_unlock(&leader->child_mutex);
5299
5300         ret = event->read_size;
5301         if (copy_to_user(buf, values, event->read_size))
5302                 ret = -EFAULT;
5303         goto out;
5304
5305 unlock:
5306         mutex_unlock(&leader->child_mutex);
5307 out:
5308         kfree(values);
5309         return ret;
5310 }
5311
5312 static int perf_read_one(struct perf_event *event,
5313                                  u64 read_format, char __user *buf)
5314 {
5315         u64 enabled, running;
5316         u64 values[4];
5317         int n = 0;
5318
5319         values[n++] = __perf_event_read_value(event, &enabled, &running);
5320         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5321                 values[n++] = enabled;
5322         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5323                 values[n++] = running;
5324         if (read_format & PERF_FORMAT_ID)
5325                 values[n++] = primary_event_id(event);
5326
5327         if (copy_to_user(buf, values, n * sizeof(u64)))
5328                 return -EFAULT;
5329
5330         return n * sizeof(u64);
5331 }
5332
5333 static bool is_event_hup(struct perf_event *event)
5334 {
5335         bool no_children;
5336
5337         if (event->state > PERF_EVENT_STATE_EXIT)
5338                 return false;
5339
5340         mutex_lock(&event->child_mutex);
5341         no_children = list_empty(&event->child_list);
5342         mutex_unlock(&event->child_mutex);
5343         return no_children;
5344 }
5345
5346 /*
5347  * Read the performance event - simple non blocking version for now
5348  */
5349 static ssize_t
5350 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5351 {
5352         u64 read_format = event->attr.read_format;
5353         int ret;
5354
5355         /*
5356          * Return end-of-file for a read on an event that is in
5357          * error state (i.e. because it was pinned but it couldn't be
5358          * scheduled on to the CPU at some point).
5359          */
5360         if (event->state == PERF_EVENT_STATE_ERROR)
5361                 return 0;
5362
5363         if (count < event->read_size)
5364                 return -ENOSPC;
5365
5366         WARN_ON_ONCE(event->ctx->parent_ctx);
5367         if (read_format & PERF_FORMAT_GROUP)
5368                 ret = perf_read_group(event, read_format, buf);
5369         else
5370                 ret = perf_read_one(event, read_format, buf);
5371
5372         return ret;
5373 }
5374
5375 static ssize_t
5376 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5377 {
5378         struct perf_event *event = file->private_data;
5379         struct perf_event_context *ctx;
5380         int ret;
5381
5382         ret = security_perf_event_read(event);
5383         if (ret)
5384                 return ret;
5385
5386         ctx = perf_event_ctx_lock(event);
5387         ret = __perf_read(event, buf, count);
5388         perf_event_ctx_unlock(event, ctx);
5389
5390         return ret;
5391 }
5392
5393 static __poll_t perf_poll(struct file *file, poll_table *wait)
5394 {
5395         struct perf_event *event = file->private_data;
5396         struct perf_buffer *rb;
5397         __poll_t events = EPOLLHUP;
5398
5399         poll_wait(file, &event->waitq, wait);
5400
5401         if (is_event_hup(event))
5402                 return events;
5403
5404         /*
5405          * Pin the event->rb by taking event->mmap_mutex; otherwise
5406          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5407          */
5408         mutex_lock(&event->mmap_mutex);
5409         rb = event->rb;
5410         if (rb)
5411                 events = atomic_xchg(&rb->poll, 0);
5412         mutex_unlock(&event->mmap_mutex);
5413         return events;
5414 }
5415
5416 static void _perf_event_reset(struct perf_event *event)
5417 {
5418         (void)perf_event_read(event, false);
5419         local64_set(&event->count, 0);
5420         perf_event_update_userpage(event);
5421 }
5422
5423 /* Assume it's not an event with inherit set. */
5424 u64 perf_event_pause(struct perf_event *event, bool reset)
5425 {
5426         struct perf_event_context *ctx;
5427         u64 count;
5428
5429         ctx = perf_event_ctx_lock(event);
5430         WARN_ON_ONCE(event->attr.inherit);
5431         _perf_event_disable(event);
5432         count = local64_read(&event->count);
5433         if (reset)
5434                 local64_set(&event->count, 0);
5435         perf_event_ctx_unlock(event, ctx);
5436
5437         return count;
5438 }
5439 EXPORT_SYMBOL_GPL(perf_event_pause);
5440
5441 /*
5442  * Holding the top-level event's child_mutex means that any
5443  * descendant process that has inherited this event will block
5444  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5445  * task existence requirements of perf_event_enable/disable.
5446  */
5447 static void perf_event_for_each_child(struct perf_event *event,
5448                                         void (*func)(struct perf_event *))
5449 {
5450         struct perf_event *child;
5451
5452         WARN_ON_ONCE(event->ctx->parent_ctx);
5453
5454         mutex_lock(&event->child_mutex);
5455         func(event);
5456         list_for_each_entry(child, &event->child_list, child_list)
5457                 func(child);
5458         mutex_unlock(&event->child_mutex);
5459 }
5460
5461 static void perf_event_for_each(struct perf_event *event,
5462                                   void (*func)(struct perf_event *))
5463 {
5464         struct perf_event_context *ctx = event->ctx;
5465         struct perf_event *sibling;
5466
5467         lockdep_assert_held(&ctx->mutex);
5468
5469         event = event->group_leader;
5470
5471         perf_event_for_each_child(event, func);
5472         for_each_sibling_event(sibling, event)
5473                 perf_event_for_each_child(sibling, func);
5474 }
5475
5476 static void __perf_event_period(struct perf_event *event,
5477                                 struct perf_cpu_context *cpuctx,
5478                                 struct perf_event_context *ctx,
5479                                 void *info)
5480 {
5481         u64 value = *((u64 *)info);
5482         bool active;
5483
5484         if (event->attr.freq) {
5485                 event->attr.sample_freq = value;
5486         } else {
5487                 event->attr.sample_period = value;
5488                 event->hw.sample_period = value;
5489         }
5490
5491         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5492         if (active) {
5493                 perf_pmu_disable(ctx->pmu);
5494                 /*
5495                  * We could be throttled; unthrottle now to avoid the tick
5496                  * trying to unthrottle while we already re-started the event.
5497                  */
5498                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5499                         event->hw.interrupts = 0;
5500                         perf_log_throttle(event, 1);
5501                 }
5502                 event->pmu->stop(event, PERF_EF_UPDATE);
5503         }
5504
5505         local64_set(&event->hw.period_left, 0);
5506
5507         if (active) {
5508                 event->pmu->start(event, PERF_EF_RELOAD);
5509                 perf_pmu_enable(ctx->pmu);
5510         }
5511 }
5512
5513 static int perf_event_check_period(struct perf_event *event, u64 value)
5514 {
5515         return event->pmu->check_period(event, value);
5516 }
5517
5518 static int _perf_event_period(struct perf_event *event, u64 value)
5519 {
5520         if (!is_sampling_event(event))
5521                 return -EINVAL;
5522
5523         if (!value)
5524                 return -EINVAL;
5525
5526         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5527                 return -EINVAL;
5528
5529         if (perf_event_check_period(event, value))
5530                 return -EINVAL;
5531
5532         if (!event->attr.freq && (value & (1ULL << 63)))
5533                 return -EINVAL;
5534
5535         event_function_call(event, __perf_event_period, &value);
5536
5537         return 0;
5538 }
5539
5540 int perf_event_period(struct perf_event *event, u64 value)
5541 {
5542         struct perf_event_context *ctx;
5543         int ret;
5544
5545         ctx = perf_event_ctx_lock(event);
5546         ret = _perf_event_period(event, value);
5547         perf_event_ctx_unlock(event, ctx);
5548
5549         return ret;
5550 }
5551 EXPORT_SYMBOL_GPL(perf_event_period);
5552
5553 static const struct file_operations perf_fops;
5554
5555 static inline int perf_fget_light(int fd, struct fd *p)
5556 {
5557         struct fd f = fdget(fd);
5558         if (!f.file)
5559                 return -EBADF;
5560
5561         if (f.file->f_op != &perf_fops) {
5562                 fdput(f);
5563                 return -EBADF;
5564         }
5565         *p = f;
5566         return 0;
5567 }
5568
5569 static int perf_event_set_output(struct perf_event *event,
5570                                  struct perf_event *output_event);
5571 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5572 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5573 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5574                           struct perf_event_attr *attr);
5575
5576 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5577 {
5578         void (*func)(struct perf_event *);
5579         u32 flags = arg;
5580
5581         switch (cmd) {
5582         case PERF_EVENT_IOC_ENABLE:
5583                 func = _perf_event_enable;
5584                 break;
5585         case PERF_EVENT_IOC_DISABLE:
5586                 func = _perf_event_disable;
5587                 break;
5588         case PERF_EVENT_IOC_RESET:
5589                 func = _perf_event_reset;
5590                 break;
5591
5592         case PERF_EVENT_IOC_REFRESH:
5593                 return _perf_event_refresh(event, arg);
5594
5595         case PERF_EVENT_IOC_PERIOD:
5596         {
5597                 u64 value;
5598
5599                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5600                         return -EFAULT;
5601
5602                 return _perf_event_period(event, value);
5603         }
5604         case PERF_EVENT_IOC_ID:
5605         {
5606                 u64 id = primary_event_id(event);
5607
5608                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5609                         return -EFAULT;
5610                 return 0;
5611         }
5612
5613         case PERF_EVENT_IOC_SET_OUTPUT:
5614         {
5615                 int ret;
5616                 if (arg != -1) {
5617                         struct perf_event *output_event;
5618                         struct fd output;
5619                         ret = perf_fget_light(arg, &output);
5620                         if (ret)
5621                                 return ret;
5622                         output_event = output.file->private_data;
5623                         ret = perf_event_set_output(event, output_event);
5624                         fdput(output);
5625                 } else {
5626                         ret = perf_event_set_output(event, NULL);
5627                 }
5628                 return ret;
5629         }
5630
5631         case PERF_EVENT_IOC_SET_FILTER:
5632                 return perf_event_set_filter(event, (void __user *)arg);
5633
5634         case PERF_EVENT_IOC_SET_BPF:
5635                 return perf_event_set_bpf_prog(event, arg);
5636
5637         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5638                 struct perf_buffer *rb;
5639
5640                 rcu_read_lock();
5641                 rb = rcu_dereference(event->rb);
5642                 if (!rb || !rb->nr_pages) {
5643                         rcu_read_unlock();
5644                         return -EINVAL;
5645                 }
5646                 rb_toggle_paused(rb, !!arg);
5647                 rcu_read_unlock();
5648                 return 0;
5649         }
5650
5651         case PERF_EVENT_IOC_QUERY_BPF:
5652                 return perf_event_query_prog_array(event, (void __user *)arg);
5653
5654         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5655                 struct perf_event_attr new_attr;
5656                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5657                                          &new_attr);
5658
5659                 if (err)
5660                         return err;
5661
5662                 return perf_event_modify_attr(event,  &new_attr);
5663         }
5664         default:
5665                 return -ENOTTY;
5666         }
5667
5668         if (flags & PERF_IOC_FLAG_GROUP)
5669                 perf_event_for_each(event, func);
5670         else
5671                 perf_event_for_each_child(event, func);
5672
5673         return 0;
5674 }
5675
5676 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5677 {
5678         struct perf_event *event = file->private_data;
5679         struct perf_event_context *ctx;
5680         long ret;
5681
5682         /* Treat ioctl like writes as it is likely a mutating operation. */
5683         ret = security_perf_event_write(event);
5684         if (ret)
5685                 return ret;
5686
5687         ctx = perf_event_ctx_lock(event);
5688         ret = _perf_ioctl(event, cmd, arg);
5689         perf_event_ctx_unlock(event, ctx);
5690
5691         return ret;
5692 }
5693
5694 #ifdef CONFIG_COMPAT
5695 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5696                                 unsigned long arg)
5697 {
5698         switch (_IOC_NR(cmd)) {
5699         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5700         case _IOC_NR(PERF_EVENT_IOC_ID):
5701         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5702         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5703                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5704                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5705                         cmd &= ~IOCSIZE_MASK;
5706                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5707                 }
5708                 break;
5709         }
5710         return perf_ioctl(file, cmd, arg);
5711 }
5712 #else
5713 # define perf_compat_ioctl NULL
5714 #endif
5715
5716 int perf_event_task_enable(void)
5717 {
5718         struct perf_event_context *ctx;
5719         struct perf_event *event;
5720
5721         mutex_lock(&current->perf_event_mutex);
5722         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5723                 ctx = perf_event_ctx_lock(event);
5724                 perf_event_for_each_child(event, _perf_event_enable);
5725                 perf_event_ctx_unlock(event, ctx);
5726         }
5727         mutex_unlock(&current->perf_event_mutex);
5728
5729         return 0;
5730 }
5731
5732 int perf_event_task_disable(void)
5733 {
5734         struct perf_event_context *ctx;
5735         struct perf_event *event;
5736
5737         mutex_lock(&current->perf_event_mutex);
5738         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5739                 ctx = perf_event_ctx_lock(event);
5740                 perf_event_for_each_child(event, _perf_event_disable);
5741                 perf_event_ctx_unlock(event, ctx);
5742         }
5743         mutex_unlock(&current->perf_event_mutex);
5744
5745         return 0;
5746 }
5747
5748 static int perf_event_index(struct perf_event *event)
5749 {
5750         if (event->hw.state & PERF_HES_STOPPED)
5751                 return 0;
5752
5753         if (event->state != PERF_EVENT_STATE_ACTIVE)
5754                 return 0;
5755
5756         return event->pmu->event_idx(event);
5757 }
5758
5759 static void calc_timer_values(struct perf_event *event,
5760                                 u64 *now,
5761                                 u64 *enabled,
5762                                 u64 *running)
5763 {
5764         u64 ctx_time;
5765
5766         *now = perf_clock();
5767         ctx_time = event->shadow_ctx_time + *now;
5768         __perf_update_times(event, ctx_time, enabled, running);
5769 }
5770
5771 static void perf_event_init_userpage(struct perf_event *event)
5772 {
5773         struct perf_event_mmap_page *userpg;
5774         struct perf_buffer *rb;
5775
5776         rcu_read_lock();
5777         rb = rcu_dereference(event->rb);
5778         if (!rb)
5779                 goto unlock;
5780
5781         userpg = rb->user_page;
5782
5783         /* Allow new userspace to detect that bit 0 is deprecated */
5784         userpg->cap_bit0_is_deprecated = 1;
5785         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5786         userpg->data_offset = PAGE_SIZE;
5787         userpg->data_size = perf_data_size(rb);
5788
5789 unlock:
5790         rcu_read_unlock();
5791 }
5792
5793 void __weak arch_perf_update_userpage(
5794         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5795 {
5796 }
5797
5798 /*
5799  * Callers need to ensure there can be no nesting of this function, otherwise
5800  * the seqlock logic goes bad. We can not serialize this because the arch
5801  * code calls this from NMI context.
5802  */
5803 void perf_event_update_userpage(struct perf_event *event)
5804 {
5805         struct perf_event_mmap_page *userpg;
5806         struct perf_buffer *rb;
5807         u64 enabled, running, now;
5808
5809         rcu_read_lock();
5810         rb = rcu_dereference(event->rb);
5811         if (!rb)
5812                 goto unlock;
5813
5814         /*
5815          * compute total_time_enabled, total_time_running
5816          * based on snapshot values taken when the event
5817          * was last scheduled in.
5818          *
5819          * we cannot simply called update_context_time()
5820          * because of locking issue as we can be called in
5821          * NMI context
5822          */
5823         calc_timer_values(event, &now, &enabled, &running);
5824
5825         userpg = rb->user_page;
5826         /*
5827          * Disable preemption to guarantee consistent time stamps are stored to
5828          * the user page.
5829          */
5830         preempt_disable();
5831         ++userpg->lock;
5832         barrier();
5833         userpg->index = perf_event_index(event);
5834         userpg->offset = perf_event_count(event);
5835         if (userpg->index)
5836                 userpg->offset -= local64_read(&event->hw.prev_count);
5837
5838         userpg->time_enabled = enabled +
5839                         atomic64_read(&event->child_total_time_enabled);
5840
5841         userpg->time_running = running +
5842                         atomic64_read(&event->child_total_time_running);
5843
5844         arch_perf_update_userpage(event, userpg, now);
5845
5846         barrier();
5847         ++userpg->lock;
5848         preempt_enable();
5849 unlock:
5850         rcu_read_unlock();
5851 }
5852 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5853
5854 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5855 {
5856         struct perf_event *event = vmf->vma->vm_file->private_data;
5857         struct perf_buffer *rb;
5858         vm_fault_t ret = VM_FAULT_SIGBUS;
5859
5860         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5861                 if (vmf->pgoff == 0)
5862                         ret = 0;
5863                 return ret;
5864         }
5865
5866         rcu_read_lock();
5867         rb = rcu_dereference(event->rb);
5868         if (!rb)
5869                 goto unlock;
5870
5871         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5872                 goto unlock;
5873
5874         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5875         if (!vmf->page)
5876                 goto unlock;
5877
5878         get_page(vmf->page);
5879         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5880         vmf->page->index   = vmf->pgoff;
5881
5882         ret = 0;
5883 unlock:
5884         rcu_read_unlock();
5885
5886         return ret;
5887 }
5888
5889 static void ring_buffer_attach(struct perf_event *event,
5890                                struct perf_buffer *rb)
5891 {
5892         struct perf_buffer *old_rb = NULL;
5893         unsigned long flags;
5894
5895         if (event->rb) {
5896                 /*
5897                  * Should be impossible, we set this when removing
5898                  * event->rb_entry and wait/clear when adding event->rb_entry.
5899                  */
5900                 WARN_ON_ONCE(event->rcu_pending);
5901
5902                 old_rb = event->rb;
5903                 spin_lock_irqsave(&old_rb->event_lock, flags);
5904                 list_del_rcu(&event->rb_entry);
5905                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5906
5907                 event->rcu_batches = get_state_synchronize_rcu();
5908                 event->rcu_pending = 1;
5909         }
5910
5911         if (rb) {
5912                 if (event->rcu_pending) {
5913                         cond_synchronize_rcu(event->rcu_batches);
5914                         event->rcu_pending = 0;
5915                 }
5916
5917                 spin_lock_irqsave(&rb->event_lock, flags);
5918                 list_add_rcu(&event->rb_entry, &rb->event_list);
5919                 spin_unlock_irqrestore(&rb->event_lock, flags);
5920         }
5921
5922         /*
5923          * Avoid racing with perf_mmap_close(AUX): stop the event
5924          * before swizzling the event::rb pointer; if it's getting
5925          * unmapped, its aux_mmap_count will be 0 and it won't
5926          * restart. See the comment in __perf_pmu_output_stop().
5927          *
5928          * Data will inevitably be lost when set_output is done in
5929          * mid-air, but then again, whoever does it like this is
5930          * not in for the data anyway.
5931          */
5932         if (has_aux(event))
5933                 perf_event_stop(event, 0);
5934
5935         rcu_assign_pointer(event->rb, rb);
5936
5937         if (old_rb) {
5938                 ring_buffer_put(old_rb);
5939                 /*
5940                  * Since we detached before setting the new rb, so that we
5941                  * could attach the new rb, we could have missed a wakeup.
5942                  * Provide it now.
5943                  */
5944                 wake_up_all(&event->waitq);
5945         }
5946 }
5947
5948 static void ring_buffer_wakeup(struct perf_event *event)
5949 {
5950         struct perf_buffer *rb;
5951
5952         rcu_read_lock();
5953         rb = rcu_dereference(event->rb);
5954         if (rb) {
5955                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5956                         wake_up_all(&event->waitq);
5957         }
5958         rcu_read_unlock();
5959 }
5960
5961 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5962 {
5963         struct perf_buffer *rb;
5964
5965         rcu_read_lock();
5966         rb = rcu_dereference(event->rb);
5967         if (rb) {
5968                 if (!refcount_inc_not_zero(&rb->refcount))
5969                         rb = NULL;
5970         }
5971         rcu_read_unlock();
5972
5973         return rb;
5974 }
5975
5976 void ring_buffer_put(struct perf_buffer *rb)
5977 {
5978         if (!refcount_dec_and_test(&rb->refcount))
5979                 return;
5980
5981         WARN_ON_ONCE(!list_empty(&rb->event_list));
5982
5983         call_rcu(&rb->rcu_head, rb_free_rcu);
5984 }
5985
5986 static void perf_mmap_open(struct vm_area_struct *vma)
5987 {
5988         struct perf_event *event = vma->vm_file->private_data;
5989
5990         atomic_inc(&event->mmap_count);
5991         atomic_inc(&event->rb->mmap_count);
5992
5993         if (vma->vm_pgoff)
5994                 atomic_inc(&event->rb->aux_mmap_count);
5995
5996         if (event->pmu->event_mapped)
5997                 event->pmu->event_mapped(event, vma->vm_mm);
5998 }
5999
6000 static void perf_pmu_output_stop(struct perf_event *event);
6001
6002 /*
6003  * A buffer can be mmap()ed multiple times; either directly through the same
6004  * event, or through other events by use of perf_event_set_output().
6005  *
6006  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6007  * the buffer here, where we still have a VM context. This means we need
6008  * to detach all events redirecting to us.
6009  */
6010 static void perf_mmap_close(struct vm_area_struct *vma)
6011 {
6012         struct perf_event *event = vma->vm_file->private_data;
6013         struct perf_buffer *rb = ring_buffer_get(event);
6014         struct user_struct *mmap_user = rb->mmap_user;
6015         int mmap_locked = rb->mmap_locked;
6016         unsigned long size = perf_data_size(rb);
6017         bool detach_rest = false;
6018
6019         if (event->pmu->event_unmapped)
6020                 event->pmu->event_unmapped(event, vma->vm_mm);
6021
6022         /*
6023          * rb->aux_mmap_count will always drop before rb->mmap_count and
6024          * event->mmap_count, so it is ok to use event->mmap_mutex to
6025          * serialize with perf_mmap here.
6026          */
6027         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6028             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6029                 /*
6030                  * Stop all AUX events that are writing to this buffer,
6031                  * so that we can free its AUX pages and corresponding PMU
6032                  * data. Note that after rb::aux_mmap_count dropped to zero,
6033                  * they won't start any more (see perf_aux_output_begin()).
6034                  */
6035                 perf_pmu_output_stop(event);
6036
6037                 /* now it's safe to free the pages */
6038                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6039                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6040
6041                 /* this has to be the last one */
6042                 rb_free_aux(rb);
6043                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6044
6045                 mutex_unlock(&event->mmap_mutex);
6046         }
6047
6048         if (atomic_dec_and_test(&rb->mmap_count))
6049                 detach_rest = true;
6050
6051         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6052                 goto out_put;
6053
6054         ring_buffer_attach(event, NULL);
6055         mutex_unlock(&event->mmap_mutex);
6056
6057         /* If there's still other mmap()s of this buffer, we're done. */
6058         if (!detach_rest)
6059                 goto out_put;
6060
6061         /*
6062          * No other mmap()s, detach from all other events that might redirect
6063          * into the now unreachable buffer. Somewhat complicated by the
6064          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6065          */
6066 again:
6067         rcu_read_lock();
6068         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6069                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6070                         /*
6071                          * This event is en-route to free_event() which will
6072                          * detach it and remove it from the list.
6073                          */
6074                         continue;
6075                 }
6076                 rcu_read_unlock();
6077
6078                 mutex_lock(&event->mmap_mutex);
6079                 /*
6080                  * Check we didn't race with perf_event_set_output() which can
6081                  * swizzle the rb from under us while we were waiting to
6082                  * acquire mmap_mutex.
6083                  *
6084                  * If we find a different rb; ignore this event, a next
6085                  * iteration will no longer find it on the list. We have to
6086                  * still restart the iteration to make sure we're not now
6087                  * iterating the wrong list.
6088                  */
6089                 if (event->rb == rb)
6090                         ring_buffer_attach(event, NULL);
6091
6092                 mutex_unlock(&event->mmap_mutex);
6093                 put_event(event);
6094
6095                 /*
6096                  * Restart the iteration; either we're on the wrong list or
6097                  * destroyed its integrity by doing a deletion.
6098                  */
6099                 goto again;
6100         }
6101         rcu_read_unlock();
6102
6103         /*
6104          * It could be there's still a few 0-ref events on the list; they'll
6105          * get cleaned up by free_event() -- they'll also still have their
6106          * ref on the rb and will free it whenever they are done with it.
6107          *
6108          * Aside from that, this buffer is 'fully' detached and unmapped,
6109          * undo the VM accounting.
6110          */
6111
6112         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6113                         &mmap_user->locked_vm);
6114         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6115         free_uid(mmap_user);
6116
6117 out_put:
6118         ring_buffer_put(rb); /* could be last */
6119 }
6120
6121 static const struct vm_operations_struct perf_mmap_vmops = {
6122         .open           = perf_mmap_open,
6123         .close          = perf_mmap_close, /* non mergeable */
6124         .fault          = perf_mmap_fault,
6125         .page_mkwrite   = perf_mmap_fault,
6126 };
6127
6128 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6129 {
6130         struct perf_event *event = file->private_data;
6131         unsigned long user_locked, user_lock_limit;
6132         struct user_struct *user = current_user();
6133         struct perf_buffer *rb = NULL;
6134         unsigned long locked, lock_limit;
6135         unsigned long vma_size;
6136         unsigned long nr_pages;
6137         long user_extra = 0, extra = 0;
6138         int ret = 0, flags = 0;
6139
6140         /*
6141          * Don't allow mmap() of inherited per-task counters. This would
6142          * create a performance issue due to all children writing to the
6143          * same rb.
6144          */
6145         if (event->cpu == -1 && event->attr.inherit)
6146                 return -EINVAL;
6147
6148         if (!(vma->vm_flags & VM_SHARED))
6149                 return -EINVAL;
6150
6151         ret = security_perf_event_read(event);
6152         if (ret)
6153                 return ret;
6154
6155         vma_size = vma->vm_end - vma->vm_start;
6156
6157         if (vma->vm_pgoff == 0) {
6158                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6159         } else {
6160                 /*
6161                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6162                  * mapped, all subsequent mappings should have the same size
6163                  * and offset. Must be above the normal perf buffer.
6164                  */
6165                 u64 aux_offset, aux_size;
6166
6167                 if (!event->rb)
6168                         return -EINVAL;
6169
6170                 nr_pages = vma_size / PAGE_SIZE;
6171
6172                 mutex_lock(&event->mmap_mutex);
6173                 ret = -EINVAL;
6174
6175                 rb = event->rb;
6176                 if (!rb)
6177                         goto aux_unlock;
6178
6179                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6180                 aux_size = READ_ONCE(rb->user_page->aux_size);
6181
6182                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6183                         goto aux_unlock;
6184
6185                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6186                         goto aux_unlock;
6187
6188                 /* already mapped with a different offset */
6189                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6190                         goto aux_unlock;
6191
6192                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6193                         goto aux_unlock;
6194
6195                 /* already mapped with a different size */
6196                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6197                         goto aux_unlock;
6198
6199                 if (!is_power_of_2(nr_pages))
6200                         goto aux_unlock;
6201
6202                 if (!atomic_inc_not_zero(&rb->mmap_count))
6203                         goto aux_unlock;
6204
6205                 if (rb_has_aux(rb)) {
6206                         atomic_inc(&rb->aux_mmap_count);
6207                         ret = 0;
6208                         goto unlock;
6209                 }
6210
6211                 atomic_set(&rb->aux_mmap_count, 1);
6212                 user_extra = nr_pages;
6213
6214                 goto accounting;
6215         }
6216
6217         /*
6218          * If we have rb pages ensure they're a power-of-two number, so we
6219          * can do bitmasks instead of modulo.
6220          */
6221         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6222                 return -EINVAL;
6223
6224         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6225                 return -EINVAL;
6226
6227         WARN_ON_ONCE(event->ctx->parent_ctx);
6228 again:
6229         mutex_lock(&event->mmap_mutex);
6230         if (event->rb) {
6231                 if (event->rb->nr_pages != nr_pages) {
6232                         ret = -EINVAL;
6233                         goto unlock;
6234                 }
6235
6236                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6237                         /*
6238                          * Raced against perf_mmap_close() through
6239                          * perf_event_set_output(). Try again, hope for better
6240                          * luck.
6241                          */
6242                         mutex_unlock(&event->mmap_mutex);
6243                         goto again;
6244                 }
6245
6246                 goto unlock;
6247         }
6248
6249         user_extra = nr_pages + 1;
6250
6251 accounting:
6252         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6253
6254         /*
6255          * Increase the limit linearly with more CPUs:
6256          */
6257         user_lock_limit *= num_online_cpus();
6258
6259         user_locked = atomic_long_read(&user->locked_vm);
6260
6261         /*
6262          * sysctl_perf_event_mlock may have changed, so that
6263          *     user->locked_vm > user_lock_limit
6264          */
6265         if (user_locked > user_lock_limit)
6266                 user_locked = user_lock_limit;
6267         user_locked += user_extra;
6268
6269         if (user_locked > user_lock_limit) {
6270                 /*
6271                  * charge locked_vm until it hits user_lock_limit;
6272                  * charge the rest from pinned_vm
6273                  */
6274                 extra = user_locked - user_lock_limit;
6275                 user_extra -= extra;
6276         }
6277
6278         lock_limit = rlimit(RLIMIT_MEMLOCK);
6279         lock_limit >>= PAGE_SHIFT;
6280         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6281
6282         if ((locked > lock_limit) && perf_is_paranoid() &&
6283                 !capable(CAP_IPC_LOCK)) {
6284                 ret = -EPERM;
6285                 goto unlock;
6286         }
6287
6288         WARN_ON(!rb && event->rb);
6289
6290         if (vma->vm_flags & VM_WRITE)
6291                 flags |= RING_BUFFER_WRITABLE;
6292
6293         if (!rb) {
6294                 rb = rb_alloc(nr_pages,
6295                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6296                               event->cpu, flags);
6297
6298                 if (!rb) {
6299                         ret = -ENOMEM;
6300                         goto unlock;
6301                 }
6302
6303                 atomic_set(&rb->mmap_count, 1);
6304                 rb->mmap_user = get_current_user();
6305                 rb->mmap_locked = extra;
6306
6307                 ring_buffer_attach(event, rb);
6308
6309                 perf_event_init_userpage(event);
6310                 perf_event_update_userpage(event);
6311         } else {
6312                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6313                                    event->attr.aux_watermark, flags);
6314                 if (!ret)
6315                         rb->aux_mmap_locked = extra;
6316         }
6317
6318 unlock:
6319         if (!ret) {
6320                 atomic_long_add(user_extra, &user->locked_vm);
6321                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6322
6323                 atomic_inc(&event->mmap_count);
6324         } else if (rb) {
6325                 atomic_dec(&rb->mmap_count);
6326         }
6327 aux_unlock:
6328         mutex_unlock(&event->mmap_mutex);
6329
6330         /*
6331          * Since pinned accounting is per vm we cannot allow fork() to copy our
6332          * vma.
6333          */
6334         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6335         vma->vm_ops = &perf_mmap_vmops;
6336
6337         if (event->pmu->event_mapped)
6338                 event->pmu->event_mapped(event, vma->vm_mm);
6339
6340         return ret;
6341 }
6342
6343 static int perf_fasync(int fd, struct file *filp, int on)
6344 {
6345         struct inode *inode = file_inode(filp);
6346         struct perf_event *event = filp->private_data;
6347         int retval;
6348
6349         inode_lock(inode);
6350         retval = fasync_helper(fd, filp, on, &event->fasync);
6351         inode_unlock(inode);
6352
6353         if (retval < 0)
6354                 return retval;
6355
6356         return 0;
6357 }
6358
6359 static const struct file_operations perf_fops = {
6360         .llseek                 = no_llseek,
6361         .release                = perf_release,
6362         .read                   = perf_read,
6363         .poll                   = perf_poll,
6364         .unlocked_ioctl         = perf_ioctl,
6365         .compat_ioctl           = perf_compat_ioctl,
6366         .mmap                   = perf_mmap,
6367         .fasync                 = perf_fasync,
6368 };
6369
6370 /*
6371  * Perf event wakeup
6372  *
6373  * If there's data, ensure we set the poll() state and publish everything
6374  * to user-space before waking everybody up.
6375  */
6376
6377 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6378 {
6379         /* only the parent has fasync state */
6380         if (event->parent)
6381                 event = event->parent;
6382         return &event->fasync;
6383 }
6384
6385 void perf_event_wakeup(struct perf_event *event)
6386 {
6387         ring_buffer_wakeup(event);
6388
6389         if (event->pending_kill) {
6390                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6391                 event->pending_kill = 0;
6392         }
6393 }
6394
6395 static void perf_sigtrap(struct perf_event *event)
6396 {
6397         struct kernel_siginfo info;
6398
6399         /*
6400          * We'd expect this to only occur if the irq_work is delayed and either
6401          * ctx->task or current has changed in the meantime. This can be the
6402          * case on architectures that do not implement arch_irq_work_raise().
6403          */
6404         if (WARN_ON_ONCE(event->ctx->task != current))
6405                 return;
6406
6407         /*
6408          * perf_pending_event() can race with the task exiting.
6409          */
6410         if (current->flags & PF_EXITING)
6411                 return;
6412
6413         clear_siginfo(&info);
6414         info.si_signo = SIGTRAP;
6415         info.si_code = TRAP_PERF;
6416         info.si_errno = event->attr.type;
6417         info.si_perf = event->attr.sig_data;
6418         info.si_addr = (void __user *)event->pending_addr;
6419         force_sig_info(&info);
6420 }
6421
6422 static void perf_pending_event_disable(struct perf_event *event)
6423 {
6424         int cpu = READ_ONCE(event->pending_disable);
6425
6426         if (cpu < 0)
6427                 return;
6428
6429         if (cpu == smp_processor_id()) {
6430                 WRITE_ONCE(event->pending_disable, -1);
6431
6432                 if (event->attr.sigtrap) {
6433                         perf_sigtrap(event);
6434                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6435                         return;
6436                 }
6437
6438                 perf_event_disable_local(event);
6439                 return;
6440         }
6441
6442         /*
6443          *  CPU-A                       CPU-B
6444          *
6445          *  perf_event_disable_inatomic()
6446          *    @pending_disable = CPU-A;
6447          *    irq_work_queue();
6448          *
6449          *  sched-out
6450          *    @pending_disable = -1;
6451          *
6452          *                              sched-in
6453          *                              perf_event_disable_inatomic()
6454          *                                @pending_disable = CPU-B;
6455          *                                irq_work_queue(); // FAILS
6456          *
6457          *  irq_work_run()
6458          *    perf_pending_event()
6459          *
6460          * But the event runs on CPU-B and wants disabling there.
6461          */
6462         irq_work_queue_on(&event->pending, cpu);
6463 }
6464
6465 static void perf_pending_event(struct irq_work *entry)
6466 {
6467         struct perf_event *event = container_of(entry, struct perf_event, pending);
6468         int rctx;
6469
6470         rctx = perf_swevent_get_recursion_context();
6471         /*
6472          * If we 'fail' here, that's OK, it means recursion is already disabled
6473          * and we won't recurse 'further'.
6474          */
6475
6476         perf_pending_event_disable(event);
6477
6478         if (event->pending_wakeup) {
6479                 event->pending_wakeup = 0;
6480                 perf_event_wakeup(event);
6481         }
6482
6483         if (rctx >= 0)
6484                 perf_swevent_put_recursion_context(rctx);
6485 }
6486
6487 /*
6488  * We assume there is only KVM supporting the callbacks.
6489  * Later on, we might change it to a list if there is
6490  * another virtualization implementation supporting the callbacks.
6491  */
6492 struct perf_guest_info_callbacks *perf_guest_cbs;
6493
6494 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6495 {
6496         perf_guest_cbs = cbs;
6497         return 0;
6498 }
6499 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6500
6501 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6502 {
6503         perf_guest_cbs = NULL;
6504         return 0;
6505 }
6506 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6507
6508 static void
6509 perf_output_sample_regs(struct perf_output_handle *handle,
6510                         struct pt_regs *regs, u64 mask)
6511 {
6512         int bit;
6513         DECLARE_BITMAP(_mask, 64);
6514
6515         bitmap_from_u64(_mask, mask);
6516         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6517                 u64 val;
6518
6519                 val = perf_reg_value(regs, bit);
6520                 perf_output_put(handle, val);
6521         }
6522 }
6523
6524 static void perf_sample_regs_user(struct perf_regs *regs_user,
6525                                   struct pt_regs *regs)
6526 {
6527         if (user_mode(regs)) {
6528                 regs_user->abi = perf_reg_abi(current);
6529                 regs_user->regs = regs;
6530         } else if (!(current->flags & PF_KTHREAD)) {
6531                 perf_get_regs_user(regs_user, regs);
6532         } else {
6533                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6534                 regs_user->regs = NULL;
6535         }
6536 }
6537
6538 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6539                                   struct pt_regs *regs)
6540 {
6541         regs_intr->regs = regs;
6542         regs_intr->abi  = perf_reg_abi(current);
6543 }
6544
6545
6546 /*
6547  * Get remaining task size from user stack pointer.
6548  *
6549  * It'd be better to take stack vma map and limit this more
6550  * precisely, but there's no way to get it safely under interrupt,
6551  * so using TASK_SIZE as limit.
6552  */
6553 static u64 perf_ustack_task_size(struct pt_regs *regs)
6554 {
6555         unsigned long addr = perf_user_stack_pointer(regs);
6556
6557         if (!addr || addr >= TASK_SIZE)
6558                 return 0;
6559
6560         return TASK_SIZE - addr;
6561 }
6562
6563 static u16
6564 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6565                         struct pt_regs *regs)
6566 {
6567         u64 task_size;
6568
6569         /* No regs, no stack pointer, no dump. */
6570         if (!regs)
6571                 return 0;
6572
6573         /*
6574          * Check if we fit in with the requested stack size into the:
6575          * - TASK_SIZE
6576          *   If we don't, we limit the size to the TASK_SIZE.
6577          *
6578          * - remaining sample size
6579          *   If we don't, we customize the stack size to
6580          *   fit in to the remaining sample size.
6581          */
6582
6583         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6584         stack_size = min(stack_size, (u16) task_size);
6585
6586         /* Current header size plus static size and dynamic size. */
6587         header_size += 2 * sizeof(u64);
6588
6589         /* Do we fit in with the current stack dump size? */
6590         if ((u16) (header_size + stack_size) < header_size) {
6591                 /*
6592                  * If we overflow the maximum size for the sample,
6593                  * we customize the stack dump size to fit in.
6594                  */
6595                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6596                 stack_size = round_up(stack_size, sizeof(u64));
6597         }
6598
6599         return stack_size;
6600 }
6601
6602 static void
6603 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6604                           struct pt_regs *regs)
6605 {
6606         /* Case of a kernel thread, nothing to dump */
6607         if (!regs) {
6608                 u64 size = 0;
6609                 perf_output_put(handle, size);
6610         } else {
6611                 unsigned long sp;
6612                 unsigned int rem;
6613                 u64 dyn_size;
6614                 mm_segment_t fs;
6615
6616                 /*
6617                  * We dump:
6618                  * static size
6619                  *   - the size requested by user or the best one we can fit
6620                  *     in to the sample max size
6621                  * data
6622                  *   - user stack dump data
6623                  * dynamic size
6624                  *   - the actual dumped size
6625                  */
6626
6627                 /* Static size. */
6628                 perf_output_put(handle, dump_size);
6629
6630                 /* Data. */
6631                 sp = perf_user_stack_pointer(regs);
6632                 fs = force_uaccess_begin();
6633                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6634                 force_uaccess_end(fs);
6635                 dyn_size = dump_size - rem;
6636
6637                 perf_output_skip(handle, rem);
6638
6639                 /* Dynamic size. */
6640                 perf_output_put(handle, dyn_size);
6641         }
6642 }
6643
6644 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6645                                           struct perf_sample_data *data,
6646                                           size_t size)
6647 {
6648         struct perf_event *sampler = event->aux_event;
6649         struct perf_buffer *rb;
6650
6651         data->aux_size = 0;
6652
6653         if (!sampler)
6654                 goto out;
6655
6656         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6657                 goto out;
6658
6659         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6660                 goto out;
6661
6662         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6663         if (!rb)
6664                 goto out;
6665
6666         /*
6667          * If this is an NMI hit inside sampling code, don't take
6668          * the sample. See also perf_aux_sample_output().
6669          */
6670         if (READ_ONCE(rb->aux_in_sampling)) {
6671                 data->aux_size = 0;
6672         } else {
6673                 size = min_t(size_t, size, perf_aux_size(rb));
6674                 data->aux_size = ALIGN(size, sizeof(u64));
6675         }
6676         ring_buffer_put(rb);
6677
6678 out:
6679         return data->aux_size;
6680 }
6681
6682 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6683                            struct perf_event *event,
6684                            struct perf_output_handle *handle,
6685                            unsigned long size)
6686 {
6687         unsigned long flags;
6688         long ret;
6689
6690         /*
6691          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6692          * paths. If we start calling them in NMI context, they may race with
6693          * the IRQ ones, that is, for example, re-starting an event that's just
6694          * been stopped, which is why we're using a separate callback that
6695          * doesn't change the event state.
6696          *
6697          * IRQs need to be disabled to prevent IPIs from racing with us.
6698          */
6699         local_irq_save(flags);
6700         /*
6701          * Guard against NMI hits inside the critical section;
6702          * see also perf_prepare_sample_aux().
6703          */
6704         WRITE_ONCE(rb->aux_in_sampling, 1);
6705         barrier();
6706
6707         ret = event->pmu->snapshot_aux(event, handle, size);
6708
6709         barrier();
6710         WRITE_ONCE(rb->aux_in_sampling, 0);
6711         local_irq_restore(flags);
6712
6713         return ret;
6714 }
6715
6716 static void perf_aux_sample_output(struct perf_event *event,
6717                                    struct perf_output_handle *handle,
6718                                    struct perf_sample_data *data)
6719 {
6720         struct perf_event *sampler = event->aux_event;
6721         struct perf_buffer *rb;
6722         unsigned long pad;
6723         long size;
6724
6725         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6726                 return;
6727
6728         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6729         if (!rb)
6730                 return;
6731
6732         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6733
6734         /*
6735          * An error here means that perf_output_copy() failed (returned a
6736          * non-zero surplus that it didn't copy), which in its current
6737          * enlightened implementation is not possible. If that changes, we'd
6738          * like to know.
6739          */
6740         if (WARN_ON_ONCE(size < 0))
6741                 goto out_put;
6742
6743         /*
6744          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6745          * perf_prepare_sample_aux(), so should not be more than that.
6746          */
6747         pad = data->aux_size - size;
6748         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6749                 pad = 8;
6750
6751         if (pad) {
6752                 u64 zero = 0;
6753                 perf_output_copy(handle, &zero, pad);
6754         }
6755
6756 out_put:
6757         ring_buffer_put(rb);
6758 }
6759
6760 static void __perf_event_header__init_id(struct perf_event_header *header,
6761                                          struct perf_sample_data *data,
6762                                          struct perf_event *event)
6763 {
6764         u64 sample_type = event->attr.sample_type;
6765
6766         data->type = sample_type;
6767         header->size += event->id_header_size;
6768
6769         if (sample_type & PERF_SAMPLE_TID) {
6770                 /* namespace issues */
6771                 data->tid_entry.pid = perf_event_pid(event, current);
6772                 data->tid_entry.tid = perf_event_tid(event, current);
6773         }
6774
6775         if (sample_type & PERF_SAMPLE_TIME)
6776                 data->time = perf_event_clock(event);
6777
6778         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6779                 data->id = primary_event_id(event);
6780
6781         if (sample_type & PERF_SAMPLE_STREAM_ID)
6782                 data->stream_id = event->id;
6783
6784         if (sample_type & PERF_SAMPLE_CPU) {
6785                 data->cpu_entry.cpu      = raw_smp_processor_id();
6786                 data->cpu_entry.reserved = 0;
6787         }
6788 }
6789
6790 void perf_event_header__init_id(struct perf_event_header *header,
6791                                 struct perf_sample_data *data,
6792                                 struct perf_event *event)
6793 {
6794         if (event->attr.sample_id_all)
6795                 __perf_event_header__init_id(header, data, event);
6796 }
6797
6798 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6799                                            struct perf_sample_data *data)
6800 {
6801         u64 sample_type = data->type;
6802
6803         if (sample_type & PERF_SAMPLE_TID)
6804                 perf_output_put(handle, data->tid_entry);
6805
6806         if (sample_type & PERF_SAMPLE_TIME)
6807                 perf_output_put(handle, data->time);
6808
6809         if (sample_type & PERF_SAMPLE_ID)
6810                 perf_output_put(handle, data->id);
6811
6812         if (sample_type & PERF_SAMPLE_STREAM_ID)
6813                 perf_output_put(handle, data->stream_id);
6814
6815         if (sample_type & PERF_SAMPLE_CPU)
6816                 perf_output_put(handle, data->cpu_entry);
6817
6818         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6819                 perf_output_put(handle, data->id);
6820 }
6821
6822 void perf_event__output_id_sample(struct perf_event *event,
6823                                   struct perf_output_handle *handle,
6824                                   struct perf_sample_data *sample)
6825 {
6826         if (event->attr.sample_id_all)
6827                 __perf_event__output_id_sample(handle, sample);
6828 }
6829
6830 static void perf_output_read_one(struct perf_output_handle *handle,
6831                                  struct perf_event *event,
6832                                  u64 enabled, u64 running)
6833 {
6834         u64 read_format = event->attr.read_format;
6835         u64 values[4];
6836         int n = 0;
6837
6838         values[n++] = perf_event_count(event);
6839         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6840                 values[n++] = enabled +
6841                         atomic64_read(&event->child_total_time_enabled);
6842         }
6843         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6844                 values[n++] = running +
6845                         atomic64_read(&event->child_total_time_running);
6846         }
6847         if (read_format & PERF_FORMAT_ID)
6848                 values[n++] = primary_event_id(event);
6849
6850         __output_copy(handle, values, n * sizeof(u64));
6851 }
6852
6853 static void perf_output_read_group(struct perf_output_handle *handle,
6854                             struct perf_event *event,
6855                             u64 enabled, u64 running)
6856 {
6857         struct perf_event *leader = event->group_leader, *sub;
6858         u64 read_format = event->attr.read_format;
6859         u64 values[5];
6860         int n = 0;
6861
6862         values[n++] = 1 + leader->nr_siblings;
6863
6864         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6865                 values[n++] = enabled;
6866
6867         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6868                 values[n++] = running;
6869
6870         if ((leader != event) &&
6871             (leader->state == PERF_EVENT_STATE_ACTIVE))
6872                 leader->pmu->read(leader);
6873
6874         values[n++] = perf_event_count(leader);
6875         if (read_format & PERF_FORMAT_ID)
6876                 values[n++] = primary_event_id(leader);
6877
6878         __output_copy(handle, values, n * sizeof(u64));
6879
6880         for_each_sibling_event(sub, leader) {
6881                 n = 0;
6882
6883                 if ((sub != event) &&
6884                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6885                         sub->pmu->read(sub);
6886
6887                 values[n++] = perf_event_count(sub);
6888                 if (read_format & PERF_FORMAT_ID)
6889                         values[n++] = primary_event_id(sub);
6890
6891                 __output_copy(handle, values, n * sizeof(u64));
6892         }
6893 }
6894
6895 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6896                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6897
6898 /*
6899  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6900  *
6901  * The problem is that its both hard and excessively expensive to iterate the
6902  * child list, not to mention that its impossible to IPI the children running
6903  * on another CPU, from interrupt/NMI context.
6904  */
6905 static void perf_output_read(struct perf_output_handle *handle,
6906                              struct perf_event *event)
6907 {
6908         u64 enabled = 0, running = 0, now;
6909         u64 read_format = event->attr.read_format;
6910
6911         /*
6912          * compute total_time_enabled, total_time_running
6913          * based on snapshot values taken when the event
6914          * was last scheduled in.
6915          *
6916          * we cannot simply called update_context_time()
6917          * because of locking issue as we are called in
6918          * NMI context
6919          */
6920         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6921                 calc_timer_values(event, &now, &enabled, &running);
6922
6923         if (event->attr.read_format & PERF_FORMAT_GROUP)
6924                 perf_output_read_group(handle, event, enabled, running);
6925         else
6926                 perf_output_read_one(handle, event, enabled, running);
6927 }
6928
6929 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6930 {
6931         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6932 }
6933
6934 void perf_output_sample(struct perf_output_handle *handle,
6935                         struct perf_event_header *header,
6936                         struct perf_sample_data *data,
6937                         struct perf_event *event)
6938 {
6939         u64 sample_type = data->type;
6940
6941         perf_output_put(handle, *header);
6942
6943         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6944                 perf_output_put(handle, data->id);
6945
6946         if (sample_type & PERF_SAMPLE_IP)
6947                 perf_output_put(handle, data->ip);
6948
6949         if (sample_type & PERF_SAMPLE_TID)
6950                 perf_output_put(handle, data->tid_entry);
6951
6952         if (sample_type & PERF_SAMPLE_TIME)
6953                 perf_output_put(handle, data->time);
6954
6955         if (sample_type & PERF_SAMPLE_ADDR)
6956                 perf_output_put(handle, data->addr);
6957
6958         if (sample_type & PERF_SAMPLE_ID)
6959                 perf_output_put(handle, data->id);
6960
6961         if (sample_type & PERF_SAMPLE_STREAM_ID)
6962                 perf_output_put(handle, data->stream_id);
6963
6964         if (sample_type & PERF_SAMPLE_CPU)
6965                 perf_output_put(handle, data->cpu_entry);
6966
6967         if (sample_type & PERF_SAMPLE_PERIOD)
6968                 perf_output_put(handle, data->period);
6969
6970         if (sample_type & PERF_SAMPLE_READ)
6971                 perf_output_read(handle, event);
6972
6973         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6974                 int size = 1;
6975
6976                 size += data->callchain->nr;
6977                 size *= sizeof(u64);
6978                 __output_copy(handle, data->callchain, size);
6979         }
6980
6981         if (sample_type & PERF_SAMPLE_RAW) {
6982                 struct perf_raw_record *raw = data->raw;
6983
6984                 if (raw) {
6985                         struct perf_raw_frag *frag = &raw->frag;
6986
6987                         perf_output_put(handle, raw->size);
6988                         do {
6989                                 if (frag->copy) {
6990                                         __output_custom(handle, frag->copy,
6991                                                         frag->data, frag->size);
6992                                 } else {
6993                                         __output_copy(handle, frag->data,
6994                                                       frag->size);
6995                                 }
6996                                 if (perf_raw_frag_last(frag))
6997                                         break;
6998                                 frag = frag->next;
6999                         } while (1);
7000                         if (frag->pad)
7001                                 __output_skip(handle, NULL, frag->pad);
7002                 } else {
7003                         struct {
7004                                 u32     size;
7005                                 u32     data;
7006                         } raw = {
7007                                 .size = sizeof(u32),
7008                                 .data = 0,
7009                         };
7010                         perf_output_put(handle, raw);
7011                 }
7012         }
7013
7014         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7015                 if (data->br_stack) {
7016                         size_t size;
7017
7018                         size = data->br_stack->nr
7019                              * sizeof(struct perf_branch_entry);
7020
7021                         perf_output_put(handle, data->br_stack->nr);
7022                         if (perf_sample_save_hw_index(event))
7023                                 perf_output_put(handle, data->br_stack->hw_idx);
7024                         perf_output_copy(handle, data->br_stack->entries, size);
7025                 } else {
7026                         /*
7027                          * we always store at least the value of nr
7028                          */
7029                         u64 nr = 0;
7030                         perf_output_put(handle, nr);
7031                 }
7032         }
7033
7034         if (sample_type & PERF_SAMPLE_REGS_USER) {
7035                 u64 abi = data->regs_user.abi;
7036
7037                 /*
7038                  * If there are no regs to dump, notice it through
7039                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7040                  */
7041                 perf_output_put(handle, abi);
7042
7043                 if (abi) {
7044                         u64 mask = event->attr.sample_regs_user;
7045                         perf_output_sample_regs(handle,
7046                                                 data->regs_user.regs,
7047                                                 mask);
7048                 }
7049         }
7050
7051         if (sample_type & PERF_SAMPLE_STACK_USER) {
7052                 perf_output_sample_ustack(handle,
7053                                           data->stack_user_size,
7054                                           data->regs_user.regs);
7055         }
7056
7057         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7058                 perf_output_put(handle, data->weight.full);
7059
7060         if (sample_type & PERF_SAMPLE_DATA_SRC)
7061                 perf_output_put(handle, data->data_src.val);
7062
7063         if (sample_type & PERF_SAMPLE_TRANSACTION)
7064                 perf_output_put(handle, data->txn);
7065
7066         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7067                 u64 abi = data->regs_intr.abi;
7068                 /*
7069                  * If there are no regs to dump, notice it through
7070                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7071                  */
7072                 perf_output_put(handle, abi);
7073
7074                 if (abi) {
7075                         u64 mask = event->attr.sample_regs_intr;
7076
7077                         perf_output_sample_regs(handle,
7078                                                 data->regs_intr.regs,
7079                                                 mask);
7080                 }
7081         }
7082
7083         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7084                 perf_output_put(handle, data->phys_addr);
7085
7086         if (sample_type & PERF_SAMPLE_CGROUP)
7087                 perf_output_put(handle, data->cgroup);
7088
7089         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7090                 perf_output_put(handle, data->data_page_size);
7091
7092         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7093                 perf_output_put(handle, data->code_page_size);
7094
7095         if (sample_type & PERF_SAMPLE_AUX) {
7096                 perf_output_put(handle, data->aux_size);
7097
7098                 if (data->aux_size)
7099                         perf_aux_sample_output(event, handle, data);
7100         }
7101
7102         if (!event->attr.watermark) {
7103                 int wakeup_events = event->attr.wakeup_events;
7104
7105                 if (wakeup_events) {
7106                         struct perf_buffer *rb = handle->rb;
7107                         int events = local_inc_return(&rb->events);
7108
7109                         if (events >= wakeup_events) {
7110                                 local_sub(wakeup_events, &rb->events);
7111                                 local_inc(&rb->wakeup);
7112                         }
7113                 }
7114         }
7115 }
7116
7117 static u64 perf_virt_to_phys(u64 virt)
7118 {
7119         u64 phys_addr = 0;
7120         struct page *p = NULL;
7121
7122         if (!virt)
7123                 return 0;
7124
7125         if (virt >= TASK_SIZE) {
7126                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7127                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7128                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7129                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7130         } else {
7131                 /*
7132                  * Walking the pages tables for user address.
7133                  * Interrupts are disabled, so it prevents any tear down
7134                  * of the page tables.
7135                  * Try IRQ-safe get_user_page_fast_only first.
7136                  * If failed, leave phys_addr as 0.
7137                  */
7138                 if (current->mm != NULL) {
7139                         pagefault_disable();
7140                         if (get_user_page_fast_only(virt, 0, &p))
7141                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7142                         pagefault_enable();
7143                 }
7144
7145                 if (p)
7146                         put_page(p);
7147         }
7148
7149         return phys_addr;
7150 }
7151
7152 /*
7153  * Return the pagetable size of a given virtual address.
7154  */
7155 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7156 {
7157         u64 size = 0;
7158
7159 #ifdef CONFIG_HAVE_FAST_GUP
7160         pgd_t *pgdp, pgd;
7161         p4d_t *p4dp, p4d;
7162         pud_t *pudp, pud;
7163         pmd_t *pmdp, pmd;
7164         pte_t *ptep, pte;
7165
7166         pgdp = pgd_offset(mm, addr);
7167         pgd = READ_ONCE(*pgdp);
7168         if (pgd_none(pgd))
7169                 return 0;
7170
7171         if (pgd_leaf(pgd))
7172                 return pgd_leaf_size(pgd);
7173
7174         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7175         p4d = READ_ONCE(*p4dp);
7176         if (!p4d_present(p4d))
7177                 return 0;
7178
7179         if (p4d_leaf(p4d))
7180                 return p4d_leaf_size(p4d);
7181
7182         pudp = pud_offset_lockless(p4dp, p4d, addr);
7183         pud = READ_ONCE(*pudp);
7184         if (!pud_present(pud))
7185                 return 0;
7186
7187         if (pud_leaf(pud))
7188                 return pud_leaf_size(pud);
7189
7190         pmdp = pmd_offset_lockless(pudp, pud, addr);
7191         pmd = READ_ONCE(*pmdp);
7192         if (!pmd_present(pmd))
7193                 return 0;
7194
7195         if (pmd_leaf(pmd))
7196                 return pmd_leaf_size(pmd);
7197
7198         ptep = pte_offset_map(&pmd, addr);
7199         pte = ptep_get_lockless(ptep);
7200         if (pte_present(pte))
7201                 size = pte_leaf_size(pte);
7202         pte_unmap(ptep);
7203 #endif /* CONFIG_HAVE_FAST_GUP */
7204
7205         return size;
7206 }
7207
7208 static u64 perf_get_page_size(unsigned long addr)
7209 {
7210         struct mm_struct *mm;
7211         unsigned long flags;
7212         u64 size;
7213
7214         if (!addr)
7215                 return 0;
7216
7217         /*
7218          * Software page-table walkers must disable IRQs,
7219          * which prevents any tear down of the page tables.
7220          */
7221         local_irq_save(flags);
7222
7223         mm = current->mm;
7224         if (!mm) {
7225                 /*
7226                  * For kernel threads and the like, use init_mm so that
7227                  * we can find kernel memory.
7228                  */
7229                 mm = &init_mm;
7230         }
7231
7232         size = perf_get_pgtable_size(mm, addr);
7233
7234         local_irq_restore(flags);
7235
7236         return size;
7237 }
7238
7239 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7240
7241 struct perf_callchain_entry *
7242 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7243 {
7244         bool kernel = !event->attr.exclude_callchain_kernel;
7245         bool user   = !event->attr.exclude_callchain_user;
7246         /* Disallow cross-task user callchains. */
7247         bool crosstask = event->ctx->task && event->ctx->task != current;
7248         const u32 max_stack = event->attr.sample_max_stack;
7249         struct perf_callchain_entry *callchain;
7250
7251         if (!kernel && !user)
7252                 return &__empty_callchain;
7253
7254         callchain = get_perf_callchain(regs, 0, kernel, user,
7255                                        max_stack, crosstask, true);
7256         return callchain ?: &__empty_callchain;
7257 }
7258
7259 void perf_prepare_sample(struct perf_event_header *header,
7260                          struct perf_sample_data *data,
7261                          struct perf_event *event,
7262                          struct pt_regs *regs)
7263 {
7264         u64 sample_type = event->attr.sample_type;
7265
7266         header->type = PERF_RECORD_SAMPLE;
7267         header->size = sizeof(*header) + event->header_size;
7268
7269         header->misc = 0;
7270         header->misc |= perf_misc_flags(regs);
7271
7272         __perf_event_header__init_id(header, data, event);
7273
7274         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7275                 data->ip = perf_instruction_pointer(regs);
7276
7277         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7278                 int size = 1;
7279
7280                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7281                         data->callchain = perf_callchain(event, regs);
7282
7283                 size += data->callchain->nr;
7284
7285                 header->size += size * sizeof(u64);
7286         }
7287
7288         if (sample_type & PERF_SAMPLE_RAW) {
7289                 struct perf_raw_record *raw = data->raw;
7290                 int size;
7291
7292                 if (raw) {
7293                         struct perf_raw_frag *frag = &raw->frag;
7294                         u32 sum = 0;
7295
7296                         do {
7297                                 sum += frag->size;
7298                                 if (perf_raw_frag_last(frag))
7299                                         break;
7300                                 frag = frag->next;
7301                         } while (1);
7302
7303                         size = round_up(sum + sizeof(u32), sizeof(u64));
7304                         raw->size = size - sizeof(u32);
7305                         frag->pad = raw->size - sum;
7306                 } else {
7307                         size = sizeof(u64);
7308                 }
7309
7310                 header->size += size;
7311         }
7312
7313         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7314                 int size = sizeof(u64); /* nr */
7315                 if (data->br_stack) {
7316                         if (perf_sample_save_hw_index(event))
7317                                 size += sizeof(u64);
7318
7319                         size += data->br_stack->nr
7320                               * sizeof(struct perf_branch_entry);
7321                 }
7322                 header->size += size;
7323         }
7324
7325         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7326                 perf_sample_regs_user(&data->regs_user, regs);
7327
7328         if (sample_type & PERF_SAMPLE_REGS_USER) {
7329                 /* regs dump ABI info */
7330                 int size = sizeof(u64);
7331
7332                 if (data->regs_user.regs) {
7333                         u64 mask = event->attr.sample_regs_user;
7334                         size += hweight64(mask) * sizeof(u64);
7335                 }
7336
7337                 header->size += size;
7338         }
7339
7340         if (sample_type & PERF_SAMPLE_STACK_USER) {
7341                 /*
7342                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7343                  * processed as the last one or have additional check added
7344                  * in case new sample type is added, because we could eat
7345                  * up the rest of the sample size.
7346                  */
7347                 u16 stack_size = event->attr.sample_stack_user;
7348                 u16 size = sizeof(u64);
7349
7350                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7351                                                      data->regs_user.regs);
7352
7353                 /*
7354                  * If there is something to dump, add space for the dump
7355                  * itself and for the field that tells the dynamic size,
7356                  * which is how many have been actually dumped.
7357                  */
7358                 if (stack_size)
7359                         size += sizeof(u64) + stack_size;
7360
7361                 data->stack_user_size = stack_size;
7362                 header->size += size;
7363         }
7364
7365         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7366                 /* regs dump ABI info */
7367                 int size = sizeof(u64);
7368
7369                 perf_sample_regs_intr(&data->regs_intr, regs);
7370
7371                 if (data->regs_intr.regs) {
7372                         u64 mask = event->attr.sample_regs_intr;
7373
7374                         size += hweight64(mask) * sizeof(u64);
7375                 }
7376
7377                 header->size += size;
7378         }
7379
7380         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7381                 data->phys_addr = perf_virt_to_phys(data->addr);
7382
7383 #ifdef CONFIG_CGROUP_PERF
7384         if (sample_type & PERF_SAMPLE_CGROUP) {
7385                 struct cgroup *cgrp;
7386
7387                 /* protected by RCU */
7388                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7389                 data->cgroup = cgroup_id(cgrp);
7390         }
7391 #endif
7392
7393         /*
7394          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7395          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7396          * but the value will not dump to the userspace.
7397          */
7398         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7399                 data->data_page_size = perf_get_page_size(data->addr);
7400
7401         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7402                 data->code_page_size = perf_get_page_size(data->ip);
7403
7404         if (sample_type & PERF_SAMPLE_AUX) {
7405                 u64 size;
7406
7407                 header->size += sizeof(u64); /* size */
7408
7409                 /*
7410                  * Given the 16bit nature of header::size, an AUX sample can
7411                  * easily overflow it, what with all the preceding sample bits.
7412                  * Make sure this doesn't happen by using up to U16_MAX bytes
7413                  * per sample in total (rounded down to 8 byte boundary).
7414                  */
7415                 size = min_t(size_t, U16_MAX - header->size,
7416                              event->attr.aux_sample_size);
7417                 size = rounddown(size, 8);
7418                 size = perf_prepare_sample_aux(event, data, size);
7419
7420                 WARN_ON_ONCE(size + header->size > U16_MAX);
7421                 header->size += size;
7422         }
7423         /*
7424          * If you're adding more sample types here, you likely need to do
7425          * something about the overflowing header::size, like repurpose the
7426          * lowest 3 bits of size, which should be always zero at the moment.
7427          * This raises a more important question, do we really need 512k sized
7428          * samples and why, so good argumentation is in order for whatever you
7429          * do here next.
7430          */
7431         WARN_ON_ONCE(header->size & 7);
7432 }
7433
7434 static __always_inline int
7435 __perf_event_output(struct perf_event *event,
7436                     struct perf_sample_data *data,
7437                     struct pt_regs *regs,
7438                     int (*output_begin)(struct perf_output_handle *,
7439                                         struct perf_sample_data *,
7440                                         struct perf_event *,
7441                                         unsigned int))
7442 {
7443         struct perf_output_handle handle;
7444         struct perf_event_header header;
7445         int err;
7446
7447         /* protect the callchain buffers */
7448         rcu_read_lock();
7449
7450         perf_prepare_sample(&header, data, event, regs);
7451
7452         err = output_begin(&handle, data, event, header.size);
7453         if (err)
7454                 goto exit;
7455
7456         perf_output_sample(&handle, &header, data, event);
7457
7458         perf_output_end(&handle);
7459
7460 exit:
7461         rcu_read_unlock();
7462         return err;
7463 }
7464
7465 void
7466 perf_event_output_forward(struct perf_event *event,
7467                          struct perf_sample_data *data,
7468                          struct pt_regs *regs)
7469 {
7470         __perf_event_output(event, data, regs, perf_output_begin_forward);
7471 }
7472
7473 void
7474 perf_event_output_backward(struct perf_event *event,
7475                            struct perf_sample_data *data,
7476                            struct pt_regs *regs)
7477 {
7478         __perf_event_output(event, data, regs, perf_output_begin_backward);
7479 }
7480
7481 int
7482 perf_event_output(struct perf_event *event,
7483                   struct perf_sample_data *data,
7484                   struct pt_regs *regs)
7485 {
7486         return __perf_event_output(event, data, regs, perf_output_begin);
7487 }
7488
7489 /*
7490  * read event_id
7491  */
7492
7493 struct perf_read_event {
7494         struct perf_event_header        header;
7495
7496         u32                             pid;
7497         u32                             tid;
7498 };
7499
7500 static void
7501 perf_event_read_event(struct perf_event *event,
7502                         struct task_struct *task)
7503 {
7504         struct perf_output_handle handle;
7505         struct perf_sample_data sample;
7506         struct perf_read_event read_event = {
7507                 .header = {
7508                         .type = PERF_RECORD_READ,
7509                         .misc = 0,
7510                         .size = sizeof(read_event) + event->read_size,
7511                 },
7512                 .pid = perf_event_pid(event, task),
7513                 .tid = perf_event_tid(event, task),
7514         };
7515         int ret;
7516
7517         perf_event_header__init_id(&read_event.header, &sample, event);
7518         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7519         if (ret)
7520                 return;
7521
7522         perf_output_put(&handle, read_event);
7523         perf_output_read(&handle, event);
7524         perf_event__output_id_sample(event, &handle, &sample);
7525
7526         perf_output_end(&handle);
7527 }
7528
7529 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7530
7531 static void
7532 perf_iterate_ctx(struct perf_event_context *ctx,
7533                    perf_iterate_f output,
7534                    void *data, bool all)
7535 {
7536         struct perf_event *event;
7537
7538         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7539                 if (!all) {
7540                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7541                                 continue;
7542                         if (!event_filter_match(event))
7543                                 continue;
7544                 }
7545
7546                 output(event, data);
7547         }
7548 }
7549
7550 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7551 {
7552         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7553         struct perf_event *event;
7554
7555         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7556                 /*
7557                  * Skip events that are not fully formed yet; ensure that
7558                  * if we observe event->ctx, both event and ctx will be
7559                  * complete enough. See perf_install_in_context().
7560                  */
7561                 if (!smp_load_acquire(&event->ctx))
7562                         continue;
7563
7564                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7565                         continue;
7566                 if (!event_filter_match(event))
7567                         continue;
7568                 output(event, data);
7569         }
7570 }
7571
7572 /*
7573  * Iterate all events that need to receive side-band events.
7574  *
7575  * For new callers; ensure that account_pmu_sb_event() includes
7576  * your event, otherwise it might not get delivered.
7577  */
7578 static void
7579 perf_iterate_sb(perf_iterate_f output, void *data,
7580                struct perf_event_context *task_ctx)
7581 {
7582         struct perf_event_context *ctx;
7583         int ctxn;
7584
7585         rcu_read_lock();
7586         preempt_disable();
7587
7588         /*
7589          * If we have task_ctx != NULL we only notify the task context itself.
7590          * The task_ctx is set only for EXIT events before releasing task
7591          * context.
7592          */
7593         if (task_ctx) {
7594                 perf_iterate_ctx(task_ctx, output, data, false);
7595                 goto done;
7596         }
7597
7598         perf_iterate_sb_cpu(output, data);
7599
7600         for_each_task_context_nr(ctxn) {
7601                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7602                 if (ctx)
7603                         perf_iterate_ctx(ctx, output, data, false);
7604         }
7605 done:
7606         preempt_enable();
7607         rcu_read_unlock();
7608 }
7609
7610 /*
7611  * Clear all file-based filters at exec, they'll have to be
7612  * re-instated when/if these objects are mmapped again.
7613  */
7614 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7615 {
7616         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7617         struct perf_addr_filter *filter;
7618         unsigned int restart = 0, count = 0;
7619         unsigned long flags;
7620
7621         if (!has_addr_filter(event))
7622                 return;
7623
7624         raw_spin_lock_irqsave(&ifh->lock, flags);
7625         list_for_each_entry(filter, &ifh->list, entry) {
7626                 if (filter->path.dentry) {
7627                         event->addr_filter_ranges[count].start = 0;
7628                         event->addr_filter_ranges[count].size = 0;
7629                         restart++;
7630                 }
7631
7632                 count++;
7633         }
7634
7635         if (restart)
7636                 event->addr_filters_gen++;
7637         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7638
7639         if (restart)
7640                 perf_event_stop(event, 1);
7641 }
7642
7643 void perf_event_exec(void)
7644 {
7645         struct perf_event_context *ctx;
7646         int ctxn;
7647
7648         for_each_task_context_nr(ctxn) {
7649                 perf_event_enable_on_exec(ctxn);
7650                 perf_event_remove_on_exec(ctxn);
7651
7652                 rcu_read_lock();
7653                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7654                 if (ctx) {
7655                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7656                                          NULL, true);
7657                 }
7658                 rcu_read_unlock();
7659         }
7660 }
7661
7662 struct remote_output {
7663         struct perf_buffer      *rb;
7664         int                     err;
7665 };
7666
7667 static void __perf_event_output_stop(struct perf_event *event, void *data)
7668 {
7669         struct perf_event *parent = event->parent;
7670         struct remote_output *ro = data;
7671         struct perf_buffer *rb = ro->rb;
7672         struct stop_event_data sd = {
7673                 .event  = event,
7674         };
7675
7676         if (!has_aux(event))
7677                 return;
7678
7679         if (!parent)
7680                 parent = event;
7681
7682         /*
7683          * In case of inheritance, it will be the parent that links to the
7684          * ring-buffer, but it will be the child that's actually using it.
7685          *
7686          * We are using event::rb to determine if the event should be stopped,
7687          * however this may race with ring_buffer_attach() (through set_output),
7688          * which will make us skip the event that actually needs to be stopped.
7689          * So ring_buffer_attach() has to stop an aux event before re-assigning
7690          * its rb pointer.
7691          */
7692         if (rcu_dereference(parent->rb) == rb)
7693                 ro->err = __perf_event_stop(&sd);
7694 }
7695
7696 static int __perf_pmu_output_stop(void *info)
7697 {
7698         struct perf_event *event = info;
7699         struct pmu *pmu = event->ctx->pmu;
7700         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7701         struct remote_output ro = {
7702                 .rb     = event->rb,
7703         };
7704
7705         rcu_read_lock();
7706         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7707         if (cpuctx->task_ctx)
7708                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7709                                    &ro, false);
7710         rcu_read_unlock();
7711
7712         return ro.err;
7713 }
7714
7715 static void perf_pmu_output_stop(struct perf_event *event)
7716 {
7717         struct perf_event *iter;
7718         int err, cpu;
7719
7720 restart:
7721         rcu_read_lock();
7722         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7723                 /*
7724                  * For per-CPU events, we need to make sure that neither they
7725                  * nor their children are running; for cpu==-1 events it's
7726                  * sufficient to stop the event itself if it's active, since
7727                  * it can't have children.
7728                  */
7729                 cpu = iter->cpu;
7730                 if (cpu == -1)
7731                         cpu = READ_ONCE(iter->oncpu);
7732
7733                 if (cpu == -1)
7734                         continue;
7735
7736                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7737                 if (err == -EAGAIN) {
7738                         rcu_read_unlock();
7739                         goto restart;
7740                 }
7741         }
7742         rcu_read_unlock();
7743 }
7744
7745 /*
7746  * task tracking -- fork/exit
7747  *
7748  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7749  */
7750
7751 struct perf_task_event {
7752         struct task_struct              *task;
7753         struct perf_event_context       *task_ctx;
7754
7755         struct {
7756                 struct perf_event_header        header;
7757
7758                 u32                             pid;
7759                 u32                             ppid;
7760                 u32                             tid;
7761                 u32                             ptid;
7762                 u64                             time;
7763         } event_id;
7764 };
7765
7766 static int perf_event_task_match(struct perf_event *event)
7767 {
7768         return event->attr.comm  || event->attr.mmap ||
7769                event->attr.mmap2 || event->attr.mmap_data ||
7770                event->attr.task;
7771 }
7772
7773 static void perf_event_task_output(struct perf_event *event,
7774                                    void *data)
7775 {
7776         struct perf_task_event *task_event = data;
7777         struct perf_output_handle handle;
7778         struct perf_sample_data sample;
7779         struct task_struct *task = task_event->task;
7780         int ret, size = task_event->event_id.header.size;
7781
7782         if (!perf_event_task_match(event))
7783                 return;
7784
7785         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7786
7787         ret = perf_output_begin(&handle, &sample, event,
7788                                 task_event->event_id.header.size);
7789         if (ret)
7790                 goto out;
7791
7792         task_event->event_id.pid = perf_event_pid(event, task);
7793         task_event->event_id.tid = perf_event_tid(event, task);
7794
7795         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7796                 task_event->event_id.ppid = perf_event_pid(event,
7797                                                         task->real_parent);
7798                 task_event->event_id.ptid = perf_event_pid(event,
7799                                                         task->real_parent);
7800         } else {  /* PERF_RECORD_FORK */
7801                 task_event->event_id.ppid = perf_event_pid(event, current);
7802                 task_event->event_id.ptid = perf_event_tid(event, current);
7803         }
7804
7805         task_event->event_id.time = perf_event_clock(event);
7806
7807         perf_output_put(&handle, task_event->event_id);
7808
7809         perf_event__output_id_sample(event, &handle, &sample);
7810
7811         perf_output_end(&handle);
7812 out:
7813         task_event->event_id.header.size = size;
7814 }
7815
7816 static void perf_event_task(struct task_struct *task,
7817                               struct perf_event_context *task_ctx,
7818                               int new)
7819 {
7820         struct perf_task_event task_event;
7821
7822         if (!atomic_read(&nr_comm_events) &&
7823             !atomic_read(&nr_mmap_events) &&
7824             !atomic_read(&nr_task_events))
7825                 return;
7826
7827         task_event = (struct perf_task_event){
7828                 .task     = task,
7829                 .task_ctx = task_ctx,
7830                 .event_id    = {
7831                         .header = {
7832                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7833                                 .misc = 0,
7834                                 .size = sizeof(task_event.event_id),
7835                         },
7836                         /* .pid  */
7837                         /* .ppid */
7838                         /* .tid  */
7839                         /* .ptid */
7840                         /* .time */
7841                 },
7842         };
7843
7844         perf_iterate_sb(perf_event_task_output,
7845                        &task_event,
7846                        task_ctx);
7847 }
7848
7849 void perf_event_fork(struct task_struct *task)
7850 {
7851         perf_event_task(task, NULL, 1);
7852         perf_event_namespaces(task);
7853 }
7854
7855 /*
7856  * comm tracking
7857  */
7858
7859 struct perf_comm_event {
7860         struct task_struct      *task;
7861         char                    *comm;
7862         int                     comm_size;
7863
7864         struct {
7865                 struct perf_event_header        header;
7866
7867                 u32                             pid;
7868                 u32                             tid;
7869         } event_id;
7870 };
7871
7872 static int perf_event_comm_match(struct perf_event *event)
7873 {
7874         return event->attr.comm;
7875 }
7876
7877 static void perf_event_comm_output(struct perf_event *event,
7878                                    void *data)
7879 {
7880         struct perf_comm_event *comm_event = data;
7881         struct perf_output_handle handle;
7882         struct perf_sample_data sample;
7883         int size = comm_event->event_id.header.size;
7884         int ret;
7885
7886         if (!perf_event_comm_match(event))
7887                 return;
7888
7889         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7890         ret = perf_output_begin(&handle, &sample, event,
7891                                 comm_event->event_id.header.size);
7892
7893         if (ret)
7894                 goto out;
7895
7896         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7897         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7898
7899         perf_output_put(&handle, comm_event->event_id);
7900         __output_copy(&handle, comm_event->comm,
7901                                    comm_event->comm_size);
7902
7903         perf_event__output_id_sample(event, &handle, &sample);
7904
7905         perf_output_end(&handle);
7906 out:
7907         comm_event->event_id.header.size = size;
7908 }
7909
7910 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7911 {
7912         char comm[TASK_COMM_LEN];
7913         unsigned int size;
7914
7915         memset(comm, 0, sizeof(comm));
7916         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7917         size = ALIGN(strlen(comm)+1, sizeof(u64));
7918
7919         comm_event->comm = comm;
7920         comm_event->comm_size = size;
7921
7922         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7923
7924         perf_iterate_sb(perf_event_comm_output,
7925                        comm_event,
7926                        NULL);
7927 }
7928
7929 void perf_event_comm(struct task_struct *task, bool exec)
7930 {
7931         struct perf_comm_event comm_event;
7932
7933         if (!atomic_read(&nr_comm_events))
7934                 return;
7935
7936         comm_event = (struct perf_comm_event){
7937                 .task   = task,
7938                 /* .comm      */
7939                 /* .comm_size */
7940                 .event_id  = {
7941                         .header = {
7942                                 .type = PERF_RECORD_COMM,
7943                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7944                                 /* .size */
7945                         },
7946                         /* .pid */
7947                         /* .tid */
7948                 },
7949         };
7950
7951         perf_event_comm_event(&comm_event);
7952 }
7953
7954 /*
7955  * namespaces tracking
7956  */
7957
7958 struct perf_namespaces_event {
7959         struct task_struct              *task;
7960
7961         struct {
7962                 struct perf_event_header        header;
7963
7964                 u32                             pid;
7965                 u32                             tid;
7966                 u64                             nr_namespaces;
7967                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7968         } event_id;
7969 };
7970
7971 static int perf_event_namespaces_match(struct perf_event *event)
7972 {
7973         return event->attr.namespaces;
7974 }
7975
7976 static void perf_event_namespaces_output(struct perf_event *event,
7977                                          void *data)
7978 {
7979         struct perf_namespaces_event *namespaces_event = data;
7980         struct perf_output_handle handle;
7981         struct perf_sample_data sample;
7982         u16 header_size = namespaces_event->event_id.header.size;
7983         int ret;
7984
7985         if (!perf_event_namespaces_match(event))
7986                 return;
7987
7988         perf_event_header__init_id(&namespaces_event->event_id.header,
7989                                    &sample, event);
7990         ret = perf_output_begin(&handle, &sample, event,
7991                                 namespaces_event->event_id.header.size);
7992         if (ret)
7993                 goto out;
7994
7995         namespaces_event->event_id.pid = perf_event_pid(event,
7996                                                         namespaces_event->task);
7997         namespaces_event->event_id.tid = perf_event_tid(event,
7998                                                         namespaces_event->task);
7999
8000         perf_output_put(&handle, namespaces_event->event_id);
8001
8002         perf_event__output_id_sample(event, &handle, &sample);
8003
8004         perf_output_end(&handle);
8005 out:
8006         namespaces_event->event_id.header.size = header_size;
8007 }
8008
8009 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8010                                    struct task_struct *task,
8011                                    const struct proc_ns_operations *ns_ops)
8012 {
8013         struct path ns_path;
8014         struct inode *ns_inode;
8015         int error;
8016
8017         error = ns_get_path(&ns_path, task, ns_ops);
8018         if (!error) {
8019                 ns_inode = ns_path.dentry->d_inode;
8020                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8021                 ns_link_info->ino = ns_inode->i_ino;
8022                 path_put(&ns_path);
8023         }
8024 }
8025
8026 void perf_event_namespaces(struct task_struct *task)
8027 {
8028         struct perf_namespaces_event namespaces_event;
8029         struct perf_ns_link_info *ns_link_info;
8030
8031         if (!atomic_read(&nr_namespaces_events))
8032                 return;
8033
8034         namespaces_event = (struct perf_namespaces_event){
8035                 .task   = task,
8036                 .event_id  = {
8037                         .header = {
8038                                 .type = PERF_RECORD_NAMESPACES,
8039                                 .misc = 0,
8040                                 .size = sizeof(namespaces_event.event_id),
8041                         },
8042                         /* .pid */
8043                         /* .tid */
8044                         .nr_namespaces = NR_NAMESPACES,
8045                         /* .link_info[NR_NAMESPACES] */
8046                 },
8047         };
8048
8049         ns_link_info = namespaces_event.event_id.link_info;
8050
8051         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8052                                task, &mntns_operations);
8053
8054 #ifdef CONFIG_USER_NS
8055         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8056                                task, &userns_operations);
8057 #endif
8058 #ifdef CONFIG_NET_NS
8059         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8060                                task, &netns_operations);
8061 #endif
8062 #ifdef CONFIG_UTS_NS
8063         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8064                                task, &utsns_operations);
8065 #endif
8066 #ifdef CONFIG_IPC_NS
8067         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8068                                task, &ipcns_operations);
8069 #endif
8070 #ifdef CONFIG_PID_NS
8071         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8072                                task, &pidns_operations);
8073 #endif
8074 #ifdef CONFIG_CGROUPS
8075         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8076                                task, &cgroupns_operations);
8077 #endif
8078
8079         perf_iterate_sb(perf_event_namespaces_output,
8080                         &namespaces_event,
8081                         NULL);
8082 }
8083
8084 /*
8085  * cgroup tracking
8086  */
8087 #ifdef CONFIG_CGROUP_PERF
8088
8089 struct perf_cgroup_event {
8090         char                            *path;
8091         int                             path_size;
8092         struct {
8093                 struct perf_event_header        header;
8094                 u64                             id;
8095                 char                            path[];
8096         } event_id;
8097 };
8098
8099 static int perf_event_cgroup_match(struct perf_event *event)
8100 {
8101         return event->attr.cgroup;
8102 }
8103
8104 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8105 {
8106         struct perf_cgroup_event *cgroup_event = data;
8107         struct perf_output_handle handle;
8108         struct perf_sample_data sample;
8109         u16 header_size = cgroup_event->event_id.header.size;
8110         int ret;
8111
8112         if (!perf_event_cgroup_match(event))
8113                 return;
8114
8115         perf_event_header__init_id(&cgroup_event->event_id.header,
8116                                    &sample, event);
8117         ret = perf_output_begin(&handle, &sample, event,
8118                                 cgroup_event->event_id.header.size);
8119         if (ret)
8120                 goto out;
8121
8122         perf_output_put(&handle, cgroup_event->event_id);
8123         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8124
8125         perf_event__output_id_sample(event, &handle, &sample);
8126
8127         perf_output_end(&handle);
8128 out:
8129         cgroup_event->event_id.header.size = header_size;
8130 }
8131
8132 static void perf_event_cgroup(struct cgroup *cgrp)
8133 {
8134         struct perf_cgroup_event cgroup_event;
8135         char path_enomem[16] = "//enomem";
8136         char *pathname;
8137         size_t size;
8138
8139         if (!atomic_read(&nr_cgroup_events))
8140                 return;
8141
8142         cgroup_event = (struct perf_cgroup_event){
8143                 .event_id  = {
8144                         .header = {
8145                                 .type = PERF_RECORD_CGROUP,
8146                                 .misc = 0,
8147                                 .size = sizeof(cgroup_event.event_id),
8148                         },
8149                         .id = cgroup_id(cgrp),
8150                 },
8151         };
8152
8153         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8154         if (pathname == NULL) {
8155                 cgroup_event.path = path_enomem;
8156         } else {
8157                 /* just to be sure to have enough space for alignment */
8158                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8159                 cgroup_event.path = pathname;
8160         }
8161
8162         /*
8163          * Since our buffer works in 8 byte units we need to align our string
8164          * size to a multiple of 8. However, we must guarantee the tail end is
8165          * zero'd out to avoid leaking random bits to userspace.
8166          */
8167         size = strlen(cgroup_event.path) + 1;
8168         while (!IS_ALIGNED(size, sizeof(u64)))
8169                 cgroup_event.path[size++] = '\0';
8170
8171         cgroup_event.event_id.header.size += size;
8172         cgroup_event.path_size = size;
8173
8174         perf_iterate_sb(perf_event_cgroup_output,
8175                         &cgroup_event,
8176                         NULL);
8177
8178         kfree(pathname);
8179 }
8180
8181 #endif
8182
8183 /*
8184  * mmap tracking
8185  */
8186
8187 struct perf_mmap_event {
8188         struct vm_area_struct   *vma;
8189
8190         const char              *file_name;
8191         int                     file_size;
8192         int                     maj, min;
8193         u64                     ino;
8194         u64                     ino_generation;
8195         u32                     prot, flags;
8196         u8                      build_id[BUILD_ID_SIZE_MAX];
8197         u32                     build_id_size;
8198
8199         struct {
8200                 struct perf_event_header        header;
8201
8202                 u32                             pid;
8203                 u32                             tid;
8204                 u64                             start;
8205                 u64                             len;
8206                 u64                             pgoff;
8207         } event_id;
8208 };
8209
8210 static int perf_event_mmap_match(struct perf_event *event,
8211                                  void *data)
8212 {
8213         struct perf_mmap_event *mmap_event = data;
8214         struct vm_area_struct *vma = mmap_event->vma;
8215         int executable = vma->vm_flags & VM_EXEC;
8216
8217         return (!executable && event->attr.mmap_data) ||
8218                (executable && (event->attr.mmap || event->attr.mmap2));
8219 }
8220
8221 static void perf_event_mmap_output(struct perf_event *event,
8222                                    void *data)
8223 {
8224         struct perf_mmap_event *mmap_event = data;
8225         struct perf_output_handle handle;
8226         struct perf_sample_data sample;
8227         int size = mmap_event->event_id.header.size;
8228         u32 type = mmap_event->event_id.header.type;
8229         bool use_build_id;
8230         int ret;
8231
8232         if (!perf_event_mmap_match(event, data))
8233                 return;
8234
8235         if (event->attr.mmap2) {
8236                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8237                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8238                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8239                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8240                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8241                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8242                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8243         }
8244
8245         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8246         ret = perf_output_begin(&handle, &sample, event,
8247                                 mmap_event->event_id.header.size);
8248         if (ret)
8249                 goto out;
8250
8251         mmap_event->event_id.pid = perf_event_pid(event, current);
8252         mmap_event->event_id.tid = perf_event_tid(event, current);
8253
8254         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8255
8256         if (event->attr.mmap2 && use_build_id)
8257                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8258
8259         perf_output_put(&handle, mmap_event->event_id);
8260
8261         if (event->attr.mmap2) {
8262                 if (use_build_id) {
8263                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8264
8265                         __output_copy(&handle, size, 4);
8266                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8267                 } else {
8268                         perf_output_put(&handle, mmap_event->maj);
8269                         perf_output_put(&handle, mmap_event->min);
8270                         perf_output_put(&handle, mmap_event->ino);
8271                         perf_output_put(&handle, mmap_event->ino_generation);
8272                 }
8273                 perf_output_put(&handle, mmap_event->prot);
8274                 perf_output_put(&handle, mmap_event->flags);
8275         }
8276
8277         __output_copy(&handle, mmap_event->file_name,
8278                                    mmap_event->file_size);
8279
8280         perf_event__output_id_sample(event, &handle, &sample);
8281
8282         perf_output_end(&handle);
8283 out:
8284         mmap_event->event_id.header.size = size;
8285         mmap_event->event_id.header.type = type;
8286 }
8287
8288 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8289 {
8290         struct vm_area_struct *vma = mmap_event->vma;
8291         struct file *file = vma->vm_file;
8292         int maj = 0, min = 0;
8293         u64 ino = 0, gen = 0;
8294         u32 prot = 0, flags = 0;
8295         unsigned int size;
8296         char tmp[16];
8297         char *buf = NULL;
8298         char *name;
8299
8300         if (vma->vm_flags & VM_READ)
8301                 prot |= PROT_READ;
8302         if (vma->vm_flags & VM_WRITE)
8303                 prot |= PROT_WRITE;
8304         if (vma->vm_flags & VM_EXEC)
8305                 prot |= PROT_EXEC;
8306
8307         if (vma->vm_flags & VM_MAYSHARE)
8308                 flags = MAP_SHARED;
8309         else
8310                 flags = MAP_PRIVATE;
8311
8312         if (vma->vm_flags & VM_DENYWRITE)
8313                 flags |= MAP_DENYWRITE;
8314         if (vma->vm_flags & VM_MAYEXEC)
8315                 flags |= MAP_EXECUTABLE;
8316         if (vma->vm_flags & VM_LOCKED)
8317                 flags |= MAP_LOCKED;
8318         if (is_vm_hugetlb_page(vma))
8319                 flags |= MAP_HUGETLB;
8320
8321         if (file) {
8322                 struct inode *inode;
8323                 dev_t dev;
8324
8325                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8326                 if (!buf) {
8327                         name = "//enomem";
8328                         goto cpy_name;
8329                 }
8330                 /*
8331                  * d_path() works from the end of the rb backwards, so we
8332                  * need to add enough zero bytes after the string to handle
8333                  * the 64bit alignment we do later.
8334                  */
8335                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8336                 if (IS_ERR(name)) {
8337                         name = "//toolong";
8338                         goto cpy_name;
8339                 }
8340                 inode = file_inode(vma->vm_file);
8341                 dev = inode->i_sb->s_dev;
8342                 ino = inode->i_ino;
8343                 gen = inode->i_generation;
8344                 maj = MAJOR(dev);
8345                 min = MINOR(dev);
8346
8347                 goto got_name;
8348         } else {
8349                 if (vma->vm_ops && vma->vm_ops->name) {
8350                         name = (char *) vma->vm_ops->name(vma);
8351                         if (name)
8352                                 goto cpy_name;
8353                 }
8354
8355                 name = (char *)arch_vma_name(vma);
8356                 if (name)
8357                         goto cpy_name;
8358
8359                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8360                                 vma->vm_end >= vma->vm_mm->brk) {
8361                         name = "[heap]";
8362                         goto cpy_name;
8363                 }
8364                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8365                                 vma->vm_end >= vma->vm_mm->start_stack) {
8366                         name = "[stack]";
8367                         goto cpy_name;
8368                 }
8369
8370                 name = "//anon";
8371                 goto cpy_name;
8372         }
8373
8374 cpy_name:
8375         strlcpy(tmp, name, sizeof(tmp));
8376         name = tmp;
8377 got_name:
8378         /*
8379          * Since our buffer works in 8 byte units we need to align our string
8380          * size to a multiple of 8. However, we must guarantee the tail end is
8381          * zero'd out to avoid leaking random bits to userspace.
8382          */
8383         size = strlen(name)+1;
8384         while (!IS_ALIGNED(size, sizeof(u64)))
8385                 name[size++] = '\0';
8386
8387         mmap_event->file_name = name;
8388         mmap_event->file_size = size;
8389         mmap_event->maj = maj;
8390         mmap_event->min = min;
8391         mmap_event->ino = ino;
8392         mmap_event->ino_generation = gen;
8393         mmap_event->prot = prot;
8394         mmap_event->flags = flags;
8395
8396         if (!(vma->vm_flags & VM_EXEC))
8397                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8398
8399         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8400
8401         if (atomic_read(&nr_build_id_events))
8402                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8403
8404         perf_iterate_sb(perf_event_mmap_output,
8405                        mmap_event,
8406                        NULL);
8407
8408         kfree(buf);
8409 }
8410
8411 /*
8412  * Check whether inode and address range match filter criteria.
8413  */
8414 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8415                                      struct file *file, unsigned long offset,
8416                                      unsigned long size)
8417 {
8418         /* d_inode(NULL) won't be equal to any mapped user-space file */
8419         if (!filter->path.dentry)
8420                 return false;
8421
8422         if (d_inode(filter->path.dentry) != file_inode(file))
8423                 return false;
8424
8425         if (filter->offset > offset + size)
8426                 return false;
8427
8428         if (filter->offset + filter->size < offset)
8429                 return false;
8430
8431         return true;
8432 }
8433
8434 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8435                                         struct vm_area_struct *vma,
8436                                         struct perf_addr_filter_range *fr)
8437 {
8438         unsigned long vma_size = vma->vm_end - vma->vm_start;
8439         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8440         struct file *file = vma->vm_file;
8441
8442         if (!perf_addr_filter_match(filter, file, off, vma_size))
8443                 return false;
8444
8445         if (filter->offset < off) {
8446                 fr->start = vma->vm_start;
8447                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8448         } else {
8449                 fr->start = vma->vm_start + filter->offset - off;
8450                 fr->size = min(vma->vm_end - fr->start, filter->size);
8451         }
8452
8453         return true;
8454 }
8455
8456 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8457 {
8458         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8459         struct vm_area_struct *vma = data;
8460         struct perf_addr_filter *filter;
8461         unsigned int restart = 0, count = 0;
8462         unsigned long flags;
8463
8464         if (!has_addr_filter(event))
8465                 return;
8466
8467         if (!vma->vm_file)
8468                 return;
8469
8470         raw_spin_lock_irqsave(&ifh->lock, flags);
8471         list_for_each_entry(filter, &ifh->list, entry) {
8472                 if (perf_addr_filter_vma_adjust(filter, vma,
8473                                                 &event->addr_filter_ranges[count]))
8474                         restart++;
8475
8476                 count++;
8477         }
8478
8479         if (restart)
8480                 event->addr_filters_gen++;
8481         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8482
8483         if (restart)
8484                 perf_event_stop(event, 1);
8485 }
8486
8487 /*
8488  * Adjust all task's events' filters to the new vma
8489  */
8490 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8491 {
8492         struct perf_event_context *ctx;
8493         int ctxn;
8494
8495         /*
8496          * Data tracing isn't supported yet and as such there is no need
8497          * to keep track of anything that isn't related to executable code:
8498          */
8499         if (!(vma->vm_flags & VM_EXEC))
8500                 return;
8501
8502         rcu_read_lock();
8503         for_each_task_context_nr(ctxn) {
8504                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8505                 if (!ctx)
8506                         continue;
8507
8508                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8509         }
8510         rcu_read_unlock();
8511 }
8512
8513 void perf_event_mmap(struct vm_area_struct *vma)
8514 {
8515         struct perf_mmap_event mmap_event;
8516
8517         if (!atomic_read(&nr_mmap_events))
8518                 return;
8519
8520         mmap_event = (struct perf_mmap_event){
8521                 .vma    = vma,
8522                 /* .file_name */
8523                 /* .file_size */
8524                 .event_id  = {
8525                         .header = {
8526                                 .type = PERF_RECORD_MMAP,
8527                                 .misc = PERF_RECORD_MISC_USER,
8528                                 /* .size */
8529                         },
8530                         /* .pid */
8531                         /* .tid */
8532                         .start  = vma->vm_start,
8533                         .len    = vma->vm_end - vma->vm_start,
8534                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8535                 },
8536                 /* .maj (attr_mmap2 only) */
8537                 /* .min (attr_mmap2 only) */
8538                 /* .ino (attr_mmap2 only) */
8539                 /* .ino_generation (attr_mmap2 only) */
8540                 /* .prot (attr_mmap2 only) */
8541                 /* .flags (attr_mmap2 only) */
8542         };
8543
8544         perf_addr_filters_adjust(vma);
8545         perf_event_mmap_event(&mmap_event);
8546 }
8547
8548 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8549                           unsigned long size, u64 flags)
8550 {
8551         struct perf_output_handle handle;
8552         struct perf_sample_data sample;
8553         struct perf_aux_event {
8554                 struct perf_event_header        header;
8555                 u64                             offset;
8556                 u64                             size;
8557                 u64                             flags;
8558         } rec = {
8559                 .header = {
8560                         .type = PERF_RECORD_AUX,
8561                         .misc = 0,
8562                         .size = sizeof(rec),
8563                 },
8564                 .offset         = head,
8565                 .size           = size,
8566                 .flags          = flags,
8567         };
8568         int ret;
8569
8570         perf_event_header__init_id(&rec.header, &sample, event);
8571         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8572
8573         if (ret)
8574                 return;
8575
8576         perf_output_put(&handle, rec);
8577         perf_event__output_id_sample(event, &handle, &sample);
8578
8579         perf_output_end(&handle);
8580 }
8581
8582 /*
8583  * Lost/dropped samples logging
8584  */
8585 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8586 {
8587         struct perf_output_handle handle;
8588         struct perf_sample_data sample;
8589         int ret;
8590
8591         struct {
8592                 struct perf_event_header        header;
8593                 u64                             lost;
8594         } lost_samples_event = {
8595                 .header = {
8596                         .type = PERF_RECORD_LOST_SAMPLES,
8597                         .misc = 0,
8598                         .size = sizeof(lost_samples_event),
8599                 },
8600                 .lost           = lost,
8601         };
8602
8603         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8604
8605         ret = perf_output_begin(&handle, &sample, event,
8606                                 lost_samples_event.header.size);
8607         if (ret)
8608                 return;
8609
8610         perf_output_put(&handle, lost_samples_event);
8611         perf_event__output_id_sample(event, &handle, &sample);
8612         perf_output_end(&handle);
8613 }
8614
8615 /*
8616  * context_switch tracking
8617  */
8618
8619 struct perf_switch_event {
8620         struct task_struct      *task;
8621         struct task_struct      *next_prev;
8622
8623         struct {
8624                 struct perf_event_header        header;
8625                 u32                             next_prev_pid;
8626                 u32                             next_prev_tid;
8627         } event_id;
8628 };
8629
8630 static int perf_event_switch_match(struct perf_event *event)
8631 {
8632         return event->attr.context_switch;
8633 }
8634
8635 static void perf_event_switch_output(struct perf_event *event, void *data)
8636 {
8637         struct perf_switch_event *se = data;
8638         struct perf_output_handle handle;
8639         struct perf_sample_data sample;
8640         int ret;
8641
8642         if (!perf_event_switch_match(event))
8643                 return;
8644
8645         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8646         if (event->ctx->task) {
8647                 se->event_id.header.type = PERF_RECORD_SWITCH;
8648                 se->event_id.header.size = sizeof(se->event_id.header);
8649         } else {
8650                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8651                 se->event_id.header.size = sizeof(se->event_id);
8652                 se->event_id.next_prev_pid =
8653                                         perf_event_pid(event, se->next_prev);
8654                 se->event_id.next_prev_tid =
8655                                         perf_event_tid(event, se->next_prev);
8656         }
8657
8658         perf_event_header__init_id(&se->event_id.header, &sample, event);
8659
8660         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8661         if (ret)
8662                 return;
8663
8664         if (event->ctx->task)
8665                 perf_output_put(&handle, se->event_id.header);
8666         else
8667                 perf_output_put(&handle, se->event_id);
8668
8669         perf_event__output_id_sample(event, &handle, &sample);
8670
8671         perf_output_end(&handle);
8672 }
8673
8674 static void perf_event_switch(struct task_struct *task,
8675                               struct task_struct *next_prev, bool sched_in)
8676 {
8677         struct perf_switch_event switch_event;
8678
8679         /* N.B. caller checks nr_switch_events != 0 */
8680
8681         switch_event = (struct perf_switch_event){
8682                 .task           = task,
8683                 .next_prev      = next_prev,
8684                 .event_id       = {
8685                         .header = {
8686                                 /* .type */
8687                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8688                                 /* .size */
8689                         },
8690                         /* .next_prev_pid */
8691                         /* .next_prev_tid */
8692                 },
8693         };
8694
8695         if (!sched_in && task->state == TASK_RUNNING)
8696                 switch_event.event_id.header.misc |=
8697                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8698
8699         perf_iterate_sb(perf_event_switch_output,
8700                        &switch_event,
8701                        NULL);
8702 }
8703
8704 /*
8705  * IRQ throttle logging
8706  */
8707
8708 static void perf_log_throttle(struct perf_event *event, int enable)
8709 {
8710         struct perf_output_handle handle;
8711         struct perf_sample_data sample;
8712         int ret;
8713
8714         struct {
8715                 struct perf_event_header        header;
8716                 u64                             time;
8717                 u64                             id;
8718                 u64                             stream_id;
8719         } throttle_event = {
8720                 .header = {
8721                         .type = PERF_RECORD_THROTTLE,
8722                         .misc = 0,
8723                         .size = sizeof(throttle_event),
8724                 },
8725                 .time           = perf_event_clock(event),
8726                 .id             = primary_event_id(event),
8727                 .stream_id      = event->id,
8728         };
8729
8730         if (enable)
8731                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8732
8733         perf_event_header__init_id(&throttle_event.header, &sample, event);
8734
8735         ret = perf_output_begin(&handle, &sample, event,
8736                                 throttle_event.header.size);
8737         if (ret)
8738                 return;
8739
8740         perf_output_put(&handle, throttle_event);
8741         perf_event__output_id_sample(event, &handle, &sample);
8742         perf_output_end(&handle);
8743 }
8744
8745 /*
8746  * ksymbol register/unregister tracking
8747  */
8748
8749 struct perf_ksymbol_event {
8750         const char      *name;
8751         int             name_len;
8752         struct {
8753                 struct perf_event_header        header;
8754                 u64                             addr;
8755                 u32                             len;
8756                 u16                             ksym_type;
8757                 u16                             flags;
8758         } event_id;
8759 };
8760
8761 static int perf_event_ksymbol_match(struct perf_event *event)
8762 {
8763         return event->attr.ksymbol;
8764 }
8765
8766 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8767 {
8768         struct perf_ksymbol_event *ksymbol_event = data;
8769         struct perf_output_handle handle;
8770         struct perf_sample_data sample;
8771         int ret;
8772
8773         if (!perf_event_ksymbol_match(event))
8774                 return;
8775
8776         perf_event_header__init_id(&ksymbol_event->event_id.header,
8777                                    &sample, event);
8778         ret = perf_output_begin(&handle, &sample, event,
8779                                 ksymbol_event->event_id.header.size);
8780         if (ret)
8781                 return;
8782
8783         perf_output_put(&handle, ksymbol_event->event_id);
8784         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8785         perf_event__output_id_sample(event, &handle, &sample);
8786
8787         perf_output_end(&handle);
8788 }
8789
8790 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8791                         const char *sym)
8792 {
8793         struct perf_ksymbol_event ksymbol_event;
8794         char name[KSYM_NAME_LEN];
8795         u16 flags = 0;
8796         int name_len;
8797
8798         if (!atomic_read(&nr_ksymbol_events))
8799                 return;
8800
8801         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8802             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8803                 goto err;
8804
8805         strlcpy(name, sym, KSYM_NAME_LEN);
8806         name_len = strlen(name) + 1;
8807         while (!IS_ALIGNED(name_len, sizeof(u64)))
8808                 name[name_len++] = '\0';
8809         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8810
8811         if (unregister)
8812                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8813
8814         ksymbol_event = (struct perf_ksymbol_event){
8815                 .name = name,
8816                 .name_len = name_len,
8817                 .event_id = {
8818                         .header = {
8819                                 .type = PERF_RECORD_KSYMBOL,
8820                                 .size = sizeof(ksymbol_event.event_id) +
8821                                         name_len,
8822                         },
8823                         .addr = addr,
8824                         .len = len,
8825                         .ksym_type = ksym_type,
8826                         .flags = flags,
8827                 },
8828         };
8829
8830         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8831         return;
8832 err:
8833         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8834 }
8835
8836 /*
8837  * bpf program load/unload tracking
8838  */
8839
8840 struct perf_bpf_event {
8841         struct bpf_prog *prog;
8842         struct {
8843                 struct perf_event_header        header;
8844                 u16                             type;
8845                 u16                             flags;
8846                 u32                             id;
8847                 u8                              tag[BPF_TAG_SIZE];
8848         } event_id;
8849 };
8850
8851 static int perf_event_bpf_match(struct perf_event *event)
8852 {
8853         return event->attr.bpf_event;
8854 }
8855
8856 static void perf_event_bpf_output(struct perf_event *event, void *data)
8857 {
8858         struct perf_bpf_event *bpf_event = data;
8859         struct perf_output_handle handle;
8860         struct perf_sample_data sample;
8861         int ret;
8862
8863         if (!perf_event_bpf_match(event))
8864                 return;
8865
8866         perf_event_header__init_id(&bpf_event->event_id.header,
8867                                    &sample, event);
8868         ret = perf_output_begin(&handle, data, event,
8869                                 bpf_event->event_id.header.size);
8870         if (ret)
8871                 return;
8872
8873         perf_output_put(&handle, bpf_event->event_id);
8874         perf_event__output_id_sample(event, &handle, &sample);
8875
8876         perf_output_end(&handle);
8877 }
8878
8879 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8880                                          enum perf_bpf_event_type type)
8881 {
8882         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8883         int i;
8884
8885         if (prog->aux->func_cnt == 0) {
8886                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8887                                    (u64)(unsigned long)prog->bpf_func,
8888                                    prog->jited_len, unregister,
8889                                    prog->aux->ksym.name);
8890         } else {
8891                 for (i = 0; i < prog->aux->func_cnt; i++) {
8892                         struct bpf_prog *subprog = prog->aux->func[i];
8893
8894                         perf_event_ksymbol(
8895                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8896                                 (u64)(unsigned long)subprog->bpf_func,
8897                                 subprog->jited_len, unregister,
8898                                 prog->aux->ksym.name);
8899                 }
8900         }
8901 }
8902
8903 void perf_event_bpf_event(struct bpf_prog *prog,
8904                           enum perf_bpf_event_type type,
8905                           u16 flags)
8906 {
8907         struct perf_bpf_event bpf_event;
8908
8909         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8910             type >= PERF_BPF_EVENT_MAX)
8911                 return;
8912
8913         switch (type) {
8914         case PERF_BPF_EVENT_PROG_LOAD:
8915         case PERF_BPF_EVENT_PROG_UNLOAD:
8916                 if (atomic_read(&nr_ksymbol_events))
8917                         perf_event_bpf_emit_ksymbols(prog, type);
8918                 break;
8919         default:
8920                 break;
8921         }
8922
8923         if (!atomic_read(&nr_bpf_events))
8924                 return;
8925
8926         bpf_event = (struct perf_bpf_event){
8927                 .prog = prog,
8928                 .event_id = {
8929                         .header = {
8930                                 .type = PERF_RECORD_BPF_EVENT,
8931                                 .size = sizeof(bpf_event.event_id),
8932                         },
8933                         .type = type,
8934                         .flags = flags,
8935                         .id = prog->aux->id,
8936                 },
8937         };
8938
8939         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8940
8941         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8942         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8943 }
8944
8945 struct perf_text_poke_event {
8946         const void              *old_bytes;
8947         const void              *new_bytes;
8948         size_t                  pad;
8949         u16                     old_len;
8950         u16                     new_len;
8951
8952         struct {
8953                 struct perf_event_header        header;
8954
8955                 u64                             addr;
8956         } event_id;
8957 };
8958
8959 static int perf_event_text_poke_match(struct perf_event *event)
8960 {
8961         return event->attr.text_poke;
8962 }
8963
8964 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8965 {
8966         struct perf_text_poke_event *text_poke_event = data;
8967         struct perf_output_handle handle;
8968         struct perf_sample_data sample;
8969         u64 padding = 0;
8970         int ret;
8971
8972         if (!perf_event_text_poke_match(event))
8973                 return;
8974
8975         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8976
8977         ret = perf_output_begin(&handle, &sample, event,
8978                                 text_poke_event->event_id.header.size);
8979         if (ret)
8980                 return;
8981
8982         perf_output_put(&handle, text_poke_event->event_id);
8983         perf_output_put(&handle, text_poke_event->old_len);
8984         perf_output_put(&handle, text_poke_event->new_len);
8985
8986         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8987         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8988
8989         if (text_poke_event->pad)
8990                 __output_copy(&handle, &padding, text_poke_event->pad);
8991
8992         perf_event__output_id_sample(event, &handle, &sample);
8993
8994         perf_output_end(&handle);
8995 }
8996
8997 void perf_event_text_poke(const void *addr, const void *old_bytes,
8998                           size_t old_len, const void *new_bytes, size_t new_len)
8999 {
9000         struct perf_text_poke_event text_poke_event;
9001         size_t tot, pad;
9002
9003         if (!atomic_read(&nr_text_poke_events))
9004                 return;
9005
9006         tot  = sizeof(text_poke_event.old_len) + old_len;
9007         tot += sizeof(text_poke_event.new_len) + new_len;
9008         pad  = ALIGN(tot, sizeof(u64)) - tot;
9009
9010         text_poke_event = (struct perf_text_poke_event){
9011                 .old_bytes    = old_bytes,
9012                 .new_bytes    = new_bytes,
9013                 .pad          = pad,
9014                 .old_len      = old_len,
9015                 .new_len      = new_len,
9016                 .event_id  = {
9017                         .header = {
9018                                 .type = PERF_RECORD_TEXT_POKE,
9019                                 .misc = PERF_RECORD_MISC_KERNEL,
9020                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9021                         },
9022                         .addr = (unsigned long)addr,
9023                 },
9024         };
9025
9026         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9027 }
9028
9029 void perf_event_itrace_started(struct perf_event *event)
9030 {
9031         event->attach_state |= PERF_ATTACH_ITRACE;
9032 }
9033
9034 static void perf_log_itrace_start(struct perf_event *event)
9035 {
9036         struct perf_output_handle handle;
9037         struct perf_sample_data sample;
9038         struct perf_aux_event {
9039                 struct perf_event_header        header;
9040                 u32                             pid;
9041                 u32                             tid;
9042         } rec;
9043         int ret;
9044
9045         if (event->parent)
9046                 event = event->parent;
9047
9048         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9049             event->attach_state & PERF_ATTACH_ITRACE)
9050                 return;
9051
9052         rec.header.type = PERF_RECORD_ITRACE_START;
9053         rec.header.misc = 0;
9054         rec.header.size = sizeof(rec);
9055         rec.pid = perf_event_pid(event, current);
9056         rec.tid = perf_event_tid(event, current);
9057
9058         perf_event_header__init_id(&rec.header, &sample, event);
9059         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9060
9061         if (ret)
9062                 return;
9063
9064         perf_output_put(&handle, rec);
9065         perf_event__output_id_sample(event, &handle, &sample);
9066
9067         perf_output_end(&handle);
9068 }
9069
9070 static int
9071 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9072 {
9073         struct hw_perf_event *hwc = &event->hw;
9074         int ret = 0;
9075         u64 seq;
9076
9077         seq = __this_cpu_read(perf_throttled_seq);
9078         if (seq != hwc->interrupts_seq) {
9079                 hwc->interrupts_seq = seq;
9080                 hwc->interrupts = 1;
9081         } else {
9082                 hwc->interrupts++;
9083                 if (unlikely(throttle
9084                              && hwc->interrupts >= max_samples_per_tick)) {
9085                         __this_cpu_inc(perf_throttled_count);
9086                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9087                         hwc->interrupts = MAX_INTERRUPTS;
9088                         perf_log_throttle(event, 0);
9089                         ret = 1;
9090                 }
9091         }
9092
9093         if (event->attr.freq) {
9094                 u64 now = perf_clock();
9095                 s64 delta = now - hwc->freq_time_stamp;
9096
9097                 hwc->freq_time_stamp = now;
9098
9099                 if (delta > 0 && delta < 2*TICK_NSEC)
9100                         perf_adjust_period(event, delta, hwc->last_period, true);
9101         }
9102
9103         return ret;
9104 }
9105
9106 int perf_event_account_interrupt(struct perf_event *event)
9107 {
9108         return __perf_event_account_interrupt(event, 1);
9109 }
9110
9111 /*
9112  * Generic event overflow handling, sampling.
9113  */
9114
9115 static int __perf_event_overflow(struct perf_event *event,
9116                                    int throttle, struct perf_sample_data *data,
9117                                    struct pt_regs *regs)
9118 {
9119         int events = atomic_read(&event->event_limit);
9120         int ret = 0;
9121
9122         /*
9123          * Non-sampling counters might still use the PMI to fold short
9124          * hardware counters, ignore those.
9125          */
9126         if (unlikely(!is_sampling_event(event)))
9127                 return 0;
9128
9129         ret = __perf_event_account_interrupt(event, throttle);
9130
9131         /*
9132          * XXX event_limit might not quite work as expected on inherited
9133          * events
9134          */
9135
9136         event->pending_kill = POLL_IN;
9137         if (events && atomic_dec_and_test(&event->event_limit)) {
9138                 ret = 1;
9139                 event->pending_kill = POLL_HUP;
9140                 event->pending_addr = data->addr;
9141
9142                 perf_event_disable_inatomic(event);
9143         }
9144
9145         READ_ONCE(event->overflow_handler)(event, data, regs);
9146
9147         if (*perf_event_fasync(event) && event->pending_kill) {
9148                 event->pending_wakeup = 1;
9149                 irq_work_queue(&event->pending);
9150         }
9151
9152         return ret;
9153 }
9154
9155 int perf_event_overflow(struct perf_event *event,
9156                           struct perf_sample_data *data,
9157                           struct pt_regs *regs)
9158 {
9159         return __perf_event_overflow(event, 1, data, regs);
9160 }
9161
9162 /*
9163  * Generic software event infrastructure
9164  */
9165
9166 struct swevent_htable {
9167         struct swevent_hlist            *swevent_hlist;
9168         struct mutex                    hlist_mutex;
9169         int                             hlist_refcount;
9170
9171         /* Recursion avoidance in each contexts */
9172         int                             recursion[PERF_NR_CONTEXTS];
9173 };
9174
9175 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9176
9177 /*
9178  * We directly increment event->count and keep a second value in
9179  * event->hw.period_left to count intervals. This period event
9180  * is kept in the range [-sample_period, 0] so that we can use the
9181  * sign as trigger.
9182  */
9183
9184 u64 perf_swevent_set_period(struct perf_event *event)
9185 {
9186         struct hw_perf_event *hwc = &event->hw;
9187         u64 period = hwc->last_period;
9188         u64 nr, offset;
9189         s64 old, val;
9190
9191         hwc->last_period = hwc->sample_period;
9192
9193 again:
9194         old = val = local64_read(&hwc->period_left);
9195         if (val < 0)
9196                 return 0;
9197
9198         nr = div64_u64(period + val, period);
9199         offset = nr * period;
9200         val -= offset;
9201         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9202                 goto again;
9203
9204         return nr;
9205 }
9206
9207 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9208                                     struct perf_sample_data *data,
9209                                     struct pt_regs *regs)
9210 {
9211         struct hw_perf_event *hwc = &event->hw;
9212         int throttle = 0;
9213
9214         if (!overflow)
9215                 overflow = perf_swevent_set_period(event);
9216
9217         if (hwc->interrupts == MAX_INTERRUPTS)
9218                 return;
9219
9220         for (; overflow; overflow--) {
9221                 if (__perf_event_overflow(event, throttle,
9222                                             data, regs)) {
9223                         /*
9224                          * We inhibit the overflow from happening when
9225                          * hwc->interrupts == MAX_INTERRUPTS.
9226                          */
9227                         break;
9228                 }
9229                 throttle = 1;
9230         }
9231 }
9232
9233 static void perf_swevent_event(struct perf_event *event, u64 nr,
9234                                struct perf_sample_data *data,
9235                                struct pt_regs *regs)
9236 {
9237         struct hw_perf_event *hwc = &event->hw;
9238
9239         local64_add(nr, &event->count);
9240
9241         if (!regs)
9242                 return;
9243
9244         if (!is_sampling_event(event))
9245                 return;
9246
9247         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9248                 data->period = nr;
9249                 return perf_swevent_overflow(event, 1, data, regs);
9250         } else
9251                 data->period = event->hw.last_period;
9252
9253         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9254                 return perf_swevent_overflow(event, 1, data, regs);
9255
9256         if (local64_add_negative(nr, &hwc->period_left))
9257                 return;
9258
9259         perf_swevent_overflow(event, 0, data, regs);
9260 }
9261
9262 static int perf_exclude_event(struct perf_event *event,
9263                               struct pt_regs *regs)
9264 {
9265         if (event->hw.state & PERF_HES_STOPPED)
9266                 return 1;
9267
9268         if (regs) {
9269                 if (event->attr.exclude_user && user_mode(regs))
9270                         return 1;
9271
9272                 if (event->attr.exclude_kernel && !user_mode(regs))
9273                         return 1;
9274         }
9275
9276         return 0;
9277 }
9278
9279 static int perf_swevent_match(struct perf_event *event,
9280                                 enum perf_type_id type,
9281                                 u32 event_id,
9282                                 struct perf_sample_data *data,
9283                                 struct pt_regs *regs)
9284 {
9285         if (event->attr.type != type)
9286                 return 0;
9287
9288         if (event->attr.config != event_id)
9289                 return 0;
9290
9291         if (perf_exclude_event(event, regs))
9292                 return 0;
9293
9294         return 1;
9295 }
9296
9297 static inline u64 swevent_hash(u64 type, u32 event_id)
9298 {
9299         u64 val = event_id | (type << 32);
9300
9301         return hash_64(val, SWEVENT_HLIST_BITS);
9302 }
9303
9304 static inline struct hlist_head *
9305 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9306 {
9307         u64 hash = swevent_hash(type, event_id);
9308
9309         return &hlist->heads[hash];
9310 }
9311
9312 /* For the read side: events when they trigger */
9313 static inline struct hlist_head *
9314 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9315 {
9316         struct swevent_hlist *hlist;
9317
9318         hlist = rcu_dereference(swhash->swevent_hlist);
9319         if (!hlist)
9320                 return NULL;
9321
9322         return __find_swevent_head(hlist, type, event_id);
9323 }
9324
9325 /* For the event head insertion and removal in the hlist */
9326 static inline struct hlist_head *
9327 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9328 {
9329         struct swevent_hlist *hlist;
9330         u32 event_id = event->attr.config;
9331         u64 type = event->attr.type;
9332
9333         /*
9334          * Event scheduling is always serialized against hlist allocation
9335          * and release. Which makes the protected version suitable here.
9336          * The context lock guarantees that.
9337          */
9338         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9339                                           lockdep_is_held(&event->ctx->lock));
9340         if (!hlist)
9341                 return NULL;
9342
9343         return __find_swevent_head(hlist, type, event_id);
9344 }
9345
9346 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9347                                     u64 nr,
9348                                     struct perf_sample_data *data,
9349                                     struct pt_regs *regs)
9350 {
9351         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9352         struct perf_event *event;
9353         struct hlist_head *head;
9354
9355         rcu_read_lock();
9356         head = find_swevent_head_rcu(swhash, type, event_id);
9357         if (!head)
9358                 goto end;
9359
9360         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9361                 if (perf_swevent_match(event, type, event_id, data, regs))
9362                         perf_swevent_event(event, nr, data, regs);
9363         }
9364 end:
9365         rcu_read_unlock();
9366 }
9367
9368 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9369
9370 int perf_swevent_get_recursion_context(void)
9371 {
9372         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9373
9374         return get_recursion_context(swhash->recursion);
9375 }
9376 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9377
9378 void perf_swevent_put_recursion_context(int rctx)
9379 {
9380         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9381
9382         put_recursion_context(swhash->recursion, rctx);
9383 }
9384
9385 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9386 {
9387         struct perf_sample_data data;
9388
9389         if (WARN_ON_ONCE(!regs))
9390                 return;
9391
9392         perf_sample_data_init(&data, addr, 0);
9393         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9394 }
9395
9396 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9397 {
9398         int rctx;
9399
9400         preempt_disable_notrace();
9401         rctx = perf_swevent_get_recursion_context();
9402         if (unlikely(rctx < 0))
9403                 goto fail;
9404
9405         ___perf_sw_event(event_id, nr, regs, addr);
9406
9407         perf_swevent_put_recursion_context(rctx);
9408 fail:
9409         preempt_enable_notrace();
9410 }
9411
9412 static void perf_swevent_read(struct perf_event *event)
9413 {
9414 }
9415
9416 static int perf_swevent_add(struct perf_event *event, int flags)
9417 {
9418         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9419         struct hw_perf_event *hwc = &event->hw;
9420         struct hlist_head *head;
9421
9422         if (is_sampling_event(event)) {
9423                 hwc->last_period = hwc->sample_period;
9424                 perf_swevent_set_period(event);
9425         }
9426
9427         hwc->state = !(flags & PERF_EF_START);
9428
9429         head = find_swevent_head(swhash, event);
9430         if (WARN_ON_ONCE(!head))
9431                 return -EINVAL;
9432
9433         hlist_add_head_rcu(&event->hlist_entry, head);
9434         perf_event_update_userpage(event);
9435
9436         return 0;
9437 }
9438
9439 static void perf_swevent_del(struct perf_event *event, int flags)
9440 {
9441         hlist_del_rcu(&event->hlist_entry);
9442 }
9443
9444 static void perf_swevent_start(struct perf_event *event, int flags)
9445 {
9446         event->hw.state = 0;
9447 }
9448
9449 static void perf_swevent_stop(struct perf_event *event, int flags)
9450 {
9451         event->hw.state = PERF_HES_STOPPED;
9452 }
9453
9454 /* Deref the hlist from the update side */
9455 static inline struct swevent_hlist *
9456 swevent_hlist_deref(struct swevent_htable *swhash)
9457 {
9458         return rcu_dereference_protected(swhash->swevent_hlist,
9459                                          lockdep_is_held(&swhash->hlist_mutex));
9460 }
9461
9462 static void swevent_hlist_release(struct swevent_htable *swhash)
9463 {
9464         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9465
9466         if (!hlist)
9467                 return;
9468
9469         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9470         kfree_rcu(hlist, rcu_head);
9471 }
9472
9473 static void swevent_hlist_put_cpu(int cpu)
9474 {
9475         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9476
9477         mutex_lock(&swhash->hlist_mutex);
9478
9479         if (!--swhash->hlist_refcount)
9480                 swevent_hlist_release(swhash);
9481
9482         mutex_unlock(&swhash->hlist_mutex);
9483 }
9484
9485 static void swevent_hlist_put(void)
9486 {
9487         int cpu;
9488
9489         for_each_possible_cpu(cpu)
9490                 swevent_hlist_put_cpu(cpu);
9491 }
9492
9493 static int swevent_hlist_get_cpu(int cpu)
9494 {
9495         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9496         int err = 0;
9497
9498         mutex_lock(&swhash->hlist_mutex);
9499         if (!swevent_hlist_deref(swhash) &&
9500             cpumask_test_cpu(cpu, perf_online_mask)) {
9501                 struct swevent_hlist *hlist;
9502
9503                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9504                 if (!hlist) {
9505                         err = -ENOMEM;
9506                         goto exit;
9507                 }
9508                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9509         }
9510         swhash->hlist_refcount++;
9511 exit:
9512         mutex_unlock(&swhash->hlist_mutex);
9513
9514         return err;
9515 }
9516
9517 static int swevent_hlist_get(void)
9518 {
9519         int err, cpu, failed_cpu;
9520
9521         mutex_lock(&pmus_lock);
9522         for_each_possible_cpu(cpu) {
9523                 err = swevent_hlist_get_cpu(cpu);
9524                 if (err) {
9525                         failed_cpu = cpu;
9526                         goto fail;
9527                 }
9528         }
9529         mutex_unlock(&pmus_lock);
9530         return 0;
9531 fail:
9532         for_each_possible_cpu(cpu) {
9533                 if (cpu == failed_cpu)
9534                         break;
9535                 swevent_hlist_put_cpu(cpu);
9536         }
9537         mutex_unlock(&pmus_lock);
9538         return err;
9539 }
9540
9541 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9542
9543 static void sw_perf_event_destroy(struct perf_event *event)
9544 {
9545         u64 event_id = event->attr.config;
9546
9547         WARN_ON(event->parent);
9548
9549         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9550         swevent_hlist_put();
9551 }
9552
9553 static int perf_swevent_init(struct perf_event *event)
9554 {
9555         u64 event_id = event->attr.config;
9556
9557         if (event->attr.type != PERF_TYPE_SOFTWARE)
9558                 return -ENOENT;
9559
9560         /*
9561          * no branch sampling for software events
9562          */
9563         if (has_branch_stack(event))
9564                 return -EOPNOTSUPP;
9565
9566         switch (event_id) {
9567         case PERF_COUNT_SW_CPU_CLOCK:
9568         case PERF_COUNT_SW_TASK_CLOCK:
9569                 return -ENOENT;
9570
9571         default:
9572                 break;
9573         }
9574
9575         if (event_id >= PERF_COUNT_SW_MAX)
9576                 return -ENOENT;
9577
9578         if (!event->parent) {
9579                 int err;
9580
9581                 err = swevent_hlist_get();
9582                 if (err)
9583                         return err;
9584
9585                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9586                 event->destroy = sw_perf_event_destroy;
9587         }
9588
9589         return 0;
9590 }
9591
9592 static struct pmu perf_swevent = {
9593         .task_ctx_nr    = perf_sw_context,
9594
9595         .capabilities   = PERF_PMU_CAP_NO_NMI,
9596
9597         .event_init     = perf_swevent_init,
9598         .add            = perf_swevent_add,
9599         .del            = perf_swevent_del,
9600         .start          = perf_swevent_start,
9601         .stop           = perf_swevent_stop,
9602         .read           = perf_swevent_read,
9603 };
9604
9605 #ifdef CONFIG_EVENT_TRACING
9606
9607 static int perf_tp_filter_match(struct perf_event *event,
9608                                 struct perf_sample_data *data)
9609 {
9610         void *record = data->raw->frag.data;
9611
9612         /* only top level events have filters set */
9613         if (event->parent)
9614                 event = event->parent;
9615
9616         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9617                 return 1;
9618         return 0;
9619 }
9620
9621 static int perf_tp_event_match(struct perf_event *event,
9622                                 struct perf_sample_data *data,
9623                                 struct pt_regs *regs)
9624 {
9625         if (event->hw.state & PERF_HES_STOPPED)
9626                 return 0;
9627         /*
9628          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9629          */
9630         if (event->attr.exclude_kernel && !user_mode(regs))
9631                 return 0;
9632
9633         if (!perf_tp_filter_match(event, data))
9634                 return 0;
9635
9636         return 1;
9637 }
9638
9639 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9640                                struct trace_event_call *call, u64 count,
9641                                struct pt_regs *regs, struct hlist_head *head,
9642                                struct task_struct *task)
9643 {
9644         if (bpf_prog_array_valid(call)) {
9645                 *(struct pt_regs **)raw_data = regs;
9646                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9647                         perf_swevent_put_recursion_context(rctx);
9648                         return;
9649                 }
9650         }
9651         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9652                       rctx, task);
9653 }
9654 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9655
9656 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9657                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9658                    struct task_struct *task)
9659 {
9660         struct perf_sample_data data;
9661         struct perf_event *event;
9662
9663         struct perf_raw_record raw = {
9664                 .frag = {
9665                         .size = entry_size,
9666                         .data = record,
9667                 },
9668         };
9669
9670         perf_sample_data_init(&data, 0, 0);
9671         data.raw = &raw;
9672
9673         perf_trace_buf_update(record, event_type);
9674
9675         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9676                 if (perf_tp_event_match(event, &data, regs))
9677                         perf_swevent_event(event, count, &data, regs);
9678         }
9679
9680         /*
9681          * If we got specified a target task, also iterate its context and
9682          * deliver this event there too.
9683          */
9684         if (task && task != current) {
9685                 struct perf_event_context *ctx;
9686                 struct trace_entry *entry = record;
9687
9688                 rcu_read_lock();
9689                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9690                 if (!ctx)
9691                         goto unlock;
9692
9693                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9694                         if (event->cpu != smp_processor_id())
9695                                 continue;
9696                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9697                                 continue;
9698                         if (event->attr.config != entry->type)
9699                                 continue;
9700                         if (perf_tp_event_match(event, &data, regs))
9701                                 perf_swevent_event(event, count, &data, regs);
9702                 }
9703 unlock:
9704                 rcu_read_unlock();
9705         }
9706
9707         perf_swevent_put_recursion_context(rctx);
9708 }
9709 EXPORT_SYMBOL_GPL(perf_tp_event);
9710
9711 static void tp_perf_event_destroy(struct perf_event *event)
9712 {
9713         perf_trace_destroy(event);
9714 }
9715
9716 static int perf_tp_event_init(struct perf_event *event)
9717 {
9718         int err;
9719
9720         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9721                 return -ENOENT;
9722
9723         /*
9724          * no branch sampling for tracepoint events
9725          */
9726         if (has_branch_stack(event))
9727                 return -EOPNOTSUPP;
9728
9729         err = perf_trace_init(event);
9730         if (err)
9731                 return err;
9732
9733         event->destroy = tp_perf_event_destroy;
9734
9735         return 0;
9736 }
9737
9738 static struct pmu perf_tracepoint = {
9739         .task_ctx_nr    = perf_sw_context,
9740
9741         .event_init     = perf_tp_event_init,
9742         .add            = perf_trace_add,
9743         .del            = perf_trace_del,
9744         .start          = perf_swevent_start,
9745         .stop           = perf_swevent_stop,
9746         .read           = perf_swevent_read,
9747 };
9748
9749 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9750 /*
9751  * Flags in config, used by dynamic PMU kprobe and uprobe
9752  * The flags should match following PMU_FORMAT_ATTR().
9753  *
9754  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9755  *                               if not set, create kprobe/uprobe
9756  *
9757  * The following values specify a reference counter (or semaphore in the
9758  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9759  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9760  *
9761  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9762  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9763  */
9764 enum perf_probe_config {
9765         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9766         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9767         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9768 };
9769
9770 PMU_FORMAT_ATTR(retprobe, "config:0");
9771 #endif
9772
9773 #ifdef CONFIG_KPROBE_EVENTS
9774 static struct attribute *kprobe_attrs[] = {
9775         &format_attr_retprobe.attr,
9776         NULL,
9777 };
9778
9779 static struct attribute_group kprobe_format_group = {
9780         .name = "format",
9781         .attrs = kprobe_attrs,
9782 };
9783
9784 static const struct attribute_group *kprobe_attr_groups[] = {
9785         &kprobe_format_group,
9786         NULL,
9787 };
9788
9789 static int perf_kprobe_event_init(struct perf_event *event);
9790 static struct pmu perf_kprobe = {
9791         .task_ctx_nr    = perf_sw_context,
9792         .event_init     = perf_kprobe_event_init,
9793         .add            = perf_trace_add,
9794         .del            = perf_trace_del,
9795         .start          = perf_swevent_start,
9796         .stop           = perf_swevent_stop,
9797         .read           = perf_swevent_read,
9798         .attr_groups    = kprobe_attr_groups,
9799 };
9800
9801 static int perf_kprobe_event_init(struct perf_event *event)
9802 {
9803         int err;
9804         bool is_retprobe;
9805
9806         if (event->attr.type != perf_kprobe.type)
9807                 return -ENOENT;
9808
9809         if (!perfmon_capable())
9810                 return -EACCES;
9811
9812         /*
9813          * no branch sampling for probe events
9814          */
9815         if (has_branch_stack(event))
9816                 return -EOPNOTSUPP;
9817
9818         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9819         err = perf_kprobe_init(event, is_retprobe);
9820         if (err)
9821                 return err;
9822
9823         event->destroy = perf_kprobe_destroy;
9824
9825         return 0;
9826 }
9827 #endif /* CONFIG_KPROBE_EVENTS */
9828
9829 #ifdef CONFIG_UPROBE_EVENTS
9830 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9831
9832 static struct attribute *uprobe_attrs[] = {
9833         &format_attr_retprobe.attr,
9834         &format_attr_ref_ctr_offset.attr,
9835         NULL,
9836 };
9837
9838 static struct attribute_group uprobe_format_group = {
9839         .name = "format",
9840         .attrs = uprobe_attrs,
9841 };
9842
9843 static const struct attribute_group *uprobe_attr_groups[] = {
9844         &uprobe_format_group,
9845         NULL,
9846 };
9847
9848 static int perf_uprobe_event_init(struct perf_event *event);
9849 static struct pmu perf_uprobe = {
9850         .task_ctx_nr    = perf_sw_context,
9851         .event_init     = perf_uprobe_event_init,
9852         .add            = perf_trace_add,
9853         .del            = perf_trace_del,
9854         .start          = perf_swevent_start,
9855         .stop           = perf_swevent_stop,
9856         .read           = perf_swevent_read,
9857         .attr_groups    = uprobe_attr_groups,
9858 };
9859
9860 static int perf_uprobe_event_init(struct perf_event *event)
9861 {
9862         int err;
9863         unsigned long ref_ctr_offset;
9864         bool is_retprobe;
9865
9866         if (event->attr.type != perf_uprobe.type)
9867                 return -ENOENT;
9868
9869         if (!perfmon_capable())
9870                 return -EACCES;
9871
9872         /*
9873          * no branch sampling for probe events
9874          */
9875         if (has_branch_stack(event))
9876                 return -EOPNOTSUPP;
9877
9878         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9879         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9880         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9881         if (err)
9882                 return err;
9883
9884         event->destroy = perf_uprobe_destroy;
9885
9886         return 0;
9887 }
9888 #endif /* CONFIG_UPROBE_EVENTS */
9889
9890 static inline void perf_tp_register(void)
9891 {
9892         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9893 #ifdef CONFIG_KPROBE_EVENTS
9894         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9895 #endif
9896 #ifdef CONFIG_UPROBE_EVENTS
9897         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9898 #endif
9899 }
9900
9901 static void perf_event_free_filter(struct perf_event *event)
9902 {
9903         ftrace_profile_free_filter(event);
9904 }
9905
9906 #ifdef CONFIG_BPF_SYSCALL
9907 static void bpf_overflow_handler(struct perf_event *event,
9908                                  struct perf_sample_data *data,
9909                                  struct pt_regs *regs)
9910 {
9911         struct bpf_perf_event_data_kern ctx = {
9912                 .data = data,
9913                 .event = event,
9914         };
9915         int ret = 0;
9916
9917         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9918         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9919                 goto out;
9920         rcu_read_lock();
9921         ret = BPF_PROG_RUN(event->prog, &ctx);
9922         rcu_read_unlock();
9923 out:
9924         __this_cpu_dec(bpf_prog_active);
9925         if (!ret)
9926                 return;
9927
9928         event->orig_overflow_handler(event, data, regs);
9929 }
9930
9931 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9932 {
9933         struct bpf_prog *prog;
9934
9935         if (event->overflow_handler_context)
9936                 /* hw breakpoint or kernel counter */
9937                 return -EINVAL;
9938
9939         if (event->prog)
9940                 return -EEXIST;
9941
9942         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9943         if (IS_ERR(prog))
9944                 return PTR_ERR(prog);
9945
9946         if (event->attr.precise_ip &&
9947             prog->call_get_stack &&
9948             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9949              event->attr.exclude_callchain_kernel ||
9950              event->attr.exclude_callchain_user)) {
9951                 /*
9952                  * On perf_event with precise_ip, calling bpf_get_stack()
9953                  * may trigger unwinder warnings and occasional crashes.
9954                  * bpf_get_[stack|stackid] works around this issue by using
9955                  * callchain attached to perf_sample_data. If the
9956                  * perf_event does not full (kernel and user) callchain
9957                  * attached to perf_sample_data, do not allow attaching BPF
9958                  * program that calls bpf_get_[stack|stackid].
9959                  */
9960                 bpf_prog_put(prog);
9961                 return -EPROTO;
9962         }
9963
9964         event->prog = prog;
9965         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9966         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9967         return 0;
9968 }
9969
9970 static void perf_event_free_bpf_handler(struct perf_event *event)
9971 {
9972         struct bpf_prog *prog = event->prog;
9973
9974         if (!prog)
9975                 return;
9976
9977         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9978         event->prog = NULL;
9979         bpf_prog_put(prog);
9980 }
9981 #else
9982 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9983 {
9984         return -EOPNOTSUPP;
9985 }
9986 static void perf_event_free_bpf_handler(struct perf_event *event)
9987 {
9988 }
9989 #endif
9990
9991 /*
9992  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9993  * with perf_event_open()
9994  */
9995 static inline bool perf_event_is_tracing(struct perf_event *event)
9996 {
9997         if (event->pmu == &perf_tracepoint)
9998                 return true;
9999 #ifdef CONFIG_KPROBE_EVENTS
10000         if (event->pmu == &perf_kprobe)
10001                 return true;
10002 #endif
10003 #ifdef CONFIG_UPROBE_EVENTS
10004         if (event->pmu == &perf_uprobe)
10005                 return true;
10006 #endif
10007         return false;
10008 }
10009
10010 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10011 {
10012         bool is_kprobe, is_tracepoint, is_syscall_tp;
10013         struct bpf_prog *prog;
10014         int ret;
10015
10016         if (!perf_event_is_tracing(event))
10017                 return perf_event_set_bpf_handler(event, prog_fd);
10018
10019         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10020         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10021         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10022         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10023                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10024                 return -EINVAL;
10025
10026         prog = bpf_prog_get(prog_fd);
10027         if (IS_ERR(prog))
10028                 return PTR_ERR(prog);
10029
10030         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10031             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10032             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10033                 /* valid fd, but invalid bpf program type */
10034                 bpf_prog_put(prog);
10035                 return -EINVAL;
10036         }
10037
10038         /* Kprobe override only works for kprobes, not uprobes. */
10039         if (prog->kprobe_override &&
10040             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10041                 bpf_prog_put(prog);
10042                 return -EINVAL;
10043         }
10044
10045         if (is_tracepoint || is_syscall_tp) {
10046                 int off = trace_event_get_offsets(event->tp_event);
10047
10048                 if (prog->aux->max_ctx_offset > off) {
10049                         bpf_prog_put(prog);
10050                         return -EACCES;
10051                 }
10052         }
10053
10054         ret = perf_event_attach_bpf_prog(event, prog);
10055         if (ret)
10056                 bpf_prog_put(prog);
10057         return ret;
10058 }
10059
10060 static void perf_event_free_bpf_prog(struct perf_event *event)
10061 {
10062         if (!perf_event_is_tracing(event)) {
10063                 perf_event_free_bpf_handler(event);
10064                 return;
10065         }
10066         perf_event_detach_bpf_prog(event);
10067 }
10068
10069 #else
10070
10071 static inline void perf_tp_register(void)
10072 {
10073 }
10074
10075 static void perf_event_free_filter(struct perf_event *event)
10076 {
10077 }
10078
10079 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10080 {
10081         return -ENOENT;
10082 }
10083
10084 static void perf_event_free_bpf_prog(struct perf_event *event)
10085 {
10086 }
10087 #endif /* CONFIG_EVENT_TRACING */
10088
10089 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10090 void perf_bp_event(struct perf_event *bp, void *data)
10091 {
10092         struct perf_sample_data sample;
10093         struct pt_regs *regs = data;
10094
10095         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10096
10097         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10098                 perf_swevent_event(bp, 1, &sample, regs);
10099 }
10100 #endif
10101
10102 /*
10103  * Allocate a new address filter
10104  */
10105 static struct perf_addr_filter *
10106 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10107 {
10108         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10109         struct perf_addr_filter *filter;
10110
10111         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10112         if (!filter)
10113                 return NULL;
10114
10115         INIT_LIST_HEAD(&filter->entry);
10116         list_add_tail(&filter->entry, filters);
10117
10118         return filter;
10119 }
10120
10121 static void free_filters_list(struct list_head *filters)
10122 {
10123         struct perf_addr_filter *filter, *iter;
10124
10125         list_for_each_entry_safe(filter, iter, filters, entry) {
10126                 path_put(&filter->path);
10127                 list_del(&filter->entry);
10128                 kfree(filter);
10129         }
10130 }
10131
10132 /*
10133  * Free existing address filters and optionally install new ones
10134  */
10135 static void perf_addr_filters_splice(struct perf_event *event,
10136                                      struct list_head *head)
10137 {
10138         unsigned long flags;
10139         LIST_HEAD(list);
10140
10141         if (!has_addr_filter(event))
10142                 return;
10143
10144         /* don't bother with children, they don't have their own filters */
10145         if (event->parent)
10146                 return;
10147
10148         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10149
10150         list_splice_init(&event->addr_filters.list, &list);
10151         if (head)
10152                 list_splice(head, &event->addr_filters.list);
10153
10154         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10155
10156         free_filters_list(&list);
10157 }
10158
10159 /*
10160  * Scan through mm's vmas and see if one of them matches the
10161  * @filter; if so, adjust filter's address range.
10162  * Called with mm::mmap_lock down for reading.
10163  */
10164 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10165                                    struct mm_struct *mm,
10166                                    struct perf_addr_filter_range *fr)
10167 {
10168         struct vm_area_struct *vma;
10169
10170         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10171                 if (!vma->vm_file)
10172                         continue;
10173
10174                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10175                         return;
10176         }
10177 }
10178
10179 /*
10180  * Update event's address range filters based on the
10181  * task's existing mappings, if any.
10182  */
10183 static void perf_event_addr_filters_apply(struct perf_event *event)
10184 {
10185         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10186         struct task_struct *task = READ_ONCE(event->ctx->task);
10187         struct perf_addr_filter *filter;
10188         struct mm_struct *mm = NULL;
10189         unsigned int count = 0;
10190         unsigned long flags;
10191
10192         /*
10193          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10194          * will stop on the parent's child_mutex that our caller is also holding
10195          */
10196         if (task == TASK_TOMBSTONE)
10197                 return;
10198
10199         if (ifh->nr_file_filters) {
10200                 mm = get_task_mm(event->ctx->task);
10201                 if (!mm)
10202                         goto restart;
10203
10204                 mmap_read_lock(mm);
10205         }
10206
10207         raw_spin_lock_irqsave(&ifh->lock, flags);
10208         list_for_each_entry(filter, &ifh->list, entry) {
10209                 if (filter->path.dentry) {
10210                         /*
10211                          * Adjust base offset if the filter is associated to a
10212                          * binary that needs to be mapped:
10213                          */
10214                         event->addr_filter_ranges[count].start = 0;
10215                         event->addr_filter_ranges[count].size = 0;
10216
10217                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10218                 } else {
10219                         event->addr_filter_ranges[count].start = filter->offset;
10220                         event->addr_filter_ranges[count].size  = filter->size;
10221                 }
10222
10223                 count++;
10224         }
10225
10226         event->addr_filters_gen++;
10227         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10228
10229         if (ifh->nr_file_filters) {
10230                 mmap_read_unlock(mm);
10231
10232                 mmput(mm);
10233         }
10234
10235 restart:
10236         perf_event_stop(event, 1);
10237 }
10238
10239 /*
10240  * Address range filtering: limiting the data to certain
10241  * instruction address ranges. Filters are ioctl()ed to us from
10242  * userspace as ascii strings.
10243  *
10244  * Filter string format:
10245  *
10246  * ACTION RANGE_SPEC
10247  * where ACTION is one of the
10248  *  * "filter": limit the trace to this region
10249  *  * "start": start tracing from this address
10250  *  * "stop": stop tracing at this address/region;
10251  * RANGE_SPEC is
10252  *  * for kernel addresses: <start address>[/<size>]
10253  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10254  *
10255  * if <size> is not specified or is zero, the range is treated as a single
10256  * address; not valid for ACTION=="filter".
10257  */
10258 enum {
10259         IF_ACT_NONE = -1,
10260         IF_ACT_FILTER,
10261         IF_ACT_START,
10262         IF_ACT_STOP,
10263         IF_SRC_FILE,
10264         IF_SRC_KERNEL,
10265         IF_SRC_FILEADDR,
10266         IF_SRC_KERNELADDR,
10267 };
10268
10269 enum {
10270         IF_STATE_ACTION = 0,
10271         IF_STATE_SOURCE,
10272         IF_STATE_END,
10273 };
10274
10275 static const match_table_t if_tokens = {
10276         { IF_ACT_FILTER,        "filter" },
10277         { IF_ACT_START,         "start" },
10278         { IF_ACT_STOP,          "stop" },
10279         { IF_SRC_FILE,          "%u/%u@%s" },
10280         { IF_SRC_KERNEL,        "%u/%u" },
10281         { IF_SRC_FILEADDR,      "%u@%s" },
10282         { IF_SRC_KERNELADDR,    "%u" },
10283         { IF_ACT_NONE,          NULL },
10284 };
10285
10286 /*
10287  * Address filter string parser
10288  */
10289 static int
10290 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10291                              struct list_head *filters)
10292 {
10293         struct perf_addr_filter *filter = NULL;
10294         char *start, *orig, *filename = NULL;
10295         substring_t args[MAX_OPT_ARGS];
10296         int state = IF_STATE_ACTION, token;
10297         unsigned int kernel = 0;
10298         int ret = -EINVAL;
10299
10300         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10301         if (!fstr)
10302                 return -ENOMEM;
10303
10304         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10305                 static const enum perf_addr_filter_action_t actions[] = {
10306                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10307                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10308                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10309                 };
10310                 ret = -EINVAL;
10311
10312                 if (!*start)
10313                         continue;
10314
10315                 /* filter definition begins */
10316                 if (state == IF_STATE_ACTION) {
10317                         filter = perf_addr_filter_new(event, filters);
10318                         if (!filter)
10319                                 goto fail;
10320                 }
10321
10322                 token = match_token(start, if_tokens, args);
10323                 switch (token) {
10324                 case IF_ACT_FILTER:
10325                 case IF_ACT_START:
10326                 case IF_ACT_STOP:
10327                         if (state != IF_STATE_ACTION)
10328                                 goto fail;
10329
10330                         filter->action = actions[token];
10331                         state = IF_STATE_SOURCE;
10332                         break;
10333
10334                 case IF_SRC_KERNELADDR:
10335                 case IF_SRC_KERNEL:
10336                         kernel = 1;
10337                         fallthrough;
10338
10339                 case IF_SRC_FILEADDR:
10340                 case IF_SRC_FILE:
10341                         if (state != IF_STATE_SOURCE)
10342                                 goto fail;
10343
10344                         *args[0].to = 0;
10345                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10346                         if (ret)
10347                                 goto fail;
10348
10349                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10350                                 *args[1].to = 0;
10351                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10352                                 if (ret)
10353                                         goto fail;
10354                         }
10355
10356                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10357                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10358
10359                                 kfree(filename);
10360                                 filename = match_strdup(&args[fpos]);
10361                                 if (!filename) {
10362                                         ret = -ENOMEM;
10363                                         goto fail;
10364                                 }
10365                         }
10366
10367                         state = IF_STATE_END;
10368                         break;
10369
10370                 default:
10371                         goto fail;
10372                 }
10373
10374                 /*
10375                  * Filter definition is fully parsed, validate and install it.
10376                  * Make sure that it doesn't contradict itself or the event's
10377                  * attribute.
10378                  */
10379                 if (state == IF_STATE_END) {
10380                         ret = -EINVAL;
10381                         if (kernel && event->attr.exclude_kernel)
10382                                 goto fail;
10383
10384                         /*
10385                          * ACTION "filter" must have a non-zero length region
10386                          * specified.
10387                          */
10388                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10389                             !filter->size)
10390                                 goto fail;
10391
10392                         if (!kernel) {
10393                                 if (!filename)
10394                                         goto fail;
10395
10396                                 /*
10397                                  * For now, we only support file-based filters
10398                                  * in per-task events; doing so for CPU-wide
10399                                  * events requires additional context switching
10400                                  * trickery, since same object code will be
10401                                  * mapped at different virtual addresses in
10402                                  * different processes.
10403                                  */
10404                                 ret = -EOPNOTSUPP;
10405                                 if (!event->ctx->task)
10406                                         goto fail;
10407
10408                                 /* look up the path and grab its inode */
10409                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10410                                                 &filter->path);
10411                                 if (ret)
10412                                         goto fail;
10413
10414                                 ret = -EINVAL;
10415                                 if (!filter->path.dentry ||
10416                                     !S_ISREG(d_inode(filter->path.dentry)
10417                                              ->i_mode))
10418                                         goto fail;
10419
10420                                 event->addr_filters.nr_file_filters++;
10421                         }
10422
10423                         /* ready to consume more filters */
10424                         state = IF_STATE_ACTION;
10425                         filter = NULL;
10426                 }
10427         }
10428
10429         if (state != IF_STATE_ACTION)
10430                 goto fail;
10431
10432         kfree(filename);
10433         kfree(orig);
10434
10435         return 0;
10436
10437 fail:
10438         kfree(filename);
10439         free_filters_list(filters);
10440         kfree(orig);
10441
10442         return ret;
10443 }
10444
10445 static int
10446 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10447 {
10448         LIST_HEAD(filters);
10449         int ret;
10450
10451         /*
10452          * Since this is called in perf_ioctl() path, we're already holding
10453          * ctx::mutex.
10454          */
10455         lockdep_assert_held(&event->ctx->mutex);
10456
10457         if (WARN_ON_ONCE(event->parent))
10458                 return -EINVAL;
10459
10460         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10461         if (ret)
10462                 goto fail_clear_files;
10463
10464         ret = event->pmu->addr_filters_validate(&filters);
10465         if (ret)
10466                 goto fail_free_filters;
10467
10468         /* remove existing filters, if any */
10469         perf_addr_filters_splice(event, &filters);
10470
10471         /* install new filters */
10472         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10473
10474         return ret;
10475
10476 fail_free_filters:
10477         free_filters_list(&filters);
10478
10479 fail_clear_files:
10480         event->addr_filters.nr_file_filters = 0;
10481
10482         return ret;
10483 }
10484
10485 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10486 {
10487         int ret = -EINVAL;
10488         char *filter_str;
10489
10490         filter_str = strndup_user(arg, PAGE_SIZE);
10491         if (IS_ERR(filter_str))
10492                 return PTR_ERR(filter_str);
10493
10494 #ifdef CONFIG_EVENT_TRACING
10495         if (perf_event_is_tracing(event)) {
10496                 struct perf_event_context *ctx = event->ctx;
10497
10498                 /*
10499                  * Beware, here be dragons!!
10500                  *
10501                  * the tracepoint muck will deadlock against ctx->mutex, but
10502                  * the tracepoint stuff does not actually need it. So
10503                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10504                  * already have a reference on ctx.
10505                  *
10506                  * This can result in event getting moved to a different ctx,
10507                  * but that does not affect the tracepoint state.
10508                  */
10509                 mutex_unlock(&ctx->mutex);
10510                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10511                 mutex_lock(&ctx->mutex);
10512         } else
10513 #endif
10514         if (has_addr_filter(event))
10515                 ret = perf_event_set_addr_filter(event, filter_str);
10516
10517         kfree(filter_str);
10518         return ret;
10519 }
10520
10521 /*
10522  * hrtimer based swevent callback
10523  */
10524
10525 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10526 {
10527         enum hrtimer_restart ret = HRTIMER_RESTART;
10528         struct perf_sample_data data;
10529         struct pt_regs *regs;
10530         struct perf_event *event;
10531         u64 period;
10532
10533         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10534
10535         if (event->state != PERF_EVENT_STATE_ACTIVE)
10536                 return HRTIMER_NORESTART;
10537
10538         event->pmu->read(event);
10539
10540         perf_sample_data_init(&data, 0, event->hw.last_period);
10541         regs = get_irq_regs();
10542
10543         if (regs && !perf_exclude_event(event, regs)) {
10544                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10545                         if (__perf_event_overflow(event, 1, &data, regs))
10546                                 ret = HRTIMER_NORESTART;
10547         }
10548
10549         period = max_t(u64, 10000, event->hw.sample_period);
10550         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10551
10552         return ret;
10553 }
10554
10555 static void perf_swevent_start_hrtimer(struct perf_event *event)
10556 {
10557         struct hw_perf_event *hwc = &event->hw;
10558         s64 period;
10559
10560         if (!is_sampling_event(event))
10561                 return;
10562
10563         period = local64_read(&hwc->period_left);
10564         if (period) {
10565                 if (period < 0)
10566                         period = 10000;
10567
10568                 local64_set(&hwc->period_left, 0);
10569         } else {
10570                 period = max_t(u64, 10000, hwc->sample_period);
10571         }
10572         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10573                       HRTIMER_MODE_REL_PINNED_HARD);
10574 }
10575
10576 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10577 {
10578         struct hw_perf_event *hwc = &event->hw;
10579
10580         if (is_sampling_event(event)) {
10581                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10582                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10583
10584                 hrtimer_cancel(&hwc->hrtimer);
10585         }
10586 }
10587
10588 static void perf_swevent_init_hrtimer(struct perf_event *event)
10589 {
10590         struct hw_perf_event *hwc = &event->hw;
10591
10592         if (!is_sampling_event(event))
10593                 return;
10594
10595         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10596         hwc->hrtimer.function = perf_swevent_hrtimer;
10597
10598         /*
10599          * Since hrtimers have a fixed rate, we can do a static freq->period
10600          * mapping and avoid the whole period adjust feedback stuff.
10601          */
10602         if (event->attr.freq) {
10603                 long freq = event->attr.sample_freq;
10604
10605                 event->attr.sample_period = NSEC_PER_SEC / freq;
10606                 hwc->sample_period = event->attr.sample_period;
10607                 local64_set(&hwc->period_left, hwc->sample_period);
10608                 hwc->last_period = hwc->sample_period;
10609                 event->attr.freq = 0;
10610         }
10611 }
10612
10613 /*
10614  * Software event: cpu wall time clock
10615  */
10616
10617 static void cpu_clock_event_update(struct perf_event *event)
10618 {
10619         s64 prev;
10620         u64 now;
10621
10622         now = local_clock();
10623         prev = local64_xchg(&event->hw.prev_count, now);
10624         local64_add(now - prev, &event->count);
10625 }
10626
10627 static void cpu_clock_event_start(struct perf_event *event, int flags)
10628 {
10629         local64_set(&event->hw.prev_count, local_clock());
10630         perf_swevent_start_hrtimer(event);
10631 }
10632
10633 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10634 {
10635         perf_swevent_cancel_hrtimer(event);
10636         cpu_clock_event_update(event);
10637 }
10638
10639 static int cpu_clock_event_add(struct perf_event *event, int flags)
10640 {
10641         if (flags & PERF_EF_START)
10642                 cpu_clock_event_start(event, flags);
10643         perf_event_update_userpage(event);
10644
10645         return 0;
10646 }
10647
10648 static void cpu_clock_event_del(struct perf_event *event, int flags)
10649 {
10650         cpu_clock_event_stop(event, flags);
10651 }
10652
10653 static void cpu_clock_event_read(struct perf_event *event)
10654 {
10655         cpu_clock_event_update(event);
10656 }
10657
10658 static int cpu_clock_event_init(struct perf_event *event)
10659 {
10660         if (event->attr.type != PERF_TYPE_SOFTWARE)
10661                 return -ENOENT;
10662
10663         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10664                 return -ENOENT;
10665
10666         /*
10667          * no branch sampling for software events
10668          */
10669         if (has_branch_stack(event))
10670                 return -EOPNOTSUPP;
10671
10672         perf_swevent_init_hrtimer(event);
10673
10674         return 0;
10675 }
10676
10677 static struct pmu perf_cpu_clock = {
10678         .task_ctx_nr    = perf_sw_context,
10679
10680         .capabilities   = PERF_PMU_CAP_NO_NMI,
10681
10682         .event_init     = cpu_clock_event_init,
10683         .add            = cpu_clock_event_add,
10684         .del            = cpu_clock_event_del,
10685         .start          = cpu_clock_event_start,
10686         .stop           = cpu_clock_event_stop,
10687         .read           = cpu_clock_event_read,
10688 };
10689
10690 /*
10691  * Software event: task time clock
10692  */
10693
10694 static void task_clock_event_update(struct perf_event *event, u64 now)
10695 {
10696         u64 prev;
10697         s64 delta;
10698
10699         prev = local64_xchg(&event->hw.prev_count, now);
10700         delta = now - prev;
10701         local64_add(delta, &event->count);
10702 }
10703
10704 static void task_clock_event_start(struct perf_event *event, int flags)
10705 {
10706         local64_set(&event->hw.prev_count, event->ctx->time);
10707         perf_swevent_start_hrtimer(event);
10708 }
10709
10710 static void task_clock_event_stop(struct perf_event *event, int flags)
10711 {
10712         perf_swevent_cancel_hrtimer(event);
10713         task_clock_event_update(event, event->ctx->time);
10714 }
10715
10716 static int task_clock_event_add(struct perf_event *event, int flags)
10717 {
10718         if (flags & PERF_EF_START)
10719                 task_clock_event_start(event, flags);
10720         perf_event_update_userpage(event);
10721
10722         return 0;
10723 }
10724
10725 static void task_clock_event_del(struct perf_event *event, int flags)
10726 {
10727         task_clock_event_stop(event, PERF_EF_UPDATE);
10728 }
10729
10730 static void task_clock_event_read(struct perf_event *event)
10731 {
10732         u64 now = perf_clock();
10733         u64 delta = now - event->ctx->timestamp;
10734         u64 time = event->ctx->time + delta;
10735
10736         task_clock_event_update(event, time);
10737 }
10738
10739 static int task_clock_event_init(struct perf_event *event)
10740 {
10741         if (event->attr.type != PERF_TYPE_SOFTWARE)
10742                 return -ENOENT;
10743
10744         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10745                 return -ENOENT;
10746
10747         /*
10748          * no branch sampling for software events
10749          */
10750         if (has_branch_stack(event))
10751                 return -EOPNOTSUPP;
10752
10753         perf_swevent_init_hrtimer(event);
10754
10755         return 0;
10756 }
10757
10758 static struct pmu perf_task_clock = {
10759         .task_ctx_nr    = perf_sw_context,
10760
10761         .capabilities   = PERF_PMU_CAP_NO_NMI,
10762
10763         .event_init     = task_clock_event_init,
10764         .add            = task_clock_event_add,
10765         .del            = task_clock_event_del,
10766         .start          = task_clock_event_start,
10767         .stop           = task_clock_event_stop,
10768         .read           = task_clock_event_read,
10769 };
10770
10771 static void perf_pmu_nop_void(struct pmu *pmu)
10772 {
10773 }
10774
10775 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10776 {
10777 }
10778
10779 static int perf_pmu_nop_int(struct pmu *pmu)
10780 {
10781         return 0;
10782 }
10783
10784 static int perf_event_nop_int(struct perf_event *event, u64 value)
10785 {
10786         return 0;
10787 }
10788
10789 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10790
10791 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10792 {
10793         __this_cpu_write(nop_txn_flags, flags);
10794
10795         if (flags & ~PERF_PMU_TXN_ADD)
10796                 return;
10797
10798         perf_pmu_disable(pmu);
10799 }
10800
10801 static int perf_pmu_commit_txn(struct pmu *pmu)
10802 {
10803         unsigned int flags = __this_cpu_read(nop_txn_flags);
10804
10805         __this_cpu_write(nop_txn_flags, 0);
10806
10807         if (flags & ~PERF_PMU_TXN_ADD)
10808                 return 0;
10809
10810         perf_pmu_enable(pmu);
10811         return 0;
10812 }
10813
10814 static void perf_pmu_cancel_txn(struct pmu *pmu)
10815 {
10816         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10817
10818         __this_cpu_write(nop_txn_flags, 0);
10819
10820         if (flags & ~PERF_PMU_TXN_ADD)
10821                 return;
10822
10823         perf_pmu_enable(pmu);
10824 }
10825
10826 static int perf_event_idx_default(struct perf_event *event)
10827 {
10828         return 0;
10829 }
10830
10831 /*
10832  * Ensures all contexts with the same task_ctx_nr have the same
10833  * pmu_cpu_context too.
10834  */
10835 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10836 {
10837         struct pmu *pmu;
10838
10839         if (ctxn < 0)
10840                 return NULL;
10841
10842         list_for_each_entry(pmu, &pmus, entry) {
10843                 if (pmu->task_ctx_nr == ctxn)
10844                         return pmu->pmu_cpu_context;
10845         }
10846
10847         return NULL;
10848 }
10849
10850 static void free_pmu_context(struct pmu *pmu)
10851 {
10852         /*
10853          * Static contexts such as perf_sw_context have a global lifetime
10854          * and may be shared between different PMUs. Avoid freeing them
10855          * when a single PMU is going away.
10856          */
10857         if (pmu->task_ctx_nr > perf_invalid_context)
10858                 return;
10859
10860         free_percpu(pmu->pmu_cpu_context);
10861 }
10862
10863 /*
10864  * Let userspace know that this PMU supports address range filtering:
10865  */
10866 static ssize_t nr_addr_filters_show(struct device *dev,
10867                                     struct device_attribute *attr,
10868                                     char *page)
10869 {
10870         struct pmu *pmu = dev_get_drvdata(dev);
10871
10872         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10873 }
10874 DEVICE_ATTR_RO(nr_addr_filters);
10875
10876 static struct idr pmu_idr;
10877
10878 static ssize_t
10879 type_show(struct device *dev, struct device_attribute *attr, char *page)
10880 {
10881         struct pmu *pmu = dev_get_drvdata(dev);
10882
10883         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10884 }
10885 static DEVICE_ATTR_RO(type);
10886
10887 static ssize_t
10888 perf_event_mux_interval_ms_show(struct device *dev,
10889                                 struct device_attribute *attr,
10890                                 char *page)
10891 {
10892         struct pmu *pmu = dev_get_drvdata(dev);
10893
10894         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10895 }
10896
10897 static DEFINE_MUTEX(mux_interval_mutex);
10898
10899 static ssize_t
10900 perf_event_mux_interval_ms_store(struct device *dev,
10901                                  struct device_attribute *attr,
10902                                  const char *buf, size_t count)
10903 {
10904         struct pmu *pmu = dev_get_drvdata(dev);
10905         int timer, cpu, ret;
10906
10907         ret = kstrtoint(buf, 0, &timer);
10908         if (ret)
10909                 return ret;
10910
10911         if (timer < 1)
10912                 return -EINVAL;
10913
10914         /* same value, noting to do */
10915         if (timer == pmu->hrtimer_interval_ms)
10916                 return count;
10917
10918         mutex_lock(&mux_interval_mutex);
10919         pmu->hrtimer_interval_ms = timer;
10920
10921         /* update all cpuctx for this PMU */
10922         cpus_read_lock();
10923         for_each_online_cpu(cpu) {
10924                 struct perf_cpu_context *cpuctx;
10925                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10926                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10927
10928                 cpu_function_call(cpu,
10929                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10930         }
10931         cpus_read_unlock();
10932         mutex_unlock(&mux_interval_mutex);
10933
10934         return count;
10935 }
10936 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10937
10938 static struct attribute *pmu_dev_attrs[] = {
10939         &dev_attr_type.attr,
10940         &dev_attr_perf_event_mux_interval_ms.attr,
10941         NULL,
10942 };
10943 ATTRIBUTE_GROUPS(pmu_dev);
10944
10945 static int pmu_bus_running;
10946 static struct bus_type pmu_bus = {
10947         .name           = "event_source",
10948         .dev_groups     = pmu_dev_groups,
10949 };
10950
10951 static void pmu_dev_release(struct device *dev)
10952 {
10953         kfree(dev);
10954 }
10955
10956 static int pmu_dev_alloc(struct pmu *pmu)
10957 {
10958         int ret = -ENOMEM;
10959
10960         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10961         if (!pmu->dev)
10962                 goto out;
10963
10964         pmu->dev->groups = pmu->attr_groups;
10965         device_initialize(pmu->dev);
10966         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10967         if (ret)
10968                 goto free_dev;
10969
10970         dev_set_drvdata(pmu->dev, pmu);
10971         pmu->dev->bus = &pmu_bus;
10972         pmu->dev->release = pmu_dev_release;
10973         ret = device_add(pmu->dev);
10974         if (ret)
10975                 goto free_dev;
10976
10977         /* For PMUs with address filters, throw in an extra attribute: */
10978         if (pmu->nr_addr_filters)
10979                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10980
10981         if (ret)
10982                 goto del_dev;
10983
10984         if (pmu->attr_update)
10985                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10986
10987         if (ret)
10988                 goto del_dev;
10989
10990 out:
10991         return ret;
10992
10993 del_dev:
10994         device_del(pmu->dev);
10995
10996 free_dev:
10997         put_device(pmu->dev);
10998         goto out;
10999 }
11000
11001 static struct lock_class_key cpuctx_mutex;
11002 static struct lock_class_key cpuctx_lock;
11003
11004 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11005 {
11006         int cpu, ret, max = PERF_TYPE_MAX;
11007
11008         mutex_lock(&pmus_lock);
11009         ret = -ENOMEM;
11010         pmu->pmu_disable_count = alloc_percpu(int);
11011         if (!pmu->pmu_disable_count)
11012                 goto unlock;
11013
11014         pmu->type = -1;
11015         if (!name)
11016                 goto skip_type;
11017         pmu->name = name;
11018
11019         if (type != PERF_TYPE_SOFTWARE) {
11020                 if (type >= 0)
11021                         max = type;
11022
11023                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11024                 if (ret < 0)
11025                         goto free_pdc;
11026
11027                 WARN_ON(type >= 0 && ret != type);
11028
11029                 type = ret;
11030         }
11031         pmu->type = type;
11032
11033         if (pmu_bus_running) {
11034                 ret = pmu_dev_alloc(pmu);
11035                 if (ret)
11036                         goto free_idr;
11037         }
11038
11039 skip_type:
11040         if (pmu->task_ctx_nr == perf_hw_context) {
11041                 static int hw_context_taken = 0;
11042
11043                 /*
11044                  * Other than systems with heterogeneous CPUs, it never makes
11045                  * sense for two PMUs to share perf_hw_context. PMUs which are
11046                  * uncore must use perf_invalid_context.
11047                  */
11048                 if (WARN_ON_ONCE(hw_context_taken &&
11049                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11050                         pmu->task_ctx_nr = perf_invalid_context;
11051
11052                 hw_context_taken = 1;
11053         }
11054
11055         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11056         if (pmu->pmu_cpu_context)
11057                 goto got_cpu_context;
11058
11059         ret = -ENOMEM;
11060         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11061         if (!pmu->pmu_cpu_context)
11062                 goto free_dev;
11063
11064         for_each_possible_cpu(cpu) {
11065                 struct perf_cpu_context *cpuctx;
11066
11067                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11068                 __perf_event_init_context(&cpuctx->ctx);
11069                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11070                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11071                 cpuctx->ctx.pmu = pmu;
11072                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11073
11074                 __perf_mux_hrtimer_init(cpuctx, cpu);
11075
11076                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11077                 cpuctx->heap = cpuctx->heap_default;
11078         }
11079
11080 got_cpu_context:
11081         if (!pmu->start_txn) {
11082                 if (pmu->pmu_enable) {
11083                         /*
11084                          * If we have pmu_enable/pmu_disable calls, install
11085                          * transaction stubs that use that to try and batch
11086                          * hardware accesses.
11087                          */
11088                         pmu->start_txn  = perf_pmu_start_txn;
11089                         pmu->commit_txn = perf_pmu_commit_txn;
11090                         pmu->cancel_txn = perf_pmu_cancel_txn;
11091                 } else {
11092                         pmu->start_txn  = perf_pmu_nop_txn;
11093                         pmu->commit_txn = perf_pmu_nop_int;
11094                         pmu->cancel_txn = perf_pmu_nop_void;
11095                 }
11096         }
11097
11098         if (!pmu->pmu_enable) {
11099                 pmu->pmu_enable  = perf_pmu_nop_void;
11100                 pmu->pmu_disable = perf_pmu_nop_void;
11101         }
11102
11103         if (!pmu->check_period)
11104                 pmu->check_period = perf_event_nop_int;
11105
11106         if (!pmu->event_idx)
11107                 pmu->event_idx = perf_event_idx_default;
11108
11109         /*
11110          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11111          * since these cannot be in the IDR. This way the linear search
11112          * is fast, provided a valid software event is provided.
11113          */
11114         if (type == PERF_TYPE_SOFTWARE || !name)
11115                 list_add_rcu(&pmu->entry, &pmus);
11116         else
11117                 list_add_tail_rcu(&pmu->entry, &pmus);
11118
11119         atomic_set(&pmu->exclusive_cnt, 0);
11120         ret = 0;
11121 unlock:
11122         mutex_unlock(&pmus_lock);
11123
11124         return ret;
11125
11126 free_dev:
11127         device_del(pmu->dev);
11128         put_device(pmu->dev);
11129
11130 free_idr:
11131         if (pmu->type != PERF_TYPE_SOFTWARE)
11132                 idr_remove(&pmu_idr, pmu->type);
11133
11134 free_pdc:
11135         free_percpu(pmu->pmu_disable_count);
11136         goto unlock;
11137 }
11138 EXPORT_SYMBOL_GPL(perf_pmu_register);
11139
11140 void perf_pmu_unregister(struct pmu *pmu)
11141 {
11142         mutex_lock(&pmus_lock);
11143         list_del_rcu(&pmu->entry);
11144
11145         /*
11146          * We dereference the pmu list under both SRCU and regular RCU, so
11147          * synchronize against both of those.
11148          */
11149         synchronize_srcu(&pmus_srcu);
11150         synchronize_rcu();
11151
11152         free_percpu(pmu->pmu_disable_count);
11153         if (pmu->type != PERF_TYPE_SOFTWARE)
11154                 idr_remove(&pmu_idr, pmu->type);
11155         if (pmu_bus_running) {
11156                 if (pmu->nr_addr_filters)
11157                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11158                 device_del(pmu->dev);
11159                 put_device(pmu->dev);
11160         }
11161         free_pmu_context(pmu);
11162         mutex_unlock(&pmus_lock);
11163 }
11164 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11165
11166 static inline bool has_extended_regs(struct perf_event *event)
11167 {
11168         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11169                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11170 }
11171
11172 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11173 {
11174         struct perf_event_context *ctx = NULL;
11175         int ret;
11176
11177         if (!try_module_get(pmu->module))
11178                 return -ENODEV;
11179
11180         /*
11181          * A number of pmu->event_init() methods iterate the sibling_list to,
11182          * for example, validate if the group fits on the PMU. Therefore,
11183          * if this is a sibling event, acquire the ctx->mutex to protect
11184          * the sibling_list.
11185          */
11186         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11187                 /*
11188                  * This ctx->mutex can nest when we're called through
11189                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11190                  */
11191                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11192                                                  SINGLE_DEPTH_NESTING);
11193                 BUG_ON(!ctx);
11194         }
11195
11196         event->pmu = pmu;
11197         ret = pmu->event_init(event);
11198
11199         if (ctx)
11200                 perf_event_ctx_unlock(event->group_leader, ctx);
11201
11202         if (!ret) {
11203                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11204                     has_extended_regs(event))
11205                         ret = -EOPNOTSUPP;
11206
11207                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11208                     event_has_any_exclude_flag(event))
11209                         ret = -EINVAL;
11210
11211                 if (ret && event->destroy)
11212                         event->destroy(event);
11213         }
11214
11215         if (ret)
11216                 module_put(pmu->module);
11217
11218         return ret;
11219 }
11220
11221 static struct pmu *perf_init_event(struct perf_event *event)
11222 {
11223         bool extended_type = false;
11224         int idx, type, ret;
11225         struct pmu *pmu;
11226
11227         idx = srcu_read_lock(&pmus_srcu);
11228
11229         /* Try parent's PMU first: */
11230         if (event->parent && event->parent->pmu) {
11231                 pmu = event->parent->pmu;
11232                 ret = perf_try_init_event(pmu, event);
11233                 if (!ret)
11234                         goto unlock;
11235         }
11236
11237         /*
11238          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11239          * are often aliases for PERF_TYPE_RAW.
11240          */
11241         type = event->attr.type;
11242         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11243                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11244                 if (!type) {
11245                         type = PERF_TYPE_RAW;
11246                 } else {
11247                         extended_type = true;
11248                         event->attr.config &= PERF_HW_EVENT_MASK;
11249                 }
11250         }
11251
11252 again:
11253         rcu_read_lock();
11254         pmu = idr_find(&pmu_idr, type);
11255         rcu_read_unlock();
11256         if (pmu) {
11257                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11258                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11259                         goto fail;
11260
11261                 ret = perf_try_init_event(pmu, event);
11262                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11263                         type = event->attr.type;
11264                         goto again;
11265                 }
11266
11267                 if (ret)
11268                         pmu = ERR_PTR(ret);
11269
11270                 goto unlock;
11271         }
11272
11273         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11274                 ret = perf_try_init_event(pmu, event);
11275                 if (!ret)
11276                         goto unlock;
11277
11278                 if (ret != -ENOENT) {
11279                         pmu = ERR_PTR(ret);
11280                         goto unlock;
11281                 }
11282         }
11283 fail:
11284         pmu = ERR_PTR(-ENOENT);
11285 unlock:
11286         srcu_read_unlock(&pmus_srcu, idx);
11287
11288         return pmu;
11289 }
11290
11291 static void attach_sb_event(struct perf_event *event)
11292 {
11293         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11294
11295         raw_spin_lock(&pel->lock);
11296         list_add_rcu(&event->sb_list, &pel->list);
11297         raw_spin_unlock(&pel->lock);
11298 }
11299
11300 /*
11301  * We keep a list of all !task (and therefore per-cpu) events
11302  * that need to receive side-band records.
11303  *
11304  * This avoids having to scan all the various PMU per-cpu contexts
11305  * looking for them.
11306  */
11307 static void account_pmu_sb_event(struct perf_event *event)
11308 {
11309         if (is_sb_event(event))
11310                 attach_sb_event(event);
11311 }
11312
11313 static void account_event_cpu(struct perf_event *event, int cpu)
11314 {
11315         if (event->parent)
11316                 return;
11317
11318         if (is_cgroup_event(event))
11319                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11320 }
11321
11322 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11323 static void account_freq_event_nohz(void)
11324 {
11325 #ifdef CONFIG_NO_HZ_FULL
11326         /* Lock so we don't race with concurrent unaccount */
11327         spin_lock(&nr_freq_lock);
11328         if (atomic_inc_return(&nr_freq_events) == 1)
11329                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11330         spin_unlock(&nr_freq_lock);
11331 #endif
11332 }
11333
11334 static void account_freq_event(void)
11335 {
11336         if (tick_nohz_full_enabled())
11337                 account_freq_event_nohz();
11338         else
11339                 atomic_inc(&nr_freq_events);
11340 }
11341
11342
11343 static void account_event(struct perf_event *event)
11344 {
11345         bool inc = false;
11346
11347         if (event->parent)
11348                 return;
11349
11350         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11351                 inc = true;
11352         if (event->attr.mmap || event->attr.mmap_data)
11353                 atomic_inc(&nr_mmap_events);
11354         if (event->attr.build_id)
11355                 atomic_inc(&nr_build_id_events);
11356         if (event->attr.comm)
11357                 atomic_inc(&nr_comm_events);
11358         if (event->attr.namespaces)
11359                 atomic_inc(&nr_namespaces_events);
11360         if (event->attr.cgroup)
11361                 atomic_inc(&nr_cgroup_events);
11362         if (event->attr.task)
11363                 atomic_inc(&nr_task_events);
11364         if (event->attr.freq)
11365                 account_freq_event();
11366         if (event->attr.context_switch) {
11367                 atomic_inc(&nr_switch_events);
11368                 inc = true;
11369         }
11370         if (has_branch_stack(event))
11371                 inc = true;
11372         if (is_cgroup_event(event))
11373                 inc = true;
11374         if (event->attr.ksymbol)
11375                 atomic_inc(&nr_ksymbol_events);
11376         if (event->attr.bpf_event)
11377                 atomic_inc(&nr_bpf_events);
11378         if (event->attr.text_poke)
11379                 atomic_inc(&nr_text_poke_events);
11380
11381         if (inc) {
11382                 /*
11383                  * We need the mutex here because static_branch_enable()
11384                  * must complete *before* the perf_sched_count increment
11385                  * becomes visible.
11386                  */
11387                 if (atomic_inc_not_zero(&perf_sched_count))
11388                         goto enabled;
11389
11390                 mutex_lock(&perf_sched_mutex);
11391                 if (!atomic_read(&perf_sched_count)) {
11392                         static_branch_enable(&perf_sched_events);
11393                         /*
11394                          * Guarantee that all CPUs observe they key change and
11395                          * call the perf scheduling hooks before proceeding to
11396                          * install events that need them.
11397                          */
11398                         synchronize_rcu();
11399                 }
11400                 /*
11401                  * Now that we have waited for the sync_sched(), allow further
11402                  * increments to by-pass the mutex.
11403                  */
11404                 atomic_inc(&perf_sched_count);
11405                 mutex_unlock(&perf_sched_mutex);
11406         }
11407 enabled:
11408
11409         account_event_cpu(event, event->cpu);
11410
11411         account_pmu_sb_event(event);
11412 }
11413
11414 /*
11415  * Allocate and initialize an event structure
11416  */
11417 static struct perf_event *
11418 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11419                  struct task_struct *task,
11420                  struct perf_event *group_leader,
11421                  struct perf_event *parent_event,
11422                  perf_overflow_handler_t overflow_handler,
11423                  void *context, int cgroup_fd)
11424 {
11425         struct pmu *pmu;
11426         struct perf_event *event;
11427         struct hw_perf_event *hwc;
11428         long err = -EINVAL;
11429         int node;
11430
11431         if ((unsigned)cpu >= nr_cpu_ids) {
11432                 if (!task || cpu != -1)
11433                         return ERR_PTR(-EINVAL);
11434         }
11435         if (attr->sigtrap && !task) {
11436                 /* Requires a task: avoid signalling random tasks. */
11437                 return ERR_PTR(-EINVAL);
11438         }
11439
11440         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11441         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11442                                       node);
11443         if (!event)
11444                 return ERR_PTR(-ENOMEM);
11445
11446         /*
11447          * Single events are their own group leaders, with an
11448          * empty sibling list:
11449          */
11450         if (!group_leader)
11451                 group_leader = event;
11452
11453         mutex_init(&event->child_mutex);
11454         INIT_LIST_HEAD(&event->child_list);
11455
11456         INIT_LIST_HEAD(&event->event_entry);
11457         INIT_LIST_HEAD(&event->sibling_list);
11458         INIT_LIST_HEAD(&event->active_list);
11459         init_event_group(event);
11460         INIT_LIST_HEAD(&event->rb_entry);
11461         INIT_LIST_HEAD(&event->active_entry);
11462         INIT_LIST_HEAD(&event->addr_filters.list);
11463         INIT_HLIST_NODE(&event->hlist_entry);
11464
11465
11466         init_waitqueue_head(&event->waitq);
11467         event->pending_disable = -1;
11468         init_irq_work(&event->pending, perf_pending_event);
11469
11470         mutex_init(&event->mmap_mutex);
11471         raw_spin_lock_init(&event->addr_filters.lock);
11472
11473         atomic_long_set(&event->refcount, 1);
11474         event->cpu              = cpu;
11475         event->attr             = *attr;
11476         event->group_leader     = group_leader;
11477         event->pmu              = NULL;
11478         event->oncpu            = -1;
11479
11480         event->parent           = parent_event;
11481
11482         event->ns               = get_pid_ns(task_active_pid_ns(current));
11483         event->id               = atomic64_inc_return(&perf_event_id);
11484
11485         event->state            = PERF_EVENT_STATE_INACTIVE;
11486
11487         if (event->attr.sigtrap)
11488                 atomic_set(&event->event_limit, 1);
11489
11490         if (task) {
11491                 event->attach_state = PERF_ATTACH_TASK;
11492                 /*
11493                  * XXX pmu::event_init needs to know what task to account to
11494                  * and we cannot use the ctx information because we need the
11495                  * pmu before we get a ctx.
11496                  */
11497                 event->hw.target = get_task_struct(task);
11498         }
11499
11500         event->clock = &local_clock;
11501         if (parent_event)
11502                 event->clock = parent_event->clock;
11503
11504         if (!overflow_handler && parent_event) {
11505                 overflow_handler = parent_event->overflow_handler;
11506                 context = parent_event->overflow_handler_context;
11507 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11508                 if (overflow_handler == bpf_overflow_handler) {
11509                         struct bpf_prog *prog = parent_event->prog;
11510
11511                         bpf_prog_inc(prog);
11512                         event->prog = prog;
11513                         event->orig_overflow_handler =
11514                                 parent_event->orig_overflow_handler;
11515                 }
11516 #endif
11517         }
11518
11519         if (overflow_handler) {
11520                 event->overflow_handler = overflow_handler;
11521                 event->overflow_handler_context = context;
11522         } else if (is_write_backward(event)){
11523                 event->overflow_handler = perf_event_output_backward;
11524                 event->overflow_handler_context = NULL;
11525         } else {
11526                 event->overflow_handler = perf_event_output_forward;
11527                 event->overflow_handler_context = NULL;
11528         }
11529
11530         perf_event__state_init(event);
11531
11532         pmu = NULL;
11533
11534         hwc = &event->hw;
11535         hwc->sample_period = attr->sample_period;
11536         if (attr->freq && attr->sample_freq)
11537                 hwc->sample_period = 1;
11538         hwc->last_period = hwc->sample_period;
11539
11540         local64_set(&hwc->period_left, hwc->sample_period);
11541
11542         /*
11543          * We currently do not support PERF_SAMPLE_READ on inherited events.
11544          * See perf_output_read().
11545          */
11546         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11547                 goto err_ns;
11548
11549         if (!has_branch_stack(event))
11550                 event->attr.branch_sample_type = 0;
11551
11552         pmu = perf_init_event(event);
11553         if (IS_ERR(pmu)) {
11554                 err = PTR_ERR(pmu);
11555                 goto err_ns;
11556         }
11557
11558         /*
11559          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11560          * be different on other CPUs in the uncore mask.
11561          */
11562         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11563                 err = -EINVAL;
11564                 goto err_pmu;
11565         }
11566
11567         if (event->attr.aux_output &&
11568             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11569                 err = -EOPNOTSUPP;
11570                 goto err_pmu;
11571         }
11572
11573         if (cgroup_fd != -1) {
11574                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11575                 if (err)
11576                         goto err_pmu;
11577         }
11578
11579         err = exclusive_event_init(event);
11580         if (err)
11581                 goto err_pmu;
11582
11583         if (has_addr_filter(event)) {
11584                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11585                                                     sizeof(struct perf_addr_filter_range),
11586                                                     GFP_KERNEL);
11587                 if (!event->addr_filter_ranges) {
11588                         err = -ENOMEM;
11589                         goto err_per_task;
11590                 }
11591
11592                 /*
11593                  * Clone the parent's vma offsets: they are valid until exec()
11594                  * even if the mm is not shared with the parent.
11595                  */
11596                 if (event->parent) {
11597                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11598
11599                         raw_spin_lock_irq(&ifh->lock);
11600                         memcpy(event->addr_filter_ranges,
11601                                event->parent->addr_filter_ranges,
11602                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11603                         raw_spin_unlock_irq(&ifh->lock);
11604                 }
11605
11606                 /* force hw sync on the address filters */
11607                 event->addr_filters_gen = 1;
11608         }
11609
11610         if (!event->parent) {
11611                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11612                         err = get_callchain_buffers(attr->sample_max_stack);
11613                         if (err)
11614                                 goto err_addr_filters;
11615                 }
11616         }
11617
11618         err = security_perf_event_alloc(event);
11619         if (err)
11620                 goto err_callchain_buffer;
11621
11622         /* symmetric to unaccount_event() in _free_event() */
11623         account_event(event);
11624
11625         return event;
11626
11627 err_callchain_buffer:
11628         if (!event->parent) {
11629                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11630                         put_callchain_buffers();
11631         }
11632 err_addr_filters:
11633         kfree(event->addr_filter_ranges);
11634
11635 err_per_task:
11636         exclusive_event_destroy(event);
11637
11638 err_pmu:
11639         if (is_cgroup_event(event))
11640                 perf_detach_cgroup(event);
11641         if (event->destroy)
11642                 event->destroy(event);
11643         module_put(pmu->module);
11644 err_ns:
11645         if (event->ns)
11646                 put_pid_ns(event->ns);
11647         if (event->hw.target)
11648                 put_task_struct(event->hw.target);
11649         kmem_cache_free(perf_event_cache, event);
11650
11651         return ERR_PTR(err);
11652 }
11653
11654 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11655                           struct perf_event_attr *attr)
11656 {
11657         u32 size;
11658         int ret;
11659
11660         /* Zero the full structure, so that a short copy will be nice. */
11661         memset(attr, 0, sizeof(*attr));
11662
11663         ret = get_user(size, &uattr->size);
11664         if (ret)
11665                 return ret;
11666
11667         /* ABI compatibility quirk: */
11668         if (!size)
11669                 size = PERF_ATTR_SIZE_VER0;
11670         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11671                 goto err_size;
11672
11673         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11674         if (ret) {
11675                 if (ret == -E2BIG)
11676                         goto err_size;
11677                 return ret;
11678         }
11679
11680         attr->size = size;
11681
11682         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11683                 return -EINVAL;
11684
11685         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11686                 return -EINVAL;
11687
11688         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11689                 return -EINVAL;
11690
11691         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11692                 u64 mask = attr->branch_sample_type;
11693
11694                 /* only using defined bits */
11695                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11696                         return -EINVAL;
11697
11698                 /* at least one branch bit must be set */
11699                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11700                         return -EINVAL;
11701
11702                 /* propagate priv level, when not set for branch */
11703                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11704
11705                         /* exclude_kernel checked on syscall entry */
11706                         if (!attr->exclude_kernel)
11707                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11708
11709                         if (!attr->exclude_user)
11710                                 mask |= PERF_SAMPLE_BRANCH_USER;
11711
11712                         if (!attr->exclude_hv)
11713                                 mask |= PERF_SAMPLE_BRANCH_HV;
11714                         /*
11715                          * adjust user setting (for HW filter setup)
11716                          */
11717                         attr->branch_sample_type = mask;
11718                 }
11719                 /* privileged levels capture (kernel, hv): check permissions */
11720                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11721                         ret = perf_allow_kernel(attr);
11722                         if (ret)
11723                                 return ret;
11724                 }
11725         }
11726
11727         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11728                 ret = perf_reg_validate(attr->sample_regs_user);
11729                 if (ret)
11730                         return ret;
11731         }
11732
11733         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11734                 if (!arch_perf_have_user_stack_dump())
11735                         return -ENOSYS;
11736
11737                 /*
11738                  * We have __u32 type for the size, but so far
11739                  * we can only use __u16 as maximum due to the
11740                  * __u16 sample size limit.
11741                  */
11742                 if (attr->sample_stack_user >= USHRT_MAX)
11743                         return -EINVAL;
11744                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11745                         return -EINVAL;
11746         }
11747
11748         if (!attr->sample_max_stack)
11749                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11750
11751         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11752                 ret = perf_reg_validate(attr->sample_regs_intr);
11753
11754 #ifndef CONFIG_CGROUP_PERF
11755         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11756                 return -EINVAL;
11757 #endif
11758         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11759             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11760                 return -EINVAL;
11761
11762         if (!attr->inherit && attr->inherit_thread)
11763                 return -EINVAL;
11764
11765         if (attr->remove_on_exec && attr->enable_on_exec)
11766                 return -EINVAL;
11767
11768         if (attr->sigtrap && !attr->remove_on_exec)
11769                 return -EINVAL;
11770
11771 out:
11772         return ret;
11773
11774 err_size:
11775         put_user(sizeof(*attr), &uattr->size);
11776         ret = -E2BIG;
11777         goto out;
11778 }
11779
11780 static int
11781 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11782 {
11783         struct perf_buffer *rb = NULL;
11784         int ret = -EINVAL;
11785
11786         if (!output_event)
11787                 goto set;
11788
11789         /* don't allow circular references */
11790         if (event == output_event)
11791                 goto out;
11792
11793         /*
11794          * Don't allow cross-cpu buffers
11795          */
11796         if (output_event->cpu != event->cpu)
11797                 goto out;
11798
11799         /*
11800          * If its not a per-cpu rb, it must be the same task.
11801          */
11802         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11803                 goto out;
11804
11805         /*
11806          * Mixing clocks in the same buffer is trouble you don't need.
11807          */
11808         if (output_event->clock != event->clock)
11809                 goto out;
11810
11811         /*
11812          * Either writing ring buffer from beginning or from end.
11813          * Mixing is not allowed.
11814          */
11815         if (is_write_backward(output_event) != is_write_backward(event))
11816                 goto out;
11817
11818         /*
11819          * If both events generate aux data, they must be on the same PMU
11820          */
11821         if (has_aux(event) && has_aux(output_event) &&
11822             event->pmu != output_event->pmu)
11823                 goto out;
11824
11825 set:
11826         mutex_lock(&event->mmap_mutex);
11827         /* Can't redirect output if we've got an active mmap() */
11828         if (atomic_read(&event->mmap_count))
11829                 goto unlock;
11830
11831         if (output_event) {
11832                 /* get the rb we want to redirect to */
11833                 rb = ring_buffer_get(output_event);
11834                 if (!rb)
11835                         goto unlock;
11836         }
11837
11838         ring_buffer_attach(event, rb);
11839
11840         ret = 0;
11841 unlock:
11842         mutex_unlock(&event->mmap_mutex);
11843
11844 out:
11845         return ret;
11846 }
11847
11848 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11849 {
11850         if (b < a)
11851                 swap(a, b);
11852
11853         mutex_lock(a);
11854         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11855 }
11856
11857 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11858 {
11859         bool nmi_safe = false;
11860
11861         switch (clk_id) {
11862         case CLOCK_MONOTONIC:
11863                 event->clock = &ktime_get_mono_fast_ns;
11864                 nmi_safe = true;
11865                 break;
11866
11867         case CLOCK_MONOTONIC_RAW:
11868                 event->clock = &ktime_get_raw_fast_ns;
11869                 nmi_safe = true;
11870                 break;
11871
11872         case CLOCK_REALTIME:
11873                 event->clock = &ktime_get_real_ns;
11874                 break;
11875
11876         case CLOCK_BOOTTIME:
11877                 event->clock = &ktime_get_boottime_ns;
11878                 break;
11879
11880         case CLOCK_TAI:
11881                 event->clock = &ktime_get_clocktai_ns;
11882                 break;
11883
11884         default:
11885                 return -EINVAL;
11886         }
11887
11888         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11889                 return -EINVAL;
11890
11891         return 0;
11892 }
11893
11894 /*
11895  * Variation on perf_event_ctx_lock_nested(), except we take two context
11896  * mutexes.
11897  */
11898 static struct perf_event_context *
11899 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11900                              struct perf_event_context *ctx)
11901 {
11902         struct perf_event_context *gctx;
11903
11904 again:
11905         rcu_read_lock();
11906         gctx = READ_ONCE(group_leader->ctx);
11907         if (!refcount_inc_not_zero(&gctx->refcount)) {
11908                 rcu_read_unlock();
11909                 goto again;
11910         }
11911         rcu_read_unlock();
11912
11913         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11914
11915         if (group_leader->ctx != gctx) {
11916                 mutex_unlock(&ctx->mutex);
11917                 mutex_unlock(&gctx->mutex);
11918                 put_ctx(gctx);
11919                 goto again;
11920         }
11921
11922         return gctx;
11923 }
11924
11925 /**
11926  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11927  *
11928  * @attr_uptr:  event_id type attributes for monitoring/sampling
11929  * @pid:                target pid
11930  * @cpu:                target cpu
11931  * @group_fd:           group leader event fd
11932  */
11933 SYSCALL_DEFINE5(perf_event_open,
11934                 struct perf_event_attr __user *, attr_uptr,
11935                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11936 {
11937         struct perf_event *group_leader = NULL, *output_event = NULL;
11938         struct perf_event *event, *sibling;
11939         struct perf_event_attr attr;
11940         struct perf_event_context *ctx, *gctx;
11941         struct file *event_file = NULL;
11942         struct fd group = {NULL, 0};
11943         struct task_struct *task = NULL;
11944         struct pmu *pmu;
11945         int event_fd;
11946         int move_group = 0;
11947         int err;
11948         int f_flags = O_RDWR;
11949         int cgroup_fd = -1;
11950
11951         /* for future expandability... */
11952         if (flags & ~PERF_FLAG_ALL)
11953                 return -EINVAL;
11954
11955         /* Do we allow access to perf_event_open(2) ? */
11956         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11957         if (err)
11958                 return err;
11959
11960         err = perf_copy_attr(attr_uptr, &attr);
11961         if (err)
11962                 return err;
11963
11964         if (!attr.exclude_kernel) {
11965                 err = perf_allow_kernel(&attr);
11966                 if (err)
11967                         return err;
11968         }
11969
11970         if (attr.namespaces) {
11971                 if (!perfmon_capable())
11972                         return -EACCES;
11973         }
11974
11975         if (attr.freq) {
11976                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11977                         return -EINVAL;
11978         } else {
11979                 if (attr.sample_period & (1ULL << 63))
11980                         return -EINVAL;
11981         }
11982
11983         /* Only privileged users can get physical addresses */
11984         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11985                 err = perf_allow_kernel(&attr);
11986                 if (err)
11987                         return err;
11988         }
11989
11990         /* REGS_INTR can leak data, lockdown must prevent this */
11991         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
11992                 err = security_locked_down(LOCKDOWN_PERF);
11993                 if (err)
11994                         return err;
11995         }
11996
11997         /*
11998          * In cgroup mode, the pid argument is used to pass the fd
11999          * opened to the cgroup directory in cgroupfs. The cpu argument
12000          * designates the cpu on which to monitor threads from that
12001          * cgroup.
12002          */
12003         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12004                 return -EINVAL;
12005
12006         if (flags & PERF_FLAG_FD_CLOEXEC)
12007                 f_flags |= O_CLOEXEC;
12008
12009         event_fd = get_unused_fd_flags(f_flags);
12010         if (event_fd < 0)
12011                 return event_fd;
12012
12013         if (group_fd != -1) {
12014                 err = perf_fget_light(group_fd, &group);
12015                 if (err)
12016                         goto err_fd;
12017                 group_leader = group.file->private_data;
12018                 if (flags & PERF_FLAG_FD_OUTPUT)
12019                         output_event = group_leader;
12020                 if (flags & PERF_FLAG_FD_NO_GROUP)
12021                         group_leader = NULL;
12022         }
12023
12024         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12025                 task = find_lively_task_by_vpid(pid);
12026                 if (IS_ERR(task)) {
12027                         err = PTR_ERR(task);
12028                         goto err_group_fd;
12029                 }
12030         }
12031
12032         if (task && group_leader &&
12033             group_leader->attr.inherit != attr.inherit) {
12034                 err = -EINVAL;
12035                 goto err_task;
12036         }
12037
12038         if (flags & PERF_FLAG_PID_CGROUP)
12039                 cgroup_fd = pid;
12040
12041         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12042                                  NULL, NULL, cgroup_fd);
12043         if (IS_ERR(event)) {
12044                 err = PTR_ERR(event);
12045                 goto err_task;
12046         }
12047
12048         if (is_sampling_event(event)) {
12049                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12050                         err = -EOPNOTSUPP;
12051                         goto err_alloc;
12052                 }
12053         }
12054
12055         /*
12056          * Special case software events and allow them to be part of
12057          * any hardware group.
12058          */
12059         pmu = event->pmu;
12060
12061         if (attr.use_clockid) {
12062                 err = perf_event_set_clock(event, attr.clockid);
12063                 if (err)
12064                         goto err_alloc;
12065         }
12066
12067         if (pmu->task_ctx_nr == perf_sw_context)
12068                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12069
12070         if (group_leader) {
12071                 if (is_software_event(event) &&
12072                     !in_software_context(group_leader)) {
12073                         /*
12074                          * If the event is a sw event, but the group_leader
12075                          * is on hw context.
12076                          *
12077                          * Allow the addition of software events to hw
12078                          * groups, this is safe because software events
12079                          * never fail to schedule.
12080                          */
12081                         pmu = group_leader->ctx->pmu;
12082                 } else if (!is_software_event(event) &&
12083                            is_software_event(group_leader) &&
12084                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12085                         /*
12086                          * In case the group is a pure software group, and we
12087                          * try to add a hardware event, move the whole group to
12088                          * the hardware context.
12089                          */
12090                         move_group = 1;
12091                 }
12092         }
12093
12094         /*
12095          * Get the target context (task or percpu):
12096          */
12097         ctx = find_get_context(pmu, task, event);
12098         if (IS_ERR(ctx)) {
12099                 err = PTR_ERR(ctx);
12100                 goto err_alloc;
12101         }
12102
12103         /*
12104          * Look up the group leader (we will attach this event to it):
12105          */
12106         if (group_leader) {
12107                 err = -EINVAL;
12108
12109                 /*
12110                  * Do not allow a recursive hierarchy (this new sibling
12111                  * becoming part of another group-sibling):
12112                  */
12113                 if (group_leader->group_leader != group_leader)
12114                         goto err_context;
12115
12116                 /* All events in a group should have the same clock */
12117                 if (group_leader->clock != event->clock)
12118                         goto err_context;
12119
12120                 /*
12121                  * Make sure we're both events for the same CPU;
12122                  * grouping events for different CPUs is broken; since
12123                  * you can never concurrently schedule them anyhow.
12124                  */
12125                 if (group_leader->cpu != event->cpu)
12126                         goto err_context;
12127
12128                 /*
12129                  * Make sure we're both on the same task, or both
12130                  * per-CPU events.
12131                  */
12132                 if (group_leader->ctx->task != ctx->task)
12133                         goto err_context;
12134
12135                 /*
12136                  * Do not allow to attach to a group in a different task
12137                  * or CPU context. If we're moving SW events, we'll fix
12138                  * this up later, so allow that.
12139                  */
12140                 if (!move_group && group_leader->ctx != ctx)
12141                         goto err_context;
12142
12143                 /*
12144                  * Only a group leader can be exclusive or pinned
12145                  */
12146                 if (attr.exclusive || attr.pinned)
12147                         goto err_context;
12148         }
12149
12150         if (output_event) {
12151                 err = perf_event_set_output(event, output_event);
12152                 if (err)
12153                         goto err_context;
12154         }
12155
12156         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12157                                         f_flags);
12158         if (IS_ERR(event_file)) {
12159                 err = PTR_ERR(event_file);
12160                 event_file = NULL;
12161                 goto err_context;
12162         }
12163
12164         if (task) {
12165                 err = down_read_interruptible(&task->signal->exec_update_lock);
12166                 if (err)
12167                         goto err_file;
12168
12169                 /*
12170                  * Preserve ptrace permission check for backwards compatibility.
12171                  *
12172                  * We must hold exec_update_lock across this and any potential
12173                  * perf_install_in_context() call for this new event to
12174                  * serialize against exec() altering our credentials (and the
12175                  * perf_event_exit_task() that could imply).
12176                  */
12177                 err = -EACCES;
12178                 if (!perfmon_capable() && !ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
12179                         goto err_cred;
12180         }
12181
12182         if (move_group) {
12183                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12184
12185                 if (gctx->task == TASK_TOMBSTONE) {
12186                         err = -ESRCH;
12187                         goto err_locked;
12188                 }
12189
12190                 /*
12191                  * Check if we raced against another sys_perf_event_open() call
12192                  * moving the software group underneath us.
12193                  */
12194                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12195                         /*
12196                          * If someone moved the group out from under us, check
12197                          * if this new event wound up on the same ctx, if so
12198                          * its the regular !move_group case, otherwise fail.
12199                          */
12200                         if (gctx != ctx) {
12201                                 err = -EINVAL;
12202                                 goto err_locked;
12203                         } else {
12204                                 perf_event_ctx_unlock(group_leader, gctx);
12205                                 move_group = 0;
12206                         }
12207                 }
12208
12209                 /*
12210                  * Failure to create exclusive events returns -EBUSY.
12211                  */
12212                 err = -EBUSY;
12213                 if (!exclusive_event_installable(group_leader, ctx))
12214                         goto err_locked;
12215
12216                 for_each_sibling_event(sibling, group_leader) {
12217                         if (!exclusive_event_installable(sibling, ctx))
12218                                 goto err_locked;
12219                 }
12220         } else {
12221                 mutex_lock(&ctx->mutex);
12222         }
12223
12224         if (ctx->task == TASK_TOMBSTONE) {
12225                 err = -ESRCH;
12226                 goto err_locked;
12227         }
12228
12229         if (!perf_event_validate_size(event)) {
12230                 err = -E2BIG;
12231                 goto err_locked;
12232         }
12233
12234         if (!task) {
12235                 /*
12236                  * Check if the @cpu we're creating an event for is online.
12237                  *
12238                  * We use the perf_cpu_context::ctx::mutex to serialize against
12239                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12240                  */
12241                 struct perf_cpu_context *cpuctx =
12242                         container_of(ctx, struct perf_cpu_context, ctx);
12243
12244                 if (!cpuctx->online) {
12245                         err = -ENODEV;
12246                         goto err_locked;
12247                 }
12248         }
12249
12250         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12251                 err = -EINVAL;
12252                 goto err_locked;
12253         }
12254
12255         /*
12256          * Must be under the same ctx::mutex as perf_install_in_context(),
12257          * because we need to serialize with concurrent event creation.
12258          */
12259         if (!exclusive_event_installable(event, ctx)) {
12260                 err = -EBUSY;
12261                 goto err_locked;
12262         }
12263
12264         WARN_ON_ONCE(ctx->parent_ctx);
12265
12266         /*
12267          * This is the point on no return; we cannot fail hereafter. This is
12268          * where we start modifying current state.
12269          */
12270
12271         if (move_group) {
12272                 /*
12273                  * See perf_event_ctx_lock() for comments on the details
12274                  * of swizzling perf_event::ctx.
12275                  */
12276                 perf_remove_from_context(group_leader, 0);
12277                 put_ctx(gctx);
12278
12279                 for_each_sibling_event(sibling, group_leader) {
12280                         perf_remove_from_context(sibling, 0);
12281                         put_ctx(gctx);
12282                 }
12283
12284                 /*
12285                  * Wait for everybody to stop referencing the events through
12286                  * the old lists, before installing it on new lists.
12287                  */
12288                 synchronize_rcu();
12289
12290                 /*
12291                  * Install the group siblings before the group leader.
12292                  *
12293                  * Because a group leader will try and install the entire group
12294                  * (through the sibling list, which is still in-tact), we can
12295                  * end up with siblings installed in the wrong context.
12296                  *
12297                  * By installing siblings first we NO-OP because they're not
12298                  * reachable through the group lists.
12299                  */
12300                 for_each_sibling_event(sibling, group_leader) {
12301                         perf_event__state_init(sibling);
12302                         perf_install_in_context(ctx, sibling, sibling->cpu);
12303                         get_ctx(ctx);
12304                 }
12305
12306                 /*
12307                  * Removing from the context ends up with disabled
12308                  * event. What we want here is event in the initial
12309                  * startup state, ready to be add into new context.
12310                  */
12311                 perf_event__state_init(group_leader);
12312                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12313                 get_ctx(ctx);
12314         }
12315
12316         /*
12317          * Precalculate sample_data sizes; do while holding ctx::mutex such
12318          * that we're serialized against further additions and before
12319          * perf_install_in_context() which is the point the event is active and
12320          * can use these values.
12321          */
12322         perf_event__header_size(event);
12323         perf_event__id_header_size(event);
12324
12325         event->owner = current;
12326
12327         perf_install_in_context(ctx, event, event->cpu);
12328         perf_unpin_context(ctx);
12329
12330         if (move_group)
12331                 perf_event_ctx_unlock(group_leader, gctx);
12332         mutex_unlock(&ctx->mutex);
12333
12334         if (task) {
12335                 up_read(&task->signal->exec_update_lock);
12336                 put_task_struct(task);
12337         }
12338
12339         mutex_lock(&current->perf_event_mutex);
12340         list_add_tail(&event->owner_entry, &current->perf_event_list);
12341         mutex_unlock(&current->perf_event_mutex);
12342
12343         /*
12344          * Drop the reference on the group_event after placing the
12345          * new event on the sibling_list. This ensures destruction
12346          * of the group leader will find the pointer to itself in
12347          * perf_group_detach().
12348          */
12349         fdput(group);
12350         fd_install(event_fd, event_file);
12351         return event_fd;
12352
12353 err_locked:
12354         if (move_group)
12355                 perf_event_ctx_unlock(group_leader, gctx);
12356         mutex_unlock(&ctx->mutex);
12357 err_cred:
12358         if (task)
12359                 up_read(&task->signal->exec_update_lock);
12360 err_file:
12361         fput(event_file);
12362 err_context:
12363         perf_unpin_context(ctx);
12364         put_ctx(ctx);
12365 err_alloc:
12366         /*
12367          * If event_file is set, the fput() above will have called ->release()
12368          * and that will take care of freeing the event.
12369          */
12370         if (!event_file)
12371                 free_event(event);
12372 err_task:
12373         if (task)
12374                 put_task_struct(task);
12375 err_group_fd:
12376         fdput(group);
12377 err_fd:
12378         put_unused_fd(event_fd);
12379         return err;
12380 }
12381
12382 /**
12383  * perf_event_create_kernel_counter
12384  *
12385  * @attr: attributes of the counter to create
12386  * @cpu: cpu in which the counter is bound
12387  * @task: task to profile (NULL for percpu)
12388  */
12389 struct perf_event *
12390 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12391                                  struct task_struct *task,
12392                                  perf_overflow_handler_t overflow_handler,
12393                                  void *context)
12394 {
12395         struct perf_event_context *ctx;
12396         struct perf_event *event;
12397         int err;
12398
12399         /*
12400          * Grouping is not supported for kernel events, neither is 'AUX',
12401          * make sure the caller's intentions are adjusted.
12402          */
12403         if (attr->aux_output)
12404                 return ERR_PTR(-EINVAL);
12405
12406         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12407                                  overflow_handler, context, -1);
12408         if (IS_ERR(event)) {
12409                 err = PTR_ERR(event);
12410                 goto err;
12411         }
12412
12413         /* Mark owner so we could distinguish it from user events. */
12414         event->owner = TASK_TOMBSTONE;
12415
12416         /*
12417          * Get the target context (task or percpu):
12418          */
12419         ctx = find_get_context(event->pmu, task, event);
12420         if (IS_ERR(ctx)) {
12421                 err = PTR_ERR(ctx);
12422                 goto err_free;
12423         }
12424
12425         WARN_ON_ONCE(ctx->parent_ctx);
12426         mutex_lock(&ctx->mutex);
12427         if (ctx->task == TASK_TOMBSTONE) {
12428                 err = -ESRCH;
12429                 goto err_unlock;
12430         }
12431
12432         if (!task) {
12433                 /*
12434                  * Check if the @cpu we're creating an event for is online.
12435                  *
12436                  * We use the perf_cpu_context::ctx::mutex to serialize against
12437                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12438                  */
12439                 struct perf_cpu_context *cpuctx =
12440                         container_of(ctx, struct perf_cpu_context, ctx);
12441                 if (!cpuctx->online) {
12442                         err = -ENODEV;
12443                         goto err_unlock;
12444                 }
12445         }
12446
12447         if (!exclusive_event_installable(event, ctx)) {
12448                 err = -EBUSY;
12449                 goto err_unlock;
12450         }
12451
12452         perf_install_in_context(ctx, event, event->cpu);
12453         perf_unpin_context(ctx);
12454         mutex_unlock(&ctx->mutex);
12455
12456         return event;
12457
12458 err_unlock:
12459         mutex_unlock(&ctx->mutex);
12460         perf_unpin_context(ctx);
12461         put_ctx(ctx);
12462 err_free:
12463         free_event(event);
12464 err:
12465         return ERR_PTR(err);
12466 }
12467 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12468
12469 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12470 {
12471         struct perf_event_context *src_ctx;
12472         struct perf_event_context *dst_ctx;
12473         struct perf_event *event, *tmp;
12474         LIST_HEAD(events);
12475
12476         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12477         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12478
12479         /*
12480          * See perf_event_ctx_lock() for comments on the details
12481          * of swizzling perf_event::ctx.
12482          */
12483         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12484         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12485                                  event_entry) {
12486                 perf_remove_from_context(event, 0);
12487                 unaccount_event_cpu(event, src_cpu);
12488                 put_ctx(src_ctx);
12489                 list_add(&event->migrate_entry, &events);
12490         }
12491
12492         /*
12493          * Wait for the events to quiesce before re-instating them.
12494          */
12495         synchronize_rcu();
12496
12497         /*
12498          * Re-instate events in 2 passes.
12499          *
12500          * Skip over group leaders and only install siblings on this first
12501          * pass, siblings will not get enabled without a leader, however a
12502          * leader will enable its siblings, even if those are still on the old
12503          * context.
12504          */
12505         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12506                 if (event->group_leader == event)
12507                         continue;
12508
12509                 list_del(&event->migrate_entry);
12510                 if (event->state >= PERF_EVENT_STATE_OFF)
12511                         event->state = PERF_EVENT_STATE_INACTIVE;
12512                 account_event_cpu(event, dst_cpu);
12513                 perf_install_in_context(dst_ctx, event, dst_cpu);
12514                 get_ctx(dst_ctx);
12515         }
12516
12517         /*
12518          * Once all the siblings are setup properly, install the group leaders
12519          * to make it go.
12520          */
12521         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12522                 list_del(&event->migrate_entry);
12523                 if (event->state >= PERF_EVENT_STATE_OFF)
12524                         event->state = PERF_EVENT_STATE_INACTIVE;
12525                 account_event_cpu(event, dst_cpu);
12526                 perf_install_in_context(dst_ctx, event, dst_cpu);
12527                 get_ctx(dst_ctx);
12528         }
12529         mutex_unlock(&dst_ctx->mutex);
12530         mutex_unlock(&src_ctx->mutex);
12531 }
12532 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12533
12534 static void sync_child_event(struct perf_event *child_event)
12535 {
12536         struct perf_event *parent_event = child_event->parent;
12537         u64 child_val;
12538
12539         if (child_event->attr.inherit_stat) {
12540                 struct task_struct *task = child_event->ctx->task;
12541
12542                 if (task && task != TASK_TOMBSTONE)
12543                         perf_event_read_event(child_event, task);
12544         }
12545
12546         child_val = perf_event_count(child_event);
12547
12548         /*
12549          * Add back the child's count to the parent's count:
12550          */
12551         atomic64_add(child_val, &parent_event->child_count);
12552         atomic64_add(child_event->total_time_enabled,
12553                      &parent_event->child_total_time_enabled);
12554         atomic64_add(child_event->total_time_running,
12555                      &parent_event->child_total_time_running);
12556 }
12557
12558 static void
12559 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12560 {
12561         struct perf_event *parent_event = event->parent;
12562         unsigned long detach_flags = 0;
12563
12564         if (parent_event) {
12565                 /*
12566                  * Do not destroy the 'original' grouping; because of the
12567                  * context switch optimization the original events could've
12568                  * ended up in a random child task.
12569                  *
12570                  * If we were to destroy the original group, all group related
12571                  * operations would cease to function properly after this
12572                  * random child dies.
12573                  *
12574                  * Do destroy all inherited groups, we don't care about those
12575                  * and being thorough is better.
12576                  */
12577                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12578                 mutex_lock(&parent_event->child_mutex);
12579         }
12580
12581         perf_remove_from_context(event, detach_flags);
12582
12583         raw_spin_lock_irq(&ctx->lock);
12584         if (event->state > PERF_EVENT_STATE_EXIT)
12585                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12586         raw_spin_unlock_irq(&ctx->lock);
12587
12588         /*
12589          * Child events can be freed.
12590          */
12591         if (parent_event) {
12592                 mutex_unlock(&parent_event->child_mutex);
12593                 /*
12594                  * Kick perf_poll() for is_event_hup();
12595                  */
12596                 perf_event_wakeup(parent_event);
12597                 free_event(event);
12598                 put_event(parent_event);
12599                 return;
12600         }
12601
12602         /*
12603          * Parent events are governed by their filedesc, retain them.
12604          */
12605         perf_event_wakeup(event);
12606 }
12607
12608 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12609 {
12610         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12611         struct perf_event *child_event, *next;
12612
12613         WARN_ON_ONCE(child != current);
12614
12615         child_ctx = perf_pin_task_context(child, ctxn);
12616         if (!child_ctx)
12617                 return;
12618
12619         /*
12620          * In order to reduce the amount of tricky in ctx tear-down, we hold
12621          * ctx::mutex over the entire thing. This serializes against almost
12622          * everything that wants to access the ctx.
12623          *
12624          * The exception is sys_perf_event_open() /
12625          * perf_event_create_kernel_count() which does find_get_context()
12626          * without ctx::mutex (it cannot because of the move_group double mutex
12627          * lock thing). See the comments in perf_install_in_context().
12628          */
12629         mutex_lock(&child_ctx->mutex);
12630
12631         /*
12632          * In a single ctx::lock section, de-schedule the events and detach the
12633          * context from the task such that we cannot ever get it scheduled back
12634          * in.
12635          */
12636         raw_spin_lock_irq(&child_ctx->lock);
12637         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12638
12639         /*
12640          * Now that the context is inactive, destroy the task <-> ctx relation
12641          * and mark the context dead.
12642          */
12643         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12644         put_ctx(child_ctx); /* cannot be last */
12645         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12646         put_task_struct(current); /* cannot be last */
12647
12648         clone_ctx = unclone_ctx(child_ctx);
12649         raw_spin_unlock_irq(&child_ctx->lock);
12650
12651         if (clone_ctx)
12652                 put_ctx(clone_ctx);
12653
12654         /*
12655          * Report the task dead after unscheduling the events so that we
12656          * won't get any samples after PERF_RECORD_EXIT. We can however still
12657          * get a few PERF_RECORD_READ events.
12658          */
12659         perf_event_task(child, child_ctx, 0);
12660
12661         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12662                 perf_event_exit_event(child_event, child_ctx);
12663
12664         mutex_unlock(&child_ctx->mutex);
12665
12666         put_ctx(child_ctx);
12667 }
12668
12669 /*
12670  * When a child task exits, feed back event values to parent events.
12671  *
12672  * Can be called with exec_update_lock held when called from
12673  * setup_new_exec().
12674  */
12675 void perf_event_exit_task(struct task_struct *child)
12676 {
12677         struct perf_event *event, *tmp;
12678         int ctxn;
12679
12680         mutex_lock(&child->perf_event_mutex);
12681         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12682                                  owner_entry) {
12683                 list_del_init(&event->owner_entry);
12684
12685                 /*
12686                  * Ensure the list deletion is visible before we clear
12687                  * the owner, closes a race against perf_release() where
12688                  * we need to serialize on the owner->perf_event_mutex.
12689                  */
12690                 smp_store_release(&event->owner, NULL);
12691         }
12692         mutex_unlock(&child->perf_event_mutex);
12693
12694         for_each_task_context_nr(ctxn)
12695                 perf_event_exit_task_context(child, ctxn);
12696
12697         /*
12698          * The perf_event_exit_task_context calls perf_event_task
12699          * with child's task_ctx, which generates EXIT events for
12700          * child contexts and sets child->perf_event_ctxp[] to NULL.
12701          * At this point we need to send EXIT events to cpu contexts.
12702          */
12703         perf_event_task(child, NULL, 0);
12704 }
12705
12706 static void perf_free_event(struct perf_event *event,
12707                             struct perf_event_context *ctx)
12708 {
12709         struct perf_event *parent = event->parent;
12710
12711         if (WARN_ON_ONCE(!parent))
12712                 return;
12713
12714         mutex_lock(&parent->child_mutex);
12715         list_del_init(&event->child_list);
12716         mutex_unlock(&parent->child_mutex);
12717
12718         put_event(parent);
12719
12720         raw_spin_lock_irq(&ctx->lock);
12721         perf_group_detach(event);
12722         list_del_event(event, ctx);
12723         raw_spin_unlock_irq(&ctx->lock);
12724         free_event(event);
12725 }
12726
12727 /*
12728  * Free a context as created by inheritance by perf_event_init_task() below,
12729  * used by fork() in case of fail.
12730  *
12731  * Even though the task has never lived, the context and events have been
12732  * exposed through the child_list, so we must take care tearing it all down.
12733  */
12734 void perf_event_free_task(struct task_struct *task)
12735 {
12736         struct perf_event_context *ctx;
12737         struct perf_event *event, *tmp;
12738         int ctxn;
12739
12740         for_each_task_context_nr(ctxn) {
12741                 ctx = task->perf_event_ctxp[ctxn];
12742                 if (!ctx)
12743                         continue;
12744
12745                 mutex_lock(&ctx->mutex);
12746                 raw_spin_lock_irq(&ctx->lock);
12747                 /*
12748                  * Destroy the task <-> ctx relation and mark the context dead.
12749                  *
12750                  * This is important because even though the task hasn't been
12751                  * exposed yet the context has been (through child_list).
12752                  */
12753                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12754                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12755                 put_task_struct(task); /* cannot be last */
12756                 raw_spin_unlock_irq(&ctx->lock);
12757
12758                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12759                         perf_free_event(event, ctx);
12760
12761                 mutex_unlock(&ctx->mutex);
12762
12763                 /*
12764                  * perf_event_release_kernel() could've stolen some of our
12765                  * child events and still have them on its free_list. In that
12766                  * case we must wait for these events to have been freed (in
12767                  * particular all their references to this task must've been
12768                  * dropped).
12769                  *
12770                  * Without this copy_process() will unconditionally free this
12771                  * task (irrespective of its reference count) and
12772                  * _free_event()'s put_task_struct(event->hw.target) will be a
12773                  * use-after-free.
12774                  *
12775                  * Wait for all events to drop their context reference.
12776                  */
12777                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12778                 put_ctx(ctx); /* must be last */
12779         }
12780 }
12781
12782 void perf_event_delayed_put(struct task_struct *task)
12783 {
12784         int ctxn;
12785
12786         for_each_task_context_nr(ctxn)
12787                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12788 }
12789
12790 struct file *perf_event_get(unsigned int fd)
12791 {
12792         struct file *file = fget(fd);
12793         if (!file)
12794                 return ERR_PTR(-EBADF);
12795
12796         if (file->f_op != &perf_fops) {
12797                 fput(file);
12798                 return ERR_PTR(-EBADF);
12799         }
12800
12801         return file;
12802 }
12803
12804 const struct perf_event *perf_get_event(struct file *file)
12805 {
12806         if (file->f_op != &perf_fops)
12807                 return ERR_PTR(-EINVAL);
12808
12809         return file->private_data;
12810 }
12811
12812 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12813 {
12814         if (!event)
12815                 return ERR_PTR(-EINVAL);
12816
12817         return &event->attr;
12818 }
12819
12820 /*
12821  * Inherit an event from parent task to child task.
12822  *
12823  * Returns:
12824  *  - valid pointer on success
12825  *  - NULL for orphaned events
12826  *  - IS_ERR() on error
12827  */
12828 static struct perf_event *
12829 inherit_event(struct perf_event *parent_event,
12830               struct task_struct *parent,
12831               struct perf_event_context *parent_ctx,
12832               struct task_struct *child,
12833               struct perf_event *group_leader,
12834               struct perf_event_context *child_ctx)
12835 {
12836         enum perf_event_state parent_state = parent_event->state;
12837         struct perf_event *child_event;
12838         unsigned long flags;
12839
12840         /*
12841          * Instead of creating recursive hierarchies of events,
12842          * we link inherited events back to the original parent,
12843          * which has a filp for sure, which we use as the reference
12844          * count:
12845          */
12846         if (parent_event->parent)
12847                 parent_event = parent_event->parent;
12848
12849         child_event = perf_event_alloc(&parent_event->attr,
12850                                            parent_event->cpu,
12851                                            child,
12852                                            group_leader, parent_event,
12853                                            NULL, NULL, -1);
12854         if (IS_ERR(child_event))
12855                 return child_event;
12856
12857
12858         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12859             !child_ctx->task_ctx_data) {
12860                 struct pmu *pmu = child_event->pmu;
12861
12862                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12863                 if (!child_ctx->task_ctx_data) {
12864                         free_event(child_event);
12865                         return ERR_PTR(-ENOMEM);
12866                 }
12867         }
12868
12869         /*
12870          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12871          * must be under the same lock in order to serialize against
12872          * perf_event_release_kernel(), such that either we must observe
12873          * is_orphaned_event() or they will observe us on the child_list.
12874          */
12875         mutex_lock(&parent_event->child_mutex);
12876         if (is_orphaned_event(parent_event) ||
12877             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12878                 mutex_unlock(&parent_event->child_mutex);
12879                 /* task_ctx_data is freed with child_ctx */
12880                 free_event(child_event);
12881                 return NULL;
12882         }
12883
12884         get_ctx(child_ctx);
12885
12886         /*
12887          * Make the child state follow the state of the parent event,
12888          * not its attr.disabled bit.  We hold the parent's mutex,
12889          * so we won't race with perf_event_{en, dis}able_family.
12890          */
12891         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12892                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12893         else
12894                 child_event->state = PERF_EVENT_STATE_OFF;
12895
12896         if (parent_event->attr.freq) {
12897                 u64 sample_period = parent_event->hw.sample_period;
12898                 struct hw_perf_event *hwc = &child_event->hw;
12899
12900                 hwc->sample_period = sample_period;
12901                 hwc->last_period   = sample_period;
12902
12903                 local64_set(&hwc->period_left, sample_period);
12904         }
12905
12906         child_event->ctx = child_ctx;
12907         child_event->overflow_handler = parent_event->overflow_handler;
12908         child_event->overflow_handler_context
12909                 = parent_event->overflow_handler_context;
12910
12911         /*
12912          * Precalculate sample_data sizes
12913          */
12914         perf_event__header_size(child_event);
12915         perf_event__id_header_size(child_event);
12916
12917         /*
12918          * Link it up in the child's context:
12919          */
12920         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12921         add_event_to_ctx(child_event, child_ctx);
12922         child_event->attach_state |= PERF_ATTACH_CHILD;
12923         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12924
12925         /*
12926          * Link this into the parent event's child list
12927          */
12928         list_add_tail(&child_event->child_list, &parent_event->child_list);
12929         mutex_unlock(&parent_event->child_mutex);
12930
12931         return child_event;
12932 }
12933
12934 /*
12935  * Inherits an event group.
12936  *
12937  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12938  * This matches with perf_event_release_kernel() removing all child events.
12939  *
12940  * Returns:
12941  *  - 0 on success
12942  *  - <0 on error
12943  */
12944 static int inherit_group(struct perf_event *parent_event,
12945               struct task_struct *parent,
12946               struct perf_event_context *parent_ctx,
12947               struct task_struct *child,
12948               struct perf_event_context *child_ctx)
12949 {
12950         struct perf_event *leader;
12951         struct perf_event *sub;
12952         struct perf_event *child_ctr;
12953
12954         leader = inherit_event(parent_event, parent, parent_ctx,
12955                                  child, NULL, child_ctx);
12956         if (IS_ERR(leader))
12957                 return PTR_ERR(leader);
12958         /*
12959          * @leader can be NULL here because of is_orphaned_event(). In this
12960          * case inherit_event() will create individual events, similar to what
12961          * perf_group_detach() would do anyway.
12962          */
12963         for_each_sibling_event(sub, parent_event) {
12964                 child_ctr = inherit_event(sub, parent, parent_ctx,
12965                                             child, leader, child_ctx);
12966                 if (IS_ERR(child_ctr))
12967                         return PTR_ERR(child_ctr);
12968
12969                 if (sub->aux_event == parent_event && child_ctr &&
12970                     !perf_get_aux_event(child_ctr, leader))
12971                         return -EINVAL;
12972         }
12973         return 0;
12974 }
12975
12976 /*
12977  * Creates the child task context and tries to inherit the event-group.
12978  *
12979  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12980  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12981  * consistent with perf_event_release_kernel() removing all child events.
12982  *
12983  * Returns:
12984  *  - 0 on success
12985  *  - <0 on error
12986  */
12987 static int
12988 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12989                    struct perf_event_context *parent_ctx,
12990                    struct task_struct *child, int ctxn,
12991                    u64 clone_flags, int *inherited_all)
12992 {
12993         int ret;
12994         struct perf_event_context *child_ctx;
12995
12996         if (!event->attr.inherit ||
12997             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
12998             /* Do not inherit if sigtrap and signal handlers were cleared. */
12999             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13000                 *inherited_all = 0;
13001                 return 0;
13002         }
13003
13004         child_ctx = child->perf_event_ctxp[ctxn];
13005         if (!child_ctx) {
13006                 /*
13007                  * This is executed from the parent task context, so
13008                  * inherit events that have been marked for cloning.
13009                  * First allocate and initialize a context for the
13010                  * child.
13011                  */
13012                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13013                 if (!child_ctx)
13014                         return -ENOMEM;
13015
13016                 child->perf_event_ctxp[ctxn] = child_ctx;
13017         }
13018
13019         ret = inherit_group(event, parent, parent_ctx,
13020                             child, child_ctx);
13021
13022         if (ret)
13023                 *inherited_all = 0;
13024
13025         return ret;
13026 }
13027
13028 /*
13029  * Initialize the perf_event context in task_struct
13030  */
13031 static int perf_event_init_context(struct task_struct *child, int ctxn,
13032                                    u64 clone_flags)
13033 {
13034         struct perf_event_context *child_ctx, *parent_ctx;
13035         struct perf_event_context *cloned_ctx;
13036         struct perf_event *event;
13037         struct task_struct *parent = current;
13038         int inherited_all = 1;
13039         unsigned long flags;
13040         int ret = 0;
13041
13042         if (likely(!parent->perf_event_ctxp[ctxn]))
13043                 return 0;
13044
13045         /*
13046          * If the parent's context is a clone, pin it so it won't get
13047          * swapped under us.
13048          */
13049         parent_ctx = perf_pin_task_context(parent, ctxn);
13050         if (!parent_ctx)
13051                 return 0;
13052
13053         /*
13054          * No need to check if parent_ctx != NULL here; since we saw
13055          * it non-NULL earlier, the only reason for it to become NULL
13056          * is if we exit, and since we're currently in the middle of
13057          * a fork we can't be exiting at the same time.
13058          */
13059
13060         /*
13061          * Lock the parent list. No need to lock the child - not PID
13062          * hashed yet and not running, so nobody can access it.
13063          */
13064         mutex_lock(&parent_ctx->mutex);
13065
13066         /*
13067          * We dont have to disable NMIs - we are only looking at
13068          * the list, not manipulating it:
13069          */
13070         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13071                 ret = inherit_task_group(event, parent, parent_ctx,
13072                                          child, ctxn, clone_flags,
13073                                          &inherited_all);
13074                 if (ret)
13075                         goto out_unlock;
13076         }
13077
13078         /*
13079          * We can't hold ctx->lock when iterating the ->flexible_group list due
13080          * to allocations, but we need to prevent rotation because
13081          * rotate_ctx() will change the list from interrupt context.
13082          */
13083         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13084         parent_ctx->rotate_disable = 1;
13085         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13086
13087         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13088                 ret = inherit_task_group(event, parent, parent_ctx,
13089                                          child, ctxn, clone_flags,
13090                                          &inherited_all);
13091                 if (ret)
13092                         goto out_unlock;
13093         }
13094
13095         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13096         parent_ctx->rotate_disable = 0;
13097
13098         child_ctx = child->perf_event_ctxp[ctxn];
13099
13100         if (child_ctx && inherited_all) {
13101                 /*
13102                  * Mark the child context as a clone of the parent
13103                  * context, or of whatever the parent is a clone of.
13104                  *
13105                  * Note that if the parent is a clone, the holding of
13106                  * parent_ctx->lock avoids it from being uncloned.
13107                  */
13108                 cloned_ctx = parent_ctx->parent_ctx;
13109                 if (cloned_ctx) {
13110                         child_ctx->parent_ctx = cloned_ctx;
13111                         child_ctx->parent_gen = parent_ctx->parent_gen;
13112                 } else {
13113                         child_ctx->parent_ctx = parent_ctx;
13114                         child_ctx->parent_gen = parent_ctx->generation;
13115                 }
13116                 get_ctx(child_ctx->parent_ctx);
13117         }
13118
13119         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13120 out_unlock:
13121         mutex_unlock(&parent_ctx->mutex);
13122
13123         perf_unpin_context(parent_ctx);
13124         put_ctx(parent_ctx);
13125
13126         return ret;
13127 }
13128
13129 /*
13130  * Initialize the perf_event context in task_struct
13131  */
13132 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13133 {
13134         int ctxn, ret;
13135
13136         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13137         mutex_init(&child->perf_event_mutex);
13138         INIT_LIST_HEAD(&child->perf_event_list);
13139
13140         for_each_task_context_nr(ctxn) {
13141                 ret = perf_event_init_context(child, ctxn, clone_flags);
13142                 if (ret) {
13143                         perf_event_free_task(child);
13144                         return ret;
13145                 }
13146         }
13147
13148         return 0;
13149 }
13150
13151 static void __init perf_event_init_all_cpus(void)
13152 {
13153         struct swevent_htable *swhash;
13154         int cpu;
13155
13156         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13157
13158         for_each_possible_cpu(cpu) {
13159                 swhash = &per_cpu(swevent_htable, cpu);
13160                 mutex_init(&swhash->hlist_mutex);
13161                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13162
13163                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13164                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13165
13166 #ifdef CONFIG_CGROUP_PERF
13167                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13168 #endif
13169                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13170         }
13171 }
13172
13173 static void perf_swevent_init_cpu(unsigned int cpu)
13174 {
13175         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13176
13177         mutex_lock(&swhash->hlist_mutex);
13178         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13179                 struct swevent_hlist *hlist;
13180
13181                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13182                 WARN_ON(!hlist);
13183                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13184         }
13185         mutex_unlock(&swhash->hlist_mutex);
13186 }
13187
13188 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13189 static void __perf_event_exit_context(void *__info)
13190 {
13191         struct perf_event_context *ctx = __info;
13192         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13193         struct perf_event *event;
13194
13195         raw_spin_lock(&ctx->lock);
13196         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13197         list_for_each_entry(event, &ctx->event_list, event_entry)
13198                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13199         raw_spin_unlock(&ctx->lock);
13200 }
13201
13202 static void perf_event_exit_cpu_context(int cpu)
13203 {
13204         struct perf_cpu_context *cpuctx;
13205         struct perf_event_context *ctx;
13206         struct pmu *pmu;
13207
13208         mutex_lock(&pmus_lock);
13209         list_for_each_entry(pmu, &pmus, entry) {
13210                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13211                 ctx = &cpuctx->ctx;
13212
13213                 mutex_lock(&ctx->mutex);
13214                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13215                 cpuctx->online = 0;
13216                 mutex_unlock(&ctx->mutex);
13217         }
13218         cpumask_clear_cpu(cpu, perf_online_mask);
13219         mutex_unlock(&pmus_lock);
13220 }
13221 #else
13222
13223 static void perf_event_exit_cpu_context(int cpu) { }
13224
13225 #endif
13226
13227 int perf_event_init_cpu(unsigned int cpu)
13228 {
13229         struct perf_cpu_context *cpuctx;
13230         struct perf_event_context *ctx;
13231         struct pmu *pmu;
13232
13233         perf_swevent_init_cpu(cpu);
13234
13235         mutex_lock(&pmus_lock);
13236         cpumask_set_cpu(cpu, perf_online_mask);
13237         list_for_each_entry(pmu, &pmus, entry) {
13238                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13239                 ctx = &cpuctx->ctx;
13240
13241                 mutex_lock(&ctx->mutex);
13242                 cpuctx->online = 1;
13243                 mutex_unlock(&ctx->mutex);
13244         }
13245         mutex_unlock(&pmus_lock);
13246
13247         return 0;
13248 }
13249
13250 int perf_event_exit_cpu(unsigned int cpu)
13251 {
13252         perf_event_exit_cpu_context(cpu);
13253         return 0;
13254 }
13255
13256 static int
13257 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13258 {
13259         int cpu;
13260
13261         for_each_online_cpu(cpu)
13262                 perf_event_exit_cpu(cpu);
13263
13264         return NOTIFY_OK;
13265 }
13266
13267 /*
13268  * Run the perf reboot notifier at the very last possible moment so that
13269  * the generic watchdog code runs as long as possible.
13270  */
13271 static struct notifier_block perf_reboot_notifier = {
13272         .notifier_call = perf_reboot,
13273         .priority = INT_MIN,
13274 };
13275
13276 void __init perf_event_init(void)
13277 {
13278         int ret;
13279
13280         idr_init(&pmu_idr);
13281
13282         perf_event_init_all_cpus();
13283         init_srcu_struct(&pmus_srcu);
13284         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13285         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13286         perf_pmu_register(&perf_task_clock, NULL, -1);
13287         perf_tp_register();
13288         perf_event_init_cpu(smp_processor_id());
13289         register_reboot_notifier(&perf_reboot_notifier);
13290
13291         ret = init_hw_breakpoint();
13292         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13293
13294         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13295
13296         /*
13297          * Build time assertion that we keep the data_head at the intended
13298          * location.  IOW, validation we got the __reserved[] size right.
13299          */
13300         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13301                      != 1024);
13302 }
13303
13304 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13305                               char *page)
13306 {
13307         struct perf_pmu_events_attr *pmu_attr =
13308                 container_of(attr, struct perf_pmu_events_attr, attr);
13309
13310         if (pmu_attr->event_str)
13311                 return sprintf(page, "%s\n", pmu_attr->event_str);
13312
13313         return 0;
13314 }
13315 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13316
13317 static int __init perf_event_sysfs_init(void)
13318 {
13319         struct pmu *pmu;
13320         int ret;
13321
13322         mutex_lock(&pmus_lock);
13323
13324         ret = bus_register(&pmu_bus);
13325         if (ret)
13326                 goto unlock;
13327
13328         list_for_each_entry(pmu, &pmus, entry) {
13329                 if (!pmu->name || pmu->type < 0)
13330                         continue;
13331
13332                 ret = pmu_dev_alloc(pmu);
13333                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13334         }
13335         pmu_bus_running = 1;
13336         ret = 0;
13337
13338 unlock:
13339         mutex_unlock(&pmus_lock);
13340
13341         return ret;
13342 }
13343 device_initcall(perf_event_sysfs_init);
13344
13345 #ifdef CONFIG_CGROUP_PERF
13346 static struct cgroup_subsys_state *
13347 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13348 {
13349         struct perf_cgroup *jc;
13350
13351         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13352         if (!jc)
13353                 return ERR_PTR(-ENOMEM);
13354
13355         jc->info = alloc_percpu(struct perf_cgroup_info);
13356         if (!jc->info) {
13357                 kfree(jc);
13358                 return ERR_PTR(-ENOMEM);
13359         }
13360
13361         return &jc->css;
13362 }
13363
13364 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13365 {
13366         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13367
13368         free_percpu(jc->info);
13369         kfree(jc);
13370 }
13371
13372 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13373 {
13374         perf_event_cgroup(css->cgroup);
13375         return 0;
13376 }
13377
13378 static int __perf_cgroup_move(void *info)
13379 {
13380         struct task_struct *task = info;
13381         rcu_read_lock();
13382         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13383         rcu_read_unlock();
13384         return 0;
13385 }
13386
13387 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13388 {
13389         struct task_struct *task;
13390         struct cgroup_subsys_state *css;
13391
13392         cgroup_taskset_for_each(task, css, tset)
13393                 task_function_call(task, __perf_cgroup_move, task);
13394 }
13395
13396 struct cgroup_subsys perf_event_cgrp_subsys = {
13397         .css_alloc      = perf_cgroup_css_alloc,
13398         .css_free       = perf_cgroup_css_free,
13399         .css_online     = perf_cgroup_css_online,
13400         .attach         = perf_cgroup_attach,
13401         /*
13402          * Implicitly enable on dfl hierarchy so that perf events can
13403          * always be filtered by cgroup2 path as long as perf_event
13404          * controller is not mounted on a legacy hierarchy.
13405          */
13406         .implicit_on_dfl = true,
13407         .threaded       = true,
13408 };
13409 #endif /* CONFIG_CGROUP_PERF */