Merge branch 'asoc-5.6' into asoc-next
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/rculist.h>
32 #include <linux/uaccess.h>
33 #include <linux/syscalls.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/kernel_stat.h>
36 #include <linux/cgroup.h>
37 #include <linux/perf_event.h>
38 #include <linux/trace_events.h>
39 #include <linux/hw_breakpoint.h>
40 #include <linux/mm_types.h>
41 #include <linux/module.h>
42 #include <linux/mman.h>
43 #include <linux/compat.h>
44 #include <linux/bpf.h>
45 #include <linux/filter.h>
46 #include <linux/namei.h>
47 #include <linux/parser.h>
48 #include <linux/sched/clock.h>
49 #include <linux/sched/mm.h>
50 #include <linux/proc_ns.h>
51 #include <linux/mount.h>
52
53 #include "internal.h"
54
55 #include <asm/irq_regs.h>
56
57 typedef int (*remote_function_f)(void *);
58
59 struct remote_function_call {
60         struct task_struct      *p;
61         remote_function_f       func;
62         void                    *info;
63         int                     ret;
64 };
65
66 static void remote_function(void *data)
67 {
68         struct remote_function_call *tfc = data;
69         struct task_struct *p = tfc->p;
70
71         if (p) {
72                 /* -EAGAIN */
73                 if (task_cpu(p) != smp_processor_id())
74                         return;
75
76                 /*
77                  * Now that we're on right CPU with IRQs disabled, we can test
78                  * if we hit the right task without races.
79                  */
80
81                 tfc->ret = -ESRCH; /* No such (running) process */
82                 if (p != current)
83                         return;
84         }
85
86         tfc->ret = tfc->func(tfc->info);
87 }
88
89 /**
90  * task_function_call - call a function on the cpu on which a task runs
91  * @p:          the task to evaluate
92  * @func:       the function to be called
93  * @info:       the function call argument
94  *
95  * Calls the function @func when the task is currently running. This might
96  * be on the current CPU, which just calls the function directly
97  *
98  * returns: @func return value, or
99  *          -ESRCH  - when the process isn't running
100  *          -EAGAIN - when the process moved away
101  */
102 static int
103 task_function_call(struct task_struct *p, remote_function_f func, void *info)
104 {
105         struct remote_function_call data = {
106                 .p      = p,
107                 .func   = func,
108                 .info   = info,
109                 .ret    = -EAGAIN,
110         };
111         int ret;
112
113         do {
114                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
115                 if (!ret)
116                         ret = data.ret;
117         } while (ret == -EAGAIN);
118
119         return ret;
120 }
121
122 /**
123  * cpu_function_call - call a function on the cpu
124  * @func:       the function to be called
125  * @info:       the function call argument
126  *
127  * Calls the function @func on the remote cpu.
128  *
129  * returns: @func return value or -ENXIO when the cpu is offline
130  */
131 static int cpu_function_call(int cpu, remote_function_f func, void *info)
132 {
133         struct remote_function_call data = {
134                 .p      = NULL,
135                 .func   = func,
136                 .info   = info,
137                 .ret    = -ENXIO, /* No such CPU */
138         };
139
140         smp_call_function_single(cpu, remote_function, &data, 1);
141
142         return data.ret;
143 }
144
145 static inline struct perf_cpu_context *
146 __get_cpu_context(struct perf_event_context *ctx)
147 {
148         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
149 }
150
151 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
152                           struct perf_event_context *ctx)
153 {
154         raw_spin_lock(&cpuctx->ctx.lock);
155         if (ctx)
156                 raw_spin_lock(&ctx->lock);
157 }
158
159 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
160                             struct perf_event_context *ctx)
161 {
162         if (ctx)
163                 raw_spin_unlock(&ctx->lock);
164         raw_spin_unlock(&cpuctx->ctx.lock);
165 }
166
167 #define TASK_TOMBSTONE ((void *)-1L)
168
169 static bool is_kernel_event(struct perf_event *event)
170 {
171         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
172 }
173
174 /*
175  * On task ctx scheduling...
176  *
177  * When !ctx->nr_events a task context will not be scheduled. This means
178  * we can disable the scheduler hooks (for performance) without leaving
179  * pending task ctx state.
180  *
181  * This however results in two special cases:
182  *
183  *  - removing the last event from a task ctx; this is relatively straight
184  *    forward and is done in __perf_remove_from_context.
185  *
186  *  - adding the first event to a task ctx; this is tricky because we cannot
187  *    rely on ctx->is_active and therefore cannot use event_function_call().
188  *    See perf_install_in_context().
189  *
190  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
191  */
192
193 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
194                         struct perf_event_context *, void *);
195
196 struct event_function_struct {
197         struct perf_event *event;
198         event_f func;
199         void *data;
200 };
201
202 static int event_function(void *info)
203 {
204         struct event_function_struct *efs = info;
205         struct perf_event *event = efs->event;
206         struct perf_event_context *ctx = event->ctx;
207         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
208         struct perf_event_context *task_ctx = cpuctx->task_ctx;
209         int ret = 0;
210
211         lockdep_assert_irqs_disabled();
212
213         perf_ctx_lock(cpuctx, task_ctx);
214         /*
215          * Since we do the IPI call without holding ctx->lock things can have
216          * changed, double check we hit the task we set out to hit.
217          */
218         if (ctx->task) {
219                 if (ctx->task != current) {
220                         ret = -ESRCH;
221                         goto unlock;
222                 }
223
224                 /*
225                  * We only use event_function_call() on established contexts,
226                  * and event_function() is only ever called when active (or
227                  * rather, we'll have bailed in task_function_call() or the
228                  * above ctx->task != current test), therefore we must have
229                  * ctx->is_active here.
230                  */
231                 WARN_ON_ONCE(!ctx->is_active);
232                 /*
233                  * And since we have ctx->is_active, cpuctx->task_ctx must
234                  * match.
235                  */
236                 WARN_ON_ONCE(task_ctx != ctx);
237         } else {
238                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
239         }
240
241         efs->func(event, cpuctx, ctx, efs->data);
242 unlock:
243         perf_ctx_unlock(cpuctx, task_ctx);
244
245         return ret;
246 }
247
248 static void event_function_call(struct perf_event *event, event_f func, void *data)
249 {
250         struct perf_event_context *ctx = event->ctx;
251         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
252         struct event_function_struct efs = {
253                 .event = event,
254                 .func = func,
255                 .data = data,
256         };
257
258         if (!event->parent) {
259                 /*
260                  * If this is a !child event, we must hold ctx::mutex to
261                  * stabilize the the event->ctx relation. See
262                  * perf_event_ctx_lock().
263                  */
264                 lockdep_assert_held(&ctx->mutex);
265         }
266
267         if (!task) {
268                 cpu_function_call(event->cpu, event_function, &efs);
269                 return;
270         }
271
272         if (task == TASK_TOMBSTONE)
273                 return;
274
275 again:
276         if (!task_function_call(task, event_function, &efs))
277                 return;
278
279         raw_spin_lock_irq(&ctx->lock);
280         /*
281          * Reload the task pointer, it might have been changed by
282          * a concurrent perf_event_context_sched_out().
283          */
284         task = ctx->task;
285         if (task == TASK_TOMBSTONE) {
286                 raw_spin_unlock_irq(&ctx->lock);
287                 return;
288         }
289         if (ctx->is_active) {
290                 raw_spin_unlock_irq(&ctx->lock);
291                 goto again;
292         }
293         func(event, NULL, ctx, data);
294         raw_spin_unlock_irq(&ctx->lock);
295 }
296
297 /*
298  * Similar to event_function_call() + event_function(), but hard assumes IRQs
299  * are already disabled and we're on the right CPU.
300  */
301 static void event_function_local(struct perf_event *event, event_f func, void *data)
302 {
303         struct perf_event_context *ctx = event->ctx;
304         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
305         struct task_struct *task = READ_ONCE(ctx->task);
306         struct perf_event_context *task_ctx = NULL;
307
308         lockdep_assert_irqs_disabled();
309
310         if (task) {
311                 if (task == TASK_TOMBSTONE)
312                         return;
313
314                 task_ctx = ctx;
315         }
316
317         perf_ctx_lock(cpuctx, task_ctx);
318
319         task = ctx->task;
320         if (task == TASK_TOMBSTONE)
321                 goto unlock;
322
323         if (task) {
324                 /*
325                  * We must be either inactive or active and the right task,
326                  * otherwise we're screwed, since we cannot IPI to somewhere
327                  * else.
328                  */
329                 if (ctx->is_active) {
330                         if (WARN_ON_ONCE(task != current))
331                                 goto unlock;
332
333                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
334                                 goto unlock;
335                 }
336         } else {
337                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
338         }
339
340         func(event, cpuctx, ctx, data);
341 unlock:
342         perf_ctx_unlock(cpuctx, task_ctx);
343 }
344
345 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
346                        PERF_FLAG_FD_OUTPUT  |\
347                        PERF_FLAG_PID_CGROUP |\
348                        PERF_FLAG_FD_CLOEXEC)
349
350 /*
351  * branch priv levels that need permission checks
352  */
353 #define PERF_SAMPLE_BRANCH_PERM_PLM \
354         (PERF_SAMPLE_BRANCH_KERNEL |\
355          PERF_SAMPLE_BRANCH_HV)
356
357 enum event_type_t {
358         EVENT_FLEXIBLE = 0x1,
359         EVENT_PINNED = 0x2,
360         EVENT_TIME = 0x4,
361         /* see ctx_resched() for details */
362         EVENT_CPU = 0x8,
363         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
364 };
365
366 /*
367  * perf_sched_events : >0 events exist
368  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
369  */
370
371 static void perf_sched_delayed(struct work_struct *work);
372 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
373 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
374 static DEFINE_MUTEX(perf_sched_mutex);
375 static atomic_t perf_sched_count;
376
377 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
378 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
379 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
380
381 static atomic_t nr_mmap_events __read_mostly;
382 static atomic_t nr_comm_events __read_mostly;
383 static atomic_t nr_namespaces_events __read_mostly;
384 static atomic_t nr_task_events __read_mostly;
385 static atomic_t nr_freq_events __read_mostly;
386 static atomic_t nr_switch_events __read_mostly;
387 static atomic_t nr_ksymbol_events __read_mostly;
388 static atomic_t nr_bpf_events __read_mostly;
389
390 static LIST_HEAD(pmus);
391 static DEFINE_MUTEX(pmus_lock);
392 static struct srcu_struct pmus_srcu;
393 static cpumask_var_t perf_online_mask;
394
395 /*
396  * perf event paranoia level:
397  *  -1 - not paranoid at all
398  *   0 - disallow raw tracepoint access for unpriv
399  *   1 - disallow cpu events for unpriv
400  *   2 - disallow kernel profiling for unpriv
401  */
402 int sysctl_perf_event_paranoid __read_mostly = 2;
403
404 /* Minimum for 512 kiB + 1 user control page */
405 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
406
407 /*
408  * max perf event sample rate
409  */
410 #define DEFAULT_MAX_SAMPLE_RATE         100000
411 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
412 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
413
414 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
415
416 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
417 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
418
419 static int perf_sample_allowed_ns __read_mostly =
420         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
421
422 static void update_perf_cpu_limits(void)
423 {
424         u64 tmp = perf_sample_period_ns;
425
426         tmp *= sysctl_perf_cpu_time_max_percent;
427         tmp = div_u64(tmp, 100);
428         if (!tmp)
429                 tmp = 1;
430
431         WRITE_ONCE(perf_sample_allowed_ns, tmp);
432 }
433
434 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
435
436 int perf_proc_update_handler(struct ctl_table *table, int write,
437                 void __user *buffer, size_t *lenp,
438                 loff_t *ppos)
439 {
440         int ret;
441         int perf_cpu = sysctl_perf_cpu_time_max_percent;
442         /*
443          * If throttling is disabled don't allow the write:
444          */
445         if (write && (perf_cpu == 100 || perf_cpu == 0))
446                 return -EINVAL;
447
448         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
449         if (ret || !write)
450                 return ret;
451
452         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
453         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
454         update_perf_cpu_limits();
455
456         return 0;
457 }
458
459 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
460
461 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
462                                 void __user *buffer, size_t *lenp,
463                                 loff_t *ppos)
464 {
465         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
466
467         if (ret || !write)
468                 return ret;
469
470         if (sysctl_perf_cpu_time_max_percent == 100 ||
471             sysctl_perf_cpu_time_max_percent == 0) {
472                 printk(KERN_WARNING
473                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
474                 WRITE_ONCE(perf_sample_allowed_ns, 0);
475         } else {
476                 update_perf_cpu_limits();
477         }
478
479         return 0;
480 }
481
482 /*
483  * perf samples are done in some very critical code paths (NMIs).
484  * If they take too much CPU time, the system can lock up and not
485  * get any real work done.  This will drop the sample rate when
486  * we detect that events are taking too long.
487  */
488 #define NR_ACCUMULATED_SAMPLES 128
489 static DEFINE_PER_CPU(u64, running_sample_length);
490
491 static u64 __report_avg;
492 static u64 __report_allowed;
493
494 static void perf_duration_warn(struct irq_work *w)
495 {
496         printk_ratelimited(KERN_INFO
497                 "perf: interrupt took too long (%lld > %lld), lowering "
498                 "kernel.perf_event_max_sample_rate to %d\n",
499                 __report_avg, __report_allowed,
500                 sysctl_perf_event_sample_rate);
501 }
502
503 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
504
505 void perf_sample_event_took(u64 sample_len_ns)
506 {
507         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
508         u64 running_len;
509         u64 avg_len;
510         u32 max;
511
512         if (max_len == 0)
513                 return;
514
515         /* Decay the counter by 1 average sample. */
516         running_len = __this_cpu_read(running_sample_length);
517         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
518         running_len += sample_len_ns;
519         __this_cpu_write(running_sample_length, running_len);
520
521         /*
522          * Note: this will be biased artifically low until we have
523          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
524          * from having to maintain a count.
525          */
526         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
527         if (avg_len <= max_len)
528                 return;
529
530         __report_avg = avg_len;
531         __report_allowed = max_len;
532
533         /*
534          * Compute a throttle threshold 25% below the current duration.
535          */
536         avg_len += avg_len / 4;
537         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
538         if (avg_len < max)
539                 max /= (u32)avg_len;
540         else
541                 max = 1;
542
543         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
544         WRITE_ONCE(max_samples_per_tick, max);
545
546         sysctl_perf_event_sample_rate = max * HZ;
547         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
548
549         if (!irq_work_queue(&perf_duration_work)) {
550                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
551                              "kernel.perf_event_max_sample_rate to %d\n",
552                              __report_avg, __report_allowed,
553                              sysctl_perf_event_sample_rate);
554         }
555 }
556
557 static atomic64_t perf_event_id;
558
559 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
560                               enum event_type_t event_type);
561
562 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
563                              enum event_type_t event_type,
564                              struct task_struct *task);
565
566 static void update_context_time(struct perf_event_context *ctx);
567 static u64 perf_event_time(struct perf_event *event);
568
569 void __weak perf_event_print_debug(void)        { }
570
571 extern __weak const char *perf_pmu_name(void)
572 {
573         return "pmu";
574 }
575
576 static inline u64 perf_clock(void)
577 {
578         return local_clock();
579 }
580
581 static inline u64 perf_event_clock(struct perf_event *event)
582 {
583         return event->clock();
584 }
585
586 /*
587  * State based event timekeeping...
588  *
589  * The basic idea is to use event->state to determine which (if any) time
590  * fields to increment with the current delta. This means we only need to
591  * update timestamps when we change state or when they are explicitly requested
592  * (read).
593  *
594  * Event groups make things a little more complicated, but not terribly so. The
595  * rules for a group are that if the group leader is OFF the entire group is
596  * OFF, irrespecive of what the group member states are. This results in
597  * __perf_effective_state().
598  *
599  * A futher ramification is that when a group leader flips between OFF and
600  * !OFF, we need to update all group member times.
601  *
602  *
603  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
604  * need to make sure the relevant context time is updated before we try and
605  * update our timestamps.
606  */
607
608 static __always_inline enum perf_event_state
609 __perf_effective_state(struct perf_event *event)
610 {
611         struct perf_event *leader = event->group_leader;
612
613         if (leader->state <= PERF_EVENT_STATE_OFF)
614                 return leader->state;
615
616         return event->state;
617 }
618
619 static __always_inline void
620 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
621 {
622         enum perf_event_state state = __perf_effective_state(event);
623         u64 delta = now - event->tstamp;
624
625         *enabled = event->total_time_enabled;
626         if (state >= PERF_EVENT_STATE_INACTIVE)
627                 *enabled += delta;
628
629         *running = event->total_time_running;
630         if (state >= PERF_EVENT_STATE_ACTIVE)
631                 *running += delta;
632 }
633
634 static void perf_event_update_time(struct perf_event *event)
635 {
636         u64 now = perf_event_time(event);
637
638         __perf_update_times(event, now, &event->total_time_enabled,
639                                         &event->total_time_running);
640         event->tstamp = now;
641 }
642
643 static void perf_event_update_sibling_time(struct perf_event *leader)
644 {
645         struct perf_event *sibling;
646
647         for_each_sibling_event(sibling, leader)
648                 perf_event_update_time(sibling);
649 }
650
651 static void
652 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
653 {
654         if (event->state == state)
655                 return;
656
657         perf_event_update_time(event);
658         /*
659          * If a group leader gets enabled/disabled all its siblings
660          * are affected too.
661          */
662         if ((event->state < 0) ^ (state < 0))
663                 perf_event_update_sibling_time(event);
664
665         WRITE_ONCE(event->state, state);
666 }
667
668 #ifdef CONFIG_CGROUP_PERF
669
670 static inline bool
671 perf_cgroup_match(struct perf_event *event)
672 {
673         struct perf_event_context *ctx = event->ctx;
674         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
675
676         /* @event doesn't care about cgroup */
677         if (!event->cgrp)
678                 return true;
679
680         /* wants specific cgroup scope but @cpuctx isn't associated with any */
681         if (!cpuctx->cgrp)
682                 return false;
683
684         /*
685          * Cgroup scoping is recursive.  An event enabled for a cgroup is
686          * also enabled for all its descendant cgroups.  If @cpuctx's
687          * cgroup is a descendant of @event's (the test covers identity
688          * case), it's a match.
689          */
690         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
691                                     event->cgrp->css.cgroup);
692 }
693
694 static inline void perf_detach_cgroup(struct perf_event *event)
695 {
696         css_put(&event->cgrp->css);
697         event->cgrp = NULL;
698 }
699
700 static inline int is_cgroup_event(struct perf_event *event)
701 {
702         return event->cgrp != NULL;
703 }
704
705 static inline u64 perf_cgroup_event_time(struct perf_event *event)
706 {
707         struct perf_cgroup_info *t;
708
709         t = per_cpu_ptr(event->cgrp->info, event->cpu);
710         return t->time;
711 }
712
713 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
714 {
715         struct perf_cgroup_info *info;
716         u64 now;
717
718         now = perf_clock();
719
720         info = this_cpu_ptr(cgrp->info);
721
722         info->time += now - info->timestamp;
723         info->timestamp = now;
724 }
725
726 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
727 {
728         struct perf_cgroup *cgrp = cpuctx->cgrp;
729         struct cgroup_subsys_state *css;
730
731         if (cgrp) {
732                 for (css = &cgrp->css; css; css = css->parent) {
733                         cgrp = container_of(css, struct perf_cgroup, css);
734                         __update_cgrp_time(cgrp);
735                 }
736         }
737 }
738
739 static inline void update_cgrp_time_from_event(struct perf_event *event)
740 {
741         struct perf_cgroup *cgrp;
742
743         /*
744          * ensure we access cgroup data only when needed and
745          * when we know the cgroup is pinned (css_get)
746          */
747         if (!is_cgroup_event(event))
748                 return;
749
750         cgrp = perf_cgroup_from_task(current, event->ctx);
751         /*
752          * Do not update time when cgroup is not active
753          */
754         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
755                 __update_cgrp_time(event->cgrp);
756 }
757
758 static inline void
759 perf_cgroup_set_timestamp(struct task_struct *task,
760                           struct perf_event_context *ctx)
761 {
762         struct perf_cgroup *cgrp;
763         struct perf_cgroup_info *info;
764         struct cgroup_subsys_state *css;
765
766         /*
767          * ctx->lock held by caller
768          * ensure we do not access cgroup data
769          * unless we have the cgroup pinned (css_get)
770          */
771         if (!task || !ctx->nr_cgroups)
772                 return;
773
774         cgrp = perf_cgroup_from_task(task, ctx);
775
776         for (css = &cgrp->css; css; css = css->parent) {
777                 cgrp = container_of(css, struct perf_cgroup, css);
778                 info = this_cpu_ptr(cgrp->info);
779                 info->timestamp = ctx->timestamp;
780         }
781 }
782
783 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
784
785 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
786 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
787
788 /*
789  * reschedule events based on the cgroup constraint of task.
790  *
791  * mode SWOUT : schedule out everything
792  * mode SWIN : schedule in based on cgroup for next
793  */
794 static void perf_cgroup_switch(struct task_struct *task, int mode)
795 {
796         struct perf_cpu_context *cpuctx;
797         struct list_head *list;
798         unsigned long flags;
799
800         /*
801          * Disable interrupts and preemption to avoid this CPU's
802          * cgrp_cpuctx_entry to change under us.
803          */
804         local_irq_save(flags);
805
806         list = this_cpu_ptr(&cgrp_cpuctx_list);
807         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
808                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
809
810                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
811                 perf_pmu_disable(cpuctx->ctx.pmu);
812
813                 if (mode & PERF_CGROUP_SWOUT) {
814                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
815                         /*
816                          * must not be done before ctxswout due
817                          * to event_filter_match() in event_sched_out()
818                          */
819                         cpuctx->cgrp = NULL;
820                 }
821
822                 if (mode & PERF_CGROUP_SWIN) {
823                         WARN_ON_ONCE(cpuctx->cgrp);
824                         /*
825                          * set cgrp before ctxsw in to allow
826                          * event_filter_match() to not have to pass
827                          * task around
828                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
829                          * because cgorup events are only per-cpu
830                          */
831                         cpuctx->cgrp = perf_cgroup_from_task(task,
832                                                              &cpuctx->ctx);
833                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
834                 }
835                 perf_pmu_enable(cpuctx->ctx.pmu);
836                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
837         }
838
839         local_irq_restore(flags);
840 }
841
842 static inline void perf_cgroup_sched_out(struct task_struct *task,
843                                          struct task_struct *next)
844 {
845         struct perf_cgroup *cgrp1;
846         struct perf_cgroup *cgrp2 = NULL;
847
848         rcu_read_lock();
849         /*
850          * we come here when we know perf_cgroup_events > 0
851          * we do not need to pass the ctx here because we know
852          * we are holding the rcu lock
853          */
854         cgrp1 = perf_cgroup_from_task(task, NULL);
855         cgrp2 = perf_cgroup_from_task(next, NULL);
856
857         /*
858          * only schedule out current cgroup events if we know
859          * that we are switching to a different cgroup. Otherwise,
860          * do no touch the cgroup events.
861          */
862         if (cgrp1 != cgrp2)
863                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
864
865         rcu_read_unlock();
866 }
867
868 static inline void perf_cgroup_sched_in(struct task_struct *prev,
869                                         struct task_struct *task)
870 {
871         struct perf_cgroup *cgrp1;
872         struct perf_cgroup *cgrp2 = NULL;
873
874         rcu_read_lock();
875         /*
876          * we come here when we know perf_cgroup_events > 0
877          * we do not need to pass the ctx here because we know
878          * we are holding the rcu lock
879          */
880         cgrp1 = perf_cgroup_from_task(task, NULL);
881         cgrp2 = perf_cgroup_from_task(prev, NULL);
882
883         /*
884          * only need to schedule in cgroup events if we are changing
885          * cgroup during ctxsw. Cgroup events were not scheduled
886          * out of ctxsw out if that was not the case.
887          */
888         if (cgrp1 != cgrp2)
889                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
890
891         rcu_read_unlock();
892 }
893
894 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
895                                       struct perf_event_attr *attr,
896                                       struct perf_event *group_leader)
897 {
898         struct perf_cgroup *cgrp;
899         struct cgroup_subsys_state *css;
900         struct fd f = fdget(fd);
901         int ret = 0;
902
903         if (!f.file)
904                 return -EBADF;
905
906         css = css_tryget_online_from_dir(f.file->f_path.dentry,
907                                          &perf_event_cgrp_subsys);
908         if (IS_ERR(css)) {
909                 ret = PTR_ERR(css);
910                 goto out;
911         }
912
913         cgrp = container_of(css, struct perf_cgroup, css);
914         event->cgrp = cgrp;
915
916         /*
917          * all events in a group must monitor
918          * the same cgroup because a task belongs
919          * to only one perf cgroup at a time
920          */
921         if (group_leader && group_leader->cgrp != cgrp) {
922                 perf_detach_cgroup(event);
923                 ret = -EINVAL;
924         }
925 out:
926         fdput(f);
927         return ret;
928 }
929
930 static inline void
931 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
932 {
933         struct perf_cgroup_info *t;
934         t = per_cpu_ptr(event->cgrp->info, event->cpu);
935         event->shadow_ctx_time = now - t->timestamp;
936 }
937
938 /*
939  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
940  * cleared when last cgroup event is removed.
941  */
942 static inline void
943 list_update_cgroup_event(struct perf_event *event,
944                          struct perf_event_context *ctx, bool add)
945 {
946         struct perf_cpu_context *cpuctx;
947         struct list_head *cpuctx_entry;
948
949         if (!is_cgroup_event(event))
950                 return;
951
952         /*
953          * Because cgroup events are always per-cpu events,
954          * this will always be called from the right CPU.
955          */
956         cpuctx = __get_cpu_context(ctx);
957
958         /*
959          * Since setting cpuctx->cgrp is conditional on the current @cgrp
960          * matching the event's cgroup, we must do this for every new event,
961          * because if the first would mismatch, the second would not try again
962          * and we would leave cpuctx->cgrp unset.
963          */
964         if (add && !cpuctx->cgrp) {
965                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
966
967                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
968                         cpuctx->cgrp = cgrp;
969         }
970
971         if (add && ctx->nr_cgroups++)
972                 return;
973         else if (!add && --ctx->nr_cgroups)
974                 return;
975
976         /* no cgroup running */
977         if (!add)
978                 cpuctx->cgrp = NULL;
979
980         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
981         if (add)
982                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
983         else
984                 list_del(cpuctx_entry);
985 }
986
987 #else /* !CONFIG_CGROUP_PERF */
988
989 static inline bool
990 perf_cgroup_match(struct perf_event *event)
991 {
992         return true;
993 }
994
995 static inline void perf_detach_cgroup(struct perf_event *event)
996 {}
997
998 static inline int is_cgroup_event(struct perf_event *event)
999 {
1000         return 0;
1001 }
1002
1003 static inline void update_cgrp_time_from_event(struct perf_event *event)
1004 {
1005 }
1006
1007 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1008 {
1009 }
1010
1011 static inline void perf_cgroup_sched_out(struct task_struct *task,
1012                                          struct task_struct *next)
1013 {
1014 }
1015
1016 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1017                                         struct task_struct *task)
1018 {
1019 }
1020
1021 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1022                                       struct perf_event_attr *attr,
1023                                       struct perf_event *group_leader)
1024 {
1025         return -EINVAL;
1026 }
1027
1028 static inline void
1029 perf_cgroup_set_timestamp(struct task_struct *task,
1030                           struct perf_event_context *ctx)
1031 {
1032 }
1033
1034 static inline void
1035 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1036 {
1037 }
1038
1039 static inline void
1040 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1041 {
1042 }
1043
1044 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1045 {
1046         return 0;
1047 }
1048
1049 static inline void
1050 list_update_cgroup_event(struct perf_event *event,
1051                          struct perf_event_context *ctx, bool add)
1052 {
1053 }
1054
1055 #endif
1056
1057 /*
1058  * set default to be dependent on timer tick just
1059  * like original code
1060  */
1061 #define PERF_CPU_HRTIMER (1000 / HZ)
1062 /*
1063  * function must be called with interrupts disabled
1064  */
1065 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1066 {
1067         struct perf_cpu_context *cpuctx;
1068         bool rotations;
1069
1070         lockdep_assert_irqs_disabled();
1071
1072         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1073         rotations = perf_rotate_context(cpuctx);
1074
1075         raw_spin_lock(&cpuctx->hrtimer_lock);
1076         if (rotations)
1077                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1078         else
1079                 cpuctx->hrtimer_active = 0;
1080         raw_spin_unlock(&cpuctx->hrtimer_lock);
1081
1082         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1083 }
1084
1085 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1086 {
1087         struct hrtimer *timer = &cpuctx->hrtimer;
1088         struct pmu *pmu = cpuctx->ctx.pmu;
1089         u64 interval;
1090
1091         /* no multiplexing needed for SW PMU */
1092         if (pmu->task_ctx_nr == perf_sw_context)
1093                 return;
1094
1095         /*
1096          * check default is sane, if not set then force to
1097          * default interval (1/tick)
1098          */
1099         interval = pmu->hrtimer_interval_ms;
1100         if (interval < 1)
1101                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1102
1103         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1104
1105         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1106         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1107         timer->function = perf_mux_hrtimer_handler;
1108 }
1109
1110 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1111 {
1112         struct hrtimer *timer = &cpuctx->hrtimer;
1113         struct pmu *pmu = cpuctx->ctx.pmu;
1114         unsigned long flags;
1115
1116         /* not for SW PMU */
1117         if (pmu->task_ctx_nr == perf_sw_context)
1118                 return 0;
1119
1120         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1121         if (!cpuctx->hrtimer_active) {
1122                 cpuctx->hrtimer_active = 1;
1123                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1124                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1125         }
1126         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1127
1128         return 0;
1129 }
1130
1131 void perf_pmu_disable(struct pmu *pmu)
1132 {
1133         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1134         if (!(*count)++)
1135                 pmu->pmu_disable(pmu);
1136 }
1137
1138 void perf_pmu_enable(struct pmu *pmu)
1139 {
1140         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1141         if (!--(*count))
1142                 pmu->pmu_enable(pmu);
1143 }
1144
1145 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1146
1147 /*
1148  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1149  * perf_event_task_tick() are fully serialized because they're strictly cpu
1150  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1151  * disabled, while perf_event_task_tick is called from IRQ context.
1152  */
1153 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1154 {
1155         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1156
1157         lockdep_assert_irqs_disabled();
1158
1159         WARN_ON(!list_empty(&ctx->active_ctx_list));
1160
1161         list_add(&ctx->active_ctx_list, head);
1162 }
1163
1164 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1165 {
1166         lockdep_assert_irqs_disabled();
1167
1168         WARN_ON(list_empty(&ctx->active_ctx_list));
1169
1170         list_del_init(&ctx->active_ctx_list);
1171 }
1172
1173 static void get_ctx(struct perf_event_context *ctx)
1174 {
1175         refcount_inc(&ctx->refcount);
1176 }
1177
1178 static void free_ctx(struct rcu_head *head)
1179 {
1180         struct perf_event_context *ctx;
1181
1182         ctx = container_of(head, struct perf_event_context, rcu_head);
1183         kfree(ctx->task_ctx_data);
1184         kfree(ctx);
1185 }
1186
1187 static void put_ctx(struct perf_event_context *ctx)
1188 {
1189         if (refcount_dec_and_test(&ctx->refcount)) {
1190                 if (ctx->parent_ctx)
1191                         put_ctx(ctx->parent_ctx);
1192                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1193                         put_task_struct(ctx->task);
1194                 call_rcu(&ctx->rcu_head, free_ctx);
1195         }
1196 }
1197
1198 /*
1199  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1200  * perf_pmu_migrate_context() we need some magic.
1201  *
1202  * Those places that change perf_event::ctx will hold both
1203  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1204  *
1205  * Lock ordering is by mutex address. There are two other sites where
1206  * perf_event_context::mutex nests and those are:
1207  *
1208  *  - perf_event_exit_task_context()    [ child , 0 ]
1209  *      perf_event_exit_event()
1210  *        put_event()                   [ parent, 1 ]
1211  *
1212  *  - perf_event_init_context()         [ parent, 0 ]
1213  *      inherit_task_group()
1214  *        inherit_group()
1215  *          inherit_event()
1216  *            perf_event_alloc()
1217  *              perf_init_event()
1218  *                perf_try_init_event() [ child , 1 ]
1219  *
1220  * While it appears there is an obvious deadlock here -- the parent and child
1221  * nesting levels are inverted between the two. This is in fact safe because
1222  * life-time rules separate them. That is an exiting task cannot fork, and a
1223  * spawning task cannot (yet) exit.
1224  *
1225  * But remember that that these are parent<->child context relations, and
1226  * migration does not affect children, therefore these two orderings should not
1227  * interact.
1228  *
1229  * The change in perf_event::ctx does not affect children (as claimed above)
1230  * because the sys_perf_event_open() case will install a new event and break
1231  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1232  * concerned with cpuctx and that doesn't have children.
1233  *
1234  * The places that change perf_event::ctx will issue:
1235  *
1236  *   perf_remove_from_context();
1237  *   synchronize_rcu();
1238  *   perf_install_in_context();
1239  *
1240  * to affect the change. The remove_from_context() + synchronize_rcu() should
1241  * quiesce the event, after which we can install it in the new location. This
1242  * means that only external vectors (perf_fops, prctl) can perturb the event
1243  * while in transit. Therefore all such accessors should also acquire
1244  * perf_event_context::mutex to serialize against this.
1245  *
1246  * However; because event->ctx can change while we're waiting to acquire
1247  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1248  * function.
1249  *
1250  * Lock order:
1251  *    cred_guard_mutex
1252  *      task_struct::perf_event_mutex
1253  *        perf_event_context::mutex
1254  *          perf_event::child_mutex;
1255  *            perf_event_context::lock
1256  *          perf_event::mmap_mutex
1257  *          mmap_sem
1258  *            perf_addr_filters_head::lock
1259  *
1260  *    cpu_hotplug_lock
1261  *      pmus_lock
1262  *        cpuctx->mutex / perf_event_context::mutex
1263  */
1264 static struct perf_event_context *
1265 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1266 {
1267         struct perf_event_context *ctx;
1268
1269 again:
1270         rcu_read_lock();
1271         ctx = READ_ONCE(event->ctx);
1272         if (!refcount_inc_not_zero(&ctx->refcount)) {
1273                 rcu_read_unlock();
1274                 goto again;
1275         }
1276         rcu_read_unlock();
1277
1278         mutex_lock_nested(&ctx->mutex, nesting);
1279         if (event->ctx != ctx) {
1280                 mutex_unlock(&ctx->mutex);
1281                 put_ctx(ctx);
1282                 goto again;
1283         }
1284
1285         return ctx;
1286 }
1287
1288 static inline struct perf_event_context *
1289 perf_event_ctx_lock(struct perf_event *event)
1290 {
1291         return perf_event_ctx_lock_nested(event, 0);
1292 }
1293
1294 static void perf_event_ctx_unlock(struct perf_event *event,
1295                                   struct perf_event_context *ctx)
1296 {
1297         mutex_unlock(&ctx->mutex);
1298         put_ctx(ctx);
1299 }
1300
1301 /*
1302  * This must be done under the ctx->lock, such as to serialize against
1303  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1304  * calling scheduler related locks and ctx->lock nests inside those.
1305  */
1306 static __must_check struct perf_event_context *
1307 unclone_ctx(struct perf_event_context *ctx)
1308 {
1309         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1310
1311         lockdep_assert_held(&ctx->lock);
1312
1313         if (parent_ctx)
1314                 ctx->parent_ctx = NULL;
1315         ctx->generation++;
1316
1317         return parent_ctx;
1318 }
1319
1320 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1321                                 enum pid_type type)
1322 {
1323         u32 nr;
1324         /*
1325          * only top level events have the pid namespace they were created in
1326          */
1327         if (event->parent)
1328                 event = event->parent;
1329
1330         nr = __task_pid_nr_ns(p, type, event->ns);
1331         /* avoid -1 if it is idle thread or runs in another ns */
1332         if (!nr && !pid_alive(p))
1333                 nr = -1;
1334         return nr;
1335 }
1336
1337 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1338 {
1339         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1340 }
1341
1342 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1343 {
1344         return perf_event_pid_type(event, p, PIDTYPE_PID);
1345 }
1346
1347 /*
1348  * If we inherit events we want to return the parent event id
1349  * to userspace.
1350  */
1351 static u64 primary_event_id(struct perf_event *event)
1352 {
1353         u64 id = event->id;
1354
1355         if (event->parent)
1356                 id = event->parent->id;
1357
1358         return id;
1359 }
1360
1361 /*
1362  * Get the perf_event_context for a task and lock it.
1363  *
1364  * This has to cope with with the fact that until it is locked,
1365  * the context could get moved to another task.
1366  */
1367 static struct perf_event_context *
1368 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1369 {
1370         struct perf_event_context *ctx;
1371
1372 retry:
1373         /*
1374          * One of the few rules of preemptible RCU is that one cannot do
1375          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1376          * part of the read side critical section was irqs-enabled -- see
1377          * rcu_read_unlock_special().
1378          *
1379          * Since ctx->lock nests under rq->lock we must ensure the entire read
1380          * side critical section has interrupts disabled.
1381          */
1382         local_irq_save(*flags);
1383         rcu_read_lock();
1384         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1385         if (ctx) {
1386                 /*
1387                  * If this context is a clone of another, it might
1388                  * get swapped for another underneath us by
1389                  * perf_event_task_sched_out, though the
1390                  * rcu_read_lock() protects us from any context
1391                  * getting freed.  Lock the context and check if it
1392                  * got swapped before we could get the lock, and retry
1393                  * if so.  If we locked the right context, then it
1394                  * can't get swapped on us any more.
1395                  */
1396                 raw_spin_lock(&ctx->lock);
1397                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1398                         raw_spin_unlock(&ctx->lock);
1399                         rcu_read_unlock();
1400                         local_irq_restore(*flags);
1401                         goto retry;
1402                 }
1403
1404                 if (ctx->task == TASK_TOMBSTONE ||
1405                     !refcount_inc_not_zero(&ctx->refcount)) {
1406                         raw_spin_unlock(&ctx->lock);
1407                         ctx = NULL;
1408                 } else {
1409                         WARN_ON_ONCE(ctx->task != task);
1410                 }
1411         }
1412         rcu_read_unlock();
1413         if (!ctx)
1414                 local_irq_restore(*flags);
1415         return ctx;
1416 }
1417
1418 /*
1419  * Get the context for a task and increment its pin_count so it
1420  * can't get swapped to another task.  This also increments its
1421  * reference count so that the context can't get freed.
1422  */
1423 static struct perf_event_context *
1424 perf_pin_task_context(struct task_struct *task, int ctxn)
1425 {
1426         struct perf_event_context *ctx;
1427         unsigned long flags;
1428
1429         ctx = perf_lock_task_context(task, ctxn, &flags);
1430         if (ctx) {
1431                 ++ctx->pin_count;
1432                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1433         }
1434         return ctx;
1435 }
1436
1437 static void perf_unpin_context(struct perf_event_context *ctx)
1438 {
1439         unsigned long flags;
1440
1441         raw_spin_lock_irqsave(&ctx->lock, flags);
1442         --ctx->pin_count;
1443         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1444 }
1445
1446 /*
1447  * Update the record of the current time in a context.
1448  */
1449 static void update_context_time(struct perf_event_context *ctx)
1450 {
1451         u64 now = perf_clock();
1452
1453         ctx->time += now - ctx->timestamp;
1454         ctx->timestamp = now;
1455 }
1456
1457 static u64 perf_event_time(struct perf_event *event)
1458 {
1459         struct perf_event_context *ctx = event->ctx;
1460
1461         if (is_cgroup_event(event))
1462                 return perf_cgroup_event_time(event);
1463
1464         return ctx ? ctx->time : 0;
1465 }
1466
1467 static enum event_type_t get_event_type(struct perf_event *event)
1468 {
1469         struct perf_event_context *ctx = event->ctx;
1470         enum event_type_t event_type;
1471
1472         lockdep_assert_held(&ctx->lock);
1473
1474         /*
1475          * It's 'group type', really, because if our group leader is
1476          * pinned, so are we.
1477          */
1478         if (event->group_leader != event)
1479                 event = event->group_leader;
1480
1481         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1482         if (!ctx->task)
1483                 event_type |= EVENT_CPU;
1484
1485         return event_type;
1486 }
1487
1488 /*
1489  * Helper function to initialize event group nodes.
1490  */
1491 static void init_event_group(struct perf_event *event)
1492 {
1493         RB_CLEAR_NODE(&event->group_node);
1494         event->group_index = 0;
1495 }
1496
1497 /*
1498  * Extract pinned or flexible groups from the context
1499  * based on event attrs bits.
1500  */
1501 static struct perf_event_groups *
1502 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1503 {
1504         if (event->attr.pinned)
1505                 return &ctx->pinned_groups;
1506         else
1507                 return &ctx->flexible_groups;
1508 }
1509
1510 /*
1511  * Helper function to initializes perf_event_group trees.
1512  */
1513 static void perf_event_groups_init(struct perf_event_groups *groups)
1514 {
1515         groups->tree = RB_ROOT;
1516         groups->index = 0;
1517 }
1518
1519 /*
1520  * Compare function for event groups;
1521  *
1522  * Implements complex key that first sorts by CPU and then by virtual index
1523  * which provides ordering when rotating groups for the same CPU.
1524  */
1525 static bool
1526 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1527 {
1528         if (left->cpu < right->cpu)
1529                 return true;
1530         if (left->cpu > right->cpu)
1531                 return false;
1532
1533         if (left->group_index < right->group_index)
1534                 return true;
1535         if (left->group_index > right->group_index)
1536                 return false;
1537
1538         return false;
1539 }
1540
1541 /*
1542  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1543  * key (see perf_event_groups_less). This places it last inside the CPU
1544  * subtree.
1545  */
1546 static void
1547 perf_event_groups_insert(struct perf_event_groups *groups,
1548                          struct perf_event *event)
1549 {
1550         struct perf_event *node_event;
1551         struct rb_node *parent;
1552         struct rb_node **node;
1553
1554         event->group_index = ++groups->index;
1555
1556         node = &groups->tree.rb_node;
1557         parent = *node;
1558
1559         while (*node) {
1560                 parent = *node;
1561                 node_event = container_of(*node, struct perf_event, group_node);
1562
1563                 if (perf_event_groups_less(event, node_event))
1564                         node = &parent->rb_left;
1565                 else
1566                         node = &parent->rb_right;
1567         }
1568
1569         rb_link_node(&event->group_node, parent, node);
1570         rb_insert_color(&event->group_node, &groups->tree);
1571 }
1572
1573 /*
1574  * Helper function to insert event into the pinned or flexible groups.
1575  */
1576 static void
1577 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1578 {
1579         struct perf_event_groups *groups;
1580
1581         groups = get_event_groups(event, ctx);
1582         perf_event_groups_insert(groups, event);
1583 }
1584
1585 /*
1586  * Delete a group from a tree.
1587  */
1588 static void
1589 perf_event_groups_delete(struct perf_event_groups *groups,
1590                          struct perf_event *event)
1591 {
1592         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1593                      RB_EMPTY_ROOT(&groups->tree));
1594
1595         rb_erase(&event->group_node, &groups->tree);
1596         init_event_group(event);
1597 }
1598
1599 /*
1600  * Helper function to delete event from its groups.
1601  */
1602 static void
1603 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1604 {
1605         struct perf_event_groups *groups;
1606
1607         groups = get_event_groups(event, ctx);
1608         perf_event_groups_delete(groups, event);
1609 }
1610
1611 /*
1612  * Get the leftmost event in the @cpu subtree.
1613  */
1614 static struct perf_event *
1615 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1616 {
1617         struct perf_event *node_event = NULL, *match = NULL;
1618         struct rb_node *node = groups->tree.rb_node;
1619
1620         while (node) {
1621                 node_event = container_of(node, struct perf_event, group_node);
1622
1623                 if (cpu < node_event->cpu) {
1624                         node = node->rb_left;
1625                 } else if (cpu > node_event->cpu) {
1626                         node = node->rb_right;
1627                 } else {
1628                         match = node_event;
1629                         node = node->rb_left;
1630                 }
1631         }
1632
1633         return match;
1634 }
1635
1636 /*
1637  * Like rb_entry_next_safe() for the @cpu subtree.
1638  */
1639 static struct perf_event *
1640 perf_event_groups_next(struct perf_event *event)
1641 {
1642         struct perf_event *next;
1643
1644         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1645         if (next && next->cpu == event->cpu)
1646                 return next;
1647
1648         return NULL;
1649 }
1650
1651 /*
1652  * Iterate through the whole groups tree.
1653  */
1654 #define perf_event_groups_for_each(event, groups)                       \
1655         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1656                                 typeof(*event), group_node); event;     \
1657                 event = rb_entry_safe(rb_next(&event->group_node),      \
1658                                 typeof(*event), group_node))
1659
1660 /*
1661  * Add an event from the lists for its context.
1662  * Must be called with ctx->mutex and ctx->lock held.
1663  */
1664 static void
1665 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1666 {
1667         lockdep_assert_held(&ctx->lock);
1668
1669         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1670         event->attach_state |= PERF_ATTACH_CONTEXT;
1671
1672         event->tstamp = perf_event_time(event);
1673
1674         /*
1675          * If we're a stand alone event or group leader, we go to the context
1676          * list, group events are kept attached to the group so that
1677          * perf_group_detach can, at all times, locate all siblings.
1678          */
1679         if (event->group_leader == event) {
1680                 event->group_caps = event->event_caps;
1681                 add_event_to_groups(event, ctx);
1682         }
1683
1684         list_update_cgroup_event(event, ctx, true);
1685
1686         list_add_rcu(&event->event_entry, &ctx->event_list);
1687         ctx->nr_events++;
1688         if (event->attr.inherit_stat)
1689                 ctx->nr_stat++;
1690
1691         ctx->generation++;
1692 }
1693
1694 /*
1695  * Initialize event state based on the perf_event_attr::disabled.
1696  */
1697 static inline void perf_event__state_init(struct perf_event *event)
1698 {
1699         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1700                                               PERF_EVENT_STATE_INACTIVE;
1701 }
1702
1703 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1704 {
1705         int entry = sizeof(u64); /* value */
1706         int size = 0;
1707         int nr = 1;
1708
1709         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1710                 size += sizeof(u64);
1711
1712         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1713                 size += sizeof(u64);
1714
1715         if (event->attr.read_format & PERF_FORMAT_ID)
1716                 entry += sizeof(u64);
1717
1718         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1719                 nr += nr_siblings;
1720                 size += sizeof(u64);
1721         }
1722
1723         size += entry * nr;
1724         event->read_size = size;
1725 }
1726
1727 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1728 {
1729         struct perf_sample_data *data;
1730         u16 size = 0;
1731
1732         if (sample_type & PERF_SAMPLE_IP)
1733                 size += sizeof(data->ip);
1734
1735         if (sample_type & PERF_SAMPLE_ADDR)
1736                 size += sizeof(data->addr);
1737
1738         if (sample_type & PERF_SAMPLE_PERIOD)
1739                 size += sizeof(data->period);
1740
1741         if (sample_type & PERF_SAMPLE_WEIGHT)
1742                 size += sizeof(data->weight);
1743
1744         if (sample_type & PERF_SAMPLE_READ)
1745                 size += event->read_size;
1746
1747         if (sample_type & PERF_SAMPLE_DATA_SRC)
1748                 size += sizeof(data->data_src.val);
1749
1750         if (sample_type & PERF_SAMPLE_TRANSACTION)
1751                 size += sizeof(data->txn);
1752
1753         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1754                 size += sizeof(data->phys_addr);
1755
1756         event->header_size = size;
1757 }
1758
1759 /*
1760  * Called at perf_event creation and when events are attached/detached from a
1761  * group.
1762  */
1763 static void perf_event__header_size(struct perf_event *event)
1764 {
1765         __perf_event_read_size(event,
1766                                event->group_leader->nr_siblings);
1767         __perf_event_header_size(event, event->attr.sample_type);
1768 }
1769
1770 static void perf_event__id_header_size(struct perf_event *event)
1771 {
1772         struct perf_sample_data *data;
1773         u64 sample_type = event->attr.sample_type;
1774         u16 size = 0;
1775
1776         if (sample_type & PERF_SAMPLE_TID)
1777                 size += sizeof(data->tid_entry);
1778
1779         if (sample_type & PERF_SAMPLE_TIME)
1780                 size += sizeof(data->time);
1781
1782         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1783                 size += sizeof(data->id);
1784
1785         if (sample_type & PERF_SAMPLE_ID)
1786                 size += sizeof(data->id);
1787
1788         if (sample_type & PERF_SAMPLE_STREAM_ID)
1789                 size += sizeof(data->stream_id);
1790
1791         if (sample_type & PERF_SAMPLE_CPU)
1792                 size += sizeof(data->cpu_entry);
1793
1794         event->id_header_size = size;
1795 }
1796
1797 static bool perf_event_validate_size(struct perf_event *event)
1798 {
1799         /*
1800          * The values computed here will be over-written when we actually
1801          * attach the event.
1802          */
1803         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1804         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1805         perf_event__id_header_size(event);
1806
1807         /*
1808          * Sum the lot; should not exceed the 64k limit we have on records.
1809          * Conservative limit to allow for callchains and other variable fields.
1810          */
1811         if (event->read_size + event->header_size +
1812             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1813                 return false;
1814
1815         return true;
1816 }
1817
1818 static void perf_group_attach(struct perf_event *event)
1819 {
1820         struct perf_event *group_leader = event->group_leader, *pos;
1821
1822         lockdep_assert_held(&event->ctx->lock);
1823
1824         /*
1825          * We can have double attach due to group movement in perf_event_open.
1826          */
1827         if (event->attach_state & PERF_ATTACH_GROUP)
1828                 return;
1829
1830         event->attach_state |= PERF_ATTACH_GROUP;
1831
1832         if (group_leader == event)
1833                 return;
1834
1835         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1836
1837         group_leader->group_caps &= event->event_caps;
1838
1839         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1840         group_leader->nr_siblings++;
1841
1842         perf_event__header_size(group_leader);
1843
1844         for_each_sibling_event(pos, group_leader)
1845                 perf_event__header_size(pos);
1846 }
1847
1848 /*
1849  * Remove an event from the lists for its context.
1850  * Must be called with ctx->mutex and ctx->lock held.
1851  */
1852 static void
1853 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1854 {
1855         WARN_ON_ONCE(event->ctx != ctx);
1856         lockdep_assert_held(&ctx->lock);
1857
1858         /*
1859          * We can have double detach due to exit/hot-unplug + close.
1860          */
1861         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1862                 return;
1863
1864         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1865
1866         list_update_cgroup_event(event, ctx, false);
1867
1868         ctx->nr_events--;
1869         if (event->attr.inherit_stat)
1870                 ctx->nr_stat--;
1871
1872         list_del_rcu(&event->event_entry);
1873
1874         if (event->group_leader == event)
1875                 del_event_from_groups(event, ctx);
1876
1877         /*
1878          * If event was in error state, then keep it
1879          * that way, otherwise bogus counts will be
1880          * returned on read(). The only way to get out
1881          * of error state is by explicit re-enabling
1882          * of the event
1883          */
1884         if (event->state > PERF_EVENT_STATE_OFF)
1885                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1886
1887         ctx->generation++;
1888 }
1889
1890 static int
1891 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
1892 {
1893         if (!has_aux(aux_event))
1894                 return 0;
1895
1896         if (!event->pmu->aux_output_match)
1897                 return 0;
1898
1899         return event->pmu->aux_output_match(aux_event);
1900 }
1901
1902 static void put_event(struct perf_event *event);
1903 static void event_sched_out(struct perf_event *event,
1904                             struct perf_cpu_context *cpuctx,
1905                             struct perf_event_context *ctx);
1906
1907 static void perf_put_aux_event(struct perf_event *event)
1908 {
1909         struct perf_event_context *ctx = event->ctx;
1910         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1911         struct perf_event *iter;
1912
1913         /*
1914          * If event uses aux_event tear down the link
1915          */
1916         if (event->aux_event) {
1917                 iter = event->aux_event;
1918                 event->aux_event = NULL;
1919                 put_event(iter);
1920                 return;
1921         }
1922
1923         /*
1924          * If the event is an aux_event, tear down all links to
1925          * it from other events.
1926          */
1927         for_each_sibling_event(iter, event->group_leader) {
1928                 if (iter->aux_event != event)
1929                         continue;
1930
1931                 iter->aux_event = NULL;
1932                 put_event(event);
1933
1934                 /*
1935                  * If it's ACTIVE, schedule it out and put it into ERROR
1936                  * state so that we don't try to schedule it again. Note
1937                  * that perf_event_enable() will clear the ERROR status.
1938                  */
1939                 event_sched_out(iter, cpuctx, ctx);
1940                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
1941         }
1942 }
1943
1944 static bool perf_need_aux_event(struct perf_event *event)
1945 {
1946         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
1947 }
1948
1949 static int perf_get_aux_event(struct perf_event *event,
1950                               struct perf_event *group_leader)
1951 {
1952         /*
1953          * Our group leader must be an aux event if we want to be
1954          * an aux_output. This way, the aux event will precede its
1955          * aux_output events in the group, and therefore will always
1956          * schedule first.
1957          */
1958         if (!group_leader)
1959                 return 0;
1960
1961         /*
1962          * aux_output and aux_sample_size are mutually exclusive.
1963          */
1964         if (event->attr.aux_output && event->attr.aux_sample_size)
1965                 return 0;
1966
1967         if (event->attr.aux_output &&
1968             !perf_aux_output_match(event, group_leader))
1969                 return 0;
1970
1971         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
1972                 return 0;
1973
1974         if (!atomic_long_inc_not_zero(&group_leader->refcount))
1975                 return 0;
1976
1977         /*
1978          * Link aux_outputs to their aux event; this is undone in
1979          * perf_group_detach() by perf_put_aux_event(). When the
1980          * group in torn down, the aux_output events loose their
1981          * link to the aux_event and can't schedule any more.
1982          */
1983         event->aux_event = group_leader;
1984
1985         return 1;
1986 }
1987
1988 static void perf_group_detach(struct perf_event *event)
1989 {
1990         struct perf_event *sibling, *tmp;
1991         struct perf_event_context *ctx = event->ctx;
1992
1993         lockdep_assert_held(&ctx->lock);
1994
1995         /*
1996          * We can have double detach due to exit/hot-unplug + close.
1997          */
1998         if (!(event->attach_state & PERF_ATTACH_GROUP))
1999                 return;
2000
2001         event->attach_state &= ~PERF_ATTACH_GROUP;
2002
2003         perf_put_aux_event(event);
2004
2005         /*
2006          * If this is a sibling, remove it from its group.
2007          */
2008         if (event->group_leader != event) {
2009                 list_del_init(&event->sibling_list);
2010                 event->group_leader->nr_siblings--;
2011                 goto out;
2012         }
2013
2014         /*
2015          * If this was a group event with sibling events then
2016          * upgrade the siblings to singleton events by adding them
2017          * to whatever list we are on.
2018          */
2019         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2020
2021                 sibling->group_leader = sibling;
2022                 list_del_init(&sibling->sibling_list);
2023
2024                 /* Inherit group flags from the previous leader */
2025                 sibling->group_caps = event->group_caps;
2026
2027                 if (!RB_EMPTY_NODE(&event->group_node)) {
2028                         add_event_to_groups(sibling, event->ctx);
2029
2030                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
2031                                 struct list_head *list = sibling->attr.pinned ?
2032                                         &ctx->pinned_active : &ctx->flexible_active;
2033
2034                                 list_add_tail(&sibling->active_list, list);
2035                         }
2036                 }
2037
2038                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2039         }
2040
2041 out:
2042         perf_event__header_size(event->group_leader);
2043
2044         for_each_sibling_event(tmp, event->group_leader)
2045                 perf_event__header_size(tmp);
2046 }
2047
2048 static bool is_orphaned_event(struct perf_event *event)
2049 {
2050         return event->state == PERF_EVENT_STATE_DEAD;
2051 }
2052
2053 static inline int __pmu_filter_match(struct perf_event *event)
2054 {
2055         struct pmu *pmu = event->pmu;
2056         return pmu->filter_match ? pmu->filter_match(event) : 1;
2057 }
2058
2059 /*
2060  * Check whether we should attempt to schedule an event group based on
2061  * PMU-specific filtering. An event group can consist of HW and SW events,
2062  * potentially with a SW leader, so we must check all the filters, to
2063  * determine whether a group is schedulable:
2064  */
2065 static inline int pmu_filter_match(struct perf_event *event)
2066 {
2067         struct perf_event *sibling;
2068
2069         if (!__pmu_filter_match(event))
2070                 return 0;
2071
2072         for_each_sibling_event(sibling, event) {
2073                 if (!__pmu_filter_match(sibling))
2074                         return 0;
2075         }
2076
2077         return 1;
2078 }
2079
2080 static inline int
2081 event_filter_match(struct perf_event *event)
2082 {
2083         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2084                perf_cgroup_match(event) && pmu_filter_match(event);
2085 }
2086
2087 static void
2088 event_sched_out(struct perf_event *event,
2089                   struct perf_cpu_context *cpuctx,
2090                   struct perf_event_context *ctx)
2091 {
2092         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2093
2094         WARN_ON_ONCE(event->ctx != ctx);
2095         lockdep_assert_held(&ctx->lock);
2096
2097         if (event->state != PERF_EVENT_STATE_ACTIVE)
2098                 return;
2099
2100         /*
2101          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2102          * we can schedule events _OUT_ individually through things like
2103          * __perf_remove_from_context().
2104          */
2105         list_del_init(&event->active_list);
2106
2107         perf_pmu_disable(event->pmu);
2108
2109         event->pmu->del(event, 0);
2110         event->oncpu = -1;
2111
2112         if (READ_ONCE(event->pending_disable) >= 0) {
2113                 WRITE_ONCE(event->pending_disable, -1);
2114                 state = PERF_EVENT_STATE_OFF;
2115         }
2116         perf_event_set_state(event, state);
2117
2118         if (!is_software_event(event))
2119                 cpuctx->active_oncpu--;
2120         if (!--ctx->nr_active)
2121                 perf_event_ctx_deactivate(ctx);
2122         if (event->attr.freq && event->attr.sample_freq)
2123                 ctx->nr_freq--;
2124         if (event->attr.exclusive || !cpuctx->active_oncpu)
2125                 cpuctx->exclusive = 0;
2126
2127         perf_pmu_enable(event->pmu);
2128 }
2129
2130 static void
2131 group_sched_out(struct perf_event *group_event,
2132                 struct perf_cpu_context *cpuctx,
2133                 struct perf_event_context *ctx)
2134 {
2135         struct perf_event *event;
2136
2137         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2138                 return;
2139
2140         perf_pmu_disable(ctx->pmu);
2141
2142         event_sched_out(group_event, cpuctx, ctx);
2143
2144         /*
2145          * Schedule out siblings (if any):
2146          */
2147         for_each_sibling_event(event, group_event)
2148                 event_sched_out(event, cpuctx, ctx);
2149
2150         perf_pmu_enable(ctx->pmu);
2151
2152         if (group_event->attr.exclusive)
2153                 cpuctx->exclusive = 0;
2154 }
2155
2156 #define DETACH_GROUP    0x01UL
2157
2158 /*
2159  * Cross CPU call to remove a performance event
2160  *
2161  * We disable the event on the hardware level first. After that we
2162  * remove it from the context list.
2163  */
2164 static void
2165 __perf_remove_from_context(struct perf_event *event,
2166                            struct perf_cpu_context *cpuctx,
2167                            struct perf_event_context *ctx,
2168                            void *info)
2169 {
2170         unsigned long flags = (unsigned long)info;
2171
2172         if (ctx->is_active & EVENT_TIME) {
2173                 update_context_time(ctx);
2174                 update_cgrp_time_from_cpuctx(cpuctx);
2175         }
2176
2177         event_sched_out(event, cpuctx, ctx);
2178         if (flags & DETACH_GROUP)
2179                 perf_group_detach(event);
2180         list_del_event(event, ctx);
2181
2182         if (!ctx->nr_events && ctx->is_active) {
2183                 ctx->is_active = 0;
2184                 if (ctx->task) {
2185                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2186                         cpuctx->task_ctx = NULL;
2187                 }
2188         }
2189 }
2190
2191 /*
2192  * Remove the event from a task's (or a CPU's) list of events.
2193  *
2194  * If event->ctx is a cloned context, callers must make sure that
2195  * every task struct that event->ctx->task could possibly point to
2196  * remains valid.  This is OK when called from perf_release since
2197  * that only calls us on the top-level context, which can't be a clone.
2198  * When called from perf_event_exit_task, it's OK because the
2199  * context has been detached from its task.
2200  */
2201 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2202 {
2203         struct perf_event_context *ctx = event->ctx;
2204
2205         lockdep_assert_held(&ctx->mutex);
2206
2207         event_function_call(event, __perf_remove_from_context, (void *)flags);
2208
2209         /*
2210          * The above event_function_call() can NO-OP when it hits
2211          * TASK_TOMBSTONE. In that case we must already have been detached
2212          * from the context (by perf_event_exit_event()) but the grouping
2213          * might still be in-tact.
2214          */
2215         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2216         if ((flags & DETACH_GROUP) &&
2217             (event->attach_state & PERF_ATTACH_GROUP)) {
2218                 /*
2219                  * Since in that case we cannot possibly be scheduled, simply
2220                  * detach now.
2221                  */
2222                 raw_spin_lock_irq(&ctx->lock);
2223                 perf_group_detach(event);
2224                 raw_spin_unlock_irq(&ctx->lock);
2225         }
2226 }
2227
2228 /*
2229  * Cross CPU call to disable a performance event
2230  */
2231 static void __perf_event_disable(struct perf_event *event,
2232                                  struct perf_cpu_context *cpuctx,
2233                                  struct perf_event_context *ctx,
2234                                  void *info)
2235 {
2236         if (event->state < PERF_EVENT_STATE_INACTIVE)
2237                 return;
2238
2239         if (ctx->is_active & EVENT_TIME) {
2240                 update_context_time(ctx);
2241                 update_cgrp_time_from_event(event);
2242         }
2243
2244         if (event == event->group_leader)
2245                 group_sched_out(event, cpuctx, ctx);
2246         else
2247                 event_sched_out(event, cpuctx, ctx);
2248
2249         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2250 }
2251
2252 /*
2253  * Disable an event.
2254  *
2255  * If event->ctx is a cloned context, callers must make sure that
2256  * every task struct that event->ctx->task could possibly point to
2257  * remains valid.  This condition is satisfied when called through
2258  * perf_event_for_each_child or perf_event_for_each because they
2259  * hold the top-level event's child_mutex, so any descendant that
2260  * goes to exit will block in perf_event_exit_event().
2261  *
2262  * When called from perf_pending_event it's OK because event->ctx
2263  * is the current context on this CPU and preemption is disabled,
2264  * hence we can't get into perf_event_task_sched_out for this context.
2265  */
2266 static void _perf_event_disable(struct perf_event *event)
2267 {
2268         struct perf_event_context *ctx = event->ctx;
2269
2270         raw_spin_lock_irq(&ctx->lock);
2271         if (event->state <= PERF_EVENT_STATE_OFF) {
2272                 raw_spin_unlock_irq(&ctx->lock);
2273                 return;
2274         }
2275         raw_spin_unlock_irq(&ctx->lock);
2276
2277         event_function_call(event, __perf_event_disable, NULL);
2278 }
2279
2280 void perf_event_disable_local(struct perf_event *event)
2281 {
2282         event_function_local(event, __perf_event_disable, NULL);
2283 }
2284
2285 /*
2286  * Strictly speaking kernel users cannot create groups and therefore this
2287  * interface does not need the perf_event_ctx_lock() magic.
2288  */
2289 void perf_event_disable(struct perf_event *event)
2290 {
2291         struct perf_event_context *ctx;
2292
2293         ctx = perf_event_ctx_lock(event);
2294         _perf_event_disable(event);
2295         perf_event_ctx_unlock(event, ctx);
2296 }
2297 EXPORT_SYMBOL_GPL(perf_event_disable);
2298
2299 void perf_event_disable_inatomic(struct perf_event *event)
2300 {
2301         WRITE_ONCE(event->pending_disable, smp_processor_id());
2302         /* can fail, see perf_pending_event_disable() */
2303         irq_work_queue(&event->pending);
2304 }
2305
2306 static void perf_set_shadow_time(struct perf_event *event,
2307                                  struct perf_event_context *ctx)
2308 {
2309         /*
2310          * use the correct time source for the time snapshot
2311          *
2312          * We could get by without this by leveraging the
2313          * fact that to get to this function, the caller
2314          * has most likely already called update_context_time()
2315          * and update_cgrp_time_xx() and thus both timestamp
2316          * are identical (or very close). Given that tstamp is,
2317          * already adjusted for cgroup, we could say that:
2318          *    tstamp - ctx->timestamp
2319          * is equivalent to
2320          *    tstamp - cgrp->timestamp.
2321          *
2322          * Then, in perf_output_read(), the calculation would
2323          * work with no changes because:
2324          * - event is guaranteed scheduled in
2325          * - no scheduled out in between
2326          * - thus the timestamp would be the same
2327          *
2328          * But this is a bit hairy.
2329          *
2330          * So instead, we have an explicit cgroup call to remain
2331          * within the time time source all along. We believe it
2332          * is cleaner and simpler to understand.
2333          */
2334         if (is_cgroup_event(event))
2335                 perf_cgroup_set_shadow_time(event, event->tstamp);
2336         else
2337                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2338 }
2339
2340 #define MAX_INTERRUPTS (~0ULL)
2341
2342 static void perf_log_throttle(struct perf_event *event, int enable);
2343 static void perf_log_itrace_start(struct perf_event *event);
2344
2345 static int
2346 event_sched_in(struct perf_event *event,
2347                  struct perf_cpu_context *cpuctx,
2348                  struct perf_event_context *ctx)
2349 {
2350         int ret = 0;
2351
2352         lockdep_assert_held(&ctx->lock);
2353
2354         if (event->state <= PERF_EVENT_STATE_OFF)
2355                 return 0;
2356
2357         WRITE_ONCE(event->oncpu, smp_processor_id());
2358         /*
2359          * Order event::oncpu write to happen before the ACTIVE state is
2360          * visible. This allows perf_event_{stop,read}() to observe the correct
2361          * ->oncpu if it sees ACTIVE.
2362          */
2363         smp_wmb();
2364         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2365
2366         /*
2367          * Unthrottle events, since we scheduled we might have missed several
2368          * ticks already, also for a heavily scheduling task there is little
2369          * guarantee it'll get a tick in a timely manner.
2370          */
2371         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2372                 perf_log_throttle(event, 1);
2373                 event->hw.interrupts = 0;
2374         }
2375
2376         perf_pmu_disable(event->pmu);
2377
2378         perf_set_shadow_time(event, ctx);
2379
2380         perf_log_itrace_start(event);
2381
2382         if (event->pmu->add(event, PERF_EF_START)) {
2383                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2384                 event->oncpu = -1;
2385                 ret = -EAGAIN;
2386                 goto out;
2387         }
2388
2389         if (!is_software_event(event))
2390                 cpuctx->active_oncpu++;
2391         if (!ctx->nr_active++)
2392                 perf_event_ctx_activate(ctx);
2393         if (event->attr.freq && event->attr.sample_freq)
2394                 ctx->nr_freq++;
2395
2396         if (event->attr.exclusive)
2397                 cpuctx->exclusive = 1;
2398
2399 out:
2400         perf_pmu_enable(event->pmu);
2401
2402         return ret;
2403 }
2404
2405 static int
2406 group_sched_in(struct perf_event *group_event,
2407                struct perf_cpu_context *cpuctx,
2408                struct perf_event_context *ctx)
2409 {
2410         struct perf_event *event, *partial_group = NULL;
2411         struct pmu *pmu = ctx->pmu;
2412
2413         if (group_event->state == PERF_EVENT_STATE_OFF)
2414                 return 0;
2415
2416         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2417
2418         if (event_sched_in(group_event, cpuctx, ctx)) {
2419                 pmu->cancel_txn(pmu);
2420                 perf_mux_hrtimer_restart(cpuctx);
2421                 return -EAGAIN;
2422         }
2423
2424         /*
2425          * Schedule in siblings as one group (if any):
2426          */
2427         for_each_sibling_event(event, group_event) {
2428                 if (event_sched_in(event, cpuctx, ctx)) {
2429                         partial_group = event;
2430                         goto group_error;
2431                 }
2432         }
2433
2434         if (!pmu->commit_txn(pmu))
2435                 return 0;
2436
2437 group_error:
2438         /*
2439          * Groups can be scheduled in as one unit only, so undo any
2440          * partial group before returning:
2441          * The events up to the failed event are scheduled out normally.
2442          */
2443         for_each_sibling_event(event, group_event) {
2444                 if (event == partial_group)
2445                         break;
2446
2447                 event_sched_out(event, cpuctx, ctx);
2448         }
2449         event_sched_out(group_event, cpuctx, ctx);
2450
2451         pmu->cancel_txn(pmu);
2452
2453         perf_mux_hrtimer_restart(cpuctx);
2454
2455         return -EAGAIN;
2456 }
2457
2458 /*
2459  * Work out whether we can put this event group on the CPU now.
2460  */
2461 static int group_can_go_on(struct perf_event *event,
2462                            struct perf_cpu_context *cpuctx,
2463                            int can_add_hw)
2464 {
2465         /*
2466          * Groups consisting entirely of software events can always go on.
2467          */
2468         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2469                 return 1;
2470         /*
2471          * If an exclusive group is already on, no other hardware
2472          * events can go on.
2473          */
2474         if (cpuctx->exclusive)
2475                 return 0;
2476         /*
2477          * If this group is exclusive and there are already
2478          * events on the CPU, it can't go on.
2479          */
2480         if (event->attr.exclusive && cpuctx->active_oncpu)
2481                 return 0;
2482         /*
2483          * Otherwise, try to add it if all previous groups were able
2484          * to go on.
2485          */
2486         return can_add_hw;
2487 }
2488
2489 static void add_event_to_ctx(struct perf_event *event,
2490                                struct perf_event_context *ctx)
2491 {
2492         list_add_event(event, ctx);
2493         perf_group_attach(event);
2494 }
2495
2496 static void ctx_sched_out(struct perf_event_context *ctx,
2497                           struct perf_cpu_context *cpuctx,
2498                           enum event_type_t event_type);
2499 static void
2500 ctx_sched_in(struct perf_event_context *ctx,
2501              struct perf_cpu_context *cpuctx,
2502              enum event_type_t event_type,
2503              struct task_struct *task);
2504
2505 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2506                                struct perf_event_context *ctx,
2507                                enum event_type_t event_type)
2508 {
2509         if (!cpuctx->task_ctx)
2510                 return;
2511
2512         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2513                 return;
2514
2515         ctx_sched_out(ctx, cpuctx, event_type);
2516 }
2517
2518 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2519                                 struct perf_event_context *ctx,
2520                                 struct task_struct *task)
2521 {
2522         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2523         if (ctx)
2524                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2525         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2526         if (ctx)
2527                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2528 }
2529
2530 /*
2531  * We want to maintain the following priority of scheduling:
2532  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2533  *  - task pinned (EVENT_PINNED)
2534  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2535  *  - task flexible (EVENT_FLEXIBLE).
2536  *
2537  * In order to avoid unscheduling and scheduling back in everything every
2538  * time an event is added, only do it for the groups of equal priority and
2539  * below.
2540  *
2541  * This can be called after a batch operation on task events, in which case
2542  * event_type is a bit mask of the types of events involved. For CPU events,
2543  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2544  */
2545 static void ctx_resched(struct perf_cpu_context *cpuctx,
2546                         struct perf_event_context *task_ctx,
2547                         enum event_type_t event_type)
2548 {
2549         enum event_type_t ctx_event_type;
2550         bool cpu_event = !!(event_type & EVENT_CPU);
2551
2552         /*
2553          * If pinned groups are involved, flexible groups also need to be
2554          * scheduled out.
2555          */
2556         if (event_type & EVENT_PINNED)
2557                 event_type |= EVENT_FLEXIBLE;
2558
2559         ctx_event_type = event_type & EVENT_ALL;
2560
2561         perf_pmu_disable(cpuctx->ctx.pmu);
2562         if (task_ctx)
2563                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2564
2565         /*
2566          * Decide which cpu ctx groups to schedule out based on the types
2567          * of events that caused rescheduling:
2568          *  - EVENT_CPU: schedule out corresponding groups;
2569          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2570          *  - otherwise, do nothing more.
2571          */
2572         if (cpu_event)
2573                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2574         else if (ctx_event_type & EVENT_PINNED)
2575                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2576
2577         perf_event_sched_in(cpuctx, task_ctx, current);
2578         perf_pmu_enable(cpuctx->ctx.pmu);
2579 }
2580
2581 void perf_pmu_resched(struct pmu *pmu)
2582 {
2583         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2584         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2585
2586         perf_ctx_lock(cpuctx, task_ctx);
2587         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2588         perf_ctx_unlock(cpuctx, task_ctx);
2589 }
2590
2591 /*
2592  * Cross CPU call to install and enable a performance event
2593  *
2594  * Very similar to remote_function() + event_function() but cannot assume that
2595  * things like ctx->is_active and cpuctx->task_ctx are set.
2596  */
2597 static int  __perf_install_in_context(void *info)
2598 {
2599         struct perf_event *event = info;
2600         struct perf_event_context *ctx = event->ctx;
2601         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2602         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2603         bool reprogram = true;
2604         int ret = 0;
2605
2606         raw_spin_lock(&cpuctx->ctx.lock);
2607         if (ctx->task) {
2608                 raw_spin_lock(&ctx->lock);
2609                 task_ctx = ctx;
2610
2611                 reprogram = (ctx->task == current);
2612
2613                 /*
2614                  * If the task is running, it must be running on this CPU,
2615                  * otherwise we cannot reprogram things.
2616                  *
2617                  * If its not running, we don't care, ctx->lock will
2618                  * serialize against it becoming runnable.
2619                  */
2620                 if (task_curr(ctx->task) && !reprogram) {
2621                         ret = -ESRCH;
2622                         goto unlock;
2623                 }
2624
2625                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2626         } else if (task_ctx) {
2627                 raw_spin_lock(&task_ctx->lock);
2628         }
2629
2630 #ifdef CONFIG_CGROUP_PERF
2631         if (is_cgroup_event(event)) {
2632                 /*
2633                  * If the current cgroup doesn't match the event's
2634                  * cgroup, we should not try to schedule it.
2635                  */
2636                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2637                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2638                                         event->cgrp->css.cgroup);
2639         }
2640 #endif
2641
2642         if (reprogram) {
2643                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2644                 add_event_to_ctx(event, ctx);
2645                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2646         } else {
2647                 add_event_to_ctx(event, ctx);
2648         }
2649
2650 unlock:
2651         perf_ctx_unlock(cpuctx, task_ctx);
2652
2653         return ret;
2654 }
2655
2656 static bool exclusive_event_installable(struct perf_event *event,
2657                                         struct perf_event_context *ctx);
2658
2659 /*
2660  * Attach a performance event to a context.
2661  *
2662  * Very similar to event_function_call, see comment there.
2663  */
2664 static void
2665 perf_install_in_context(struct perf_event_context *ctx,
2666                         struct perf_event *event,
2667                         int cpu)
2668 {
2669         struct task_struct *task = READ_ONCE(ctx->task);
2670
2671         lockdep_assert_held(&ctx->mutex);
2672
2673         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2674
2675         if (event->cpu != -1)
2676                 event->cpu = cpu;
2677
2678         /*
2679          * Ensures that if we can observe event->ctx, both the event and ctx
2680          * will be 'complete'. See perf_iterate_sb_cpu().
2681          */
2682         smp_store_release(&event->ctx, ctx);
2683
2684         /*
2685          * perf_event_attr::disabled events will not run and can be initialized
2686          * without IPI. Except when this is the first event for the context, in
2687          * that case we need the magic of the IPI to set ctx->is_active.
2688          *
2689          * The IOC_ENABLE that is sure to follow the creation of a disabled
2690          * event will issue the IPI and reprogram the hardware.
2691          */
2692         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2693                 raw_spin_lock_irq(&ctx->lock);
2694                 if (ctx->task == TASK_TOMBSTONE) {
2695                         raw_spin_unlock_irq(&ctx->lock);
2696                         return;
2697                 }
2698                 add_event_to_ctx(event, ctx);
2699                 raw_spin_unlock_irq(&ctx->lock);
2700                 return;
2701         }
2702
2703         if (!task) {
2704                 cpu_function_call(cpu, __perf_install_in_context, event);
2705                 return;
2706         }
2707
2708         /*
2709          * Should not happen, we validate the ctx is still alive before calling.
2710          */
2711         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2712                 return;
2713
2714         /*
2715          * Installing events is tricky because we cannot rely on ctx->is_active
2716          * to be set in case this is the nr_events 0 -> 1 transition.
2717          *
2718          * Instead we use task_curr(), which tells us if the task is running.
2719          * However, since we use task_curr() outside of rq::lock, we can race
2720          * against the actual state. This means the result can be wrong.
2721          *
2722          * If we get a false positive, we retry, this is harmless.
2723          *
2724          * If we get a false negative, things are complicated. If we are after
2725          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2726          * value must be correct. If we're before, it doesn't matter since
2727          * perf_event_context_sched_in() will program the counter.
2728          *
2729          * However, this hinges on the remote context switch having observed
2730          * our task->perf_event_ctxp[] store, such that it will in fact take
2731          * ctx::lock in perf_event_context_sched_in().
2732          *
2733          * We do this by task_function_call(), if the IPI fails to hit the task
2734          * we know any future context switch of task must see the
2735          * perf_event_ctpx[] store.
2736          */
2737
2738         /*
2739          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2740          * task_cpu() load, such that if the IPI then does not find the task
2741          * running, a future context switch of that task must observe the
2742          * store.
2743          */
2744         smp_mb();
2745 again:
2746         if (!task_function_call(task, __perf_install_in_context, event))
2747                 return;
2748
2749         raw_spin_lock_irq(&ctx->lock);
2750         task = ctx->task;
2751         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2752                 /*
2753                  * Cannot happen because we already checked above (which also
2754                  * cannot happen), and we hold ctx->mutex, which serializes us
2755                  * against perf_event_exit_task_context().
2756                  */
2757                 raw_spin_unlock_irq(&ctx->lock);
2758                 return;
2759         }
2760         /*
2761          * If the task is not running, ctx->lock will avoid it becoming so,
2762          * thus we can safely install the event.
2763          */
2764         if (task_curr(task)) {
2765                 raw_spin_unlock_irq(&ctx->lock);
2766                 goto again;
2767         }
2768         add_event_to_ctx(event, ctx);
2769         raw_spin_unlock_irq(&ctx->lock);
2770 }
2771
2772 /*
2773  * Cross CPU call to enable a performance event
2774  */
2775 static void __perf_event_enable(struct perf_event *event,
2776                                 struct perf_cpu_context *cpuctx,
2777                                 struct perf_event_context *ctx,
2778                                 void *info)
2779 {
2780         struct perf_event *leader = event->group_leader;
2781         struct perf_event_context *task_ctx;
2782
2783         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2784             event->state <= PERF_EVENT_STATE_ERROR)
2785                 return;
2786
2787         if (ctx->is_active)
2788                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2789
2790         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2791
2792         if (!ctx->is_active)
2793                 return;
2794
2795         if (!event_filter_match(event)) {
2796                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2797                 return;
2798         }
2799
2800         /*
2801          * If the event is in a group and isn't the group leader,
2802          * then don't put it on unless the group is on.
2803          */
2804         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2805                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2806                 return;
2807         }
2808
2809         task_ctx = cpuctx->task_ctx;
2810         if (ctx->task)
2811                 WARN_ON_ONCE(task_ctx != ctx);
2812
2813         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2814 }
2815
2816 /*
2817  * Enable an event.
2818  *
2819  * If event->ctx is a cloned context, callers must make sure that
2820  * every task struct that event->ctx->task could possibly point to
2821  * remains valid.  This condition is satisfied when called through
2822  * perf_event_for_each_child or perf_event_for_each as described
2823  * for perf_event_disable.
2824  */
2825 static void _perf_event_enable(struct perf_event *event)
2826 {
2827         struct perf_event_context *ctx = event->ctx;
2828
2829         raw_spin_lock_irq(&ctx->lock);
2830         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2831             event->state <  PERF_EVENT_STATE_ERROR) {
2832                 raw_spin_unlock_irq(&ctx->lock);
2833                 return;
2834         }
2835
2836         /*
2837          * If the event is in error state, clear that first.
2838          *
2839          * That way, if we see the event in error state below, we know that it
2840          * has gone back into error state, as distinct from the task having
2841          * been scheduled away before the cross-call arrived.
2842          */
2843         if (event->state == PERF_EVENT_STATE_ERROR)
2844                 event->state = PERF_EVENT_STATE_OFF;
2845         raw_spin_unlock_irq(&ctx->lock);
2846
2847         event_function_call(event, __perf_event_enable, NULL);
2848 }
2849
2850 /*
2851  * See perf_event_disable();
2852  */
2853 void perf_event_enable(struct perf_event *event)
2854 {
2855         struct perf_event_context *ctx;
2856
2857         ctx = perf_event_ctx_lock(event);
2858         _perf_event_enable(event);
2859         perf_event_ctx_unlock(event, ctx);
2860 }
2861 EXPORT_SYMBOL_GPL(perf_event_enable);
2862
2863 struct stop_event_data {
2864         struct perf_event       *event;
2865         unsigned int            restart;
2866 };
2867
2868 static int __perf_event_stop(void *info)
2869 {
2870         struct stop_event_data *sd = info;
2871         struct perf_event *event = sd->event;
2872
2873         /* if it's already INACTIVE, do nothing */
2874         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2875                 return 0;
2876
2877         /* matches smp_wmb() in event_sched_in() */
2878         smp_rmb();
2879
2880         /*
2881          * There is a window with interrupts enabled before we get here,
2882          * so we need to check again lest we try to stop another CPU's event.
2883          */
2884         if (READ_ONCE(event->oncpu) != smp_processor_id())
2885                 return -EAGAIN;
2886
2887         event->pmu->stop(event, PERF_EF_UPDATE);
2888
2889         /*
2890          * May race with the actual stop (through perf_pmu_output_stop()),
2891          * but it is only used for events with AUX ring buffer, and such
2892          * events will refuse to restart because of rb::aux_mmap_count==0,
2893          * see comments in perf_aux_output_begin().
2894          *
2895          * Since this is happening on an event-local CPU, no trace is lost
2896          * while restarting.
2897          */
2898         if (sd->restart)
2899                 event->pmu->start(event, 0);
2900
2901         return 0;
2902 }
2903
2904 static int perf_event_stop(struct perf_event *event, int restart)
2905 {
2906         struct stop_event_data sd = {
2907                 .event          = event,
2908                 .restart        = restart,
2909         };
2910         int ret = 0;
2911
2912         do {
2913                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2914                         return 0;
2915
2916                 /* matches smp_wmb() in event_sched_in() */
2917                 smp_rmb();
2918
2919                 /*
2920                  * We only want to restart ACTIVE events, so if the event goes
2921                  * inactive here (event->oncpu==-1), there's nothing more to do;
2922                  * fall through with ret==-ENXIO.
2923                  */
2924                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2925                                         __perf_event_stop, &sd);
2926         } while (ret == -EAGAIN);
2927
2928         return ret;
2929 }
2930
2931 /*
2932  * In order to contain the amount of racy and tricky in the address filter
2933  * configuration management, it is a two part process:
2934  *
2935  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2936  *      we update the addresses of corresponding vmas in
2937  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
2938  * (p2) when an event is scheduled in (pmu::add), it calls
2939  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2940  *      if the generation has changed since the previous call.
2941  *
2942  * If (p1) happens while the event is active, we restart it to force (p2).
2943  *
2944  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2945  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2946  *     ioctl;
2947  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2948  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2949  *     for reading;
2950  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2951  *     of exec.
2952  */
2953 void perf_event_addr_filters_sync(struct perf_event *event)
2954 {
2955         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2956
2957         if (!has_addr_filter(event))
2958                 return;
2959
2960         raw_spin_lock(&ifh->lock);
2961         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2962                 event->pmu->addr_filters_sync(event);
2963                 event->hw.addr_filters_gen = event->addr_filters_gen;
2964         }
2965         raw_spin_unlock(&ifh->lock);
2966 }
2967 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2968
2969 static int _perf_event_refresh(struct perf_event *event, int refresh)
2970 {
2971         /*
2972          * not supported on inherited events
2973          */
2974         if (event->attr.inherit || !is_sampling_event(event))
2975                 return -EINVAL;
2976
2977         atomic_add(refresh, &event->event_limit);
2978         _perf_event_enable(event);
2979
2980         return 0;
2981 }
2982
2983 /*
2984  * See perf_event_disable()
2985  */
2986 int perf_event_refresh(struct perf_event *event, int refresh)
2987 {
2988         struct perf_event_context *ctx;
2989         int ret;
2990
2991         ctx = perf_event_ctx_lock(event);
2992         ret = _perf_event_refresh(event, refresh);
2993         perf_event_ctx_unlock(event, ctx);
2994
2995         return ret;
2996 }
2997 EXPORT_SYMBOL_GPL(perf_event_refresh);
2998
2999 static int perf_event_modify_breakpoint(struct perf_event *bp,
3000                                          struct perf_event_attr *attr)
3001 {
3002         int err;
3003
3004         _perf_event_disable(bp);
3005
3006         err = modify_user_hw_breakpoint_check(bp, attr, true);
3007
3008         if (!bp->attr.disabled)
3009                 _perf_event_enable(bp);
3010
3011         return err;
3012 }
3013
3014 static int perf_event_modify_attr(struct perf_event *event,
3015                                   struct perf_event_attr *attr)
3016 {
3017         if (event->attr.type != attr->type)
3018                 return -EINVAL;
3019
3020         switch (event->attr.type) {
3021         case PERF_TYPE_BREAKPOINT:
3022                 return perf_event_modify_breakpoint(event, attr);
3023         default:
3024                 /* Place holder for future additions. */
3025                 return -EOPNOTSUPP;
3026         }
3027 }
3028
3029 static void ctx_sched_out(struct perf_event_context *ctx,
3030                           struct perf_cpu_context *cpuctx,
3031                           enum event_type_t event_type)
3032 {
3033         struct perf_event *event, *tmp;
3034         int is_active = ctx->is_active;
3035
3036         lockdep_assert_held(&ctx->lock);
3037
3038         if (likely(!ctx->nr_events)) {
3039                 /*
3040                  * See __perf_remove_from_context().
3041                  */
3042                 WARN_ON_ONCE(ctx->is_active);
3043                 if (ctx->task)
3044                         WARN_ON_ONCE(cpuctx->task_ctx);
3045                 return;
3046         }
3047
3048         ctx->is_active &= ~event_type;
3049         if (!(ctx->is_active & EVENT_ALL))
3050                 ctx->is_active = 0;
3051
3052         if (ctx->task) {
3053                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3054                 if (!ctx->is_active)
3055                         cpuctx->task_ctx = NULL;
3056         }
3057
3058         /*
3059          * Always update time if it was set; not only when it changes.
3060          * Otherwise we can 'forget' to update time for any but the last
3061          * context we sched out. For example:
3062          *
3063          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3064          *   ctx_sched_out(.event_type = EVENT_PINNED)
3065          *
3066          * would only update time for the pinned events.
3067          */
3068         if (is_active & EVENT_TIME) {
3069                 /* update (and stop) ctx time */
3070                 update_context_time(ctx);
3071                 update_cgrp_time_from_cpuctx(cpuctx);
3072         }
3073
3074         is_active ^= ctx->is_active; /* changed bits */
3075
3076         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3077                 return;
3078
3079         /*
3080          * If we had been multiplexing, no rotations are necessary, now no events
3081          * are active.
3082          */
3083         ctx->rotate_necessary = 0;
3084
3085         perf_pmu_disable(ctx->pmu);
3086         if (is_active & EVENT_PINNED) {
3087                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3088                         group_sched_out(event, cpuctx, ctx);
3089         }
3090
3091         if (is_active & EVENT_FLEXIBLE) {
3092                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3093                         group_sched_out(event, cpuctx, ctx);
3094         }
3095         perf_pmu_enable(ctx->pmu);
3096 }
3097
3098 /*
3099  * Test whether two contexts are equivalent, i.e. whether they have both been
3100  * cloned from the same version of the same context.
3101  *
3102  * Equivalence is measured using a generation number in the context that is
3103  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3104  * and list_del_event().
3105  */
3106 static int context_equiv(struct perf_event_context *ctx1,
3107                          struct perf_event_context *ctx2)
3108 {
3109         lockdep_assert_held(&ctx1->lock);
3110         lockdep_assert_held(&ctx2->lock);
3111
3112         /* Pinning disables the swap optimization */
3113         if (ctx1->pin_count || ctx2->pin_count)
3114                 return 0;
3115
3116         /* If ctx1 is the parent of ctx2 */
3117         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3118                 return 1;
3119
3120         /* If ctx2 is the parent of ctx1 */
3121         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3122                 return 1;
3123
3124         /*
3125          * If ctx1 and ctx2 have the same parent; we flatten the parent
3126          * hierarchy, see perf_event_init_context().
3127          */
3128         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3129                         ctx1->parent_gen == ctx2->parent_gen)
3130                 return 1;
3131
3132         /* Unmatched */
3133         return 0;
3134 }
3135
3136 static void __perf_event_sync_stat(struct perf_event *event,
3137                                      struct perf_event *next_event)
3138 {
3139         u64 value;
3140
3141         if (!event->attr.inherit_stat)
3142                 return;
3143
3144         /*
3145          * Update the event value, we cannot use perf_event_read()
3146          * because we're in the middle of a context switch and have IRQs
3147          * disabled, which upsets smp_call_function_single(), however
3148          * we know the event must be on the current CPU, therefore we
3149          * don't need to use it.
3150          */
3151         if (event->state == PERF_EVENT_STATE_ACTIVE)
3152                 event->pmu->read(event);
3153
3154         perf_event_update_time(event);
3155
3156         /*
3157          * In order to keep per-task stats reliable we need to flip the event
3158          * values when we flip the contexts.
3159          */
3160         value = local64_read(&next_event->count);
3161         value = local64_xchg(&event->count, value);
3162         local64_set(&next_event->count, value);
3163
3164         swap(event->total_time_enabled, next_event->total_time_enabled);
3165         swap(event->total_time_running, next_event->total_time_running);
3166
3167         /*
3168          * Since we swizzled the values, update the user visible data too.
3169          */
3170         perf_event_update_userpage(event);
3171         perf_event_update_userpage(next_event);
3172 }
3173
3174 static void perf_event_sync_stat(struct perf_event_context *ctx,
3175                                    struct perf_event_context *next_ctx)
3176 {
3177         struct perf_event *event, *next_event;
3178
3179         if (!ctx->nr_stat)
3180                 return;
3181
3182         update_context_time(ctx);
3183
3184         event = list_first_entry(&ctx->event_list,
3185                                    struct perf_event, event_entry);
3186
3187         next_event = list_first_entry(&next_ctx->event_list,
3188                                         struct perf_event, event_entry);
3189
3190         while (&event->event_entry != &ctx->event_list &&
3191                &next_event->event_entry != &next_ctx->event_list) {
3192
3193                 __perf_event_sync_stat(event, next_event);
3194
3195                 event = list_next_entry(event, event_entry);
3196                 next_event = list_next_entry(next_event, event_entry);
3197         }
3198 }
3199
3200 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3201                                          struct task_struct *next)
3202 {
3203         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3204         struct perf_event_context *next_ctx;
3205         struct perf_event_context *parent, *next_parent;
3206         struct perf_cpu_context *cpuctx;
3207         int do_switch = 1;
3208
3209         if (likely(!ctx))
3210                 return;
3211
3212         cpuctx = __get_cpu_context(ctx);
3213         if (!cpuctx->task_ctx)
3214                 return;
3215
3216         rcu_read_lock();
3217         next_ctx = next->perf_event_ctxp[ctxn];
3218         if (!next_ctx)
3219                 goto unlock;
3220
3221         parent = rcu_dereference(ctx->parent_ctx);
3222         next_parent = rcu_dereference(next_ctx->parent_ctx);
3223
3224         /* If neither context have a parent context; they cannot be clones. */
3225         if (!parent && !next_parent)
3226                 goto unlock;
3227
3228         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3229                 /*
3230                  * Looks like the two contexts are clones, so we might be
3231                  * able to optimize the context switch.  We lock both
3232                  * contexts and check that they are clones under the
3233                  * lock (including re-checking that neither has been
3234                  * uncloned in the meantime).  It doesn't matter which
3235                  * order we take the locks because no other cpu could
3236                  * be trying to lock both of these tasks.
3237                  */
3238                 raw_spin_lock(&ctx->lock);
3239                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3240                 if (context_equiv(ctx, next_ctx)) {
3241                         struct pmu *pmu = ctx->pmu;
3242
3243                         WRITE_ONCE(ctx->task, next);
3244                         WRITE_ONCE(next_ctx->task, task);
3245
3246                         /*
3247                          * PMU specific parts of task perf context can require
3248                          * additional synchronization. As an example of such
3249                          * synchronization see implementation details of Intel
3250                          * LBR call stack data profiling;
3251                          */
3252                         if (pmu->swap_task_ctx)
3253                                 pmu->swap_task_ctx(ctx, next_ctx);
3254                         else
3255                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3256
3257                         /*
3258                          * RCU_INIT_POINTER here is safe because we've not
3259                          * modified the ctx and the above modification of
3260                          * ctx->task and ctx->task_ctx_data are immaterial
3261                          * since those values are always verified under
3262                          * ctx->lock which we're now holding.
3263                          */
3264                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3265                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3266
3267                         do_switch = 0;
3268
3269                         perf_event_sync_stat(ctx, next_ctx);
3270                 }
3271                 raw_spin_unlock(&next_ctx->lock);
3272                 raw_spin_unlock(&ctx->lock);
3273         }
3274 unlock:
3275         rcu_read_unlock();
3276
3277         if (do_switch) {
3278                 raw_spin_lock(&ctx->lock);
3279                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3280                 raw_spin_unlock(&ctx->lock);
3281         }
3282 }
3283
3284 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3285
3286 void perf_sched_cb_dec(struct pmu *pmu)
3287 {
3288         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3289
3290         this_cpu_dec(perf_sched_cb_usages);
3291
3292         if (!--cpuctx->sched_cb_usage)
3293                 list_del(&cpuctx->sched_cb_entry);
3294 }
3295
3296
3297 void perf_sched_cb_inc(struct pmu *pmu)
3298 {
3299         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3300
3301         if (!cpuctx->sched_cb_usage++)
3302                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3303
3304         this_cpu_inc(perf_sched_cb_usages);
3305 }
3306
3307 /*
3308  * This function provides the context switch callback to the lower code
3309  * layer. It is invoked ONLY when the context switch callback is enabled.
3310  *
3311  * This callback is relevant even to per-cpu events; for example multi event
3312  * PEBS requires this to provide PID/TID information. This requires we flush
3313  * all queued PEBS records before we context switch to a new task.
3314  */
3315 static void perf_pmu_sched_task(struct task_struct *prev,
3316                                 struct task_struct *next,
3317                                 bool sched_in)
3318 {
3319         struct perf_cpu_context *cpuctx;
3320         struct pmu *pmu;
3321
3322         if (prev == next)
3323                 return;
3324
3325         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3326                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3327
3328                 if (WARN_ON_ONCE(!pmu->sched_task))
3329                         continue;
3330
3331                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3332                 perf_pmu_disable(pmu);
3333
3334                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3335
3336                 perf_pmu_enable(pmu);
3337                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3338         }
3339 }
3340
3341 static void perf_event_switch(struct task_struct *task,
3342                               struct task_struct *next_prev, bool sched_in);
3343
3344 #define for_each_task_context_nr(ctxn)                                  \
3345         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3346
3347 /*
3348  * Called from scheduler to remove the events of the current task,
3349  * with interrupts disabled.
3350  *
3351  * We stop each event and update the event value in event->count.
3352  *
3353  * This does not protect us against NMI, but disable()
3354  * sets the disabled bit in the control field of event _before_
3355  * accessing the event control register. If a NMI hits, then it will
3356  * not restart the event.
3357  */
3358 void __perf_event_task_sched_out(struct task_struct *task,
3359                                  struct task_struct *next)
3360 {
3361         int ctxn;
3362
3363         if (__this_cpu_read(perf_sched_cb_usages))
3364                 perf_pmu_sched_task(task, next, false);
3365
3366         if (atomic_read(&nr_switch_events))
3367                 perf_event_switch(task, next, false);
3368
3369         for_each_task_context_nr(ctxn)
3370                 perf_event_context_sched_out(task, ctxn, next);
3371
3372         /*
3373          * if cgroup events exist on this CPU, then we need
3374          * to check if we have to switch out PMU state.
3375          * cgroup event are system-wide mode only
3376          */
3377         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3378                 perf_cgroup_sched_out(task, next);
3379 }
3380
3381 /*
3382  * Called with IRQs disabled
3383  */
3384 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3385                               enum event_type_t event_type)
3386 {
3387         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3388 }
3389
3390 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3391                               int (*func)(struct perf_event *, void *), void *data)
3392 {
3393         struct perf_event **evt, *evt1, *evt2;
3394         int ret;
3395
3396         evt1 = perf_event_groups_first(groups, -1);
3397         evt2 = perf_event_groups_first(groups, cpu);
3398
3399         while (evt1 || evt2) {
3400                 if (evt1 && evt2) {
3401                         if (evt1->group_index < evt2->group_index)
3402                                 evt = &evt1;
3403                         else
3404                                 evt = &evt2;
3405                 } else if (evt1) {
3406                         evt = &evt1;
3407                 } else {
3408                         evt = &evt2;
3409                 }
3410
3411                 ret = func(*evt, data);
3412                 if (ret)
3413                         return ret;
3414
3415                 *evt = perf_event_groups_next(*evt);
3416         }
3417
3418         return 0;
3419 }
3420
3421 struct sched_in_data {
3422         struct perf_event_context *ctx;
3423         struct perf_cpu_context *cpuctx;
3424         int can_add_hw;
3425 };
3426
3427 static int pinned_sched_in(struct perf_event *event, void *data)
3428 {
3429         struct sched_in_data *sid = data;
3430
3431         if (event->state <= PERF_EVENT_STATE_OFF)
3432                 return 0;
3433
3434         if (!event_filter_match(event))
3435                 return 0;
3436
3437         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3438                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3439                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3440         }
3441
3442         /*
3443          * If this pinned group hasn't been scheduled,
3444          * put it in error state.
3445          */
3446         if (event->state == PERF_EVENT_STATE_INACTIVE)
3447                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3448
3449         return 0;
3450 }
3451
3452 static int flexible_sched_in(struct perf_event *event, void *data)
3453 {
3454         struct sched_in_data *sid = data;
3455
3456         if (event->state <= PERF_EVENT_STATE_OFF)
3457                 return 0;
3458
3459         if (!event_filter_match(event))
3460                 return 0;
3461
3462         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3463                 int ret = group_sched_in(event, sid->cpuctx, sid->ctx);
3464                 if (ret) {
3465                         sid->can_add_hw = 0;
3466                         sid->ctx->rotate_necessary = 1;
3467                         return 0;
3468                 }
3469                 list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3470         }
3471
3472         return 0;
3473 }
3474
3475 static void
3476 ctx_pinned_sched_in(struct perf_event_context *ctx,
3477                     struct perf_cpu_context *cpuctx)
3478 {
3479         struct sched_in_data sid = {
3480                 .ctx = ctx,
3481                 .cpuctx = cpuctx,
3482                 .can_add_hw = 1,
3483         };
3484
3485         visit_groups_merge(&ctx->pinned_groups,
3486                            smp_processor_id(),
3487                            pinned_sched_in, &sid);
3488 }
3489
3490 static void
3491 ctx_flexible_sched_in(struct perf_event_context *ctx,
3492                       struct perf_cpu_context *cpuctx)
3493 {
3494         struct sched_in_data sid = {
3495                 .ctx = ctx,
3496                 .cpuctx = cpuctx,
3497                 .can_add_hw = 1,
3498         };
3499
3500         visit_groups_merge(&ctx->flexible_groups,
3501                            smp_processor_id(),
3502                            flexible_sched_in, &sid);
3503 }
3504
3505 static void
3506 ctx_sched_in(struct perf_event_context *ctx,
3507              struct perf_cpu_context *cpuctx,
3508              enum event_type_t event_type,
3509              struct task_struct *task)
3510 {
3511         int is_active = ctx->is_active;
3512         u64 now;
3513
3514         lockdep_assert_held(&ctx->lock);
3515
3516         if (likely(!ctx->nr_events))
3517                 return;
3518
3519         ctx->is_active |= (event_type | EVENT_TIME);
3520         if (ctx->task) {
3521                 if (!is_active)
3522                         cpuctx->task_ctx = ctx;
3523                 else
3524                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3525         }
3526
3527         is_active ^= ctx->is_active; /* changed bits */
3528
3529         if (is_active & EVENT_TIME) {
3530                 /* start ctx time */
3531                 now = perf_clock();
3532                 ctx->timestamp = now;
3533                 perf_cgroup_set_timestamp(task, ctx);
3534         }
3535
3536         /*
3537          * First go through the list and put on any pinned groups
3538          * in order to give them the best chance of going on.
3539          */
3540         if (is_active & EVENT_PINNED)
3541                 ctx_pinned_sched_in(ctx, cpuctx);
3542
3543         /* Then walk through the lower prio flexible groups */
3544         if (is_active & EVENT_FLEXIBLE)
3545                 ctx_flexible_sched_in(ctx, cpuctx);
3546 }
3547
3548 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3549                              enum event_type_t event_type,
3550                              struct task_struct *task)
3551 {
3552         struct perf_event_context *ctx = &cpuctx->ctx;
3553
3554         ctx_sched_in(ctx, cpuctx, event_type, task);
3555 }
3556
3557 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3558                                         struct task_struct *task)
3559 {
3560         struct perf_cpu_context *cpuctx;
3561
3562         cpuctx = __get_cpu_context(ctx);
3563         if (cpuctx->task_ctx == ctx)
3564                 return;
3565
3566         perf_ctx_lock(cpuctx, ctx);
3567         /*
3568          * We must check ctx->nr_events while holding ctx->lock, such
3569          * that we serialize against perf_install_in_context().
3570          */
3571         if (!ctx->nr_events)
3572                 goto unlock;
3573
3574         perf_pmu_disable(ctx->pmu);
3575         /*
3576          * We want to keep the following priority order:
3577          * cpu pinned (that don't need to move), task pinned,
3578          * cpu flexible, task flexible.
3579          *
3580          * However, if task's ctx is not carrying any pinned
3581          * events, no need to flip the cpuctx's events around.
3582          */
3583         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3584                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3585         perf_event_sched_in(cpuctx, ctx, task);
3586         perf_pmu_enable(ctx->pmu);
3587
3588 unlock:
3589         perf_ctx_unlock(cpuctx, ctx);
3590 }
3591
3592 /*
3593  * Called from scheduler to add the events of the current task
3594  * with interrupts disabled.
3595  *
3596  * We restore the event value and then enable it.
3597  *
3598  * This does not protect us against NMI, but enable()
3599  * sets the enabled bit in the control field of event _before_
3600  * accessing the event control register. If a NMI hits, then it will
3601  * keep the event running.
3602  */
3603 void __perf_event_task_sched_in(struct task_struct *prev,
3604                                 struct task_struct *task)
3605 {
3606         struct perf_event_context *ctx;
3607         int ctxn;
3608
3609         /*
3610          * If cgroup events exist on this CPU, then we need to check if we have
3611          * to switch in PMU state; cgroup event are system-wide mode only.
3612          *
3613          * Since cgroup events are CPU events, we must schedule these in before
3614          * we schedule in the task events.
3615          */
3616         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3617                 perf_cgroup_sched_in(prev, task);
3618
3619         for_each_task_context_nr(ctxn) {
3620                 ctx = task->perf_event_ctxp[ctxn];
3621                 if (likely(!ctx))
3622                         continue;
3623
3624                 perf_event_context_sched_in(ctx, task);
3625         }
3626
3627         if (atomic_read(&nr_switch_events))
3628                 perf_event_switch(task, prev, true);
3629
3630         if (__this_cpu_read(perf_sched_cb_usages))
3631                 perf_pmu_sched_task(prev, task, true);
3632 }
3633
3634 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3635 {
3636         u64 frequency = event->attr.sample_freq;
3637         u64 sec = NSEC_PER_SEC;
3638         u64 divisor, dividend;
3639
3640         int count_fls, nsec_fls, frequency_fls, sec_fls;
3641
3642         count_fls = fls64(count);
3643         nsec_fls = fls64(nsec);
3644         frequency_fls = fls64(frequency);
3645         sec_fls = 30;
3646
3647         /*
3648          * We got @count in @nsec, with a target of sample_freq HZ
3649          * the target period becomes:
3650          *
3651          *             @count * 10^9
3652          * period = -------------------
3653          *          @nsec * sample_freq
3654          *
3655          */
3656
3657         /*
3658          * Reduce accuracy by one bit such that @a and @b converge
3659          * to a similar magnitude.
3660          */
3661 #define REDUCE_FLS(a, b)                \
3662 do {                                    \
3663         if (a##_fls > b##_fls) {        \
3664                 a >>= 1;                \
3665                 a##_fls--;              \
3666         } else {                        \
3667                 b >>= 1;                \
3668                 b##_fls--;              \
3669         }                               \
3670 } while (0)
3671
3672         /*
3673          * Reduce accuracy until either term fits in a u64, then proceed with
3674          * the other, so that finally we can do a u64/u64 division.
3675          */
3676         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3677                 REDUCE_FLS(nsec, frequency);
3678                 REDUCE_FLS(sec, count);
3679         }
3680
3681         if (count_fls + sec_fls > 64) {
3682                 divisor = nsec * frequency;
3683
3684                 while (count_fls + sec_fls > 64) {
3685                         REDUCE_FLS(count, sec);
3686                         divisor >>= 1;
3687                 }
3688
3689                 dividend = count * sec;
3690         } else {
3691                 dividend = count * sec;
3692
3693                 while (nsec_fls + frequency_fls > 64) {
3694                         REDUCE_FLS(nsec, frequency);
3695                         dividend >>= 1;
3696                 }
3697
3698                 divisor = nsec * frequency;
3699         }
3700
3701         if (!divisor)
3702                 return dividend;
3703
3704         return div64_u64(dividend, divisor);
3705 }
3706
3707 static DEFINE_PER_CPU(int, perf_throttled_count);
3708 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3709
3710 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3711 {
3712         struct hw_perf_event *hwc = &event->hw;
3713         s64 period, sample_period;
3714         s64 delta;
3715
3716         period = perf_calculate_period(event, nsec, count);
3717
3718         delta = (s64)(period - hwc->sample_period);
3719         delta = (delta + 7) / 8; /* low pass filter */
3720
3721         sample_period = hwc->sample_period + delta;
3722
3723         if (!sample_period)
3724                 sample_period = 1;
3725
3726         hwc->sample_period = sample_period;
3727
3728         if (local64_read(&hwc->period_left) > 8*sample_period) {
3729                 if (disable)
3730                         event->pmu->stop(event, PERF_EF_UPDATE);
3731
3732                 local64_set(&hwc->period_left, 0);
3733
3734                 if (disable)
3735                         event->pmu->start(event, PERF_EF_RELOAD);
3736         }
3737 }
3738
3739 /*
3740  * combine freq adjustment with unthrottling to avoid two passes over the
3741  * events. At the same time, make sure, having freq events does not change
3742  * the rate of unthrottling as that would introduce bias.
3743  */
3744 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3745                                            int needs_unthr)
3746 {
3747         struct perf_event *event;
3748         struct hw_perf_event *hwc;
3749         u64 now, period = TICK_NSEC;
3750         s64 delta;
3751
3752         /*
3753          * only need to iterate over all events iff:
3754          * - context have events in frequency mode (needs freq adjust)
3755          * - there are events to unthrottle on this cpu
3756          */
3757         if (!(ctx->nr_freq || needs_unthr))
3758                 return;
3759
3760         raw_spin_lock(&ctx->lock);
3761         perf_pmu_disable(ctx->pmu);
3762
3763         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3764                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3765                         continue;
3766
3767                 if (!event_filter_match(event))
3768                         continue;
3769
3770                 perf_pmu_disable(event->pmu);
3771
3772                 hwc = &event->hw;
3773
3774                 if (hwc->interrupts == MAX_INTERRUPTS) {
3775                         hwc->interrupts = 0;
3776                         perf_log_throttle(event, 1);
3777                         event->pmu->start(event, 0);
3778                 }
3779
3780                 if (!event->attr.freq || !event->attr.sample_freq)
3781                         goto next;
3782
3783                 /*
3784                  * stop the event and update event->count
3785                  */
3786                 event->pmu->stop(event, PERF_EF_UPDATE);
3787
3788                 now = local64_read(&event->count);
3789                 delta = now - hwc->freq_count_stamp;
3790                 hwc->freq_count_stamp = now;
3791
3792                 /*
3793                  * restart the event
3794                  * reload only if value has changed
3795                  * we have stopped the event so tell that
3796                  * to perf_adjust_period() to avoid stopping it
3797                  * twice.
3798                  */
3799                 if (delta > 0)
3800                         perf_adjust_period(event, period, delta, false);
3801
3802                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3803         next:
3804                 perf_pmu_enable(event->pmu);
3805         }
3806
3807         perf_pmu_enable(ctx->pmu);
3808         raw_spin_unlock(&ctx->lock);
3809 }
3810
3811 /*
3812  * Move @event to the tail of the @ctx's elegible events.
3813  */
3814 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3815 {
3816         /*
3817          * Rotate the first entry last of non-pinned groups. Rotation might be
3818          * disabled by the inheritance code.
3819          */
3820         if (ctx->rotate_disable)
3821                 return;
3822
3823         perf_event_groups_delete(&ctx->flexible_groups, event);
3824         perf_event_groups_insert(&ctx->flexible_groups, event);
3825 }
3826
3827 /* pick an event from the flexible_groups to rotate */
3828 static inline struct perf_event *
3829 ctx_event_to_rotate(struct perf_event_context *ctx)
3830 {
3831         struct perf_event *event;
3832
3833         /* pick the first active flexible event */
3834         event = list_first_entry_or_null(&ctx->flexible_active,
3835                                          struct perf_event, active_list);
3836
3837         /* if no active flexible event, pick the first event */
3838         if (!event) {
3839                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
3840                                       typeof(*event), group_node);
3841         }
3842
3843         return event;
3844 }
3845
3846 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3847 {
3848         struct perf_event *cpu_event = NULL, *task_event = NULL;
3849         struct perf_event_context *task_ctx = NULL;
3850         int cpu_rotate, task_rotate;
3851
3852         /*
3853          * Since we run this from IRQ context, nobody can install new
3854          * events, thus the event count values are stable.
3855          */
3856
3857         cpu_rotate = cpuctx->ctx.rotate_necessary;
3858         task_ctx = cpuctx->task_ctx;
3859         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
3860
3861         if (!(cpu_rotate || task_rotate))
3862                 return false;
3863
3864         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3865         perf_pmu_disable(cpuctx->ctx.pmu);
3866
3867         if (task_rotate)
3868                 task_event = ctx_event_to_rotate(task_ctx);
3869         if (cpu_rotate)
3870                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
3871
3872         /*
3873          * As per the order given at ctx_resched() first 'pop' task flexible
3874          * and then, if needed CPU flexible.
3875          */
3876         if (task_event || (task_ctx && cpu_event))
3877                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
3878         if (cpu_event)
3879                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3880
3881         if (task_event)
3882                 rotate_ctx(task_ctx, task_event);
3883         if (cpu_event)
3884                 rotate_ctx(&cpuctx->ctx, cpu_event);
3885
3886         perf_event_sched_in(cpuctx, task_ctx, current);
3887
3888         perf_pmu_enable(cpuctx->ctx.pmu);
3889         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3890
3891         return true;
3892 }
3893
3894 void perf_event_task_tick(void)
3895 {
3896         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3897         struct perf_event_context *ctx, *tmp;
3898         int throttled;
3899
3900         lockdep_assert_irqs_disabled();
3901
3902         __this_cpu_inc(perf_throttled_seq);
3903         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3904         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3905
3906         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3907                 perf_adjust_freq_unthr_context(ctx, throttled);
3908 }
3909
3910 static int event_enable_on_exec(struct perf_event *event,
3911                                 struct perf_event_context *ctx)
3912 {
3913         if (!event->attr.enable_on_exec)
3914                 return 0;
3915
3916         event->attr.enable_on_exec = 0;
3917         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3918                 return 0;
3919
3920         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3921
3922         return 1;
3923 }
3924
3925 /*
3926  * Enable all of a task's events that have been marked enable-on-exec.
3927  * This expects task == current.
3928  */
3929 static void perf_event_enable_on_exec(int ctxn)
3930 {
3931         struct perf_event_context *ctx, *clone_ctx = NULL;
3932         enum event_type_t event_type = 0;
3933         struct perf_cpu_context *cpuctx;
3934         struct perf_event *event;
3935         unsigned long flags;
3936         int enabled = 0;
3937
3938         local_irq_save(flags);
3939         ctx = current->perf_event_ctxp[ctxn];
3940         if (!ctx || !ctx->nr_events)
3941                 goto out;
3942
3943         cpuctx = __get_cpu_context(ctx);
3944         perf_ctx_lock(cpuctx, ctx);
3945         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3946         list_for_each_entry(event, &ctx->event_list, event_entry) {
3947                 enabled |= event_enable_on_exec(event, ctx);
3948                 event_type |= get_event_type(event);
3949         }
3950
3951         /*
3952          * Unclone and reschedule this context if we enabled any event.
3953          */
3954         if (enabled) {
3955                 clone_ctx = unclone_ctx(ctx);
3956                 ctx_resched(cpuctx, ctx, event_type);
3957         } else {
3958                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3959         }
3960         perf_ctx_unlock(cpuctx, ctx);
3961
3962 out:
3963         local_irq_restore(flags);
3964
3965         if (clone_ctx)
3966                 put_ctx(clone_ctx);
3967 }
3968
3969 struct perf_read_data {
3970         struct perf_event *event;
3971         bool group;
3972         int ret;
3973 };
3974
3975 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3976 {
3977         u16 local_pkg, event_pkg;
3978
3979         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3980                 int local_cpu = smp_processor_id();
3981
3982                 event_pkg = topology_physical_package_id(event_cpu);
3983                 local_pkg = topology_physical_package_id(local_cpu);
3984
3985                 if (event_pkg == local_pkg)
3986                         return local_cpu;
3987         }
3988
3989         return event_cpu;
3990 }
3991
3992 /*
3993  * Cross CPU call to read the hardware event
3994  */
3995 static void __perf_event_read(void *info)
3996 {
3997         struct perf_read_data *data = info;
3998         struct perf_event *sub, *event = data->event;
3999         struct perf_event_context *ctx = event->ctx;
4000         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4001         struct pmu *pmu = event->pmu;
4002
4003         /*
4004          * If this is a task context, we need to check whether it is
4005          * the current task context of this cpu.  If not it has been
4006          * scheduled out before the smp call arrived.  In that case
4007          * event->count would have been updated to a recent sample
4008          * when the event was scheduled out.
4009          */
4010         if (ctx->task && cpuctx->task_ctx != ctx)
4011                 return;
4012
4013         raw_spin_lock(&ctx->lock);
4014         if (ctx->is_active & EVENT_TIME) {
4015                 update_context_time(ctx);
4016                 update_cgrp_time_from_event(event);
4017         }
4018
4019         perf_event_update_time(event);
4020         if (data->group)
4021                 perf_event_update_sibling_time(event);
4022
4023         if (event->state != PERF_EVENT_STATE_ACTIVE)
4024                 goto unlock;
4025
4026         if (!data->group) {
4027                 pmu->read(event);
4028                 data->ret = 0;
4029                 goto unlock;
4030         }
4031
4032         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4033
4034         pmu->read(event);
4035
4036         for_each_sibling_event(sub, event) {
4037                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4038                         /*
4039                          * Use sibling's PMU rather than @event's since
4040                          * sibling could be on different (eg: software) PMU.
4041                          */
4042                         sub->pmu->read(sub);
4043                 }
4044         }
4045
4046         data->ret = pmu->commit_txn(pmu);
4047
4048 unlock:
4049         raw_spin_unlock(&ctx->lock);
4050 }
4051
4052 static inline u64 perf_event_count(struct perf_event *event)
4053 {
4054         return local64_read(&event->count) + atomic64_read(&event->child_count);
4055 }
4056
4057 /*
4058  * NMI-safe method to read a local event, that is an event that
4059  * is:
4060  *   - either for the current task, or for this CPU
4061  *   - does not have inherit set, for inherited task events
4062  *     will not be local and we cannot read them atomically
4063  *   - must not have a pmu::count method
4064  */
4065 int perf_event_read_local(struct perf_event *event, u64 *value,
4066                           u64 *enabled, u64 *running)
4067 {
4068         unsigned long flags;
4069         int ret = 0;
4070
4071         /*
4072          * Disabling interrupts avoids all counter scheduling (context
4073          * switches, timer based rotation and IPIs).
4074          */
4075         local_irq_save(flags);
4076
4077         /*
4078          * It must not be an event with inherit set, we cannot read
4079          * all child counters from atomic context.
4080          */
4081         if (event->attr.inherit) {
4082                 ret = -EOPNOTSUPP;
4083                 goto out;
4084         }
4085
4086         /* If this is a per-task event, it must be for current */
4087         if ((event->attach_state & PERF_ATTACH_TASK) &&
4088             event->hw.target != current) {
4089                 ret = -EINVAL;
4090                 goto out;
4091         }
4092
4093         /* If this is a per-CPU event, it must be for this CPU */
4094         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4095             event->cpu != smp_processor_id()) {
4096                 ret = -EINVAL;
4097                 goto out;
4098         }
4099
4100         /* If this is a pinned event it must be running on this CPU */
4101         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4102                 ret = -EBUSY;
4103                 goto out;
4104         }
4105
4106         /*
4107          * If the event is currently on this CPU, its either a per-task event,
4108          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4109          * oncpu == -1).
4110          */
4111         if (event->oncpu == smp_processor_id())
4112                 event->pmu->read(event);
4113
4114         *value = local64_read(&event->count);
4115         if (enabled || running) {
4116                 u64 now = event->shadow_ctx_time + perf_clock();
4117                 u64 __enabled, __running;
4118
4119                 __perf_update_times(event, now, &__enabled, &__running);
4120                 if (enabled)
4121                         *enabled = __enabled;
4122                 if (running)
4123                         *running = __running;
4124         }
4125 out:
4126         local_irq_restore(flags);
4127
4128         return ret;
4129 }
4130
4131 static int perf_event_read(struct perf_event *event, bool group)
4132 {
4133         enum perf_event_state state = READ_ONCE(event->state);
4134         int event_cpu, ret = 0;
4135
4136         /*
4137          * If event is enabled and currently active on a CPU, update the
4138          * value in the event structure:
4139          */
4140 again:
4141         if (state == PERF_EVENT_STATE_ACTIVE) {
4142                 struct perf_read_data data;
4143
4144                 /*
4145                  * Orders the ->state and ->oncpu loads such that if we see
4146                  * ACTIVE we must also see the right ->oncpu.
4147                  *
4148                  * Matches the smp_wmb() from event_sched_in().
4149                  */
4150                 smp_rmb();
4151
4152                 event_cpu = READ_ONCE(event->oncpu);
4153                 if ((unsigned)event_cpu >= nr_cpu_ids)
4154                         return 0;
4155
4156                 data = (struct perf_read_data){
4157                         .event = event,
4158                         .group = group,
4159                         .ret = 0,
4160                 };
4161
4162                 preempt_disable();
4163                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4164
4165                 /*
4166                  * Purposely ignore the smp_call_function_single() return
4167                  * value.
4168                  *
4169                  * If event_cpu isn't a valid CPU it means the event got
4170                  * scheduled out and that will have updated the event count.
4171                  *
4172                  * Therefore, either way, we'll have an up-to-date event count
4173                  * after this.
4174                  */
4175                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4176                 preempt_enable();
4177                 ret = data.ret;
4178
4179         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4180                 struct perf_event_context *ctx = event->ctx;
4181                 unsigned long flags;
4182
4183                 raw_spin_lock_irqsave(&ctx->lock, flags);
4184                 state = event->state;
4185                 if (state != PERF_EVENT_STATE_INACTIVE) {
4186                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4187                         goto again;
4188                 }
4189
4190                 /*
4191                  * May read while context is not active (e.g., thread is
4192                  * blocked), in that case we cannot update context time
4193                  */
4194                 if (ctx->is_active & EVENT_TIME) {
4195                         update_context_time(ctx);
4196                         update_cgrp_time_from_event(event);
4197                 }
4198
4199                 perf_event_update_time(event);
4200                 if (group)
4201                         perf_event_update_sibling_time(event);
4202                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4203         }
4204
4205         return ret;
4206 }
4207
4208 /*
4209  * Initialize the perf_event context in a task_struct:
4210  */
4211 static void __perf_event_init_context(struct perf_event_context *ctx)
4212 {
4213         raw_spin_lock_init(&ctx->lock);
4214         mutex_init(&ctx->mutex);
4215         INIT_LIST_HEAD(&ctx->active_ctx_list);
4216         perf_event_groups_init(&ctx->pinned_groups);
4217         perf_event_groups_init(&ctx->flexible_groups);
4218         INIT_LIST_HEAD(&ctx->event_list);
4219         INIT_LIST_HEAD(&ctx->pinned_active);
4220         INIT_LIST_HEAD(&ctx->flexible_active);
4221         refcount_set(&ctx->refcount, 1);
4222 }
4223
4224 static struct perf_event_context *
4225 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4226 {
4227         struct perf_event_context *ctx;
4228
4229         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4230         if (!ctx)
4231                 return NULL;
4232
4233         __perf_event_init_context(ctx);
4234         if (task)
4235                 ctx->task = get_task_struct(task);
4236         ctx->pmu = pmu;
4237
4238         return ctx;
4239 }
4240
4241 static struct task_struct *
4242 find_lively_task_by_vpid(pid_t vpid)
4243 {
4244         struct task_struct *task;
4245
4246         rcu_read_lock();
4247         if (!vpid)
4248                 task = current;
4249         else
4250                 task = find_task_by_vpid(vpid);
4251         if (task)
4252                 get_task_struct(task);
4253         rcu_read_unlock();
4254
4255         if (!task)
4256                 return ERR_PTR(-ESRCH);
4257
4258         return task;
4259 }
4260
4261 /*
4262  * Returns a matching context with refcount and pincount.
4263  */
4264 static struct perf_event_context *
4265 find_get_context(struct pmu *pmu, struct task_struct *task,
4266                 struct perf_event *event)
4267 {
4268         struct perf_event_context *ctx, *clone_ctx = NULL;
4269         struct perf_cpu_context *cpuctx;
4270         void *task_ctx_data = NULL;
4271         unsigned long flags;
4272         int ctxn, err;
4273         int cpu = event->cpu;
4274
4275         if (!task) {
4276                 /* Must be root to operate on a CPU event: */
4277                 err = perf_allow_cpu(&event->attr);
4278                 if (err)
4279                         return ERR_PTR(err);
4280
4281                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4282                 ctx = &cpuctx->ctx;
4283                 get_ctx(ctx);
4284                 ++ctx->pin_count;
4285
4286                 return ctx;
4287         }
4288
4289         err = -EINVAL;
4290         ctxn = pmu->task_ctx_nr;
4291         if (ctxn < 0)
4292                 goto errout;
4293
4294         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4295                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4296                 if (!task_ctx_data) {
4297                         err = -ENOMEM;
4298                         goto errout;
4299                 }
4300         }
4301
4302 retry:
4303         ctx = perf_lock_task_context(task, ctxn, &flags);
4304         if (ctx) {
4305                 clone_ctx = unclone_ctx(ctx);
4306                 ++ctx->pin_count;
4307
4308                 if (task_ctx_data && !ctx->task_ctx_data) {
4309                         ctx->task_ctx_data = task_ctx_data;
4310                         task_ctx_data = NULL;
4311                 }
4312                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4313
4314                 if (clone_ctx)
4315                         put_ctx(clone_ctx);
4316         } else {
4317                 ctx = alloc_perf_context(pmu, task);
4318                 err = -ENOMEM;
4319                 if (!ctx)
4320                         goto errout;
4321
4322                 if (task_ctx_data) {
4323                         ctx->task_ctx_data = task_ctx_data;
4324                         task_ctx_data = NULL;
4325                 }
4326
4327                 err = 0;
4328                 mutex_lock(&task->perf_event_mutex);
4329                 /*
4330                  * If it has already passed perf_event_exit_task().
4331                  * we must see PF_EXITING, it takes this mutex too.
4332                  */
4333                 if (task->flags & PF_EXITING)
4334                         err = -ESRCH;
4335                 else if (task->perf_event_ctxp[ctxn])
4336                         err = -EAGAIN;
4337                 else {
4338                         get_ctx(ctx);
4339                         ++ctx->pin_count;
4340                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4341                 }
4342                 mutex_unlock(&task->perf_event_mutex);
4343
4344                 if (unlikely(err)) {
4345                         put_ctx(ctx);
4346
4347                         if (err == -EAGAIN)
4348                                 goto retry;
4349                         goto errout;
4350                 }
4351         }
4352
4353         kfree(task_ctx_data);
4354         return ctx;
4355
4356 errout:
4357         kfree(task_ctx_data);
4358         return ERR_PTR(err);
4359 }
4360
4361 static void perf_event_free_filter(struct perf_event *event);
4362 static void perf_event_free_bpf_prog(struct perf_event *event);
4363
4364 static void free_event_rcu(struct rcu_head *head)
4365 {
4366         struct perf_event *event;
4367
4368         event = container_of(head, struct perf_event, rcu_head);
4369         if (event->ns)
4370                 put_pid_ns(event->ns);
4371         perf_event_free_filter(event);
4372         kfree(event);
4373 }
4374
4375 static void ring_buffer_attach(struct perf_event *event,
4376                                struct ring_buffer *rb);
4377
4378 static void detach_sb_event(struct perf_event *event)
4379 {
4380         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4381
4382         raw_spin_lock(&pel->lock);
4383         list_del_rcu(&event->sb_list);
4384         raw_spin_unlock(&pel->lock);
4385 }
4386
4387 static bool is_sb_event(struct perf_event *event)
4388 {
4389         struct perf_event_attr *attr = &event->attr;
4390
4391         if (event->parent)
4392                 return false;
4393
4394         if (event->attach_state & PERF_ATTACH_TASK)
4395                 return false;
4396
4397         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4398             attr->comm || attr->comm_exec ||
4399             attr->task || attr->ksymbol ||
4400             attr->context_switch ||
4401             attr->bpf_event)
4402                 return true;
4403         return false;
4404 }
4405
4406 static void unaccount_pmu_sb_event(struct perf_event *event)
4407 {
4408         if (is_sb_event(event))
4409                 detach_sb_event(event);
4410 }
4411
4412 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4413 {
4414         if (event->parent)
4415                 return;
4416
4417         if (is_cgroup_event(event))
4418                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4419 }
4420
4421 #ifdef CONFIG_NO_HZ_FULL
4422 static DEFINE_SPINLOCK(nr_freq_lock);
4423 #endif
4424
4425 static void unaccount_freq_event_nohz(void)
4426 {
4427 #ifdef CONFIG_NO_HZ_FULL
4428         spin_lock(&nr_freq_lock);
4429         if (atomic_dec_and_test(&nr_freq_events))
4430                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4431         spin_unlock(&nr_freq_lock);
4432 #endif
4433 }
4434
4435 static void unaccount_freq_event(void)
4436 {
4437         if (tick_nohz_full_enabled())
4438                 unaccount_freq_event_nohz();
4439         else
4440                 atomic_dec(&nr_freq_events);
4441 }
4442
4443 static void unaccount_event(struct perf_event *event)
4444 {
4445         bool dec = false;
4446
4447         if (event->parent)
4448                 return;
4449
4450         if (event->attach_state & PERF_ATTACH_TASK)
4451                 dec = true;
4452         if (event->attr.mmap || event->attr.mmap_data)
4453                 atomic_dec(&nr_mmap_events);
4454         if (event->attr.comm)
4455                 atomic_dec(&nr_comm_events);
4456         if (event->attr.namespaces)
4457                 atomic_dec(&nr_namespaces_events);
4458         if (event->attr.task)
4459                 atomic_dec(&nr_task_events);
4460         if (event->attr.freq)
4461                 unaccount_freq_event();
4462         if (event->attr.context_switch) {
4463                 dec = true;
4464                 atomic_dec(&nr_switch_events);
4465         }
4466         if (is_cgroup_event(event))
4467                 dec = true;
4468         if (has_branch_stack(event))
4469                 dec = true;
4470         if (event->attr.ksymbol)
4471                 atomic_dec(&nr_ksymbol_events);
4472         if (event->attr.bpf_event)
4473                 atomic_dec(&nr_bpf_events);
4474
4475         if (dec) {
4476                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4477                         schedule_delayed_work(&perf_sched_work, HZ);
4478         }
4479
4480         unaccount_event_cpu(event, event->cpu);
4481
4482         unaccount_pmu_sb_event(event);
4483 }
4484
4485 static void perf_sched_delayed(struct work_struct *work)
4486 {
4487         mutex_lock(&perf_sched_mutex);
4488         if (atomic_dec_and_test(&perf_sched_count))
4489                 static_branch_disable(&perf_sched_events);
4490         mutex_unlock(&perf_sched_mutex);
4491 }
4492
4493 /*
4494  * The following implement mutual exclusion of events on "exclusive" pmus
4495  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4496  * at a time, so we disallow creating events that might conflict, namely:
4497  *
4498  *  1) cpu-wide events in the presence of per-task events,
4499  *  2) per-task events in the presence of cpu-wide events,
4500  *  3) two matching events on the same context.
4501  *
4502  * The former two cases are handled in the allocation path (perf_event_alloc(),
4503  * _free_event()), the latter -- before the first perf_install_in_context().
4504  */
4505 static int exclusive_event_init(struct perf_event *event)
4506 {
4507         struct pmu *pmu = event->pmu;
4508
4509         if (!is_exclusive_pmu(pmu))
4510                 return 0;
4511
4512         /*
4513          * Prevent co-existence of per-task and cpu-wide events on the
4514          * same exclusive pmu.
4515          *
4516          * Negative pmu::exclusive_cnt means there are cpu-wide
4517          * events on this "exclusive" pmu, positive means there are
4518          * per-task events.
4519          *
4520          * Since this is called in perf_event_alloc() path, event::ctx
4521          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4522          * to mean "per-task event", because unlike other attach states it
4523          * never gets cleared.
4524          */
4525         if (event->attach_state & PERF_ATTACH_TASK) {
4526                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4527                         return -EBUSY;
4528         } else {
4529                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4530                         return -EBUSY;
4531         }
4532
4533         return 0;
4534 }
4535
4536 static void exclusive_event_destroy(struct perf_event *event)
4537 {
4538         struct pmu *pmu = event->pmu;
4539
4540         if (!is_exclusive_pmu(pmu))
4541                 return;
4542
4543         /* see comment in exclusive_event_init() */
4544         if (event->attach_state & PERF_ATTACH_TASK)
4545                 atomic_dec(&pmu->exclusive_cnt);
4546         else
4547                 atomic_inc(&pmu->exclusive_cnt);
4548 }
4549
4550 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4551 {
4552         if ((e1->pmu == e2->pmu) &&
4553             (e1->cpu == e2->cpu ||
4554              e1->cpu == -1 ||
4555              e2->cpu == -1))
4556                 return true;
4557         return false;
4558 }
4559
4560 static bool exclusive_event_installable(struct perf_event *event,
4561                                         struct perf_event_context *ctx)
4562 {
4563         struct perf_event *iter_event;
4564         struct pmu *pmu = event->pmu;
4565
4566         lockdep_assert_held(&ctx->mutex);
4567
4568         if (!is_exclusive_pmu(pmu))
4569                 return true;
4570
4571         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4572                 if (exclusive_event_match(iter_event, event))
4573                         return false;
4574         }
4575
4576         return true;
4577 }
4578
4579 static void perf_addr_filters_splice(struct perf_event *event,
4580                                        struct list_head *head);
4581
4582 static void _free_event(struct perf_event *event)
4583 {
4584         irq_work_sync(&event->pending);
4585
4586         unaccount_event(event);
4587
4588         security_perf_event_free(event);
4589
4590         if (event->rb) {
4591                 /*
4592                  * Can happen when we close an event with re-directed output.
4593                  *
4594                  * Since we have a 0 refcount, perf_mmap_close() will skip
4595                  * over us; possibly making our ring_buffer_put() the last.
4596                  */
4597                 mutex_lock(&event->mmap_mutex);
4598                 ring_buffer_attach(event, NULL);
4599                 mutex_unlock(&event->mmap_mutex);
4600         }
4601
4602         if (is_cgroup_event(event))
4603                 perf_detach_cgroup(event);
4604
4605         if (!event->parent) {
4606                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4607                         put_callchain_buffers();
4608         }
4609
4610         perf_event_free_bpf_prog(event);
4611         perf_addr_filters_splice(event, NULL);
4612         kfree(event->addr_filter_ranges);
4613
4614         if (event->destroy)
4615                 event->destroy(event);
4616
4617         /*
4618          * Must be after ->destroy(), due to uprobe_perf_close() using
4619          * hw.target.
4620          */
4621         if (event->hw.target)
4622                 put_task_struct(event->hw.target);
4623
4624         /*
4625          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4626          * all task references must be cleaned up.
4627          */
4628         if (event->ctx)
4629                 put_ctx(event->ctx);
4630
4631         exclusive_event_destroy(event);
4632         module_put(event->pmu->module);
4633
4634         call_rcu(&event->rcu_head, free_event_rcu);
4635 }
4636
4637 /*
4638  * Used to free events which have a known refcount of 1, such as in error paths
4639  * where the event isn't exposed yet and inherited events.
4640  */
4641 static void free_event(struct perf_event *event)
4642 {
4643         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4644                                 "unexpected event refcount: %ld; ptr=%p\n",
4645                                 atomic_long_read(&event->refcount), event)) {
4646                 /* leak to avoid use-after-free */
4647                 return;
4648         }
4649
4650         _free_event(event);
4651 }
4652
4653 /*
4654  * Remove user event from the owner task.
4655  */
4656 static void perf_remove_from_owner(struct perf_event *event)
4657 {
4658         struct task_struct *owner;
4659
4660         rcu_read_lock();
4661         /*
4662          * Matches the smp_store_release() in perf_event_exit_task(). If we
4663          * observe !owner it means the list deletion is complete and we can
4664          * indeed free this event, otherwise we need to serialize on
4665          * owner->perf_event_mutex.
4666          */
4667         owner = READ_ONCE(event->owner);
4668         if (owner) {
4669                 /*
4670                  * Since delayed_put_task_struct() also drops the last
4671                  * task reference we can safely take a new reference
4672                  * while holding the rcu_read_lock().
4673                  */
4674                 get_task_struct(owner);
4675         }
4676         rcu_read_unlock();
4677
4678         if (owner) {
4679                 /*
4680                  * If we're here through perf_event_exit_task() we're already
4681                  * holding ctx->mutex which would be an inversion wrt. the
4682                  * normal lock order.
4683                  *
4684                  * However we can safely take this lock because its the child
4685                  * ctx->mutex.
4686                  */
4687                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4688
4689                 /*
4690                  * We have to re-check the event->owner field, if it is cleared
4691                  * we raced with perf_event_exit_task(), acquiring the mutex
4692                  * ensured they're done, and we can proceed with freeing the
4693                  * event.
4694                  */
4695                 if (event->owner) {
4696                         list_del_init(&event->owner_entry);
4697                         smp_store_release(&event->owner, NULL);
4698                 }
4699                 mutex_unlock(&owner->perf_event_mutex);
4700                 put_task_struct(owner);
4701         }
4702 }
4703
4704 static void put_event(struct perf_event *event)
4705 {
4706         if (!atomic_long_dec_and_test(&event->refcount))
4707                 return;
4708
4709         _free_event(event);
4710 }
4711
4712 /*
4713  * Kill an event dead; while event:refcount will preserve the event
4714  * object, it will not preserve its functionality. Once the last 'user'
4715  * gives up the object, we'll destroy the thing.
4716  */
4717 int perf_event_release_kernel(struct perf_event *event)
4718 {
4719         struct perf_event_context *ctx = event->ctx;
4720         struct perf_event *child, *tmp;
4721         LIST_HEAD(free_list);
4722
4723         /*
4724          * If we got here through err_file: fput(event_file); we will not have
4725          * attached to a context yet.
4726          */
4727         if (!ctx) {
4728                 WARN_ON_ONCE(event->attach_state &
4729                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4730                 goto no_ctx;
4731         }
4732
4733         if (!is_kernel_event(event))
4734                 perf_remove_from_owner(event);
4735
4736         ctx = perf_event_ctx_lock(event);
4737         WARN_ON_ONCE(ctx->parent_ctx);
4738         perf_remove_from_context(event, DETACH_GROUP);
4739
4740         raw_spin_lock_irq(&ctx->lock);
4741         /*
4742          * Mark this event as STATE_DEAD, there is no external reference to it
4743          * anymore.
4744          *
4745          * Anybody acquiring event->child_mutex after the below loop _must_
4746          * also see this, most importantly inherit_event() which will avoid
4747          * placing more children on the list.
4748          *
4749          * Thus this guarantees that we will in fact observe and kill _ALL_
4750          * child events.
4751          */
4752         event->state = PERF_EVENT_STATE_DEAD;
4753         raw_spin_unlock_irq(&ctx->lock);
4754
4755         perf_event_ctx_unlock(event, ctx);
4756
4757 again:
4758         mutex_lock(&event->child_mutex);
4759         list_for_each_entry(child, &event->child_list, child_list) {
4760
4761                 /*
4762                  * Cannot change, child events are not migrated, see the
4763                  * comment with perf_event_ctx_lock_nested().
4764                  */
4765                 ctx = READ_ONCE(child->ctx);
4766                 /*
4767                  * Since child_mutex nests inside ctx::mutex, we must jump
4768                  * through hoops. We start by grabbing a reference on the ctx.
4769                  *
4770                  * Since the event cannot get freed while we hold the
4771                  * child_mutex, the context must also exist and have a !0
4772                  * reference count.
4773                  */
4774                 get_ctx(ctx);
4775
4776                 /*
4777                  * Now that we have a ctx ref, we can drop child_mutex, and
4778                  * acquire ctx::mutex without fear of it going away. Then we
4779                  * can re-acquire child_mutex.
4780                  */
4781                 mutex_unlock(&event->child_mutex);
4782                 mutex_lock(&ctx->mutex);
4783                 mutex_lock(&event->child_mutex);
4784
4785                 /*
4786                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4787                  * state, if child is still the first entry, it didn't get freed
4788                  * and we can continue doing so.
4789                  */
4790                 tmp = list_first_entry_or_null(&event->child_list,
4791                                                struct perf_event, child_list);
4792                 if (tmp == child) {
4793                         perf_remove_from_context(child, DETACH_GROUP);
4794                         list_move(&child->child_list, &free_list);
4795                         /*
4796                          * This matches the refcount bump in inherit_event();
4797                          * this can't be the last reference.
4798                          */
4799                         put_event(event);
4800                 }
4801
4802                 mutex_unlock(&event->child_mutex);
4803                 mutex_unlock(&ctx->mutex);
4804                 put_ctx(ctx);
4805                 goto again;
4806         }
4807         mutex_unlock(&event->child_mutex);
4808
4809         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4810                 void *var = &child->ctx->refcount;
4811
4812                 list_del(&child->child_list);
4813                 free_event(child);
4814
4815                 /*
4816                  * Wake any perf_event_free_task() waiting for this event to be
4817                  * freed.
4818                  */
4819                 smp_mb(); /* pairs with wait_var_event() */
4820                 wake_up_var(var);
4821         }
4822
4823 no_ctx:
4824         put_event(event); /* Must be the 'last' reference */
4825         return 0;
4826 }
4827 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4828
4829 /*
4830  * Called when the last reference to the file is gone.
4831  */
4832 static int perf_release(struct inode *inode, struct file *file)
4833 {
4834         perf_event_release_kernel(file->private_data);
4835         return 0;
4836 }
4837
4838 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4839 {
4840         struct perf_event *child;
4841         u64 total = 0;
4842
4843         *enabled = 0;
4844         *running = 0;
4845
4846         mutex_lock(&event->child_mutex);
4847
4848         (void)perf_event_read(event, false);
4849         total += perf_event_count(event);
4850
4851         *enabled += event->total_time_enabled +
4852                         atomic64_read(&event->child_total_time_enabled);
4853         *running += event->total_time_running +
4854                         atomic64_read(&event->child_total_time_running);
4855
4856         list_for_each_entry(child, &event->child_list, child_list) {
4857                 (void)perf_event_read(child, false);
4858                 total += perf_event_count(child);
4859                 *enabled += child->total_time_enabled;
4860                 *running += child->total_time_running;
4861         }
4862         mutex_unlock(&event->child_mutex);
4863
4864         return total;
4865 }
4866
4867 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4868 {
4869         struct perf_event_context *ctx;
4870         u64 count;
4871
4872         ctx = perf_event_ctx_lock(event);
4873         count = __perf_event_read_value(event, enabled, running);
4874         perf_event_ctx_unlock(event, ctx);
4875
4876         return count;
4877 }
4878 EXPORT_SYMBOL_GPL(perf_event_read_value);
4879
4880 static int __perf_read_group_add(struct perf_event *leader,
4881                                         u64 read_format, u64 *values)
4882 {
4883         struct perf_event_context *ctx = leader->ctx;
4884         struct perf_event *sub;
4885         unsigned long flags;
4886         int n = 1; /* skip @nr */
4887         int ret;
4888
4889         ret = perf_event_read(leader, true);
4890         if (ret)
4891                 return ret;
4892
4893         raw_spin_lock_irqsave(&ctx->lock, flags);
4894
4895         /*
4896          * Since we co-schedule groups, {enabled,running} times of siblings
4897          * will be identical to those of the leader, so we only publish one
4898          * set.
4899          */
4900         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4901                 values[n++] += leader->total_time_enabled +
4902                         atomic64_read(&leader->child_total_time_enabled);
4903         }
4904
4905         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4906                 values[n++] += leader->total_time_running +
4907                         atomic64_read(&leader->child_total_time_running);
4908         }
4909
4910         /*
4911          * Write {count,id} tuples for every sibling.
4912          */
4913         values[n++] += perf_event_count(leader);
4914         if (read_format & PERF_FORMAT_ID)
4915                 values[n++] = primary_event_id(leader);
4916
4917         for_each_sibling_event(sub, leader) {
4918                 values[n++] += perf_event_count(sub);
4919                 if (read_format & PERF_FORMAT_ID)
4920                         values[n++] = primary_event_id(sub);
4921         }
4922
4923         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4924         return 0;
4925 }
4926
4927 static int perf_read_group(struct perf_event *event,
4928                                    u64 read_format, char __user *buf)
4929 {
4930         struct perf_event *leader = event->group_leader, *child;
4931         struct perf_event_context *ctx = leader->ctx;
4932         int ret;
4933         u64 *values;
4934
4935         lockdep_assert_held(&ctx->mutex);
4936
4937         values = kzalloc(event->read_size, GFP_KERNEL);
4938         if (!values)
4939                 return -ENOMEM;
4940
4941         values[0] = 1 + leader->nr_siblings;
4942
4943         /*
4944          * By locking the child_mutex of the leader we effectively
4945          * lock the child list of all siblings.. XXX explain how.
4946          */
4947         mutex_lock(&leader->child_mutex);
4948
4949         ret = __perf_read_group_add(leader, read_format, values);
4950         if (ret)
4951                 goto unlock;
4952
4953         list_for_each_entry(child, &leader->child_list, child_list) {
4954                 ret = __perf_read_group_add(child, read_format, values);
4955                 if (ret)
4956                         goto unlock;
4957         }
4958
4959         mutex_unlock(&leader->child_mutex);
4960
4961         ret = event->read_size;
4962         if (copy_to_user(buf, values, event->read_size))
4963                 ret = -EFAULT;
4964         goto out;
4965
4966 unlock:
4967         mutex_unlock(&leader->child_mutex);
4968 out:
4969         kfree(values);
4970         return ret;
4971 }
4972
4973 static int perf_read_one(struct perf_event *event,
4974                                  u64 read_format, char __user *buf)
4975 {
4976         u64 enabled, running;
4977         u64 values[4];
4978         int n = 0;
4979
4980         values[n++] = __perf_event_read_value(event, &enabled, &running);
4981         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4982                 values[n++] = enabled;
4983         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4984                 values[n++] = running;
4985         if (read_format & PERF_FORMAT_ID)
4986                 values[n++] = primary_event_id(event);
4987
4988         if (copy_to_user(buf, values, n * sizeof(u64)))
4989                 return -EFAULT;
4990
4991         return n * sizeof(u64);
4992 }
4993
4994 static bool is_event_hup(struct perf_event *event)
4995 {
4996         bool no_children;
4997
4998         if (event->state > PERF_EVENT_STATE_EXIT)
4999                 return false;
5000
5001         mutex_lock(&event->child_mutex);
5002         no_children = list_empty(&event->child_list);
5003         mutex_unlock(&event->child_mutex);
5004         return no_children;
5005 }
5006
5007 /*
5008  * Read the performance event - simple non blocking version for now
5009  */
5010 static ssize_t
5011 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5012 {
5013         u64 read_format = event->attr.read_format;
5014         int ret;
5015
5016         /*
5017          * Return end-of-file for a read on an event that is in
5018          * error state (i.e. because it was pinned but it couldn't be
5019          * scheduled on to the CPU at some point).
5020          */
5021         if (event->state == PERF_EVENT_STATE_ERROR)
5022                 return 0;
5023
5024         if (count < event->read_size)
5025                 return -ENOSPC;
5026
5027         WARN_ON_ONCE(event->ctx->parent_ctx);
5028         if (read_format & PERF_FORMAT_GROUP)
5029                 ret = perf_read_group(event, read_format, buf);
5030         else
5031                 ret = perf_read_one(event, read_format, buf);
5032
5033         return ret;
5034 }
5035
5036 static ssize_t
5037 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5038 {
5039         struct perf_event *event = file->private_data;
5040         struct perf_event_context *ctx;
5041         int ret;
5042
5043         ret = security_perf_event_read(event);
5044         if (ret)
5045                 return ret;
5046
5047         ctx = perf_event_ctx_lock(event);
5048         ret = __perf_read(event, buf, count);
5049         perf_event_ctx_unlock(event, ctx);
5050
5051         return ret;
5052 }
5053
5054 static __poll_t perf_poll(struct file *file, poll_table *wait)
5055 {
5056         struct perf_event *event = file->private_data;
5057         struct ring_buffer *rb;
5058         __poll_t events = EPOLLHUP;
5059
5060         poll_wait(file, &event->waitq, wait);
5061
5062         if (is_event_hup(event))
5063                 return events;
5064
5065         /*
5066          * Pin the event->rb by taking event->mmap_mutex; otherwise
5067          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5068          */
5069         mutex_lock(&event->mmap_mutex);
5070         rb = event->rb;
5071         if (rb)
5072                 events = atomic_xchg(&rb->poll, 0);
5073         mutex_unlock(&event->mmap_mutex);
5074         return events;
5075 }
5076
5077 static void _perf_event_reset(struct perf_event *event)
5078 {
5079         (void)perf_event_read(event, false);
5080         local64_set(&event->count, 0);
5081         perf_event_update_userpage(event);
5082 }
5083
5084 /* Assume it's not an event with inherit set. */
5085 u64 perf_event_pause(struct perf_event *event, bool reset)
5086 {
5087         struct perf_event_context *ctx;
5088         u64 count;
5089
5090         ctx = perf_event_ctx_lock(event);
5091         WARN_ON_ONCE(event->attr.inherit);
5092         _perf_event_disable(event);
5093         count = local64_read(&event->count);
5094         if (reset)
5095                 local64_set(&event->count, 0);
5096         perf_event_ctx_unlock(event, ctx);
5097
5098         return count;
5099 }
5100 EXPORT_SYMBOL_GPL(perf_event_pause);
5101
5102 /*
5103  * Holding the top-level event's child_mutex means that any
5104  * descendant process that has inherited this event will block
5105  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5106  * task existence requirements of perf_event_enable/disable.
5107  */
5108 static void perf_event_for_each_child(struct perf_event *event,
5109                                         void (*func)(struct perf_event *))
5110 {
5111         struct perf_event *child;
5112
5113         WARN_ON_ONCE(event->ctx->parent_ctx);
5114
5115         mutex_lock(&event->child_mutex);
5116         func(event);
5117         list_for_each_entry(child, &event->child_list, child_list)
5118                 func(child);
5119         mutex_unlock(&event->child_mutex);
5120 }
5121
5122 static void perf_event_for_each(struct perf_event *event,
5123                                   void (*func)(struct perf_event *))
5124 {
5125         struct perf_event_context *ctx = event->ctx;
5126         struct perf_event *sibling;
5127
5128         lockdep_assert_held(&ctx->mutex);
5129
5130         event = event->group_leader;
5131
5132         perf_event_for_each_child(event, func);
5133         for_each_sibling_event(sibling, event)
5134                 perf_event_for_each_child(sibling, func);
5135 }
5136
5137 static void __perf_event_period(struct perf_event *event,
5138                                 struct perf_cpu_context *cpuctx,
5139                                 struct perf_event_context *ctx,
5140                                 void *info)
5141 {
5142         u64 value = *((u64 *)info);
5143         bool active;
5144
5145         if (event->attr.freq) {
5146                 event->attr.sample_freq = value;
5147         } else {
5148                 event->attr.sample_period = value;
5149                 event->hw.sample_period = value;
5150         }
5151
5152         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5153         if (active) {
5154                 perf_pmu_disable(ctx->pmu);
5155                 /*
5156                  * We could be throttled; unthrottle now to avoid the tick
5157                  * trying to unthrottle while we already re-started the event.
5158                  */
5159                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5160                         event->hw.interrupts = 0;
5161                         perf_log_throttle(event, 1);
5162                 }
5163                 event->pmu->stop(event, PERF_EF_UPDATE);
5164         }
5165
5166         local64_set(&event->hw.period_left, 0);
5167
5168         if (active) {
5169                 event->pmu->start(event, PERF_EF_RELOAD);
5170                 perf_pmu_enable(ctx->pmu);
5171         }
5172 }
5173
5174 static int perf_event_check_period(struct perf_event *event, u64 value)
5175 {
5176         return event->pmu->check_period(event, value);
5177 }
5178
5179 static int _perf_event_period(struct perf_event *event, u64 value)
5180 {
5181         if (!is_sampling_event(event))
5182                 return -EINVAL;
5183
5184         if (!value)
5185                 return -EINVAL;
5186
5187         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5188                 return -EINVAL;
5189
5190         if (perf_event_check_period(event, value))
5191                 return -EINVAL;
5192
5193         if (!event->attr.freq && (value & (1ULL << 63)))
5194                 return -EINVAL;
5195
5196         event_function_call(event, __perf_event_period, &value);
5197
5198         return 0;
5199 }
5200
5201 int perf_event_period(struct perf_event *event, u64 value)
5202 {
5203         struct perf_event_context *ctx;
5204         int ret;
5205
5206         ctx = perf_event_ctx_lock(event);
5207         ret = _perf_event_period(event, value);
5208         perf_event_ctx_unlock(event, ctx);
5209
5210         return ret;
5211 }
5212 EXPORT_SYMBOL_GPL(perf_event_period);
5213
5214 static const struct file_operations perf_fops;
5215
5216 static inline int perf_fget_light(int fd, struct fd *p)
5217 {
5218         struct fd f = fdget(fd);
5219         if (!f.file)
5220                 return -EBADF;
5221
5222         if (f.file->f_op != &perf_fops) {
5223                 fdput(f);
5224                 return -EBADF;
5225         }
5226         *p = f;
5227         return 0;
5228 }
5229
5230 static int perf_event_set_output(struct perf_event *event,
5231                                  struct perf_event *output_event);
5232 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5233 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5234 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5235                           struct perf_event_attr *attr);
5236
5237 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5238 {
5239         void (*func)(struct perf_event *);
5240         u32 flags = arg;
5241
5242         switch (cmd) {
5243         case PERF_EVENT_IOC_ENABLE:
5244                 func = _perf_event_enable;
5245                 break;
5246         case PERF_EVENT_IOC_DISABLE:
5247                 func = _perf_event_disable;
5248                 break;
5249         case PERF_EVENT_IOC_RESET:
5250                 func = _perf_event_reset;
5251                 break;
5252
5253         case PERF_EVENT_IOC_REFRESH:
5254                 return _perf_event_refresh(event, arg);
5255
5256         case PERF_EVENT_IOC_PERIOD:
5257         {
5258                 u64 value;
5259
5260                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5261                         return -EFAULT;
5262
5263                 return _perf_event_period(event, value);
5264         }
5265         case PERF_EVENT_IOC_ID:
5266         {
5267                 u64 id = primary_event_id(event);
5268
5269                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5270                         return -EFAULT;
5271                 return 0;
5272         }
5273
5274         case PERF_EVENT_IOC_SET_OUTPUT:
5275         {
5276                 int ret;
5277                 if (arg != -1) {
5278                         struct perf_event *output_event;
5279                         struct fd output;
5280                         ret = perf_fget_light(arg, &output);
5281                         if (ret)
5282                                 return ret;
5283                         output_event = output.file->private_data;
5284                         ret = perf_event_set_output(event, output_event);
5285                         fdput(output);
5286                 } else {
5287                         ret = perf_event_set_output(event, NULL);
5288                 }
5289                 return ret;
5290         }
5291
5292         case PERF_EVENT_IOC_SET_FILTER:
5293                 return perf_event_set_filter(event, (void __user *)arg);
5294
5295         case PERF_EVENT_IOC_SET_BPF:
5296                 return perf_event_set_bpf_prog(event, arg);
5297
5298         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5299                 struct ring_buffer *rb;
5300
5301                 rcu_read_lock();
5302                 rb = rcu_dereference(event->rb);
5303                 if (!rb || !rb->nr_pages) {
5304                         rcu_read_unlock();
5305                         return -EINVAL;
5306                 }
5307                 rb_toggle_paused(rb, !!arg);
5308                 rcu_read_unlock();
5309                 return 0;
5310         }
5311
5312         case PERF_EVENT_IOC_QUERY_BPF:
5313                 return perf_event_query_prog_array(event, (void __user *)arg);
5314
5315         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5316                 struct perf_event_attr new_attr;
5317                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5318                                          &new_attr);
5319
5320                 if (err)
5321                         return err;
5322
5323                 return perf_event_modify_attr(event,  &new_attr);
5324         }
5325         default:
5326                 return -ENOTTY;
5327         }
5328
5329         if (flags & PERF_IOC_FLAG_GROUP)
5330                 perf_event_for_each(event, func);
5331         else
5332                 perf_event_for_each_child(event, func);
5333
5334         return 0;
5335 }
5336
5337 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5338 {
5339         struct perf_event *event = file->private_data;
5340         struct perf_event_context *ctx;
5341         long ret;
5342
5343         /* Treat ioctl like writes as it is likely a mutating operation. */
5344         ret = security_perf_event_write(event);
5345         if (ret)
5346                 return ret;
5347
5348         ctx = perf_event_ctx_lock(event);
5349         ret = _perf_ioctl(event, cmd, arg);
5350         perf_event_ctx_unlock(event, ctx);
5351
5352         return ret;
5353 }
5354
5355 #ifdef CONFIG_COMPAT
5356 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5357                                 unsigned long arg)
5358 {
5359         switch (_IOC_NR(cmd)) {
5360         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5361         case _IOC_NR(PERF_EVENT_IOC_ID):
5362         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5363         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5364                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5365                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5366                         cmd &= ~IOCSIZE_MASK;
5367                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5368                 }
5369                 break;
5370         }
5371         return perf_ioctl(file, cmd, arg);
5372 }
5373 #else
5374 # define perf_compat_ioctl NULL
5375 #endif
5376
5377 int perf_event_task_enable(void)
5378 {
5379         struct perf_event_context *ctx;
5380         struct perf_event *event;
5381
5382         mutex_lock(&current->perf_event_mutex);
5383         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5384                 ctx = perf_event_ctx_lock(event);
5385                 perf_event_for_each_child(event, _perf_event_enable);
5386                 perf_event_ctx_unlock(event, ctx);
5387         }
5388         mutex_unlock(&current->perf_event_mutex);
5389
5390         return 0;
5391 }
5392
5393 int perf_event_task_disable(void)
5394 {
5395         struct perf_event_context *ctx;
5396         struct perf_event *event;
5397
5398         mutex_lock(&current->perf_event_mutex);
5399         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5400                 ctx = perf_event_ctx_lock(event);
5401                 perf_event_for_each_child(event, _perf_event_disable);
5402                 perf_event_ctx_unlock(event, ctx);
5403         }
5404         mutex_unlock(&current->perf_event_mutex);
5405
5406         return 0;
5407 }
5408
5409 static int perf_event_index(struct perf_event *event)
5410 {
5411         if (event->hw.state & PERF_HES_STOPPED)
5412                 return 0;
5413
5414         if (event->state != PERF_EVENT_STATE_ACTIVE)
5415                 return 0;
5416
5417         return event->pmu->event_idx(event);
5418 }
5419
5420 static void calc_timer_values(struct perf_event *event,
5421                                 u64 *now,
5422                                 u64 *enabled,
5423                                 u64 *running)
5424 {
5425         u64 ctx_time;
5426
5427         *now = perf_clock();
5428         ctx_time = event->shadow_ctx_time + *now;
5429         __perf_update_times(event, ctx_time, enabled, running);
5430 }
5431
5432 static void perf_event_init_userpage(struct perf_event *event)
5433 {
5434         struct perf_event_mmap_page *userpg;
5435         struct ring_buffer *rb;
5436
5437         rcu_read_lock();
5438         rb = rcu_dereference(event->rb);
5439         if (!rb)
5440                 goto unlock;
5441
5442         userpg = rb->user_page;
5443
5444         /* Allow new userspace to detect that bit 0 is deprecated */
5445         userpg->cap_bit0_is_deprecated = 1;
5446         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5447         userpg->data_offset = PAGE_SIZE;
5448         userpg->data_size = perf_data_size(rb);
5449
5450 unlock:
5451         rcu_read_unlock();
5452 }
5453
5454 void __weak arch_perf_update_userpage(
5455         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5456 {
5457 }
5458
5459 /*
5460  * Callers need to ensure there can be no nesting of this function, otherwise
5461  * the seqlock logic goes bad. We can not serialize this because the arch
5462  * code calls this from NMI context.
5463  */
5464 void perf_event_update_userpage(struct perf_event *event)
5465 {
5466         struct perf_event_mmap_page *userpg;
5467         struct ring_buffer *rb;
5468         u64 enabled, running, now;
5469
5470         rcu_read_lock();
5471         rb = rcu_dereference(event->rb);
5472         if (!rb)
5473                 goto unlock;
5474
5475         /*
5476          * compute total_time_enabled, total_time_running
5477          * based on snapshot values taken when the event
5478          * was last scheduled in.
5479          *
5480          * we cannot simply called update_context_time()
5481          * because of locking issue as we can be called in
5482          * NMI context
5483          */
5484         calc_timer_values(event, &now, &enabled, &running);
5485
5486         userpg = rb->user_page;
5487         /*
5488          * Disable preemption to guarantee consistent time stamps are stored to
5489          * the user page.
5490          */
5491         preempt_disable();
5492         ++userpg->lock;
5493         barrier();
5494         userpg->index = perf_event_index(event);
5495         userpg->offset = perf_event_count(event);
5496         if (userpg->index)
5497                 userpg->offset -= local64_read(&event->hw.prev_count);
5498
5499         userpg->time_enabled = enabled +
5500                         atomic64_read(&event->child_total_time_enabled);
5501
5502         userpg->time_running = running +
5503                         atomic64_read(&event->child_total_time_running);
5504
5505         arch_perf_update_userpage(event, userpg, now);
5506
5507         barrier();
5508         ++userpg->lock;
5509         preempt_enable();
5510 unlock:
5511         rcu_read_unlock();
5512 }
5513 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5514
5515 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5516 {
5517         struct perf_event *event = vmf->vma->vm_file->private_data;
5518         struct ring_buffer *rb;
5519         vm_fault_t ret = VM_FAULT_SIGBUS;
5520
5521         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5522                 if (vmf->pgoff == 0)
5523                         ret = 0;
5524                 return ret;
5525         }
5526
5527         rcu_read_lock();
5528         rb = rcu_dereference(event->rb);
5529         if (!rb)
5530                 goto unlock;
5531
5532         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5533                 goto unlock;
5534
5535         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5536         if (!vmf->page)
5537                 goto unlock;
5538
5539         get_page(vmf->page);
5540         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5541         vmf->page->index   = vmf->pgoff;
5542
5543         ret = 0;
5544 unlock:
5545         rcu_read_unlock();
5546
5547         return ret;
5548 }
5549
5550 static void ring_buffer_attach(struct perf_event *event,
5551                                struct ring_buffer *rb)
5552 {
5553         struct ring_buffer *old_rb = NULL;
5554         unsigned long flags;
5555
5556         if (event->rb) {
5557                 /*
5558                  * Should be impossible, we set this when removing
5559                  * event->rb_entry and wait/clear when adding event->rb_entry.
5560                  */
5561                 WARN_ON_ONCE(event->rcu_pending);
5562
5563                 old_rb = event->rb;
5564                 spin_lock_irqsave(&old_rb->event_lock, flags);
5565                 list_del_rcu(&event->rb_entry);
5566                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5567
5568                 event->rcu_batches = get_state_synchronize_rcu();
5569                 event->rcu_pending = 1;
5570         }
5571
5572         if (rb) {
5573                 if (event->rcu_pending) {
5574                         cond_synchronize_rcu(event->rcu_batches);
5575                         event->rcu_pending = 0;
5576                 }
5577
5578                 spin_lock_irqsave(&rb->event_lock, flags);
5579                 list_add_rcu(&event->rb_entry, &rb->event_list);
5580                 spin_unlock_irqrestore(&rb->event_lock, flags);
5581         }
5582
5583         /*
5584          * Avoid racing with perf_mmap_close(AUX): stop the event
5585          * before swizzling the event::rb pointer; if it's getting
5586          * unmapped, its aux_mmap_count will be 0 and it won't
5587          * restart. See the comment in __perf_pmu_output_stop().
5588          *
5589          * Data will inevitably be lost when set_output is done in
5590          * mid-air, but then again, whoever does it like this is
5591          * not in for the data anyway.
5592          */
5593         if (has_aux(event))
5594                 perf_event_stop(event, 0);
5595
5596         rcu_assign_pointer(event->rb, rb);
5597
5598         if (old_rb) {
5599                 ring_buffer_put(old_rb);
5600                 /*
5601                  * Since we detached before setting the new rb, so that we
5602                  * could attach the new rb, we could have missed a wakeup.
5603                  * Provide it now.
5604                  */
5605                 wake_up_all(&event->waitq);
5606         }
5607 }
5608
5609 static void ring_buffer_wakeup(struct perf_event *event)
5610 {
5611         struct ring_buffer *rb;
5612
5613         rcu_read_lock();
5614         rb = rcu_dereference(event->rb);
5615         if (rb) {
5616                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5617                         wake_up_all(&event->waitq);
5618         }
5619         rcu_read_unlock();
5620 }
5621
5622 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5623 {
5624         struct ring_buffer *rb;
5625
5626         rcu_read_lock();
5627         rb = rcu_dereference(event->rb);
5628         if (rb) {
5629                 if (!refcount_inc_not_zero(&rb->refcount))
5630                         rb = NULL;
5631         }
5632         rcu_read_unlock();
5633
5634         return rb;
5635 }
5636
5637 void ring_buffer_put(struct ring_buffer *rb)
5638 {
5639         if (!refcount_dec_and_test(&rb->refcount))
5640                 return;
5641
5642         WARN_ON_ONCE(!list_empty(&rb->event_list));
5643
5644         call_rcu(&rb->rcu_head, rb_free_rcu);
5645 }
5646
5647 static void perf_mmap_open(struct vm_area_struct *vma)
5648 {
5649         struct perf_event *event = vma->vm_file->private_data;
5650
5651         atomic_inc(&event->mmap_count);
5652         atomic_inc(&event->rb->mmap_count);
5653
5654         if (vma->vm_pgoff)
5655                 atomic_inc(&event->rb->aux_mmap_count);
5656
5657         if (event->pmu->event_mapped)
5658                 event->pmu->event_mapped(event, vma->vm_mm);
5659 }
5660
5661 static void perf_pmu_output_stop(struct perf_event *event);
5662
5663 /*
5664  * A buffer can be mmap()ed multiple times; either directly through the same
5665  * event, or through other events by use of perf_event_set_output().
5666  *
5667  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5668  * the buffer here, where we still have a VM context. This means we need
5669  * to detach all events redirecting to us.
5670  */
5671 static void perf_mmap_close(struct vm_area_struct *vma)
5672 {
5673         struct perf_event *event = vma->vm_file->private_data;
5674
5675         struct ring_buffer *rb = ring_buffer_get(event);
5676         struct user_struct *mmap_user = rb->mmap_user;
5677         int mmap_locked = rb->mmap_locked;
5678         unsigned long size = perf_data_size(rb);
5679
5680         if (event->pmu->event_unmapped)
5681                 event->pmu->event_unmapped(event, vma->vm_mm);
5682
5683         /*
5684          * rb->aux_mmap_count will always drop before rb->mmap_count and
5685          * event->mmap_count, so it is ok to use event->mmap_mutex to
5686          * serialize with perf_mmap here.
5687          */
5688         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5689             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5690                 /*
5691                  * Stop all AUX events that are writing to this buffer,
5692                  * so that we can free its AUX pages and corresponding PMU
5693                  * data. Note that after rb::aux_mmap_count dropped to zero,
5694                  * they won't start any more (see perf_aux_output_begin()).
5695                  */
5696                 perf_pmu_output_stop(event);
5697
5698                 /* now it's safe to free the pages */
5699                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5700                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5701
5702                 /* this has to be the last one */
5703                 rb_free_aux(rb);
5704                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5705
5706                 mutex_unlock(&event->mmap_mutex);
5707         }
5708
5709         atomic_dec(&rb->mmap_count);
5710
5711         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5712                 goto out_put;
5713
5714         ring_buffer_attach(event, NULL);
5715         mutex_unlock(&event->mmap_mutex);
5716
5717         /* If there's still other mmap()s of this buffer, we're done. */
5718         if (atomic_read(&rb->mmap_count))
5719                 goto out_put;
5720
5721         /*
5722          * No other mmap()s, detach from all other events that might redirect
5723          * into the now unreachable buffer. Somewhat complicated by the
5724          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5725          */
5726 again:
5727         rcu_read_lock();
5728         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5729                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5730                         /*
5731                          * This event is en-route to free_event() which will
5732                          * detach it and remove it from the list.
5733                          */
5734                         continue;
5735                 }
5736                 rcu_read_unlock();
5737
5738                 mutex_lock(&event->mmap_mutex);
5739                 /*
5740                  * Check we didn't race with perf_event_set_output() which can
5741                  * swizzle the rb from under us while we were waiting to
5742                  * acquire mmap_mutex.
5743                  *
5744                  * If we find a different rb; ignore this event, a next
5745                  * iteration will no longer find it on the list. We have to
5746                  * still restart the iteration to make sure we're not now
5747                  * iterating the wrong list.
5748                  */
5749                 if (event->rb == rb)
5750                         ring_buffer_attach(event, NULL);
5751
5752                 mutex_unlock(&event->mmap_mutex);
5753                 put_event(event);
5754
5755                 /*
5756                  * Restart the iteration; either we're on the wrong list or
5757                  * destroyed its integrity by doing a deletion.
5758                  */
5759                 goto again;
5760         }
5761         rcu_read_unlock();
5762
5763         /*
5764          * It could be there's still a few 0-ref events on the list; they'll
5765          * get cleaned up by free_event() -- they'll also still have their
5766          * ref on the rb and will free it whenever they are done with it.
5767          *
5768          * Aside from that, this buffer is 'fully' detached and unmapped,
5769          * undo the VM accounting.
5770          */
5771
5772         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5773                         &mmap_user->locked_vm);
5774         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5775         free_uid(mmap_user);
5776
5777 out_put:
5778         ring_buffer_put(rb); /* could be last */
5779 }
5780
5781 static const struct vm_operations_struct perf_mmap_vmops = {
5782         .open           = perf_mmap_open,
5783         .close          = perf_mmap_close, /* non mergeable */
5784         .fault          = perf_mmap_fault,
5785         .page_mkwrite   = perf_mmap_fault,
5786 };
5787
5788 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5789 {
5790         struct perf_event *event = file->private_data;
5791         unsigned long user_locked, user_lock_limit;
5792         struct user_struct *user = current_user();
5793         unsigned long locked, lock_limit;
5794         struct ring_buffer *rb = NULL;
5795         unsigned long vma_size;
5796         unsigned long nr_pages;
5797         long user_extra = 0, extra = 0;
5798         int ret = 0, flags = 0;
5799
5800         /*
5801          * Don't allow mmap() of inherited per-task counters. This would
5802          * create a performance issue due to all children writing to the
5803          * same rb.
5804          */
5805         if (event->cpu == -1 && event->attr.inherit)
5806                 return -EINVAL;
5807
5808         if (!(vma->vm_flags & VM_SHARED))
5809                 return -EINVAL;
5810
5811         ret = security_perf_event_read(event);
5812         if (ret)
5813                 return ret;
5814
5815         vma_size = vma->vm_end - vma->vm_start;
5816
5817         if (vma->vm_pgoff == 0) {
5818                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5819         } else {
5820                 /*
5821                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5822                  * mapped, all subsequent mappings should have the same size
5823                  * and offset. Must be above the normal perf buffer.
5824                  */
5825                 u64 aux_offset, aux_size;
5826
5827                 if (!event->rb)
5828                         return -EINVAL;
5829
5830                 nr_pages = vma_size / PAGE_SIZE;
5831
5832                 mutex_lock(&event->mmap_mutex);
5833                 ret = -EINVAL;
5834
5835                 rb = event->rb;
5836                 if (!rb)
5837                         goto aux_unlock;
5838
5839                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5840                 aux_size = READ_ONCE(rb->user_page->aux_size);
5841
5842                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5843                         goto aux_unlock;
5844
5845                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5846                         goto aux_unlock;
5847
5848                 /* already mapped with a different offset */
5849                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5850                         goto aux_unlock;
5851
5852                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5853                         goto aux_unlock;
5854
5855                 /* already mapped with a different size */
5856                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5857                         goto aux_unlock;
5858
5859                 if (!is_power_of_2(nr_pages))
5860                         goto aux_unlock;
5861
5862                 if (!atomic_inc_not_zero(&rb->mmap_count))
5863                         goto aux_unlock;
5864
5865                 if (rb_has_aux(rb)) {
5866                         atomic_inc(&rb->aux_mmap_count);
5867                         ret = 0;
5868                         goto unlock;
5869                 }
5870
5871                 atomic_set(&rb->aux_mmap_count, 1);
5872                 user_extra = nr_pages;
5873
5874                 goto accounting;
5875         }
5876
5877         /*
5878          * If we have rb pages ensure they're a power-of-two number, so we
5879          * can do bitmasks instead of modulo.
5880          */
5881         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5882                 return -EINVAL;
5883
5884         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5885                 return -EINVAL;
5886
5887         WARN_ON_ONCE(event->ctx->parent_ctx);
5888 again:
5889         mutex_lock(&event->mmap_mutex);
5890         if (event->rb) {
5891                 if (event->rb->nr_pages != nr_pages) {
5892                         ret = -EINVAL;
5893                         goto unlock;
5894                 }
5895
5896                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5897                         /*
5898                          * Raced against perf_mmap_close() through
5899                          * perf_event_set_output(). Try again, hope for better
5900                          * luck.
5901                          */
5902                         mutex_unlock(&event->mmap_mutex);
5903                         goto again;
5904                 }
5905
5906                 goto unlock;
5907         }
5908
5909         user_extra = nr_pages + 1;
5910
5911 accounting:
5912         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5913
5914         /*
5915          * Increase the limit linearly with more CPUs:
5916          */
5917         user_lock_limit *= num_online_cpus();
5918
5919         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5920
5921         if (user_locked > user_lock_limit) {
5922                 /*
5923                  * charge locked_vm until it hits user_lock_limit;
5924                  * charge the rest from pinned_vm
5925                  */
5926                 extra = user_locked - user_lock_limit;
5927                 user_extra -= extra;
5928         }
5929
5930         lock_limit = rlimit(RLIMIT_MEMLOCK);
5931         lock_limit >>= PAGE_SHIFT;
5932         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
5933
5934         if ((locked > lock_limit) && perf_is_paranoid() &&
5935                 !capable(CAP_IPC_LOCK)) {
5936                 ret = -EPERM;
5937                 goto unlock;
5938         }
5939
5940         WARN_ON(!rb && event->rb);
5941
5942         if (vma->vm_flags & VM_WRITE)
5943                 flags |= RING_BUFFER_WRITABLE;
5944
5945         if (!rb) {
5946                 rb = rb_alloc(nr_pages,
5947                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5948                               event->cpu, flags);
5949
5950                 if (!rb) {
5951                         ret = -ENOMEM;
5952                         goto unlock;
5953                 }
5954
5955                 atomic_set(&rb->mmap_count, 1);
5956                 rb->mmap_user = get_current_user();
5957                 rb->mmap_locked = extra;
5958
5959                 ring_buffer_attach(event, rb);
5960
5961                 perf_event_init_userpage(event);
5962                 perf_event_update_userpage(event);
5963         } else {
5964                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5965                                    event->attr.aux_watermark, flags);
5966                 if (!ret)
5967                         rb->aux_mmap_locked = extra;
5968         }
5969
5970 unlock:
5971         if (!ret) {
5972                 atomic_long_add(user_extra, &user->locked_vm);
5973                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
5974
5975                 atomic_inc(&event->mmap_count);
5976         } else if (rb) {
5977                 atomic_dec(&rb->mmap_count);
5978         }
5979 aux_unlock:
5980         mutex_unlock(&event->mmap_mutex);
5981
5982         /*
5983          * Since pinned accounting is per vm we cannot allow fork() to copy our
5984          * vma.
5985          */
5986         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5987         vma->vm_ops = &perf_mmap_vmops;
5988
5989         if (event->pmu->event_mapped)
5990                 event->pmu->event_mapped(event, vma->vm_mm);
5991
5992         return ret;
5993 }
5994
5995 static int perf_fasync(int fd, struct file *filp, int on)
5996 {
5997         struct inode *inode = file_inode(filp);
5998         struct perf_event *event = filp->private_data;
5999         int retval;
6000
6001         inode_lock(inode);
6002         retval = fasync_helper(fd, filp, on, &event->fasync);
6003         inode_unlock(inode);
6004
6005         if (retval < 0)
6006                 return retval;
6007
6008         return 0;
6009 }
6010
6011 static const struct file_operations perf_fops = {
6012         .llseek                 = no_llseek,
6013         .release                = perf_release,
6014         .read                   = perf_read,
6015         .poll                   = perf_poll,
6016         .unlocked_ioctl         = perf_ioctl,
6017         .compat_ioctl           = perf_compat_ioctl,
6018         .mmap                   = perf_mmap,
6019         .fasync                 = perf_fasync,
6020 };
6021
6022 /*
6023  * Perf event wakeup
6024  *
6025  * If there's data, ensure we set the poll() state and publish everything
6026  * to user-space before waking everybody up.
6027  */
6028
6029 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6030 {
6031         /* only the parent has fasync state */
6032         if (event->parent)
6033                 event = event->parent;
6034         return &event->fasync;
6035 }
6036
6037 void perf_event_wakeup(struct perf_event *event)
6038 {
6039         ring_buffer_wakeup(event);
6040
6041         if (event->pending_kill) {
6042                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6043                 event->pending_kill = 0;
6044         }
6045 }
6046
6047 static void perf_pending_event_disable(struct perf_event *event)
6048 {
6049         int cpu = READ_ONCE(event->pending_disable);
6050
6051         if (cpu < 0)
6052                 return;
6053
6054         if (cpu == smp_processor_id()) {
6055                 WRITE_ONCE(event->pending_disable, -1);
6056                 perf_event_disable_local(event);
6057                 return;
6058         }
6059
6060         /*
6061          *  CPU-A                       CPU-B
6062          *
6063          *  perf_event_disable_inatomic()
6064          *    @pending_disable = CPU-A;
6065          *    irq_work_queue();
6066          *
6067          *  sched-out
6068          *    @pending_disable = -1;
6069          *
6070          *                              sched-in
6071          *                              perf_event_disable_inatomic()
6072          *                                @pending_disable = CPU-B;
6073          *                                irq_work_queue(); // FAILS
6074          *
6075          *  irq_work_run()
6076          *    perf_pending_event()
6077          *
6078          * But the event runs on CPU-B and wants disabling there.
6079          */
6080         irq_work_queue_on(&event->pending, cpu);
6081 }
6082
6083 static void perf_pending_event(struct irq_work *entry)
6084 {
6085         struct perf_event *event = container_of(entry, struct perf_event, pending);
6086         int rctx;
6087
6088         rctx = perf_swevent_get_recursion_context();
6089         /*
6090          * If we 'fail' here, that's OK, it means recursion is already disabled
6091          * and we won't recurse 'further'.
6092          */
6093
6094         perf_pending_event_disable(event);
6095
6096         if (event->pending_wakeup) {
6097                 event->pending_wakeup = 0;
6098                 perf_event_wakeup(event);
6099         }
6100
6101         if (rctx >= 0)
6102                 perf_swevent_put_recursion_context(rctx);
6103 }
6104
6105 /*
6106  * We assume there is only KVM supporting the callbacks.
6107  * Later on, we might change it to a list if there is
6108  * another virtualization implementation supporting the callbacks.
6109  */
6110 struct perf_guest_info_callbacks *perf_guest_cbs;
6111
6112 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6113 {
6114         perf_guest_cbs = cbs;
6115         return 0;
6116 }
6117 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6118
6119 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6120 {
6121         perf_guest_cbs = NULL;
6122         return 0;
6123 }
6124 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6125
6126 static void
6127 perf_output_sample_regs(struct perf_output_handle *handle,
6128                         struct pt_regs *regs, u64 mask)
6129 {
6130         int bit;
6131         DECLARE_BITMAP(_mask, 64);
6132
6133         bitmap_from_u64(_mask, mask);
6134         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6135                 u64 val;
6136
6137                 val = perf_reg_value(regs, bit);
6138                 perf_output_put(handle, val);
6139         }
6140 }
6141
6142 static void perf_sample_regs_user(struct perf_regs *regs_user,
6143                                   struct pt_regs *regs,
6144                                   struct pt_regs *regs_user_copy)
6145 {
6146         if (user_mode(regs)) {
6147                 regs_user->abi = perf_reg_abi(current);
6148                 regs_user->regs = regs;
6149         } else if (!(current->flags & PF_KTHREAD)) {
6150                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6151         } else {
6152                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6153                 regs_user->regs = NULL;
6154         }
6155 }
6156
6157 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6158                                   struct pt_regs *regs)
6159 {
6160         regs_intr->regs = regs;
6161         regs_intr->abi  = perf_reg_abi(current);
6162 }
6163
6164
6165 /*
6166  * Get remaining task size from user stack pointer.
6167  *
6168  * It'd be better to take stack vma map and limit this more
6169  * precisely, but there's no way to get it safely under interrupt,
6170  * so using TASK_SIZE as limit.
6171  */
6172 static u64 perf_ustack_task_size(struct pt_regs *regs)
6173 {
6174         unsigned long addr = perf_user_stack_pointer(regs);
6175
6176         if (!addr || addr >= TASK_SIZE)
6177                 return 0;
6178
6179         return TASK_SIZE - addr;
6180 }
6181
6182 static u16
6183 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6184                         struct pt_regs *regs)
6185 {
6186         u64 task_size;
6187
6188         /* No regs, no stack pointer, no dump. */
6189         if (!regs)
6190                 return 0;
6191
6192         /*
6193          * Check if we fit in with the requested stack size into the:
6194          * - TASK_SIZE
6195          *   If we don't, we limit the size to the TASK_SIZE.
6196          *
6197          * - remaining sample size
6198          *   If we don't, we customize the stack size to
6199          *   fit in to the remaining sample size.
6200          */
6201
6202         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6203         stack_size = min(stack_size, (u16) task_size);
6204
6205         /* Current header size plus static size and dynamic size. */
6206         header_size += 2 * sizeof(u64);
6207
6208         /* Do we fit in with the current stack dump size? */
6209         if ((u16) (header_size + stack_size) < header_size) {
6210                 /*
6211                  * If we overflow the maximum size for the sample,
6212                  * we customize the stack dump size to fit in.
6213                  */
6214                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6215                 stack_size = round_up(stack_size, sizeof(u64));
6216         }
6217
6218         return stack_size;
6219 }
6220
6221 static void
6222 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6223                           struct pt_regs *regs)
6224 {
6225         /* Case of a kernel thread, nothing to dump */
6226         if (!regs) {
6227                 u64 size = 0;
6228                 perf_output_put(handle, size);
6229         } else {
6230                 unsigned long sp;
6231                 unsigned int rem;
6232                 u64 dyn_size;
6233                 mm_segment_t fs;
6234
6235                 /*
6236                  * We dump:
6237                  * static size
6238                  *   - the size requested by user or the best one we can fit
6239                  *     in to the sample max size
6240                  * data
6241                  *   - user stack dump data
6242                  * dynamic size
6243                  *   - the actual dumped size
6244                  */
6245
6246                 /* Static size. */
6247                 perf_output_put(handle, dump_size);
6248
6249                 /* Data. */
6250                 sp = perf_user_stack_pointer(regs);
6251                 fs = get_fs();
6252                 set_fs(USER_DS);
6253                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6254                 set_fs(fs);
6255                 dyn_size = dump_size - rem;
6256
6257                 perf_output_skip(handle, rem);
6258
6259                 /* Dynamic size. */
6260                 perf_output_put(handle, dyn_size);
6261         }
6262 }
6263
6264 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6265                                           struct perf_sample_data *data,
6266                                           size_t size)
6267 {
6268         struct perf_event *sampler = event->aux_event;
6269         struct ring_buffer *rb;
6270
6271         data->aux_size = 0;
6272
6273         if (!sampler)
6274                 goto out;
6275
6276         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6277                 goto out;
6278
6279         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6280                 goto out;
6281
6282         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6283         if (!rb)
6284                 goto out;
6285
6286         /*
6287          * If this is an NMI hit inside sampling code, don't take
6288          * the sample. See also perf_aux_sample_output().
6289          */
6290         if (READ_ONCE(rb->aux_in_sampling)) {
6291                 data->aux_size = 0;
6292         } else {
6293                 size = min_t(size_t, size, perf_aux_size(rb));
6294                 data->aux_size = ALIGN(size, sizeof(u64));
6295         }
6296         ring_buffer_put(rb);
6297
6298 out:
6299         return data->aux_size;
6300 }
6301
6302 long perf_pmu_snapshot_aux(struct ring_buffer *rb,
6303                            struct perf_event *event,
6304                            struct perf_output_handle *handle,
6305                            unsigned long size)
6306 {
6307         unsigned long flags;
6308         long ret;
6309
6310         /*
6311          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6312          * paths. If we start calling them in NMI context, they may race with
6313          * the IRQ ones, that is, for example, re-starting an event that's just
6314          * been stopped, which is why we're using a separate callback that
6315          * doesn't change the event state.
6316          *
6317          * IRQs need to be disabled to prevent IPIs from racing with us.
6318          */
6319         local_irq_save(flags);
6320         /*
6321          * Guard against NMI hits inside the critical section;
6322          * see also perf_prepare_sample_aux().
6323          */
6324         WRITE_ONCE(rb->aux_in_sampling, 1);
6325         barrier();
6326
6327         ret = event->pmu->snapshot_aux(event, handle, size);
6328
6329         barrier();
6330         WRITE_ONCE(rb->aux_in_sampling, 0);
6331         local_irq_restore(flags);
6332
6333         return ret;
6334 }
6335
6336 static void perf_aux_sample_output(struct perf_event *event,
6337                                    struct perf_output_handle *handle,
6338                                    struct perf_sample_data *data)
6339 {
6340         struct perf_event *sampler = event->aux_event;
6341         unsigned long pad;
6342         struct ring_buffer *rb;
6343         long size;
6344
6345         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6346                 return;
6347
6348         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6349         if (!rb)
6350                 return;
6351
6352         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6353
6354         /*
6355          * An error here means that perf_output_copy() failed (returned a
6356          * non-zero surplus that it didn't copy), which in its current
6357          * enlightened implementation is not possible. If that changes, we'd
6358          * like to know.
6359          */
6360         if (WARN_ON_ONCE(size < 0))
6361                 goto out_put;
6362
6363         /*
6364          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6365          * perf_prepare_sample_aux(), so should not be more than that.
6366          */
6367         pad = data->aux_size - size;
6368         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6369                 pad = 8;
6370
6371         if (pad) {
6372                 u64 zero = 0;
6373                 perf_output_copy(handle, &zero, pad);
6374         }
6375
6376 out_put:
6377         ring_buffer_put(rb);
6378 }
6379
6380 static void __perf_event_header__init_id(struct perf_event_header *header,
6381                                          struct perf_sample_data *data,
6382                                          struct perf_event *event)
6383 {
6384         u64 sample_type = event->attr.sample_type;
6385
6386         data->type = sample_type;
6387         header->size += event->id_header_size;
6388
6389         if (sample_type & PERF_SAMPLE_TID) {
6390                 /* namespace issues */
6391                 data->tid_entry.pid = perf_event_pid(event, current);
6392                 data->tid_entry.tid = perf_event_tid(event, current);
6393         }
6394
6395         if (sample_type & PERF_SAMPLE_TIME)
6396                 data->time = perf_event_clock(event);
6397
6398         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6399                 data->id = primary_event_id(event);
6400
6401         if (sample_type & PERF_SAMPLE_STREAM_ID)
6402                 data->stream_id = event->id;
6403
6404         if (sample_type & PERF_SAMPLE_CPU) {
6405                 data->cpu_entry.cpu      = raw_smp_processor_id();
6406                 data->cpu_entry.reserved = 0;
6407         }
6408 }
6409
6410 void perf_event_header__init_id(struct perf_event_header *header,
6411                                 struct perf_sample_data *data,
6412                                 struct perf_event *event)
6413 {
6414         if (event->attr.sample_id_all)
6415                 __perf_event_header__init_id(header, data, event);
6416 }
6417
6418 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6419                                            struct perf_sample_data *data)
6420 {
6421         u64 sample_type = data->type;
6422
6423         if (sample_type & PERF_SAMPLE_TID)
6424                 perf_output_put(handle, data->tid_entry);
6425
6426         if (sample_type & PERF_SAMPLE_TIME)
6427                 perf_output_put(handle, data->time);
6428
6429         if (sample_type & PERF_SAMPLE_ID)
6430                 perf_output_put(handle, data->id);
6431
6432         if (sample_type & PERF_SAMPLE_STREAM_ID)
6433                 perf_output_put(handle, data->stream_id);
6434
6435         if (sample_type & PERF_SAMPLE_CPU)
6436                 perf_output_put(handle, data->cpu_entry);
6437
6438         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6439                 perf_output_put(handle, data->id);
6440 }
6441
6442 void perf_event__output_id_sample(struct perf_event *event,
6443                                   struct perf_output_handle *handle,
6444                                   struct perf_sample_data *sample)
6445 {
6446         if (event->attr.sample_id_all)
6447                 __perf_event__output_id_sample(handle, sample);
6448 }
6449
6450 static void perf_output_read_one(struct perf_output_handle *handle,
6451                                  struct perf_event *event,
6452                                  u64 enabled, u64 running)
6453 {
6454         u64 read_format = event->attr.read_format;
6455         u64 values[4];
6456         int n = 0;
6457
6458         values[n++] = perf_event_count(event);
6459         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6460                 values[n++] = enabled +
6461                         atomic64_read(&event->child_total_time_enabled);
6462         }
6463         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6464                 values[n++] = running +
6465                         atomic64_read(&event->child_total_time_running);
6466         }
6467         if (read_format & PERF_FORMAT_ID)
6468                 values[n++] = primary_event_id(event);
6469
6470         __output_copy(handle, values, n * sizeof(u64));
6471 }
6472
6473 static void perf_output_read_group(struct perf_output_handle *handle,
6474                             struct perf_event *event,
6475                             u64 enabled, u64 running)
6476 {
6477         struct perf_event *leader = event->group_leader, *sub;
6478         u64 read_format = event->attr.read_format;
6479         u64 values[5];
6480         int n = 0;
6481
6482         values[n++] = 1 + leader->nr_siblings;
6483
6484         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6485                 values[n++] = enabled;
6486
6487         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6488                 values[n++] = running;
6489
6490         if ((leader != event) &&
6491             (leader->state == PERF_EVENT_STATE_ACTIVE))
6492                 leader->pmu->read(leader);
6493
6494         values[n++] = perf_event_count(leader);
6495         if (read_format & PERF_FORMAT_ID)
6496                 values[n++] = primary_event_id(leader);
6497
6498         __output_copy(handle, values, n * sizeof(u64));
6499
6500         for_each_sibling_event(sub, leader) {
6501                 n = 0;
6502
6503                 if ((sub != event) &&
6504                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6505                         sub->pmu->read(sub);
6506
6507                 values[n++] = perf_event_count(sub);
6508                 if (read_format & PERF_FORMAT_ID)
6509                         values[n++] = primary_event_id(sub);
6510
6511                 __output_copy(handle, values, n * sizeof(u64));
6512         }
6513 }
6514
6515 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6516                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6517
6518 /*
6519  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6520  *
6521  * The problem is that its both hard and excessively expensive to iterate the
6522  * child list, not to mention that its impossible to IPI the children running
6523  * on another CPU, from interrupt/NMI context.
6524  */
6525 static void perf_output_read(struct perf_output_handle *handle,
6526                              struct perf_event *event)
6527 {
6528         u64 enabled = 0, running = 0, now;
6529         u64 read_format = event->attr.read_format;
6530
6531         /*
6532          * compute total_time_enabled, total_time_running
6533          * based on snapshot values taken when the event
6534          * was last scheduled in.
6535          *
6536          * we cannot simply called update_context_time()
6537          * because of locking issue as we are called in
6538          * NMI context
6539          */
6540         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6541                 calc_timer_values(event, &now, &enabled, &running);
6542
6543         if (event->attr.read_format & PERF_FORMAT_GROUP)
6544                 perf_output_read_group(handle, event, enabled, running);
6545         else
6546                 perf_output_read_one(handle, event, enabled, running);
6547 }
6548
6549 void perf_output_sample(struct perf_output_handle *handle,
6550                         struct perf_event_header *header,
6551                         struct perf_sample_data *data,
6552                         struct perf_event *event)
6553 {
6554         u64 sample_type = data->type;
6555
6556         perf_output_put(handle, *header);
6557
6558         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6559                 perf_output_put(handle, data->id);
6560
6561         if (sample_type & PERF_SAMPLE_IP)
6562                 perf_output_put(handle, data->ip);
6563
6564         if (sample_type & PERF_SAMPLE_TID)
6565                 perf_output_put(handle, data->tid_entry);
6566
6567         if (sample_type & PERF_SAMPLE_TIME)
6568                 perf_output_put(handle, data->time);
6569
6570         if (sample_type & PERF_SAMPLE_ADDR)
6571                 perf_output_put(handle, data->addr);
6572
6573         if (sample_type & PERF_SAMPLE_ID)
6574                 perf_output_put(handle, data->id);
6575
6576         if (sample_type & PERF_SAMPLE_STREAM_ID)
6577                 perf_output_put(handle, data->stream_id);
6578
6579         if (sample_type & PERF_SAMPLE_CPU)
6580                 perf_output_put(handle, data->cpu_entry);
6581
6582         if (sample_type & PERF_SAMPLE_PERIOD)
6583                 perf_output_put(handle, data->period);
6584
6585         if (sample_type & PERF_SAMPLE_READ)
6586                 perf_output_read(handle, event);
6587
6588         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6589                 int size = 1;
6590
6591                 size += data->callchain->nr;
6592                 size *= sizeof(u64);
6593                 __output_copy(handle, data->callchain, size);
6594         }
6595
6596         if (sample_type & PERF_SAMPLE_RAW) {
6597                 struct perf_raw_record *raw = data->raw;
6598
6599                 if (raw) {
6600                         struct perf_raw_frag *frag = &raw->frag;
6601
6602                         perf_output_put(handle, raw->size);
6603                         do {
6604                                 if (frag->copy) {
6605                                         __output_custom(handle, frag->copy,
6606                                                         frag->data, frag->size);
6607                                 } else {
6608                                         __output_copy(handle, frag->data,
6609                                                       frag->size);
6610                                 }
6611                                 if (perf_raw_frag_last(frag))
6612                                         break;
6613                                 frag = frag->next;
6614                         } while (1);
6615                         if (frag->pad)
6616                                 __output_skip(handle, NULL, frag->pad);
6617                 } else {
6618                         struct {
6619                                 u32     size;
6620                                 u32     data;
6621                         } raw = {
6622                                 .size = sizeof(u32),
6623                                 .data = 0,
6624                         };
6625                         perf_output_put(handle, raw);
6626                 }
6627         }
6628
6629         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6630                 if (data->br_stack) {
6631                         size_t size;
6632
6633                         size = data->br_stack->nr
6634                              * sizeof(struct perf_branch_entry);
6635
6636                         perf_output_put(handle, data->br_stack->nr);
6637                         perf_output_copy(handle, data->br_stack->entries, size);
6638                 } else {
6639                         /*
6640                          * we always store at least the value of nr
6641                          */
6642                         u64 nr = 0;
6643                         perf_output_put(handle, nr);
6644                 }
6645         }
6646
6647         if (sample_type & PERF_SAMPLE_REGS_USER) {
6648                 u64 abi = data->regs_user.abi;
6649
6650                 /*
6651                  * If there are no regs to dump, notice it through
6652                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6653                  */
6654                 perf_output_put(handle, abi);
6655
6656                 if (abi) {
6657                         u64 mask = event->attr.sample_regs_user;
6658                         perf_output_sample_regs(handle,
6659                                                 data->regs_user.regs,
6660                                                 mask);
6661                 }
6662         }
6663
6664         if (sample_type & PERF_SAMPLE_STACK_USER) {
6665                 perf_output_sample_ustack(handle,
6666                                           data->stack_user_size,
6667                                           data->regs_user.regs);
6668         }
6669
6670         if (sample_type & PERF_SAMPLE_WEIGHT)
6671                 perf_output_put(handle, data->weight);
6672
6673         if (sample_type & PERF_SAMPLE_DATA_SRC)
6674                 perf_output_put(handle, data->data_src.val);
6675
6676         if (sample_type & PERF_SAMPLE_TRANSACTION)
6677                 perf_output_put(handle, data->txn);
6678
6679         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6680                 u64 abi = data->regs_intr.abi;
6681                 /*
6682                  * If there are no regs to dump, notice it through
6683                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6684                  */
6685                 perf_output_put(handle, abi);
6686
6687                 if (abi) {
6688                         u64 mask = event->attr.sample_regs_intr;
6689
6690                         perf_output_sample_regs(handle,
6691                                                 data->regs_intr.regs,
6692                                                 mask);
6693                 }
6694         }
6695
6696         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6697                 perf_output_put(handle, data->phys_addr);
6698
6699         if (sample_type & PERF_SAMPLE_AUX) {
6700                 perf_output_put(handle, data->aux_size);
6701
6702                 if (data->aux_size)
6703                         perf_aux_sample_output(event, handle, data);
6704         }
6705
6706         if (!event->attr.watermark) {
6707                 int wakeup_events = event->attr.wakeup_events;
6708
6709                 if (wakeup_events) {
6710                         struct ring_buffer *rb = handle->rb;
6711                         int events = local_inc_return(&rb->events);
6712
6713                         if (events >= wakeup_events) {
6714                                 local_sub(wakeup_events, &rb->events);
6715                                 local_inc(&rb->wakeup);
6716                         }
6717                 }
6718         }
6719 }
6720
6721 static u64 perf_virt_to_phys(u64 virt)
6722 {
6723         u64 phys_addr = 0;
6724         struct page *p = NULL;
6725
6726         if (!virt)
6727                 return 0;
6728
6729         if (virt >= TASK_SIZE) {
6730                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6731                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6732                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6733                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6734         } else {
6735                 /*
6736                  * Walking the pages tables for user address.
6737                  * Interrupts are disabled, so it prevents any tear down
6738                  * of the page tables.
6739                  * Try IRQ-safe __get_user_pages_fast first.
6740                  * If failed, leave phys_addr as 0.
6741                  */
6742                 if ((current->mm != NULL) &&
6743                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6744                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6745
6746                 if (p)
6747                         put_page(p);
6748         }
6749
6750         return phys_addr;
6751 }
6752
6753 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6754
6755 struct perf_callchain_entry *
6756 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6757 {
6758         bool kernel = !event->attr.exclude_callchain_kernel;
6759         bool user   = !event->attr.exclude_callchain_user;
6760         /* Disallow cross-task user callchains. */
6761         bool crosstask = event->ctx->task && event->ctx->task != current;
6762         const u32 max_stack = event->attr.sample_max_stack;
6763         struct perf_callchain_entry *callchain;
6764
6765         if (!kernel && !user)
6766                 return &__empty_callchain;
6767
6768         callchain = get_perf_callchain(regs, 0, kernel, user,
6769                                        max_stack, crosstask, true);
6770         return callchain ?: &__empty_callchain;
6771 }
6772
6773 void perf_prepare_sample(struct perf_event_header *header,
6774                          struct perf_sample_data *data,
6775                          struct perf_event *event,
6776                          struct pt_regs *regs)
6777 {
6778         u64 sample_type = event->attr.sample_type;
6779
6780         header->type = PERF_RECORD_SAMPLE;
6781         header->size = sizeof(*header) + event->header_size;
6782
6783         header->misc = 0;
6784         header->misc |= perf_misc_flags(regs);
6785
6786         __perf_event_header__init_id(header, data, event);
6787
6788         if (sample_type & PERF_SAMPLE_IP)
6789                 data->ip = perf_instruction_pointer(regs);
6790
6791         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6792                 int size = 1;
6793
6794                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6795                         data->callchain = perf_callchain(event, regs);
6796
6797                 size += data->callchain->nr;
6798
6799                 header->size += size * sizeof(u64);
6800         }
6801
6802         if (sample_type & PERF_SAMPLE_RAW) {
6803                 struct perf_raw_record *raw = data->raw;
6804                 int size;
6805
6806                 if (raw) {
6807                         struct perf_raw_frag *frag = &raw->frag;
6808                         u32 sum = 0;
6809
6810                         do {
6811                                 sum += frag->size;
6812                                 if (perf_raw_frag_last(frag))
6813                                         break;
6814                                 frag = frag->next;
6815                         } while (1);
6816
6817                         size = round_up(sum + sizeof(u32), sizeof(u64));
6818                         raw->size = size - sizeof(u32);
6819                         frag->pad = raw->size - sum;
6820                 } else {
6821                         size = sizeof(u64);
6822                 }
6823
6824                 header->size += size;
6825         }
6826
6827         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6828                 int size = sizeof(u64); /* nr */
6829                 if (data->br_stack) {
6830                         size += data->br_stack->nr
6831                               * sizeof(struct perf_branch_entry);
6832                 }
6833                 header->size += size;
6834         }
6835
6836         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6837                 perf_sample_regs_user(&data->regs_user, regs,
6838                                       &data->regs_user_copy);
6839
6840         if (sample_type & PERF_SAMPLE_REGS_USER) {
6841                 /* regs dump ABI info */
6842                 int size = sizeof(u64);
6843
6844                 if (data->regs_user.regs) {
6845                         u64 mask = event->attr.sample_regs_user;
6846                         size += hweight64(mask) * sizeof(u64);
6847                 }
6848
6849                 header->size += size;
6850         }
6851
6852         if (sample_type & PERF_SAMPLE_STACK_USER) {
6853                 /*
6854                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
6855                  * processed as the last one or have additional check added
6856                  * in case new sample type is added, because we could eat
6857                  * up the rest of the sample size.
6858                  */
6859                 u16 stack_size = event->attr.sample_stack_user;
6860                 u16 size = sizeof(u64);
6861
6862                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6863                                                      data->regs_user.regs);
6864
6865                 /*
6866                  * If there is something to dump, add space for the dump
6867                  * itself and for the field that tells the dynamic size,
6868                  * which is how many have been actually dumped.
6869                  */
6870                 if (stack_size)
6871                         size += sizeof(u64) + stack_size;
6872
6873                 data->stack_user_size = stack_size;
6874                 header->size += size;
6875         }
6876
6877         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6878                 /* regs dump ABI info */
6879                 int size = sizeof(u64);
6880
6881                 perf_sample_regs_intr(&data->regs_intr, regs);
6882
6883                 if (data->regs_intr.regs) {
6884                         u64 mask = event->attr.sample_regs_intr;
6885
6886                         size += hweight64(mask) * sizeof(u64);
6887                 }
6888
6889                 header->size += size;
6890         }
6891
6892         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6893                 data->phys_addr = perf_virt_to_phys(data->addr);
6894
6895         if (sample_type & PERF_SAMPLE_AUX) {
6896                 u64 size;
6897
6898                 header->size += sizeof(u64); /* size */
6899
6900                 /*
6901                  * Given the 16bit nature of header::size, an AUX sample can
6902                  * easily overflow it, what with all the preceding sample bits.
6903                  * Make sure this doesn't happen by using up to U16_MAX bytes
6904                  * per sample in total (rounded down to 8 byte boundary).
6905                  */
6906                 size = min_t(size_t, U16_MAX - header->size,
6907                              event->attr.aux_sample_size);
6908                 size = rounddown(size, 8);
6909                 size = perf_prepare_sample_aux(event, data, size);
6910
6911                 WARN_ON_ONCE(size + header->size > U16_MAX);
6912                 header->size += size;
6913         }
6914         /*
6915          * If you're adding more sample types here, you likely need to do
6916          * something about the overflowing header::size, like repurpose the
6917          * lowest 3 bits of size, which should be always zero at the moment.
6918          * This raises a more important question, do we really need 512k sized
6919          * samples and why, so good argumentation is in order for whatever you
6920          * do here next.
6921          */
6922         WARN_ON_ONCE(header->size & 7);
6923 }
6924
6925 static __always_inline int
6926 __perf_event_output(struct perf_event *event,
6927                     struct perf_sample_data *data,
6928                     struct pt_regs *regs,
6929                     int (*output_begin)(struct perf_output_handle *,
6930                                         struct perf_event *,
6931                                         unsigned int))
6932 {
6933         struct perf_output_handle handle;
6934         struct perf_event_header header;
6935         int err;
6936
6937         /* protect the callchain buffers */
6938         rcu_read_lock();
6939
6940         perf_prepare_sample(&header, data, event, regs);
6941
6942         err = output_begin(&handle, event, header.size);
6943         if (err)
6944                 goto exit;
6945
6946         perf_output_sample(&handle, &header, data, event);
6947
6948         perf_output_end(&handle);
6949
6950 exit:
6951         rcu_read_unlock();
6952         return err;
6953 }
6954
6955 void
6956 perf_event_output_forward(struct perf_event *event,
6957                          struct perf_sample_data *data,
6958                          struct pt_regs *regs)
6959 {
6960         __perf_event_output(event, data, regs, perf_output_begin_forward);
6961 }
6962
6963 void
6964 perf_event_output_backward(struct perf_event *event,
6965                            struct perf_sample_data *data,
6966                            struct pt_regs *regs)
6967 {
6968         __perf_event_output(event, data, regs, perf_output_begin_backward);
6969 }
6970
6971 int
6972 perf_event_output(struct perf_event *event,
6973                   struct perf_sample_data *data,
6974                   struct pt_regs *regs)
6975 {
6976         return __perf_event_output(event, data, regs, perf_output_begin);
6977 }
6978
6979 /*
6980  * read event_id
6981  */
6982
6983 struct perf_read_event {
6984         struct perf_event_header        header;
6985
6986         u32                             pid;
6987         u32                             tid;
6988 };
6989
6990 static void
6991 perf_event_read_event(struct perf_event *event,
6992                         struct task_struct *task)
6993 {
6994         struct perf_output_handle handle;
6995         struct perf_sample_data sample;
6996         struct perf_read_event read_event = {
6997                 .header = {
6998                         .type = PERF_RECORD_READ,
6999                         .misc = 0,
7000                         .size = sizeof(read_event) + event->read_size,
7001                 },
7002                 .pid = perf_event_pid(event, task),
7003                 .tid = perf_event_tid(event, task),
7004         };
7005         int ret;
7006
7007         perf_event_header__init_id(&read_event.header, &sample, event);
7008         ret = perf_output_begin(&handle, event, read_event.header.size);
7009         if (ret)
7010                 return;
7011
7012         perf_output_put(&handle, read_event);
7013         perf_output_read(&handle, event);
7014         perf_event__output_id_sample(event, &handle, &sample);
7015
7016         perf_output_end(&handle);
7017 }
7018
7019 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7020
7021 static void
7022 perf_iterate_ctx(struct perf_event_context *ctx,
7023                    perf_iterate_f output,
7024                    void *data, bool all)
7025 {
7026         struct perf_event *event;
7027
7028         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7029                 if (!all) {
7030                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7031                                 continue;
7032                         if (!event_filter_match(event))
7033                                 continue;
7034                 }
7035
7036                 output(event, data);
7037         }
7038 }
7039
7040 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7041 {
7042         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7043         struct perf_event *event;
7044
7045         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7046                 /*
7047                  * Skip events that are not fully formed yet; ensure that
7048                  * if we observe event->ctx, both event and ctx will be
7049                  * complete enough. See perf_install_in_context().
7050                  */
7051                 if (!smp_load_acquire(&event->ctx))
7052                         continue;
7053
7054                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7055                         continue;
7056                 if (!event_filter_match(event))
7057                         continue;
7058                 output(event, data);
7059         }
7060 }
7061
7062 /*
7063  * Iterate all events that need to receive side-band events.
7064  *
7065  * For new callers; ensure that account_pmu_sb_event() includes
7066  * your event, otherwise it might not get delivered.
7067  */
7068 static void
7069 perf_iterate_sb(perf_iterate_f output, void *data,
7070                struct perf_event_context *task_ctx)
7071 {
7072         struct perf_event_context *ctx;
7073         int ctxn;
7074
7075         rcu_read_lock();
7076         preempt_disable();
7077
7078         /*
7079          * If we have task_ctx != NULL we only notify the task context itself.
7080          * The task_ctx is set only for EXIT events before releasing task
7081          * context.
7082          */
7083         if (task_ctx) {
7084                 perf_iterate_ctx(task_ctx, output, data, false);
7085                 goto done;
7086         }
7087
7088         perf_iterate_sb_cpu(output, data);
7089
7090         for_each_task_context_nr(ctxn) {
7091                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7092                 if (ctx)
7093                         perf_iterate_ctx(ctx, output, data, false);
7094         }
7095 done:
7096         preempt_enable();
7097         rcu_read_unlock();
7098 }
7099
7100 /*
7101  * Clear all file-based filters at exec, they'll have to be
7102  * re-instated when/if these objects are mmapped again.
7103  */
7104 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7105 {
7106         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7107         struct perf_addr_filter *filter;
7108         unsigned int restart = 0, count = 0;
7109         unsigned long flags;
7110
7111         if (!has_addr_filter(event))
7112                 return;
7113
7114         raw_spin_lock_irqsave(&ifh->lock, flags);
7115         list_for_each_entry(filter, &ifh->list, entry) {
7116                 if (filter->path.dentry) {
7117                         event->addr_filter_ranges[count].start = 0;
7118                         event->addr_filter_ranges[count].size = 0;
7119                         restart++;
7120                 }
7121
7122                 count++;
7123         }
7124
7125         if (restart)
7126                 event->addr_filters_gen++;
7127         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7128
7129         if (restart)
7130                 perf_event_stop(event, 1);
7131 }
7132
7133 void perf_event_exec(void)
7134 {
7135         struct perf_event_context *ctx;
7136         int ctxn;
7137
7138         rcu_read_lock();
7139         for_each_task_context_nr(ctxn) {
7140                 ctx = current->perf_event_ctxp[ctxn];
7141                 if (!ctx)
7142                         continue;
7143
7144                 perf_event_enable_on_exec(ctxn);
7145
7146                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7147                                    true);
7148         }
7149         rcu_read_unlock();
7150 }
7151
7152 struct remote_output {
7153         struct ring_buffer      *rb;
7154         int                     err;
7155 };
7156
7157 static void __perf_event_output_stop(struct perf_event *event, void *data)
7158 {
7159         struct perf_event *parent = event->parent;
7160         struct remote_output *ro = data;
7161         struct ring_buffer *rb = ro->rb;
7162         struct stop_event_data sd = {
7163                 .event  = event,
7164         };
7165
7166         if (!has_aux(event))
7167                 return;
7168
7169         if (!parent)
7170                 parent = event;
7171
7172         /*
7173          * In case of inheritance, it will be the parent that links to the
7174          * ring-buffer, but it will be the child that's actually using it.
7175          *
7176          * We are using event::rb to determine if the event should be stopped,
7177          * however this may race with ring_buffer_attach() (through set_output),
7178          * which will make us skip the event that actually needs to be stopped.
7179          * So ring_buffer_attach() has to stop an aux event before re-assigning
7180          * its rb pointer.
7181          */
7182         if (rcu_dereference(parent->rb) == rb)
7183                 ro->err = __perf_event_stop(&sd);
7184 }
7185
7186 static int __perf_pmu_output_stop(void *info)
7187 {
7188         struct perf_event *event = info;
7189         struct pmu *pmu = event->ctx->pmu;
7190         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7191         struct remote_output ro = {
7192                 .rb     = event->rb,
7193         };
7194
7195         rcu_read_lock();
7196         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7197         if (cpuctx->task_ctx)
7198                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7199                                    &ro, false);
7200         rcu_read_unlock();
7201
7202         return ro.err;
7203 }
7204
7205 static void perf_pmu_output_stop(struct perf_event *event)
7206 {
7207         struct perf_event *iter;
7208         int err, cpu;
7209
7210 restart:
7211         rcu_read_lock();
7212         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7213                 /*
7214                  * For per-CPU events, we need to make sure that neither they
7215                  * nor their children are running; for cpu==-1 events it's
7216                  * sufficient to stop the event itself if it's active, since
7217                  * it can't have children.
7218                  */
7219                 cpu = iter->cpu;
7220                 if (cpu == -1)
7221                         cpu = READ_ONCE(iter->oncpu);
7222
7223                 if (cpu == -1)
7224                         continue;
7225
7226                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7227                 if (err == -EAGAIN) {
7228                         rcu_read_unlock();
7229                         goto restart;
7230                 }
7231         }
7232         rcu_read_unlock();
7233 }
7234
7235 /*
7236  * task tracking -- fork/exit
7237  *
7238  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7239  */
7240
7241 struct perf_task_event {
7242         struct task_struct              *task;
7243         struct perf_event_context       *task_ctx;
7244
7245         struct {
7246                 struct perf_event_header        header;
7247
7248                 u32                             pid;
7249                 u32                             ppid;
7250                 u32                             tid;
7251                 u32                             ptid;
7252                 u64                             time;
7253         } event_id;
7254 };
7255
7256 static int perf_event_task_match(struct perf_event *event)
7257 {
7258         return event->attr.comm  || event->attr.mmap ||
7259                event->attr.mmap2 || event->attr.mmap_data ||
7260                event->attr.task;
7261 }
7262
7263 static void perf_event_task_output(struct perf_event *event,
7264                                    void *data)
7265 {
7266         struct perf_task_event *task_event = data;
7267         struct perf_output_handle handle;
7268         struct perf_sample_data sample;
7269         struct task_struct *task = task_event->task;
7270         int ret, size = task_event->event_id.header.size;
7271
7272         if (!perf_event_task_match(event))
7273                 return;
7274
7275         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7276
7277         ret = perf_output_begin(&handle, event,
7278                                 task_event->event_id.header.size);
7279         if (ret)
7280                 goto out;
7281
7282         task_event->event_id.pid = perf_event_pid(event, task);
7283         task_event->event_id.ppid = perf_event_pid(event, current);
7284
7285         task_event->event_id.tid = perf_event_tid(event, task);
7286         task_event->event_id.ptid = perf_event_tid(event, current);
7287
7288         task_event->event_id.time = perf_event_clock(event);
7289
7290         perf_output_put(&handle, task_event->event_id);
7291
7292         perf_event__output_id_sample(event, &handle, &sample);
7293
7294         perf_output_end(&handle);
7295 out:
7296         task_event->event_id.header.size = size;
7297 }
7298
7299 static void perf_event_task(struct task_struct *task,
7300                               struct perf_event_context *task_ctx,
7301                               int new)
7302 {
7303         struct perf_task_event task_event;
7304
7305         if (!atomic_read(&nr_comm_events) &&
7306             !atomic_read(&nr_mmap_events) &&
7307             !atomic_read(&nr_task_events))
7308                 return;
7309
7310         task_event = (struct perf_task_event){
7311                 .task     = task,
7312                 .task_ctx = task_ctx,
7313                 .event_id    = {
7314                         .header = {
7315                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7316                                 .misc = 0,
7317                                 .size = sizeof(task_event.event_id),
7318                         },
7319                         /* .pid  */
7320                         /* .ppid */
7321                         /* .tid  */
7322                         /* .ptid */
7323                         /* .time */
7324                 },
7325         };
7326
7327         perf_iterate_sb(perf_event_task_output,
7328                        &task_event,
7329                        task_ctx);
7330 }
7331
7332 void perf_event_fork(struct task_struct *task)
7333 {
7334         perf_event_task(task, NULL, 1);
7335         perf_event_namespaces(task);
7336 }
7337
7338 /*
7339  * comm tracking
7340  */
7341
7342 struct perf_comm_event {
7343         struct task_struct      *task;
7344         char                    *comm;
7345         int                     comm_size;
7346
7347         struct {
7348                 struct perf_event_header        header;
7349
7350                 u32                             pid;
7351                 u32                             tid;
7352         } event_id;
7353 };
7354
7355 static int perf_event_comm_match(struct perf_event *event)
7356 {
7357         return event->attr.comm;
7358 }
7359
7360 static void perf_event_comm_output(struct perf_event *event,
7361                                    void *data)
7362 {
7363         struct perf_comm_event *comm_event = data;
7364         struct perf_output_handle handle;
7365         struct perf_sample_data sample;
7366         int size = comm_event->event_id.header.size;
7367         int ret;
7368
7369         if (!perf_event_comm_match(event))
7370                 return;
7371
7372         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7373         ret = perf_output_begin(&handle, event,
7374                                 comm_event->event_id.header.size);
7375
7376         if (ret)
7377                 goto out;
7378
7379         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7380         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7381
7382         perf_output_put(&handle, comm_event->event_id);
7383         __output_copy(&handle, comm_event->comm,
7384                                    comm_event->comm_size);
7385
7386         perf_event__output_id_sample(event, &handle, &sample);
7387
7388         perf_output_end(&handle);
7389 out:
7390         comm_event->event_id.header.size = size;
7391 }
7392
7393 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7394 {
7395         char comm[TASK_COMM_LEN];
7396         unsigned int size;
7397
7398         memset(comm, 0, sizeof(comm));
7399         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7400         size = ALIGN(strlen(comm)+1, sizeof(u64));
7401
7402         comm_event->comm = comm;
7403         comm_event->comm_size = size;
7404
7405         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7406
7407         perf_iterate_sb(perf_event_comm_output,
7408                        comm_event,
7409                        NULL);
7410 }
7411
7412 void perf_event_comm(struct task_struct *task, bool exec)
7413 {
7414         struct perf_comm_event comm_event;
7415
7416         if (!atomic_read(&nr_comm_events))
7417                 return;
7418
7419         comm_event = (struct perf_comm_event){
7420                 .task   = task,
7421                 /* .comm      */
7422                 /* .comm_size */
7423                 .event_id  = {
7424                         .header = {
7425                                 .type = PERF_RECORD_COMM,
7426                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7427                                 /* .size */
7428                         },
7429                         /* .pid */
7430                         /* .tid */
7431                 },
7432         };
7433
7434         perf_event_comm_event(&comm_event);
7435 }
7436
7437 /*
7438  * namespaces tracking
7439  */
7440
7441 struct perf_namespaces_event {
7442         struct task_struct              *task;
7443
7444         struct {
7445                 struct perf_event_header        header;
7446
7447                 u32                             pid;
7448                 u32                             tid;
7449                 u64                             nr_namespaces;
7450                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7451         } event_id;
7452 };
7453
7454 static int perf_event_namespaces_match(struct perf_event *event)
7455 {
7456         return event->attr.namespaces;
7457 }
7458
7459 static void perf_event_namespaces_output(struct perf_event *event,
7460                                          void *data)
7461 {
7462         struct perf_namespaces_event *namespaces_event = data;
7463         struct perf_output_handle handle;
7464         struct perf_sample_data sample;
7465         u16 header_size = namespaces_event->event_id.header.size;
7466         int ret;
7467
7468         if (!perf_event_namespaces_match(event))
7469                 return;
7470
7471         perf_event_header__init_id(&namespaces_event->event_id.header,
7472                                    &sample, event);
7473         ret = perf_output_begin(&handle, event,
7474                                 namespaces_event->event_id.header.size);
7475         if (ret)
7476                 goto out;
7477
7478         namespaces_event->event_id.pid = perf_event_pid(event,
7479                                                         namespaces_event->task);
7480         namespaces_event->event_id.tid = perf_event_tid(event,
7481                                                         namespaces_event->task);
7482
7483         perf_output_put(&handle, namespaces_event->event_id);
7484
7485         perf_event__output_id_sample(event, &handle, &sample);
7486
7487         perf_output_end(&handle);
7488 out:
7489         namespaces_event->event_id.header.size = header_size;
7490 }
7491
7492 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7493                                    struct task_struct *task,
7494                                    const struct proc_ns_operations *ns_ops)
7495 {
7496         struct path ns_path;
7497         struct inode *ns_inode;
7498         void *error;
7499
7500         error = ns_get_path(&ns_path, task, ns_ops);
7501         if (!error) {
7502                 ns_inode = ns_path.dentry->d_inode;
7503                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7504                 ns_link_info->ino = ns_inode->i_ino;
7505                 path_put(&ns_path);
7506         }
7507 }
7508
7509 void perf_event_namespaces(struct task_struct *task)
7510 {
7511         struct perf_namespaces_event namespaces_event;
7512         struct perf_ns_link_info *ns_link_info;
7513
7514         if (!atomic_read(&nr_namespaces_events))
7515                 return;
7516
7517         namespaces_event = (struct perf_namespaces_event){
7518                 .task   = task,
7519                 .event_id  = {
7520                         .header = {
7521                                 .type = PERF_RECORD_NAMESPACES,
7522                                 .misc = 0,
7523                                 .size = sizeof(namespaces_event.event_id),
7524                         },
7525                         /* .pid */
7526                         /* .tid */
7527                         .nr_namespaces = NR_NAMESPACES,
7528                         /* .link_info[NR_NAMESPACES] */
7529                 },
7530         };
7531
7532         ns_link_info = namespaces_event.event_id.link_info;
7533
7534         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7535                                task, &mntns_operations);
7536
7537 #ifdef CONFIG_USER_NS
7538         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7539                                task, &userns_operations);
7540 #endif
7541 #ifdef CONFIG_NET_NS
7542         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7543                                task, &netns_operations);
7544 #endif
7545 #ifdef CONFIG_UTS_NS
7546         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7547                                task, &utsns_operations);
7548 #endif
7549 #ifdef CONFIG_IPC_NS
7550         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7551                                task, &ipcns_operations);
7552 #endif
7553 #ifdef CONFIG_PID_NS
7554         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7555                                task, &pidns_operations);
7556 #endif
7557 #ifdef CONFIG_CGROUPS
7558         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7559                                task, &cgroupns_operations);
7560 #endif
7561
7562         perf_iterate_sb(perf_event_namespaces_output,
7563                         &namespaces_event,
7564                         NULL);
7565 }
7566
7567 /*
7568  * mmap tracking
7569  */
7570
7571 struct perf_mmap_event {
7572         struct vm_area_struct   *vma;
7573
7574         const char              *file_name;
7575         int                     file_size;
7576         int                     maj, min;
7577         u64                     ino;
7578         u64                     ino_generation;
7579         u32                     prot, flags;
7580
7581         struct {
7582                 struct perf_event_header        header;
7583
7584                 u32                             pid;
7585                 u32                             tid;
7586                 u64                             start;
7587                 u64                             len;
7588                 u64                             pgoff;
7589         } event_id;
7590 };
7591
7592 static int perf_event_mmap_match(struct perf_event *event,
7593                                  void *data)
7594 {
7595         struct perf_mmap_event *mmap_event = data;
7596         struct vm_area_struct *vma = mmap_event->vma;
7597         int executable = vma->vm_flags & VM_EXEC;
7598
7599         return (!executable && event->attr.mmap_data) ||
7600                (executable && (event->attr.mmap || event->attr.mmap2));
7601 }
7602
7603 static void perf_event_mmap_output(struct perf_event *event,
7604                                    void *data)
7605 {
7606         struct perf_mmap_event *mmap_event = data;
7607         struct perf_output_handle handle;
7608         struct perf_sample_data sample;
7609         int size = mmap_event->event_id.header.size;
7610         u32 type = mmap_event->event_id.header.type;
7611         int ret;
7612
7613         if (!perf_event_mmap_match(event, data))
7614                 return;
7615
7616         if (event->attr.mmap2) {
7617                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7618                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7619                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7620                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7621                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7622                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7623                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7624         }
7625
7626         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7627         ret = perf_output_begin(&handle, event,
7628                                 mmap_event->event_id.header.size);
7629         if (ret)
7630                 goto out;
7631
7632         mmap_event->event_id.pid = perf_event_pid(event, current);
7633         mmap_event->event_id.tid = perf_event_tid(event, current);
7634
7635         perf_output_put(&handle, mmap_event->event_id);
7636
7637         if (event->attr.mmap2) {
7638                 perf_output_put(&handle, mmap_event->maj);
7639                 perf_output_put(&handle, mmap_event->min);
7640                 perf_output_put(&handle, mmap_event->ino);
7641                 perf_output_put(&handle, mmap_event->ino_generation);
7642                 perf_output_put(&handle, mmap_event->prot);
7643                 perf_output_put(&handle, mmap_event->flags);
7644         }
7645
7646         __output_copy(&handle, mmap_event->file_name,
7647                                    mmap_event->file_size);
7648
7649         perf_event__output_id_sample(event, &handle, &sample);
7650
7651         perf_output_end(&handle);
7652 out:
7653         mmap_event->event_id.header.size = size;
7654         mmap_event->event_id.header.type = type;
7655 }
7656
7657 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7658 {
7659         struct vm_area_struct *vma = mmap_event->vma;
7660         struct file *file = vma->vm_file;
7661         int maj = 0, min = 0;
7662         u64 ino = 0, gen = 0;
7663         u32 prot = 0, flags = 0;
7664         unsigned int size;
7665         char tmp[16];
7666         char *buf = NULL;
7667         char *name;
7668
7669         if (vma->vm_flags & VM_READ)
7670                 prot |= PROT_READ;
7671         if (vma->vm_flags & VM_WRITE)
7672                 prot |= PROT_WRITE;
7673         if (vma->vm_flags & VM_EXEC)
7674                 prot |= PROT_EXEC;
7675
7676         if (vma->vm_flags & VM_MAYSHARE)
7677                 flags = MAP_SHARED;
7678         else
7679                 flags = MAP_PRIVATE;
7680
7681         if (vma->vm_flags & VM_DENYWRITE)
7682                 flags |= MAP_DENYWRITE;
7683         if (vma->vm_flags & VM_MAYEXEC)
7684                 flags |= MAP_EXECUTABLE;
7685         if (vma->vm_flags & VM_LOCKED)
7686                 flags |= MAP_LOCKED;
7687         if (vma->vm_flags & VM_HUGETLB)
7688                 flags |= MAP_HUGETLB;
7689
7690         if (file) {
7691                 struct inode *inode;
7692                 dev_t dev;
7693
7694                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7695                 if (!buf) {
7696                         name = "//enomem";
7697                         goto cpy_name;
7698                 }
7699                 /*
7700                  * d_path() works from the end of the rb backwards, so we
7701                  * need to add enough zero bytes after the string to handle
7702                  * the 64bit alignment we do later.
7703                  */
7704                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7705                 if (IS_ERR(name)) {
7706                         name = "//toolong";
7707                         goto cpy_name;
7708                 }
7709                 inode = file_inode(vma->vm_file);
7710                 dev = inode->i_sb->s_dev;
7711                 ino = inode->i_ino;
7712                 gen = inode->i_generation;
7713                 maj = MAJOR(dev);
7714                 min = MINOR(dev);
7715
7716                 goto got_name;
7717         } else {
7718                 if (vma->vm_ops && vma->vm_ops->name) {
7719                         name = (char *) vma->vm_ops->name(vma);
7720                         if (name)
7721                                 goto cpy_name;
7722                 }
7723
7724                 name = (char *)arch_vma_name(vma);
7725                 if (name)
7726                         goto cpy_name;
7727
7728                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7729                                 vma->vm_end >= vma->vm_mm->brk) {
7730                         name = "[heap]";
7731                         goto cpy_name;
7732                 }
7733                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7734                                 vma->vm_end >= vma->vm_mm->start_stack) {
7735                         name = "[stack]";
7736                         goto cpy_name;
7737                 }
7738
7739                 name = "//anon";
7740                 goto cpy_name;
7741         }
7742
7743 cpy_name:
7744         strlcpy(tmp, name, sizeof(tmp));
7745         name = tmp;
7746 got_name:
7747         /*
7748          * Since our buffer works in 8 byte units we need to align our string
7749          * size to a multiple of 8. However, we must guarantee the tail end is
7750          * zero'd out to avoid leaking random bits to userspace.
7751          */
7752         size = strlen(name)+1;
7753         while (!IS_ALIGNED(size, sizeof(u64)))
7754                 name[size++] = '\0';
7755
7756         mmap_event->file_name = name;
7757         mmap_event->file_size = size;
7758         mmap_event->maj = maj;
7759         mmap_event->min = min;
7760         mmap_event->ino = ino;
7761         mmap_event->ino_generation = gen;
7762         mmap_event->prot = prot;
7763         mmap_event->flags = flags;
7764
7765         if (!(vma->vm_flags & VM_EXEC))
7766                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7767
7768         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7769
7770         perf_iterate_sb(perf_event_mmap_output,
7771                        mmap_event,
7772                        NULL);
7773
7774         kfree(buf);
7775 }
7776
7777 /*
7778  * Check whether inode and address range match filter criteria.
7779  */
7780 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7781                                      struct file *file, unsigned long offset,
7782                                      unsigned long size)
7783 {
7784         /* d_inode(NULL) won't be equal to any mapped user-space file */
7785         if (!filter->path.dentry)
7786                 return false;
7787
7788         if (d_inode(filter->path.dentry) != file_inode(file))
7789                 return false;
7790
7791         if (filter->offset > offset + size)
7792                 return false;
7793
7794         if (filter->offset + filter->size < offset)
7795                 return false;
7796
7797         return true;
7798 }
7799
7800 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
7801                                         struct vm_area_struct *vma,
7802                                         struct perf_addr_filter_range *fr)
7803 {
7804         unsigned long vma_size = vma->vm_end - vma->vm_start;
7805         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
7806         struct file *file = vma->vm_file;
7807
7808         if (!perf_addr_filter_match(filter, file, off, vma_size))
7809                 return false;
7810
7811         if (filter->offset < off) {
7812                 fr->start = vma->vm_start;
7813                 fr->size = min(vma_size, filter->size - (off - filter->offset));
7814         } else {
7815                 fr->start = vma->vm_start + filter->offset - off;
7816                 fr->size = min(vma->vm_end - fr->start, filter->size);
7817         }
7818
7819         return true;
7820 }
7821
7822 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7823 {
7824         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7825         struct vm_area_struct *vma = data;
7826         struct perf_addr_filter *filter;
7827         unsigned int restart = 0, count = 0;
7828         unsigned long flags;
7829
7830         if (!has_addr_filter(event))
7831                 return;
7832
7833         if (!vma->vm_file)
7834                 return;
7835
7836         raw_spin_lock_irqsave(&ifh->lock, flags);
7837         list_for_each_entry(filter, &ifh->list, entry) {
7838                 if (perf_addr_filter_vma_adjust(filter, vma,
7839                                                 &event->addr_filter_ranges[count]))
7840                         restart++;
7841
7842                 count++;
7843         }
7844
7845         if (restart)
7846                 event->addr_filters_gen++;
7847         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7848
7849         if (restart)
7850                 perf_event_stop(event, 1);
7851 }
7852
7853 /*
7854  * Adjust all task's events' filters to the new vma
7855  */
7856 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7857 {
7858         struct perf_event_context *ctx;
7859         int ctxn;
7860
7861         /*
7862          * Data tracing isn't supported yet and as such there is no need
7863          * to keep track of anything that isn't related to executable code:
7864          */
7865         if (!(vma->vm_flags & VM_EXEC))
7866                 return;
7867
7868         rcu_read_lock();
7869         for_each_task_context_nr(ctxn) {
7870                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7871                 if (!ctx)
7872                         continue;
7873
7874                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7875         }
7876         rcu_read_unlock();
7877 }
7878
7879 void perf_event_mmap(struct vm_area_struct *vma)
7880 {
7881         struct perf_mmap_event mmap_event;
7882
7883         if (!atomic_read(&nr_mmap_events))
7884                 return;
7885
7886         mmap_event = (struct perf_mmap_event){
7887                 .vma    = vma,
7888                 /* .file_name */
7889                 /* .file_size */
7890                 .event_id  = {
7891                         .header = {
7892                                 .type = PERF_RECORD_MMAP,
7893                                 .misc = PERF_RECORD_MISC_USER,
7894                                 /* .size */
7895                         },
7896                         /* .pid */
7897                         /* .tid */
7898                         .start  = vma->vm_start,
7899                         .len    = vma->vm_end - vma->vm_start,
7900                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7901                 },
7902                 /* .maj (attr_mmap2 only) */
7903                 /* .min (attr_mmap2 only) */
7904                 /* .ino (attr_mmap2 only) */
7905                 /* .ino_generation (attr_mmap2 only) */
7906                 /* .prot (attr_mmap2 only) */
7907                 /* .flags (attr_mmap2 only) */
7908         };
7909
7910         perf_addr_filters_adjust(vma);
7911         perf_event_mmap_event(&mmap_event);
7912 }
7913
7914 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7915                           unsigned long size, u64 flags)
7916 {
7917         struct perf_output_handle handle;
7918         struct perf_sample_data sample;
7919         struct perf_aux_event {
7920                 struct perf_event_header        header;
7921                 u64                             offset;
7922                 u64                             size;
7923                 u64                             flags;
7924         } rec = {
7925                 .header = {
7926                         .type = PERF_RECORD_AUX,
7927                         .misc = 0,
7928                         .size = sizeof(rec),
7929                 },
7930                 .offset         = head,
7931                 .size           = size,
7932                 .flags          = flags,
7933         };
7934         int ret;
7935
7936         perf_event_header__init_id(&rec.header, &sample, event);
7937         ret = perf_output_begin(&handle, event, rec.header.size);
7938
7939         if (ret)
7940                 return;
7941
7942         perf_output_put(&handle, rec);
7943         perf_event__output_id_sample(event, &handle, &sample);
7944
7945         perf_output_end(&handle);
7946 }
7947
7948 /*
7949  * Lost/dropped samples logging
7950  */
7951 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7952 {
7953         struct perf_output_handle handle;
7954         struct perf_sample_data sample;
7955         int ret;
7956
7957         struct {
7958                 struct perf_event_header        header;
7959                 u64                             lost;
7960         } lost_samples_event = {
7961                 .header = {
7962                         .type = PERF_RECORD_LOST_SAMPLES,
7963                         .misc = 0,
7964                         .size = sizeof(lost_samples_event),
7965                 },
7966                 .lost           = lost,
7967         };
7968
7969         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7970
7971         ret = perf_output_begin(&handle, event,
7972                                 lost_samples_event.header.size);
7973         if (ret)
7974                 return;
7975
7976         perf_output_put(&handle, lost_samples_event);
7977         perf_event__output_id_sample(event, &handle, &sample);
7978         perf_output_end(&handle);
7979 }
7980
7981 /*
7982  * context_switch tracking
7983  */
7984
7985 struct perf_switch_event {
7986         struct task_struct      *task;
7987         struct task_struct      *next_prev;
7988
7989         struct {
7990                 struct perf_event_header        header;
7991                 u32                             next_prev_pid;
7992                 u32                             next_prev_tid;
7993         } event_id;
7994 };
7995
7996 static int perf_event_switch_match(struct perf_event *event)
7997 {
7998         return event->attr.context_switch;
7999 }
8000
8001 static void perf_event_switch_output(struct perf_event *event, void *data)
8002 {
8003         struct perf_switch_event *se = data;
8004         struct perf_output_handle handle;
8005         struct perf_sample_data sample;
8006         int ret;
8007
8008         if (!perf_event_switch_match(event))
8009                 return;
8010
8011         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8012         if (event->ctx->task) {
8013                 se->event_id.header.type = PERF_RECORD_SWITCH;
8014                 se->event_id.header.size = sizeof(se->event_id.header);
8015         } else {
8016                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8017                 se->event_id.header.size = sizeof(se->event_id);
8018                 se->event_id.next_prev_pid =
8019                                         perf_event_pid(event, se->next_prev);
8020                 se->event_id.next_prev_tid =
8021                                         perf_event_tid(event, se->next_prev);
8022         }
8023
8024         perf_event_header__init_id(&se->event_id.header, &sample, event);
8025
8026         ret = perf_output_begin(&handle, event, se->event_id.header.size);
8027         if (ret)
8028                 return;
8029
8030         if (event->ctx->task)
8031                 perf_output_put(&handle, se->event_id.header);
8032         else
8033                 perf_output_put(&handle, se->event_id);
8034
8035         perf_event__output_id_sample(event, &handle, &sample);
8036
8037         perf_output_end(&handle);
8038 }
8039
8040 static void perf_event_switch(struct task_struct *task,
8041                               struct task_struct *next_prev, bool sched_in)
8042 {
8043         struct perf_switch_event switch_event;
8044
8045         /* N.B. caller checks nr_switch_events != 0 */
8046
8047         switch_event = (struct perf_switch_event){
8048                 .task           = task,
8049                 .next_prev      = next_prev,
8050                 .event_id       = {
8051                         .header = {
8052                                 /* .type */
8053                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8054                                 /* .size */
8055                         },
8056                         /* .next_prev_pid */
8057                         /* .next_prev_tid */
8058                 },
8059         };
8060
8061         if (!sched_in && task->state == TASK_RUNNING)
8062                 switch_event.event_id.header.misc |=
8063                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8064
8065         perf_iterate_sb(perf_event_switch_output,
8066                        &switch_event,
8067                        NULL);
8068 }
8069
8070 /*
8071  * IRQ throttle logging
8072  */
8073
8074 static void perf_log_throttle(struct perf_event *event, int enable)
8075 {
8076         struct perf_output_handle handle;
8077         struct perf_sample_data sample;
8078         int ret;
8079
8080         struct {
8081                 struct perf_event_header        header;
8082                 u64                             time;
8083                 u64                             id;
8084                 u64                             stream_id;
8085         } throttle_event = {
8086                 .header = {
8087                         .type = PERF_RECORD_THROTTLE,
8088                         .misc = 0,
8089                         .size = sizeof(throttle_event),
8090                 },
8091                 .time           = perf_event_clock(event),
8092                 .id             = primary_event_id(event),
8093                 .stream_id      = event->id,
8094         };
8095
8096         if (enable)
8097                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8098
8099         perf_event_header__init_id(&throttle_event.header, &sample, event);
8100
8101         ret = perf_output_begin(&handle, event,
8102                                 throttle_event.header.size);
8103         if (ret)
8104                 return;
8105
8106         perf_output_put(&handle, throttle_event);
8107         perf_event__output_id_sample(event, &handle, &sample);
8108         perf_output_end(&handle);
8109 }
8110
8111 /*
8112  * ksymbol register/unregister tracking
8113  */
8114
8115 struct perf_ksymbol_event {
8116         const char      *name;
8117         int             name_len;
8118         struct {
8119                 struct perf_event_header        header;
8120                 u64                             addr;
8121                 u32                             len;
8122                 u16                             ksym_type;
8123                 u16                             flags;
8124         } event_id;
8125 };
8126
8127 static int perf_event_ksymbol_match(struct perf_event *event)
8128 {
8129         return event->attr.ksymbol;
8130 }
8131
8132 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8133 {
8134         struct perf_ksymbol_event *ksymbol_event = data;
8135         struct perf_output_handle handle;
8136         struct perf_sample_data sample;
8137         int ret;
8138
8139         if (!perf_event_ksymbol_match(event))
8140                 return;
8141
8142         perf_event_header__init_id(&ksymbol_event->event_id.header,
8143                                    &sample, event);
8144         ret = perf_output_begin(&handle, event,
8145                                 ksymbol_event->event_id.header.size);
8146         if (ret)
8147                 return;
8148
8149         perf_output_put(&handle, ksymbol_event->event_id);
8150         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8151         perf_event__output_id_sample(event, &handle, &sample);
8152
8153         perf_output_end(&handle);
8154 }
8155
8156 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8157                         const char *sym)
8158 {
8159         struct perf_ksymbol_event ksymbol_event;
8160         char name[KSYM_NAME_LEN];
8161         u16 flags = 0;
8162         int name_len;
8163
8164         if (!atomic_read(&nr_ksymbol_events))
8165                 return;
8166
8167         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8168             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8169                 goto err;
8170
8171         strlcpy(name, sym, KSYM_NAME_LEN);
8172         name_len = strlen(name) + 1;
8173         while (!IS_ALIGNED(name_len, sizeof(u64)))
8174                 name[name_len++] = '\0';
8175         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8176
8177         if (unregister)
8178                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8179
8180         ksymbol_event = (struct perf_ksymbol_event){
8181                 .name = name,
8182                 .name_len = name_len,
8183                 .event_id = {
8184                         .header = {
8185                                 .type = PERF_RECORD_KSYMBOL,
8186                                 .size = sizeof(ksymbol_event.event_id) +
8187                                         name_len,
8188                         },
8189                         .addr = addr,
8190                         .len = len,
8191                         .ksym_type = ksym_type,
8192                         .flags = flags,
8193                 },
8194         };
8195
8196         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8197         return;
8198 err:
8199         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8200 }
8201
8202 /*
8203  * bpf program load/unload tracking
8204  */
8205
8206 struct perf_bpf_event {
8207         struct bpf_prog *prog;
8208         struct {
8209                 struct perf_event_header        header;
8210                 u16                             type;
8211                 u16                             flags;
8212                 u32                             id;
8213                 u8                              tag[BPF_TAG_SIZE];
8214         } event_id;
8215 };
8216
8217 static int perf_event_bpf_match(struct perf_event *event)
8218 {
8219         return event->attr.bpf_event;
8220 }
8221
8222 static void perf_event_bpf_output(struct perf_event *event, void *data)
8223 {
8224         struct perf_bpf_event *bpf_event = data;
8225         struct perf_output_handle handle;
8226         struct perf_sample_data sample;
8227         int ret;
8228
8229         if (!perf_event_bpf_match(event))
8230                 return;
8231
8232         perf_event_header__init_id(&bpf_event->event_id.header,
8233                                    &sample, event);
8234         ret = perf_output_begin(&handle, event,
8235                                 bpf_event->event_id.header.size);
8236         if (ret)
8237                 return;
8238
8239         perf_output_put(&handle, bpf_event->event_id);
8240         perf_event__output_id_sample(event, &handle, &sample);
8241
8242         perf_output_end(&handle);
8243 }
8244
8245 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8246                                          enum perf_bpf_event_type type)
8247 {
8248         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8249         char sym[KSYM_NAME_LEN];
8250         int i;
8251
8252         if (prog->aux->func_cnt == 0) {
8253                 bpf_get_prog_name(prog, sym);
8254                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8255                                    (u64)(unsigned long)prog->bpf_func,
8256                                    prog->jited_len, unregister, sym);
8257         } else {
8258                 for (i = 0; i < prog->aux->func_cnt; i++) {
8259                         struct bpf_prog *subprog = prog->aux->func[i];
8260
8261                         bpf_get_prog_name(subprog, sym);
8262                         perf_event_ksymbol(
8263                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8264                                 (u64)(unsigned long)subprog->bpf_func,
8265                                 subprog->jited_len, unregister, sym);
8266                 }
8267         }
8268 }
8269
8270 void perf_event_bpf_event(struct bpf_prog *prog,
8271                           enum perf_bpf_event_type type,
8272                           u16 flags)
8273 {
8274         struct perf_bpf_event bpf_event;
8275
8276         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8277             type >= PERF_BPF_EVENT_MAX)
8278                 return;
8279
8280         switch (type) {
8281         case PERF_BPF_EVENT_PROG_LOAD:
8282         case PERF_BPF_EVENT_PROG_UNLOAD:
8283                 if (atomic_read(&nr_ksymbol_events))
8284                         perf_event_bpf_emit_ksymbols(prog, type);
8285                 break;
8286         default:
8287                 break;
8288         }
8289
8290         if (!atomic_read(&nr_bpf_events))
8291                 return;
8292
8293         bpf_event = (struct perf_bpf_event){
8294                 .prog = prog,
8295                 .event_id = {
8296                         .header = {
8297                                 .type = PERF_RECORD_BPF_EVENT,
8298                                 .size = sizeof(bpf_event.event_id),
8299                         },
8300                         .type = type,
8301                         .flags = flags,
8302                         .id = prog->aux->id,
8303                 },
8304         };
8305
8306         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8307
8308         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8309         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8310 }
8311
8312 void perf_event_itrace_started(struct perf_event *event)
8313 {
8314         event->attach_state |= PERF_ATTACH_ITRACE;
8315 }
8316
8317 static void perf_log_itrace_start(struct perf_event *event)
8318 {
8319         struct perf_output_handle handle;
8320         struct perf_sample_data sample;
8321         struct perf_aux_event {
8322                 struct perf_event_header        header;
8323                 u32                             pid;
8324                 u32                             tid;
8325         } rec;
8326         int ret;
8327
8328         if (event->parent)
8329                 event = event->parent;
8330
8331         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8332             event->attach_state & PERF_ATTACH_ITRACE)
8333                 return;
8334
8335         rec.header.type = PERF_RECORD_ITRACE_START;
8336         rec.header.misc = 0;
8337         rec.header.size = sizeof(rec);
8338         rec.pid = perf_event_pid(event, current);
8339         rec.tid = perf_event_tid(event, current);
8340
8341         perf_event_header__init_id(&rec.header, &sample, event);
8342         ret = perf_output_begin(&handle, event, rec.header.size);
8343
8344         if (ret)
8345                 return;
8346
8347         perf_output_put(&handle, rec);
8348         perf_event__output_id_sample(event, &handle, &sample);
8349
8350         perf_output_end(&handle);
8351 }
8352
8353 static int
8354 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8355 {
8356         struct hw_perf_event *hwc = &event->hw;
8357         int ret = 0;
8358         u64 seq;
8359
8360         seq = __this_cpu_read(perf_throttled_seq);
8361         if (seq != hwc->interrupts_seq) {
8362                 hwc->interrupts_seq = seq;
8363                 hwc->interrupts = 1;
8364         } else {
8365                 hwc->interrupts++;
8366                 if (unlikely(throttle
8367                              && hwc->interrupts >= max_samples_per_tick)) {
8368                         __this_cpu_inc(perf_throttled_count);
8369                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8370                         hwc->interrupts = MAX_INTERRUPTS;
8371                         perf_log_throttle(event, 0);
8372                         ret = 1;
8373                 }
8374         }
8375
8376         if (event->attr.freq) {
8377                 u64 now = perf_clock();
8378                 s64 delta = now - hwc->freq_time_stamp;
8379
8380                 hwc->freq_time_stamp = now;
8381
8382                 if (delta > 0 && delta < 2*TICK_NSEC)
8383                         perf_adjust_period(event, delta, hwc->last_period, true);
8384         }
8385
8386         return ret;
8387 }
8388
8389 int perf_event_account_interrupt(struct perf_event *event)
8390 {
8391         return __perf_event_account_interrupt(event, 1);
8392 }
8393
8394 /*
8395  * Generic event overflow handling, sampling.
8396  */
8397
8398 static int __perf_event_overflow(struct perf_event *event,
8399                                    int throttle, struct perf_sample_data *data,
8400                                    struct pt_regs *regs)
8401 {
8402         int events = atomic_read(&event->event_limit);
8403         int ret = 0;
8404
8405         /*
8406          * Non-sampling counters might still use the PMI to fold short
8407          * hardware counters, ignore those.
8408          */
8409         if (unlikely(!is_sampling_event(event)))
8410                 return 0;
8411
8412         ret = __perf_event_account_interrupt(event, throttle);
8413
8414         /*
8415          * XXX event_limit might not quite work as expected on inherited
8416          * events
8417          */
8418
8419         event->pending_kill = POLL_IN;
8420         if (events && atomic_dec_and_test(&event->event_limit)) {
8421                 ret = 1;
8422                 event->pending_kill = POLL_HUP;
8423
8424                 perf_event_disable_inatomic(event);
8425         }
8426
8427         READ_ONCE(event->overflow_handler)(event, data, regs);
8428
8429         if (*perf_event_fasync(event) && event->pending_kill) {
8430                 event->pending_wakeup = 1;
8431                 irq_work_queue(&event->pending);
8432         }
8433
8434         return ret;
8435 }
8436
8437 int perf_event_overflow(struct perf_event *event,
8438                           struct perf_sample_data *data,
8439                           struct pt_regs *regs)
8440 {
8441         return __perf_event_overflow(event, 1, data, regs);
8442 }
8443
8444 /*
8445  * Generic software event infrastructure
8446  */
8447
8448 struct swevent_htable {
8449         struct swevent_hlist            *swevent_hlist;
8450         struct mutex                    hlist_mutex;
8451         int                             hlist_refcount;
8452
8453         /* Recursion avoidance in each contexts */
8454         int                             recursion[PERF_NR_CONTEXTS];
8455 };
8456
8457 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8458
8459 /*
8460  * We directly increment event->count and keep a second value in
8461  * event->hw.period_left to count intervals. This period event
8462  * is kept in the range [-sample_period, 0] so that we can use the
8463  * sign as trigger.
8464  */
8465
8466 u64 perf_swevent_set_period(struct perf_event *event)
8467 {
8468         struct hw_perf_event *hwc = &event->hw;
8469         u64 period = hwc->last_period;
8470         u64 nr, offset;
8471         s64 old, val;
8472
8473         hwc->last_period = hwc->sample_period;
8474
8475 again:
8476         old = val = local64_read(&hwc->period_left);
8477         if (val < 0)
8478                 return 0;
8479
8480         nr = div64_u64(period + val, period);
8481         offset = nr * period;
8482         val -= offset;
8483         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8484                 goto again;
8485
8486         return nr;
8487 }
8488
8489 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8490                                     struct perf_sample_data *data,
8491                                     struct pt_regs *regs)
8492 {
8493         struct hw_perf_event *hwc = &event->hw;
8494         int throttle = 0;
8495
8496         if (!overflow)
8497                 overflow = perf_swevent_set_period(event);
8498
8499         if (hwc->interrupts == MAX_INTERRUPTS)
8500                 return;
8501
8502         for (; overflow; overflow--) {
8503                 if (__perf_event_overflow(event, throttle,
8504                                             data, regs)) {
8505                         /*
8506                          * We inhibit the overflow from happening when
8507                          * hwc->interrupts == MAX_INTERRUPTS.
8508                          */
8509                         break;
8510                 }
8511                 throttle = 1;
8512         }
8513 }
8514
8515 static void perf_swevent_event(struct perf_event *event, u64 nr,
8516                                struct perf_sample_data *data,
8517                                struct pt_regs *regs)
8518 {
8519         struct hw_perf_event *hwc = &event->hw;
8520
8521         local64_add(nr, &event->count);
8522
8523         if (!regs)
8524                 return;
8525
8526         if (!is_sampling_event(event))
8527                 return;
8528
8529         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8530                 data->period = nr;
8531                 return perf_swevent_overflow(event, 1, data, regs);
8532         } else
8533                 data->period = event->hw.last_period;
8534
8535         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8536                 return perf_swevent_overflow(event, 1, data, regs);
8537
8538         if (local64_add_negative(nr, &hwc->period_left))
8539                 return;
8540
8541         perf_swevent_overflow(event, 0, data, regs);
8542 }
8543
8544 static int perf_exclude_event(struct perf_event *event,
8545                               struct pt_regs *regs)
8546 {
8547         if (event->hw.state & PERF_HES_STOPPED)
8548                 return 1;
8549
8550         if (regs) {
8551                 if (event->attr.exclude_user && user_mode(regs))
8552                         return 1;
8553
8554                 if (event->attr.exclude_kernel && !user_mode(regs))
8555                         return 1;
8556         }
8557
8558         return 0;
8559 }
8560
8561 static int perf_swevent_match(struct perf_event *event,
8562                                 enum perf_type_id type,
8563                                 u32 event_id,
8564                                 struct perf_sample_data *data,
8565                                 struct pt_regs *regs)
8566 {
8567         if (event->attr.type != type)
8568                 return 0;
8569
8570         if (event->attr.config != event_id)
8571                 return 0;
8572
8573         if (perf_exclude_event(event, regs))
8574                 return 0;
8575
8576         return 1;
8577 }
8578
8579 static inline u64 swevent_hash(u64 type, u32 event_id)
8580 {
8581         u64 val = event_id | (type << 32);
8582
8583         return hash_64(val, SWEVENT_HLIST_BITS);
8584 }
8585
8586 static inline struct hlist_head *
8587 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
8588 {
8589         u64 hash = swevent_hash(type, event_id);
8590
8591         return &hlist->heads[hash];
8592 }
8593
8594 /* For the read side: events when they trigger */
8595 static inline struct hlist_head *
8596 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
8597 {
8598         struct swevent_hlist *hlist;
8599
8600         hlist = rcu_dereference(swhash->swevent_hlist);
8601         if (!hlist)
8602                 return NULL;
8603
8604         return __find_swevent_head(hlist, type, event_id);
8605 }
8606
8607 /* For the event head insertion and removal in the hlist */
8608 static inline struct hlist_head *
8609 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
8610 {
8611         struct swevent_hlist *hlist;
8612         u32 event_id = event->attr.config;
8613         u64 type = event->attr.type;
8614
8615         /*
8616          * Event scheduling is always serialized against hlist allocation
8617          * and release. Which makes the protected version suitable here.
8618          * The context lock guarantees that.
8619          */
8620         hlist = rcu_dereference_protected(swhash->swevent_hlist,
8621                                           lockdep_is_held(&event->ctx->lock));
8622         if (!hlist)
8623                 return NULL;
8624
8625         return __find_swevent_head(hlist, type, event_id);
8626 }
8627
8628 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
8629                                     u64 nr,
8630                                     struct perf_sample_data *data,
8631                                     struct pt_regs *regs)
8632 {
8633         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8634         struct perf_event *event;
8635         struct hlist_head *head;
8636
8637         rcu_read_lock();
8638         head = find_swevent_head_rcu(swhash, type, event_id);
8639         if (!head)
8640                 goto end;
8641
8642         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8643                 if (perf_swevent_match(event, type, event_id, data, regs))
8644                         perf_swevent_event(event, nr, data, regs);
8645         }
8646 end:
8647         rcu_read_unlock();
8648 }
8649
8650 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8651
8652 int perf_swevent_get_recursion_context(void)
8653 {
8654         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8655
8656         return get_recursion_context(swhash->recursion);
8657 }
8658 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8659
8660 void perf_swevent_put_recursion_context(int rctx)
8661 {
8662         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8663
8664         put_recursion_context(swhash->recursion, rctx);
8665 }
8666
8667 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8668 {
8669         struct perf_sample_data data;
8670
8671         if (WARN_ON_ONCE(!regs))
8672                 return;
8673
8674         perf_sample_data_init(&data, addr, 0);
8675         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8676 }
8677
8678 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8679 {
8680         int rctx;
8681
8682         preempt_disable_notrace();
8683         rctx = perf_swevent_get_recursion_context();
8684         if (unlikely(rctx < 0))
8685                 goto fail;
8686
8687         ___perf_sw_event(event_id, nr, regs, addr);
8688
8689         perf_swevent_put_recursion_context(rctx);
8690 fail:
8691         preempt_enable_notrace();
8692 }
8693
8694 static void perf_swevent_read(struct perf_event *event)
8695 {
8696 }
8697
8698 static int perf_swevent_add(struct perf_event *event, int flags)
8699 {
8700         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8701         struct hw_perf_event *hwc = &event->hw;
8702         struct hlist_head *head;
8703
8704         if (is_sampling_event(event)) {
8705                 hwc->last_period = hwc->sample_period;
8706                 perf_swevent_set_period(event);
8707         }
8708
8709         hwc->state = !(flags & PERF_EF_START);
8710
8711         head = find_swevent_head(swhash, event);
8712         if (WARN_ON_ONCE(!head))
8713                 return -EINVAL;
8714
8715         hlist_add_head_rcu(&event->hlist_entry, head);
8716         perf_event_update_userpage(event);
8717
8718         return 0;
8719 }
8720
8721 static void perf_swevent_del(struct perf_event *event, int flags)
8722 {
8723         hlist_del_rcu(&event->hlist_entry);
8724 }
8725
8726 static void perf_swevent_start(struct perf_event *event, int flags)
8727 {
8728         event->hw.state = 0;
8729 }
8730
8731 static void perf_swevent_stop(struct perf_event *event, int flags)
8732 {
8733         event->hw.state = PERF_HES_STOPPED;
8734 }
8735
8736 /* Deref the hlist from the update side */
8737 static inline struct swevent_hlist *
8738 swevent_hlist_deref(struct swevent_htable *swhash)
8739 {
8740         return rcu_dereference_protected(swhash->swevent_hlist,
8741                                          lockdep_is_held(&swhash->hlist_mutex));
8742 }
8743
8744 static void swevent_hlist_release(struct swevent_htable *swhash)
8745 {
8746         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8747
8748         if (!hlist)
8749                 return;
8750
8751         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8752         kfree_rcu(hlist, rcu_head);
8753 }
8754
8755 static void swevent_hlist_put_cpu(int cpu)
8756 {
8757         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8758
8759         mutex_lock(&swhash->hlist_mutex);
8760
8761         if (!--swhash->hlist_refcount)
8762                 swevent_hlist_release(swhash);
8763
8764         mutex_unlock(&swhash->hlist_mutex);
8765 }
8766
8767 static void swevent_hlist_put(void)
8768 {
8769         int cpu;
8770
8771         for_each_possible_cpu(cpu)
8772                 swevent_hlist_put_cpu(cpu);
8773 }
8774
8775 static int swevent_hlist_get_cpu(int cpu)
8776 {
8777         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8778         int err = 0;
8779
8780         mutex_lock(&swhash->hlist_mutex);
8781         if (!swevent_hlist_deref(swhash) &&
8782             cpumask_test_cpu(cpu, perf_online_mask)) {
8783                 struct swevent_hlist *hlist;
8784
8785                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8786                 if (!hlist) {
8787                         err = -ENOMEM;
8788                         goto exit;
8789                 }
8790                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8791         }
8792         swhash->hlist_refcount++;
8793 exit:
8794         mutex_unlock(&swhash->hlist_mutex);
8795
8796         return err;
8797 }
8798
8799 static int swevent_hlist_get(void)
8800 {
8801         int err, cpu, failed_cpu;
8802
8803         mutex_lock(&pmus_lock);
8804         for_each_possible_cpu(cpu) {
8805                 err = swevent_hlist_get_cpu(cpu);
8806                 if (err) {
8807                         failed_cpu = cpu;
8808                         goto fail;
8809                 }
8810         }
8811         mutex_unlock(&pmus_lock);
8812         return 0;
8813 fail:
8814         for_each_possible_cpu(cpu) {
8815                 if (cpu == failed_cpu)
8816                         break;
8817                 swevent_hlist_put_cpu(cpu);
8818         }
8819         mutex_unlock(&pmus_lock);
8820         return err;
8821 }
8822
8823 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8824
8825 static void sw_perf_event_destroy(struct perf_event *event)
8826 {
8827         u64 event_id = event->attr.config;
8828
8829         WARN_ON(event->parent);
8830
8831         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8832         swevent_hlist_put();
8833 }
8834
8835 static int perf_swevent_init(struct perf_event *event)
8836 {
8837         u64 event_id = event->attr.config;
8838
8839         if (event->attr.type != PERF_TYPE_SOFTWARE)
8840                 return -ENOENT;
8841
8842         /*
8843          * no branch sampling for software events
8844          */
8845         if (has_branch_stack(event))
8846                 return -EOPNOTSUPP;
8847
8848         switch (event_id) {
8849         case PERF_COUNT_SW_CPU_CLOCK:
8850         case PERF_COUNT_SW_TASK_CLOCK:
8851                 return -ENOENT;
8852
8853         default:
8854                 break;
8855         }
8856
8857         if (event_id >= PERF_COUNT_SW_MAX)
8858                 return -ENOENT;
8859
8860         if (!event->parent) {
8861                 int err;
8862
8863                 err = swevent_hlist_get();
8864                 if (err)
8865                         return err;
8866
8867                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8868                 event->destroy = sw_perf_event_destroy;
8869         }
8870
8871         return 0;
8872 }
8873
8874 static struct pmu perf_swevent = {
8875         .task_ctx_nr    = perf_sw_context,
8876
8877         .capabilities   = PERF_PMU_CAP_NO_NMI,
8878
8879         .event_init     = perf_swevent_init,
8880         .add            = perf_swevent_add,
8881         .del            = perf_swevent_del,
8882         .start          = perf_swevent_start,
8883         .stop           = perf_swevent_stop,
8884         .read           = perf_swevent_read,
8885 };
8886
8887 #ifdef CONFIG_EVENT_TRACING
8888
8889 static int perf_tp_filter_match(struct perf_event *event,
8890                                 struct perf_sample_data *data)
8891 {
8892         void *record = data->raw->frag.data;
8893
8894         /* only top level events have filters set */
8895         if (event->parent)
8896                 event = event->parent;
8897
8898         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8899                 return 1;
8900         return 0;
8901 }
8902
8903 static int perf_tp_event_match(struct perf_event *event,
8904                                 struct perf_sample_data *data,
8905                                 struct pt_regs *regs)
8906 {
8907         if (event->hw.state & PERF_HES_STOPPED)
8908                 return 0;
8909         /*
8910          * If exclude_kernel, only trace user-space tracepoints (uprobes)
8911          */
8912         if (event->attr.exclude_kernel && !user_mode(regs))
8913                 return 0;
8914
8915         if (!perf_tp_filter_match(event, data))
8916                 return 0;
8917
8918         return 1;
8919 }
8920
8921 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8922                                struct trace_event_call *call, u64 count,
8923                                struct pt_regs *regs, struct hlist_head *head,
8924                                struct task_struct *task)
8925 {
8926         if (bpf_prog_array_valid(call)) {
8927                 *(struct pt_regs **)raw_data = regs;
8928                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8929                         perf_swevent_put_recursion_context(rctx);
8930                         return;
8931                 }
8932         }
8933         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8934                       rctx, task);
8935 }
8936 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8937
8938 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8939                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8940                    struct task_struct *task)
8941 {
8942         struct perf_sample_data data;
8943         struct perf_event *event;
8944
8945         struct perf_raw_record raw = {
8946                 .frag = {
8947                         .size = entry_size,
8948                         .data = record,
8949                 },
8950         };
8951
8952         perf_sample_data_init(&data, 0, 0);
8953         data.raw = &raw;
8954
8955         perf_trace_buf_update(record, event_type);
8956
8957         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8958                 if (perf_tp_event_match(event, &data, regs))
8959                         perf_swevent_event(event, count, &data, regs);
8960         }
8961
8962         /*
8963          * If we got specified a target task, also iterate its context and
8964          * deliver this event there too.
8965          */
8966         if (task && task != current) {
8967                 struct perf_event_context *ctx;
8968                 struct trace_entry *entry = record;
8969
8970                 rcu_read_lock();
8971                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8972                 if (!ctx)
8973                         goto unlock;
8974
8975                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8976                         if (event->cpu != smp_processor_id())
8977                                 continue;
8978                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8979                                 continue;
8980                         if (event->attr.config != entry->type)
8981                                 continue;
8982                         if (perf_tp_event_match(event, &data, regs))
8983                                 perf_swevent_event(event, count, &data, regs);
8984                 }
8985 unlock:
8986                 rcu_read_unlock();
8987         }
8988
8989         perf_swevent_put_recursion_context(rctx);
8990 }
8991 EXPORT_SYMBOL_GPL(perf_tp_event);
8992
8993 static void tp_perf_event_destroy(struct perf_event *event)
8994 {
8995         perf_trace_destroy(event);
8996 }
8997
8998 static int perf_tp_event_init(struct perf_event *event)
8999 {
9000         int err;
9001
9002         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9003                 return -ENOENT;
9004
9005         /*
9006          * no branch sampling for tracepoint events
9007          */
9008         if (has_branch_stack(event))
9009                 return -EOPNOTSUPP;
9010
9011         err = perf_trace_init(event);
9012         if (err)
9013                 return err;
9014
9015         event->destroy = tp_perf_event_destroy;
9016
9017         return 0;
9018 }
9019
9020 static struct pmu perf_tracepoint = {
9021         .task_ctx_nr    = perf_sw_context,
9022
9023         .event_init     = perf_tp_event_init,
9024         .add            = perf_trace_add,
9025         .del            = perf_trace_del,
9026         .start          = perf_swevent_start,
9027         .stop           = perf_swevent_stop,
9028         .read           = perf_swevent_read,
9029 };
9030
9031 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9032 /*
9033  * Flags in config, used by dynamic PMU kprobe and uprobe
9034  * The flags should match following PMU_FORMAT_ATTR().
9035  *
9036  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9037  *                               if not set, create kprobe/uprobe
9038  *
9039  * The following values specify a reference counter (or semaphore in the
9040  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9041  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9042  *
9043  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9044  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9045  */
9046 enum perf_probe_config {
9047         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9048         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9049         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9050 };
9051
9052 PMU_FORMAT_ATTR(retprobe, "config:0");
9053 #endif
9054
9055 #ifdef CONFIG_KPROBE_EVENTS
9056 static struct attribute *kprobe_attrs[] = {
9057         &format_attr_retprobe.attr,
9058         NULL,
9059 };
9060
9061 static struct attribute_group kprobe_format_group = {
9062         .name = "format",
9063         .attrs = kprobe_attrs,
9064 };
9065
9066 static const struct attribute_group *kprobe_attr_groups[] = {
9067         &kprobe_format_group,
9068         NULL,
9069 };
9070
9071 static int perf_kprobe_event_init(struct perf_event *event);
9072 static struct pmu perf_kprobe = {
9073         .task_ctx_nr    = perf_sw_context,
9074         .event_init     = perf_kprobe_event_init,
9075         .add            = perf_trace_add,
9076         .del            = perf_trace_del,
9077         .start          = perf_swevent_start,
9078         .stop           = perf_swevent_stop,
9079         .read           = perf_swevent_read,
9080         .attr_groups    = kprobe_attr_groups,
9081 };
9082
9083 static int perf_kprobe_event_init(struct perf_event *event)
9084 {
9085         int err;
9086         bool is_retprobe;
9087
9088         if (event->attr.type != perf_kprobe.type)
9089                 return -ENOENT;
9090
9091         if (!capable(CAP_SYS_ADMIN))
9092                 return -EACCES;
9093
9094         /*
9095          * no branch sampling for probe events
9096          */
9097         if (has_branch_stack(event))
9098                 return -EOPNOTSUPP;
9099
9100         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9101         err = perf_kprobe_init(event, is_retprobe);
9102         if (err)
9103                 return err;
9104
9105         event->destroy = perf_kprobe_destroy;
9106
9107         return 0;
9108 }
9109 #endif /* CONFIG_KPROBE_EVENTS */
9110
9111 #ifdef CONFIG_UPROBE_EVENTS
9112 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9113
9114 static struct attribute *uprobe_attrs[] = {
9115         &format_attr_retprobe.attr,
9116         &format_attr_ref_ctr_offset.attr,
9117         NULL,
9118 };
9119
9120 static struct attribute_group uprobe_format_group = {
9121         .name = "format",
9122         .attrs = uprobe_attrs,
9123 };
9124
9125 static const struct attribute_group *uprobe_attr_groups[] = {
9126         &uprobe_format_group,
9127         NULL,
9128 };
9129
9130 static int perf_uprobe_event_init(struct perf_event *event);
9131 static struct pmu perf_uprobe = {
9132         .task_ctx_nr    = perf_sw_context,
9133         .event_init     = perf_uprobe_event_init,
9134         .add            = perf_trace_add,
9135         .del            = perf_trace_del,
9136         .start          = perf_swevent_start,
9137         .stop           = perf_swevent_stop,
9138         .read           = perf_swevent_read,
9139         .attr_groups    = uprobe_attr_groups,
9140 };
9141
9142 static int perf_uprobe_event_init(struct perf_event *event)
9143 {
9144         int err;
9145         unsigned long ref_ctr_offset;
9146         bool is_retprobe;
9147
9148         if (event->attr.type != perf_uprobe.type)
9149                 return -ENOENT;
9150
9151         if (!capable(CAP_SYS_ADMIN))
9152                 return -EACCES;
9153
9154         /*
9155          * no branch sampling for probe events
9156          */
9157         if (has_branch_stack(event))
9158                 return -EOPNOTSUPP;
9159
9160         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9161         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9162         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9163         if (err)
9164                 return err;
9165
9166         event->destroy = perf_uprobe_destroy;
9167
9168         return 0;
9169 }
9170 #endif /* CONFIG_UPROBE_EVENTS */
9171
9172 static inline void perf_tp_register(void)
9173 {
9174         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9175 #ifdef CONFIG_KPROBE_EVENTS
9176         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9177 #endif
9178 #ifdef CONFIG_UPROBE_EVENTS
9179         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9180 #endif
9181 }
9182
9183 static void perf_event_free_filter(struct perf_event *event)
9184 {
9185         ftrace_profile_free_filter(event);
9186 }
9187
9188 #ifdef CONFIG_BPF_SYSCALL
9189 static void bpf_overflow_handler(struct perf_event *event,
9190                                  struct perf_sample_data *data,
9191                                  struct pt_regs *regs)
9192 {
9193         struct bpf_perf_event_data_kern ctx = {
9194                 .data = data,
9195                 .event = event,
9196         };
9197         int ret = 0;
9198
9199         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9200         preempt_disable();
9201         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9202                 goto out;
9203         rcu_read_lock();
9204         ret = BPF_PROG_RUN(event->prog, &ctx);
9205         rcu_read_unlock();
9206 out:
9207         __this_cpu_dec(bpf_prog_active);
9208         preempt_enable();
9209         if (!ret)
9210                 return;
9211
9212         event->orig_overflow_handler(event, data, regs);
9213 }
9214
9215 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9216 {
9217         struct bpf_prog *prog;
9218
9219         if (event->overflow_handler_context)
9220                 /* hw breakpoint or kernel counter */
9221                 return -EINVAL;
9222
9223         if (event->prog)
9224                 return -EEXIST;
9225
9226         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9227         if (IS_ERR(prog))
9228                 return PTR_ERR(prog);
9229
9230         event->prog = prog;
9231         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9232         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9233         return 0;
9234 }
9235
9236 static void perf_event_free_bpf_handler(struct perf_event *event)
9237 {
9238         struct bpf_prog *prog = event->prog;
9239
9240         if (!prog)
9241                 return;
9242
9243         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9244         event->prog = NULL;
9245         bpf_prog_put(prog);
9246 }
9247 #else
9248 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9249 {
9250         return -EOPNOTSUPP;
9251 }
9252 static void perf_event_free_bpf_handler(struct perf_event *event)
9253 {
9254 }
9255 #endif
9256
9257 /*
9258  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9259  * with perf_event_open()
9260  */
9261 static inline bool perf_event_is_tracing(struct perf_event *event)
9262 {
9263         if (event->pmu == &perf_tracepoint)
9264                 return true;
9265 #ifdef CONFIG_KPROBE_EVENTS
9266         if (event->pmu == &perf_kprobe)
9267                 return true;
9268 #endif
9269 #ifdef CONFIG_UPROBE_EVENTS
9270         if (event->pmu == &perf_uprobe)
9271                 return true;
9272 #endif
9273         return false;
9274 }
9275
9276 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9277 {
9278         bool is_kprobe, is_tracepoint, is_syscall_tp;
9279         struct bpf_prog *prog;
9280         int ret;
9281
9282         if (!perf_event_is_tracing(event))
9283                 return perf_event_set_bpf_handler(event, prog_fd);
9284
9285         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9286         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9287         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9288         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9289                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9290                 return -EINVAL;
9291
9292         prog = bpf_prog_get(prog_fd);
9293         if (IS_ERR(prog))
9294                 return PTR_ERR(prog);
9295
9296         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9297             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9298             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9299                 /* valid fd, but invalid bpf program type */
9300                 bpf_prog_put(prog);
9301                 return -EINVAL;
9302         }
9303
9304         /* Kprobe override only works for kprobes, not uprobes. */
9305         if (prog->kprobe_override &&
9306             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9307                 bpf_prog_put(prog);
9308                 return -EINVAL;
9309         }
9310
9311         if (is_tracepoint || is_syscall_tp) {
9312                 int off = trace_event_get_offsets(event->tp_event);
9313
9314                 if (prog->aux->max_ctx_offset > off) {
9315                         bpf_prog_put(prog);
9316                         return -EACCES;
9317                 }
9318         }
9319
9320         ret = perf_event_attach_bpf_prog(event, prog);
9321         if (ret)
9322                 bpf_prog_put(prog);
9323         return ret;
9324 }
9325
9326 static void perf_event_free_bpf_prog(struct perf_event *event)
9327 {
9328         if (!perf_event_is_tracing(event)) {
9329                 perf_event_free_bpf_handler(event);
9330                 return;
9331         }
9332         perf_event_detach_bpf_prog(event);
9333 }
9334
9335 #else
9336
9337 static inline void perf_tp_register(void)
9338 {
9339 }
9340
9341 static void perf_event_free_filter(struct perf_event *event)
9342 {
9343 }
9344
9345 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9346 {
9347         return -ENOENT;
9348 }
9349
9350 static void perf_event_free_bpf_prog(struct perf_event *event)
9351 {
9352 }
9353 #endif /* CONFIG_EVENT_TRACING */
9354
9355 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9356 void perf_bp_event(struct perf_event *bp, void *data)
9357 {
9358         struct perf_sample_data sample;
9359         struct pt_regs *regs = data;
9360
9361         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9362
9363         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9364                 perf_swevent_event(bp, 1, &sample, regs);
9365 }
9366 #endif
9367
9368 /*
9369  * Allocate a new address filter
9370  */
9371 static struct perf_addr_filter *
9372 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9373 {
9374         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9375         struct perf_addr_filter *filter;
9376
9377         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9378         if (!filter)
9379                 return NULL;
9380
9381         INIT_LIST_HEAD(&filter->entry);
9382         list_add_tail(&filter->entry, filters);
9383
9384         return filter;
9385 }
9386
9387 static void free_filters_list(struct list_head *filters)
9388 {
9389         struct perf_addr_filter *filter, *iter;
9390
9391         list_for_each_entry_safe(filter, iter, filters, entry) {
9392                 path_put(&filter->path);
9393                 list_del(&filter->entry);
9394                 kfree(filter);
9395         }
9396 }
9397
9398 /*
9399  * Free existing address filters and optionally install new ones
9400  */
9401 static void perf_addr_filters_splice(struct perf_event *event,
9402                                      struct list_head *head)
9403 {
9404         unsigned long flags;
9405         LIST_HEAD(list);
9406
9407         if (!has_addr_filter(event))
9408                 return;
9409
9410         /* don't bother with children, they don't have their own filters */
9411         if (event->parent)
9412                 return;
9413
9414         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9415
9416         list_splice_init(&event->addr_filters.list, &list);
9417         if (head)
9418                 list_splice(head, &event->addr_filters.list);
9419
9420         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9421
9422         free_filters_list(&list);
9423 }
9424
9425 /*
9426  * Scan through mm's vmas and see if one of them matches the
9427  * @filter; if so, adjust filter's address range.
9428  * Called with mm::mmap_sem down for reading.
9429  */
9430 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9431                                    struct mm_struct *mm,
9432                                    struct perf_addr_filter_range *fr)
9433 {
9434         struct vm_area_struct *vma;
9435
9436         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9437                 if (!vma->vm_file)
9438                         continue;
9439
9440                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9441                         return;
9442         }
9443 }
9444
9445 /*
9446  * Update event's address range filters based on the
9447  * task's existing mappings, if any.
9448  */
9449 static void perf_event_addr_filters_apply(struct perf_event *event)
9450 {
9451         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9452         struct task_struct *task = READ_ONCE(event->ctx->task);
9453         struct perf_addr_filter *filter;
9454         struct mm_struct *mm = NULL;
9455         unsigned int count = 0;
9456         unsigned long flags;
9457
9458         /*
9459          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9460          * will stop on the parent's child_mutex that our caller is also holding
9461          */
9462         if (task == TASK_TOMBSTONE)
9463                 return;
9464
9465         if (ifh->nr_file_filters) {
9466                 mm = get_task_mm(event->ctx->task);
9467                 if (!mm)
9468                         goto restart;
9469
9470                 down_read(&mm->mmap_sem);
9471         }
9472
9473         raw_spin_lock_irqsave(&ifh->lock, flags);
9474         list_for_each_entry(filter, &ifh->list, entry) {
9475                 if (filter->path.dentry) {
9476                         /*
9477                          * Adjust base offset if the filter is associated to a
9478                          * binary that needs to be mapped:
9479                          */
9480                         event->addr_filter_ranges[count].start = 0;
9481                         event->addr_filter_ranges[count].size = 0;
9482
9483                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9484                 } else {
9485                         event->addr_filter_ranges[count].start = filter->offset;
9486                         event->addr_filter_ranges[count].size  = filter->size;
9487                 }
9488
9489                 count++;
9490         }
9491
9492         event->addr_filters_gen++;
9493         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9494
9495         if (ifh->nr_file_filters) {
9496                 up_read(&mm->mmap_sem);
9497
9498                 mmput(mm);
9499         }
9500
9501 restart:
9502         perf_event_stop(event, 1);
9503 }
9504
9505 /*
9506  * Address range filtering: limiting the data to certain
9507  * instruction address ranges. Filters are ioctl()ed to us from
9508  * userspace as ascii strings.
9509  *
9510  * Filter string format:
9511  *
9512  * ACTION RANGE_SPEC
9513  * where ACTION is one of the
9514  *  * "filter": limit the trace to this region
9515  *  * "start": start tracing from this address
9516  *  * "stop": stop tracing at this address/region;
9517  * RANGE_SPEC is
9518  *  * for kernel addresses: <start address>[/<size>]
9519  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9520  *
9521  * if <size> is not specified or is zero, the range is treated as a single
9522  * address; not valid for ACTION=="filter".
9523  */
9524 enum {
9525         IF_ACT_NONE = -1,
9526         IF_ACT_FILTER,
9527         IF_ACT_START,
9528         IF_ACT_STOP,
9529         IF_SRC_FILE,
9530         IF_SRC_KERNEL,
9531         IF_SRC_FILEADDR,
9532         IF_SRC_KERNELADDR,
9533 };
9534
9535 enum {
9536         IF_STATE_ACTION = 0,
9537         IF_STATE_SOURCE,
9538         IF_STATE_END,
9539 };
9540
9541 static const match_table_t if_tokens = {
9542         { IF_ACT_FILTER,        "filter" },
9543         { IF_ACT_START,         "start" },
9544         { IF_ACT_STOP,          "stop" },
9545         { IF_SRC_FILE,          "%u/%u@%s" },
9546         { IF_SRC_KERNEL,        "%u/%u" },
9547         { IF_SRC_FILEADDR,      "%u@%s" },
9548         { IF_SRC_KERNELADDR,    "%u" },
9549         { IF_ACT_NONE,          NULL },
9550 };
9551
9552 /*
9553  * Address filter string parser
9554  */
9555 static int
9556 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9557                              struct list_head *filters)
9558 {
9559         struct perf_addr_filter *filter = NULL;
9560         char *start, *orig, *filename = NULL;
9561         substring_t args[MAX_OPT_ARGS];
9562         int state = IF_STATE_ACTION, token;
9563         unsigned int kernel = 0;
9564         int ret = -EINVAL;
9565
9566         orig = fstr = kstrdup(fstr, GFP_KERNEL);
9567         if (!fstr)
9568                 return -ENOMEM;
9569
9570         while ((start = strsep(&fstr, " ,\n")) != NULL) {
9571                 static const enum perf_addr_filter_action_t actions[] = {
9572                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
9573                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
9574                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
9575                 };
9576                 ret = -EINVAL;
9577
9578                 if (!*start)
9579                         continue;
9580
9581                 /* filter definition begins */
9582                 if (state == IF_STATE_ACTION) {
9583                         filter = perf_addr_filter_new(event, filters);
9584                         if (!filter)
9585                                 goto fail;
9586                 }
9587
9588                 token = match_token(start, if_tokens, args);
9589                 switch (token) {
9590                 case IF_ACT_FILTER:
9591                 case IF_ACT_START:
9592                 case IF_ACT_STOP:
9593                         if (state != IF_STATE_ACTION)
9594                                 goto fail;
9595
9596                         filter->action = actions[token];
9597                         state = IF_STATE_SOURCE;
9598                         break;
9599
9600                 case IF_SRC_KERNELADDR:
9601                 case IF_SRC_KERNEL:
9602                         kernel = 1;
9603                         /* fall through */
9604
9605                 case IF_SRC_FILEADDR:
9606                 case IF_SRC_FILE:
9607                         if (state != IF_STATE_SOURCE)
9608                                 goto fail;
9609
9610                         *args[0].to = 0;
9611                         ret = kstrtoul(args[0].from, 0, &filter->offset);
9612                         if (ret)
9613                                 goto fail;
9614
9615                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
9616                                 *args[1].to = 0;
9617                                 ret = kstrtoul(args[1].from, 0, &filter->size);
9618                                 if (ret)
9619                                         goto fail;
9620                         }
9621
9622                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
9623                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
9624
9625                                 filename = match_strdup(&args[fpos]);
9626                                 if (!filename) {
9627                                         ret = -ENOMEM;
9628                                         goto fail;
9629                                 }
9630                         }
9631
9632                         state = IF_STATE_END;
9633                         break;
9634
9635                 default:
9636                         goto fail;
9637                 }
9638
9639                 /*
9640                  * Filter definition is fully parsed, validate and install it.
9641                  * Make sure that it doesn't contradict itself or the event's
9642                  * attribute.
9643                  */
9644                 if (state == IF_STATE_END) {
9645                         ret = -EINVAL;
9646                         if (kernel && event->attr.exclude_kernel)
9647                                 goto fail;
9648
9649                         /*
9650                          * ACTION "filter" must have a non-zero length region
9651                          * specified.
9652                          */
9653                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9654                             !filter->size)
9655                                 goto fail;
9656
9657                         if (!kernel) {
9658                                 if (!filename)
9659                                         goto fail;
9660
9661                                 /*
9662                                  * For now, we only support file-based filters
9663                                  * in per-task events; doing so for CPU-wide
9664                                  * events requires additional context switching
9665                                  * trickery, since same object code will be
9666                                  * mapped at different virtual addresses in
9667                                  * different processes.
9668                                  */
9669                                 ret = -EOPNOTSUPP;
9670                                 if (!event->ctx->task)
9671                                         goto fail_free_name;
9672
9673                                 /* look up the path and grab its inode */
9674                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9675                                                 &filter->path);
9676                                 if (ret)
9677                                         goto fail_free_name;
9678
9679                                 kfree(filename);
9680                                 filename = NULL;
9681
9682                                 ret = -EINVAL;
9683                                 if (!filter->path.dentry ||
9684                                     !S_ISREG(d_inode(filter->path.dentry)
9685                                              ->i_mode))
9686                                         goto fail;
9687
9688                                 event->addr_filters.nr_file_filters++;
9689                         }
9690
9691                         /* ready to consume more filters */
9692                         state = IF_STATE_ACTION;
9693                         filter = NULL;
9694                 }
9695         }
9696
9697         if (state != IF_STATE_ACTION)
9698                 goto fail;
9699
9700         kfree(orig);
9701
9702         return 0;
9703
9704 fail_free_name:
9705         kfree(filename);
9706 fail:
9707         free_filters_list(filters);
9708         kfree(orig);
9709
9710         return ret;
9711 }
9712
9713 static int
9714 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9715 {
9716         LIST_HEAD(filters);
9717         int ret;
9718
9719         /*
9720          * Since this is called in perf_ioctl() path, we're already holding
9721          * ctx::mutex.
9722          */
9723         lockdep_assert_held(&event->ctx->mutex);
9724
9725         if (WARN_ON_ONCE(event->parent))
9726                 return -EINVAL;
9727
9728         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9729         if (ret)
9730                 goto fail_clear_files;
9731
9732         ret = event->pmu->addr_filters_validate(&filters);
9733         if (ret)
9734                 goto fail_free_filters;
9735
9736         /* remove existing filters, if any */
9737         perf_addr_filters_splice(event, &filters);
9738
9739         /* install new filters */
9740         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9741
9742         return ret;
9743
9744 fail_free_filters:
9745         free_filters_list(&filters);
9746
9747 fail_clear_files:
9748         event->addr_filters.nr_file_filters = 0;
9749
9750         return ret;
9751 }
9752
9753 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9754 {
9755         int ret = -EINVAL;
9756         char *filter_str;
9757
9758         filter_str = strndup_user(arg, PAGE_SIZE);
9759         if (IS_ERR(filter_str))
9760                 return PTR_ERR(filter_str);
9761
9762 #ifdef CONFIG_EVENT_TRACING
9763         if (perf_event_is_tracing(event)) {
9764                 struct perf_event_context *ctx = event->ctx;
9765
9766                 /*
9767                  * Beware, here be dragons!!
9768                  *
9769                  * the tracepoint muck will deadlock against ctx->mutex, but
9770                  * the tracepoint stuff does not actually need it. So
9771                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9772                  * already have a reference on ctx.
9773                  *
9774                  * This can result in event getting moved to a different ctx,
9775                  * but that does not affect the tracepoint state.
9776                  */
9777                 mutex_unlock(&ctx->mutex);
9778                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9779                 mutex_lock(&ctx->mutex);
9780         } else
9781 #endif
9782         if (has_addr_filter(event))
9783                 ret = perf_event_set_addr_filter(event, filter_str);
9784
9785         kfree(filter_str);
9786         return ret;
9787 }
9788
9789 /*
9790  * hrtimer based swevent callback
9791  */
9792
9793 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9794 {
9795         enum hrtimer_restart ret = HRTIMER_RESTART;
9796         struct perf_sample_data data;
9797         struct pt_regs *regs;
9798         struct perf_event *event;
9799         u64 period;
9800
9801         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9802
9803         if (event->state != PERF_EVENT_STATE_ACTIVE)
9804                 return HRTIMER_NORESTART;
9805
9806         event->pmu->read(event);
9807
9808         perf_sample_data_init(&data, 0, event->hw.last_period);
9809         regs = get_irq_regs();
9810
9811         if (regs && !perf_exclude_event(event, regs)) {
9812                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9813                         if (__perf_event_overflow(event, 1, &data, regs))
9814                                 ret = HRTIMER_NORESTART;
9815         }
9816
9817         period = max_t(u64, 10000, event->hw.sample_period);
9818         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9819
9820         return ret;
9821 }
9822
9823 static void perf_swevent_start_hrtimer(struct perf_event *event)
9824 {
9825         struct hw_perf_event *hwc = &event->hw;
9826         s64 period;
9827
9828         if (!is_sampling_event(event))
9829                 return;
9830
9831         period = local64_read(&hwc->period_left);
9832         if (period) {
9833                 if (period < 0)
9834                         period = 10000;
9835
9836                 local64_set(&hwc->period_left, 0);
9837         } else {
9838                 period = max_t(u64, 10000, hwc->sample_period);
9839         }
9840         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9841                       HRTIMER_MODE_REL_PINNED_HARD);
9842 }
9843
9844 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9845 {
9846         struct hw_perf_event *hwc = &event->hw;
9847
9848         if (is_sampling_event(event)) {
9849                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9850                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9851
9852                 hrtimer_cancel(&hwc->hrtimer);
9853         }
9854 }
9855
9856 static void perf_swevent_init_hrtimer(struct perf_event *event)
9857 {
9858         struct hw_perf_event *hwc = &event->hw;
9859
9860         if (!is_sampling_event(event))
9861                 return;
9862
9863         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
9864         hwc->hrtimer.function = perf_swevent_hrtimer;
9865
9866         /*
9867          * Since hrtimers have a fixed rate, we can do a static freq->period
9868          * mapping and avoid the whole period adjust feedback stuff.
9869          */
9870         if (event->attr.freq) {
9871                 long freq = event->attr.sample_freq;
9872
9873                 event->attr.sample_period = NSEC_PER_SEC / freq;
9874                 hwc->sample_period = event->attr.sample_period;
9875                 local64_set(&hwc->period_left, hwc->sample_period);
9876                 hwc->last_period = hwc->sample_period;
9877                 event->attr.freq = 0;
9878         }
9879 }
9880
9881 /*
9882  * Software event: cpu wall time clock
9883  */
9884
9885 static void cpu_clock_event_update(struct perf_event *event)
9886 {
9887         s64 prev;
9888         u64 now;
9889
9890         now = local_clock();
9891         prev = local64_xchg(&event->hw.prev_count, now);
9892         local64_add(now - prev, &event->count);
9893 }
9894
9895 static void cpu_clock_event_start(struct perf_event *event, int flags)
9896 {
9897         local64_set(&event->hw.prev_count, local_clock());
9898         perf_swevent_start_hrtimer(event);
9899 }
9900
9901 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9902 {
9903         perf_swevent_cancel_hrtimer(event);
9904         cpu_clock_event_update(event);
9905 }
9906
9907 static int cpu_clock_event_add(struct perf_event *event, int flags)
9908 {
9909         if (flags & PERF_EF_START)
9910                 cpu_clock_event_start(event, flags);
9911         perf_event_update_userpage(event);
9912
9913         return 0;
9914 }
9915
9916 static void cpu_clock_event_del(struct perf_event *event, int flags)
9917 {
9918         cpu_clock_event_stop(event, flags);
9919 }
9920
9921 static void cpu_clock_event_read(struct perf_event *event)
9922 {
9923         cpu_clock_event_update(event);
9924 }
9925
9926 static int cpu_clock_event_init(struct perf_event *event)
9927 {
9928         if (event->attr.type != PERF_TYPE_SOFTWARE)
9929                 return -ENOENT;
9930
9931         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9932                 return -ENOENT;
9933
9934         /*
9935          * no branch sampling for software events
9936          */
9937         if (has_branch_stack(event))
9938                 return -EOPNOTSUPP;
9939
9940         perf_swevent_init_hrtimer(event);
9941
9942         return 0;
9943 }
9944
9945 static struct pmu perf_cpu_clock = {
9946         .task_ctx_nr    = perf_sw_context,
9947
9948         .capabilities   = PERF_PMU_CAP_NO_NMI,
9949
9950         .event_init     = cpu_clock_event_init,
9951         .add            = cpu_clock_event_add,
9952         .del            = cpu_clock_event_del,
9953         .start          = cpu_clock_event_start,
9954         .stop           = cpu_clock_event_stop,
9955         .read           = cpu_clock_event_read,
9956 };
9957
9958 /*
9959  * Software event: task time clock
9960  */
9961
9962 static void task_clock_event_update(struct perf_event *event, u64 now)
9963 {
9964         u64 prev;
9965         s64 delta;
9966
9967         prev = local64_xchg(&event->hw.prev_count, now);
9968         delta = now - prev;
9969         local64_add(delta, &event->count);
9970 }
9971
9972 static void task_clock_event_start(struct perf_event *event, int flags)
9973 {
9974         local64_set(&event->hw.prev_count, event->ctx->time);
9975         perf_swevent_start_hrtimer(event);
9976 }
9977
9978 static void task_clock_event_stop(struct perf_event *event, int flags)
9979 {
9980         perf_swevent_cancel_hrtimer(event);
9981         task_clock_event_update(event, event->ctx->time);
9982 }
9983
9984 static int task_clock_event_add(struct perf_event *event, int flags)
9985 {
9986         if (flags & PERF_EF_START)
9987                 task_clock_event_start(event, flags);
9988         perf_event_update_userpage(event);
9989
9990         return 0;
9991 }
9992
9993 static void task_clock_event_del(struct perf_event *event, int flags)
9994 {
9995         task_clock_event_stop(event, PERF_EF_UPDATE);
9996 }
9997
9998 static void task_clock_event_read(struct perf_event *event)
9999 {
10000         u64 now = perf_clock();
10001         u64 delta = now - event->ctx->timestamp;
10002         u64 time = event->ctx->time + delta;
10003
10004         task_clock_event_update(event, time);
10005 }
10006
10007 static int task_clock_event_init(struct perf_event *event)
10008 {
10009         if (event->attr.type != PERF_TYPE_SOFTWARE)
10010                 return -ENOENT;
10011
10012         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10013                 return -ENOENT;
10014
10015         /*
10016          * no branch sampling for software events
10017          */
10018         if (has_branch_stack(event))
10019                 return -EOPNOTSUPP;
10020
10021         perf_swevent_init_hrtimer(event);
10022
10023         return 0;
10024 }
10025
10026 static struct pmu perf_task_clock = {
10027         .task_ctx_nr    = perf_sw_context,
10028
10029         .capabilities   = PERF_PMU_CAP_NO_NMI,
10030
10031         .event_init     = task_clock_event_init,
10032         .add            = task_clock_event_add,
10033         .del            = task_clock_event_del,
10034         .start          = task_clock_event_start,
10035         .stop           = task_clock_event_stop,
10036         .read           = task_clock_event_read,
10037 };
10038
10039 static void perf_pmu_nop_void(struct pmu *pmu)
10040 {
10041 }
10042
10043 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10044 {
10045 }
10046
10047 static int perf_pmu_nop_int(struct pmu *pmu)
10048 {
10049         return 0;
10050 }
10051
10052 static int perf_event_nop_int(struct perf_event *event, u64 value)
10053 {
10054         return 0;
10055 }
10056
10057 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10058
10059 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10060 {
10061         __this_cpu_write(nop_txn_flags, flags);
10062
10063         if (flags & ~PERF_PMU_TXN_ADD)
10064                 return;
10065
10066         perf_pmu_disable(pmu);
10067 }
10068
10069 static int perf_pmu_commit_txn(struct pmu *pmu)
10070 {
10071         unsigned int flags = __this_cpu_read(nop_txn_flags);
10072
10073         __this_cpu_write(nop_txn_flags, 0);
10074
10075         if (flags & ~PERF_PMU_TXN_ADD)
10076                 return 0;
10077
10078         perf_pmu_enable(pmu);
10079         return 0;
10080 }
10081
10082 static void perf_pmu_cancel_txn(struct pmu *pmu)
10083 {
10084         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10085
10086         __this_cpu_write(nop_txn_flags, 0);
10087
10088         if (flags & ~PERF_PMU_TXN_ADD)
10089                 return;
10090
10091         perf_pmu_enable(pmu);
10092 }
10093
10094 static int perf_event_idx_default(struct perf_event *event)
10095 {
10096         return 0;
10097 }
10098
10099 /*
10100  * Ensures all contexts with the same task_ctx_nr have the same
10101  * pmu_cpu_context too.
10102  */
10103 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10104 {
10105         struct pmu *pmu;
10106
10107         if (ctxn < 0)
10108                 return NULL;
10109
10110         list_for_each_entry(pmu, &pmus, entry) {
10111                 if (pmu->task_ctx_nr == ctxn)
10112                         return pmu->pmu_cpu_context;
10113         }
10114
10115         return NULL;
10116 }
10117
10118 static void free_pmu_context(struct pmu *pmu)
10119 {
10120         /*
10121          * Static contexts such as perf_sw_context have a global lifetime
10122          * and may be shared between different PMUs. Avoid freeing them
10123          * when a single PMU is going away.
10124          */
10125         if (pmu->task_ctx_nr > perf_invalid_context)
10126                 return;
10127
10128         free_percpu(pmu->pmu_cpu_context);
10129 }
10130
10131 /*
10132  * Let userspace know that this PMU supports address range filtering:
10133  */
10134 static ssize_t nr_addr_filters_show(struct device *dev,
10135                                     struct device_attribute *attr,
10136                                     char *page)
10137 {
10138         struct pmu *pmu = dev_get_drvdata(dev);
10139
10140         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10141 }
10142 DEVICE_ATTR_RO(nr_addr_filters);
10143
10144 static struct idr pmu_idr;
10145
10146 static ssize_t
10147 type_show(struct device *dev, struct device_attribute *attr, char *page)
10148 {
10149         struct pmu *pmu = dev_get_drvdata(dev);
10150
10151         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10152 }
10153 static DEVICE_ATTR_RO(type);
10154
10155 static ssize_t
10156 perf_event_mux_interval_ms_show(struct device *dev,
10157                                 struct device_attribute *attr,
10158                                 char *page)
10159 {
10160         struct pmu *pmu = dev_get_drvdata(dev);
10161
10162         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10163 }
10164
10165 static DEFINE_MUTEX(mux_interval_mutex);
10166
10167 static ssize_t
10168 perf_event_mux_interval_ms_store(struct device *dev,
10169                                  struct device_attribute *attr,
10170                                  const char *buf, size_t count)
10171 {
10172         struct pmu *pmu = dev_get_drvdata(dev);
10173         int timer, cpu, ret;
10174
10175         ret = kstrtoint(buf, 0, &timer);
10176         if (ret)
10177                 return ret;
10178
10179         if (timer < 1)
10180                 return -EINVAL;
10181
10182         /* same value, noting to do */
10183         if (timer == pmu->hrtimer_interval_ms)
10184                 return count;
10185
10186         mutex_lock(&mux_interval_mutex);
10187         pmu->hrtimer_interval_ms = timer;
10188
10189         /* update all cpuctx for this PMU */
10190         cpus_read_lock();
10191         for_each_online_cpu(cpu) {
10192                 struct perf_cpu_context *cpuctx;
10193                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10194                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10195
10196                 cpu_function_call(cpu,
10197                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10198         }
10199         cpus_read_unlock();
10200         mutex_unlock(&mux_interval_mutex);
10201
10202         return count;
10203 }
10204 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10205
10206 static struct attribute *pmu_dev_attrs[] = {
10207         &dev_attr_type.attr,
10208         &dev_attr_perf_event_mux_interval_ms.attr,
10209         NULL,
10210 };
10211 ATTRIBUTE_GROUPS(pmu_dev);
10212
10213 static int pmu_bus_running;
10214 static struct bus_type pmu_bus = {
10215         .name           = "event_source",
10216         .dev_groups     = pmu_dev_groups,
10217 };
10218
10219 static void pmu_dev_release(struct device *dev)
10220 {
10221         kfree(dev);
10222 }
10223
10224 static int pmu_dev_alloc(struct pmu *pmu)
10225 {
10226         int ret = -ENOMEM;
10227
10228         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10229         if (!pmu->dev)
10230                 goto out;
10231
10232         pmu->dev->groups = pmu->attr_groups;
10233         device_initialize(pmu->dev);
10234         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10235         if (ret)
10236                 goto free_dev;
10237
10238         dev_set_drvdata(pmu->dev, pmu);
10239         pmu->dev->bus = &pmu_bus;
10240         pmu->dev->release = pmu_dev_release;
10241         ret = device_add(pmu->dev);
10242         if (ret)
10243                 goto free_dev;
10244
10245         /* For PMUs with address filters, throw in an extra attribute: */
10246         if (pmu->nr_addr_filters)
10247                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10248
10249         if (ret)
10250                 goto del_dev;
10251
10252         if (pmu->attr_update)
10253                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10254
10255         if (ret)
10256                 goto del_dev;
10257
10258 out:
10259         return ret;
10260
10261 del_dev:
10262         device_del(pmu->dev);
10263
10264 free_dev:
10265         put_device(pmu->dev);
10266         goto out;
10267 }
10268
10269 static struct lock_class_key cpuctx_mutex;
10270 static struct lock_class_key cpuctx_lock;
10271
10272 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10273 {
10274         int cpu, ret, max = PERF_TYPE_MAX;
10275
10276         mutex_lock(&pmus_lock);
10277         ret = -ENOMEM;
10278         pmu->pmu_disable_count = alloc_percpu(int);
10279         if (!pmu->pmu_disable_count)
10280                 goto unlock;
10281
10282         pmu->type = -1;
10283         if (!name)
10284                 goto skip_type;
10285         pmu->name = name;
10286
10287         if (type != PERF_TYPE_SOFTWARE) {
10288                 if (type >= 0)
10289                         max = type;
10290
10291                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10292                 if (ret < 0)
10293                         goto free_pdc;
10294
10295                 WARN_ON(type >= 0 && ret != type);
10296
10297                 type = ret;
10298         }
10299         pmu->type = type;
10300
10301         if (pmu_bus_running) {
10302                 ret = pmu_dev_alloc(pmu);
10303                 if (ret)
10304                         goto free_idr;
10305         }
10306
10307 skip_type:
10308         if (pmu->task_ctx_nr == perf_hw_context) {
10309                 static int hw_context_taken = 0;
10310
10311                 /*
10312                  * Other than systems with heterogeneous CPUs, it never makes
10313                  * sense for two PMUs to share perf_hw_context. PMUs which are
10314                  * uncore must use perf_invalid_context.
10315                  */
10316                 if (WARN_ON_ONCE(hw_context_taken &&
10317                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10318                         pmu->task_ctx_nr = perf_invalid_context;
10319
10320                 hw_context_taken = 1;
10321         }
10322
10323         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10324         if (pmu->pmu_cpu_context)
10325                 goto got_cpu_context;
10326
10327         ret = -ENOMEM;
10328         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10329         if (!pmu->pmu_cpu_context)
10330                 goto free_dev;
10331
10332         for_each_possible_cpu(cpu) {
10333                 struct perf_cpu_context *cpuctx;
10334
10335                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10336                 __perf_event_init_context(&cpuctx->ctx);
10337                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10338                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10339                 cpuctx->ctx.pmu = pmu;
10340                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10341
10342                 __perf_mux_hrtimer_init(cpuctx, cpu);
10343         }
10344
10345 got_cpu_context:
10346         if (!pmu->start_txn) {
10347                 if (pmu->pmu_enable) {
10348                         /*
10349                          * If we have pmu_enable/pmu_disable calls, install
10350                          * transaction stubs that use that to try and batch
10351                          * hardware accesses.
10352                          */
10353                         pmu->start_txn  = perf_pmu_start_txn;
10354                         pmu->commit_txn = perf_pmu_commit_txn;
10355                         pmu->cancel_txn = perf_pmu_cancel_txn;
10356                 } else {
10357                         pmu->start_txn  = perf_pmu_nop_txn;
10358                         pmu->commit_txn = perf_pmu_nop_int;
10359                         pmu->cancel_txn = perf_pmu_nop_void;
10360                 }
10361         }
10362
10363         if (!pmu->pmu_enable) {
10364                 pmu->pmu_enable  = perf_pmu_nop_void;
10365                 pmu->pmu_disable = perf_pmu_nop_void;
10366         }
10367
10368         if (!pmu->check_period)
10369                 pmu->check_period = perf_event_nop_int;
10370
10371         if (!pmu->event_idx)
10372                 pmu->event_idx = perf_event_idx_default;
10373
10374         /*
10375          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10376          * since these cannot be in the IDR. This way the linear search
10377          * is fast, provided a valid software event is provided.
10378          */
10379         if (type == PERF_TYPE_SOFTWARE || !name)
10380                 list_add_rcu(&pmu->entry, &pmus);
10381         else
10382                 list_add_tail_rcu(&pmu->entry, &pmus);
10383
10384         atomic_set(&pmu->exclusive_cnt, 0);
10385         ret = 0;
10386 unlock:
10387         mutex_unlock(&pmus_lock);
10388
10389         return ret;
10390
10391 free_dev:
10392         device_del(pmu->dev);
10393         put_device(pmu->dev);
10394
10395 free_idr:
10396         if (pmu->type != PERF_TYPE_SOFTWARE)
10397                 idr_remove(&pmu_idr, pmu->type);
10398
10399 free_pdc:
10400         free_percpu(pmu->pmu_disable_count);
10401         goto unlock;
10402 }
10403 EXPORT_SYMBOL_GPL(perf_pmu_register);
10404
10405 void perf_pmu_unregister(struct pmu *pmu)
10406 {
10407         mutex_lock(&pmus_lock);
10408         list_del_rcu(&pmu->entry);
10409
10410         /*
10411          * We dereference the pmu list under both SRCU and regular RCU, so
10412          * synchronize against both of those.
10413          */
10414         synchronize_srcu(&pmus_srcu);
10415         synchronize_rcu();
10416
10417         free_percpu(pmu->pmu_disable_count);
10418         if (pmu->type != PERF_TYPE_SOFTWARE)
10419                 idr_remove(&pmu_idr, pmu->type);
10420         if (pmu_bus_running) {
10421                 if (pmu->nr_addr_filters)
10422                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10423                 device_del(pmu->dev);
10424                 put_device(pmu->dev);
10425         }
10426         free_pmu_context(pmu);
10427         mutex_unlock(&pmus_lock);
10428 }
10429 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10430
10431 static inline bool has_extended_regs(struct perf_event *event)
10432 {
10433         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10434                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10435 }
10436
10437 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10438 {
10439         struct perf_event_context *ctx = NULL;
10440         int ret;
10441
10442         if (!try_module_get(pmu->module))
10443                 return -ENODEV;
10444
10445         /*
10446          * A number of pmu->event_init() methods iterate the sibling_list to,
10447          * for example, validate if the group fits on the PMU. Therefore,
10448          * if this is a sibling event, acquire the ctx->mutex to protect
10449          * the sibling_list.
10450          */
10451         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10452                 /*
10453                  * This ctx->mutex can nest when we're called through
10454                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10455                  */
10456                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10457                                                  SINGLE_DEPTH_NESTING);
10458                 BUG_ON(!ctx);
10459         }
10460
10461         event->pmu = pmu;
10462         ret = pmu->event_init(event);
10463
10464         if (ctx)
10465                 perf_event_ctx_unlock(event->group_leader, ctx);
10466
10467         if (!ret) {
10468                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10469                     has_extended_regs(event))
10470                         ret = -EOPNOTSUPP;
10471
10472                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10473                     event_has_any_exclude_flag(event))
10474                         ret = -EINVAL;
10475
10476                 if (ret && event->destroy)
10477                         event->destroy(event);
10478         }
10479
10480         if (ret)
10481                 module_put(pmu->module);
10482
10483         return ret;
10484 }
10485
10486 static struct pmu *perf_init_event(struct perf_event *event)
10487 {
10488         int idx, type, ret;
10489         struct pmu *pmu;
10490
10491         idx = srcu_read_lock(&pmus_srcu);
10492
10493         /* Try parent's PMU first: */
10494         if (event->parent && event->parent->pmu) {
10495                 pmu = event->parent->pmu;
10496                 ret = perf_try_init_event(pmu, event);
10497                 if (!ret)
10498                         goto unlock;
10499         }
10500
10501         /*
10502          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10503          * are often aliases for PERF_TYPE_RAW.
10504          */
10505         type = event->attr.type;
10506         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10507                 type = PERF_TYPE_RAW;
10508
10509 again:
10510         rcu_read_lock();
10511         pmu = idr_find(&pmu_idr, type);
10512         rcu_read_unlock();
10513         if (pmu) {
10514                 ret = perf_try_init_event(pmu, event);
10515                 if (ret == -ENOENT && event->attr.type != type) {
10516                         type = event->attr.type;
10517                         goto again;
10518                 }
10519
10520                 if (ret)
10521                         pmu = ERR_PTR(ret);
10522
10523                 goto unlock;
10524         }
10525
10526         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10527                 ret = perf_try_init_event(pmu, event);
10528                 if (!ret)
10529                         goto unlock;
10530
10531                 if (ret != -ENOENT) {
10532                         pmu = ERR_PTR(ret);
10533                         goto unlock;
10534                 }
10535         }
10536         pmu = ERR_PTR(-ENOENT);
10537 unlock:
10538         srcu_read_unlock(&pmus_srcu, idx);
10539
10540         return pmu;
10541 }
10542
10543 static void attach_sb_event(struct perf_event *event)
10544 {
10545         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10546
10547         raw_spin_lock(&pel->lock);
10548         list_add_rcu(&event->sb_list, &pel->list);
10549         raw_spin_unlock(&pel->lock);
10550 }
10551
10552 /*
10553  * We keep a list of all !task (and therefore per-cpu) events
10554  * that need to receive side-band records.
10555  *
10556  * This avoids having to scan all the various PMU per-cpu contexts
10557  * looking for them.
10558  */
10559 static void account_pmu_sb_event(struct perf_event *event)
10560 {
10561         if (is_sb_event(event))
10562                 attach_sb_event(event);
10563 }
10564
10565 static void account_event_cpu(struct perf_event *event, int cpu)
10566 {
10567         if (event->parent)
10568                 return;
10569
10570         if (is_cgroup_event(event))
10571                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
10572 }
10573
10574 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
10575 static void account_freq_event_nohz(void)
10576 {
10577 #ifdef CONFIG_NO_HZ_FULL
10578         /* Lock so we don't race with concurrent unaccount */
10579         spin_lock(&nr_freq_lock);
10580         if (atomic_inc_return(&nr_freq_events) == 1)
10581                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
10582         spin_unlock(&nr_freq_lock);
10583 #endif
10584 }
10585
10586 static void account_freq_event(void)
10587 {
10588         if (tick_nohz_full_enabled())
10589                 account_freq_event_nohz();
10590         else
10591                 atomic_inc(&nr_freq_events);
10592 }
10593
10594
10595 static void account_event(struct perf_event *event)
10596 {
10597         bool inc = false;
10598
10599         if (event->parent)
10600                 return;
10601
10602         if (event->attach_state & PERF_ATTACH_TASK)
10603                 inc = true;
10604         if (event->attr.mmap || event->attr.mmap_data)
10605                 atomic_inc(&nr_mmap_events);
10606         if (event->attr.comm)
10607                 atomic_inc(&nr_comm_events);
10608         if (event->attr.namespaces)
10609                 atomic_inc(&nr_namespaces_events);
10610         if (event->attr.task)
10611                 atomic_inc(&nr_task_events);
10612         if (event->attr.freq)
10613                 account_freq_event();
10614         if (event->attr.context_switch) {
10615                 atomic_inc(&nr_switch_events);
10616                 inc = true;
10617         }
10618         if (has_branch_stack(event))
10619                 inc = true;
10620         if (is_cgroup_event(event))
10621                 inc = true;
10622         if (event->attr.ksymbol)
10623                 atomic_inc(&nr_ksymbol_events);
10624         if (event->attr.bpf_event)
10625                 atomic_inc(&nr_bpf_events);
10626
10627         if (inc) {
10628                 /*
10629                  * We need the mutex here because static_branch_enable()
10630                  * must complete *before* the perf_sched_count increment
10631                  * becomes visible.
10632                  */
10633                 if (atomic_inc_not_zero(&perf_sched_count))
10634                         goto enabled;
10635
10636                 mutex_lock(&perf_sched_mutex);
10637                 if (!atomic_read(&perf_sched_count)) {
10638                         static_branch_enable(&perf_sched_events);
10639                         /*
10640                          * Guarantee that all CPUs observe they key change and
10641                          * call the perf scheduling hooks before proceeding to
10642                          * install events that need them.
10643                          */
10644                         synchronize_rcu();
10645                 }
10646                 /*
10647                  * Now that we have waited for the sync_sched(), allow further
10648                  * increments to by-pass the mutex.
10649                  */
10650                 atomic_inc(&perf_sched_count);
10651                 mutex_unlock(&perf_sched_mutex);
10652         }
10653 enabled:
10654
10655         account_event_cpu(event, event->cpu);
10656
10657         account_pmu_sb_event(event);
10658 }
10659
10660 /*
10661  * Allocate and initialize an event structure
10662  */
10663 static struct perf_event *
10664 perf_event_alloc(struct perf_event_attr *attr, int cpu,
10665                  struct task_struct *task,
10666                  struct perf_event *group_leader,
10667                  struct perf_event *parent_event,
10668                  perf_overflow_handler_t overflow_handler,
10669                  void *context, int cgroup_fd)
10670 {
10671         struct pmu *pmu;
10672         struct perf_event *event;
10673         struct hw_perf_event *hwc;
10674         long err = -EINVAL;
10675
10676         if ((unsigned)cpu >= nr_cpu_ids) {
10677                 if (!task || cpu != -1)
10678                         return ERR_PTR(-EINVAL);
10679         }
10680
10681         event = kzalloc(sizeof(*event), GFP_KERNEL);
10682         if (!event)
10683                 return ERR_PTR(-ENOMEM);
10684
10685         /*
10686          * Single events are their own group leaders, with an
10687          * empty sibling list:
10688          */
10689         if (!group_leader)
10690                 group_leader = event;
10691
10692         mutex_init(&event->child_mutex);
10693         INIT_LIST_HEAD(&event->child_list);
10694
10695         INIT_LIST_HEAD(&event->event_entry);
10696         INIT_LIST_HEAD(&event->sibling_list);
10697         INIT_LIST_HEAD(&event->active_list);
10698         init_event_group(event);
10699         INIT_LIST_HEAD(&event->rb_entry);
10700         INIT_LIST_HEAD(&event->active_entry);
10701         INIT_LIST_HEAD(&event->addr_filters.list);
10702         INIT_HLIST_NODE(&event->hlist_entry);
10703
10704
10705         init_waitqueue_head(&event->waitq);
10706         event->pending_disable = -1;
10707         init_irq_work(&event->pending, perf_pending_event);
10708
10709         mutex_init(&event->mmap_mutex);
10710         raw_spin_lock_init(&event->addr_filters.lock);
10711
10712         atomic_long_set(&event->refcount, 1);
10713         event->cpu              = cpu;
10714         event->attr             = *attr;
10715         event->group_leader     = group_leader;
10716         event->pmu              = NULL;
10717         event->oncpu            = -1;
10718
10719         event->parent           = parent_event;
10720
10721         event->ns               = get_pid_ns(task_active_pid_ns(current));
10722         event->id               = atomic64_inc_return(&perf_event_id);
10723
10724         event->state            = PERF_EVENT_STATE_INACTIVE;
10725
10726         if (task) {
10727                 event->attach_state = PERF_ATTACH_TASK;
10728                 /*
10729                  * XXX pmu::event_init needs to know what task to account to
10730                  * and we cannot use the ctx information because we need the
10731                  * pmu before we get a ctx.
10732                  */
10733                 event->hw.target = get_task_struct(task);
10734         }
10735
10736         event->clock = &local_clock;
10737         if (parent_event)
10738                 event->clock = parent_event->clock;
10739
10740         if (!overflow_handler && parent_event) {
10741                 overflow_handler = parent_event->overflow_handler;
10742                 context = parent_event->overflow_handler_context;
10743 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10744                 if (overflow_handler == bpf_overflow_handler) {
10745                         struct bpf_prog *prog = parent_event->prog;
10746
10747                         bpf_prog_inc(prog);
10748                         event->prog = prog;
10749                         event->orig_overflow_handler =
10750                                 parent_event->orig_overflow_handler;
10751                 }
10752 #endif
10753         }
10754
10755         if (overflow_handler) {
10756                 event->overflow_handler = overflow_handler;
10757                 event->overflow_handler_context = context;
10758         } else if (is_write_backward(event)){
10759                 event->overflow_handler = perf_event_output_backward;
10760                 event->overflow_handler_context = NULL;
10761         } else {
10762                 event->overflow_handler = perf_event_output_forward;
10763                 event->overflow_handler_context = NULL;
10764         }
10765
10766         perf_event__state_init(event);
10767
10768         pmu = NULL;
10769
10770         hwc = &event->hw;
10771         hwc->sample_period = attr->sample_period;
10772         if (attr->freq && attr->sample_freq)
10773                 hwc->sample_period = 1;
10774         hwc->last_period = hwc->sample_period;
10775
10776         local64_set(&hwc->period_left, hwc->sample_period);
10777
10778         /*
10779          * We currently do not support PERF_SAMPLE_READ on inherited events.
10780          * See perf_output_read().
10781          */
10782         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10783                 goto err_ns;
10784
10785         if (!has_branch_stack(event))
10786                 event->attr.branch_sample_type = 0;
10787
10788         if (cgroup_fd != -1) {
10789                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10790                 if (err)
10791                         goto err_ns;
10792         }
10793
10794         pmu = perf_init_event(event);
10795         if (IS_ERR(pmu)) {
10796                 err = PTR_ERR(pmu);
10797                 goto err_ns;
10798         }
10799
10800         /*
10801          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
10802          * be different on other CPUs in the uncore mask.
10803          */
10804         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
10805                 err = -EINVAL;
10806                 goto err_pmu;
10807         }
10808
10809         if (event->attr.aux_output &&
10810             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
10811                 err = -EOPNOTSUPP;
10812                 goto err_pmu;
10813         }
10814
10815         err = exclusive_event_init(event);
10816         if (err)
10817                 goto err_pmu;
10818
10819         if (has_addr_filter(event)) {
10820                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
10821                                                     sizeof(struct perf_addr_filter_range),
10822                                                     GFP_KERNEL);
10823                 if (!event->addr_filter_ranges) {
10824                         err = -ENOMEM;
10825                         goto err_per_task;
10826                 }
10827
10828                 /*
10829                  * Clone the parent's vma offsets: they are valid until exec()
10830                  * even if the mm is not shared with the parent.
10831                  */
10832                 if (event->parent) {
10833                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10834
10835                         raw_spin_lock_irq(&ifh->lock);
10836                         memcpy(event->addr_filter_ranges,
10837                                event->parent->addr_filter_ranges,
10838                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
10839                         raw_spin_unlock_irq(&ifh->lock);
10840                 }
10841
10842                 /* force hw sync on the address filters */
10843                 event->addr_filters_gen = 1;
10844         }
10845
10846         if (!event->parent) {
10847                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10848                         err = get_callchain_buffers(attr->sample_max_stack);
10849                         if (err)
10850                                 goto err_addr_filters;
10851                 }
10852         }
10853
10854         err = security_perf_event_alloc(event);
10855         if (err)
10856                 goto err_callchain_buffer;
10857
10858         /* symmetric to unaccount_event() in _free_event() */
10859         account_event(event);
10860
10861         return event;
10862
10863 err_callchain_buffer:
10864         if (!event->parent) {
10865                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
10866                         put_callchain_buffers();
10867         }
10868 err_addr_filters:
10869         kfree(event->addr_filter_ranges);
10870
10871 err_per_task:
10872         exclusive_event_destroy(event);
10873
10874 err_pmu:
10875         if (event->destroy)
10876                 event->destroy(event);
10877         module_put(pmu->module);
10878 err_ns:
10879         if (is_cgroup_event(event))
10880                 perf_detach_cgroup(event);
10881         if (event->ns)
10882                 put_pid_ns(event->ns);
10883         if (event->hw.target)
10884                 put_task_struct(event->hw.target);
10885         kfree(event);
10886
10887         return ERR_PTR(err);
10888 }
10889
10890 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10891                           struct perf_event_attr *attr)
10892 {
10893         u32 size;
10894         int ret;
10895
10896         /* Zero the full structure, so that a short copy will be nice. */
10897         memset(attr, 0, sizeof(*attr));
10898
10899         ret = get_user(size, &uattr->size);
10900         if (ret)
10901                 return ret;
10902
10903         /* ABI compatibility quirk: */
10904         if (!size)
10905                 size = PERF_ATTR_SIZE_VER0;
10906         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
10907                 goto err_size;
10908
10909         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
10910         if (ret) {
10911                 if (ret == -E2BIG)
10912                         goto err_size;
10913                 return ret;
10914         }
10915
10916         attr->size = size;
10917
10918         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
10919                 return -EINVAL;
10920
10921         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10922                 return -EINVAL;
10923
10924         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10925                 return -EINVAL;
10926
10927         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10928                 u64 mask = attr->branch_sample_type;
10929
10930                 /* only using defined bits */
10931                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10932                         return -EINVAL;
10933
10934                 /* at least one branch bit must be set */
10935                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10936                         return -EINVAL;
10937
10938                 /* propagate priv level, when not set for branch */
10939                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10940
10941                         /* exclude_kernel checked on syscall entry */
10942                         if (!attr->exclude_kernel)
10943                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10944
10945                         if (!attr->exclude_user)
10946                                 mask |= PERF_SAMPLE_BRANCH_USER;
10947
10948                         if (!attr->exclude_hv)
10949                                 mask |= PERF_SAMPLE_BRANCH_HV;
10950                         /*
10951                          * adjust user setting (for HW filter setup)
10952                          */
10953                         attr->branch_sample_type = mask;
10954                 }
10955                 /* privileged levels capture (kernel, hv): check permissions */
10956                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
10957                         ret = perf_allow_kernel(attr);
10958                         if (ret)
10959                                 return ret;
10960                 }
10961         }
10962
10963         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10964                 ret = perf_reg_validate(attr->sample_regs_user);
10965                 if (ret)
10966                         return ret;
10967         }
10968
10969         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10970                 if (!arch_perf_have_user_stack_dump())
10971                         return -ENOSYS;
10972
10973                 /*
10974                  * We have __u32 type for the size, but so far
10975                  * we can only use __u16 as maximum due to the
10976                  * __u16 sample size limit.
10977                  */
10978                 if (attr->sample_stack_user >= USHRT_MAX)
10979                         return -EINVAL;
10980                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10981                         return -EINVAL;
10982         }
10983
10984         if (!attr->sample_max_stack)
10985                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10986
10987         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10988                 ret = perf_reg_validate(attr->sample_regs_intr);
10989 out:
10990         return ret;
10991
10992 err_size:
10993         put_user(sizeof(*attr), &uattr->size);
10994         ret = -E2BIG;
10995         goto out;
10996 }
10997
10998 static int
10999 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11000 {
11001         struct ring_buffer *rb = NULL;
11002         int ret = -EINVAL;
11003
11004         if (!output_event)
11005                 goto set;
11006
11007         /* don't allow circular references */
11008         if (event == output_event)
11009                 goto out;
11010
11011         /*
11012          * Don't allow cross-cpu buffers
11013          */
11014         if (output_event->cpu != event->cpu)
11015                 goto out;
11016
11017         /*
11018          * If its not a per-cpu rb, it must be the same task.
11019          */
11020         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11021                 goto out;
11022
11023         /*
11024          * Mixing clocks in the same buffer is trouble you don't need.
11025          */
11026         if (output_event->clock != event->clock)
11027                 goto out;
11028
11029         /*
11030          * Either writing ring buffer from beginning or from end.
11031          * Mixing is not allowed.
11032          */
11033         if (is_write_backward(output_event) != is_write_backward(event))
11034                 goto out;
11035
11036         /*
11037          * If both events generate aux data, they must be on the same PMU
11038          */
11039         if (has_aux(event) && has_aux(output_event) &&
11040             event->pmu != output_event->pmu)
11041                 goto out;
11042
11043 set:
11044         mutex_lock(&event->mmap_mutex);
11045         /* Can't redirect output if we've got an active mmap() */
11046         if (atomic_read(&event->mmap_count))
11047                 goto unlock;
11048
11049         if (output_event) {
11050                 /* get the rb we want to redirect to */
11051                 rb = ring_buffer_get(output_event);
11052                 if (!rb)
11053                         goto unlock;
11054         }
11055
11056         ring_buffer_attach(event, rb);
11057
11058         ret = 0;
11059 unlock:
11060         mutex_unlock(&event->mmap_mutex);
11061
11062 out:
11063         return ret;
11064 }
11065
11066 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11067 {
11068         if (b < a)
11069                 swap(a, b);
11070
11071         mutex_lock(a);
11072         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11073 }
11074
11075 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11076 {
11077         bool nmi_safe = false;
11078
11079         switch (clk_id) {
11080         case CLOCK_MONOTONIC:
11081                 event->clock = &ktime_get_mono_fast_ns;
11082                 nmi_safe = true;
11083                 break;
11084
11085         case CLOCK_MONOTONIC_RAW:
11086                 event->clock = &ktime_get_raw_fast_ns;
11087                 nmi_safe = true;
11088                 break;
11089
11090         case CLOCK_REALTIME:
11091                 event->clock = &ktime_get_real_ns;
11092                 break;
11093
11094         case CLOCK_BOOTTIME:
11095                 event->clock = &ktime_get_boottime_ns;
11096                 break;
11097
11098         case CLOCK_TAI:
11099                 event->clock = &ktime_get_clocktai_ns;
11100                 break;
11101
11102         default:
11103                 return -EINVAL;
11104         }
11105
11106         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11107                 return -EINVAL;
11108
11109         return 0;
11110 }
11111
11112 /*
11113  * Variation on perf_event_ctx_lock_nested(), except we take two context
11114  * mutexes.
11115  */
11116 static struct perf_event_context *
11117 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11118                              struct perf_event_context *ctx)
11119 {
11120         struct perf_event_context *gctx;
11121
11122 again:
11123         rcu_read_lock();
11124         gctx = READ_ONCE(group_leader->ctx);
11125         if (!refcount_inc_not_zero(&gctx->refcount)) {
11126                 rcu_read_unlock();
11127                 goto again;
11128         }
11129         rcu_read_unlock();
11130
11131         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11132
11133         if (group_leader->ctx != gctx) {
11134                 mutex_unlock(&ctx->mutex);
11135                 mutex_unlock(&gctx->mutex);
11136                 put_ctx(gctx);
11137                 goto again;
11138         }
11139
11140         return gctx;
11141 }
11142
11143 /**
11144  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11145  *
11146  * @attr_uptr:  event_id type attributes for monitoring/sampling
11147  * @pid:                target pid
11148  * @cpu:                target cpu
11149  * @group_fd:           group leader event fd
11150  */
11151 SYSCALL_DEFINE5(perf_event_open,
11152                 struct perf_event_attr __user *, attr_uptr,
11153                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11154 {
11155         struct perf_event *group_leader = NULL, *output_event = NULL;
11156         struct perf_event *event, *sibling;
11157         struct perf_event_attr attr;
11158         struct perf_event_context *ctx, *uninitialized_var(gctx);
11159         struct file *event_file = NULL;
11160         struct fd group = {NULL, 0};
11161         struct task_struct *task = NULL;
11162         struct pmu *pmu;
11163         int event_fd;
11164         int move_group = 0;
11165         int err;
11166         int f_flags = O_RDWR;
11167         int cgroup_fd = -1;
11168
11169         /* for future expandability... */
11170         if (flags & ~PERF_FLAG_ALL)
11171                 return -EINVAL;
11172
11173         /* Do we allow access to perf_event_open(2) ? */
11174         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11175         if (err)
11176                 return err;
11177
11178         err = perf_copy_attr(attr_uptr, &attr);
11179         if (err)
11180                 return err;
11181
11182         if (!attr.exclude_kernel) {
11183                 err = perf_allow_kernel(&attr);
11184                 if (err)
11185                         return err;
11186         }
11187
11188         if (attr.namespaces) {
11189                 if (!capable(CAP_SYS_ADMIN))
11190                         return -EACCES;
11191         }
11192
11193         if (attr.freq) {
11194                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11195                         return -EINVAL;
11196         } else {
11197                 if (attr.sample_period & (1ULL << 63))
11198                         return -EINVAL;
11199         }
11200
11201         /* Only privileged users can get physical addresses */
11202         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11203                 err = perf_allow_kernel(&attr);
11204                 if (err)
11205                         return err;
11206         }
11207
11208         err = security_locked_down(LOCKDOWN_PERF);
11209         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11210                 /* REGS_INTR can leak data, lockdown must prevent this */
11211                 return err;
11212
11213         err = 0;
11214
11215         /*
11216          * In cgroup mode, the pid argument is used to pass the fd
11217          * opened to the cgroup directory in cgroupfs. The cpu argument
11218          * designates the cpu on which to monitor threads from that
11219          * cgroup.
11220          */
11221         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11222                 return -EINVAL;
11223
11224         if (flags & PERF_FLAG_FD_CLOEXEC)
11225                 f_flags |= O_CLOEXEC;
11226
11227         event_fd = get_unused_fd_flags(f_flags);
11228         if (event_fd < 0)
11229                 return event_fd;
11230
11231         if (group_fd != -1) {
11232                 err = perf_fget_light(group_fd, &group);
11233                 if (err)
11234                         goto err_fd;
11235                 group_leader = group.file->private_data;
11236                 if (flags & PERF_FLAG_FD_OUTPUT)
11237                         output_event = group_leader;
11238                 if (flags & PERF_FLAG_FD_NO_GROUP)
11239                         group_leader = NULL;
11240         }
11241
11242         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11243                 task = find_lively_task_by_vpid(pid);
11244                 if (IS_ERR(task)) {
11245                         err = PTR_ERR(task);
11246                         goto err_group_fd;
11247                 }
11248         }
11249
11250         if (task && group_leader &&
11251             group_leader->attr.inherit != attr.inherit) {
11252                 err = -EINVAL;
11253                 goto err_task;
11254         }
11255
11256         if (task) {
11257                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
11258                 if (err)
11259                         goto err_task;
11260
11261                 /*
11262                  * Reuse ptrace permission checks for now.
11263                  *
11264                  * We must hold cred_guard_mutex across this and any potential
11265                  * perf_install_in_context() call for this new event to
11266                  * serialize against exec() altering our credentials (and the
11267                  * perf_event_exit_task() that could imply).
11268                  */
11269                 err = -EACCES;
11270                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11271                         goto err_cred;
11272         }
11273
11274         if (flags & PERF_FLAG_PID_CGROUP)
11275                 cgroup_fd = pid;
11276
11277         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11278                                  NULL, NULL, cgroup_fd);
11279         if (IS_ERR(event)) {
11280                 err = PTR_ERR(event);
11281                 goto err_cred;
11282         }
11283
11284         if (is_sampling_event(event)) {
11285                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11286                         err = -EOPNOTSUPP;
11287                         goto err_alloc;
11288                 }
11289         }
11290
11291         /*
11292          * Special case software events and allow them to be part of
11293          * any hardware group.
11294          */
11295         pmu = event->pmu;
11296
11297         if (attr.use_clockid) {
11298                 err = perf_event_set_clock(event, attr.clockid);
11299                 if (err)
11300                         goto err_alloc;
11301         }
11302
11303         if (pmu->task_ctx_nr == perf_sw_context)
11304                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11305
11306         if (group_leader) {
11307                 if (is_software_event(event) &&
11308                     !in_software_context(group_leader)) {
11309                         /*
11310                          * If the event is a sw event, but the group_leader
11311                          * is on hw context.
11312                          *
11313                          * Allow the addition of software events to hw
11314                          * groups, this is safe because software events
11315                          * never fail to schedule.
11316                          */
11317                         pmu = group_leader->ctx->pmu;
11318                 } else if (!is_software_event(event) &&
11319                            is_software_event(group_leader) &&
11320                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11321                         /*
11322                          * In case the group is a pure software group, and we
11323                          * try to add a hardware event, move the whole group to
11324                          * the hardware context.
11325                          */
11326                         move_group = 1;
11327                 }
11328         }
11329
11330         /*
11331          * Get the target context (task or percpu):
11332          */
11333         ctx = find_get_context(pmu, task, event);
11334         if (IS_ERR(ctx)) {
11335                 err = PTR_ERR(ctx);
11336                 goto err_alloc;
11337         }
11338
11339         /*
11340          * Look up the group leader (we will attach this event to it):
11341          */
11342         if (group_leader) {
11343                 err = -EINVAL;
11344
11345                 /*
11346                  * Do not allow a recursive hierarchy (this new sibling
11347                  * becoming part of another group-sibling):
11348                  */
11349                 if (group_leader->group_leader != group_leader)
11350                         goto err_context;
11351
11352                 /* All events in a group should have the same clock */
11353                 if (group_leader->clock != event->clock)
11354                         goto err_context;
11355
11356                 /*
11357                  * Make sure we're both events for the same CPU;
11358                  * grouping events for different CPUs is broken; since
11359                  * you can never concurrently schedule them anyhow.
11360                  */
11361                 if (group_leader->cpu != event->cpu)
11362                         goto err_context;
11363
11364                 /*
11365                  * Make sure we're both on the same task, or both
11366                  * per-CPU events.
11367                  */
11368                 if (group_leader->ctx->task != ctx->task)
11369                         goto err_context;
11370
11371                 /*
11372                  * Do not allow to attach to a group in a different task
11373                  * or CPU context. If we're moving SW events, we'll fix
11374                  * this up later, so allow that.
11375                  */
11376                 if (!move_group && group_leader->ctx != ctx)
11377                         goto err_context;
11378
11379                 /*
11380                  * Only a group leader can be exclusive or pinned
11381                  */
11382                 if (attr.exclusive || attr.pinned)
11383                         goto err_context;
11384         }
11385
11386         if (output_event) {
11387                 err = perf_event_set_output(event, output_event);
11388                 if (err)
11389                         goto err_context;
11390         }
11391
11392         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11393                                         f_flags);
11394         if (IS_ERR(event_file)) {
11395                 err = PTR_ERR(event_file);
11396                 event_file = NULL;
11397                 goto err_context;
11398         }
11399
11400         if (move_group) {
11401                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11402
11403                 if (gctx->task == TASK_TOMBSTONE) {
11404                         err = -ESRCH;
11405                         goto err_locked;
11406                 }
11407
11408                 /*
11409                  * Check if we raced against another sys_perf_event_open() call
11410                  * moving the software group underneath us.
11411                  */
11412                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11413                         /*
11414                          * If someone moved the group out from under us, check
11415                          * if this new event wound up on the same ctx, if so
11416                          * its the regular !move_group case, otherwise fail.
11417                          */
11418                         if (gctx != ctx) {
11419                                 err = -EINVAL;
11420                                 goto err_locked;
11421                         } else {
11422                                 perf_event_ctx_unlock(group_leader, gctx);
11423                                 move_group = 0;
11424                         }
11425                 }
11426
11427                 /*
11428                  * Failure to create exclusive events returns -EBUSY.
11429                  */
11430                 err = -EBUSY;
11431                 if (!exclusive_event_installable(group_leader, ctx))
11432                         goto err_locked;
11433
11434                 for_each_sibling_event(sibling, group_leader) {
11435                         if (!exclusive_event_installable(sibling, ctx))
11436                                 goto err_locked;
11437                 }
11438         } else {
11439                 mutex_lock(&ctx->mutex);
11440         }
11441
11442         if (ctx->task == TASK_TOMBSTONE) {
11443                 err = -ESRCH;
11444                 goto err_locked;
11445         }
11446
11447         if (!perf_event_validate_size(event)) {
11448                 err = -E2BIG;
11449                 goto err_locked;
11450         }
11451
11452         if (!task) {
11453                 /*
11454                  * Check if the @cpu we're creating an event for is online.
11455                  *
11456                  * We use the perf_cpu_context::ctx::mutex to serialize against
11457                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11458                  */
11459                 struct perf_cpu_context *cpuctx =
11460                         container_of(ctx, struct perf_cpu_context, ctx);
11461
11462                 if (!cpuctx->online) {
11463                         err = -ENODEV;
11464                         goto err_locked;
11465                 }
11466         }
11467
11468         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11469                 err = -EINVAL;
11470                 goto err_locked;
11471         }
11472
11473         /*
11474          * Must be under the same ctx::mutex as perf_install_in_context(),
11475          * because we need to serialize with concurrent event creation.
11476          */
11477         if (!exclusive_event_installable(event, ctx)) {
11478                 err = -EBUSY;
11479                 goto err_locked;
11480         }
11481
11482         WARN_ON_ONCE(ctx->parent_ctx);
11483
11484         /*
11485          * This is the point on no return; we cannot fail hereafter. This is
11486          * where we start modifying current state.
11487          */
11488
11489         if (move_group) {
11490                 /*
11491                  * See perf_event_ctx_lock() for comments on the details
11492                  * of swizzling perf_event::ctx.
11493                  */
11494                 perf_remove_from_context(group_leader, 0);
11495                 put_ctx(gctx);
11496
11497                 for_each_sibling_event(sibling, group_leader) {
11498                         perf_remove_from_context(sibling, 0);
11499                         put_ctx(gctx);
11500                 }
11501
11502                 /*
11503                  * Wait for everybody to stop referencing the events through
11504                  * the old lists, before installing it on new lists.
11505                  */
11506                 synchronize_rcu();
11507
11508                 /*
11509                  * Install the group siblings before the group leader.
11510                  *
11511                  * Because a group leader will try and install the entire group
11512                  * (through the sibling list, which is still in-tact), we can
11513                  * end up with siblings installed in the wrong context.
11514                  *
11515                  * By installing siblings first we NO-OP because they're not
11516                  * reachable through the group lists.
11517                  */
11518                 for_each_sibling_event(sibling, group_leader) {
11519                         perf_event__state_init(sibling);
11520                         perf_install_in_context(ctx, sibling, sibling->cpu);
11521                         get_ctx(ctx);
11522                 }
11523
11524                 /*
11525                  * Removing from the context ends up with disabled
11526                  * event. What we want here is event in the initial
11527                  * startup state, ready to be add into new context.
11528                  */
11529                 perf_event__state_init(group_leader);
11530                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11531                 get_ctx(ctx);
11532         }
11533
11534         /*
11535          * Precalculate sample_data sizes; do while holding ctx::mutex such
11536          * that we're serialized against further additions and before
11537          * perf_install_in_context() which is the point the event is active and
11538          * can use these values.
11539          */
11540         perf_event__header_size(event);
11541         perf_event__id_header_size(event);
11542
11543         event->owner = current;
11544
11545         perf_install_in_context(ctx, event, event->cpu);
11546         perf_unpin_context(ctx);
11547
11548         if (move_group)
11549                 perf_event_ctx_unlock(group_leader, gctx);
11550         mutex_unlock(&ctx->mutex);
11551
11552         if (task) {
11553                 mutex_unlock(&task->signal->cred_guard_mutex);
11554                 put_task_struct(task);
11555         }
11556
11557         mutex_lock(&current->perf_event_mutex);
11558         list_add_tail(&event->owner_entry, &current->perf_event_list);
11559         mutex_unlock(&current->perf_event_mutex);
11560
11561         /*
11562          * Drop the reference on the group_event after placing the
11563          * new event on the sibling_list. This ensures destruction
11564          * of the group leader will find the pointer to itself in
11565          * perf_group_detach().
11566          */
11567         fdput(group);
11568         fd_install(event_fd, event_file);
11569         return event_fd;
11570
11571 err_locked:
11572         if (move_group)
11573                 perf_event_ctx_unlock(group_leader, gctx);
11574         mutex_unlock(&ctx->mutex);
11575 /* err_file: */
11576         fput(event_file);
11577 err_context:
11578         perf_unpin_context(ctx);
11579         put_ctx(ctx);
11580 err_alloc:
11581         /*
11582          * If event_file is set, the fput() above will have called ->release()
11583          * and that will take care of freeing the event.
11584          */
11585         if (!event_file)
11586                 free_event(event);
11587 err_cred:
11588         if (task)
11589                 mutex_unlock(&task->signal->cred_guard_mutex);
11590 err_task:
11591         if (task)
11592                 put_task_struct(task);
11593 err_group_fd:
11594         fdput(group);
11595 err_fd:
11596         put_unused_fd(event_fd);
11597         return err;
11598 }
11599
11600 /**
11601  * perf_event_create_kernel_counter
11602  *
11603  * @attr: attributes of the counter to create
11604  * @cpu: cpu in which the counter is bound
11605  * @task: task to profile (NULL for percpu)
11606  */
11607 struct perf_event *
11608 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
11609                                  struct task_struct *task,
11610                                  perf_overflow_handler_t overflow_handler,
11611                                  void *context)
11612 {
11613         struct perf_event_context *ctx;
11614         struct perf_event *event;
11615         int err;
11616
11617         /*
11618          * Grouping is not supported for kernel events, neither is 'AUX',
11619          * make sure the caller's intentions are adjusted.
11620          */
11621         if (attr->aux_output)
11622                 return ERR_PTR(-EINVAL);
11623
11624         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
11625                                  overflow_handler, context, -1);
11626         if (IS_ERR(event)) {
11627                 err = PTR_ERR(event);
11628                 goto err;
11629         }
11630
11631         /* Mark owner so we could distinguish it from user events. */
11632         event->owner = TASK_TOMBSTONE;
11633
11634         /*
11635          * Get the target context (task or percpu):
11636          */
11637         ctx = find_get_context(event->pmu, task, event);
11638         if (IS_ERR(ctx)) {
11639                 err = PTR_ERR(ctx);
11640                 goto err_free;
11641         }
11642
11643         WARN_ON_ONCE(ctx->parent_ctx);
11644         mutex_lock(&ctx->mutex);
11645         if (ctx->task == TASK_TOMBSTONE) {
11646                 err = -ESRCH;
11647                 goto err_unlock;
11648         }
11649
11650         if (!task) {
11651                 /*
11652                  * Check if the @cpu we're creating an event for is online.
11653                  *
11654                  * We use the perf_cpu_context::ctx::mutex to serialize against
11655                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11656                  */
11657                 struct perf_cpu_context *cpuctx =
11658                         container_of(ctx, struct perf_cpu_context, ctx);
11659                 if (!cpuctx->online) {
11660                         err = -ENODEV;
11661                         goto err_unlock;
11662                 }
11663         }
11664
11665         if (!exclusive_event_installable(event, ctx)) {
11666                 err = -EBUSY;
11667                 goto err_unlock;
11668         }
11669
11670         perf_install_in_context(ctx, event, event->cpu);
11671         perf_unpin_context(ctx);
11672         mutex_unlock(&ctx->mutex);
11673
11674         return event;
11675
11676 err_unlock:
11677         mutex_unlock(&ctx->mutex);
11678         perf_unpin_context(ctx);
11679         put_ctx(ctx);
11680 err_free:
11681         free_event(event);
11682 err:
11683         return ERR_PTR(err);
11684 }
11685 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
11686
11687 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
11688 {
11689         struct perf_event_context *src_ctx;
11690         struct perf_event_context *dst_ctx;
11691         struct perf_event *event, *tmp;
11692         LIST_HEAD(events);
11693
11694         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
11695         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
11696
11697         /*
11698          * See perf_event_ctx_lock() for comments on the details
11699          * of swizzling perf_event::ctx.
11700          */
11701         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
11702         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
11703                                  event_entry) {
11704                 perf_remove_from_context(event, 0);
11705                 unaccount_event_cpu(event, src_cpu);
11706                 put_ctx(src_ctx);
11707                 list_add(&event->migrate_entry, &events);
11708         }
11709
11710         /*
11711          * Wait for the events to quiesce before re-instating them.
11712          */
11713         synchronize_rcu();
11714
11715         /*
11716          * Re-instate events in 2 passes.
11717          *
11718          * Skip over group leaders and only install siblings on this first
11719          * pass, siblings will not get enabled without a leader, however a
11720          * leader will enable its siblings, even if those are still on the old
11721          * context.
11722          */
11723         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11724                 if (event->group_leader == event)
11725                         continue;
11726
11727                 list_del(&event->migrate_entry);
11728                 if (event->state >= PERF_EVENT_STATE_OFF)
11729                         event->state = PERF_EVENT_STATE_INACTIVE;
11730                 account_event_cpu(event, dst_cpu);
11731                 perf_install_in_context(dst_ctx, event, dst_cpu);
11732                 get_ctx(dst_ctx);
11733         }
11734
11735         /*
11736          * Once all the siblings are setup properly, install the group leaders
11737          * to make it go.
11738          */
11739         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
11740                 list_del(&event->migrate_entry);
11741                 if (event->state >= PERF_EVENT_STATE_OFF)
11742                         event->state = PERF_EVENT_STATE_INACTIVE;
11743                 account_event_cpu(event, dst_cpu);
11744                 perf_install_in_context(dst_ctx, event, dst_cpu);
11745                 get_ctx(dst_ctx);
11746         }
11747         mutex_unlock(&dst_ctx->mutex);
11748         mutex_unlock(&src_ctx->mutex);
11749 }
11750 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11751
11752 static void sync_child_event(struct perf_event *child_event,
11753                                struct task_struct *child)
11754 {
11755         struct perf_event *parent_event = child_event->parent;
11756         u64 child_val;
11757
11758         if (child_event->attr.inherit_stat)
11759                 perf_event_read_event(child_event, child);
11760
11761         child_val = perf_event_count(child_event);
11762
11763         /*
11764          * Add back the child's count to the parent's count:
11765          */
11766         atomic64_add(child_val, &parent_event->child_count);
11767         atomic64_add(child_event->total_time_enabled,
11768                      &parent_event->child_total_time_enabled);
11769         atomic64_add(child_event->total_time_running,
11770                      &parent_event->child_total_time_running);
11771 }
11772
11773 static void
11774 perf_event_exit_event(struct perf_event *child_event,
11775                       struct perf_event_context *child_ctx,
11776                       struct task_struct *child)
11777 {
11778         struct perf_event *parent_event = child_event->parent;
11779
11780         /*
11781          * Do not destroy the 'original' grouping; because of the context
11782          * switch optimization the original events could've ended up in a
11783          * random child task.
11784          *
11785          * If we were to destroy the original group, all group related
11786          * operations would cease to function properly after this random
11787          * child dies.
11788          *
11789          * Do destroy all inherited groups, we don't care about those
11790          * and being thorough is better.
11791          */
11792         raw_spin_lock_irq(&child_ctx->lock);
11793         WARN_ON_ONCE(child_ctx->is_active);
11794
11795         if (parent_event)
11796                 perf_group_detach(child_event);
11797         list_del_event(child_event, child_ctx);
11798         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11799         raw_spin_unlock_irq(&child_ctx->lock);
11800
11801         /*
11802          * Parent events are governed by their filedesc, retain them.
11803          */
11804         if (!parent_event) {
11805                 perf_event_wakeup(child_event);
11806                 return;
11807         }
11808         /*
11809          * Child events can be cleaned up.
11810          */
11811
11812         sync_child_event(child_event, child);
11813
11814         /*
11815          * Remove this event from the parent's list
11816          */
11817         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11818         mutex_lock(&parent_event->child_mutex);
11819         list_del_init(&child_event->child_list);
11820         mutex_unlock(&parent_event->child_mutex);
11821
11822         /*
11823          * Kick perf_poll() for is_event_hup().
11824          */
11825         perf_event_wakeup(parent_event);
11826         free_event(child_event);
11827         put_event(parent_event);
11828 }
11829
11830 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11831 {
11832         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11833         struct perf_event *child_event, *next;
11834
11835         WARN_ON_ONCE(child != current);
11836
11837         child_ctx = perf_pin_task_context(child, ctxn);
11838         if (!child_ctx)
11839                 return;
11840
11841         /*
11842          * In order to reduce the amount of tricky in ctx tear-down, we hold
11843          * ctx::mutex over the entire thing. This serializes against almost
11844          * everything that wants to access the ctx.
11845          *
11846          * The exception is sys_perf_event_open() /
11847          * perf_event_create_kernel_count() which does find_get_context()
11848          * without ctx::mutex (it cannot because of the move_group double mutex
11849          * lock thing). See the comments in perf_install_in_context().
11850          */
11851         mutex_lock(&child_ctx->mutex);
11852
11853         /*
11854          * In a single ctx::lock section, de-schedule the events and detach the
11855          * context from the task such that we cannot ever get it scheduled back
11856          * in.
11857          */
11858         raw_spin_lock_irq(&child_ctx->lock);
11859         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11860
11861         /*
11862          * Now that the context is inactive, destroy the task <-> ctx relation
11863          * and mark the context dead.
11864          */
11865         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11866         put_ctx(child_ctx); /* cannot be last */
11867         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11868         put_task_struct(current); /* cannot be last */
11869
11870         clone_ctx = unclone_ctx(child_ctx);
11871         raw_spin_unlock_irq(&child_ctx->lock);
11872
11873         if (clone_ctx)
11874                 put_ctx(clone_ctx);
11875
11876         /*
11877          * Report the task dead after unscheduling the events so that we
11878          * won't get any samples after PERF_RECORD_EXIT. We can however still
11879          * get a few PERF_RECORD_READ events.
11880          */
11881         perf_event_task(child, child_ctx, 0);
11882
11883         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11884                 perf_event_exit_event(child_event, child_ctx, child);
11885
11886         mutex_unlock(&child_ctx->mutex);
11887
11888         put_ctx(child_ctx);
11889 }
11890
11891 /*
11892  * When a child task exits, feed back event values to parent events.
11893  *
11894  * Can be called with cred_guard_mutex held when called from
11895  * install_exec_creds().
11896  */
11897 void perf_event_exit_task(struct task_struct *child)
11898 {
11899         struct perf_event *event, *tmp;
11900         int ctxn;
11901
11902         mutex_lock(&child->perf_event_mutex);
11903         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11904                                  owner_entry) {
11905                 list_del_init(&event->owner_entry);
11906
11907                 /*
11908                  * Ensure the list deletion is visible before we clear
11909                  * the owner, closes a race against perf_release() where
11910                  * we need to serialize on the owner->perf_event_mutex.
11911                  */
11912                 smp_store_release(&event->owner, NULL);
11913         }
11914         mutex_unlock(&child->perf_event_mutex);
11915
11916         for_each_task_context_nr(ctxn)
11917                 perf_event_exit_task_context(child, ctxn);
11918
11919         /*
11920          * The perf_event_exit_task_context calls perf_event_task
11921          * with child's task_ctx, which generates EXIT events for
11922          * child contexts and sets child->perf_event_ctxp[] to NULL.
11923          * At this point we need to send EXIT events to cpu contexts.
11924          */
11925         perf_event_task(child, NULL, 0);
11926 }
11927
11928 static void perf_free_event(struct perf_event *event,
11929                             struct perf_event_context *ctx)
11930 {
11931         struct perf_event *parent = event->parent;
11932
11933         if (WARN_ON_ONCE(!parent))
11934                 return;
11935
11936         mutex_lock(&parent->child_mutex);
11937         list_del_init(&event->child_list);
11938         mutex_unlock(&parent->child_mutex);
11939
11940         put_event(parent);
11941
11942         raw_spin_lock_irq(&ctx->lock);
11943         perf_group_detach(event);
11944         list_del_event(event, ctx);
11945         raw_spin_unlock_irq(&ctx->lock);
11946         free_event(event);
11947 }
11948
11949 /*
11950  * Free a context as created by inheritance by perf_event_init_task() below,
11951  * used by fork() in case of fail.
11952  *
11953  * Even though the task has never lived, the context and events have been
11954  * exposed through the child_list, so we must take care tearing it all down.
11955  */
11956 void perf_event_free_task(struct task_struct *task)
11957 {
11958         struct perf_event_context *ctx;
11959         struct perf_event *event, *tmp;
11960         int ctxn;
11961
11962         for_each_task_context_nr(ctxn) {
11963                 ctx = task->perf_event_ctxp[ctxn];
11964                 if (!ctx)
11965                         continue;
11966
11967                 mutex_lock(&ctx->mutex);
11968                 raw_spin_lock_irq(&ctx->lock);
11969                 /*
11970                  * Destroy the task <-> ctx relation and mark the context dead.
11971                  *
11972                  * This is important because even though the task hasn't been
11973                  * exposed yet the context has been (through child_list).
11974                  */
11975                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11976                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11977                 put_task_struct(task); /* cannot be last */
11978                 raw_spin_unlock_irq(&ctx->lock);
11979
11980                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11981                         perf_free_event(event, ctx);
11982
11983                 mutex_unlock(&ctx->mutex);
11984
11985                 /*
11986                  * perf_event_release_kernel() could've stolen some of our
11987                  * child events and still have them on its free_list. In that
11988                  * case we must wait for these events to have been freed (in
11989                  * particular all their references to this task must've been
11990                  * dropped).
11991                  *
11992                  * Without this copy_process() will unconditionally free this
11993                  * task (irrespective of its reference count) and
11994                  * _free_event()'s put_task_struct(event->hw.target) will be a
11995                  * use-after-free.
11996                  *
11997                  * Wait for all events to drop their context reference.
11998                  */
11999                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12000                 put_ctx(ctx); /* must be last */
12001         }
12002 }
12003
12004 void perf_event_delayed_put(struct task_struct *task)
12005 {
12006         int ctxn;
12007
12008         for_each_task_context_nr(ctxn)
12009                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12010 }
12011
12012 struct file *perf_event_get(unsigned int fd)
12013 {
12014         struct file *file = fget(fd);
12015         if (!file)
12016                 return ERR_PTR(-EBADF);
12017
12018         if (file->f_op != &perf_fops) {
12019                 fput(file);
12020                 return ERR_PTR(-EBADF);
12021         }
12022
12023         return file;
12024 }
12025
12026 const struct perf_event *perf_get_event(struct file *file)
12027 {
12028         if (file->f_op != &perf_fops)
12029                 return ERR_PTR(-EINVAL);
12030
12031         return file->private_data;
12032 }
12033
12034 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12035 {
12036         if (!event)
12037                 return ERR_PTR(-EINVAL);
12038
12039         return &event->attr;
12040 }
12041
12042 /*
12043  * Inherit an event from parent task to child task.
12044  *
12045  * Returns:
12046  *  - valid pointer on success
12047  *  - NULL for orphaned events
12048  *  - IS_ERR() on error
12049  */
12050 static struct perf_event *
12051 inherit_event(struct perf_event *parent_event,
12052               struct task_struct *parent,
12053               struct perf_event_context *parent_ctx,
12054               struct task_struct *child,
12055               struct perf_event *group_leader,
12056               struct perf_event_context *child_ctx)
12057 {
12058         enum perf_event_state parent_state = parent_event->state;
12059         struct perf_event *child_event;
12060         unsigned long flags;
12061
12062         /*
12063          * Instead of creating recursive hierarchies of events,
12064          * we link inherited events back to the original parent,
12065          * which has a filp for sure, which we use as the reference
12066          * count:
12067          */
12068         if (parent_event->parent)
12069                 parent_event = parent_event->parent;
12070
12071         child_event = perf_event_alloc(&parent_event->attr,
12072                                            parent_event->cpu,
12073                                            child,
12074                                            group_leader, parent_event,
12075                                            NULL, NULL, -1);
12076         if (IS_ERR(child_event))
12077                 return child_event;
12078
12079
12080         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12081             !child_ctx->task_ctx_data) {
12082                 struct pmu *pmu = child_event->pmu;
12083
12084                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
12085                                                    GFP_KERNEL);
12086                 if (!child_ctx->task_ctx_data) {
12087                         free_event(child_event);
12088                         return ERR_PTR(-ENOMEM);
12089                 }
12090         }
12091
12092         /*
12093          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12094          * must be under the same lock in order to serialize against
12095          * perf_event_release_kernel(), such that either we must observe
12096          * is_orphaned_event() or they will observe us on the child_list.
12097          */
12098         mutex_lock(&parent_event->child_mutex);
12099         if (is_orphaned_event(parent_event) ||
12100             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12101                 mutex_unlock(&parent_event->child_mutex);
12102                 /* task_ctx_data is freed with child_ctx */
12103                 free_event(child_event);
12104                 return NULL;
12105         }
12106
12107         get_ctx(child_ctx);
12108
12109         /*
12110          * Make the child state follow the state of the parent event,
12111          * not its attr.disabled bit.  We hold the parent's mutex,
12112          * so we won't race with perf_event_{en, dis}able_family.
12113          */
12114         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12115                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12116         else
12117                 child_event->state = PERF_EVENT_STATE_OFF;
12118
12119         if (parent_event->attr.freq) {
12120                 u64 sample_period = parent_event->hw.sample_period;
12121                 struct hw_perf_event *hwc = &child_event->hw;
12122
12123                 hwc->sample_period = sample_period;
12124                 hwc->last_period   = sample_period;
12125
12126                 local64_set(&hwc->period_left, sample_period);
12127         }
12128
12129         child_event->ctx = child_ctx;
12130         child_event->overflow_handler = parent_event->overflow_handler;
12131         child_event->overflow_handler_context
12132                 = parent_event->overflow_handler_context;
12133
12134         /*
12135          * Precalculate sample_data sizes
12136          */
12137         perf_event__header_size(child_event);
12138         perf_event__id_header_size(child_event);
12139
12140         /*
12141          * Link it up in the child's context:
12142          */
12143         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12144         add_event_to_ctx(child_event, child_ctx);
12145         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12146
12147         /*
12148          * Link this into the parent event's child list
12149          */
12150         list_add_tail(&child_event->child_list, &parent_event->child_list);
12151         mutex_unlock(&parent_event->child_mutex);
12152
12153         return child_event;
12154 }
12155
12156 /*
12157  * Inherits an event group.
12158  *
12159  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12160  * This matches with perf_event_release_kernel() removing all child events.
12161  *
12162  * Returns:
12163  *  - 0 on success
12164  *  - <0 on error
12165  */
12166 static int inherit_group(struct perf_event *parent_event,
12167               struct task_struct *parent,
12168               struct perf_event_context *parent_ctx,
12169               struct task_struct *child,
12170               struct perf_event_context *child_ctx)
12171 {
12172         struct perf_event *leader;
12173         struct perf_event *sub;
12174         struct perf_event *child_ctr;
12175
12176         leader = inherit_event(parent_event, parent, parent_ctx,
12177                                  child, NULL, child_ctx);
12178         if (IS_ERR(leader))
12179                 return PTR_ERR(leader);
12180         /*
12181          * @leader can be NULL here because of is_orphaned_event(). In this
12182          * case inherit_event() will create individual events, similar to what
12183          * perf_group_detach() would do anyway.
12184          */
12185         for_each_sibling_event(sub, parent_event) {
12186                 child_ctr = inherit_event(sub, parent, parent_ctx,
12187                                             child, leader, child_ctx);
12188                 if (IS_ERR(child_ctr))
12189                         return PTR_ERR(child_ctr);
12190
12191                 if (sub->aux_event == parent_event && child_ctr &&
12192                     !perf_get_aux_event(child_ctr, leader))
12193                         return -EINVAL;
12194         }
12195         return 0;
12196 }
12197
12198 /*
12199  * Creates the child task context and tries to inherit the event-group.
12200  *
12201  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12202  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12203  * consistent with perf_event_release_kernel() removing all child events.
12204  *
12205  * Returns:
12206  *  - 0 on success
12207  *  - <0 on error
12208  */
12209 static int
12210 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12211                    struct perf_event_context *parent_ctx,
12212                    struct task_struct *child, int ctxn,
12213                    int *inherited_all)
12214 {
12215         int ret;
12216         struct perf_event_context *child_ctx;
12217
12218         if (!event->attr.inherit) {
12219                 *inherited_all = 0;
12220                 return 0;
12221         }
12222
12223         child_ctx = child->perf_event_ctxp[ctxn];
12224         if (!child_ctx) {
12225                 /*
12226                  * This is executed from the parent task context, so
12227                  * inherit events that have been marked for cloning.
12228                  * First allocate and initialize a context for the
12229                  * child.
12230                  */
12231                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12232                 if (!child_ctx)
12233                         return -ENOMEM;
12234
12235                 child->perf_event_ctxp[ctxn] = child_ctx;
12236         }
12237
12238         ret = inherit_group(event, parent, parent_ctx,
12239                             child, child_ctx);
12240
12241         if (ret)
12242                 *inherited_all = 0;
12243
12244         return ret;
12245 }
12246
12247 /*
12248  * Initialize the perf_event context in task_struct
12249  */
12250 static int perf_event_init_context(struct task_struct *child, int ctxn)
12251 {
12252         struct perf_event_context *child_ctx, *parent_ctx;
12253         struct perf_event_context *cloned_ctx;
12254         struct perf_event *event;
12255         struct task_struct *parent = current;
12256         int inherited_all = 1;
12257         unsigned long flags;
12258         int ret = 0;
12259
12260         if (likely(!parent->perf_event_ctxp[ctxn]))
12261                 return 0;
12262
12263         /*
12264          * If the parent's context is a clone, pin it so it won't get
12265          * swapped under us.
12266          */
12267         parent_ctx = perf_pin_task_context(parent, ctxn);
12268         if (!parent_ctx)
12269                 return 0;
12270
12271         /*
12272          * No need to check if parent_ctx != NULL here; since we saw
12273          * it non-NULL earlier, the only reason for it to become NULL
12274          * is if we exit, and since we're currently in the middle of
12275          * a fork we can't be exiting at the same time.
12276          */
12277
12278         /*
12279          * Lock the parent list. No need to lock the child - not PID
12280          * hashed yet and not running, so nobody can access it.
12281          */
12282         mutex_lock(&parent_ctx->mutex);
12283
12284         /*
12285          * We dont have to disable NMIs - we are only looking at
12286          * the list, not manipulating it:
12287          */
12288         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12289                 ret = inherit_task_group(event, parent, parent_ctx,
12290                                          child, ctxn, &inherited_all);
12291                 if (ret)
12292                         goto out_unlock;
12293         }
12294
12295         /*
12296          * We can't hold ctx->lock when iterating the ->flexible_group list due
12297          * to allocations, but we need to prevent rotation because
12298          * rotate_ctx() will change the list from interrupt context.
12299          */
12300         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12301         parent_ctx->rotate_disable = 1;
12302         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12303
12304         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12305                 ret = inherit_task_group(event, parent, parent_ctx,
12306                                          child, ctxn, &inherited_all);
12307                 if (ret)
12308                         goto out_unlock;
12309         }
12310
12311         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12312         parent_ctx->rotate_disable = 0;
12313
12314         child_ctx = child->perf_event_ctxp[ctxn];
12315
12316         if (child_ctx && inherited_all) {
12317                 /*
12318                  * Mark the child context as a clone of the parent
12319                  * context, or of whatever the parent is a clone of.
12320                  *
12321                  * Note that if the parent is a clone, the holding of
12322                  * parent_ctx->lock avoids it from being uncloned.
12323                  */
12324                 cloned_ctx = parent_ctx->parent_ctx;
12325                 if (cloned_ctx) {
12326                         child_ctx->parent_ctx = cloned_ctx;
12327                         child_ctx->parent_gen = parent_ctx->parent_gen;
12328                 } else {
12329                         child_ctx->parent_ctx = parent_ctx;
12330                         child_ctx->parent_gen = parent_ctx->generation;
12331                 }
12332                 get_ctx(child_ctx->parent_ctx);
12333         }
12334
12335         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12336 out_unlock:
12337         mutex_unlock(&parent_ctx->mutex);
12338
12339         perf_unpin_context(parent_ctx);
12340         put_ctx(parent_ctx);
12341
12342         return ret;
12343 }
12344
12345 /*
12346  * Initialize the perf_event context in task_struct
12347  */
12348 int perf_event_init_task(struct task_struct *child)
12349 {
12350         int ctxn, ret;
12351
12352         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12353         mutex_init(&child->perf_event_mutex);
12354         INIT_LIST_HEAD(&child->perf_event_list);
12355
12356         for_each_task_context_nr(ctxn) {
12357                 ret = perf_event_init_context(child, ctxn);
12358                 if (ret) {
12359                         perf_event_free_task(child);
12360                         return ret;
12361                 }
12362         }
12363
12364         return 0;
12365 }
12366
12367 static void __init perf_event_init_all_cpus(void)
12368 {
12369         struct swevent_htable *swhash;
12370         int cpu;
12371
12372         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12373
12374         for_each_possible_cpu(cpu) {
12375                 swhash = &per_cpu(swevent_htable, cpu);
12376                 mutex_init(&swhash->hlist_mutex);
12377                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12378
12379                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12380                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12381
12382 #ifdef CONFIG_CGROUP_PERF
12383                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12384 #endif
12385                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12386         }
12387 }
12388
12389 static void perf_swevent_init_cpu(unsigned int cpu)
12390 {
12391         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12392
12393         mutex_lock(&swhash->hlist_mutex);
12394         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12395                 struct swevent_hlist *hlist;
12396
12397                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12398                 WARN_ON(!hlist);
12399                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12400         }
12401         mutex_unlock(&swhash->hlist_mutex);
12402 }
12403
12404 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12405 static void __perf_event_exit_context(void *__info)
12406 {
12407         struct perf_event_context *ctx = __info;
12408         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12409         struct perf_event *event;
12410
12411         raw_spin_lock(&ctx->lock);
12412         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12413         list_for_each_entry(event, &ctx->event_list, event_entry)
12414                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12415         raw_spin_unlock(&ctx->lock);
12416 }
12417
12418 static void perf_event_exit_cpu_context(int cpu)
12419 {
12420         struct perf_cpu_context *cpuctx;
12421         struct perf_event_context *ctx;
12422         struct pmu *pmu;
12423
12424         mutex_lock(&pmus_lock);
12425         list_for_each_entry(pmu, &pmus, entry) {
12426                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12427                 ctx = &cpuctx->ctx;
12428
12429                 mutex_lock(&ctx->mutex);
12430                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12431                 cpuctx->online = 0;
12432                 mutex_unlock(&ctx->mutex);
12433         }
12434         cpumask_clear_cpu(cpu, perf_online_mask);
12435         mutex_unlock(&pmus_lock);
12436 }
12437 #else
12438
12439 static void perf_event_exit_cpu_context(int cpu) { }
12440
12441 #endif
12442
12443 int perf_event_init_cpu(unsigned int cpu)
12444 {
12445         struct perf_cpu_context *cpuctx;
12446         struct perf_event_context *ctx;
12447         struct pmu *pmu;
12448
12449         perf_swevent_init_cpu(cpu);
12450
12451         mutex_lock(&pmus_lock);
12452         cpumask_set_cpu(cpu, perf_online_mask);
12453         list_for_each_entry(pmu, &pmus, entry) {
12454                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12455                 ctx = &cpuctx->ctx;
12456
12457                 mutex_lock(&ctx->mutex);
12458                 cpuctx->online = 1;
12459                 mutex_unlock(&ctx->mutex);
12460         }
12461         mutex_unlock(&pmus_lock);
12462
12463         return 0;
12464 }
12465
12466 int perf_event_exit_cpu(unsigned int cpu)
12467 {
12468         perf_event_exit_cpu_context(cpu);
12469         return 0;
12470 }
12471
12472 static int
12473 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12474 {
12475         int cpu;
12476
12477         for_each_online_cpu(cpu)
12478                 perf_event_exit_cpu(cpu);
12479
12480         return NOTIFY_OK;
12481 }
12482
12483 /*
12484  * Run the perf reboot notifier at the very last possible moment so that
12485  * the generic watchdog code runs as long as possible.
12486  */
12487 static struct notifier_block perf_reboot_notifier = {
12488         .notifier_call = perf_reboot,
12489         .priority = INT_MIN,
12490 };
12491
12492 void __init perf_event_init(void)
12493 {
12494         int ret;
12495
12496         idr_init(&pmu_idr);
12497
12498         perf_event_init_all_cpus();
12499         init_srcu_struct(&pmus_srcu);
12500         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12501         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12502         perf_pmu_register(&perf_task_clock, NULL, -1);
12503         perf_tp_register();
12504         perf_event_init_cpu(smp_processor_id());
12505         register_reboot_notifier(&perf_reboot_notifier);
12506
12507         ret = init_hw_breakpoint();
12508         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12509
12510         /*
12511          * Build time assertion that we keep the data_head at the intended
12512          * location.  IOW, validation we got the __reserved[] size right.
12513          */
12514         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12515                      != 1024);
12516 }
12517
12518 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12519                               char *page)
12520 {
12521         struct perf_pmu_events_attr *pmu_attr =
12522                 container_of(attr, struct perf_pmu_events_attr, attr);
12523
12524         if (pmu_attr->event_str)
12525                 return sprintf(page, "%s\n", pmu_attr->event_str);
12526
12527         return 0;
12528 }
12529 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12530
12531 static int __init perf_event_sysfs_init(void)
12532 {
12533         struct pmu *pmu;
12534         int ret;
12535
12536         mutex_lock(&pmus_lock);
12537
12538         ret = bus_register(&pmu_bus);
12539         if (ret)
12540                 goto unlock;
12541
12542         list_for_each_entry(pmu, &pmus, entry) {
12543                 if (!pmu->name || pmu->type < 0)
12544                         continue;
12545
12546                 ret = pmu_dev_alloc(pmu);
12547                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12548         }
12549         pmu_bus_running = 1;
12550         ret = 0;
12551
12552 unlock:
12553         mutex_unlock(&pmus_lock);
12554
12555         return ret;
12556 }
12557 device_initcall(perf_event_sysfs_init);
12558
12559 #ifdef CONFIG_CGROUP_PERF
12560 static struct cgroup_subsys_state *
12561 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
12562 {
12563         struct perf_cgroup *jc;
12564
12565         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
12566         if (!jc)
12567                 return ERR_PTR(-ENOMEM);
12568
12569         jc->info = alloc_percpu(struct perf_cgroup_info);
12570         if (!jc->info) {
12571                 kfree(jc);
12572                 return ERR_PTR(-ENOMEM);
12573         }
12574
12575         return &jc->css;
12576 }
12577
12578 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
12579 {
12580         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
12581
12582         free_percpu(jc->info);
12583         kfree(jc);
12584 }
12585
12586 static int __perf_cgroup_move(void *info)
12587 {
12588         struct task_struct *task = info;
12589         rcu_read_lock();
12590         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
12591         rcu_read_unlock();
12592         return 0;
12593 }
12594
12595 static void perf_cgroup_attach(struct cgroup_taskset *tset)
12596 {
12597         struct task_struct *task;
12598         struct cgroup_subsys_state *css;
12599
12600         cgroup_taskset_for_each(task, css, tset)
12601                 task_function_call(task, __perf_cgroup_move, task);
12602 }
12603
12604 struct cgroup_subsys perf_event_cgrp_subsys = {
12605         .css_alloc      = perf_cgroup_css_alloc,
12606         .css_free       = perf_cgroup_css_free,
12607         .attach         = perf_cgroup_attach,
12608         /*
12609          * Implicitly enable on dfl hierarchy so that perf events can
12610          * always be filtered by cgroup2 path as long as perf_event
12611          * controller is not mounted on a legacy hierarchy.
12612          */
12613         .implicit_on_dfl = true,
12614         .threaded       = true,
12615 };
12616 #endif /* CONFIG_CGROUP_PERF */