mm: remove VM_DENYWRITE
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 #ifdef CONFIG_CGROUP_PERF
678
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682         struct perf_event_context *ctx = event->ctx;
683         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684
685         /* @event doesn't care about cgroup */
686         if (!event->cgrp)
687                 return true;
688
689         /* wants specific cgroup scope but @cpuctx isn't associated with any */
690         if (!cpuctx->cgrp)
691                 return false;
692
693         /*
694          * Cgroup scoping is recursive.  An event enabled for a cgroup is
695          * also enabled for all its descendant cgroups.  If @cpuctx's
696          * cgroup is a descendant of @event's (the test covers identity
697          * case), it's a match.
698          */
699         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700                                     event->cgrp->css.cgroup);
701 }
702
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705         css_put(&event->cgrp->css);
706         event->cgrp = NULL;
707 }
708
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711         return event->cgrp != NULL;
712 }
713
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716         struct perf_cgroup_info *t;
717
718         t = per_cpu_ptr(event->cgrp->info, event->cpu);
719         return t->time;
720 }
721
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724         struct perf_cgroup_info *info;
725         u64 now;
726
727         now = perf_clock();
728
729         info = this_cpu_ptr(cgrp->info);
730
731         info->time += now - info->timestamp;
732         info->timestamp = now;
733 }
734
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737         struct perf_cgroup *cgrp = cpuctx->cgrp;
738         struct cgroup_subsys_state *css;
739
740         if (cgrp) {
741                 for (css = &cgrp->css; css; css = css->parent) {
742                         cgrp = container_of(css, struct perf_cgroup, css);
743                         __update_cgrp_time(cgrp);
744                 }
745         }
746 }
747
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750         struct perf_cgroup *cgrp;
751
752         /*
753          * ensure we access cgroup data only when needed and
754          * when we know the cgroup is pinned (css_get)
755          */
756         if (!is_cgroup_event(event))
757                 return;
758
759         cgrp = perf_cgroup_from_task(current, event->ctx);
760         /*
761          * Do not update time when cgroup is not active
762          */
763         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764                 __update_cgrp_time(event->cgrp);
765 }
766
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769                           struct perf_event_context *ctx)
770 {
771         struct perf_cgroup *cgrp;
772         struct perf_cgroup_info *info;
773         struct cgroup_subsys_state *css;
774
775         /*
776          * ctx->lock held by caller
777          * ensure we do not access cgroup data
778          * unless we have the cgroup pinned (css_get)
779          */
780         if (!task || !ctx->nr_cgroups)
781                 return;
782
783         cgrp = perf_cgroup_from_task(task, ctx);
784
785         for (css = &cgrp->css; css; css = css->parent) {
786                 cgrp = container_of(css, struct perf_cgroup, css);
787                 info = this_cpu_ptr(cgrp->info);
788                 info->timestamp = ctx->timestamp;
789         }
790 }
791
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793
794 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
796
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805         struct perf_cpu_context *cpuctx;
806         struct list_head *list;
807         unsigned long flags;
808
809         /*
810          * Disable interrupts and preemption to avoid this CPU's
811          * cgrp_cpuctx_entry to change under us.
812          */
813         local_irq_save(flags);
814
815         list = this_cpu_ptr(&cgrp_cpuctx_list);
816         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818
819                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820                 perf_pmu_disable(cpuctx->ctx.pmu);
821
822                 if (mode & PERF_CGROUP_SWOUT) {
823                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824                         /*
825                          * must not be done before ctxswout due
826                          * to event_filter_match() in event_sched_out()
827                          */
828                         cpuctx->cgrp = NULL;
829                 }
830
831                 if (mode & PERF_CGROUP_SWIN) {
832                         WARN_ON_ONCE(cpuctx->cgrp);
833                         /*
834                          * set cgrp before ctxsw in to allow
835                          * event_filter_match() to not have to pass
836                          * task around
837                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
838                          * because cgorup events are only per-cpu
839                          */
840                         cpuctx->cgrp = perf_cgroup_from_task(task,
841                                                              &cpuctx->ctx);
842                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843                 }
844                 perf_pmu_enable(cpuctx->ctx.pmu);
845                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846         }
847
848         local_irq_restore(flags);
849 }
850
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852                                          struct task_struct *next)
853 {
854         struct perf_cgroup *cgrp1;
855         struct perf_cgroup *cgrp2 = NULL;
856
857         rcu_read_lock();
858         /*
859          * we come here when we know perf_cgroup_events > 0
860          * we do not need to pass the ctx here because we know
861          * we are holding the rcu lock
862          */
863         cgrp1 = perf_cgroup_from_task(task, NULL);
864         cgrp2 = perf_cgroup_from_task(next, NULL);
865
866         /*
867          * only schedule out current cgroup events if we know
868          * that we are switching to a different cgroup. Otherwise,
869          * do no touch the cgroup events.
870          */
871         if (cgrp1 != cgrp2)
872                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873
874         rcu_read_unlock();
875 }
876
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878                                         struct task_struct *task)
879 {
880         struct perf_cgroup *cgrp1;
881         struct perf_cgroup *cgrp2 = NULL;
882
883         rcu_read_lock();
884         /*
885          * we come here when we know perf_cgroup_events > 0
886          * we do not need to pass the ctx here because we know
887          * we are holding the rcu lock
888          */
889         cgrp1 = perf_cgroup_from_task(task, NULL);
890         cgrp2 = perf_cgroup_from_task(prev, NULL);
891
892         /*
893          * only need to schedule in cgroup events if we are changing
894          * cgroup during ctxsw. Cgroup events were not scheduled
895          * out of ctxsw out if that was not the case.
896          */
897         if (cgrp1 != cgrp2)
898                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899
900         rcu_read_unlock();
901 }
902
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904                                 struct cgroup_subsys_state *css)
905 {
906         struct perf_cpu_context *cpuctx;
907         struct perf_event **storage;
908         int cpu, heap_size, ret = 0;
909
910         /*
911          * Allow storage to have sufficent space for an iterator for each
912          * possibly nested cgroup plus an iterator for events with no cgroup.
913          */
914         for (heap_size = 1; css; css = css->parent)
915                 heap_size++;
916
917         for_each_possible_cpu(cpu) {
918                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919                 if (heap_size <= cpuctx->heap_size)
920                         continue;
921
922                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923                                        GFP_KERNEL, cpu_to_node(cpu));
924                 if (!storage) {
925                         ret = -ENOMEM;
926                         break;
927                 }
928
929                 raw_spin_lock_irq(&cpuctx->ctx.lock);
930                 if (cpuctx->heap_size < heap_size) {
931                         swap(cpuctx->heap, storage);
932                         if (storage == cpuctx->heap_default)
933                                 storage = NULL;
934                         cpuctx->heap_size = heap_size;
935                 }
936                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
937
938                 kfree(storage);
939         }
940
941         return ret;
942 }
943
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945                                       struct perf_event_attr *attr,
946                                       struct perf_event *group_leader)
947 {
948         struct perf_cgroup *cgrp;
949         struct cgroup_subsys_state *css;
950         struct fd f = fdget(fd);
951         int ret = 0;
952
953         if (!f.file)
954                 return -EBADF;
955
956         css = css_tryget_online_from_dir(f.file->f_path.dentry,
957                                          &perf_event_cgrp_subsys);
958         if (IS_ERR(css)) {
959                 ret = PTR_ERR(css);
960                 goto out;
961         }
962
963         ret = perf_cgroup_ensure_storage(event, css);
964         if (ret)
965                 goto out;
966
967         cgrp = container_of(css, struct perf_cgroup, css);
968         event->cgrp = cgrp;
969
970         /*
971          * all events in a group must monitor
972          * the same cgroup because a task belongs
973          * to only one perf cgroup at a time
974          */
975         if (group_leader && group_leader->cgrp != cgrp) {
976                 perf_detach_cgroup(event);
977                 ret = -EINVAL;
978         }
979 out:
980         fdput(f);
981         return ret;
982 }
983
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987         struct perf_cgroup_info *t;
988         t = per_cpu_ptr(event->cgrp->info, event->cpu);
989         event->shadow_ctx_time = now - t->timestamp;
990 }
991
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995         struct perf_cpu_context *cpuctx;
996
997         if (!is_cgroup_event(event))
998                 return;
999
1000         /*
1001          * Because cgroup events are always per-cpu events,
1002          * @ctx == &cpuctx->ctx.
1003          */
1004         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005
1006         /*
1007          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008          * matching the event's cgroup, we must do this for every new event,
1009          * because if the first would mismatch, the second would not try again
1010          * and we would leave cpuctx->cgrp unset.
1011          */
1012         if (ctx->is_active && !cpuctx->cgrp) {
1013                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
1015                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016                         cpuctx->cgrp = cgrp;
1017         }
1018
1019         if (ctx->nr_cgroups++)
1020                 return;
1021
1022         list_add(&cpuctx->cgrp_cpuctx_entry,
1023                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029         struct perf_cpu_context *cpuctx;
1030
1031         if (!is_cgroup_event(event))
1032                 return;
1033
1034         /*
1035          * Because cgroup events are always per-cpu events,
1036          * @ctx == &cpuctx->ctx.
1037          */
1038         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039
1040         if (--ctx->nr_cgroups)
1041                 return;
1042
1043         if (ctx->is_active && cpuctx->cgrp)
1044                 cpuctx->cgrp = NULL;
1045
1046         list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048
1049 #else /* !CONFIG_CGROUP_PERF */
1050
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054         return true;
1055 }
1056
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062         return 0;
1063 }
1064
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074                                          struct task_struct *next)
1075 {
1076 }
1077
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079                                         struct task_struct *task)
1080 {
1081 }
1082
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084                                       struct perf_event_attr *attr,
1085                                       struct perf_event *group_leader)
1086 {
1087         return -EINVAL;
1088 }
1089
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092                           struct perf_event_context *ctx)
1093 {
1094 }
1095
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108         return 0;
1109 }
1110
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132         struct perf_cpu_context *cpuctx;
1133         bool rotations;
1134
1135         lockdep_assert_irqs_disabled();
1136
1137         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138         rotations = perf_rotate_context(cpuctx);
1139
1140         raw_spin_lock(&cpuctx->hrtimer_lock);
1141         if (rotations)
1142                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143         else
1144                 cpuctx->hrtimer_active = 0;
1145         raw_spin_unlock(&cpuctx->hrtimer_lock);
1146
1147         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152         struct hrtimer *timer = &cpuctx->hrtimer;
1153         struct pmu *pmu = cpuctx->ctx.pmu;
1154         u64 interval;
1155
1156         /* no multiplexing needed for SW PMU */
1157         if (pmu->task_ctx_nr == perf_sw_context)
1158                 return;
1159
1160         /*
1161          * check default is sane, if not set then force to
1162          * default interval (1/tick)
1163          */
1164         interval = pmu->hrtimer_interval_ms;
1165         if (interval < 1)
1166                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167
1168         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169
1170         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172         timer->function = perf_mux_hrtimer_handler;
1173 }
1174
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177         struct hrtimer *timer = &cpuctx->hrtimer;
1178         struct pmu *pmu = cpuctx->ctx.pmu;
1179         unsigned long flags;
1180
1181         /* not for SW PMU */
1182         if (pmu->task_ctx_nr == perf_sw_context)
1183                 return 0;
1184
1185         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186         if (!cpuctx->hrtimer_active) {
1187                 cpuctx->hrtimer_active = 1;
1188                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190         }
1191         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192
1193         return 0;
1194 }
1195
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199         if (!(*count)++)
1200                 pmu->pmu_disable(pmu);
1201 }
1202
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206         if (!--(*count))
1207                 pmu->pmu_enable(pmu);
1208 }
1209
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221
1222         lockdep_assert_irqs_disabled();
1223
1224         WARN_ON(!list_empty(&ctx->active_ctx_list));
1225
1226         list_add(&ctx->active_ctx_list, head);
1227 }
1228
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231         lockdep_assert_irqs_disabled();
1232
1233         WARN_ON(list_empty(&ctx->active_ctx_list));
1234
1235         list_del_init(&ctx->active_ctx_list);
1236 }
1237
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240         refcount_inc(&ctx->refcount);
1241 }
1242
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245         if (pmu->task_ctx_cache)
1246                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247
1248         return NULL;
1249 }
1250
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253         if (pmu->task_ctx_cache && task_ctx_data)
1254                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259         struct perf_event_context *ctx;
1260
1261         ctx = container_of(head, struct perf_event_context, rcu_head);
1262         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263         kfree(ctx);
1264 }
1265
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268         if (refcount_dec_and_test(&ctx->refcount)) {
1269                 if (ctx->parent_ctx)
1270                         put_ctx(ctx->parent_ctx);
1271                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272                         put_task_struct(ctx->task);
1273                 call_rcu(&ctx->rcu_head, free_ctx);
1274         }
1275 }
1276
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()    [ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()                   [ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()         [ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event() [ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *      task_struct::perf_event_mutex
1332  *        perf_event_context::mutex
1333  *          perf_event::child_mutex;
1334  *            perf_event_context::lock
1335  *          perf_event::mmap_mutex
1336  *          mmap_lock
1337  *            perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *        cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346         struct perf_event_context *ctx;
1347
1348 again:
1349         rcu_read_lock();
1350         ctx = READ_ONCE(event->ctx);
1351         if (!refcount_inc_not_zero(&ctx->refcount)) {
1352                 rcu_read_unlock();
1353                 goto again;
1354         }
1355         rcu_read_unlock();
1356
1357         mutex_lock_nested(&ctx->mutex, nesting);
1358         if (event->ctx != ctx) {
1359                 mutex_unlock(&ctx->mutex);
1360                 put_ctx(ctx);
1361                 goto again;
1362         }
1363
1364         return ctx;
1365 }
1366
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370         return perf_event_ctx_lock_nested(event, 0);
1371 }
1372
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374                                   struct perf_event_context *ctx)
1375 {
1376         mutex_unlock(&ctx->mutex);
1377         put_ctx(ctx);
1378 }
1379
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389
1390         lockdep_assert_held(&ctx->lock);
1391
1392         if (parent_ctx)
1393                 ctx->parent_ctx = NULL;
1394         ctx->generation++;
1395
1396         return parent_ctx;
1397 }
1398
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400                                 enum pid_type type)
1401 {
1402         u32 nr;
1403         /*
1404          * only top level events have the pid namespace they were created in
1405          */
1406         if (event->parent)
1407                 event = event->parent;
1408
1409         nr = __task_pid_nr_ns(p, type, event->ns);
1410         /* avoid -1 if it is idle thread or runs in another ns */
1411         if (!nr && !pid_alive(p))
1412                 nr = -1;
1413         return nr;
1414 }
1415
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423         return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432         u64 id = event->id;
1433
1434         if (event->parent)
1435                 id = event->parent->id;
1436
1437         return id;
1438 }
1439
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449         struct perf_event_context *ctx;
1450
1451 retry:
1452         /*
1453          * One of the few rules of preemptible RCU is that one cannot do
1454          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455          * part of the read side critical section was irqs-enabled -- see
1456          * rcu_read_unlock_special().
1457          *
1458          * Since ctx->lock nests under rq->lock we must ensure the entire read
1459          * side critical section has interrupts disabled.
1460          */
1461         local_irq_save(*flags);
1462         rcu_read_lock();
1463         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464         if (ctx) {
1465                 /*
1466                  * If this context is a clone of another, it might
1467                  * get swapped for another underneath us by
1468                  * perf_event_task_sched_out, though the
1469                  * rcu_read_lock() protects us from any context
1470                  * getting freed.  Lock the context and check if it
1471                  * got swapped before we could get the lock, and retry
1472                  * if so.  If we locked the right context, then it
1473                  * can't get swapped on us any more.
1474                  */
1475                 raw_spin_lock(&ctx->lock);
1476                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477                         raw_spin_unlock(&ctx->lock);
1478                         rcu_read_unlock();
1479                         local_irq_restore(*flags);
1480                         goto retry;
1481                 }
1482
1483                 if (ctx->task == TASK_TOMBSTONE ||
1484                     !refcount_inc_not_zero(&ctx->refcount)) {
1485                         raw_spin_unlock(&ctx->lock);
1486                         ctx = NULL;
1487                 } else {
1488                         WARN_ON_ONCE(ctx->task != task);
1489                 }
1490         }
1491         rcu_read_unlock();
1492         if (!ctx)
1493                 local_irq_restore(*flags);
1494         return ctx;
1495 }
1496
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505         struct perf_event_context *ctx;
1506         unsigned long flags;
1507
1508         ctx = perf_lock_task_context(task, ctxn, &flags);
1509         if (ctx) {
1510                 ++ctx->pin_count;
1511                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512         }
1513         return ctx;
1514 }
1515
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518         unsigned long flags;
1519
1520         raw_spin_lock_irqsave(&ctx->lock, flags);
1521         --ctx->pin_count;
1522         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530         u64 now = perf_clock();
1531
1532         ctx->time += now - ctx->timestamp;
1533         ctx->timestamp = now;
1534 }
1535
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538         struct perf_event_context *ctx = event->ctx;
1539
1540         if (is_cgroup_event(event))
1541                 return perf_cgroup_event_time(event);
1542
1543         return ctx ? ctx->time : 0;
1544 }
1545
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548         struct perf_event_context *ctx = event->ctx;
1549         enum event_type_t event_type;
1550
1551         lockdep_assert_held(&ctx->lock);
1552
1553         /*
1554          * It's 'group type', really, because if our group leader is
1555          * pinned, so are we.
1556          */
1557         if (event->group_leader != event)
1558                 event = event->group_leader;
1559
1560         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561         if (!ctx->task)
1562                 event_type |= EVENT_CPU;
1563
1564         return event_type;
1565 }
1566
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572         RB_CLEAR_NODE(&event->group_node);
1573         event->group_index = 0;
1574 }
1575
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583         if (event->attr.pinned)
1584                 return &ctx->pinned_groups;
1585         else
1586                 return &ctx->flexible_groups;
1587 }
1588
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594         groups->tree = RB_ROOT;
1595         groups->index = 0;
1596 }
1597
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600         struct cgroup *cgroup = NULL;
1601
1602 #ifdef CONFIG_CGROUP_PERF
1603         if (event->cgrp)
1604                 cgroup = event->cgrp->css.cgroup;
1605 #endif
1606
1607         return cgroup;
1608 }
1609
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618                       const u64 left_group_index, const struct perf_event *right)
1619 {
1620         if (left_cpu < right->cpu)
1621                 return -1;
1622         if (left_cpu > right->cpu)
1623                 return 1;
1624
1625 #ifdef CONFIG_CGROUP_PERF
1626         {
1627                 const struct cgroup *right_cgroup = event_cgroup(right);
1628
1629                 if (left_cgroup != right_cgroup) {
1630                         if (!left_cgroup) {
1631                                 /*
1632                                  * Left has no cgroup but right does, no
1633                                  * cgroups come first.
1634                                  */
1635                                 return -1;
1636                         }
1637                         if (!right_cgroup) {
1638                                 /*
1639                                  * Right has no cgroup but left does, no
1640                                  * cgroups come first.
1641                                  */
1642                                 return 1;
1643                         }
1644                         /* Two dissimilar cgroups, order by id. */
1645                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646                                 return -1;
1647
1648                         return 1;
1649                 }
1650         }
1651 #endif
1652
1653         if (left_group_index < right->group_index)
1654                 return -1;
1655         if (left_group_index > right->group_index)
1656                 return 1;
1657
1658         return 0;
1659 }
1660
1661 #define __node_2_pe(node) \
1662         rb_entry((node), struct perf_event, group_node)
1663
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666         struct perf_event *e = __node_2_pe(a);
1667         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668                                      __node_2_pe(b)) < 0;
1669 }
1670
1671 struct __group_key {
1672         int cpu;
1673         struct cgroup *cgroup;
1674 };
1675
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678         const struct __group_key *a = key;
1679         const struct perf_event *b = __node_2_pe(node);
1680
1681         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         event->group_index = ++groups->index;
1695
1696         rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705         struct perf_event_groups *groups;
1706
1707         groups = get_event_groups(event, ctx);
1708         perf_event_groups_insert(groups, event);
1709 }
1710
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716                          struct perf_event *event)
1717 {
1718         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719                      RB_EMPTY_ROOT(&groups->tree));
1720
1721         rb_erase(&event->group_node, &groups->tree);
1722         init_event_group(event);
1723 }
1724
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731         struct perf_event_groups *groups;
1732
1733         groups = get_event_groups(event, ctx);
1734         perf_event_groups_delete(groups, event);
1735 }
1736
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742                         struct cgroup *cgrp)
1743 {
1744         struct __group_key key = {
1745                 .cpu = cpu,
1746                 .cgroup = cgrp,
1747         };
1748         struct rb_node *node;
1749
1750         node = rb_find_first(&key, &groups->tree, __group_cmp);
1751         if (node)
1752                 return __node_2_pe(node);
1753
1754         return NULL;
1755 }
1756
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763         struct __group_key key = {
1764                 .cpu = event->cpu,
1765                 .cgroup = event_cgroup(event),
1766         };
1767         struct rb_node *next;
1768
1769         next = rb_next_match(&key, &event->group_node, __group_cmp);
1770         if (next)
1771                 return __node_2_pe(next);
1772
1773         return NULL;
1774 }
1775
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)                       \
1780         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1781                                 typeof(*event), group_node); event;     \
1782                 event = rb_entry_safe(rb_next(&event->group_node),      \
1783                                 typeof(*event), group_node))
1784
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792         lockdep_assert_held(&ctx->lock);
1793
1794         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795         event->attach_state |= PERF_ATTACH_CONTEXT;
1796
1797         event->tstamp = perf_event_time(event);
1798
1799         /*
1800          * If we're a stand alone event or group leader, we go to the context
1801          * list, group events are kept attached to the group so that
1802          * perf_group_detach can, at all times, locate all siblings.
1803          */
1804         if (event->group_leader == event) {
1805                 event->group_caps = event->event_caps;
1806                 add_event_to_groups(event, ctx);
1807         }
1808
1809         list_add_rcu(&event->event_entry, &ctx->event_list);
1810         ctx->nr_events++;
1811         if (event->attr.inherit_stat)
1812                 ctx->nr_stat++;
1813
1814         if (event->state > PERF_EVENT_STATE_OFF)
1815                 perf_cgroup_event_enable(event, ctx);
1816
1817         ctx->generation++;
1818 }
1819
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826                                               PERF_EVENT_STATE_INACTIVE;
1827 }
1828
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831         int entry = sizeof(u64); /* value */
1832         int size = 0;
1833         int nr = 1;
1834
1835         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836                 size += sizeof(u64);
1837
1838         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839                 size += sizeof(u64);
1840
1841         if (event->attr.read_format & PERF_FORMAT_ID)
1842                 entry += sizeof(u64);
1843
1844         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845                 nr += nr_siblings;
1846                 size += sizeof(u64);
1847         }
1848
1849         size += entry * nr;
1850         event->read_size = size;
1851 }
1852
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855         struct perf_sample_data *data;
1856         u16 size = 0;
1857
1858         if (sample_type & PERF_SAMPLE_IP)
1859                 size += sizeof(data->ip);
1860
1861         if (sample_type & PERF_SAMPLE_ADDR)
1862                 size += sizeof(data->addr);
1863
1864         if (sample_type & PERF_SAMPLE_PERIOD)
1865                 size += sizeof(data->period);
1866
1867         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868                 size += sizeof(data->weight.full);
1869
1870         if (sample_type & PERF_SAMPLE_READ)
1871                 size += event->read_size;
1872
1873         if (sample_type & PERF_SAMPLE_DATA_SRC)
1874                 size += sizeof(data->data_src.val);
1875
1876         if (sample_type & PERF_SAMPLE_TRANSACTION)
1877                 size += sizeof(data->txn);
1878
1879         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880                 size += sizeof(data->phys_addr);
1881
1882         if (sample_type & PERF_SAMPLE_CGROUP)
1883                 size += sizeof(data->cgroup);
1884
1885         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886                 size += sizeof(data->data_page_size);
1887
1888         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889                 size += sizeof(data->code_page_size);
1890
1891         event->header_size = size;
1892 }
1893
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900         __perf_event_read_size(event,
1901                                event->group_leader->nr_siblings);
1902         __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907         struct perf_sample_data *data;
1908         u64 sample_type = event->attr.sample_type;
1909         u16 size = 0;
1910
1911         if (sample_type & PERF_SAMPLE_TID)
1912                 size += sizeof(data->tid_entry);
1913
1914         if (sample_type & PERF_SAMPLE_TIME)
1915                 size += sizeof(data->time);
1916
1917         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918                 size += sizeof(data->id);
1919
1920         if (sample_type & PERF_SAMPLE_ID)
1921                 size += sizeof(data->id);
1922
1923         if (sample_type & PERF_SAMPLE_STREAM_ID)
1924                 size += sizeof(data->stream_id);
1925
1926         if (sample_type & PERF_SAMPLE_CPU)
1927                 size += sizeof(data->cpu_entry);
1928
1929         event->id_header_size = size;
1930 }
1931
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934         /*
1935          * The values computed here will be over-written when we actually
1936          * attach the event.
1937          */
1938         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940         perf_event__id_header_size(event);
1941
1942         /*
1943          * Sum the lot; should not exceed the 64k limit we have on records.
1944          * Conservative limit to allow for callchains and other variable fields.
1945          */
1946         if (event->read_size + event->header_size +
1947             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948                 return false;
1949
1950         return true;
1951 }
1952
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955         struct perf_event *group_leader = event->group_leader, *pos;
1956
1957         lockdep_assert_held(&event->ctx->lock);
1958
1959         /*
1960          * We can have double attach due to group movement in perf_event_open.
1961          */
1962         if (event->attach_state & PERF_ATTACH_GROUP)
1963                 return;
1964
1965         event->attach_state |= PERF_ATTACH_GROUP;
1966
1967         if (group_leader == event)
1968                 return;
1969
1970         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971
1972         group_leader->group_caps &= event->event_caps;
1973
1974         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975         group_leader->nr_siblings++;
1976
1977         perf_event__header_size(group_leader);
1978
1979         for_each_sibling_event(pos, group_leader)
1980                 perf_event__header_size(pos);
1981 }
1982
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990         WARN_ON_ONCE(event->ctx != ctx);
1991         lockdep_assert_held(&ctx->lock);
1992
1993         /*
1994          * We can have double detach due to exit/hot-unplug + close.
1995          */
1996         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997                 return;
1998
1999         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000
2001         ctx->nr_events--;
2002         if (event->attr.inherit_stat)
2003                 ctx->nr_stat--;
2004
2005         list_del_rcu(&event->event_entry);
2006
2007         if (event->group_leader == event)
2008                 del_event_from_groups(event, ctx);
2009
2010         /*
2011          * If event was in error state, then keep it
2012          * that way, otherwise bogus counts will be
2013          * returned on read(). The only way to get out
2014          * of error state is by explicit re-enabling
2015          * of the event
2016          */
2017         if (event->state > PERF_EVENT_STATE_OFF) {
2018                 perf_cgroup_event_disable(event, ctx);
2019                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020         }
2021
2022         ctx->generation++;
2023 }
2024
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028         if (!has_aux(aux_event))
2029                 return 0;
2030
2031         if (!event->pmu->aux_output_match)
2032                 return 0;
2033
2034         return event->pmu->aux_output_match(aux_event);
2035 }
2036
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039                             struct perf_cpu_context *cpuctx,
2040                             struct perf_event_context *ctx);
2041
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044         struct perf_event_context *ctx = event->ctx;
2045         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046         struct perf_event *iter;
2047
2048         /*
2049          * If event uses aux_event tear down the link
2050          */
2051         if (event->aux_event) {
2052                 iter = event->aux_event;
2053                 event->aux_event = NULL;
2054                 put_event(iter);
2055                 return;
2056         }
2057
2058         /*
2059          * If the event is an aux_event, tear down all links to
2060          * it from other events.
2061          */
2062         for_each_sibling_event(iter, event->group_leader) {
2063                 if (iter->aux_event != event)
2064                         continue;
2065
2066                 iter->aux_event = NULL;
2067                 put_event(event);
2068
2069                 /*
2070                  * If it's ACTIVE, schedule it out and put it into ERROR
2071                  * state so that we don't try to schedule it again. Note
2072                  * that perf_event_enable() will clear the ERROR status.
2073                  */
2074                 event_sched_out(iter, cpuctx, ctx);
2075                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076         }
2077 }
2078
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083
2084 static int perf_get_aux_event(struct perf_event *event,
2085                               struct perf_event *group_leader)
2086 {
2087         /*
2088          * Our group leader must be an aux event if we want to be
2089          * an aux_output. This way, the aux event will precede its
2090          * aux_output events in the group, and therefore will always
2091          * schedule first.
2092          */
2093         if (!group_leader)
2094                 return 0;
2095
2096         /*
2097          * aux_output and aux_sample_size are mutually exclusive.
2098          */
2099         if (event->attr.aux_output && event->attr.aux_sample_size)
2100                 return 0;
2101
2102         if (event->attr.aux_output &&
2103             !perf_aux_output_match(event, group_leader))
2104                 return 0;
2105
2106         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107                 return 0;
2108
2109         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110                 return 0;
2111
2112         /*
2113          * Link aux_outputs to their aux event; this is undone in
2114          * perf_group_detach() by perf_put_aux_event(). When the
2115          * group in torn down, the aux_output events loose their
2116          * link to the aux_event and can't schedule any more.
2117          */
2118         event->aux_event = group_leader;
2119
2120         return 1;
2121 }
2122
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125         struct perf_event_context *ctx = event->ctx;
2126         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137         struct perf_event_context *ctx = event->ctx;
2138         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139
2140         event_sched_out(event, cpuctx, ctx);
2141         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146         struct perf_event *leader = event->group_leader;
2147         struct perf_event *sibling, *tmp;
2148         struct perf_event_context *ctx = event->ctx;
2149
2150         lockdep_assert_held(&ctx->lock);
2151
2152         /*
2153          * We can have double detach due to exit/hot-unplug + close.
2154          */
2155         if (!(event->attach_state & PERF_ATTACH_GROUP))
2156                 return;
2157
2158         event->attach_state &= ~PERF_ATTACH_GROUP;
2159
2160         perf_put_aux_event(event);
2161
2162         /*
2163          * If this is a sibling, remove it from its group.
2164          */
2165         if (leader != event) {
2166                 list_del_init(&event->sibling_list);
2167                 event->group_leader->nr_siblings--;
2168                 goto out;
2169         }
2170
2171         /*
2172          * If this was a group event with sibling events then
2173          * upgrade the siblings to singleton events by adding them
2174          * to whatever list we are on.
2175          */
2176         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177
2178                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179                         perf_remove_sibling_event(sibling);
2180
2181                 sibling->group_leader = sibling;
2182                 list_del_init(&sibling->sibling_list);
2183
2184                 /* Inherit group flags from the previous leader */
2185                 sibling->group_caps = event->group_caps;
2186
2187                 if (!RB_EMPTY_NODE(&event->group_node)) {
2188                         add_event_to_groups(sibling, event->ctx);
2189
2190                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2192                 }
2193
2194                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2195         }
2196
2197 out:
2198         for_each_sibling_event(tmp, leader)
2199                 perf_event__header_size(tmp);
2200
2201         perf_event__header_size(leader);
2202 }
2203
2204 static void sync_child_event(struct perf_event *child_event);
2205
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208         struct perf_event *parent_event = event->parent;
2209
2210         if (!(event->attach_state & PERF_ATTACH_CHILD))
2211                 return;
2212
2213         event->attach_state &= ~PERF_ATTACH_CHILD;
2214
2215         if (WARN_ON_ONCE(!parent_event))
2216                 return;
2217
2218         lockdep_assert_held(&parent_event->child_mutex);
2219
2220         sync_child_event(event);
2221         list_del_init(&event->child_list);
2222 }
2223
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226         return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231         struct pmu *pmu = event->pmu;
2232         return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243         struct perf_event *sibling;
2244
2245         if (!__pmu_filter_match(event))
2246                 return 0;
2247
2248         for_each_sibling_event(sibling, event) {
2249                 if (!__pmu_filter_match(sibling))
2250                         return 0;
2251         }
2252
2253         return 1;
2254 }
2255
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260                perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262
2263 static void
2264 event_sched_out(struct perf_event *event,
2265                   struct perf_cpu_context *cpuctx,
2266                   struct perf_event_context *ctx)
2267 {
2268         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269
2270         WARN_ON_ONCE(event->ctx != ctx);
2271         lockdep_assert_held(&ctx->lock);
2272
2273         if (event->state != PERF_EVENT_STATE_ACTIVE)
2274                 return;
2275
2276         /*
2277          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278          * we can schedule events _OUT_ individually through things like
2279          * __perf_remove_from_context().
2280          */
2281         list_del_init(&event->active_list);
2282
2283         perf_pmu_disable(event->pmu);
2284
2285         event->pmu->del(event, 0);
2286         event->oncpu = -1;
2287
2288         if (READ_ONCE(event->pending_disable) >= 0) {
2289                 WRITE_ONCE(event->pending_disable, -1);
2290                 perf_cgroup_event_disable(event, ctx);
2291                 state = PERF_EVENT_STATE_OFF;
2292         }
2293         perf_event_set_state(event, state);
2294
2295         if (!is_software_event(event))
2296                 cpuctx->active_oncpu--;
2297         if (!--ctx->nr_active)
2298                 perf_event_ctx_deactivate(ctx);
2299         if (event->attr.freq && event->attr.sample_freq)
2300                 ctx->nr_freq--;
2301         if (event->attr.exclusive || !cpuctx->active_oncpu)
2302                 cpuctx->exclusive = 0;
2303
2304         perf_pmu_enable(event->pmu);
2305 }
2306
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309                 struct perf_cpu_context *cpuctx,
2310                 struct perf_event_context *ctx)
2311 {
2312         struct perf_event *event;
2313
2314         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315                 return;
2316
2317         perf_pmu_disable(ctx->pmu);
2318
2319         event_sched_out(group_event, cpuctx, ctx);
2320
2321         /*
2322          * Schedule out siblings (if any):
2323          */
2324         for_each_sibling_event(event, group_event)
2325                 event_sched_out(event, cpuctx, ctx);
2326
2327         perf_pmu_enable(ctx->pmu);
2328 }
2329
2330 #define DETACH_GROUP    0x01UL
2331 #define DETACH_CHILD    0x02UL
2332
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341                            struct perf_cpu_context *cpuctx,
2342                            struct perf_event_context *ctx,
2343                            void *info)
2344 {
2345         unsigned long flags = (unsigned long)info;
2346
2347         if (ctx->is_active & EVENT_TIME) {
2348                 update_context_time(ctx);
2349                 update_cgrp_time_from_cpuctx(cpuctx);
2350         }
2351
2352         event_sched_out(event, cpuctx, ctx);
2353         if (flags & DETACH_GROUP)
2354                 perf_group_detach(event);
2355         if (flags & DETACH_CHILD)
2356                 perf_child_detach(event);
2357         list_del_event(event, ctx);
2358
2359         if (!ctx->nr_events && ctx->is_active) {
2360                 ctx->is_active = 0;
2361                 ctx->rotate_necessary = 0;
2362                 if (ctx->task) {
2363                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364                         cpuctx->task_ctx = NULL;
2365                 }
2366         }
2367 }
2368
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381         struct perf_event_context *ctx = event->ctx;
2382
2383         lockdep_assert_held(&ctx->mutex);
2384
2385         /*
2386          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387          * to work in the face of TASK_TOMBSTONE, unlike every other
2388          * event_function_call() user.
2389          */
2390         raw_spin_lock_irq(&ctx->lock);
2391         if (!ctx->is_active) {
2392                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2393                                            ctx, (void *)flags);
2394                 raw_spin_unlock_irq(&ctx->lock);
2395                 return;
2396         }
2397         raw_spin_unlock_irq(&ctx->lock);
2398
2399         event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406                                  struct perf_cpu_context *cpuctx,
2407                                  struct perf_event_context *ctx,
2408                                  void *info)
2409 {
2410         if (event->state < PERF_EVENT_STATE_INACTIVE)
2411                 return;
2412
2413         if (ctx->is_active & EVENT_TIME) {
2414                 update_context_time(ctx);
2415                 update_cgrp_time_from_event(event);
2416         }
2417
2418         if (event == event->group_leader)
2419                 group_sched_out(event, cpuctx, ctx);
2420         else
2421                 event_sched_out(event, cpuctx, ctx);
2422
2423         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424         perf_cgroup_event_disable(event, ctx);
2425 }
2426
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443         struct perf_event_context *ctx = event->ctx;
2444
2445         raw_spin_lock_irq(&ctx->lock);
2446         if (event->state <= PERF_EVENT_STATE_OFF) {
2447                 raw_spin_unlock_irq(&ctx->lock);
2448                 return;
2449         }
2450         raw_spin_unlock_irq(&ctx->lock);
2451
2452         event_function_call(event, __perf_event_disable, NULL);
2453 }
2454
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457         event_function_local(event, __perf_event_disable, NULL);
2458 }
2459
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466         struct perf_event_context *ctx;
2467
2468         ctx = perf_event_ctx_lock(event);
2469         _perf_event_disable(event);
2470         perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476         WRITE_ONCE(event->pending_disable, smp_processor_id());
2477         /* can fail, see perf_pending_event_disable() */
2478         irq_work_queue(&event->pending);
2479 }
2480
2481 static void perf_set_shadow_time(struct perf_event *event,
2482                                  struct perf_event_context *ctx)
2483 {
2484         /*
2485          * use the correct time source for the time snapshot
2486          *
2487          * We could get by without this by leveraging the
2488          * fact that to get to this function, the caller
2489          * has most likely already called update_context_time()
2490          * and update_cgrp_time_xx() and thus both timestamp
2491          * are identical (or very close). Given that tstamp is,
2492          * already adjusted for cgroup, we could say that:
2493          *    tstamp - ctx->timestamp
2494          * is equivalent to
2495          *    tstamp - cgrp->timestamp.
2496          *
2497          * Then, in perf_output_read(), the calculation would
2498          * work with no changes because:
2499          * - event is guaranteed scheduled in
2500          * - no scheduled out in between
2501          * - thus the timestamp would be the same
2502          *
2503          * But this is a bit hairy.
2504          *
2505          * So instead, we have an explicit cgroup call to remain
2506          * within the time source all along. We believe it
2507          * is cleaner and simpler to understand.
2508          */
2509         if (is_cgroup_event(event))
2510                 perf_cgroup_set_shadow_time(event, event->tstamp);
2511         else
2512                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514
2515 #define MAX_INTERRUPTS (~0ULL)
2516
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519
2520 static int
2521 event_sched_in(struct perf_event *event,
2522                  struct perf_cpu_context *cpuctx,
2523                  struct perf_event_context *ctx)
2524 {
2525         int ret = 0;
2526
2527         WARN_ON_ONCE(event->ctx != ctx);
2528
2529         lockdep_assert_held(&ctx->lock);
2530
2531         if (event->state <= PERF_EVENT_STATE_OFF)
2532                 return 0;
2533
2534         WRITE_ONCE(event->oncpu, smp_processor_id());
2535         /*
2536          * Order event::oncpu write to happen before the ACTIVE state is
2537          * visible. This allows perf_event_{stop,read}() to observe the correct
2538          * ->oncpu if it sees ACTIVE.
2539          */
2540         smp_wmb();
2541         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542
2543         /*
2544          * Unthrottle events, since we scheduled we might have missed several
2545          * ticks already, also for a heavily scheduling task there is little
2546          * guarantee it'll get a tick in a timely manner.
2547          */
2548         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549                 perf_log_throttle(event, 1);
2550                 event->hw.interrupts = 0;
2551         }
2552
2553         perf_pmu_disable(event->pmu);
2554
2555         perf_set_shadow_time(event, ctx);
2556
2557         perf_log_itrace_start(event);
2558
2559         if (event->pmu->add(event, PERF_EF_START)) {
2560                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561                 event->oncpu = -1;
2562                 ret = -EAGAIN;
2563                 goto out;
2564         }
2565
2566         if (!is_software_event(event))
2567                 cpuctx->active_oncpu++;
2568         if (!ctx->nr_active++)
2569                 perf_event_ctx_activate(ctx);
2570         if (event->attr.freq && event->attr.sample_freq)
2571                 ctx->nr_freq++;
2572
2573         if (event->attr.exclusive)
2574                 cpuctx->exclusive = 1;
2575
2576 out:
2577         perf_pmu_enable(event->pmu);
2578
2579         return ret;
2580 }
2581
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584                struct perf_cpu_context *cpuctx,
2585                struct perf_event_context *ctx)
2586 {
2587         struct perf_event *event, *partial_group = NULL;
2588         struct pmu *pmu = ctx->pmu;
2589
2590         if (group_event->state == PERF_EVENT_STATE_OFF)
2591                 return 0;
2592
2593         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594
2595         if (event_sched_in(group_event, cpuctx, ctx))
2596                 goto error;
2597
2598         /*
2599          * Schedule in siblings as one group (if any):
2600          */
2601         for_each_sibling_event(event, group_event) {
2602                 if (event_sched_in(event, cpuctx, ctx)) {
2603                         partial_group = event;
2604                         goto group_error;
2605                 }
2606         }
2607
2608         if (!pmu->commit_txn(pmu))
2609                 return 0;
2610
2611 group_error:
2612         /*
2613          * Groups can be scheduled in as one unit only, so undo any
2614          * partial group before returning:
2615          * The events up to the failed event are scheduled out normally.
2616          */
2617         for_each_sibling_event(event, group_event) {
2618                 if (event == partial_group)
2619                         break;
2620
2621                 event_sched_out(event, cpuctx, ctx);
2622         }
2623         event_sched_out(group_event, cpuctx, ctx);
2624
2625 error:
2626         pmu->cancel_txn(pmu);
2627         return -EAGAIN;
2628 }
2629
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634                            struct perf_cpu_context *cpuctx,
2635                            int can_add_hw)
2636 {
2637         /*
2638          * Groups consisting entirely of software events can always go on.
2639          */
2640         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641                 return 1;
2642         /*
2643          * If an exclusive group is already on, no other hardware
2644          * events can go on.
2645          */
2646         if (cpuctx->exclusive)
2647                 return 0;
2648         /*
2649          * If this group is exclusive and there are already
2650          * events on the CPU, it can't go on.
2651          */
2652         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653                 return 0;
2654         /*
2655          * Otherwise, try to add it if all previous groups were able
2656          * to go on.
2657          */
2658         return can_add_hw;
2659 }
2660
2661 static void add_event_to_ctx(struct perf_event *event,
2662                                struct perf_event_context *ctx)
2663 {
2664         list_add_event(event, ctx);
2665         perf_group_attach(event);
2666 }
2667
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669                           struct perf_cpu_context *cpuctx,
2670                           enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673              struct perf_cpu_context *cpuctx,
2674              enum event_type_t event_type,
2675              struct task_struct *task);
2676
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678                                struct perf_event_context *ctx,
2679                                enum event_type_t event_type)
2680 {
2681         if (!cpuctx->task_ctx)
2682                 return;
2683
2684         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685                 return;
2686
2687         ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691                                 struct perf_event_context *ctx,
2692                                 struct task_struct *task)
2693 {
2694         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695         if (ctx)
2696                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698         if (ctx)
2699                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718                         struct perf_event_context *task_ctx,
2719                         enum event_type_t event_type)
2720 {
2721         enum event_type_t ctx_event_type;
2722         bool cpu_event = !!(event_type & EVENT_CPU);
2723
2724         /*
2725          * If pinned groups are involved, flexible groups also need to be
2726          * scheduled out.
2727          */
2728         if (event_type & EVENT_PINNED)
2729                 event_type |= EVENT_FLEXIBLE;
2730
2731         ctx_event_type = event_type & EVENT_ALL;
2732
2733         perf_pmu_disable(cpuctx->ctx.pmu);
2734         if (task_ctx)
2735                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736
2737         /*
2738          * Decide which cpu ctx groups to schedule out based on the types
2739          * of events that caused rescheduling:
2740          *  - EVENT_CPU: schedule out corresponding groups;
2741          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742          *  - otherwise, do nothing more.
2743          */
2744         if (cpu_event)
2745                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746         else if (ctx_event_type & EVENT_PINNED)
2747                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748
2749         perf_event_sched_in(cpuctx, task_ctx, current);
2750         perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757
2758         perf_ctx_lock(cpuctx, task_ctx);
2759         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760         perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771         struct perf_event *event = info;
2772         struct perf_event_context *ctx = event->ctx;
2773         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775         bool reprogram = true;
2776         int ret = 0;
2777
2778         raw_spin_lock(&cpuctx->ctx.lock);
2779         if (ctx->task) {
2780                 raw_spin_lock(&ctx->lock);
2781                 task_ctx = ctx;
2782
2783                 reprogram = (ctx->task == current);
2784
2785                 /*
2786                  * If the task is running, it must be running on this CPU,
2787                  * otherwise we cannot reprogram things.
2788                  *
2789                  * If its not running, we don't care, ctx->lock will
2790                  * serialize against it becoming runnable.
2791                  */
2792                 if (task_curr(ctx->task) && !reprogram) {
2793                         ret = -ESRCH;
2794                         goto unlock;
2795                 }
2796
2797                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798         } else if (task_ctx) {
2799                 raw_spin_lock(&task_ctx->lock);
2800         }
2801
2802 #ifdef CONFIG_CGROUP_PERF
2803         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804                 /*
2805                  * If the current cgroup doesn't match the event's
2806                  * cgroup, we should not try to schedule it.
2807                  */
2808                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810                                         event->cgrp->css.cgroup);
2811         }
2812 #endif
2813
2814         if (reprogram) {
2815                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816                 add_event_to_ctx(event, ctx);
2817                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818         } else {
2819                 add_event_to_ctx(event, ctx);
2820         }
2821
2822 unlock:
2823         perf_ctx_unlock(cpuctx, task_ctx);
2824
2825         return ret;
2826 }
2827
2828 static bool exclusive_event_installable(struct perf_event *event,
2829                                         struct perf_event_context *ctx);
2830
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838                         struct perf_event *event,
2839                         int cpu)
2840 {
2841         struct task_struct *task = READ_ONCE(ctx->task);
2842
2843         lockdep_assert_held(&ctx->mutex);
2844
2845         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846
2847         if (event->cpu != -1)
2848                 event->cpu = cpu;
2849
2850         /*
2851          * Ensures that if we can observe event->ctx, both the event and ctx
2852          * will be 'complete'. See perf_iterate_sb_cpu().
2853          */
2854         smp_store_release(&event->ctx, ctx);
2855
2856         /*
2857          * perf_event_attr::disabled events will not run and can be initialized
2858          * without IPI. Except when this is the first event for the context, in
2859          * that case we need the magic of the IPI to set ctx->is_active.
2860          *
2861          * The IOC_ENABLE that is sure to follow the creation of a disabled
2862          * event will issue the IPI and reprogram the hardware.
2863          */
2864         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865                 raw_spin_lock_irq(&ctx->lock);
2866                 if (ctx->task == TASK_TOMBSTONE) {
2867                         raw_spin_unlock_irq(&ctx->lock);
2868                         return;
2869                 }
2870                 add_event_to_ctx(event, ctx);
2871                 raw_spin_unlock_irq(&ctx->lock);
2872                 return;
2873         }
2874
2875         if (!task) {
2876                 cpu_function_call(cpu, __perf_install_in_context, event);
2877                 return;
2878         }
2879
2880         /*
2881          * Should not happen, we validate the ctx is still alive before calling.
2882          */
2883         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884                 return;
2885
2886         /*
2887          * Installing events is tricky because we cannot rely on ctx->is_active
2888          * to be set in case this is the nr_events 0 -> 1 transition.
2889          *
2890          * Instead we use task_curr(), which tells us if the task is running.
2891          * However, since we use task_curr() outside of rq::lock, we can race
2892          * against the actual state. This means the result can be wrong.
2893          *
2894          * If we get a false positive, we retry, this is harmless.
2895          *
2896          * If we get a false negative, things are complicated. If we are after
2897          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898          * value must be correct. If we're before, it doesn't matter since
2899          * perf_event_context_sched_in() will program the counter.
2900          *
2901          * However, this hinges on the remote context switch having observed
2902          * our task->perf_event_ctxp[] store, such that it will in fact take
2903          * ctx::lock in perf_event_context_sched_in().
2904          *
2905          * We do this by task_function_call(), if the IPI fails to hit the task
2906          * we know any future context switch of task must see the
2907          * perf_event_ctpx[] store.
2908          */
2909
2910         /*
2911          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912          * task_cpu() load, such that if the IPI then does not find the task
2913          * running, a future context switch of that task must observe the
2914          * store.
2915          */
2916         smp_mb();
2917 again:
2918         if (!task_function_call(task, __perf_install_in_context, event))
2919                 return;
2920
2921         raw_spin_lock_irq(&ctx->lock);
2922         task = ctx->task;
2923         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924                 /*
2925                  * Cannot happen because we already checked above (which also
2926                  * cannot happen), and we hold ctx->mutex, which serializes us
2927                  * against perf_event_exit_task_context().
2928                  */
2929                 raw_spin_unlock_irq(&ctx->lock);
2930                 return;
2931         }
2932         /*
2933          * If the task is not running, ctx->lock will avoid it becoming so,
2934          * thus we can safely install the event.
2935          */
2936         if (task_curr(task)) {
2937                 raw_spin_unlock_irq(&ctx->lock);
2938                 goto again;
2939         }
2940         add_event_to_ctx(event, ctx);
2941         raw_spin_unlock_irq(&ctx->lock);
2942 }
2943
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948                                 struct perf_cpu_context *cpuctx,
2949                                 struct perf_event_context *ctx,
2950                                 void *info)
2951 {
2952         struct perf_event *leader = event->group_leader;
2953         struct perf_event_context *task_ctx;
2954
2955         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956             event->state <= PERF_EVENT_STATE_ERROR)
2957                 return;
2958
2959         if (ctx->is_active)
2960                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961
2962         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963         perf_cgroup_event_enable(event, ctx);
2964
2965         if (!ctx->is_active)
2966                 return;
2967
2968         if (!event_filter_match(event)) {
2969                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970                 return;
2971         }
2972
2973         /*
2974          * If the event is in a group and isn't the group leader,
2975          * then don't put it on unless the group is on.
2976          */
2977         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979                 return;
2980         }
2981
2982         task_ctx = cpuctx->task_ctx;
2983         if (ctx->task)
2984                 WARN_ON_ONCE(task_ctx != ctx);
2985
2986         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000         struct perf_event_context *ctx = event->ctx;
3001
3002         raw_spin_lock_irq(&ctx->lock);
3003         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004             event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006                 raw_spin_unlock_irq(&ctx->lock);
3007                 return;
3008         }
3009
3010         /*
3011          * If the event is in error state, clear that first.
3012          *
3013          * That way, if we see the event in error state below, we know that it
3014          * has gone back into error state, as distinct from the task having
3015          * been scheduled away before the cross-call arrived.
3016          */
3017         if (event->state == PERF_EVENT_STATE_ERROR) {
3018                 /*
3019                  * Detached SIBLING events cannot leave ERROR state.
3020                  */
3021                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022                     event->group_leader == event)
3023                         goto out;
3024
3025                 event->state = PERF_EVENT_STATE_OFF;
3026         }
3027         raw_spin_unlock_irq(&ctx->lock);
3028
3029         event_function_call(event, __perf_event_enable, NULL);
3030 }
3031
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037         struct perf_event_context *ctx;
3038
3039         ctx = perf_event_ctx_lock(event);
3040         _perf_event_enable(event);
3041         perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044
3045 struct stop_event_data {
3046         struct perf_event       *event;
3047         unsigned int            restart;
3048 };
3049
3050 static int __perf_event_stop(void *info)
3051 {
3052         struct stop_event_data *sd = info;
3053         struct perf_event *event = sd->event;
3054
3055         /* if it's already INACTIVE, do nothing */
3056         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057                 return 0;
3058
3059         /* matches smp_wmb() in event_sched_in() */
3060         smp_rmb();
3061
3062         /*
3063          * There is a window with interrupts enabled before we get here,
3064          * so we need to check again lest we try to stop another CPU's event.
3065          */
3066         if (READ_ONCE(event->oncpu) != smp_processor_id())
3067                 return -EAGAIN;
3068
3069         event->pmu->stop(event, PERF_EF_UPDATE);
3070
3071         /*
3072          * May race with the actual stop (through perf_pmu_output_stop()),
3073          * but it is only used for events with AUX ring buffer, and such
3074          * events will refuse to restart because of rb::aux_mmap_count==0,
3075          * see comments in perf_aux_output_begin().
3076          *
3077          * Since this is happening on an event-local CPU, no trace is lost
3078          * while restarting.
3079          */
3080         if (sd->restart)
3081                 event->pmu->start(event, 0);
3082
3083         return 0;
3084 }
3085
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088         struct stop_event_data sd = {
3089                 .event          = event,
3090                 .restart        = restart,
3091         };
3092         int ret = 0;
3093
3094         do {
3095                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096                         return 0;
3097
3098                 /* matches smp_wmb() in event_sched_in() */
3099                 smp_rmb();
3100
3101                 /*
3102                  * We only want to restart ACTIVE events, so if the event goes
3103                  * inactive here (event->oncpu==-1), there's nothing more to do;
3104                  * fall through with ret==-ENXIO.
3105                  */
3106                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3107                                         __perf_event_stop, &sd);
3108         } while (ret == -EAGAIN);
3109
3110         return ret;
3111 }
3112
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138
3139         if (!has_addr_filter(event))
3140                 return;
3141
3142         raw_spin_lock(&ifh->lock);
3143         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144                 event->pmu->addr_filters_sync(event);
3145                 event->hw.addr_filters_gen = event->addr_filters_gen;
3146         }
3147         raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153         /*
3154          * not supported on inherited events
3155          */
3156         if (event->attr.inherit || !is_sampling_event(event))
3157                 return -EINVAL;
3158
3159         atomic_add(refresh, &event->event_limit);
3160         _perf_event_enable(event);
3161
3162         return 0;
3163 }
3164
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170         struct perf_event_context *ctx;
3171         int ret;
3172
3173         ctx = perf_event_ctx_lock(event);
3174         ret = _perf_event_refresh(event, refresh);
3175         perf_event_ctx_unlock(event, ctx);
3176
3177         return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182                                          struct perf_event_attr *attr)
3183 {
3184         int err;
3185
3186         _perf_event_disable(bp);
3187
3188         err = modify_user_hw_breakpoint_check(bp, attr, true);
3189
3190         if (!bp->attr.disabled)
3191                 _perf_event_enable(bp);
3192
3193         return err;
3194 }
3195
3196 static int perf_event_modify_attr(struct perf_event *event,
3197                                   struct perf_event_attr *attr)
3198 {
3199         int (*func)(struct perf_event *, struct perf_event_attr *);
3200         struct perf_event *child;
3201         int err;
3202
3203         if (event->attr.type != attr->type)
3204                 return -EINVAL;
3205
3206         switch (event->attr.type) {
3207         case PERF_TYPE_BREAKPOINT:
3208                 func = perf_event_modify_breakpoint;
3209                 break;
3210         default:
3211                 /* Place holder for future additions. */
3212                 return -EOPNOTSUPP;
3213         }
3214
3215         WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217         mutex_lock(&event->child_mutex);
3218         err = func(event, attr);
3219         if (err)
3220                 goto out;
3221         list_for_each_entry(child, &event->child_list, child_list) {
3222                 err = func(child, attr);
3223                 if (err)
3224                         goto out;
3225         }
3226 out:
3227         mutex_unlock(&event->child_mutex);
3228         return err;
3229 }
3230
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232                           struct perf_cpu_context *cpuctx,
3233                           enum event_type_t event_type)
3234 {
3235         struct perf_event *event, *tmp;
3236         int is_active = ctx->is_active;
3237
3238         lockdep_assert_held(&ctx->lock);
3239
3240         if (likely(!ctx->nr_events)) {
3241                 /*
3242                  * See __perf_remove_from_context().
3243                  */
3244                 WARN_ON_ONCE(ctx->is_active);
3245                 if (ctx->task)
3246                         WARN_ON_ONCE(cpuctx->task_ctx);
3247                 return;
3248         }
3249
3250         ctx->is_active &= ~event_type;
3251         if (!(ctx->is_active & EVENT_ALL))
3252                 ctx->is_active = 0;
3253
3254         if (ctx->task) {
3255                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256                 if (!ctx->is_active)
3257                         cpuctx->task_ctx = NULL;
3258         }
3259
3260         /*
3261          * Always update time if it was set; not only when it changes.
3262          * Otherwise we can 'forget' to update time for any but the last
3263          * context we sched out. For example:
3264          *
3265          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266          *   ctx_sched_out(.event_type = EVENT_PINNED)
3267          *
3268          * would only update time for the pinned events.
3269          */
3270         if (is_active & EVENT_TIME) {
3271                 /* update (and stop) ctx time */
3272                 update_context_time(ctx);
3273                 update_cgrp_time_from_cpuctx(cpuctx);
3274         }
3275
3276         is_active ^= ctx->is_active; /* changed bits */
3277
3278         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279                 return;
3280
3281         perf_pmu_disable(ctx->pmu);
3282         if (is_active & EVENT_PINNED) {
3283                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284                         group_sched_out(event, cpuctx, ctx);
3285         }
3286
3287         if (is_active & EVENT_FLEXIBLE) {
3288                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289                         group_sched_out(event, cpuctx, ctx);
3290
3291                 /*
3292                  * Since we cleared EVENT_FLEXIBLE, also clear
3293                  * rotate_necessary, is will be reset by
3294                  * ctx_flexible_sched_in() when needed.
3295                  */
3296                 ctx->rotate_necessary = 0;
3297         }
3298         perf_pmu_enable(ctx->pmu);
3299 }
3300
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310                          struct perf_event_context *ctx2)
3311 {
3312         lockdep_assert_held(&ctx1->lock);
3313         lockdep_assert_held(&ctx2->lock);
3314
3315         /* Pinning disables the swap optimization */
3316         if (ctx1->pin_count || ctx2->pin_count)
3317                 return 0;
3318
3319         /* If ctx1 is the parent of ctx2 */
3320         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321                 return 1;
3322
3323         /* If ctx2 is the parent of ctx1 */
3324         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325                 return 1;
3326
3327         /*
3328          * If ctx1 and ctx2 have the same parent; we flatten the parent
3329          * hierarchy, see perf_event_init_context().
3330          */
3331         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332                         ctx1->parent_gen == ctx2->parent_gen)
3333                 return 1;
3334
3335         /* Unmatched */
3336         return 0;
3337 }
3338
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340                                      struct perf_event *next_event)
3341 {
3342         u64 value;
3343
3344         if (!event->attr.inherit_stat)
3345                 return;
3346
3347         /*
3348          * Update the event value, we cannot use perf_event_read()
3349          * because we're in the middle of a context switch and have IRQs
3350          * disabled, which upsets smp_call_function_single(), however
3351          * we know the event must be on the current CPU, therefore we
3352          * don't need to use it.
3353          */
3354         if (event->state == PERF_EVENT_STATE_ACTIVE)
3355                 event->pmu->read(event);
3356
3357         perf_event_update_time(event);
3358
3359         /*
3360          * In order to keep per-task stats reliable we need to flip the event
3361          * values when we flip the contexts.
3362          */
3363         value = local64_read(&next_event->count);
3364         value = local64_xchg(&event->count, value);
3365         local64_set(&next_event->count, value);
3366
3367         swap(event->total_time_enabled, next_event->total_time_enabled);
3368         swap(event->total_time_running, next_event->total_time_running);
3369
3370         /*
3371          * Since we swizzled the values, update the user visible data too.
3372          */
3373         perf_event_update_userpage(event);
3374         perf_event_update_userpage(next_event);
3375 }
3376
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378                                    struct perf_event_context *next_ctx)
3379 {
3380         struct perf_event *event, *next_event;
3381
3382         if (!ctx->nr_stat)
3383                 return;
3384
3385         update_context_time(ctx);
3386
3387         event = list_first_entry(&ctx->event_list,
3388                                    struct perf_event, event_entry);
3389
3390         next_event = list_first_entry(&next_ctx->event_list,
3391                                         struct perf_event, event_entry);
3392
3393         while (&event->event_entry != &ctx->event_list &&
3394                &next_event->event_entry != &next_ctx->event_list) {
3395
3396                 __perf_event_sync_stat(event, next_event);
3397
3398                 event = list_next_entry(event, event_entry);
3399                 next_event = list_next_entry(next_event, event_entry);
3400         }
3401 }
3402
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404                                          struct task_struct *next)
3405 {
3406         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407         struct perf_event_context *next_ctx;
3408         struct perf_event_context *parent, *next_parent;
3409         struct perf_cpu_context *cpuctx;
3410         int do_switch = 1;
3411         struct pmu *pmu;
3412
3413         if (likely(!ctx))
3414                 return;
3415
3416         pmu = ctx->pmu;
3417         cpuctx = __get_cpu_context(ctx);
3418         if (!cpuctx->task_ctx)
3419                 return;
3420
3421         rcu_read_lock();
3422         next_ctx = next->perf_event_ctxp[ctxn];
3423         if (!next_ctx)
3424                 goto unlock;
3425
3426         parent = rcu_dereference(ctx->parent_ctx);
3427         next_parent = rcu_dereference(next_ctx->parent_ctx);
3428
3429         /* If neither context have a parent context; they cannot be clones. */
3430         if (!parent && !next_parent)
3431                 goto unlock;
3432
3433         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434                 /*
3435                  * Looks like the two contexts are clones, so we might be
3436                  * able to optimize the context switch.  We lock both
3437                  * contexts and check that they are clones under the
3438                  * lock (including re-checking that neither has been
3439                  * uncloned in the meantime).  It doesn't matter which
3440                  * order we take the locks because no other cpu could
3441                  * be trying to lock both of these tasks.
3442                  */
3443                 raw_spin_lock(&ctx->lock);
3444                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445                 if (context_equiv(ctx, next_ctx)) {
3446
3447                         WRITE_ONCE(ctx->task, next);
3448                         WRITE_ONCE(next_ctx->task, task);
3449
3450                         perf_pmu_disable(pmu);
3451
3452                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3453                                 pmu->sched_task(ctx, false);
3454
3455                         /*
3456                          * PMU specific parts of task perf context can require
3457                          * additional synchronization. As an example of such
3458                          * synchronization see implementation details of Intel
3459                          * LBR call stack data profiling;
3460                          */
3461                         if (pmu->swap_task_ctx)
3462                                 pmu->swap_task_ctx(ctx, next_ctx);
3463                         else
3464                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465
3466                         perf_pmu_enable(pmu);
3467
3468                         /*
3469                          * RCU_INIT_POINTER here is safe because we've not
3470                          * modified the ctx and the above modification of
3471                          * ctx->task and ctx->task_ctx_data are immaterial
3472                          * since those values are always verified under
3473                          * ctx->lock which we're now holding.
3474                          */
3475                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477
3478                         do_switch = 0;
3479
3480                         perf_event_sync_stat(ctx, next_ctx);
3481                 }
3482                 raw_spin_unlock(&next_ctx->lock);
3483                 raw_spin_unlock(&ctx->lock);
3484         }
3485 unlock:
3486         rcu_read_unlock();
3487
3488         if (do_switch) {
3489                 raw_spin_lock(&ctx->lock);
3490                 perf_pmu_disable(pmu);
3491
3492                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3493                         pmu->sched_task(ctx, false);
3494                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495
3496                 perf_pmu_enable(pmu);
3497                 raw_spin_unlock(&ctx->lock);
3498         }
3499 }
3500
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506
3507         this_cpu_dec(perf_sched_cb_usages);
3508
3509         if (!--cpuctx->sched_cb_usage)
3510                 list_del(&cpuctx->sched_cb_entry);
3511 }
3512
3513
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517
3518         if (!cpuctx->sched_cb_usage++)
3519                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520
3521         this_cpu_inc(perf_sched_cb_usages);
3522 }
3523
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534         struct pmu *pmu;
3535
3536         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537
3538         if (WARN_ON_ONCE(!pmu->sched_task))
3539                 return;
3540
3541         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542         perf_pmu_disable(pmu);
3543
3544         pmu->sched_task(cpuctx->task_ctx, sched_in);
3545
3546         perf_pmu_enable(pmu);
3547         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551                                 struct task_struct *next,
3552                                 bool sched_in)
3553 {
3554         struct perf_cpu_context *cpuctx;
3555
3556         if (prev == next)
3557                 return;
3558
3559         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560                 /* will be handled in perf_event_context_sched_in/out */
3561                 if (cpuctx->task_ctx)
3562                         continue;
3563
3564                 __perf_pmu_sched_task(cpuctx, sched_in);
3565         }
3566 }
3567
3568 static void perf_event_switch(struct task_struct *task,
3569                               struct task_struct *next_prev, bool sched_in);
3570
3571 #define for_each_task_context_nr(ctxn)                                  \
3572         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586                                  struct task_struct *next)
3587 {
3588         int ctxn;
3589
3590         if (__this_cpu_read(perf_sched_cb_usages))
3591                 perf_pmu_sched_task(task, next, false);
3592
3593         if (atomic_read(&nr_switch_events))
3594                 perf_event_switch(task, next, false);
3595
3596         for_each_task_context_nr(ctxn)
3597                 perf_event_context_sched_out(task, ctxn, next);
3598
3599         /*
3600          * if cgroup events exist on this CPU, then we need
3601          * to check if we have to switch out PMU state.
3602          * cgroup event are system-wide mode only
3603          */
3604         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605                 perf_cgroup_sched_out(task, next);
3606 }
3607
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612                               enum event_type_t event_type)
3613 {
3614         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619         const struct perf_event *le = *(const struct perf_event **)l;
3620         const struct perf_event *re = *(const struct perf_event **)r;
3621
3622         return le->group_index < re->group_index;
3623 }
3624
3625 static void swap_ptr(void *l, void *r)
3626 {
3627         void **lp = l, **rp = r;
3628
3629         swap(*lp, *rp);
3630 }
3631
3632 static const struct min_heap_callbacks perf_min_heap = {
3633         .elem_size = sizeof(struct perf_event *),
3634         .less = perf_less_group_idx,
3635         .swp = swap_ptr,
3636 };
3637
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640         struct perf_event **itrs = heap->data;
3641
3642         if (event) {
3643                 itrs[heap->nr] = event;
3644                 heap->nr++;
3645         }
3646 }
3647
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649                                 struct perf_event_groups *groups, int cpu,
3650                                 int (*func)(struct perf_event *, void *),
3651                                 void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654         struct cgroup_subsys_state *css = NULL;
3655 #endif
3656         /* Space for per CPU and/or any CPU event iterators. */
3657         struct perf_event *itrs[2];
3658         struct min_heap event_heap;
3659         struct perf_event **evt;
3660         int ret;
3661
3662         if (cpuctx) {
3663                 event_heap = (struct min_heap){
3664                         .data = cpuctx->heap,
3665                         .nr = 0,
3666                         .size = cpuctx->heap_size,
3667                 };
3668
3669                 lockdep_assert_held(&cpuctx->ctx.lock);
3670
3671 #ifdef CONFIG_CGROUP_PERF
3672                 if (cpuctx->cgrp)
3673                         css = &cpuctx->cgrp->css;
3674 #endif
3675         } else {
3676                 event_heap = (struct min_heap){
3677                         .data = itrs,
3678                         .nr = 0,
3679                         .size = ARRAY_SIZE(itrs),
3680                 };
3681                 /* Events not within a CPU context may be on any CPU. */
3682                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683         }
3684         evt = event_heap.data;
3685
3686         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687
3688 #ifdef CONFIG_CGROUP_PERF
3689         for (; css; css = css->parent)
3690                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692
3693         min_heapify_all(&event_heap, &perf_min_heap);
3694
3695         while (event_heap.nr) {
3696                 ret = func(*evt, data);
3697                 if (ret)
3698                         return ret;
3699
3700                 *evt = perf_event_groups_next(*evt);
3701                 if (*evt)
3702                         min_heapify(&event_heap, 0, &perf_min_heap);
3703                 else
3704                         min_heap_pop(&event_heap, &perf_min_heap);
3705         }
3706
3707         return 0;
3708 }
3709
3710 static int merge_sched_in(struct perf_event *event, void *data)
3711 {
3712         struct perf_event_context *ctx = event->ctx;
3713         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3714         int *can_add_hw = data;
3715
3716         if (event->state <= PERF_EVENT_STATE_OFF)
3717                 return 0;
3718
3719         if (!event_filter_match(event))
3720                 return 0;
3721
3722         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3723                 if (!group_sched_in(event, cpuctx, ctx))
3724                         list_add_tail(&event->active_list, get_event_list(event));
3725         }
3726
3727         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3728                 if (event->attr.pinned) {
3729                         perf_cgroup_event_disable(event, ctx);
3730                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3731                 }
3732
3733                 *can_add_hw = 0;
3734                 ctx->rotate_necessary = 1;
3735                 perf_mux_hrtimer_restart(cpuctx);
3736         }
3737
3738         return 0;
3739 }
3740
3741 static void
3742 ctx_pinned_sched_in(struct perf_event_context *ctx,
3743                     struct perf_cpu_context *cpuctx)
3744 {
3745         int can_add_hw = 1;
3746
3747         if (ctx != &cpuctx->ctx)
3748                 cpuctx = NULL;
3749
3750         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3751                            smp_processor_id(),
3752                            merge_sched_in, &can_add_hw);
3753 }
3754
3755 static void
3756 ctx_flexible_sched_in(struct perf_event_context *ctx,
3757                       struct perf_cpu_context *cpuctx)
3758 {
3759         int can_add_hw = 1;
3760
3761         if (ctx != &cpuctx->ctx)
3762                 cpuctx = NULL;
3763
3764         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3765                            smp_processor_id(),
3766                            merge_sched_in, &can_add_hw);
3767 }
3768
3769 static void
3770 ctx_sched_in(struct perf_event_context *ctx,
3771              struct perf_cpu_context *cpuctx,
3772              enum event_type_t event_type,
3773              struct task_struct *task)
3774 {
3775         int is_active = ctx->is_active;
3776         u64 now;
3777
3778         lockdep_assert_held(&ctx->lock);
3779
3780         if (likely(!ctx->nr_events))
3781                 return;
3782
3783         ctx->is_active |= (event_type | EVENT_TIME);
3784         if (ctx->task) {
3785                 if (!is_active)
3786                         cpuctx->task_ctx = ctx;
3787                 else
3788                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3789         }
3790
3791         is_active ^= ctx->is_active; /* changed bits */
3792
3793         if (is_active & EVENT_TIME) {
3794                 /* start ctx time */
3795                 now = perf_clock();
3796                 ctx->timestamp = now;
3797                 perf_cgroup_set_timestamp(task, ctx);
3798         }
3799
3800         /*
3801          * First go through the list and put on any pinned groups
3802          * in order to give them the best chance of going on.
3803          */
3804         if (is_active & EVENT_PINNED)
3805                 ctx_pinned_sched_in(ctx, cpuctx);
3806
3807         /* Then walk through the lower prio flexible groups */
3808         if (is_active & EVENT_FLEXIBLE)
3809                 ctx_flexible_sched_in(ctx, cpuctx);
3810 }
3811
3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3813                              enum event_type_t event_type,
3814                              struct task_struct *task)
3815 {
3816         struct perf_event_context *ctx = &cpuctx->ctx;
3817
3818         ctx_sched_in(ctx, cpuctx, event_type, task);
3819 }
3820
3821 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3822                                         struct task_struct *task)
3823 {
3824         struct perf_cpu_context *cpuctx;
3825         struct pmu *pmu;
3826
3827         cpuctx = __get_cpu_context(ctx);
3828
3829         /*
3830          * HACK: for HETEROGENEOUS the task context might have switched to a
3831          * different PMU, force (re)set the context,
3832          */
3833         pmu = ctx->pmu = cpuctx->ctx.pmu;
3834
3835         if (cpuctx->task_ctx == ctx) {
3836                 if (cpuctx->sched_cb_usage)
3837                         __perf_pmu_sched_task(cpuctx, true);
3838                 return;
3839         }
3840
3841         perf_ctx_lock(cpuctx, ctx);
3842         /*
3843          * We must check ctx->nr_events while holding ctx->lock, such
3844          * that we serialize against perf_install_in_context().
3845          */
3846         if (!ctx->nr_events)
3847                 goto unlock;
3848
3849         perf_pmu_disable(pmu);
3850         /*
3851          * We want to keep the following priority order:
3852          * cpu pinned (that don't need to move), task pinned,
3853          * cpu flexible, task flexible.
3854          *
3855          * However, if task's ctx is not carrying any pinned
3856          * events, no need to flip the cpuctx's events around.
3857          */
3858         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3859                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3860         perf_event_sched_in(cpuctx, ctx, task);
3861
3862         if (cpuctx->sched_cb_usage && pmu->sched_task)
3863                 pmu->sched_task(cpuctx->task_ctx, true);
3864
3865         perf_pmu_enable(pmu);
3866
3867 unlock:
3868         perf_ctx_unlock(cpuctx, ctx);
3869 }
3870
3871 /*
3872  * Called from scheduler to add the events of the current task
3873  * with interrupts disabled.
3874  *
3875  * We restore the event value and then enable it.
3876  *
3877  * This does not protect us against NMI, but enable()
3878  * sets the enabled bit in the control field of event _before_
3879  * accessing the event control register. If a NMI hits, then it will
3880  * keep the event running.
3881  */
3882 void __perf_event_task_sched_in(struct task_struct *prev,
3883                                 struct task_struct *task)
3884 {
3885         struct perf_event_context *ctx;
3886         int ctxn;
3887
3888         /*
3889          * If cgroup events exist on this CPU, then we need to check if we have
3890          * to switch in PMU state; cgroup event are system-wide mode only.
3891          *
3892          * Since cgroup events are CPU events, we must schedule these in before
3893          * we schedule in the task events.
3894          */
3895         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3896                 perf_cgroup_sched_in(prev, task);
3897
3898         for_each_task_context_nr(ctxn) {
3899                 ctx = task->perf_event_ctxp[ctxn];
3900                 if (likely(!ctx))
3901                         continue;
3902
3903                 perf_event_context_sched_in(ctx, task);
3904         }
3905
3906         if (atomic_read(&nr_switch_events))
3907                 perf_event_switch(task, prev, true);
3908
3909         if (__this_cpu_read(perf_sched_cb_usages))
3910                 perf_pmu_sched_task(prev, task, true);
3911 }
3912
3913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3914 {
3915         u64 frequency = event->attr.sample_freq;
3916         u64 sec = NSEC_PER_SEC;
3917         u64 divisor, dividend;
3918
3919         int count_fls, nsec_fls, frequency_fls, sec_fls;
3920
3921         count_fls = fls64(count);
3922         nsec_fls = fls64(nsec);
3923         frequency_fls = fls64(frequency);
3924         sec_fls = 30;
3925
3926         /*
3927          * We got @count in @nsec, with a target of sample_freq HZ
3928          * the target period becomes:
3929          *
3930          *             @count * 10^9
3931          * period = -------------------
3932          *          @nsec * sample_freq
3933          *
3934          */
3935
3936         /*
3937          * Reduce accuracy by one bit such that @a and @b converge
3938          * to a similar magnitude.
3939          */
3940 #define REDUCE_FLS(a, b)                \
3941 do {                                    \
3942         if (a##_fls > b##_fls) {        \
3943                 a >>= 1;                \
3944                 a##_fls--;              \
3945         } else {                        \
3946                 b >>= 1;                \
3947                 b##_fls--;              \
3948         }                               \
3949 } while (0)
3950
3951         /*
3952          * Reduce accuracy until either term fits in a u64, then proceed with
3953          * the other, so that finally we can do a u64/u64 division.
3954          */
3955         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3956                 REDUCE_FLS(nsec, frequency);
3957                 REDUCE_FLS(sec, count);
3958         }
3959
3960         if (count_fls + sec_fls > 64) {
3961                 divisor = nsec * frequency;
3962
3963                 while (count_fls + sec_fls > 64) {
3964                         REDUCE_FLS(count, sec);
3965                         divisor >>= 1;
3966                 }
3967
3968                 dividend = count * sec;
3969         } else {
3970                 dividend = count * sec;
3971
3972                 while (nsec_fls + frequency_fls > 64) {
3973                         REDUCE_FLS(nsec, frequency);
3974                         dividend >>= 1;
3975                 }
3976
3977                 divisor = nsec * frequency;
3978         }
3979
3980         if (!divisor)
3981                 return dividend;
3982
3983         return div64_u64(dividend, divisor);
3984 }
3985
3986 static DEFINE_PER_CPU(int, perf_throttled_count);
3987 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3988
3989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3990 {
3991         struct hw_perf_event *hwc = &event->hw;
3992         s64 period, sample_period;
3993         s64 delta;
3994
3995         period = perf_calculate_period(event, nsec, count);
3996
3997         delta = (s64)(period - hwc->sample_period);
3998         delta = (delta + 7) / 8; /* low pass filter */
3999
4000         sample_period = hwc->sample_period + delta;
4001
4002         if (!sample_period)
4003                 sample_period = 1;
4004
4005         hwc->sample_period = sample_period;
4006
4007         if (local64_read(&hwc->period_left) > 8*sample_period) {
4008                 if (disable)
4009                         event->pmu->stop(event, PERF_EF_UPDATE);
4010
4011                 local64_set(&hwc->period_left, 0);
4012
4013                 if (disable)
4014                         event->pmu->start(event, PERF_EF_RELOAD);
4015         }
4016 }
4017
4018 /*
4019  * combine freq adjustment with unthrottling to avoid two passes over the
4020  * events. At the same time, make sure, having freq events does not change
4021  * the rate of unthrottling as that would introduce bias.
4022  */
4023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4024                                            int needs_unthr)
4025 {
4026         struct perf_event *event;
4027         struct hw_perf_event *hwc;
4028         u64 now, period = TICK_NSEC;
4029         s64 delta;
4030
4031         /*
4032          * only need to iterate over all events iff:
4033          * - context have events in frequency mode (needs freq adjust)
4034          * - there are events to unthrottle on this cpu
4035          */
4036         if (!(ctx->nr_freq || needs_unthr))
4037                 return;
4038
4039         raw_spin_lock(&ctx->lock);
4040         perf_pmu_disable(ctx->pmu);
4041
4042         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4043                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4044                         continue;
4045
4046                 if (!event_filter_match(event))
4047                         continue;
4048
4049                 perf_pmu_disable(event->pmu);
4050
4051                 hwc = &event->hw;
4052
4053                 if (hwc->interrupts == MAX_INTERRUPTS) {
4054                         hwc->interrupts = 0;
4055                         perf_log_throttle(event, 1);
4056                         event->pmu->start(event, 0);
4057                 }
4058
4059                 if (!event->attr.freq || !event->attr.sample_freq)
4060                         goto next;
4061
4062                 /*
4063                  * stop the event and update event->count
4064                  */
4065                 event->pmu->stop(event, PERF_EF_UPDATE);
4066
4067                 now = local64_read(&event->count);
4068                 delta = now - hwc->freq_count_stamp;
4069                 hwc->freq_count_stamp = now;
4070
4071                 /*
4072                  * restart the event
4073                  * reload only if value has changed
4074                  * we have stopped the event so tell that
4075                  * to perf_adjust_period() to avoid stopping it
4076                  * twice.
4077                  */
4078                 if (delta > 0)
4079                         perf_adjust_period(event, period, delta, false);
4080
4081                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4082         next:
4083                 perf_pmu_enable(event->pmu);
4084         }
4085
4086         perf_pmu_enable(ctx->pmu);
4087         raw_spin_unlock(&ctx->lock);
4088 }
4089
4090 /*
4091  * Move @event to the tail of the @ctx's elegible events.
4092  */
4093 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4094 {
4095         /*
4096          * Rotate the first entry last of non-pinned groups. Rotation might be
4097          * disabled by the inheritance code.
4098          */
4099         if (ctx->rotate_disable)
4100                 return;
4101
4102         perf_event_groups_delete(&ctx->flexible_groups, event);
4103         perf_event_groups_insert(&ctx->flexible_groups, event);
4104 }
4105
4106 /* pick an event from the flexible_groups to rotate */
4107 static inline struct perf_event *
4108 ctx_event_to_rotate(struct perf_event_context *ctx)
4109 {
4110         struct perf_event *event;
4111
4112         /* pick the first active flexible event */
4113         event = list_first_entry_or_null(&ctx->flexible_active,
4114                                          struct perf_event, active_list);
4115
4116         /* if no active flexible event, pick the first event */
4117         if (!event) {
4118                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4119                                       typeof(*event), group_node);
4120         }
4121
4122         /*
4123          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4124          * finds there are unschedulable events, it will set it again.
4125          */
4126         ctx->rotate_necessary = 0;
4127
4128         return event;
4129 }
4130
4131 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4132 {
4133         struct perf_event *cpu_event = NULL, *task_event = NULL;
4134         struct perf_event_context *task_ctx = NULL;
4135         int cpu_rotate, task_rotate;
4136
4137         /*
4138          * Since we run this from IRQ context, nobody can install new
4139          * events, thus the event count values are stable.
4140          */
4141
4142         cpu_rotate = cpuctx->ctx.rotate_necessary;
4143         task_ctx = cpuctx->task_ctx;
4144         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4145
4146         if (!(cpu_rotate || task_rotate))
4147                 return false;
4148
4149         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4150         perf_pmu_disable(cpuctx->ctx.pmu);
4151
4152         if (task_rotate)
4153                 task_event = ctx_event_to_rotate(task_ctx);
4154         if (cpu_rotate)
4155                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4156
4157         /*
4158          * As per the order given at ctx_resched() first 'pop' task flexible
4159          * and then, if needed CPU flexible.
4160          */
4161         if (task_event || (task_ctx && cpu_event))
4162                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4163         if (cpu_event)
4164                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4165
4166         if (task_event)
4167                 rotate_ctx(task_ctx, task_event);
4168         if (cpu_event)
4169                 rotate_ctx(&cpuctx->ctx, cpu_event);
4170
4171         perf_event_sched_in(cpuctx, task_ctx, current);
4172
4173         perf_pmu_enable(cpuctx->ctx.pmu);
4174         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4175
4176         return true;
4177 }
4178
4179 void perf_event_task_tick(void)
4180 {
4181         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4182         struct perf_event_context *ctx, *tmp;
4183         int throttled;
4184
4185         lockdep_assert_irqs_disabled();
4186
4187         __this_cpu_inc(perf_throttled_seq);
4188         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4189         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4190
4191         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4192                 perf_adjust_freq_unthr_context(ctx, throttled);
4193 }
4194
4195 static int event_enable_on_exec(struct perf_event *event,
4196                                 struct perf_event_context *ctx)
4197 {
4198         if (!event->attr.enable_on_exec)
4199                 return 0;
4200
4201         event->attr.enable_on_exec = 0;
4202         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4203                 return 0;
4204
4205         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4206
4207         return 1;
4208 }
4209
4210 /*
4211  * Enable all of a task's events that have been marked enable-on-exec.
4212  * This expects task == current.
4213  */
4214 static void perf_event_enable_on_exec(int ctxn)
4215 {
4216         struct perf_event_context *ctx, *clone_ctx = NULL;
4217         enum event_type_t event_type = 0;
4218         struct perf_cpu_context *cpuctx;
4219         struct perf_event *event;
4220         unsigned long flags;
4221         int enabled = 0;
4222
4223         local_irq_save(flags);
4224         ctx = current->perf_event_ctxp[ctxn];
4225         if (!ctx || !ctx->nr_events)
4226                 goto out;
4227
4228         cpuctx = __get_cpu_context(ctx);
4229         perf_ctx_lock(cpuctx, ctx);
4230         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4231         list_for_each_entry(event, &ctx->event_list, event_entry) {
4232                 enabled |= event_enable_on_exec(event, ctx);
4233                 event_type |= get_event_type(event);
4234         }
4235
4236         /*
4237          * Unclone and reschedule this context if we enabled any event.
4238          */
4239         if (enabled) {
4240                 clone_ctx = unclone_ctx(ctx);
4241                 ctx_resched(cpuctx, ctx, event_type);
4242         } else {
4243                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4244         }
4245         perf_ctx_unlock(cpuctx, ctx);
4246
4247 out:
4248         local_irq_restore(flags);
4249
4250         if (clone_ctx)
4251                 put_ctx(clone_ctx);
4252 }
4253
4254 static void perf_remove_from_owner(struct perf_event *event);
4255 static void perf_event_exit_event(struct perf_event *event,
4256                                   struct perf_event_context *ctx);
4257
4258 /*
4259  * Removes all events from the current task that have been marked
4260  * remove-on-exec, and feeds their values back to parent events.
4261  */
4262 static void perf_event_remove_on_exec(int ctxn)
4263 {
4264         struct perf_event_context *ctx, *clone_ctx = NULL;
4265         struct perf_event *event, *next;
4266         LIST_HEAD(free_list);
4267         unsigned long flags;
4268         bool modified = false;
4269
4270         ctx = perf_pin_task_context(current, ctxn);
4271         if (!ctx)
4272                 return;
4273
4274         mutex_lock(&ctx->mutex);
4275
4276         if (WARN_ON_ONCE(ctx->task != current))
4277                 goto unlock;
4278
4279         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4280                 if (!event->attr.remove_on_exec)
4281                         continue;
4282
4283                 if (!is_kernel_event(event))
4284                         perf_remove_from_owner(event);
4285
4286                 modified = true;
4287
4288                 perf_event_exit_event(event, ctx);
4289         }
4290
4291         raw_spin_lock_irqsave(&ctx->lock, flags);
4292         if (modified)
4293                 clone_ctx = unclone_ctx(ctx);
4294         --ctx->pin_count;
4295         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4296
4297 unlock:
4298         mutex_unlock(&ctx->mutex);
4299
4300         put_ctx(ctx);
4301         if (clone_ctx)
4302                 put_ctx(clone_ctx);
4303 }
4304
4305 struct perf_read_data {
4306         struct perf_event *event;
4307         bool group;
4308         int ret;
4309 };
4310
4311 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4312 {
4313         u16 local_pkg, event_pkg;
4314
4315         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4316                 int local_cpu = smp_processor_id();
4317
4318                 event_pkg = topology_physical_package_id(event_cpu);
4319                 local_pkg = topology_physical_package_id(local_cpu);
4320
4321                 if (event_pkg == local_pkg)
4322                         return local_cpu;
4323         }
4324
4325         return event_cpu;
4326 }
4327
4328 /*
4329  * Cross CPU call to read the hardware event
4330  */
4331 static void __perf_event_read(void *info)
4332 {
4333         struct perf_read_data *data = info;
4334         struct perf_event *sub, *event = data->event;
4335         struct perf_event_context *ctx = event->ctx;
4336         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4337         struct pmu *pmu = event->pmu;
4338
4339         /*
4340          * If this is a task context, we need to check whether it is
4341          * the current task context of this cpu.  If not it has been
4342          * scheduled out before the smp call arrived.  In that case
4343          * event->count would have been updated to a recent sample
4344          * when the event was scheduled out.
4345          */
4346         if (ctx->task && cpuctx->task_ctx != ctx)
4347                 return;
4348
4349         raw_spin_lock(&ctx->lock);
4350         if (ctx->is_active & EVENT_TIME) {
4351                 update_context_time(ctx);
4352                 update_cgrp_time_from_event(event);
4353         }
4354
4355         perf_event_update_time(event);
4356         if (data->group)
4357                 perf_event_update_sibling_time(event);
4358
4359         if (event->state != PERF_EVENT_STATE_ACTIVE)
4360                 goto unlock;
4361
4362         if (!data->group) {
4363                 pmu->read(event);
4364                 data->ret = 0;
4365                 goto unlock;
4366         }
4367
4368         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4369
4370         pmu->read(event);
4371
4372         for_each_sibling_event(sub, event) {
4373                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4374                         /*
4375                          * Use sibling's PMU rather than @event's since
4376                          * sibling could be on different (eg: software) PMU.
4377                          */
4378                         sub->pmu->read(sub);
4379                 }
4380         }
4381
4382         data->ret = pmu->commit_txn(pmu);
4383
4384 unlock:
4385         raw_spin_unlock(&ctx->lock);
4386 }
4387
4388 static inline u64 perf_event_count(struct perf_event *event)
4389 {
4390         return local64_read(&event->count) + atomic64_read(&event->child_count);
4391 }
4392
4393 /*
4394  * NMI-safe method to read a local event, that is an event that
4395  * is:
4396  *   - either for the current task, or for this CPU
4397  *   - does not have inherit set, for inherited task events
4398  *     will not be local and we cannot read them atomically
4399  *   - must not have a pmu::count method
4400  */
4401 int perf_event_read_local(struct perf_event *event, u64 *value,
4402                           u64 *enabled, u64 *running)
4403 {
4404         unsigned long flags;
4405         int ret = 0;
4406
4407         /*
4408          * Disabling interrupts avoids all counter scheduling (context
4409          * switches, timer based rotation and IPIs).
4410          */
4411         local_irq_save(flags);
4412
4413         /*
4414          * It must not be an event with inherit set, we cannot read
4415          * all child counters from atomic context.
4416          */
4417         if (event->attr.inherit) {
4418                 ret = -EOPNOTSUPP;
4419                 goto out;
4420         }
4421
4422         /* If this is a per-task event, it must be for current */
4423         if ((event->attach_state & PERF_ATTACH_TASK) &&
4424             event->hw.target != current) {
4425                 ret = -EINVAL;
4426                 goto out;
4427         }
4428
4429         /* If this is a per-CPU event, it must be for this CPU */
4430         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4431             event->cpu != smp_processor_id()) {
4432                 ret = -EINVAL;
4433                 goto out;
4434         }
4435
4436         /* If this is a pinned event it must be running on this CPU */
4437         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4438                 ret = -EBUSY;
4439                 goto out;
4440         }
4441
4442         /*
4443          * If the event is currently on this CPU, its either a per-task event,
4444          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4445          * oncpu == -1).
4446          */
4447         if (event->oncpu == smp_processor_id())
4448                 event->pmu->read(event);
4449
4450         *value = local64_read(&event->count);
4451         if (enabled || running) {
4452                 u64 now = event->shadow_ctx_time + perf_clock();
4453                 u64 __enabled, __running;
4454
4455                 __perf_update_times(event, now, &__enabled, &__running);
4456                 if (enabled)
4457                         *enabled = __enabled;
4458                 if (running)
4459                         *running = __running;
4460         }
4461 out:
4462         local_irq_restore(flags);
4463
4464         return ret;
4465 }
4466
4467 static int perf_event_read(struct perf_event *event, bool group)
4468 {
4469         enum perf_event_state state = READ_ONCE(event->state);
4470         int event_cpu, ret = 0;
4471
4472         /*
4473          * If event is enabled and currently active on a CPU, update the
4474          * value in the event structure:
4475          */
4476 again:
4477         if (state == PERF_EVENT_STATE_ACTIVE) {
4478                 struct perf_read_data data;
4479
4480                 /*
4481                  * Orders the ->state and ->oncpu loads such that if we see
4482                  * ACTIVE we must also see the right ->oncpu.
4483                  *
4484                  * Matches the smp_wmb() from event_sched_in().
4485                  */
4486                 smp_rmb();
4487
4488                 event_cpu = READ_ONCE(event->oncpu);
4489                 if ((unsigned)event_cpu >= nr_cpu_ids)
4490                         return 0;
4491
4492                 data = (struct perf_read_data){
4493                         .event = event,
4494                         .group = group,
4495                         .ret = 0,
4496                 };
4497
4498                 preempt_disable();
4499                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4500
4501                 /*
4502                  * Purposely ignore the smp_call_function_single() return
4503                  * value.
4504                  *
4505                  * If event_cpu isn't a valid CPU it means the event got
4506                  * scheduled out and that will have updated the event count.
4507                  *
4508                  * Therefore, either way, we'll have an up-to-date event count
4509                  * after this.
4510                  */
4511                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4512                 preempt_enable();
4513                 ret = data.ret;
4514
4515         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4516                 struct perf_event_context *ctx = event->ctx;
4517                 unsigned long flags;
4518
4519                 raw_spin_lock_irqsave(&ctx->lock, flags);
4520                 state = event->state;
4521                 if (state != PERF_EVENT_STATE_INACTIVE) {
4522                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4523                         goto again;
4524                 }
4525
4526                 /*
4527                  * May read while context is not active (e.g., thread is
4528                  * blocked), in that case we cannot update context time
4529                  */
4530                 if (ctx->is_active & EVENT_TIME) {
4531                         update_context_time(ctx);
4532                         update_cgrp_time_from_event(event);
4533                 }
4534
4535                 perf_event_update_time(event);
4536                 if (group)
4537                         perf_event_update_sibling_time(event);
4538                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4539         }
4540
4541         return ret;
4542 }
4543
4544 /*
4545  * Initialize the perf_event context in a task_struct:
4546  */
4547 static void __perf_event_init_context(struct perf_event_context *ctx)
4548 {
4549         raw_spin_lock_init(&ctx->lock);
4550         mutex_init(&ctx->mutex);
4551         INIT_LIST_HEAD(&ctx->active_ctx_list);
4552         perf_event_groups_init(&ctx->pinned_groups);
4553         perf_event_groups_init(&ctx->flexible_groups);
4554         INIT_LIST_HEAD(&ctx->event_list);
4555         INIT_LIST_HEAD(&ctx->pinned_active);
4556         INIT_LIST_HEAD(&ctx->flexible_active);
4557         refcount_set(&ctx->refcount, 1);
4558 }
4559
4560 static struct perf_event_context *
4561 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4562 {
4563         struct perf_event_context *ctx;
4564
4565         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4566         if (!ctx)
4567                 return NULL;
4568
4569         __perf_event_init_context(ctx);
4570         if (task)
4571                 ctx->task = get_task_struct(task);
4572         ctx->pmu = pmu;
4573
4574         return ctx;
4575 }
4576
4577 static struct task_struct *
4578 find_lively_task_by_vpid(pid_t vpid)
4579 {
4580         struct task_struct *task;
4581
4582         rcu_read_lock();
4583         if (!vpid)
4584                 task = current;
4585         else
4586                 task = find_task_by_vpid(vpid);
4587         if (task)
4588                 get_task_struct(task);
4589         rcu_read_unlock();
4590
4591         if (!task)
4592                 return ERR_PTR(-ESRCH);
4593
4594         return task;
4595 }
4596
4597 /*
4598  * Returns a matching context with refcount and pincount.
4599  */
4600 static struct perf_event_context *
4601 find_get_context(struct pmu *pmu, struct task_struct *task,
4602                 struct perf_event *event)
4603 {
4604         struct perf_event_context *ctx, *clone_ctx = NULL;
4605         struct perf_cpu_context *cpuctx;
4606         void *task_ctx_data = NULL;
4607         unsigned long flags;
4608         int ctxn, err;
4609         int cpu = event->cpu;
4610
4611         if (!task) {
4612                 /* Must be root to operate on a CPU event: */
4613                 err = perf_allow_cpu(&event->attr);
4614                 if (err)
4615                         return ERR_PTR(err);
4616
4617                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4618                 ctx = &cpuctx->ctx;
4619                 get_ctx(ctx);
4620                 raw_spin_lock_irqsave(&ctx->lock, flags);
4621                 ++ctx->pin_count;
4622                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4623
4624                 return ctx;
4625         }
4626
4627         err = -EINVAL;
4628         ctxn = pmu->task_ctx_nr;
4629         if (ctxn < 0)
4630                 goto errout;
4631
4632         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4633                 task_ctx_data = alloc_task_ctx_data(pmu);
4634                 if (!task_ctx_data) {
4635                         err = -ENOMEM;
4636                         goto errout;
4637                 }
4638         }
4639
4640 retry:
4641         ctx = perf_lock_task_context(task, ctxn, &flags);
4642         if (ctx) {
4643                 clone_ctx = unclone_ctx(ctx);
4644                 ++ctx->pin_count;
4645
4646                 if (task_ctx_data && !ctx->task_ctx_data) {
4647                         ctx->task_ctx_data = task_ctx_data;
4648                         task_ctx_data = NULL;
4649                 }
4650                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4651
4652                 if (clone_ctx)
4653                         put_ctx(clone_ctx);
4654         } else {
4655                 ctx = alloc_perf_context(pmu, task);
4656                 err = -ENOMEM;
4657                 if (!ctx)
4658                         goto errout;
4659
4660                 if (task_ctx_data) {
4661                         ctx->task_ctx_data = task_ctx_data;
4662                         task_ctx_data = NULL;
4663                 }
4664
4665                 err = 0;
4666                 mutex_lock(&task->perf_event_mutex);
4667                 /*
4668                  * If it has already passed perf_event_exit_task().
4669                  * we must see PF_EXITING, it takes this mutex too.
4670                  */
4671                 if (task->flags & PF_EXITING)
4672                         err = -ESRCH;
4673                 else if (task->perf_event_ctxp[ctxn])
4674                         err = -EAGAIN;
4675                 else {
4676                         get_ctx(ctx);
4677                         ++ctx->pin_count;
4678                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4679                 }
4680                 mutex_unlock(&task->perf_event_mutex);
4681
4682                 if (unlikely(err)) {
4683                         put_ctx(ctx);
4684
4685                         if (err == -EAGAIN)
4686                                 goto retry;
4687                         goto errout;
4688                 }
4689         }
4690
4691         free_task_ctx_data(pmu, task_ctx_data);
4692         return ctx;
4693
4694 errout:
4695         free_task_ctx_data(pmu, task_ctx_data);
4696         return ERR_PTR(err);
4697 }
4698
4699 static void perf_event_free_filter(struct perf_event *event);
4700 static void perf_event_free_bpf_prog(struct perf_event *event);
4701
4702 static void free_event_rcu(struct rcu_head *head)
4703 {
4704         struct perf_event *event;
4705
4706         event = container_of(head, struct perf_event, rcu_head);
4707         if (event->ns)
4708                 put_pid_ns(event->ns);
4709         perf_event_free_filter(event);
4710         kmem_cache_free(perf_event_cache, event);
4711 }
4712
4713 static void ring_buffer_attach(struct perf_event *event,
4714                                struct perf_buffer *rb);
4715
4716 static void detach_sb_event(struct perf_event *event)
4717 {
4718         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4719
4720         raw_spin_lock(&pel->lock);
4721         list_del_rcu(&event->sb_list);
4722         raw_spin_unlock(&pel->lock);
4723 }
4724
4725 static bool is_sb_event(struct perf_event *event)
4726 {
4727         struct perf_event_attr *attr = &event->attr;
4728
4729         if (event->parent)
4730                 return false;
4731
4732         if (event->attach_state & PERF_ATTACH_TASK)
4733                 return false;
4734
4735         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4736             attr->comm || attr->comm_exec ||
4737             attr->task || attr->ksymbol ||
4738             attr->context_switch || attr->text_poke ||
4739             attr->bpf_event)
4740                 return true;
4741         return false;
4742 }
4743
4744 static void unaccount_pmu_sb_event(struct perf_event *event)
4745 {
4746         if (is_sb_event(event))
4747                 detach_sb_event(event);
4748 }
4749
4750 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4751 {
4752         if (event->parent)
4753                 return;
4754
4755         if (is_cgroup_event(event))
4756                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4757 }
4758
4759 #ifdef CONFIG_NO_HZ_FULL
4760 static DEFINE_SPINLOCK(nr_freq_lock);
4761 #endif
4762
4763 static void unaccount_freq_event_nohz(void)
4764 {
4765 #ifdef CONFIG_NO_HZ_FULL
4766         spin_lock(&nr_freq_lock);
4767         if (atomic_dec_and_test(&nr_freq_events))
4768                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4769         spin_unlock(&nr_freq_lock);
4770 #endif
4771 }
4772
4773 static void unaccount_freq_event(void)
4774 {
4775         if (tick_nohz_full_enabled())
4776                 unaccount_freq_event_nohz();
4777         else
4778                 atomic_dec(&nr_freq_events);
4779 }
4780
4781 static void unaccount_event(struct perf_event *event)
4782 {
4783         bool dec = false;
4784
4785         if (event->parent)
4786                 return;
4787
4788         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4789                 dec = true;
4790         if (event->attr.mmap || event->attr.mmap_data)
4791                 atomic_dec(&nr_mmap_events);
4792         if (event->attr.build_id)
4793                 atomic_dec(&nr_build_id_events);
4794         if (event->attr.comm)
4795                 atomic_dec(&nr_comm_events);
4796         if (event->attr.namespaces)
4797                 atomic_dec(&nr_namespaces_events);
4798         if (event->attr.cgroup)
4799                 atomic_dec(&nr_cgroup_events);
4800         if (event->attr.task)
4801                 atomic_dec(&nr_task_events);
4802         if (event->attr.freq)
4803                 unaccount_freq_event();
4804         if (event->attr.context_switch) {
4805                 dec = true;
4806                 atomic_dec(&nr_switch_events);
4807         }
4808         if (is_cgroup_event(event))
4809                 dec = true;
4810         if (has_branch_stack(event))
4811                 dec = true;
4812         if (event->attr.ksymbol)
4813                 atomic_dec(&nr_ksymbol_events);
4814         if (event->attr.bpf_event)
4815                 atomic_dec(&nr_bpf_events);
4816         if (event->attr.text_poke)
4817                 atomic_dec(&nr_text_poke_events);
4818
4819         if (dec) {
4820                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4821                         schedule_delayed_work(&perf_sched_work, HZ);
4822         }
4823
4824         unaccount_event_cpu(event, event->cpu);
4825
4826         unaccount_pmu_sb_event(event);
4827 }
4828
4829 static void perf_sched_delayed(struct work_struct *work)
4830 {
4831         mutex_lock(&perf_sched_mutex);
4832         if (atomic_dec_and_test(&perf_sched_count))
4833                 static_branch_disable(&perf_sched_events);
4834         mutex_unlock(&perf_sched_mutex);
4835 }
4836
4837 /*
4838  * The following implement mutual exclusion of events on "exclusive" pmus
4839  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4840  * at a time, so we disallow creating events that might conflict, namely:
4841  *
4842  *  1) cpu-wide events in the presence of per-task events,
4843  *  2) per-task events in the presence of cpu-wide events,
4844  *  3) two matching events on the same context.
4845  *
4846  * The former two cases are handled in the allocation path (perf_event_alloc(),
4847  * _free_event()), the latter -- before the first perf_install_in_context().
4848  */
4849 static int exclusive_event_init(struct perf_event *event)
4850 {
4851         struct pmu *pmu = event->pmu;
4852
4853         if (!is_exclusive_pmu(pmu))
4854                 return 0;
4855
4856         /*
4857          * Prevent co-existence of per-task and cpu-wide events on the
4858          * same exclusive pmu.
4859          *
4860          * Negative pmu::exclusive_cnt means there are cpu-wide
4861          * events on this "exclusive" pmu, positive means there are
4862          * per-task events.
4863          *
4864          * Since this is called in perf_event_alloc() path, event::ctx
4865          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4866          * to mean "per-task event", because unlike other attach states it
4867          * never gets cleared.
4868          */
4869         if (event->attach_state & PERF_ATTACH_TASK) {
4870                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4871                         return -EBUSY;
4872         } else {
4873                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4874                         return -EBUSY;
4875         }
4876
4877         return 0;
4878 }
4879
4880 static void exclusive_event_destroy(struct perf_event *event)
4881 {
4882         struct pmu *pmu = event->pmu;
4883
4884         if (!is_exclusive_pmu(pmu))
4885                 return;
4886
4887         /* see comment in exclusive_event_init() */
4888         if (event->attach_state & PERF_ATTACH_TASK)
4889                 atomic_dec(&pmu->exclusive_cnt);
4890         else
4891                 atomic_inc(&pmu->exclusive_cnt);
4892 }
4893
4894 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4895 {
4896         if ((e1->pmu == e2->pmu) &&
4897             (e1->cpu == e2->cpu ||
4898              e1->cpu == -1 ||
4899              e2->cpu == -1))
4900                 return true;
4901         return false;
4902 }
4903
4904 static bool exclusive_event_installable(struct perf_event *event,
4905                                         struct perf_event_context *ctx)
4906 {
4907         struct perf_event *iter_event;
4908         struct pmu *pmu = event->pmu;
4909
4910         lockdep_assert_held(&ctx->mutex);
4911
4912         if (!is_exclusive_pmu(pmu))
4913                 return true;
4914
4915         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4916                 if (exclusive_event_match(iter_event, event))
4917                         return false;
4918         }
4919
4920         return true;
4921 }
4922
4923 static void perf_addr_filters_splice(struct perf_event *event,
4924                                        struct list_head *head);
4925
4926 static void _free_event(struct perf_event *event)
4927 {
4928         irq_work_sync(&event->pending);
4929
4930         unaccount_event(event);
4931
4932         security_perf_event_free(event);
4933
4934         if (event->rb) {
4935                 /*
4936                  * Can happen when we close an event with re-directed output.
4937                  *
4938                  * Since we have a 0 refcount, perf_mmap_close() will skip
4939                  * over us; possibly making our ring_buffer_put() the last.
4940                  */
4941                 mutex_lock(&event->mmap_mutex);
4942                 ring_buffer_attach(event, NULL);
4943                 mutex_unlock(&event->mmap_mutex);
4944         }
4945
4946         if (is_cgroup_event(event))
4947                 perf_detach_cgroup(event);
4948
4949         if (!event->parent) {
4950                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4951                         put_callchain_buffers();
4952         }
4953
4954         perf_event_free_bpf_prog(event);
4955         perf_addr_filters_splice(event, NULL);
4956         kfree(event->addr_filter_ranges);
4957
4958         if (event->destroy)
4959                 event->destroy(event);
4960
4961         /*
4962          * Must be after ->destroy(), due to uprobe_perf_close() using
4963          * hw.target.
4964          */
4965         if (event->hw.target)
4966                 put_task_struct(event->hw.target);
4967
4968         /*
4969          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4970          * all task references must be cleaned up.
4971          */
4972         if (event->ctx)
4973                 put_ctx(event->ctx);
4974
4975         exclusive_event_destroy(event);
4976         module_put(event->pmu->module);
4977
4978         call_rcu(&event->rcu_head, free_event_rcu);
4979 }
4980
4981 /*
4982  * Used to free events which have a known refcount of 1, such as in error paths
4983  * where the event isn't exposed yet and inherited events.
4984  */
4985 static void free_event(struct perf_event *event)
4986 {
4987         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4988                                 "unexpected event refcount: %ld; ptr=%p\n",
4989                                 atomic_long_read(&event->refcount), event)) {
4990                 /* leak to avoid use-after-free */
4991                 return;
4992         }
4993
4994         _free_event(event);
4995 }
4996
4997 /*
4998  * Remove user event from the owner task.
4999  */
5000 static void perf_remove_from_owner(struct perf_event *event)
5001 {
5002         struct task_struct *owner;
5003
5004         rcu_read_lock();
5005         /*
5006          * Matches the smp_store_release() in perf_event_exit_task(). If we
5007          * observe !owner it means the list deletion is complete and we can
5008          * indeed free this event, otherwise we need to serialize on
5009          * owner->perf_event_mutex.
5010          */
5011         owner = READ_ONCE(event->owner);
5012         if (owner) {
5013                 /*
5014                  * Since delayed_put_task_struct() also drops the last
5015                  * task reference we can safely take a new reference
5016                  * while holding the rcu_read_lock().
5017                  */
5018                 get_task_struct(owner);
5019         }
5020         rcu_read_unlock();
5021
5022         if (owner) {
5023                 /*
5024                  * If we're here through perf_event_exit_task() we're already
5025                  * holding ctx->mutex which would be an inversion wrt. the
5026                  * normal lock order.
5027                  *
5028                  * However we can safely take this lock because its the child
5029                  * ctx->mutex.
5030                  */
5031                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5032
5033                 /*
5034                  * We have to re-check the event->owner field, if it is cleared
5035                  * we raced with perf_event_exit_task(), acquiring the mutex
5036                  * ensured they're done, and we can proceed with freeing the
5037                  * event.
5038                  */
5039                 if (event->owner) {
5040                         list_del_init(&event->owner_entry);
5041                         smp_store_release(&event->owner, NULL);
5042                 }
5043                 mutex_unlock(&owner->perf_event_mutex);
5044                 put_task_struct(owner);
5045         }
5046 }
5047
5048 static void put_event(struct perf_event *event)
5049 {
5050         if (!atomic_long_dec_and_test(&event->refcount))
5051                 return;
5052
5053         _free_event(event);
5054 }
5055
5056 /*
5057  * Kill an event dead; while event:refcount will preserve the event
5058  * object, it will not preserve its functionality. Once the last 'user'
5059  * gives up the object, we'll destroy the thing.
5060  */
5061 int perf_event_release_kernel(struct perf_event *event)
5062 {
5063         struct perf_event_context *ctx = event->ctx;
5064         struct perf_event *child, *tmp;
5065         LIST_HEAD(free_list);
5066
5067         /*
5068          * If we got here through err_file: fput(event_file); we will not have
5069          * attached to a context yet.
5070          */
5071         if (!ctx) {
5072                 WARN_ON_ONCE(event->attach_state &
5073                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5074                 goto no_ctx;
5075         }
5076
5077         if (!is_kernel_event(event))
5078                 perf_remove_from_owner(event);
5079
5080         ctx = perf_event_ctx_lock(event);
5081         WARN_ON_ONCE(ctx->parent_ctx);
5082         perf_remove_from_context(event, DETACH_GROUP);
5083
5084         raw_spin_lock_irq(&ctx->lock);
5085         /*
5086          * Mark this event as STATE_DEAD, there is no external reference to it
5087          * anymore.
5088          *
5089          * Anybody acquiring event->child_mutex after the below loop _must_
5090          * also see this, most importantly inherit_event() which will avoid
5091          * placing more children on the list.
5092          *
5093          * Thus this guarantees that we will in fact observe and kill _ALL_
5094          * child events.
5095          */
5096         event->state = PERF_EVENT_STATE_DEAD;
5097         raw_spin_unlock_irq(&ctx->lock);
5098
5099         perf_event_ctx_unlock(event, ctx);
5100
5101 again:
5102         mutex_lock(&event->child_mutex);
5103         list_for_each_entry(child, &event->child_list, child_list) {
5104
5105                 /*
5106                  * Cannot change, child events are not migrated, see the
5107                  * comment with perf_event_ctx_lock_nested().
5108                  */
5109                 ctx = READ_ONCE(child->ctx);
5110                 /*
5111                  * Since child_mutex nests inside ctx::mutex, we must jump
5112                  * through hoops. We start by grabbing a reference on the ctx.
5113                  *
5114                  * Since the event cannot get freed while we hold the
5115                  * child_mutex, the context must also exist and have a !0
5116                  * reference count.
5117                  */
5118                 get_ctx(ctx);
5119
5120                 /*
5121                  * Now that we have a ctx ref, we can drop child_mutex, and
5122                  * acquire ctx::mutex without fear of it going away. Then we
5123                  * can re-acquire child_mutex.
5124                  */
5125                 mutex_unlock(&event->child_mutex);
5126                 mutex_lock(&ctx->mutex);
5127                 mutex_lock(&event->child_mutex);
5128
5129                 /*
5130                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5131                  * state, if child is still the first entry, it didn't get freed
5132                  * and we can continue doing so.
5133                  */
5134                 tmp = list_first_entry_or_null(&event->child_list,
5135                                                struct perf_event, child_list);
5136                 if (tmp == child) {
5137                         perf_remove_from_context(child, DETACH_GROUP);
5138                         list_move(&child->child_list, &free_list);
5139                         /*
5140                          * This matches the refcount bump in inherit_event();
5141                          * this can't be the last reference.
5142                          */
5143                         put_event(event);
5144                 }
5145
5146                 mutex_unlock(&event->child_mutex);
5147                 mutex_unlock(&ctx->mutex);
5148                 put_ctx(ctx);
5149                 goto again;
5150         }
5151         mutex_unlock(&event->child_mutex);
5152
5153         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5154                 void *var = &child->ctx->refcount;
5155
5156                 list_del(&child->child_list);
5157                 free_event(child);
5158
5159                 /*
5160                  * Wake any perf_event_free_task() waiting for this event to be
5161                  * freed.
5162                  */
5163                 smp_mb(); /* pairs with wait_var_event() */
5164                 wake_up_var(var);
5165         }
5166
5167 no_ctx:
5168         put_event(event); /* Must be the 'last' reference */
5169         return 0;
5170 }
5171 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5172
5173 /*
5174  * Called when the last reference to the file is gone.
5175  */
5176 static int perf_release(struct inode *inode, struct file *file)
5177 {
5178         perf_event_release_kernel(file->private_data);
5179         return 0;
5180 }
5181
5182 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5183 {
5184         struct perf_event *child;
5185         u64 total = 0;
5186
5187         *enabled = 0;
5188         *running = 0;
5189
5190         mutex_lock(&event->child_mutex);
5191
5192         (void)perf_event_read(event, false);
5193         total += perf_event_count(event);
5194
5195         *enabled += event->total_time_enabled +
5196                         atomic64_read(&event->child_total_time_enabled);
5197         *running += event->total_time_running +
5198                         atomic64_read(&event->child_total_time_running);
5199
5200         list_for_each_entry(child, &event->child_list, child_list) {
5201                 (void)perf_event_read(child, false);
5202                 total += perf_event_count(child);
5203                 *enabled += child->total_time_enabled;
5204                 *running += child->total_time_running;
5205         }
5206         mutex_unlock(&event->child_mutex);
5207
5208         return total;
5209 }
5210
5211 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5212 {
5213         struct perf_event_context *ctx;
5214         u64 count;
5215
5216         ctx = perf_event_ctx_lock(event);
5217         count = __perf_event_read_value(event, enabled, running);
5218         perf_event_ctx_unlock(event, ctx);
5219
5220         return count;
5221 }
5222 EXPORT_SYMBOL_GPL(perf_event_read_value);
5223
5224 static int __perf_read_group_add(struct perf_event *leader,
5225                                         u64 read_format, u64 *values)
5226 {
5227         struct perf_event_context *ctx = leader->ctx;
5228         struct perf_event *sub;
5229         unsigned long flags;
5230         int n = 1; /* skip @nr */
5231         int ret;
5232
5233         ret = perf_event_read(leader, true);
5234         if (ret)
5235                 return ret;
5236
5237         raw_spin_lock_irqsave(&ctx->lock, flags);
5238
5239         /*
5240          * Since we co-schedule groups, {enabled,running} times of siblings
5241          * will be identical to those of the leader, so we only publish one
5242          * set.
5243          */
5244         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5245                 values[n++] += leader->total_time_enabled +
5246                         atomic64_read(&leader->child_total_time_enabled);
5247         }
5248
5249         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5250                 values[n++] += leader->total_time_running +
5251                         atomic64_read(&leader->child_total_time_running);
5252         }
5253
5254         /*
5255          * Write {count,id} tuples for every sibling.
5256          */
5257         values[n++] += perf_event_count(leader);
5258         if (read_format & PERF_FORMAT_ID)
5259                 values[n++] = primary_event_id(leader);
5260
5261         for_each_sibling_event(sub, leader) {
5262                 values[n++] += perf_event_count(sub);
5263                 if (read_format & PERF_FORMAT_ID)
5264                         values[n++] = primary_event_id(sub);
5265         }
5266
5267         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5268         return 0;
5269 }
5270
5271 static int perf_read_group(struct perf_event *event,
5272                                    u64 read_format, char __user *buf)
5273 {
5274         struct perf_event *leader = event->group_leader, *child;
5275         struct perf_event_context *ctx = leader->ctx;
5276         int ret;
5277         u64 *values;
5278
5279         lockdep_assert_held(&ctx->mutex);
5280
5281         values = kzalloc(event->read_size, GFP_KERNEL);
5282         if (!values)
5283                 return -ENOMEM;
5284
5285         values[0] = 1 + leader->nr_siblings;
5286
5287         /*
5288          * By locking the child_mutex of the leader we effectively
5289          * lock the child list of all siblings.. XXX explain how.
5290          */
5291         mutex_lock(&leader->child_mutex);
5292
5293         ret = __perf_read_group_add(leader, read_format, values);
5294         if (ret)
5295                 goto unlock;
5296
5297         list_for_each_entry(child, &leader->child_list, child_list) {
5298                 ret = __perf_read_group_add(child, read_format, values);
5299                 if (ret)
5300                         goto unlock;
5301         }
5302
5303         mutex_unlock(&leader->child_mutex);
5304
5305         ret = event->read_size;
5306         if (copy_to_user(buf, values, event->read_size))
5307                 ret = -EFAULT;
5308         goto out;
5309
5310 unlock:
5311         mutex_unlock(&leader->child_mutex);
5312 out:
5313         kfree(values);
5314         return ret;
5315 }
5316
5317 static int perf_read_one(struct perf_event *event,
5318                                  u64 read_format, char __user *buf)
5319 {
5320         u64 enabled, running;
5321         u64 values[4];
5322         int n = 0;
5323
5324         values[n++] = __perf_event_read_value(event, &enabled, &running);
5325         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5326                 values[n++] = enabled;
5327         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5328                 values[n++] = running;
5329         if (read_format & PERF_FORMAT_ID)
5330                 values[n++] = primary_event_id(event);
5331
5332         if (copy_to_user(buf, values, n * sizeof(u64)))
5333                 return -EFAULT;
5334
5335         return n * sizeof(u64);
5336 }
5337
5338 static bool is_event_hup(struct perf_event *event)
5339 {
5340         bool no_children;
5341
5342         if (event->state > PERF_EVENT_STATE_EXIT)
5343                 return false;
5344
5345         mutex_lock(&event->child_mutex);
5346         no_children = list_empty(&event->child_list);
5347         mutex_unlock(&event->child_mutex);
5348         return no_children;
5349 }
5350
5351 /*
5352  * Read the performance event - simple non blocking version for now
5353  */
5354 static ssize_t
5355 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5356 {
5357         u64 read_format = event->attr.read_format;
5358         int ret;
5359
5360         /*
5361          * Return end-of-file for a read on an event that is in
5362          * error state (i.e. because it was pinned but it couldn't be
5363          * scheduled on to the CPU at some point).
5364          */
5365         if (event->state == PERF_EVENT_STATE_ERROR)
5366                 return 0;
5367
5368         if (count < event->read_size)
5369                 return -ENOSPC;
5370
5371         WARN_ON_ONCE(event->ctx->parent_ctx);
5372         if (read_format & PERF_FORMAT_GROUP)
5373                 ret = perf_read_group(event, read_format, buf);
5374         else
5375                 ret = perf_read_one(event, read_format, buf);
5376
5377         return ret;
5378 }
5379
5380 static ssize_t
5381 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5382 {
5383         struct perf_event *event = file->private_data;
5384         struct perf_event_context *ctx;
5385         int ret;
5386
5387         ret = security_perf_event_read(event);
5388         if (ret)
5389                 return ret;
5390
5391         ctx = perf_event_ctx_lock(event);
5392         ret = __perf_read(event, buf, count);
5393         perf_event_ctx_unlock(event, ctx);
5394
5395         return ret;
5396 }
5397
5398 static __poll_t perf_poll(struct file *file, poll_table *wait)
5399 {
5400         struct perf_event *event = file->private_data;
5401         struct perf_buffer *rb;
5402         __poll_t events = EPOLLHUP;
5403
5404         poll_wait(file, &event->waitq, wait);
5405
5406         if (is_event_hup(event))
5407                 return events;
5408
5409         /*
5410          * Pin the event->rb by taking event->mmap_mutex; otherwise
5411          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5412          */
5413         mutex_lock(&event->mmap_mutex);
5414         rb = event->rb;
5415         if (rb)
5416                 events = atomic_xchg(&rb->poll, 0);
5417         mutex_unlock(&event->mmap_mutex);
5418         return events;
5419 }
5420
5421 static void _perf_event_reset(struct perf_event *event)
5422 {
5423         (void)perf_event_read(event, false);
5424         local64_set(&event->count, 0);
5425         perf_event_update_userpage(event);
5426 }
5427
5428 /* Assume it's not an event with inherit set. */
5429 u64 perf_event_pause(struct perf_event *event, bool reset)
5430 {
5431         struct perf_event_context *ctx;
5432         u64 count;
5433
5434         ctx = perf_event_ctx_lock(event);
5435         WARN_ON_ONCE(event->attr.inherit);
5436         _perf_event_disable(event);
5437         count = local64_read(&event->count);
5438         if (reset)
5439                 local64_set(&event->count, 0);
5440         perf_event_ctx_unlock(event, ctx);
5441
5442         return count;
5443 }
5444 EXPORT_SYMBOL_GPL(perf_event_pause);
5445
5446 /*
5447  * Holding the top-level event's child_mutex means that any
5448  * descendant process that has inherited this event will block
5449  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5450  * task existence requirements of perf_event_enable/disable.
5451  */
5452 static void perf_event_for_each_child(struct perf_event *event,
5453                                         void (*func)(struct perf_event *))
5454 {
5455         struct perf_event *child;
5456
5457         WARN_ON_ONCE(event->ctx->parent_ctx);
5458
5459         mutex_lock(&event->child_mutex);
5460         func(event);
5461         list_for_each_entry(child, &event->child_list, child_list)
5462                 func(child);
5463         mutex_unlock(&event->child_mutex);
5464 }
5465
5466 static void perf_event_for_each(struct perf_event *event,
5467                                   void (*func)(struct perf_event *))
5468 {
5469         struct perf_event_context *ctx = event->ctx;
5470         struct perf_event *sibling;
5471
5472         lockdep_assert_held(&ctx->mutex);
5473
5474         event = event->group_leader;
5475
5476         perf_event_for_each_child(event, func);
5477         for_each_sibling_event(sibling, event)
5478                 perf_event_for_each_child(sibling, func);
5479 }
5480
5481 static void __perf_event_period(struct perf_event *event,
5482                                 struct perf_cpu_context *cpuctx,
5483                                 struct perf_event_context *ctx,
5484                                 void *info)
5485 {
5486         u64 value = *((u64 *)info);
5487         bool active;
5488
5489         if (event->attr.freq) {
5490                 event->attr.sample_freq = value;
5491         } else {
5492                 event->attr.sample_period = value;
5493                 event->hw.sample_period = value;
5494         }
5495
5496         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5497         if (active) {
5498                 perf_pmu_disable(ctx->pmu);
5499                 /*
5500                  * We could be throttled; unthrottle now to avoid the tick
5501                  * trying to unthrottle while we already re-started the event.
5502                  */
5503                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5504                         event->hw.interrupts = 0;
5505                         perf_log_throttle(event, 1);
5506                 }
5507                 event->pmu->stop(event, PERF_EF_UPDATE);
5508         }
5509
5510         local64_set(&event->hw.period_left, 0);
5511
5512         if (active) {
5513                 event->pmu->start(event, PERF_EF_RELOAD);
5514                 perf_pmu_enable(ctx->pmu);
5515         }
5516 }
5517
5518 static int perf_event_check_period(struct perf_event *event, u64 value)
5519 {
5520         return event->pmu->check_period(event, value);
5521 }
5522
5523 static int _perf_event_period(struct perf_event *event, u64 value)
5524 {
5525         if (!is_sampling_event(event))
5526                 return -EINVAL;
5527
5528         if (!value)
5529                 return -EINVAL;
5530
5531         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5532                 return -EINVAL;
5533
5534         if (perf_event_check_period(event, value))
5535                 return -EINVAL;
5536
5537         if (!event->attr.freq && (value & (1ULL << 63)))
5538                 return -EINVAL;
5539
5540         event_function_call(event, __perf_event_period, &value);
5541
5542         return 0;
5543 }
5544
5545 int perf_event_period(struct perf_event *event, u64 value)
5546 {
5547         struct perf_event_context *ctx;
5548         int ret;
5549
5550         ctx = perf_event_ctx_lock(event);
5551         ret = _perf_event_period(event, value);
5552         perf_event_ctx_unlock(event, ctx);
5553
5554         return ret;
5555 }
5556 EXPORT_SYMBOL_GPL(perf_event_period);
5557
5558 static const struct file_operations perf_fops;
5559
5560 static inline int perf_fget_light(int fd, struct fd *p)
5561 {
5562         struct fd f = fdget(fd);
5563         if (!f.file)
5564                 return -EBADF;
5565
5566         if (f.file->f_op != &perf_fops) {
5567                 fdput(f);
5568                 return -EBADF;
5569         }
5570         *p = f;
5571         return 0;
5572 }
5573
5574 static int perf_event_set_output(struct perf_event *event,
5575                                  struct perf_event *output_event);
5576 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5577 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5578 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5579                           struct perf_event_attr *attr);
5580
5581 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5582 {
5583         void (*func)(struct perf_event *);
5584         u32 flags = arg;
5585
5586         switch (cmd) {
5587         case PERF_EVENT_IOC_ENABLE:
5588                 func = _perf_event_enable;
5589                 break;
5590         case PERF_EVENT_IOC_DISABLE:
5591                 func = _perf_event_disable;
5592                 break;
5593         case PERF_EVENT_IOC_RESET:
5594                 func = _perf_event_reset;
5595                 break;
5596
5597         case PERF_EVENT_IOC_REFRESH:
5598                 return _perf_event_refresh(event, arg);
5599
5600         case PERF_EVENT_IOC_PERIOD:
5601         {
5602                 u64 value;
5603
5604                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5605                         return -EFAULT;
5606
5607                 return _perf_event_period(event, value);
5608         }
5609         case PERF_EVENT_IOC_ID:
5610         {
5611                 u64 id = primary_event_id(event);
5612
5613                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5614                         return -EFAULT;
5615                 return 0;
5616         }
5617
5618         case PERF_EVENT_IOC_SET_OUTPUT:
5619         {
5620                 int ret;
5621                 if (arg != -1) {
5622                         struct perf_event *output_event;
5623                         struct fd output;
5624                         ret = perf_fget_light(arg, &output);
5625                         if (ret)
5626                                 return ret;
5627                         output_event = output.file->private_data;
5628                         ret = perf_event_set_output(event, output_event);
5629                         fdput(output);
5630                 } else {
5631                         ret = perf_event_set_output(event, NULL);
5632                 }
5633                 return ret;
5634         }
5635
5636         case PERF_EVENT_IOC_SET_FILTER:
5637                 return perf_event_set_filter(event, (void __user *)arg);
5638
5639         case PERF_EVENT_IOC_SET_BPF:
5640                 return perf_event_set_bpf_prog(event, arg);
5641
5642         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5643                 struct perf_buffer *rb;
5644
5645                 rcu_read_lock();
5646                 rb = rcu_dereference(event->rb);
5647                 if (!rb || !rb->nr_pages) {
5648                         rcu_read_unlock();
5649                         return -EINVAL;
5650                 }
5651                 rb_toggle_paused(rb, !!arg);
5652                 rcu_read_unlock();
5653                 return 0;
5654         }
5655
5656         case PERF_EVENT_IOC_QUERY_BPF:
5657                 return perf_event_query_prog_array(event, (void __user *)arg);
5658
5659         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5660                 struct perf_event_attr new_attr;
5661                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5662                                          &new_attr);
5663
5664                 if (err)
5665                         return err;
5666
5667                 return perf_event_modify_attr(event,  &new_attr);
5668         }
5669         default:
5670                 return -ENOTTY;
5671         }
5672
5673         if (flags & PERF_IOC_FLAG_GROUP)
5674                 perf_event_for_each(event, func);
5675         else
5676                 perf_event_for_each_child(event, func);
5677
5678         return 0;
5679 }
5680
5681 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5682 {
5683         struct perf_event *event = file->private_data;
5684         struct perf_event_context *ctx;
5685         long ret;
5686
5687         /* Treat ioctl like writes as it is likely a mutating operation. */
5688         ret = security_perf_event_write(event);
5689         if (ret)
5690                 return ret;
5691
5692         ctx = perf_event_ctx_lock(event);
5693         ret = _perf_ioctl(event, cmd, arg);
5694         perf_event_ctx_unlock(event, ctx);
5695
5696         return ret;
5697 }
5698
5699 #ifdef CONFIG_COMPAT
5700 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5701                                 unsigned long arg)
5702 {
5703         switch (_IOC_NR(cmd)) {
5704         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5705         case _IOC_NR(PERF_EVENT_IOC_ID):
5706         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5707         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5708                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5709                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5710                         cmd &= ~IOCSIZE_MASK;
5711                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5712                 }
5713                 break;
5714         }
5715         return perf_ioctl(file, cmd, arg);
5716 }
5717 #else
5718 # define perf_compat_ioctl NULL
5719 #endif
5720
5721 int perf_event_task_enable(void)
5722 {
5723         struct perf_event_context *ctx;
5724         struct perf_event *event;
5725
5726         mutex_lock(&current->perf_event_mutex);
5727         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5728                 ctx = perf_event_ctx_lock(event);
5729                 perf_event_for_each_child(event, _perf_event_enable);
5730                 perf_event_ctx_unlock(event, ctx);
5731         }
5732         mutex_unlock(&current->perf_event_mutex);
5733
5734         return 0;
5735 }
5736
5737 int perf_event_task_disable(void)
5738 {
5739         struct perf_event_context *ctx;
5740         struct perf_event *event;
5741
5742         mutex_lock(&current->perf_event_mutex);
5743         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5744                 ctx = perf_event_ctx_lock(event);
5745                 perf_event_for_each_child(event, _perf_event_disable);
5746                 perf_event_ctx_unlock(event, ctx);
5747         }
5748         mutex_unlock(&current->perf_event_mutex);
5749
5750         return 0;
5751 }
5752
5753 static int perf_event_index(struct perf_event *event)
5754 {
5755         if (event->hw.state & PERF_HES_STOPPED)
5756                 return 0;
5757
5758         if (event->state != PERF_EVENT_STATE_ACTIVE)
5759                 return 0;
5760
5761         return event->pmu->event_idx(event);
5762 }
5763
5764 static void calc_timer_values(struct perf_event *event,
5765                                 u64 *now,
5766                                 u64 *enabled,
5767                                 u64 *running)
5768 {
5769         u64 ctx_time;
5770
5771         *now = perf_clock();
5772         ctx_time = event->shadow_ctx_time + *now;
5773         __perf_update_times(event, ctx_time, enabled, running);
5774 }
5775
5776 static void perf_event_init_userpage(struct perf_event *event)
5777 {
5778         struct perf_event_mmap_page *userpg;
5779         struct perf_buffer *rb;
5780
5781         rcu_read_lock();
5782         rb = rcu_dereference(event->rb);
5783         if (!rb)
5784                 goto unlock;
5785
5786         userpg = rb->user_page;
5787
5788         /* Allow new userspace to detect that bit 0 is deprecated */
5789         userpg->cap_bit0_is_deprecated = 1;
5790         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5791         userpg->data_offset = PAGE_SIZE;
5792         userpg->data_size = perf_data_size(rb);
5793
5794 unlock:
5795         rcu_read_unlock();
5796 }
5797
5798 void __weak arch_perf_update_userpage(
5799         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5800 {
5801 }
5802
5803 /*
5804  * Callers need to ensure there can be no nesting of this function, otherwise
5805  * the seqlock logic goes bad. We can not serialize this because the arch
5806  * code calls this from NMI context.
5807  */
5808 void perf_event_update_userpage(struct perf_event *event)
5809 {
5810         struct perf_event_mmap_page *userpg;
5811         struct perf_buffer *rb;
5812         u64 enabled, running, now;
5813
5814         rcu_read_lock();
5815         rb = rcu_dereference(event->rb);
5816         if (!rb)
5817                 goto unlock;
5818
5819         /*
5820          * compute total_time_enabled, total_time_running
5821          * based on snapshot values taken when the event
5822          * was last scheduled in.
5823          *
5824          * we cannot simply called update_context_time()
5825          * because of locking issue as we can be called in
5826          * NMI context
5827          */
5828         calc_timer_values(event, &now, &enabled, &running);
5829
5830         userpg = rb->user_page;
5831         /*
5832          * Disable preemption to guarantee consistent time stamps are stored to
5833          * the user page.
5834          */
5835         preempt_disable();
5836         ++userpg->lock;
5837         barrier();
5838         userpg->index = perf_event_index(event);
5839         userpg->offset = perf_event_count(event);
5840         if (userpg->index)
5841                 userpg->offset -= local64_read(&event->hw.prev_count);
5842
5843         userpg->time_enabled = enabled +
5844                         atomic64_read(&event->child_total_time_enabled);
5845
5846         userpg->time_running = running +
5847                         atomic64_read(&event->child_total_time_running);
5848
5849         arch_perf_update_userpage(event, userpg, now);
5850
5851         barrier();
5852         ++userpg->lock;
5853         preempt_enable();
5854 unlock:
5855         rcu_read_unlock();
5856 }
5857 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5858
5859 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5860 {
5861         struct perf_event *event = vmf->vma->vm_file->private_data;
5862         struct perf_buffer *rb;
5863         vm_fault_t ret = VM_FAULT_SIGBUS;
5864
5865         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5866                 if (vmf->pgoff == 0)
5867                         ret = 0;
5868                 return ret;
5869         }
5870
5871         rcu_read_lock();
5872         rb = rcu_dereference(event->rb);
5873         if (!rb)
5874                 goto unlock;
5875
5876         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5877                 goto unlock;
5878
5879         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5880         if (!vmf->page)
5881                 goto unlock;
5882
5883         get_page(vmf->page);
5884         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5885         vmf->page->index   = vmf->pgoff;
5886
5887         ret = 0;
5888 unlock:
5889         rcu_read_unlock();
5890
5891         return ret;
5892 }
5893
5894 static void ring_buffer_attach(struct perf_event *event,
5895                                struct perf_buffer *rb)
5896 {
5897         struct perf_buffer *old_rb = NULL;
5898         unsigned long flags;
5899
5900         if (event->rb) {
5901                 /*
5902                  * Should be impossible, we set this when removing
5903                  * event->rb_entry and wait/clear when adding event->rb_entry.
5904                  */
5905                 WARN_ON_ONCE(event->rcu_pending);
5906
5907                 old_rb = event->rb;
5908                 spin_lock_irqsave(&old_rb->event_lock, flags);
5909                 list_del_rcu(&event->rb_entry);
5910                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5911
5912                 event->rcu_batches = get_state_synchronize_rcu();
5913                 event->rcu_pending = 1;
5914         }
5915
5916         if (rb) {
5917                 if (event->rcu_pending) {
5918                         cond_synchronize_rcu(event->rcu_batches);
5919                         event->rcu_pending = 0;
5920                 }
5921
5922                 spin_lock_irqsave(&rb->event_lock, flags);
5923                 list_add_rcu(&event->rb_entry, &rb->event_list);
5924                 spin_unlock_irqrestore(&rb->event_lock, flags);
5925         }
5926
5927         /*
5928          * Avoid racing with perf_mmap_close(AUX): stop the event
5929          * before swizzling the event::rb pointer; if it's getting
5930          * unmapped, its aux_mmap_count will be 0 and it won't
5931          * restart. See the comment in __perf_pmu_output_stop().
5932          *
5933          * Data will inevitably be lost when set_output is done in
5934          * mid-air, but then again, whoever does it like this is
5935          * not in for the data anyway.
5936          */
5937         if (has_aux(event))
5938                 perf_event_stop(event, 0);
5939
5940         rcu_assign_pointer(event->rb, rb);
5941
5942         if (old_rb) {
5943                 ring_buffer_put(old_rb);
5944                 /*
5945                  * Since we detached before setting the new rb, so that we
5946                  * could attach the new rb, we could have missed a wakeup.
5947                  * Provide it now.
5948                  */
5949                 wake_up_all(&event->waitq);
5950         }
5951 }
5952
5953 static void ring_buffer_wakeup(struct perf_event *event)
5954 {
5955         struct perf_buffer *rb;
5956
5957         rcu_read_lock();
5958         rb = rcu_dereference(event->rb);
5959         if (rb) {
5960                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5961                         wake_up_all(&event->waitq);
5962         }
5963         rcu_read_unlock();
5964 }
5965
5966 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5967 {
5968         struct perf_buffer *rb;
5969
5970         rcu_read_lock();
5971         rb = rcu_dereference(event->rb);
5972         if (rb) {
5973                 if (!refcount_inc_not_zero(&rb->refcount))
5974                         rb = NULL;
5975         }
5976         rcu_read_unlock();
5977
5978         return rb;
5979 }
5980
5981 void ring_buffer_put(struct perf_buffer *rb)
5982 {
5983         if (!refcount_dec_and_test(&rb->refcount))
5984                 return;
5985
5986         WARN_ON_ONCE(!list_empty(&rb->event_list));
5987
5988         call_rcu(&rb->rcu_head, rb_free_rcu);
5989 }
5990
5991 static void perf_mmap_open(struct vm_area_struct *vma)
5992 {
5993         struct perf_event *event = vma->vm_file->private_data;
5994
5995         atomic_inc(&event->mmap_count);
5996         atomic_inc(&event->rb->mmap_count);
5997
5998         if (vma->vm_pgoff)
5999                 atomic_inc(&event->rb->aux_mmap_count);
6000
6001         if (event->pmu->event_mapped)
6002                 event->pmu->event_mapped(event, vma->vm_mm);
6003 }
6004
6005 static void perf_pmu_output_stop(struct perf_event *event);
6006
6007 /*
6008  * A buffer can be mmap()ed multiple times; either directly through the same
6009  * event, or through other events by use of perf_event_set_output().
6010  *
6011  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6012  * the buffer here, where we still have a VM context. This means we need
6013  * to detach all events redirecting to us.
6014  */
6015 static void perf_mmap_close(struct vm_area_struct *vma)
6016 {
6017         struct perf_event *event = vma->vm_file->private_data;
6018         struct perf_buffer *rb = ring_buffer_get(event);
6019         struct user_struct *mmap_user = rb->mmap_user;
6020         int mmap_locked = rb->mmap_locked;
6021         unsigned long size = perf_data_size(rb);
6022         bool detach_rest = false;
6023
6024         if (event->pmu->event_unmapped)
6025                 event->pmu->event_unmapped(event, vma->vm_mm);
6026
6027         /*
6028          * rb->aux_mmap_count will always drop before rb->mmap_count and
6029          * event->mmap_count, so it is ok to use event->mmap_mutex to
6030          * serialize with perf_mmap here.
6031          */
6032         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6033             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6034                 /*
6035                  * Stop all AUX events that are writing to this buffer,
6036                  * so that we can free its AUX pages and corresponding PMU
6037                  * data. Note that after rb::aux_mmap_count dropped to zero,
6038                  * they won't start any more (see perf_aux_output_begin()).
6039                  */
6040                 perf_pmu_output_stop(event);
6041
6042                 /* now it's safe to free the pages */
6043                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6044                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6045
6046                 /* this has to be the last one */
6047                 rb_free_aux(rb);
6048                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6049
6050                 mutex_unlock(&event->mmap_mutex);
6051         }
6052
6053         if (atomic_dec_and_test(&rb->mmap_count))
6054                 detach_rest = true;
6055
6056         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6057                 goto out_put;
6058
6059         ring_buffer_attach(event, NULL);
6060         mutex_unlock(&event->mmap_mutex);
6061
6062         /* If there's still other mmap()s of this buffer, we're done. */
6063         if (!detach_rest)
6064                 goto out_put;
6065
6066         /*
6067          * No other mmap()s, detach from all other events that might redirect
6068          * into the now unreachable buffer. Somewhat complicated by the
6069          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6070          */
6071 again:
6072         rcu_read_lock();
6073         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6074                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6075                         /*
6076                          * This event is en-route to free_event() which will
6077                          * detach it and remove it from the list.
6078                          */
6079                         continue;
6080                 }
6081                 rcu_read_unlock();
6082
6083                 mutex_lock(&event->mmap_mutex);
6084                 /*
6085                  * Check we didn't race with perf_event_set_output() which can
6086                  * swizzle the rb from under us while we were waiting to
6087                  * acquire mmap_mutex.
6088                  *
6089                  * If we find a different rb; ignore this event, a next
6090                  * iteration will no longer find it on the list. We have to
6091                  * still restart the iteration to make sure we're not now
6092                  * iterating the wrong list.
6093                  */
6094                 if (event->rb == rb)
6095                         ring_buffer_attach(event, NULL);
6096
6097                 mutex_unlock(&event->mmap_mutex);
6098                 put_event(event);
6099
6100                 /*
6101                  * Restart the iteration; either we're on the wrong list or
6102                  * destroyed its integrity by doing a deletion.
6103                  */
6104                 goto again;
6105         }
6106         rcu_read_unlock();
6107
6108         /*
6109          * It could be there's still a few 0-ref events on the list; they'll
6110          * get cleaned up by free_event() -- they'll also still have their
6111          * ref on the rb and will free it whenever they are done with it.
6112          *
6113          * Aside from that, this buffer is 'fully' detached and unmapped,
6114          * undo the VM accounting.
6115          */
6116
6117         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6118                         &mmap_user->locked_vm);
6119         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6120         free_uid(mmap_user);
6121
6122 out_put:
6123         ring_buffer_put(rb); /* could be last */
6124 }
6125
6126 static const struct vm_operations_struct perf_mmap_vmops = {
6127         .open           = perf_mmap_open,
6128         .close          = perf_mmap_close, /* non mergeable */
6129         .fault          = perf_mmap_fault,
6130         .page_mkwrite   = perf_mmap_fault,
6131 };
6132
6133 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6134 {
6135         struct perf_event *event = file->private_data;
6136         unsigned long user_locked, user_lock_limit;
6137         struct user_struct *user = current_user();
6138         struct perf_buffer *rb = NULL;
6139         unsigned long locked, lock_limit;
6140         unsigned long vma_size;
6141         unsigned long nr_pages;
6142         long user_extra = 0, extra = 0;
6143         int ret = 0, flags = 0;
6144
6145         /*
6146          * Don't allow mmap() of inherited per-task counters. This would
6147          * create a performance issue due to all children writing to the
6148          * same rb.
6149          */
6150         if (event->cpu == -1 && event->attr.inherit)
6151                 return -EINVAL;
6152
6153         if (!(vma->vm_flags & VM_SHARED))
6154                 return -EINVAL;
6155
6156         ret = security_perf_event_read(event);
6157         if (ret)
6158                 return ret;
6159
6160         vma_size = vma->vm_end - vma->vm_start;
6161
6162         if (vma->vm_pgoff == 0) {
6163                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6164         } else {
6165                 /*
6166                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6167                  * mapped, all subsequent mappings should have the same size
6168                  * and offset. Must be above the normal perf buffer.
6169                  */
6170                 u64 aux_offset, aux_size;
6171
6172                 if (!event->rb)
6173                         return -EINVAL;
6174
6175                 nr_pages = vma_size / PAGE_SIZE;
6176
6177                 mutex_lock(&event->mmap_mutex);
6178                 ret = -EINVAL;
6179
6180                 rb = event->rb;
6181                 if (!rb)
6182                         goto aux_unlock;
6183
6184                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6185                 aux_size = READ_ONCE(rb->user_page->aux_size);
6186
6187                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6188                         goto aux_unlock;
6189
6190                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6191                         goto aux_unlock;
6192
6193                 /* already mapped with a different offset */
6194                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6195                         goto aux_unlock;
6196
6197                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6198                         goto aux_unlock;
6199
6200                 /* already mapped with a different size */
6201                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6202                         goto aux_unlock;
6203
6204                 if (!is_power_of_2(nr_pages))
6205                         goto aux_unlock;
6206
6207                 if (!atomic_inc_not_zero(&rb->mmap_count))
6208                         goto aux_unlock;
6209
6210                 if (rb_has_aux(rb)) {
6211                         atomic_inc(&rb->aux_mmap_count);
6212                         ret = 0;
6213                         goto unlock;
6214                 }
6215
6216                 atomic_set(&rb->aux_mmap_count, 1);
6217                 user_extra = nr_pages;
6218
6219                 goto accounting;
6220         }
6221
6222         /*
6223          * If we have rb pages ensure they're a power-of-two number, so we
6224          * can do bitmasks instead of modulo.
6225          */
6226         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6227                 return -EINVAL;
6228
6229         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6230                 return -EINVAL;
6231
6232         WARN_ON_ONCE(event->ctx->parent_ctx);
6233 again:
6234         mutex_lock(&event->mmap_mutex);
6235         if (event->rb) {
6236                 if (event->rb->nr_pages != nr_pages) {
6237                         ret = -EINVAL;
6238                         goto unlock;
6239                 }
6240
6241                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6242                         /*
6243                          * Raced against perf_mmap_close() through
6244                          * perf_event_set_output(). Try again, hope for better
6245                          * luck.
6246                          */
6247                         mutex_unlock(&event->mmap_mutex);
6248                         goto again;
6249                 }
6250
6251                 goto unlock;
6252         }
6253
6254         user_extra = nr_pages + 1;
6255
6256 accounting:
6257         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6258
6259         /*
6260          * Increase the limit linearly with more CPUs:
6261          */
6262         user_lock_limit *= num_online_cpus();
6263
6264         user_locked = atomic_long_read(&user->locked_vm);
6265
6266         /*
6267          * sysctl_perf_event_mlock may have changed, so that
6268          *     user->locked_vm > user_lock_limit
6269          */
6270         if (user_locked > user_lock_limit)
6271                 user_locked = user_lock_limit;
6272         user_locked += user_extra;
6273
6274         if (user_locked > user_lock_limit) {
6275                 /*
6276                  * charge locked_vm until it hits user_lock_limit;
6277                  * charge the rest from pinned_vm
6278                  */
6279                 extra = user_locked - user_lock_limit;
6280                 user_extra -= extra;
6281         }
6282
6283         lock_limit = rlimit(RLIMIT_MEMLOCK);
6284         lock_limit >>= PAGE_SHIFT;
6285         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6286
6287         if ((locked > lock_limit) && perf_is_paranoid() &&
6288                 !capable(CAP_IPC_LOCK)) {
6289                 ret = -EPERM;
6290                 goto unlock;
6291         }
6292
6293         WARN_ON(!rb && event->rb);
6294
6295         if (vma->vm_flags & VM_WRITE)
6296                 flags |= RING_BUFFER_WRITABLE;
6297
6298         if (!rb) {
6299                 rb = rb_alloc(nr_pages,
6300                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6301                               event->cpu, flags);
6302
6303                 if (!rb) {
6304                         ret = -ENOMEM;
6305                         goto unlock;
6306                 }
6307
6308                 atomic_set(&rb->mmap_count, 1);
6309                 rb->mmap_user = get_current_user();
6310                 rb->mmap_locked = extra;
6311
6312                 ring_buffer_attach(event, rb);
6313
6314                 perf_event_init_userpage(event);
6315                 perf_event_update_userpage(event);
6316         } else {
6317                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6318                                    event->attr.aux_watermark, flags);
6319                 if (!ret)
6320                         rb->aux_mmap_locked = extra;
6321         }
6322
6323 unlock:
6324         if (!ret) {
6325                 atomic_long_add(user_extra, &user->locked_vm);
6326                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6327
6328                 atomic_inc(&event->mmap_count);
6329         } else if (rb) {
6330                 atomic_dec(&rb->mmap_count);
6331         }
6332 aux_unlock:
6333         mutex_unlock(&event->mmap_mutex);
6334
6335         /*
6336          * Since pinned accounting is per vm we cannot allow fork() to copy our
6337          * vma.
6338          */
6339         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6340         vma->vm_ops = &perf_mmap_vmops;
6341
6342         if (event->pmu->event_mapped)
6343                 event->pmu->event_mapped(event, vma->vm_mm);
6344
6345         return ret;
6346 }
6347
6348 static int perf_fasync(int fd, struct file *filp, int on)
6349 {
6350         struct inode *inode = file_inode(filp);
6351         struct perf_event *event = filp->private_data;
6352         int retval;
6353
6354         inode_lock(inode);
6355         retval = fasync_helper(fd, filp, on, &event->fasync);
6356         inode_unlock(inode);
6357
6358         if (retval < 0)
6359                 return retval;
6360
6361         return 0;
6362 }
6363
6364 static const struct file_operations perf_fops = {
6365         .llseek                 = no_llseek,
6366         .release                = perf_release,
6367         .read                   = perf_read,
6368         .poll                   = perf_poll,
6369         .unlocked_ioctl         = perf_ioctl,
6370         .compat_ioctl           = perf_compat_ioctl,
6371         .mmap                   = perf_mmap,
6372         .fasync                 = perf_fasync,
6373 };
6374
6375 /*
6376  * Perf event wakeup
6377  *
6378  * If there's data, ensure we set the poll() state and publish everything
6379  * to user-space before waking everybody up.
6380  */
6381
6382 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6383 {
6384         /* only the parent has fasync state */
6385         if (event->parent)
6386                 event = event->parent;
6387         return &event->fasync;
6388 }
6389
6390 void perf_event_wakeup(struct perf_event *event)
6391 {
6392         ring_buffer_wakeup(event);
6393
6394         if (event->pending_kill) {
6395                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6396                 event->pending_kill = 0;
6397         }
6398 }
6399
6400 static void perf_sigtrap(struct perf_event *event)
6401 {
6402         /*
6403          * We'd expect this to only occur if the irq_work is delayed and either
6404          * ctx->task or current has changed in the meantime. This can be the
6405          * case on architectures that do not implement arch_irq_work_raise().
6406          */
6407         if (WARN_ON_ONCE(event->ctx->task != current))
6408                 return;
6409
6410         /*
6411          * perf_pending_event() can race with the task exiting.
6412          */
6413         if (current->flags & PF_EXITING)
6414                 return;
6415
6416         force_sig_perf((void __user *)event->pending_addr,
6417                        event->attr.type, event->attr.sig_data);
6418 }
6419
6420 static void perf_pending_event_disable(struct perf_event *event)
6421 {
6422         int cpu = READ_ONCE(event->pending_disable);
6423
6424         if (cpu < 0)
6425                 return;
6426
6427         if (cpu == smp_processor_id()) {
6428                 WRITE_ONCE(event->pending_disable, -1);
6429
6430                 if (event->attr.sigtrap) {
6431                         perf_sigtrap(event);
6432                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6433                         return;
6434                 }
6435
6436                 perf_event_disable_local(event);
6437                 return;
6438         }
6439
6440         /*
6441          *  CPU-A                       CPU-B
6442          *
6443          *  perf_event_disable_inatomic()
6444          *    @pending_disable = CPU-A;
6445          *    irq_work_queue();
6446          *
6447          *  sched-out
6448          *    @pending_disable = -1;
6449          *
6450          *                              sched-in
6451          *                              perf_event_disable_inatomic()
6452          *                                @pending_disable = CPU-B;
6453          *                                irq_work_queue(); // FAILS
6454          *
6455          *  irq_work_run()
6456          *    perf_pending_event()
6457          *
6458          * But the event runs on CPU-B and wants disabling there.
6459          */
6460         irq_work_queue_on(&event->pending, cpu);
6461 }
6462
6463 static void perf_pending_event(struct irq_work *entry)
6464 {
6465         struct perf_event *event = container_of(entry, struct perf_event, pending);
6466         int rctx;
6467
6468         rctx = perf_swevent_get_recursion_context();
6469         /*
6470          * If we 'fail' here, that's OK, it means recursion is already disabled
6471          * and we won't recurse 'further'.
6472          */
6473
6474         perf_pending_event_disable(event);
6475
6476         if (event->pending_wakeup) {
6477                 event->pending_wakeup = 0;
6478                 perf_event_wakeup(event);
6479         }
6480
6481         if (rctx >= 0)
6482                 perf_swevent_put_recursion_context(rctx);
6483 }
6484
6485 /*
6486  * We assume there is only KVM supporting the callbacks.
6487  * Later on, we might change it to a list if there is
6488  * another virtualization implementation supporting the callbacks.
6489  */
6490 struct perf_guest_info_callbacks *perf_guest_cbs;
6491
6492 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6493 {
6494         perf_guest_cbs = cbs;
6495         return 0;
6496 }
6497 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6498
6499 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6500 {
6501         perf_guest_cbs = NULL;
6502         return 0;
6503 }
6504 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6505
6506 static void
6507 perf_output_sample_regs(struct perf_output_handle *handle,
6508                         struct pt_regs *regs, u64 mask)
6509 {
6510         int bit;
6511         DECLARE_BITMAP(_mask, 64);
6512
6513         bitmap_from_u64(_mask, mask);
6514         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6515                 u64 val;
6516
6517                 val = perf_reg_value(regs, bit);
6518                 perf_output_put(handle, val);
6519         }
6520 }
6521
6522 static void perf_sample_regs_user(struct perf_regs *regs_user,
6523                                   struct pt_regs *regs)
6524 {
6525         if (user_mode(regs)) {
6526                 regs_user->abi = perf_reg_abi(current);
6527                 regs_user->regs = regs;
6528         } else if (!(current->flags & PF_KTHREAD)) {
6529                 perf_get_regs_user(regs_user, regs);
6530         } else {
6531                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6532                 regs_user->regs = NULL;
6533         }
6534 }
6535
6536 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6537                                   struct pt_regs *regs)
6538 {
6539         regs_intr->regs = regs;
6540         regs_intr->abi  = perf_reg_abi(current);
6541 }
6542
6543
6544 /*
6545  * Get remaining task size from user stack pointer.
6546  *
6547  * It'd be better to take stack vma map and limit this more
6548  * precisely, but there's no way to get it safely under interrupt,
6549  * so using TASK_SIZE as limit.
6550  */
6551 static u64 perf_ustack_task_size(struct pt_regs *regs)
6552 {
6553         unsigned long addr = perf_user_stack_pointer(regs);
6554
6555         if (!addr || addr >= TASK_SIZE)
6556                 return 0;
6557
6558         return TASK_SIZE - addr;
6559 }
6560
6561 static u16
6562 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6563                         struct pt_regs *regs)
6564 {
6565         u64 task_size;
6566
6567         /* No regs, no stack pointer, no dump. */
6568         if (!regs)
6569                 return 0;
6570
6571         /*
6572          * Check if we fit in with the requested stack size into the:
6573          * - TASK_SIZE
6574          *   If we don't, we limit the size to the TASK_SIZE.
6575          *
6576          * - remaining sample size
6577          *   If we don't, we customize the stack size to
6578          *   fit in to the remaining sample size.
6579          */
6580
6581         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6582         stack_size = min(stack_size, (u16) task_size);
6583
6584         /* Current header size plus static size and dynamic size. */
6585         header_size += 2 * sizeof(u64);
6586
6587         /* Do we fit in with the current stack dump size? */
6588         if ((u16) (header_size + stack_size) < header_size) {
6589                 /*
6590                  * If we overflow the maximum size for the sample,
6591                  * we customize the stack dump size to fit in.
6592                  */
6593                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6594                 stack_size = round_up(stack_size, sizeof(u64));
6595         }
6596
6597         return stack_size;
6598 }
6599
6600 static void
6601 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6602                           struct pt_regs *regs)
6603 {
6604         /* Case of a kernel thread, nothing to dump */
6605         if (!regs) {
6606                 u64 size = 0;
6607                 perf_output_put(handle, size);
6608         } else {
6609                 unsigned long sp;
6610                 unsigned int rem;
6611                 u64 dyn_size;
6612                 mm_segment_t fs;
6613
6614                 /*
6615                  * We dump:
6616                  * static size
6617                  *   - the size requested by user or the best one we can fit
6618                  *     in to the sample max size
6619                  * data
6620                  *   - user stack dump data
6621                  * dynamic size
6622                  *   - the actual dumped size
6623                  */
6624
6625                 /* Static size. */
6626                 perf_output_put(handle, dump_size);
6627
6628                 /* Data. */
6629                 sp = perf_user_stack_pointer(regs);
6630                 fs = force_uaccess_begin();
6631                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6632                 force_uaccess_end(fs);
6633                 dyn_size = dump_size - rem;
6634
6635                 perf_output_skip(handle, rem);
6636
6637                 /* Dynamic size. */
6638                 perf_output_put(handle, dyn_size);
6639         }
6640 }
6641
6642 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6643                                           struct perf_sample_data *data,
6644                                           size_t size)
6645 {
6646         struct perf_event *sampler = event->aux_event;
6647         struct perf_buffer *rb;
6648
6649         data->aux_size = 0;
6650
6651         if (!sampler)
6652                 goto out;
6653
6654         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6655                 goto out;
6656
6657         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6658                 goto out;
6659
6660         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6661         if (!rb)
6662                 goto out;
6663
6664         /*
6665          * If this is an NMI hit inside sampling code, don't take
6666          * the sample. See also perf_aux_sample_output().
6667          */
6668         if (READ_ONCE(rb->aux_in_sampling)) {
6669                 data->aux_size = 0;
6670         } else {
6671                 size = min_t(size_t, size, perf_aux_size(rb));
6672                 data->aux_size = ALIGN(size, sizeof(u64));
6673         }
6674         ring_buffer_put(rb);
6675
6676 out:
6677         return data->aux_size;
6678 }
6679
6680 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6681                                  struct perf_event *event,
6682                                  struct perf_output_handle *handle,
6683                                  unsigned long size)
6684 {
6685         unsigned long flags;
6686         long ret;
6687
6688         /*
6689          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6690          * paths. If we start calling them in NMI context, they may race with
6691          * the IRQ ones, that is, for example, re-starting an event that's just
6692          * been stopped, which is why we're using a separate callback that
6693          * doesn't change the event state.
6694          *
6695          * IRQs need to be disabled to prevent IPIs from racing with us.
6696          */
6697         local_irq_save(flags);
6698         /*
6699          * Guard against NMI hits inside the critical section;
6700          * see also perf_prepare_sample_aux().
6701          */
6702         WRITE_ONCE(rb->aux_in_sampling, 1);
6703         barrier();
6704
6705         ret = event->pmu->snapshot_aux(event, handle, size);
6706
6707         barrier();
6708         WRITE_ONCE(rb->aux_in_sampling, 0);
6709         local_irq_restore(flags);
6710
6711         return ret;
6712 }
6713
6714 static void perf_aux_sample_output(struct perf_event *event,
6715                                    struct perf_output_handle *handle,
6716                                    struct perf_sample_data *data)
6717 {
6718         struct perf_event *sampler = event->aux_event;
6719         struct perf_buffer *rb;
6720         unsigned long pad;
6721         long size;
6722
6723         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6724                 return;
6725
6726         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6727         if (!rb)
6728                 return;
6729
6730         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6731
6732         /*
6733          * An error here means that perf_output_copy() failed (returned a
6734          * non-zero surplus that it didn't copy), which in its current
6735          * enlightened implementation is not possible. If that changes, we'd
6736          * like to know.
6737          */
6738         if (WARN_ON_ONCE(size < 0))
6739                 goto out_put;
6740
6741         /*
6742          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6743          * perf_prepare_sample_aux(), so should not be more than that.
6744          */
6745         pad = data->aux_size - size;
6746         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6747                 pad = 8;
6748
6749         if (pad) {
6750                 u64 zero = 0;
6751                 perf_output_copy(handle, &zero, pad);
6752         }
6753
6754 out_put:
6755         ring_buffer_put(rb);
6756 }
6757
6758 static void __perf_event_header__init_id(struct perf_event_header *header,
6759                                          struct perf_sample_data *data,
6760                                          struct perf_event *event)
6761 {
6762         u64 sample_type = event->attr.sample_type;
6763
6764         data->type = sample_type;
6765         header->size += event->id_header_size;
6766
6767         if (sample_type & PERF_SAMPLE_TID) {
6768                 /* namespace issues */
6769                 data->tid_entry.pid = perf_event_pid(event, current);
6770                 data->tid_entry.tid = perf_event_tid(event, current);
6771         }
6772
6773         if (sample_type & PERF_SAMPLE_TIME)
6774                 data->time = perf_event_clock(event);
6775
6776         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6777                 data->id = primary_event_id(event);
6778
6779         if (sample_type & PERF_SAMPLE_STREAM_ID)
6780                 data->stream_id = event->id;
6781
6782         if (sample_type & PERF_SAMPLE_CPU) {
6783                 data->cpu_entry.cpu      = raw_smp_processor_id();
6784                 data->cpu_entry.reserved = 0;
6785         }
6786 }
6787
6788 void perf_event_header__init_id(struct perf_event_header *header,
6789                                 struct perf_sample_data *data,
6790                                 struct perf_event *event)
6791 {
6792         if (event->attr.sample_id_all)
6793                 __perf_event_header__init_id(header, data, event);
6794 }
6795
6796 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6797                                            struct perf_sample_data *data)
6798 {
6799         u64 sample_type = data->type;
6800
6801         if (sample_type & PERF_SAMPLE_TID)
6802                 perf_output_put(handle, data->tid_entry);
6803
6804         if (sample_type & PERF_SAMPLE_TIME)
6805                 perf_output_put(handle, data->time);
6806
6807         if (sample_type & PERF_SAMPLE_ID)
6808                 perf_output_put(handle, data->id);
6809
6810         if (sample_type & PERF_SAMPLE_STREAM_ID)
6811                 perf_output_put(handle, data->stream_id);
6812
6813         if (sample_type & PERF_SAMPLE_CPU)
6814                 perf_output_put(handle, data->cpu_entry);
6815
6816         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6817                 perf_output_put(handle, data->id);
6818 }
6819
6820 void perf_event__output_id_sample(struct perf_event *event,
6821                                   struct perf_output_handle *handle,
6822                                   struct perf_sample_data *sample)
6823 {
6824         if (event->attr.sample_id_all)
6825                 __perf_event__output_id_sample(handle, sample);
6826 }
6827
6828 static void perf_output_read_one(struct perf_output_handle *handle,
6829                                  struct perf_event *event,
6830                                  u64 enabled, u64 running)
6831 {
6832         u64 read_format = event->attr.read_format;
6833         u64 values[4];
6834         int n = 0;
6835
6836         values[n++] = perf_event_count(event);
6837         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6838                 values[n++] = enabled +
6839                         atomic64_read(&event->child_total_time_enabled);
6840         }
6841         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6842                 values[n++] = running +
6843                         atomic64_read(&event->child_total_time_running);
6844         }
6845         if (read_format & PERF_FORMAT_ID)
6846                 values[n++] = primary_event_id(event);
6847
6848         __output_copy(handle, values, n * sizeof(u64));
6849 }
6850
6851 static void perf_output_read_group(struct perf_output_handle *handle,
6852                             struct perf_event *event,
6853                             u64 enabled, u64 running)
6854 {
6855         struct perf_event *leader = event->group_leader, *sub;
6856         u64 read_format = event->attr.read_format;
6857         u64 values[5];
6858         int n = 0;
6859
6860         values[n++] = 1 + leader->nr_siblings;
6861
6862         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6863                 values[n++] = enabled;
6864
6865         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6866                 values[n++] = running;
6867
6868         if ((leader != event) &&
6869             (leader->state == PERF_EVENT_STATE_ACTIVE))
6870                 leader->pmu->read(leader);
6871
6872         values[n++] = perf_event_count(leader);
6873         if (read_format & PERF_FORMAT_ID)
6874                 values[n++] = primary_event_id(leader);
6875
6876         __output_copy(handle, values, n * sizeof(u64));
6877
6878         for_each_sibling_event(sub, leader) {
6879                 n = 0;
6880
6881                 if ((sub != event) &&
6882                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6883                         sub->pmu->read(sub);
6884
6885                 values[n++] = perf_event_count(sub);
6886                 if (read_format & PERF_FORMAT_ID)
6887                         values[n++] = primary_event_id(sub);
6888
6889                 __output_copy(handle, values, n * sizeof(u64));
6890         }
6891 }
6892
6893 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6894                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6895
6896 /*
6897  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6898  *
6899  * The problem is that its both hard and excessively expensive to iterate the
6900  * child list, not to mention that its impossible to IPI the children running
6901  * on another CPU, from interrupt/NMI context.
6902  */
6903 static void perf_output_read(struct perf_output_handle *handle,
6904                              struct perf_event *event)
6905 {
6906         u64 enabled = 0, running = 0, now;
6907         u64 read_format = event->attr.read_format;
6908
6909         /*
6910          * compute total_time_enabled, total_time_running
6911          * based on snapshot values taken when the event
6912          * was last scheduled in.
6913          *
6914          * we cannot simply called update_context_time()
6915          * because of locking issue as we are called in
6916          * NMI context
6917          */
6918         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6919                 calc_timer_values(event, &now, &enabled, &running);
6920
6921         if (event->attr.read_format & PERF_FORMAT_GROUP)
6922                 perf_output_read_group(handle, event, enabled, running);
6923         else
6924                 perf_output_read_one(handle, event, enabled, running);
6925 }
6926
6927 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6928 {
6929         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6930 }
6931
6932 void perf_output_sample(struct perf_output_handle *handle,
6933                         struct perf_event_header *header,
6934                         struct perf_sample_data *data,
6935                         struct perf_event *event)
6936 {
6937         u64 sample_type = data->type;
6938
6939         perf_output_put(handle, *header);
6940
6941         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6942                 perf_output_put(handle, data->id);
6943
6944         if (sample_type & PERF_SAMPLE_IP)
6945                 perf_output_put(handle, data->ip);
6946
6947         if (sample_type & PERF_SAMPLE_TID)
6948                 perf_output_put(handle, data->tid_entry);
6949
6950         if (sample_type & PERF_SAMPLE_TIME)
6951                 perf_output_put(handle, data->time);
6952
6953         if (sample_type & PERF_SAMPLE_ADDR)
6954                 perf_output_put(handle, data->addr);
6955
6956         if (sample_type & PERF_SAMPLE_ID)
6957                 perf_output_put(handle, data->id);
6958
6959         if (sample_type & PERF_SAMPLE_STREAM_ID)
6960                 perf_output_put(handle, data->stream_id);
6961
6962         if (sample_type & PERF_SAMPLE_CPU)
6963                 perf_output_put(handle, data->cpu_entry);
6964
6965         if (sample_type & PERF_SAMPLE_PERIOD)
6966                 perf_output_put(handle, data->period);
6967
6968         if (sample_type & PERF_SAMPLE_READ)
6969                 perf_output_read(handle, event);
6970
6971         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6972                 int size = 1;
6973
6974                 size += data->callchain->nr;
6975                 size *= sizeof(u64);
6976                 __output_copy(handle, data->callchain, size);
6977         }
6978
6979         if (sample_type & PERF_SAMPLE_RAW) {
6980                 struct perf_raw_record *raw = data->raw;
6981
6982                 if (raw) {
6983                         struct perf_raw_frag *frag = &raw->frag;
6984
6985                         perf_output_put(handle, raw->size);
6986                         do {
6987                                 if (frag->copy) {
6988                                         __output_custom(handle, frag->copy,
6989                                                         frag->data, frag->size);
6990                                 } else {
6991                                         __output_copy(handle, frag->data,
6992                                                       frag->size);
6993                                 }
6994                                 if (perf_raw_frag_last(frag))
6995                                         break;
6996                                 frag = frag->next;
6997                         } while (1);
6998                         if (frag->pad)
6999                                 __output_skip(handle, NULL, frag->pad);
7000                 } else {
7001                         struct {
7002                                 u32     size;
7003                                 u32     data;
7004                         } raw = {
7005                                 .size = sizeof(u32),
7006                                 .data = 0,
7007                         };
7008                         perf_output_put(handle, raw);
7009                 }
7010         }
7011
7012         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7013                 if (data->br_stack) {
7014                         size_t size;
7015
7016                         size = data->br_stack->nr
7017                              * sizeof(struct perf_branch_entry);
7018
7019                         perf_output_put(handle, data->br_stack->nr);
7020                         if (perf_sample_save_hw_index(event))
7021                                 perf_output_put(handle, data->br_stack->hw_idx);
7022                         perf_output_copy(handle, data->br_stack->entries, size);
7023                 } else {
7024                         /*
7025                          * we always store at least the value of nr
7026                          */
7027                         u64 nr = 0;
7028                         perf_output_put(handle, nr);
7029                 }
7030         }
7031
7032         if (sample_type & PERF_SAMPLE_REGS_USER) {
7033                 u64 abi = data->regs_user.abi;
7034
7035                 /*
7036                  * If there are no regs to dump, notice it through
7037                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7038                  */
7039                 perf_output_put(handle, abi);
7040
7041                 if (abi) {
7042                         u64 mask = event->attr.sample_regs_user;
7043                         perf_output_sample_regs(handle,
7044                                                 data->regs_user.regs,
7045                                                 mask);
7046                 }
7047         }
7048
7049         if (sample_type & PERF_SAMPLE_STACK_USER) {
7050                 perf_output_sample_ustack(handle,
7051                                           data->stack_user_size,
7052                                           data->regs_user.regs);
7053         }
7054
7055         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7056                 perf_output_put(handle, data->weight.full);
7057
7058         if (sample_type & PERF_SAMPLE_DATA_SRC)
7059                 perf_output_put(handle, data->data_src.val);
7060
7061         if (sample_type & PERF_SAMPLE_TRANSACTION)
7062                 perf_output_put(handle, data->txn);
7063
7064         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7065                 u64 abi = data->regs_intr.abi;
7066                 /*
7067                  * If there are no regs to dump, notice it through
7068                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7069                  */
7070                 perf_output_put(handle, abi);
7071
7072                 if (abi) {
7073                         u64 mask = event->attr.sample_regs_intr;
7074
7075                         perf_output_sample_regs(handle,
7076                                                 data->regs_intr.regs,
7077                                                 mask);
7078                 }
7079         }
7080
7081         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7082                 perf_output_put(handle, data->phys_addr);
7083
7084         if (sample_type & PERF_SAMPLE_CGROUP)
7085                 perf_output_put(handle, data->cgroup);
7086
7087         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7088                 perf_output_put(handle, data->data_page_size);
7089
7090         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7091                 perf_output_put(handle, data->code_page_size);
7092
7093         if (sample_type & PERF_SAMPLE_AUX) {
7094                 perf_output_put(handle, data->aux_size);
7095
7096                 if (data->aux_size)
7097                         perf_aux_sample_output(event, handle, data);
7098         }
7099
7100         if (!event->attr.watermark) {
7101                 int wakeup_events = event->attr.wakeup_events;
7102
7103                 if (wakeup_events) {
7104                         struct perf_buffer *rb = handle->rb;
7105                         int events = local_inc_return(&rb->events);
7106
7107                         if (events >= wakeup_events) {
7108                                 local_sub(wakeup_events, &rb->events);
7109                                 local_inc(&rb->wakeup);
7110                         }
7111                 }
7112         }
7113 }
7114
7115 static u64 perf_virt_to_phys(u64 virt)
7116 {
7117         u64 phys_addr = 0;
7118         struct page *p = NULL;
7119
7120         if (!virt)
7121                 return 0;
7122
7123         if (virt >= TASK_SIZE) {
7124                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7125                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7126                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7127                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7128         } else {
7129                 /*
7130                  * Walking the pages tables for user address.
7131                  * Interrupts are disabled, so it prevents any tear down
7132                  * of the page tables.
7133                  * Try IRQ-safe get_user_page_fast_only first.
7134                  * If failed, leave phys_addr as 0.
7135                  */
7136                 if (current->mm != NULL) {
7137                         pagefault_disable();
7138                         if (get_user_page_fast_only(virt, 0, &p))
7139                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7140                         pagefault_enable();
7141                 }
7142
7143                 if (p)
7144                         put_page(p);
7145         }
7146
7147         return phys_addr;
7148 }
7149
7150 /*
7151  * Return the pagetable size of a given virtual address.
7152  */
7153 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7154 {
7155         u64 size = 0;
7156
7157 #ifdef CONFIG_HAVE_FAST_GUP
7158         pgd_t *pgdp, pgd;
7159         p4d_t *p4dp, p4d;
7160         pud_t *pudp, pud;
7161         pmd_t *pmdp, pmd;
7162         pte_t *ptep, pte;
7163
7164         pgdp = pgd_offset(mm, addr);
7165         pgd = READ_ONCE(*pgdp);
7166         if (pgd_none(pgd))
7167                 return 0;
7168
7169         if (pgd_leaf(pgd))
7170                 return pgd_leaf_size(pgd);
7171
7172         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7173         p4d = READ_ONCE(*p4dp);
7174         if (!p4d_present(p4d))
7175                 return 0;
7176
7177         if (p4d_leaf(p4d))
7178                 return p4d_leaf_size(p4d);
7179
7180         pudp = pud_offset_lockless(p4dp, p4d, addr);
7181         pud = READ_ONCE(*pudp);
7182         if (!pud_present(pud))
7183                 return 0;
7184
7185         if (pud_leaf(pud))
7186                 return pud_leaf_size(pud);
7187
7188         pmdp = pmd_offset_lockless(pudp, pud, addr);
7189         pmd = READ_ONCE(*pmdp);
7190         if (!pmd_present(pmd))
7191                 return 0;
7192
7193         if (pmd_leaf(pmd))
7194                 return pmd_leaf_size(pmd);
7195
7196         ptep = pte_offset_map(&pmd, addr);
7197         pte = ptep_get_lockless(ptep);
7198         if (pte_present(pte))
7199                 size = pte_leaf_size(pte);
7200         pte_unmap(ptep);
7201 #endif /* CONFIG_HAVE_FAST_GUP */
7202
7203         return size;
7204 }
7205
7206 static u64 perf_get_page_size(unsigned long addr)
7207 {
7208         struct mm_struct *mm;
7209         unsigned long flags;
7210         u64 size;
7211
7212         if (!addr)
7213                 return 0;
7214
7215         /*
7216          * Software page-table walkers must disable IRQs,
7217          * which prevents any tear down of the page tables.
7218          */
7219         local_irq_save(flags);
7220
7221         mm = current->mm;
7222         if (!mm) {
7223                 /*
7224                  * For kernel threads and the like, use init_mm so that
7225                  * we can find kernel memory.
7226                  */
7227                 mm = &init_mm;
7228         }
7229
7230         size = perf_get_pgtable_size(mm, addr);
7231
7232         local_irq_restore(flags);
7233
7234         return size;
7235 }
7236
7237 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7238
7239 struct perf_callchain_entry *
7240 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7241 {
7242         bool kernel = !event->attr.exclude_callchain_kernel;
7243         bool user   = !event->attr.exclude_callchain_user;
7244         /* Disallow cross-task user callchains. */
7245         bool crosstask = event->ctx->task && event->ctx->task != current;
7246         const u32 max_stack = event->attr.sample_max_stack;
7247         struct perf_callchain_entry *callchain;
7248
7249         if (!kernel && !user)
7250                 return &__empty_callchain;
7251
7252         callchain = get_perf_callchain(regs, 0, kernel, user,
7253                                        max_stack, crosstask, true);
7254         return callchain ?: &__empty_callchain;
7255 }
7256
7257 void perf_prepare_sample(struct perf_event_header *header,
7258                          struct perf_sample_data *data,
7259                          struct perf_event *event,
7260                          struct pt_regs *regs)
7261 {
7262         u64 sample_type = event->attr.sample_type;
7263
7264         header->type = PERF_RECORD_SAMPLE;
7265         header->size = sizeof(*header) + event->header_size;
7266
7267         header->misc = 0;
7268         header->misc |= perf_misc_flags(regs);
7269
7270         __perf_event_header__init_id(header, data, event);
7271
7272         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7273                 data->ip = perf_instruction_pointer(regs);
7274
7275         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7276                 int size = 1;
7277
7278                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7279                         data->callchain = perf_callchain(event, regs);
7280
7281                 size += data->callchain->nr;
7282
7283                 header->size += size * sizeof(u64);
7284         }
7285
7286         if (sample_type & PERF_SAMPLE_RAW) {
7287                 struct perf_raw_record *raw = data->raw;
7288                 int size;
7289
7290                 if (raw) {
7291                         struct perf_raw_frag *frag = &raw->frag;
7292                         u32 sum = 0;
7293
7294                         do {
7295                                 sum += frag->size;
7296                                 if (perf_raw_frag_last(frag))
7297                                         break;
7298                                 frag = frag->next;
7299                         } while (1);
7300
7301                         size = round_up(sum + sizeof(u32), sizeof(u64));
7302                         raw->size = size - sizeof(u32);
7303                         frag->pad = raw->size - sum;
7304                 } else {
7305                         size = sizeof(u64);
7306                 }
7307
7308                 header->size += size;
7309         }
7310
7311         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7312                 int size = sizeof(u64); /* nr */
7313                 if (data->br_stack) {
7314                         if (perf_sample_save_hw_index(event))
7315                                 size += sizeof(u64);
7316
7317                         size += data->br_stack->nr
7318                               * sizeof(struct perf_branch_entry);
7319                 }
7320                 header->size += size;
7321         }
7322
7323         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7324                 perf_sample_regs_user(&data->regs_user, regs);
7325
7326         if (sample_type & PERF_SAMPLE_REGS_USER) {
7327                 /* regs dump ABI info */
7328                 int size = sizeof(u64);
7329
7330                 if (data->regs_user.regs) {
7331                         u64 mask = event->attr.sample_regs_user;
7332                         size += hweight64(mask) * sizeof(u64);
7333                 }
7334
7335                 header->size += size;
7336         }
7337
7338         if (sample_type & PERF_SAMPLE_STACK_USER) {
7339                 /*
7340                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7341                  * processed as the last one or have additional check added
7342                  * in case new sample type is added, because we could eat
7343                  * up the rest of the sample size.
7344                  */
7345                 u16 stack_size = event->attr.sample_stack_user;
7346                 u16 size = sizeof(u64);
7347
7348                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7349                                                      data->regs_user.regs);
7350
7351                 /*
7352                  * If there is something to dump, add space for the dump
7353                  * itself and for the field that tells the dynamic size,
7354                  * which is how many have been actually dumped.
7355                  */
7356                 if (stack_size)
7357                         size += sizeof(u64) + stack_size;
7358
7359                 data->stack_user_size = stack_size;
7360                 header->size += size;
7361         }
7362
7363         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7364                 /* regs dump ABI info */
7365                 int size = sizeof(u64);
7366
7367                 perf_sample_regs_intr(&data->regs_intr, regs);
7368
7369                 if (data->regs_intr.regs) {
7370                         u64 mask = event->attr.sample_regs_intr;
7371
7372                         size += hweight64(mask) * sizeof(u64);
7373                 }
7374
7375                 header->size += size;
7376         }
7377
7378         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7379                 data->phys_addr = perf_virt_to_phys(data->addr);
7380
7381 #ifdef CONFIG_CGROUP_PERF
7382         if (sample_type & PERF_SAMPLE_CGROUP) {
7383                 struct cgroup *cgrp;
7384
7385                 /* protected by RCU */
7386                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7387                 data->cgroup = cgroup_id(cgrp);
7388         }
7389 #endif
7390
7391         /*
7392          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7393          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7394          * but the value will not dump to the userspace.
7395          */
7396         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7397                 data->data_page_size = perf_get_page_size(data->addr);
7398
7399         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7400                 data->code_page_size = perf_get_page_size(data->ip);
7401
7402         if (sample_type & PERF_SAMPLE_AUX) {
7403                 u64 size;
7404
7405                 header->size += sizeof(u64); /* size */
7406
7407                 /*
7408                  * Given the 16bit nature of header::size, an AUX sample can
7409                  * easily overflow it, what with all the preceding sample bits.
7410                  * Make sure this doesn't happen by using up to U16_MAX bytes
7411                  * per sample in total (rounded down to 8 byte boundary).
7412                  */
7413                 size = min_t(size_t, U16_MAX - header->size,
7414                              event->attr.aux_sample_size);
7415                 size = rounddown(size, 8);
7416                 size = perf_prepare_sample_aux(event, data, size);
7417
7418                 WARN_ON_ONCE(size + header->size > U16_MAX);
7419                 header->size += size;
7420         }
7421         /*
7422          * If you're adding more sample types here, you likely need to do
7423          * something about the overflowing header::size, like repurpose the
7424          * lowest 3 bits of size, which should be always zero at the moment.
7425          * This raises a more important question, do we really need 512k sized
7426          * samples and why, so good argumentation is in order for whatever you
7427          * do here next.
7428          */
7429         WARN_ON_ONCE(header->size & 7);
7430 }
7431
7432 static __always_inline int
7433 __perf_event_output(struct perf_event *event,
7434                     struct perf_sample_data *data,
7435                     struct pt_regs *regs,
7436                     int (*output_begin)(struct perf_output_handle *,
7437                                         struct perf_sample_data *,
7438                                         struct perf_event *,
7439                                         unsigned int))
7440 {
7441         struct perf_output_handle handle;
7442         struct perf_event_header header;
7443         int err;
7444
7445         /* protect the callchain buffers */
7446         rcu_read_lock();
7447
7448         perf_prepare_sample(&header, data, event, regs);
7449
7450         err = output_begin(&handle, data, event, header.size);
7451         if (err)
7452                 goto exit;
7453
7454         perf_output_sample(&handle, &header, data, event);
7455
7456         perf_output_end(&handle);
7457
7458 exit:
7459         rcu_read_unlock();
7460         return err;
7461 }
7462
7463 void
7464 perf_event_output_forward(struct perf_event *event,
7465                          struct perf_sample_data *data,
7466                          struct pt_regs *regs)
7467 {
7468         __perf_event_output(event, data, regs, perf_output_begin_forward);
7469 }
7470
7471 void
7472 perf_event_output_backward(struct perf_event *event,
7473                            struct perf_sample_data *data,
7474                            struct pt_regs *regs)
7475 {
7476         __perf_event_output(event, data, regs, perf_output_begin_backward);
7477 }
7478
7479 int
7480 perf_event_output(struct perf_event *event,
7481                   struct perf_sample_data *data,
7482                   struct pt_regs *regs)
7483 {
7484         return __perf_event_output(event, data, regs, perf_output_begin);
7485 }
7486
7487 /*
7488  * read event_id
7489  */
7490
7491 struct perf_read_event {
7492         struct perf_event_header        header;
7493
7494         u32                             pid;
7495         u32                             tid;
7496 };
7497
7498 static void
7499 perf_event_read_event(struct perf_event *event,
7500                         struct task_struct *task)
7501 {
7502         struct perf_output_handle handle;
7503         struct perf_sample_data sample;
7504         struct perf_read_event read_event = {
7505                 .header = {
7506                         .type = PERF_RECORD_READ,
7507                         .misc = 0,
7508                         .size = sizeof(read_event) + event->read_size,
7509                 },
7510                 .pid = perf_event_pid(event, task),
7511                 .tid = perf_event_tid(event, task),
7512         };
7513         int ret;
7514
7515         perf_event_header__init_id(&read_event.header, &sample, event);
7516         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7517         if (ret)
7518                 return;
7519
7520         perf_output_put(&handle, read_event);
7521         perf_output_read(&handle, event);
7522         perf_event__output_id_sample(event, &handle, &sample);
7523
7524         perf_output_end(&handle);
7525 }
7526
7527 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7528
7529 static void
7530 perf_iterate_ctx(struct perf_event_context *ctx,
7531                    perf_iterate_f output,
7532                    void *data, bool all)
7533 {
7534         struct perf_event *event;
7535
7536         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7537                 if (!all) {
7538                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7539                                 continue;
7540                         if (!event_filter_match(event))
7541                                 continue;
7542                 }
7543
7544                 output(event, data);
7545         }
7546 }
7547
7548 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7549 {
7550         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7551         struct perf_event *event;
7552
7553         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7554                 /*
7555                  * Skip events that are not fully formed yet; ensure that
7556                  * if we observe event->ctx, both event and ctx will be
7557                  * complete enough. See perf_install_in_context().
7558                  */
7559                 if (!smp_load_acquire(&event->ctx))
7560                         continue;
7561
7562                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7563                         continue;
7564                 if (!event_filter_match(event))
7565                         continue;
7566                 output(event, data);
7567         }
7568 }
7569
7570 /*
7571  * Iterate all events that need to receive side-band events.
7572  *
7573  * For new callers; ensure that account_pmu_sb_event() includes
7574  * your event, otherwise it might not get delivered.
7575  */
7576 static void
7577 perf_iterate_sb(perf_iterate_f output, void *data,
7578                struct perf_event_context *task_ctx)
7579 {
7580         struct perf_event_context *ctx;
7581         int ctxn;
7582
7583         rcu_read_lock();
7584         preempt_disable();
7585
7586         /*
7587          * If we have task_ctx != NULL we only notify the task context itself.
7588          * The task_ctx is set only for EXIT events before releasing task
7589          * context.
7590          */
7591         if (task_ctx) {
7592                 perf_iterate_ctx(task_ctx, output, data, false);
7593                 goto done;
7594         }
7595
7596         perf_iterate_sb_cpu(output, data);
7597
7598         for_each_task_context_nr(ctxn) {
7599                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7600                 if (ctx)
7601                         perf_iterate_ctx(ctx, output, data, false);
7602         }
7603 done:
7604         preempt_enable();
7605         rcu_read_unlock();
7606 }
7607
7608 /*
7609  * Clear all file-based filters at exec, they'll have to be
7610  * re-instated when/if these objects are mmapped again.
7611  */
7612 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7613 {
7614         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7615         struct perf_addr_filter *filter;
7616         unsigned int restart = 0, count = 0;
7617         unsigned long flags;
7618
7619         if (!has_addr_filter(event))
7620                 return;
7621
7622         raw_spin_lock_irqsave(&ifh->lock, flags);
7623         list_for_each_entry(filter, &ifh->list, entry) {
7624                 if (filter->path.dentry) {
7625                         event->addr_filter_ranges[count].start = 0;
7626                         event->addr_filter_ranges[count].size = 0;
7627                         restart++;
7628                 }
7629
7630                 count++;
7631         }
7632
7633         if (restart)
7634                 event->addr_filters_gen++;
7635         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7636
7637         if (restart)
7638                 perf_event_stop(event, 1);
7639 }
7640
7641 void perf_event_exec(void)
7642 {
7643         struct perf_event_context *ctx;
7644         int ctxn;
7645
7646         for_each_task_context_nr(ctxn) {
7647                 perf_event_enable_on_exec(ctxn);
7648                 perf_event_remove_on_exec(ctxn);
7649
7650                 rcu_read_lock();
7651                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7652                 if (ctx) {
7653                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7654                                          NULL, true);
7655                 }
7656                 rcu_read_unlock();
7657         }
7658 }
7659
7660 struct remote_output {
7661         struct perf_buffer      *rb;
7662         int                     err;
7663 };
7664
7665 static void __perf_event_output_stop(struct perf_event *event, void *data)
7666 {
7667         struct perf_event *parent = event->parent;
7668         struct remote_output *ro = data;
7669         struct perf_buffer *rb = ro->rb;
7670         struct stop_event_data sd = {
7671                 .event  = event,
7672         };
7673
7674         if (!has_aux(event))
7675                 return;
7676
7677         if (!parent)
7678                 parent = event;
7679
7680         /*
7681          * In case of inheritance, it will be the parent that links to the
7682          * ring-buffer, but it will be the child that's actually using it.
7683          *
7684          * We are using event::rb to determine if the event should be stopped,
7685          * however this may race with ring_buffer_attach() (through set_output),
7686          * which will make us skip the event that actually needs to be stopped.
7687          * So ring_buffer_attach() has to stop an aux event before re-assigning
7688          * its rb pointer.
7689          */
7690         if (rcu_dereference(parent->rb) == rb)
7691                 ro->err = __perf_event_stop(&sd);
7692 }
7693
7694 static int __perf_pmu_output_stop(void *info)
7695 {
7696         struct perf_event *event = info;
7697         struct pmu *pmu = event->ctx->pmu;
7698         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7699         struct remote_output ro = {
7700                 .rb     = event->rb,
7701         };
7702
7703         rcu_read_lock();
7704         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7705         if (cpuctx->task_ctx)
7706                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7707                                    &ro, false);
7708         rcu_read_unlock();
7709
7710         return ro.err;
7711 }
7712
7713 static void perf_pmu_output_stop(struct perf_event *event)
7714 {
7715         struct perf_event *iter;
7716         int err, cpu;
7717
7718 restart:
7719         rcu_read_lock();
7720         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7721                 /*
7722                  * For per-CPU events, we need to make sure that neither they
7723                  * nor their children are running; for cpu==-1 events it's
7724                  * sufficient to stop the event itself if it's active, since
7725                  * it can't have children.
7726                  */
7727                 cpu = iter->cpu;
7728                 if (cpu == -1)
7729                         cpu = READ_ONCE(iter->oncpu);
7730
7731                 if (cpu == -1)
7732                         continue;
7733
7734                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7735                 if (err == -EAGAIN) {
7736                         rcu_read_unlock();
7737                         goto restart;
7738                 }
7739         }
7740         rcu_read_unlock();
7741 }
7742
7743 /*
7744  * task tracking -- fork/exit
7745  *
7746  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7747  */
7748
7749 struct perf_task_event {
7750         struct task_struct              *task;
7751         struct perf_event_context       *task_ctx;
7752
7753         struct {
7754                 struct perf_event_header        header;
7755
7756                 u32                             pid;
7757                 u32                             ppid;
7758                 u32                             tid;
7759                 u32                             ptid;
7760                 u64                             time;
7761         } event_id;
7762 };
7763
7764 static int perf_event_task_match(struct perf_event *event)
7765 {
7766         return event->attr.comm  || event->attr.mmap ||
7767                event->attr.mmap2 || event->attr.mmap_data ||
7768                event->attr.task;
7769 }
7770
7771 static void perf_event_task_output(struct perf_event *event,
7772                                    void *data)
7773 {
7774         struct perf_task_event *task_event = data;
7775         struct perf_output_handle handle;
7776         struct perf_sample_data sample;
7777         struct task_struct *task = task_event->task;
7778         int ret, size = task_event->event_id.header.size;
7779
7780         if (!perf_event_task_match(event))
7781                 return;
7782
7783         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7784
7785         ret = perf_output_begin(&handle, &sample, event,
7786                                 task_event->event_id.header.size);
7787         if (ret)
7788                 goto out;
7789
7790         task_event->event_id.pid = perf_event_pid(event, task);
7791         task_event->event_id.tid = perf_event_tid(event, task);
7792
7793         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7794                 task_event->event_id.ppid = perf_event_pid(event,
7795                                                         task->real_parent);
7796                 task_event->event_id.ptid = perf_event_pid(event,
7797                                                         task->real_parent);
7798         } else {  /* PERF_RECORD_FORK */
7799                 task_event->event_id.ppid = perf_event_pid(event, current);
7800                 task_event->event_id.ptid = perf_event_tid(event, current);
7801         }
7802
7803         task_event->event_id.time = perf_event_clock(event);
7804
7805         perf_output_put(&handle, task_event->event_id);
7806
7807         perf_event__output_id_sample(event, &handle, &sample);
7808
7809         perf_output_end(&handle);
7810 out:
7811         task_event->event_id.header.size = size;
7812 }
7813
7814 static void perf_event_task(struct task_struct *task,
7815                               struct perf_event_context *task_ctx,
7816                               int new)
7817 {
7818         struct perf_task_event task_event;
7819
7820         if (!atomic_read(&nr_comm_events) &&
7821             !atomic_read(&nr_mmap_events) &&
7822             !atomic_read(&nr_task_events))
7823                 return;
7824
7825         task_event = (struct perf_task_event){
7826                 .task     = task,
7827                 .task_ctx = task_ctx,
7828                 .event_id    = {
7829                         .header = {
7830                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7831                                 .misc = 0,
7832                                 .size = sizeof(task_event.event_id),
7833                         },
7834                         /* .pid  */
7835                         /* .ppid */
7836                         /* .tid  */
7837                         /* .ptid */
7838                         /* .time */
7839                 },
7840         };
7841
7842         perf_iterate_sb(perf_event_task_output,
7843                        &task_event,
7844                        task_ctx);
7845 }
7846
7847 void perf_event_fork(struct task_struct *task)
7848 {
7849         perf_event_task(task, NULL, 1);
7850         perf_event_namespaces(task);
7851 }
7852
7853 /*
7854  * comm tracking
7855  */
7856
7857 struct perf_comm_event {
7858         struct task_struct      *task;
7859         char                    *comm;
7860         int                     comm_size;
7861
7862         struct {
7863                 struct perf_event_header        header;
7864
7865                 u32                             pid;
7866                 u32                             tid;
7867         } event_id;
7868 };
7869
7870 static int perf_event_comm_match(struct perf_event *event)
7871 {
7872         return event->attr.comm;
7873 }
7874
7875 static void perf_event_comm_output(struct perf_event *event,
7876                                    void *data)
7877 {
7878         struct perf_comm_event *comm_event = data;
7879         struct perf_output_handle handle;
7880         struct perf_sample_data sample;
7881         int size = comm_event->event_id.header.size;
7882         int ret;
7883
7884         if (!perf_event_comm_match(event))
7885                 return;
7886
7887         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7888         ret = perf_output_begin(&handle, &sample, event,
7889                                 comm_event->event_id.header.size);
7890
7891         if (ret)
7892                 goto out;
7893
7894         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7895         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7896
7897         perf_output_put(&handle, comm_event->event_id);
7898         __output_copy(&handle, comm_event->comm,
7899                                    comm_event->comm_size);
7900
7901         perf_event__output_id_sample(event, &handle, &sample);
7902
7903         perf_output_end(&handle);
7904 out:
7905         comm_event->event_id.header.size = size;
7906 }
7907
7908 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7909 {
7910         char comm[TASK_COMM_LEN];
7911         unsigned int size;
7912
7913         memset(comm, 0, sizeof(comm));
7914         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7915         size = ALIGN(strlen(comm)+1, sizeof(u64));
7916
7917         comm_event->comm = comm;
7918         comm_event->comm_size = size;
7919
7920         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7921
7922         perf_iterate_sb(perf_event_comm_output,
7923                        comm_event,
7924                        NULL);
7925 }
7926
7927 void perf_event_comm(struct task_struct *task, bool exec)
7928 {
7929         struct perf_comm_event comm_event;
7930
7931         if (!atomic_read(&nr_comm_events))
7932                 return;
7933
7934         comm_event = (struct perf_comm_event){
7935                 .task   = task,
7936                 /* .comm      */
7937                 /* .comm_size */
7938                 .event_id  = {
7939                         .header = {
7940                                 .type = PERF_RECORD_COMM,
7941                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7942                                 /* .size */
7943                         },
7944                         /* .pid */
7945                         /* .tid */
7946                 },
7947         };
7948
7949         perf_event_comm_event(&comm_event);
7950 }
7951
7952 /*
7953  * namespaces tracking
7954  */
7955
7956 struct perf_namespaces_event {
7957         struct task_struct              *task;
7958
7959         struct {
7960                 struct perf_event_header        header;
7961
7962                 u32                             pid;
7963                 u32                             tid;
7964                 u64                             nr_namespaces;
7965                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7966         } event_id;
7967 };
7968
7969 static int perf_event_namespaces_match(struct perf_event *event)
7970 {
7971         return event->attr.namespaces;
7972 }
7973
7974 static void perf_event_namespaces_output(struct perf_event *event,
7975                                          void *data)
7976 {
7977         struct perf_namespaces_event *namespaces_event = data;
7978         struct perf_output_handle handle;
7979         struct perf_sample_data sample;
7980         u16 header_size = namespaces_event->event_id.header.size;
7981         int ret;
7982
7983         if (!perf_event_namespaces_match(event))
7984                 return;
7985
7986         perf_event_header__init_id(&namespaces_event->event_id.header,
7987                                    &sample, event);
7988         ret = perf_output_begin(&handle, &sample, event,
7989                                 namespaces_event->event_id.header.size);
7990         if (ret)
7991                 goto out;
7992
7993         namespaces_event->event_id.pid = perf_event_pid(event,
7994                                                         namespaces_event->task);
7995         namespaces_event->event_id.tid = perf_event_tid(event,
7996                                                         namespaces_event->task);
7997
7998         perf_output_put(&handle, namespaces_event->event_id);
7999
8000         perf_event__output_id_sample(event, &handle, &sample);
8001
8002         perf_output_end(&handle);
8003 out:
8004         namespaces_event->event_id.header.size = header_size;
8005 }
8006
8007 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8008                                    struct task_struct *task,
8009                                    const struct proc_ns_operations *ns_ops)
8010 {
8011         struct path ns_path;
8012         struct inode *ns_inode;
8013         int error;
8014
8015         error = ns_get_path(&ns_path, task, ns_ops);
8016         if (!error) {
8017                 ns_inode = ns_path.dentry->d_inode;
8018                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8019                 ns_link_info->ino = ns_inode->i_ino;
8020                 path_put(&ns_path);
8021         }
8022 }
8023
8024 void perf_event_namespaces(struct task_struct *task)
8025 {
8026         struct perf_namespaces_event namespaces_event;
8027         struct perf_ns_link_info *ns_link_info;
8028
8029         if (!atomic_read(&nr_namespaces_events))
8030                 return;
8031
8032         namespaces_event = (struct perf_namespaces_event){
8033                 .task   = task,
8034                 .event_id  = {
8035                         .header = {
8036                                 .type = PERF_RECORD_NAMESPACES,
8037                                 .misc = 0,
8038                                 .size = sizeof(namespaces_event.event_id),
8039                         },
8040                         /* .pid */
8041                         /* .tid */
8042                         .nr_namespaces = NR_NAMESPACES,
8043                         /* .link_info[NR_NAMESPACES] */
8044                 },
8045         };
8046
8047         ns_link_info = namespaces_event.event_id.link_info;
8048
8049         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8050                                task, &mntns_operations);
8051
8052 #ifdef CONFIG_USER_NS
8053         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8054                                task, &userns_operations);
8055 #endif
8056 #ifdef CONFIG_NET_NS
8057         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8058                                task, &netns_operations);
8059 #endif
8060 #ifdef CONFIG_UTS_NS
8061         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8062                                task, &utsns_operations);
8063 #endif
8064 #ifdef CONFIG_IPC_NS
8065         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8066                                task, &ipcns_operations);
8067 #endif
8068 #ifdef CONFIG_PID_NS
8069         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8070                                task, &pidns_operations);
8071 #endif
8072 #ifdef CONFIG_CGROUPS
8073         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8074                                task, &cgroupns_operations);
8075 #endif
8076
8077         perf_iterate_sb(perf_event_namespaces_output,
8078                         &namespaces_event,
8079                         NULL);
8080 }
8081
8082 /*
8083  * cgroup tracking
8084  */
8085 #ifdef CONFIG_CGROUP_PERF
8086
8087 struct perf_cgroup_event {
8088         char                            *path;
8089         int                             path_size;
8090         struct {
8091                 struct perf_event_header        header;
8092                 u64                             id;
8093                 char                            path[];
8094         } event_id;
8095 };
8096
8097 static int perf_event_cgroup_match(struct perf_event *event)
8098 {
8099         return event->attr.cgroup;
8100 }
8101
8102 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8103 {
8104         struct perf_cgroup_event *cgroup_event = data;
8105         struct perf_output_handle handle;
8106         struct perf_sample_data sample;
8107         u16 header_size = cgroup_event->event_id.header.size;
8108         int ret;
8109
8110         if (!perf_event_cgroup_match(event))
8111                 return;
8112
8113         perf_event_header__init_id(&cgroup_event->event_id.header,
8114                                    &sample, event);
8115         ret = perf_output_begin(&handle, &sample, event,
8116                                 cgroup_event->event_id.header.size);
8117         if (ret)
8118                 goto out;
8119
8120         perf_output_put(&handle, cgroup_event->event_id);
8121         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8122
8123         perf_event__output_id_sample(event, &handle, &sample);
8124
8125         perf_output_end(&handle);
8126 out:
8127         cgroup_event->event_id.header.size = header_size;
8128 }
8129
8130 static void perf_event_cgroup(struct cgroup *cgrp)
8131 {
8132         struct perf_cgroup_event cgroup_event;
8133         char path_enomem[16] = "//enomem";
8134         char *pathname;
8135         size_t size;
8136
8137         if (!atomic_read(&nr_cgroup_events))
8138                 return;
8139
8140         cgroup_event = (struct perf_cgroup_event){
8141                 .event_id  = {
8142                         .header = {
8143                                 .type = PERF_RECORD_CGROUP,
8144                                 .misc = 0,
8145                                 .size = sizeof(cgroup_event.event_id),
8146                         },
8147                         .id = cgroup_id(cgrp),
8148                 },
8149         };
8150
8151         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8152         if (pathname == NULL) {
8153                 cgroup_event.path = path_enomem;
8154         } else {
8155                 /* just to be sure to have enough space for alignment */
8156                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8157                 cgroup_event.path = pathname;
8158         }
8159
8160         /*
8161          * Since our buffer works in 8 byte units we need to align our string
8162          * size to a multiple of 8. However, we must guarantee the tail end is
8163          * zero'd out to avoid leaking random bits to userspace.
8164          */
8165         size = strlen(cgroup_event.path) + 1;
8166         while (!IS_ALIGNED(size, sizeof(u64)))
8167                 cgroup_event.path[size++] = '\0';
8168
8169         cgroup_event.event_id.header.size += size;
8170         cgroup_event.path_size = size;
8171
8172         perf_iterate_sb(perf_event_cgroup_output,
8173                         &cgroup_event,
8174                         NULL);
8175
8176         kfree(pathname);
8177 }
8178
8179 #endif
8180
8181 /*
8182  * mmap tracking
8183  */
8184
8185 struct perf_mmap_event {
8186         struct vm_area_struct   *vma;
8187
8188         const char              *file_name;
8189         int                     file_size;
8190         int                     maj, min;
8191         u64                     ino;
8192         u64                     ino_generation;
8193         u32                     prot, flags;
8194         u8                      build_id[BUILD_ID_SIZE_MAX];
8195         u32                     build_id_size;
8196
8197         struct {
8198                 struct perf_event_header        header;
8199
8200                 u32                             pid;
8201                 u32                             tid;
8202                 u64                             start;
8203                 u64                             len;
8204                 u64                             pgoff;
8205         } event_id;
8206 };
8207
8208 static int perf_event_mmap_match(struct perf_event *event,
8209                                  void *data)
8210 {
8211         struct perf_mmap_event *mmap_event = data;
8212         struct vm_area_struct *vma = mmap_event->vma;
8213         int executable = vma->vm_flags & VM_EXEC;
8214
8215         return (!executable && event->attr.mmap_data) ||
8216                (executable && (event->attr.mmap || event->attr.mmap2));
8217 }
8218
8219 static void perf_event_mmap_output(struct perf_event *event,
8220                                    void *data)
8221 {
8222         struct perf_mmap_event *mmap_event = data;
8223         struct perf_output_handle handle;
8224         struct perf_sample_data sample;
8225         int size = mmap_event->event_id.header.size;
8226         u32 type = mmap_event->event_id.header.type;
8227         bool use_build_id;
8228         int ret;
8229
8230         if (!perf_event_mmap_match(event, data))
8231                 return;
8232
8233         if (event->attr.mmap2) {
8234                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8235                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8236                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8237                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8238                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8239                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8240                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8241         }
8242
8243         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8244         ret = perf_output_begin(&handle, &sample, event,
8245                                 mmap_event->event_id.header.size);
8246         if (ret)
8247                 goto out;
8248
8249         mmap_event->event_id.pid = perf_event_pid(event, current);
8250         mmap_event->event_id.tid = perf_event_tid(event, current);
8251
8252         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8253
8254         if (event->attr.mmap2 && use_build_id)
8255                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8256
8257         perf_output_put(&handle, mmap_event->event_id);
8258
8259         if (event->attr.mmap2) {
8260                 if (use_build_id) {
8261                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8262
8263                         __output_copy(&handle, size, 4);
8264                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8265                 } else {
8266                         perf_output_put(&handle, mmap_event->maj);
8267                         perf_output_put(&handle, mmap_event->min);
8268                         perf_output_put(&handle, mmap_event->ino);
8269                         perf_output_put(&handle, mmap_event->ino_generation);
8270                 }
8271                 perf_output_put(&handle, mmap_event->prot);
8272                 perf_output_put(&handle, mmap_event->flags);
8273         }
8274
8275         __output_copy(&handle, mmap_event->file_name,
8276                                    mmap_event->file_size);
8277
8278         perf_event__output_id_sample(event, &handle, &sample);
8279
8280         perf_output_end(&handle);
8281 out:
8282         mmap_event->event_id.header.size = size;
8283         mmap_event->event_id.header.type = type;
8284 }
8285
8286 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8287 {
8288         struct vm_area_struct *vma = mmap_event->vma;
8289         struct file *file = vma->vm_file;
8290         int maj = 0, min = 0;
8291         u64 ino = 0, gen = 0;
8292         u32 prot = 0, flags = 0;
8293         unsigned int size;
8294         char tmp[16];
8295         char *buf = NULL;
8296         char *name;
8297
8298         if (vma->vm_flags & VM_READ)
8299                 prot |= PROT_READ;
8300         if (vma->vm_flags & VM_WRITE)
8301                 prot |= PROT_WRITE;
8302         if (vma->vm_flags & VM_EXEC)
8303                 prot |= PROT_EXEC;
8304
8305         if (vma->vm_flags & VM_MAYSHARE)
8306                 flags = MAP_SHARED;
8307         else
8308                 flags = MAP_PRIVATE;
8309
8310         if (vma->vm_flags & VM_LOCKED)
8311                 flags |= MAP_LOCKED;
8312         if (is_vm_hugetlb_page(vma))
8313                 flags |= MAP_HUGETLB;
8314
8315         if (file) {
8316                 struct inode *inode;
8317                 dev_t dev;
8318
8319                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8320                 if (!buf) {
8321                         name = "//enomem";
8322                         goto cpy_name;
8323                 }
8324                 /*
8325                  * d_path() works from the end of the rb backwards, so we
8326                  * need to add enough zero bytes after the string to handle
8327                  * the 64bit alignment we do later.
8328                  */
8329                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8330                 if (IS_ERR(name)) {
8331                         name = "//toolong";
8332                         goto cpy_name;
8333                 }
8334                 inode = file_inode(vma->vm_file);
8335                 dev = inode->i_sb->s_dev;
8336                 ino = inode->i_ino;
8337                 gen = inode->i_generation;
8338                 maj = MAJOR(dev);
8339                 min = MINOR(dev);
8340
8341                 goto got_name;
8342         } else {
8343                 if (vma->vm_ops && vma->vm_ops->name) {
8344                         name = (char *) vma->vm_ops->name(vma);
8345                         if (name)
8346                                 goto cpy_name;
8347                 }
8348
8349                 name = (char *)arch_vma_name(vma);
8350                 if (name)
8351                         goto cpy_name;
8352
8353                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8354                                 vma->vm_end >= vma->vm_mm->brk) {
8355                         name = "[heap]";
8356                         goto cpy_name;
8357                 }
8358                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8359                                 vma->vm_end >= vma->vm_mm->start_stack) {
8360                         name = "[stack]";
8361                         goto cpy_name;
8362                 }
8363
8364                 name = "//anon";
8365                 goto cpy_name;
8366         }
8367
8368 cpy_name:
8369         strlcpy(tmp, name, sizeof(tmp));
8370         name = tmp;
8371 got_name:
8372         /*
8373          * Since our buffer works in 8 byte units we need to align our string
8374          * size to a multiple of 8. However, we must guarantee the tail end is
8375          * zero'd out to avoid leaking random bits to userspace.
8376          */
8377         size = strlen(name)+1;
8378         while (!IS_ALIGNED(size, sizeof(u64)))
8379                 name[size++] = '\0';
8380
8381         mmap_event->file_name = name;
8382         mmap_event->file_size = size;
8383         mmap_event->maj = maj;
8384         mmap_event->min = min;
8385         mmap_event->ino = ino;
8386         mmap_event->ino_generation = gen;
8387         mmap_event->prot = prot;
8388         mmap_event->flags = flags;
8389
8390         if (!(vma->vm_flags & VM_EXEC))
8391                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8392
8393         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8394
8395         if (atomic_read(&nr_build_id_events))
8396                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8397
8398         perf_iterate_sb(perf_event_mmap_output,
8399                        mmap_event,
8400                        NULL);
8401
8402         kfree(buf);
8403 }
8404
8405 /*
8406  * Check whether inode and address range match filter criteria.
8407  */
8408 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8409                                      struct file *file, unsigned long offset,
8410                                      unsigned long size)
8411 {
8412         /* d_inode(NULL) won't be equal to any mapped user-space file */
8413         if (!filter->path.dentry)
8414                 return false;
8415
8416         if (d_inode(filter->path.dentry) != file_inode(file))
8417                 return false;
8418
8419         if (filter->offset > offset + size)
8420                 return false;
8421
8422         if (filter->offset + filter->size < offset)
8423                 return false;
8424
8425         return true;
8426 }
8427
8428 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8429                                         struct vm_area_struct *vma,
8430                                         struct perf_addr_filter_range *fr)
8431 {
8432         unsigned long vma_size = vma->vm_end - vma->vm_start;
8433         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8434         struct file *file = vma->vm_file;
8435
8436         if (!perf_addr_filter_match(filter, file, off, vma_size))
8437                 return false;
8438
8439         if (filter->offset < off) {
8440                 fr->start = vma->vm_start;
8441                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8442         } else {
8443                 fr->start = vma->vm_start + filter->offset - off;
8444                 fr->size = min(vma->vm_end - fr->start, filter->size);
8445         }
8446
8447         return true;
8448 }
8449
8450 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8451 {
8452         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8453         struct vm_area_struct *vma = data;
8454         struct perf_addr_filter *filter;
8455         unsigned int restart = 0, count = 0;
8456         unsigned long flags;
8457
8458         if (!has_addr_filter(event))
8459                 return;
8460
8461         if (!vma->vm_file)
8462                 return;
8463
8464         raw_spin_lock_irqsave(&ifh->lock, flags);
8465         list_for_each_entry(filter, &ifh->list, entry) {
8466                 if (perf_addr_filter_vma_adjust(filter, vma,
8467                                                 &event->addr_filter_ranges[count]))
8468                         restart++;
8469
8470                 count++;
8471         }
8472
8473         if (restart)
8474                 event->addr_filters_gen++;
8475         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8476
8477         if (restart)
8478                 perf_event_stop(event, 1);
8479 }
8480
8481 /*
8482  * Adjust all task's events' filters to the new vma
8483  */
8484 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8485 {
8486         struct perf_event_context *ctx;
8487         int ctxn;
8488
8489         /*
8490          * Data tracing isn't supported yet and as such there is no need
8491          * to keep track of anything that isn't related to executable code:
8492          */
8493         if (!(vma->vm_flags & VM_EXEC))
8494                 return;
8495
8496         rcu_read_lock();
8497         for_each_task_context_nr(ctxn) {
8498                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8499                 if (!ctx)
8500                         continue;
8501
8502                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8503         }
8504         rcu_read_unlock();
8505 }
8506
8507 void perf_event_mmap(struct vm_area_struct *vma)
8508 {
8509         struct perf_mmap_event mmap_event;
8510
8511         if (!atomic_read(&nr_mmap_events))
8512                 return;
8513
8514         mmap_event = (struct perf_mmap_event){
8515                 .vma    = vma,
8516                 /* .file_name */
8517                 /* .file_size */
8518                 .event_id  = {
8519                         .header = {
8520                                 .type = PERF_RECORD_MMAP,
8521                                 .misc = PERF_RECORD_MISC_USER,
8522                                 /* .size */
8523                         },
8524                         /* .pid */
8525                         /* .tid */
8526                         .start  = vma->vm_start,
8527                         .len    = vma->vm_end - vma->vm_start,
8528                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8529                 },
8530                 /* .maj (attr_mmap2 only) */
8531                 /* .min (attr_mmap2 only) */
8532                 /* .ino (attr_mmap2 only) */
8533                 /* .ino_generation (attr_mmap2 only) */
8534                 /* .prot (attr_mmap2 only) */
8535                 /* .flags (attr_mmap2 only) */
8536         };
8537
8538         perf_addr_filters_adjust(vma);
8539         perf_event_mmap_event(&mmap_event);
8540 }
8541
8542 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8543                           unsigned long size, u64 flags)
8544 {
8545         struct perf_output_handle handle;
8546         struct perf_sample_data sample;
8547         struct perf_aux_event {
8548                 struct perf_event_header        header;
8549                 u64                             offset;
8550                 u64                             size;
8551                 u64                             flags;
8552         } rec = {
8553                 .header = {
8554                         .type = PERF_RECORD_AUX,
8555                         .misc = 0,
8556                         .size = sizeof(rec),
8557                 },
8558                 .offset         = head,
8559                 .size           = size,
8560                 .flags          = flags,
8561         };
8562         int ret;
8563
8564         perf_event_header__init_id(&rec.header, &sample, event);
8565         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8566
8567         if (ret)
8568                 return;
8569
8570         perf_output_put(&handle, rec);
8571         perf_event__output_id_sample(event, &handle, &sample);
8572
8573         perf_output_end(&handle);
8574 }
8575
8576 /*
8577  * Lost/dropped samples logging
8578  */
8579 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8580 {
8581         struct perf_output_handle handle;
8582         struct perf_sample_data sample;
8583         int ret;
8584
8585         struct {
8586                 struct perf_event_header        header;
8587                 u64                             lost;
8588         } lost_samples_event = {
8589                 .header = {
8590                         .type = PERF_RECORD_LOST_SAMPLES,
8591                         .misc = 0,
8592                         .size = sizeof(lost_samples_event),
8593                 },
8594                 .lost           = lost,
8595         };
8596
8597         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8598
8599         ret = perf_output_begin(&handle, &sample, event,
8600                                 lost_samples_event.header.size);
8601         if (ret)
8602                 return;
8603
8604         perf_output_put(&handle, lost_samples_event);
8605         perf_event__output_id_sample(event, &handle, &sample);
8606         perf_output_end(&handle);
8607 }
8608
8609 /*
8610  * context_switch tracking
8611  */
8612
8613 struct perf_switch_event {
8614         struct task_struct      *task;
8615         struct task_struct      *next_prev;
8616
8617         struct {
8618                 struct perf_event_header        header;
8619                 u32                             next_prev_pid;
8620                 u32                             next_prev_tid;
8621         } event_id;
8622 };
8623
8624 static int perf_event_switch_match(struct perf_event *event)
8625 {
8626         return event->attr.context_switch;
8627 }
8628
8629 static void perf_event_switch_output(struct perf_event *event, void *data)
8630 {
8631         struct perf_switch_event *se = data;
8632         struct perf_output_handle handle;
8633         struct perf_sample_data sample;
8634         int ret;
8635
8636         if (!perf_event_switch_match(event))
8637                 return;
8638
8639         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8640         if (event->ctx->task) {
8641                 se->event_id.header.type = PERF_RECORD_SWITCH;
8642                 se->event_id.header.size = sizeof(se->event_id.header);
8643         } else {
8644                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8645                 se->event_id.header.size = sizeof(se->event_id);
8646                 se->event_id.next_prev_pid =
8647                                         perf_event_pid(event, se->next_prev);
8648                 se->event_id.next_prev_tid =
8649                                         perf_event_tid(event, se->next_prev);
8650         }
8651
8652         perf_event_header__init_id(&se->event_id.header, &sample, event);
8653
8654         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8655         if (ret)
8656                 return;
8657
8658         if (event->ctx->task)
8659                 perf_output_put(&handle, se->event_id.header);
8660         else
8661                 perf_output_put(&handle, se->event_id);
8662
8663         perf_event__output_id_sample(event, &handle, &sample);
8664
8665         perf_output_end(&handle);
8666 }
8667
8668 static void perf_event_switch(struct task_struct *task,
8669                               struct task_struct *next_prev, bool sched_in)
8670 {
8671         struct perf_switch_event switch_event;
8672
8673         /* N.B. caller checks nr_switch_events != 0 */
8674
8675         switch_event = (struct perf_switch_event){
8676                 .task           = task,
8677                 .next_prev      = next_prev,
8678                 .event_id       = {
8679                         .header = {
8680                                 /* .type */
8681                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8682                                 /* .size */
8683                         },
8684                         /* .next_prev_pid */
8685                         /* .next_prev_tid */
8686                 },
8687         };
8688
8689         if (!sched_in && task->on_rq) {
8690                 switch_event.event_id.header.misc |=
8691                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8692         }
8693
8694         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8695 }
8696
8697 /*
8698  * IRQ throttle logging
8699  */
8700
8701 static void perf_log_throttle(struct perf_event *event, int enable)
8702 {
8703         struct perf_output_handle handle;
8704         struct perf_sample_data sample;
8705         int ret;
8706
8707         struct {
8708                 struct perf_event_header        header;
8709                 u64                             time;
8710                 u64                             id;
8711                 u64                             stream_id;
8712         } throttle_event = {
8713                 .header = {
8714                         .type = PERF_RECORD_THROTTLE,
8715                         .misc = 0,
8716                         .size = sizeof(throttle_event),
8717                 },
8718                 .time           = perf_event_clock(event),
8719                 .id             = primary_event_id(event),
8720                 .stream_id      = event->id,
8721         };
8722
8723         if (enable)
8724                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8725
8726         perf_event_header__init_id(&throttle_event.header, &sample, event);
8727
8728         ret = perf_output_begin(&handle, &sample, event,
8729                                 throttle_event.header.size);
8730         if (ret)
8731                 return;
8732
8733         perf_output_put(&handle, throttle_event);
8734         perf_event__output_id_sample(event, &handle, &sample);
8735         perf_output_end(&handle);
8736 }
8737
8738 /*
8739  * ksymbol register/unregister tracking
8740  */
8741
8742 struct perf_ksymbol_event {
8743         const char      *name;
8744         int             name_len;
8745         struct {
8746                 struct perf_event_header        header;
8747                 u64                             addr;
8748                 u32                             len;
8749                 u16                             ksym_type;
8750                 u16                             flags;
8751         } event_id;
8752 };
8753
8754 static int perf_event_ksymbol_match(struct perf_event *event)
8755 {
8756         return event->attr.ksymbol;
8757 }
8758
8759 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8760 {
8761         struct perf_ksymbol_event *ksymbol_event = data;
8762         struct perf_output_handle handle;
8763         struct perf_sample_data sample;
8764         int ret;
8765
8766         if (!perf_event_ksymbol_match(event))
8767                 return;
8768
8769         perf_event_header__init_id(&ksymbol_event->event_id.header,
8770                                    &sample, event);
8771         ret = perf_output_begin(&handle, &sample, event,
8772                                 ksymbol_event->event_id.header.size);
8773         if (ret)
8774                 return;
8775
8776         perf_output_put(&handle, ksymbol_event->event_id);
8777         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8778         perf_event__output_id_sample(event, &handle, &sample);
8779
8780         perf_output_end(&handle);
8781 }
8782
8783 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8784                         const char *sym)
8785 {
8786         struct perf_ksymbol_event ksymbol_event;
8787         char name[KSYM_NAME_LEN];
8788         u16 flags = 0;
8789         int name_len;
8790
8791         if (!atomic_read(&nr_ksymbol_events))
8792                 return;
8793
8794         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8795             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8796                 goto err;
8797
8798         strlcpy(name, sym, KSYM_NAME_LEN);
8799         name_len = strlen(name) + 1;
8800         while (!IS_ALIGNED(name_len, sizeof(u64)))
8801                 name[name_len++] = '\0';
8802         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8803
8804         if (unregister)
8805                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8806
8807         ksymbol_event = (struct perf_ksymbol_event){
8808                 .name = name,
8809                 .name_len = name_len,
8810                 .event_id = {
8811                         .header = {
8812                                 .type = PERF_RECORD_KSYMBOL,
8813                                 .size = sizeof(ksymbol_event.event_id) +
8814                                         name_len,
8815                         },
8816                         .addr = addr,
8817                         .len = len,
8818                         .ksym_type = ksym_type,
8819                         .flags = flags,
8820                 },
8821         };
8822
8823         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8824         return;
8825 err:
8826         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8827 }
8828
8829 /*
8830  * bpf program load/unload tracking
8831  */
8832
8833 struct perf_bpf_event {
8834         struct bpf_prog *prog;
8835         struct {
8836                 struct perf_event_header        header;
8837                 u16                             type;
8838                 u16                             flags;
8839                 u32                             id;
8840                 u8                              tag[BPF_TAG_SIZE];
8841         } event_id;
8842 };
8843
8844 static int perf_event_bpf_match(struct perf_event *event)
8845 {
8846         return event->attr.bpf_event;
8847 }
8848
8849 static void perf_event_bpf_output(struct perf_event *event, void *data)
8850 {
8851         struct perf_bpf_event *bpf_event = data;
8852         struct perf_output_handle handle;
8853         struct perf_sample_data sample;
8854         int ret;
8855
8856         if (!perf_event_bpf_match(event))
8857                 return;
8858
8859         perf_event_header__init_id(&bpf_event->event_id.header,
8860                                    &sample, event);
8861         ret = perf_output_begin(&handle, data, event,
8862                                 bpf_event->event_id.header.size);
8863         if (ret)
8864                 return;
8865
8866         perf_output_put(&handle, bpf_event->event_id);
8867         perf_event__output_id_sample(event, &handle, &sample);
8868
8869         perf_output_end(&handle);
8870 }
8871
8872 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8873                                          enum perf_bpf_event_type type)
8874 {
8875         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8876         int i;
8877
8878         if (prog->aux->func_cnt == 0) {
8879                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8880                                    (u64)(unsigned long)prog->bpf_func,
8881                                    prog->jited_len, unregister,
8882                                    prog->aux->ksym.name);
8883         } else {
8884                 for (i = 0; i < prog->aux->func_cnt; i++) {
8885                         struct bpf_prog *subprog = prog->aux->func[i];
8886
8887                         perf_event_ksymbol(
8888                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8889                                 (u64)(unsigned long)subprog->bpf_func,
8890                                 subprog->jited_len, unregister,
8891                                 prog->aux->ksym.name);
8892                 }
8893         }
8894 }
8895
8896 void perf_event_bpf_event(struct bpf_prog *prog,
8897                           enum perf_bpf_event_type type,
8898                           u16 flags)
8899 {
8900         struct perf_bpf_event bpf_event;
8901
8902         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8903             type >= PERF_BPF_EVENT_MAX)
8904                 return;
8905
8906         switch (type) {
8907         case PERF_BPF_EVENT_PROG_LOAD:
8908         case PERF_BPF_EVENT_PROG_UNLOAD:
8909                 if (atomic_read(&nr_ksymbol_events))
8910                         perf_event_bpf_emit_ksymbols(prog, type);
8911                 break;
8912         default:
8913                 break;
8914         }
8915
8916         if (!atomic_read(&nr_bpf_events))
8917                 return;
8918
8919         bpf_event = (struct perf_bpf_event){
8920                 .prog = prog,
8921                 .event_id = {
8922                         .header = {
8923                                 .type = PERF_RECORD_BPF_EVENT,
8924                                 .size = sizeof(bpf_event.event_id),
8925                         },
8926                         .type = type,
8927                         .flags = flags,
8928                         .id = prog->aux->id,
8929                 },
8930         };
8931
8932         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8933
8934         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8935         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8936 }
8937
8938 struct perf_text_poke_event {
8939         const void              *old_bytes;
8940         const void              *new_bytes;
8941         size_t                  pad;
8942         u16                     old_len;
8943         u16                     new_len;
8944
8945         struct {
8946                 struct perf_event_header        header;
8947
8948                 u64                             addr;
8949         } event_id;
8950 };
8951
8952 static int perf_event_text_poke_match(struct perf_event *event)
8953 {
8954         return event->attr.text_poke;
8955 }
8956
8957 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8958 {
8959         struct perf_text_poke_event *text_poke_event = data;
8960         struct perf_output_handle handle;
8961         struct perf_sample_data sample;
8962         u64 padding = 0;
8963         int ret;
8964
8965         if (!perf_event_text_poke_match(event))
8966                 return;
8967
8968         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8969
8970         ret = perf_output_begin(&handle, &sample, event,
8971                                 text_poke_event->event_id.header.size);
8972         if (ret)
8973                 return;
8974
8975         perf_output_put(&handle, text_poke_event->event_id);
8976         perf_output_put(&handle, text_poke_event->old_len);
8977         perf_output_put(&handle, text_poke_event->new_len);
8978
8979         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8980         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8981
8982         if (text_poke_event->pad)
8983                 __output_copy(&handle, &padding, text_poke_event->pad);
8984
8985         perf_event__output_id_sample(event, &handle, &sample);
8986
8987         perf_output_end(&handle);
8988 }
8989
8990 void perf_event_text_poke(const void *addr, const void *old_bytes,
8991                           size_t old_len, const void *new_bytes, size_t new_len)
8992 {
8993         struct perf_text_poke_event text_poke_event;
8994         size_t tot, pad;
8995
8996         if (!atomic_read(&nr_text_poke_events))
8997                 return;
8998
8999         tot  = sizeof(text_poke_event.old_len) + old_len;
9000         tot += sizeof(text_poke_event.new_len) + new_len;
9001         pad  = ALIGN(tot, sizeof(u64)) - tot;
9002
9003         text_poke_event = (struct perf_text_poke_event){
9004                 .old_bytes    = old_bytes,
9005                 .new_bytes    = new_bytes,
9006                 .pad          = pad,
9007                 .old_len      = old_len,
9008                 .new_len      = new_len,
9009                 .event_id  = {
9010                         .header = {
9011                                 .type = PERF_RECORD_TEXT_POKE,
9012                                 .misc = PERF_RECORD_MISC_KERNEL,
9013                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9014                         },
9015                         .addr = (unsigned long)addr,
9016                 },
9017         };
9018
9019         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9020 }
9021
9022 void perf_event_itrace_started(struct perf_event *event)
9023 {
9024         event->attach_state |= PERF_ATTACH_ITRACE;
9025 }
9026
9027 static void perf_log_itrace_start(struct perf_event *event)
9028 {
9029         struct perf_output_handle handle;
9030         struct perf_sample_data sample;
9031         struct perf_aux_event {
9032                 struct perf_event_header        header;
9033                 u32                             pid;
9034                 u32                             tid;
9035         } rec;
9036         int ret;
9037
9038         if (event->parent)
9039                 event = event->parent;
9040
9041         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9042             event->attach_state & PERF_ATTACH_ITRACE)
9043                 return;
9044
9045         rec.header.type = PERF_RECORD_ITRACE_START;
9046         rec.header.misc = 0;
9047         rec.header.size = sizeof(rec);
9048         rec.pid = perf_event_pid(event, current);
9049         rec.tid = perf_event_tid(event, current);
9050
9051         perf_event_header__init_id(&rec.header, &sample, event);
9052         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9053
9054         if (ret)
9055                 return;
9056
9057         perf_output_put(&handle, rec);
9058         perf_event__output_id_sample(event, &handle, &sample);
9059
9060         perf_output_end(&handle);
9061 }
9062
9063 static int
9064 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9065 {
9066         struct hw_perf_event *hwc = &event->hw;
9067         int ret = 0;
9068         u64 seq;
9069
9070         seq = __this_cpu_read(perf_throttled_seq);
9071         if (seq != hwc->interrupts_seq) {
9072                 hwc->interrupts_seq = seq;
9073                 hwc->interrupts = 1;
9074         } else {
9075                 hwc->interrupts++;
9076                 if (unlikely(throttle
9077                              && hwc->interrupts >= max_samples_per_tick)) {
9078                         __this_cpu_inc(perf_throttled_count);
9079                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9080                         hwc->interrupts = MAX_INTERRUPTS;
9081                         perf_log_throttle(event, 0);
9082                         ret = 1;
9083                 }
9084         }
9085
9086         if (event->attr.freq) {
9087                 u64 now = perf_clock();
9088                 s64 delta = now - hwc->freq_time_stamp;
9089
9090                 hwc->freq_time_stamp = now;
9091
9092                 if (delta > 0 && delta < 2*TICK_NSEC)
9093                         perf_adjust_period(event, delta, hwc->last_period, true);
9094         }
9095
9096         return ret;
9097 }
9098
9099 int perf_event_account_interrupt(struct perf_event *event)
9100 {
9101         return __perf_event_account_interrupt(event, 1);
9102 }
9103
9104 /*
9105  * Generic event overflow handling, sampling.
9106  */
9107
9108 static int __perf_event_overflow(struct perf_event *event,
9109                                    int throttle, struct perf_sample_data *data,
9110                                    struct pt_regs *regs)
9111 {
9112         int events = atomic_read(&event->event_limit);
9113         int ret = 0;
9114
9115         /*
9116          * Non-sampling counters might still use the PMI to fold short
9117          * hardware counters, ignore those.
9118          */
9119         if (unlikely(!is_sampling_event(event)))
9120                 return 0;
9121
9122         ret = __perf_event_account_interrupt(event, throttle);
9123
9124         /*
9125          * XXX event_limit might not quite work as expected on inherited
9126          * events
9127          */
9128
9129         event->pending_kill = POLL_IN;
9130         if (events && atomic_dec_and_test(&event->event_limit)) {
9131                 ret = 1;
9132                 event->pending_kill = POLL_HUP;
9133                 event->pending_addr = data->addr;
9134
9135                 perf_event_disable_inatomic(event);
9136         }
9137
9138         READ_ONCE(event->overflow_handler)(event, data, regs);
9139
9140         if (*perf_event_fasync(event) && event->pending_kill) {
9141                 event->pending_wakeup = 1;
9142                 irq_work_queue(&event->pending);
9143         }
9144
9145         return ret;
9146 }
9147
9148 int perf_event_overflow(struct perf_event *event,
9149                           struct perf_sample_data *data,
9150                           struct pt_regs *regs)
9151 {
9152         return __perf_event_overflow(event, 1, data, regs);
9153 }
9154
9155 /*
9156  * Generic software event infrastructure
9157  */
9158
9159 struct swevent_htable {
9160         struct swevent_hlist            *swevent_hlist;
9161         struct mutex                    hlist_mutex;
9162         int                             hlist_refcount;
9163
9164         /* Recursion avoidance in each contexts */
9165         int                             recursion[PERF_NR_CONTEXTS];
9166 };
9167
9168 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9169
9170 /*
9171  * We directly increment event->count and keep a second value in
9172  * event->hw.period_left to count intervals. This period event
9173  * is kept in the range [-sample_period, 0] so that we can use the
9174  * sign as trigger.
9175  */
9176
9177 u64 perf_swevent_set_period(struct perf_event *event)
9178 {
9179         struct hw_perf_event *hwc = &event->hw;
9180         u64 period = hwc->last_period;
9181         u64 nr, offset;
9182         s64 old, val;
9183
9184         hwc->last_period = hwc->sample_period;
9185
9186 again:
9187         old = val = local64_read(&hwc->period_left);
9188         if (val < 0)
9189                 return 0;
9190
9191         nr = div64_u64(period + val, period);
9192         offset = nr * period;
9193         val -= offset;
9194         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9195                 goto again;
9196
9197         return nr;
9198 }
9199
9200 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9201                                     struct perf_sample_data *data,
9202                                     struct pt_regs *regs)
9203 {
9204         struct hw_perf_event *hwc = &event->hw;
9205         int throttle = 0;
9206
9207         if (!overflow)
9208                 overflow = perf_swevent_set_period(event);
9209
9210         if (hwc->interrupts == MAX_INTERRUPTS)
9211                 return;
9212
9213         for (; overflow; overflow--) {
9214                 if (__perf_event_overflow(event, throttle,
9215                                             data, regs)) {
9216                         /*
9217                          * We inhibit the overflow from happening when
9218                          * hwc->interrupts == MAX_INTERRUPTS.
9219                          */
9220                         break;
9221                 }
9222                 throttle = 1;
9223         }
9224 }
9225
9226 static void perf_swevent_event(struct perf_event *event, u64 nr,
9227                                struct perf_sample_data *data,
9228                                struct pt_regs *regs)
9229 {
9230         struct hw_perf_event *hwc = &event->hw;
9231
9232         local64_add(nr, &event->count);
9233
9234         if (!regs)
9235                 return;
9236
9237         if (!is_sampling_event(event))
9238                 return;
9239
9240         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9241                 data->period = nr;
9242                 return perf_swevent_overflow(event, 1, data, regs);
9243         } else
9244                 data->period = event->hw.last_period;
9245
9246         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9247                 return perf_swevent_overflow(event, 1, data, regs);
9248
9249         if (local64_add_negative(nr, &hwc->period_left))
9250                 return;
9251
9252         perf_swevent_overflow(event, 0, data, regs);
9253 }
9254
9255 static int perf_exclude_event(struct perf_event *event,
9256                               struct pt_regs *regs)
9257 {
9258         if (event->hw.state & PERF_HES_STOPPED)
9259                 return 1;
9260
9261         if (regs) {
9262                 if (event->attr.exclude_user && user_mode(regs))
9263                         return 1;
9264
9265                 if (event->attr.exclude_kernel && !user_mode(regs))
9266                         return 1;
9267         }
9268
9269         return 0;
9270 }
9271
9272 static int perf_swevent_match(struct perf_event *event,
9273                                 enum perf_type_id type,
9274                                 u32 event_id,
9275                                 struct perf_sample_data *data,
9276                                 struct pt_regs *regs)
9277 {
9278         if (event->attr.type != type)
9279                 return 0;
9280
9281         if (event->attr.config != event_id)
9282                 return 0;
9283
9284         if (perf_exclude_event(event, regs))
9285                 return 0;
9286
9287         return 1;
9288 }
9289
9290 static inline u64 swevent_hash(u64 type, u32 event_id)
9291 {
9292         u64 val = event_id | (type << 32);
9293
9294         return hash_64(val, SWEVENT_HLIST_BITS);
9295 }
9296
9297 static inline struct hlist_head *
9298 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9299 {
9300         u64 hash = swevent_hash(type, event_id);
9301
9302         return &hlist->heads[hash];
9303 }
9304
9305 /* For the read side: events when they trigger */
9306 static inline struct hlist_head *
9307 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9308 {
9309         struct swevent_hlist *hlist;
9310
9311         hlist = rcu_dereference(swhash->swevent_hlist);
9312         if (!hlist)
9313                 return NULL;
9314
9315         return __find_swevent_head(hlist, type, event_id);
9316 }
9317
9318 /* For the event head insertion and removal in the hlist */
9319 static inline struct hlist_head *
9320 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9321 {
9322         struct swevent_hlist *hlist;
9323         u32 event_id = event->attr.config;
9324         u64 type = event->attr.type;
9325
9326         /*
9327          * Event scheduling is always serialized against hlist allocation
9328          * and release. Which makes the protected version suitable here.
9329          * The context lock guarantees that.
9330          */
9331         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9332                                           lockdep_is_held(&event->ctx->lock));
9333         if (!hlist)
9334                 return NULL;
9335
9336         return __find_swevent_head(hlist, type, event_id);
9337 }
9338
9339 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9340                                     u64 nr,
9341                                     struct perf_sample_data *data,
9342                                     struct pt_regs *regs)
9343 {
9344         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9345         struct perf_event *event;
9346         struct hlist_head *head;
9347
9348         rcu_read_lock();
9349         head = find_swevent_head_rcu(swhash, type, event_id);
9350         if (!head)
9351                 goto end;
9352
9353         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9354                 if (perf_swevent_match(event, type, event_id, data, regs))
9355                         perf_swevent_event(event, nr, data, regs);
9356         }
9357 end:
9358         rcu_read_unlock();
9359 }
9360
9361 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9362
9363 int perf_swevent_get_recursion_context(void)
9364 {
9365         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9366
9367         return get_recursion_context(swhash->recursion);
9368 }
9369 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9370
9371 void perf_swevent_put_recursion_context(int rctx)
9372 {
9373         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9374
9375         put_recursion_context(swhash->recursion, rctx);
9376 }
9377
9378 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9379 {
9380         struct perf_sample_data data;
9381
9382         if (WARN_ON_ONCE(!regs))
9383                 return;
9384
9385         perf_sample_data_init(&data, addr, 0);
9386         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9387 }
9388
9389 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9390 {
9391         int rctx;
9392
9393         preempt_disable_notrace();
9394         rctx = perf_swevent_get_recursion_context();
9395         if (unlikely(rctx < 0))
9396                 goto fail;
9397
9398         ___perf_sw_event(event_id, nr, regs, addr);
9399
9400         perf_swevent_put_recursion_context(rctx);
9401 fail:
9402         preempt_enable_notrace();
9403 }
9404
9405 static void perf_swevent_read(struct perf_event *event)
9406 {
9407 }
9408
9409 static int perf_swevent_add(struct perf_event *event, int flags)
9410 {
9411         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9412         struct hw_perf_event *hwc = &event->hw;
9413         struct hlist_head *head;
9414
9415         if (is_sampling_event(event)) {
9416                 hwc->last_period = hwc->sample_period;
9417                 perf_swevent_set_period(event);
9418         }
9419
9420         hwc->state = !(flags & PERF_EF_START);
9421
9422         head = find_swevent_head(swhash, event);
9423         if (WARN_ON_ONCE(!head))
9424                 return -EINVAL;
9425
9426         hlist_add_head_rcu(&event->hlist_entry, head);
9427         perf_event_update_userpage(event);
9428
9429         return 0;
9430 }
9431
9432 static void perf_swevent_del(struct perf_event *event, int flags)
9433 {
9434         hlist_del_rcu(&event->hlist_entry);
9435 }
9436
9437 static void perf_swevent_start(struct perf_event *event, int flags)
9438 {
9439         event->hw.state = 0;
9440 }
9441
9442 static void perf_swevent_stop(struct perf_event *event, int flags)
9443 {
9444         event->hw.state = PERF_HES_STOPPED;
9445 }
9446
9447 /* Deref the hlist from the update side */
9448 static inline struct swevent_hlist *
9449 swevent_hlist_deref(struct swevent_htable *swhash)
9450 {
9451         return rcu_dereference_protected(swhash->swevent_hlist,
9452                                          lockdep_is_held(&swhash->hlist_mutex));
9453 }
9454
9455 static void swevent_hlist_release(struct swevent_htable *swhash)
9456 {
9457         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9458
9459         if (!hlist)
9460                 return;
9461
9462         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9463         kfree_rcu(hlist, rcu_head);
9464 }
9465
9466 static void swevent_hlist_put_cpu(int cpu)
9467 {
9468         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9469
9470         mutex_lock(&swhash->hlist_mutex);
9471
9472         if (!--swhash->hlist_refcount)
9473                 swevent_hlist_release(swhash);
9474
9475         mutex_unlock(&swhash->hlist_mutex);
9476 }
9477
9478 static void swevent_hlist_put(void)
9479 {
9480         int cpu;
9481
9482         for_each_possible_cpu(cpu)
9483                 swevent_hlist_put_cpu(cpu);
9484 }
9485
9486 static int swevent_hlist_get_cpu(int cpu)
9487 {
9488         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9489         int err = 0;
9490
9491         mutex_lock(&swhash->hlist_mutex);
9492         if (!swevent_hlist_deref(swhash) &&
9493             cpumask_test_cpu(cpu, perf_online_mask)) {
9494                 struct swevent_hlist *hlist;
9495
9496                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9497                 if (!hlist) {
9498                         err = -ENOMEM;
9499                         goto exit;
9500                 }
9501                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9502         }
9503         swhash->hlist_refcount++;
9504 exit:
9505         mutex_unlock(&swhash->hlist_mutex);
9506
9507         return err;
9508 }
9509
9510 static int swevent_hlist_get(void)
9511 {
9512         int err, cpu, failed_cpu;
9513
9514         mutex_lock(&pmus_lock);
9515         for_each_possible_cpu(cpu) {
9516                 err = swevent_hlist_get_cpu(cpu);
9517                 if (err) {
9518                         failed_cpu = cpu;
9519                         goto fail;
9520                 }
9521         }
9522         mutex_unlock(&pmus_lock);
9523         return 0;
9524 fail:
9525         for_each_possible_cpu(cpu) {
9526                 if (cpu == failed_cpu)
9527                         break;
9528                 swevent_hlist_put_cpu(cpu);
9529         }
9530         mutex_unlock(&pmus_lock);
9531         return err;
9532 }
9533
9534 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9535
9536 static void sw_perf_event_destroy(struct perf_event *event)
9537 {
9538         u64 event_id = event->attr.config;
9539
9540         WARN_ON(event->parent);
9541
9542         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9543         swevent_hlist_put();
9544 }
9545
9546 static int perf_swevent_init(struct perf_event *event)
9547 {
9548         u64 event_id = event->attr.config;
9549
9550         if (event->attr.type != PERF_TYPE_SOFTWARE)
9551                 return -ENOENT;
9552
9553         /*
9554          * no branch sampling for software events
9555          */
9556         if (has_branch_stack(event))
9557                 return -EOPNOTSUPP;
9558
9559         switch (event_id) {
9560         case PERF_COUNT_SW_CPU_CLOCK:
9561         case PERF_COUNT_SW_TASK_CLOCK:
9562                 return -ENOENT;
9563
9564         default:
9565                 break;
9566         }
9567
9568         if (event_id >= PERF_COUNT_SW_MAX)
9569                 return -ENOENT;
9570
9571         if (!event->parent) {
9572                 int err;
9573
9574                 err = swevent_hlist_get();
9575                 if (err)
9576                         return err;
9577
9578                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9579                 event->destroy = sw_perf_event_destroy;
9580         }
9581
9582         return 0;
9583 }
9584
9585 static struct pmu perf_swevent = {
9586         .task_ctx_nr    = perf_sw_context,
9587
9588         .capabilities   = PERF_PMU_CAP_NO_NMI,
9589
9590         .event_init     = perf_swevent_init,
9591         .add            = perf_swevent_add,
9592         .del            = perf_swevent_del,
9593         .start          = perf_swevent_start,
9594         .stop           = perf_swevent_stop,
9595         .read           = perf_swevent_read,
9596 };
9597
9598 #ifdef CONFIG_EVENT_TRACING
9599
9600 static int perf_tp_filter_match(struct perf_event *event,
9601                                 struct perf_sample_data *data)
9602 {
9603         void *record = data->raw->frag.data;
9604
9605         /* only top level events have filters set */
9606         if (event->parent)
9607                 event = event->parent;
9608
9609         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9610                 return 1;
9611         return 0;
9612 }
9613
9614 static int perf_tp_event_match(struct perf_event *event,
9615                                 struct perf_sample_data *data,
9616                                 struct pt_regs *regs)
9617 {
9618         if (event->hw.state & PERF_HES_STOPPED)
9619                 return 0;
9620         /*
9621          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9622          */
9623         if (event->attr.exclude_kernel && !user_mode(regs))
9624                 return 0;
9625
9626         if (!perf_tp_filter_match(event, data))
9627                 return 0;
9628
9629         return 1;
9630 }
9631
9632 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9633                                struct trace_event_call *call, u64 count,
9634                                struct pt_regs *regs, struct hlist_head *head,
9635                                struct task_struct *task)
9636 {
9637         if (bpf_prog_array_valid(call)) {
9638                 *(struct pt_regs **)raw_data = regs;
9639                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9640                         perf_swevent_put_recursion_context(rctx);
9641                         return;
9642                 }
9643         }
9644         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9645                       rctx, task);
9646 }
9647 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9648
9649 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9650                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9651                    struct task_struct *task)
9652 {
9653         struct perf_sample_data data;
9654         struct perf_event *event;
9655
9656         struct perf_raw_record raw = {
9657                 .frag = {
9658                         .size = entry_size,
9659                         .data = record,
9660                 },
9661         };
9662
9663         perf_sample_data_init(&data, 0, 0);
9664         data.raw = &raw;
9665
9666         perf_trace_buf_update(record, event_type);
9667
9668         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9669                 if (perf_tp_event_match(event, &data, regs))
9670                         perf_swevent_event(event, count, &data, regs);
9671         }
9672
9673         /*
9674          * If we got specified a target task, also iterate its context and
9675          * deliver this event there too.
9676          */
9677         if (task && task != current) {
9678                 struct perf_event_context *ctx;
9679                 struct trace_entry *entry = record;
9680
9681                 rcu_read_lock();
9682                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9683                 if (!ctx)
9684                         goto unlock;
9685
9686                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9687                         if (event->cpu != smp_processor_id())
9688                                 continue;
9689                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9690                                 continue;
9691                         if (event->attr.config != entry->type)
9692                                 continue;
9693                         if (perf_tp_event_match(event, &data, regs))
9694                                 perf_swevent_event(event, count, &data, regs);
9695                 }
9696 unlock:
9697                 rcu_read_unlock();
9698         }
9699
9700         perf_swevent_put_recursion_context(rctx);
9701 }
9702 EXPORT_SYMBOL_GPL(perf_tp_event);
9703
9704 static void tp_perf_event_destroy(struct perf_event *event)
9705 {
9706         perf_trace_destroy(event);
9707 }
9708
9709 static int perf_tp_event_init(struct perf_event *event)
9710 {
9711         int err;
9712
9713         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9714                 return -ENOENT;
9715
9716         /*
9717          * no branch sampling for tracepoint events
9718          */
9719         if (has_branch_stack(event))
9720                 return -EOPNOTSUPP;
9721
9722         err = perf_trace_init(event);
9723         if (err)
9724                 return err;
9725
9726         event->destroy = tp_perf_event_destroy;
9727
9728         return 0;
9729 }
9730
9731 static struct pmu perf_tracepoint = {
9732         .task_ctx_nr    = perf_sw_context,
9733
9734         .event_init     = perf_tp_event_init,
9735         .add            = perf_trace_add,
9736         .del            = perf_trace_del,
9737         .start          = perf_swevent_start,
9738         .stop           = perf_swevent_stop,
9739         .read           = perf_swevent_read,
9740 };
9741
9742 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9743 /*
9744  * Flags in config, used by dynamic PMU kprobe and uprobe
9745  * The flags should match following PMU_FORMAT_ATTR().
9746  *
9747  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9748  *                               if not set, create kprobe/uprobe
9749  *
9750  * The following values specify a reference counter (or semaphore in the
9751  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9752  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9753  *
9754  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9755  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9756  */
9757 enum perf_probe_config {
9758         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9759         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9760         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9761 };
9762
9763 PMU_FORMAT_ATTR(retprobe, "config:0");
9764 #endif
9765
9766 #ifdef CONFIG_KPROBE_EVENTS
9767 static struct attribute *kprobe_attrs[] = {
9768         &format_attr_retprobe.attr,
9769         NULL,
9770 };
9771
9772 static struct attribute_group kprobe_format_group = {
9773         .name = "format",
9774         .attrs = kprobe_attrs,
9775 };
9776
9777 static const struct attribute_group *kprobe_attr_groups[] = {
9778         &kprobe_format_group,
9779         NULL,
9780 };
9781
9782 static int perf_kprobe_event_init(struct perf_event *event);
9783 static struct pmu perf_kprobe = {
9784         .task_ctx_nr    = perf_sw_context,
9785         .event_init     = perf_kprobe_event_init,
9786         .add            = perf_trace_add,
9787         .del            = perf_trace_del,
9788         .start          = perf_swevent_start,
9789         .stop           = perf_swevent_stop,
9790         .read           = perf_swevent_read,
9791         .attr_groups    = kprobe_attr_groups,
9792 };
9793
9794 static int perf_kprobe_event_init(struct perf_event *event)
9795 {
9796         int err;
9797         bool is_retprobe;
9798
9799         if (event->attr.type != perf_kprobe.type)
9800                 return -ENOENT;
9801
9802         if (!perfmon_capable())
9803                 return -EACCES;
9804
9805         /*
9806          * no branch sampling for probe events
9807          */
9808         if (has_branch_stack(event))
9809                 return -EOPNOTSUPP;
9810
9811         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9812         err = perf_kprobe_init(event, is_retprobe);
9813         if (err)
9814                 return err;
9815
9816         event->destroy = perf_kprobe_destroy;
9817
9818         return 0;
9819 }
9820 #endif /* CONFIG_KPROBE_EVENTS */
9821
9822 #ifdef CONFIG_UPROBE_EVENTS
9823 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9824
9825 static struct attribute *uprobe_attrs[] = {
9826         &format_attr_retprobe.attr,
9827         &format_attr_ref_ctr_offset.attr,
9828         NULL,
9829 };
9830
9831 static struct attribute_group uprobe_format_group = {
9832         .name = "format",
9833         .attrs = uprobe_attrs,
9834 };
9835
9836 static const struct attribute_group *uprobe_attr_groups[] = {
9837         &uprobe_format_group,
9838         NULL,
9839 };
9840
9841 static int perf_uprobe_event_init(struct perf_event *event);
9842 static struct pmu perf_uprobe = {
9843         .task_ctx_nr    = perf_sw_context,
9844         .event_init     = perf_uprobe_event_init,
9845         .add            = perf_trace_add,
9846         .del            = perf_trace_del,
9847         .start          = perf_swevent_start,
9848         .stop           = perf_swevent_stop,
9849         .read           = perf_swevent_read,
9850         .attr_groups    = uprobe_attr_groups,
9851 };
9852
9853 static int perf_uprobe_event_init(struct perf_event *event)
9854 {
9855         int err;
9856         unsigned long ref_ctr_offset;
9857         bool is_retprobe;
9858
9859         if (event->attr.type != perf_uprobe.type)
9860                 return -ENOENT;
9861
9862         if (!perfmon_capable())
9863                 return -EACCES;
9864
9865         /*
9866          * no branch sampling for probe events
9867          */
9868         if (has_branch_stack(event))
9869                 return -EOPNOTSUPP;
9870
9871         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9872         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9873         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9874         if (err)
9875                 return err;
9876
9877         event->destroy = perf_uprobe_destroy;
9878
9879         return 0;
9880 }
9881 #endif /* CONFIG_UPROBE_EVENTS */
9882
9883 static inline void perf_tp_register(void)
9884 {
9885         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9886 #ifdef CONFIG_KPROBE_EVENTS
9887         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9888 #endif
9889 #ifdef CONFIG_UPROBE_EVENTS
9890         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9891 #endif
9892 }
9893
9894 static void perf_event_free_filter(struct perf_event *event)
9895 {
9896         ftrace_profile_free_filter(event);
9897 }
9898
9899 #ifdef CONFIG_BPF_SYSCALL
9900 static void bpf_overflow_handler(struct perf_event *event,
9901                                  struct perf_sample_data *data,
9902                                  struct pt_regs *regs)
9903 {
9904         struct bpf_perf_event_data_kern ctx = {
9905                 .data = data,
9906                 .event = event,
9907         };
9908         int ret = 0;
9909
9910         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9911         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9912                 goto out;
9913         rcu_read_lock();
9914         ret = BPF_PROG_RUN(event->prog, &ctx);
9915         rcu_read_unlock();
9916 out:
9917         __this_cpu_dec(bpf_prog_active);
9918         if (!ret)
9919                 return;
9920
9921         event->orig_overflow_handler(event, data, regs);
9922 }
9923
9924 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9925 {
9926         struct bpf_prog *prog;
9927
9928         if (event->overflow_handler_context)
9929                 /* hw breakpoint or kernel counter */
9930                 return -EINVAL;
9931
9932         if (event->prog)
9933                 return -EEXIST;
9934
9935         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9936         if (IS_ERR(prog))
9937                 return PTR_ERR(prog);
9938
9939         if (event->attr.precise_ip &&
9940             prog->call_get_stack &&
9941             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9942              event->attr.exclude_callchain_kernel ||
9943              event->attr.exclude_callchain_user)) {
9944                 /*
9945                  * On perf_event with precise_ip, calling bpf_get_stack()
9946                  * may trigger unwinder warnings and occasional crashes.
9947                  * bpf_get_[stack|stackid] works around this issue by using
9948                  * callchain attached to perf_sample_data. If the
9949                  * perf_event does not full (kernel and user) callchain
9950                  * attached to perf_sample_data, do not allow attaching BPF
9951                  * program that calls bpf_get_[stack|stackid].
9952                  */
9953                 bpf_prog_put(prog);
9954                 return -EPROTO;
9955         }
9956
9957         event->prog = prog;
9958         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9959         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9960         return 0;
9961 }
9962
9963 static void perf_event_free_bpf_handler(struct perf_event *event)
9964 {
9965         struct bpf_prog *prog = event->prog;
9966
9967         if (!prog)
9968                 return;
9969
9970         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9971         event->prog = NULL;
9972         bpf_prog_put(prog);
9973 }
9974 #else
9975 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9976 {
9977         return -EOPNOTSUPP;
9978 }
9979 static void perf_event_free_bpf_handler(struct perf_event *event)
9980 {
9981 }
9982 #endif
9983
9984 /*
9985  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9986  * with perf_event_open()
9987  */
9988 static inline bool perf_event_is_tracing(struct perf_event *event)
9989 {
9990         if (event->pmu == &perf_tracepoint)
9991                 return true;
9992 #ifdef CONFIG_KPROBE_EVENTS
9993         if (event->pmu == &perf_kprobe)
9994                 return true;
9995 #endif
9996 #ifdef CONFIG_UPROBE_EVENTS
9997         if (event->pmu == &perf_uprobe)
9998                 return true;
9999 #endif
10000         return false;
10001 }
10002
10003 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10004 {
10005         bool is_kprobe, is_tracepoint, is_syscall_tp;
10006         struct bpf_prog *prog;
10007         int ret;
10008
10009         if (!perf_event_is_tracing(event))
10010                 return perf_event_set_bpf_handler(event, prog_fd);
10011
10012         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10013         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10014         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10015         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10016                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10017                 return -EINVAL;
10018
10019         prog = bpf_prog_get(prog_fd);
10020         if (IS_ERR(prog))
10021                 return PTR_ERR(prog);
10022
10023         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10024             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10025             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
10026                 /* valid fd, but invalid bpf program type */
10027                 bpf_prog_put(prog);
10028                 return -EINVAL;
10029         }
10030
10031         /* Kprobe override only works for kprobes, not uprobes. */
10032         if (prog->kprobe_override &&
10033             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
10034                 bpf_prog_put(prog);
10035                 return -EINVAL;
10036         }
10037
10038         if (is_tracepoint || is_syscall_tp) {
10039                 int off = trace_event_get_offsets(event->tp_event);
10040
10041                 if (prog->aux->max_ctx_offset > off) {
10042                         bpf_prog_put(prog);
10043                         return -EACCES;
10044                 }
10045         }
10046
10047         ret = perf_event_attach_bpf_prog(event, prog);
10048         if (ret)
10049                 bpf_prog_put(prog);
10050         return ret;
10051 }
10052
10053 static void perf_event_free_bpf_prog(struct perf_event *event)
10054 {
10055         if (!perf_event_is_tracing(event)) {
10056                 perf_event_free_bpf_handler(event);
10057                 return;
10058         }
10059         perf_event_detach_bpf_prog(event);
10060 }
10061
10062 #else
10063
10064 static inline void perf_tp_register(void)
10065 {
10066 }
10067
10068 static void perf_event_free_filter(struct perf_event *event)
10069 {
10070 }
10071
10072 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
10073 {
10074         return -ENOENT;
10075 }
10076
10077 static void perf_event_free_bpf_prog(struct perf_event *event)
10078 {
10079 }
10080 #endif /* CONFIG_EVENT_TRACING */
10081
10082 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10083 void perf_bp_event(struct perf_event *bp, void *data)
10084 {
10085         struct perf_sample_data sample;
10086         struct pt_regs *regs = data;
10087
10088         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10089
10090         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10091                 perf_swevent_event(bp, 1, &sample, regs);
10092 }
10093 #endif
10094
10095 /*
10096  * Allocate a new address filter
10097  */
10098 static struct perf_addr_filter *
10099 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10100 {
10101         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10102         struct perf_addr_filter *filter;
10103
10104         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10105         if (!filter)
10106                 return NULL;
10107
10108         INIT_LIST_HEAD(&filter->entry);
10109         list_add_tail(&filter->entry, filters);
10110
10111         return filter;
10112 }
10113
10114 static void free_filters_list(struct list_head *filters)
10115 {
10116         struct perf_addr_filter *filter, *iter;
10117
10118         list_for_each_entry_safe(filter, iter, filters, entry) {
10119                 path_put(&filter->path);
10120                 list_del(&filter->entry);
10121                 kfree(filter);
10122         }
10123 }
10124
10125 /*
10126  * Free existing address filters and optionally install new ones
10127  */
10128 static void perf_addr_filters_splice(struct perf_event *event,
10129                                      struct list_head *head)
10130 {
10131         unsigned long flags;
10132         LIST_HEAD(list);
10133
10134         if (!has_addr_filter(event))
10135                 return;
10136
10137         /* don't bother with children, they don't have their own filters */
10138         if (event->parent)
10139                 return;
10140
10141         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10142
10143         list_splice_init(&event->addr_filters.list, &list);
10144         if (head)
10145                 list_splice(head, &event->addr_filters.list);
10146
10147         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10148
10149         free_filters_list(&list);
10150 }
10151
10152 /*
10153  * Scan through mm's vmas and see if one of them matches the
10154  * @filter; if so, adjust filter's address range.
10155  * Called with mm::mmap_lock down for reading.
10156  */
10157 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10158                                    struct mm_struct *mm,
10159                                    struct perf_addr_filter_range *fr)
10160 {
10161         struct vm_area_struct *vma;
10162
10163         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10164                 if (!vma->vm_file)
10165                         continue;
10166
10167                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10168                         return;
10169         }
10170 }
10171
10172 /*
10173  * Update event's address range filters based on the
10174  * task's existing mappings, if any.
10175  */
10176 static void perf_event_addr_filters_apply(struct perf_event *event)
10177 {
10178         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10179         struct task_struct *task = READ_ONCE(event->ctx->task);
10180         struct perf_addr_filter *filter;
10181         struct mm_struct *mm = NULL;
10182         unsigned int count = 0;
10183         unsigned long flags;
10184
10185         /*
10186          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10187          * will stop on the parent's child_mutex that our caller is also holding
10188          */
10189         if (task == TASK_TOMBSTONE)
10190                 return;
10191
10192         if (ifh->nr_file_filters) {
10193                 mm = get_task_mm(event->ctx->task);
10194                 if (!mm)
10195                         goto restart;
10196
10197                 mmap_read_lock(mm);
10198         }
10199
10200         raw_spin_lock_irqsave(&ifh->lock, flags);
10201         list_for_each_entry(filter, &ifh->list, entry) {
10202                 if (filter->path.dentry) {
10203                         /*
10204                          * Adjust base offset if the filter is associated to a
10205                          * binary that needs to be mapped:
10206                          */
10207                         event->addr_filter_ranges[count].start = 0;
10208                         event->addr_filter_ranges[count].size = 0;
10209
10210                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10211                 } else {
10212                         event->addr_filter_ranges[count].start = filter->offset;
10213                         event->addr_filter_ranges[count].size  = filter->size;
10214                 }
10215
10216                 count++;
10217         }
10218
10219         event->addr_filters_gen++;
10220         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10221
10222         if (ifh->nr_file_filters) {
10223                 mmap_read_unlock(mm);
10224
10225                 mmput(mm);
10226         }
10227
10228 restart:
10229         perf_event_stop(event, 1);
10230 }
10231
10232 /*
10233  * Address range filtering: limiting the data to certain
10234  * instruction address ranges. Filters are ioctl()ed to us from
10235  * userspace as ascii strings.
10236  *
10237  * Filter string format:
10238  *
10239  * ACTION RANGE_SPEC
10240  * where ACTION is one of the
10241  *  * "filter": limit the trace to this region
10242  *  * "start": start tracing from this address
10243  *  * "stop": stop tracing at this address/region;
10244  * RANGE_SPEC is
10245  *  * for kernel addresses: <start address>[/<size>]
10246  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10247  *
10248  * if <size> is not specified or is zero, the range is treated as a single
10249  * address; not valid for ACTION=="filter".
10250  */
10251 enum {
10252         IF_ACT_NONE = -1,
10253         IF_ACT_FILTER,
10254         IF_ACT_START,
10255         IF_ACT_STOP,
10256         IF_SRC_FILE,
10257         IF_SRC_KERNEL,
10258         IF_SRC_FILEADDR,
10259         IF_SRC_KERNELADDR,
10260 };
10261
10262 enum {
10263         IF_STATE_ACTION = 0,
10264         IF_STATE_SOURCE,
10265         IF_STATE_END,
10266 };
10267
10268 static const match_table_t if_tokens = {
10269         { IF_ACT_FILTER,        "filter" },
10270         { IF_ACT_START,         "start" },
10271         { IF_ACT_STOP,          "stop" },
10272         { IF_SRC_FILE,          "%u/%u@%s" },
10273         { IF_SRC_KERNEL,        "%u/%u" },
10274         { IF_SRC_FILEADDR,      "%u@%s" },
10275         { IF_SRC_KERNELADDR,    "%u" },
10276         { IF_ACT_NONE,          NULL },
10277 };
10278
10279 /*
10280  * Address filter string parser
10281  */
10282 static int
10283 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10284                              struct list_head *filters)
10285 {
10286         struct perf_addr_filter *filter = NULL;
10287         char *start, *orig, *filename = NULL;
10288         substring_t args[MAX_OPT_ARGS];
10289         int state = IF_STATE_ACTION, token;
10290         unsigned int kernel = 0;
10291         int ret = -EINVAL;
10292
10293         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10294         if (!fstr)
10295                 return -ENOMEM;
10296
10297         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10298                 static const enum perf_addr_filter_action_t actions[] = {
10299                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10300                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10301                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10302                 };
10303                 ret = -EINVAL;
10304
10305                 if (!*start)
10306                         continue;
10307
10308                 /* filter definition begins */
10309                 if (state == IF_STATE_ACTION) {
10310                         filter = perf_addr_filter_new(event, filters);
10311                         if (!filter)
10312                                 goto fail;
10313                 }
10314
10315                 token = match_token(start, if_tokens, args);
10316                 switch (token) {
10317                 case IF_ACT_FILTER:
10318                 case IF_ACT_START:
10319                 case IF_ACT_STOP:
10320                         if (state != IF_STATE_ACTION)
10321                                 goto fail;
10322
10323                         filter->action = actions[token];
10324                         state = IF_STATE_SOURCE;
10325                         break;
10326
10327                 case IF_SRC_KERNELADDR:
10328                 case IF_SRC_KERNEL:
10329                         kernel = 1;
10330                         fallthrough;
10331
10332                 case IF_SRC_FILEADDR:
10333                 case IF_SRC_FILE:
10334                         if (state != IF_STATE_SOURCE)
10335                                 goto fail;
10336
10337                         *args[0].to = 0;
10338                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10339                         if (ret)
10340                                 goto fail;
10341
10342                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10343                                 *args[1].to = 0;
10344                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10345                                 if (ret)
10346                                         goto fail;
10347                         }
10348
10349                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10350                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10351
10352                                 kfree(filename);
10353                                 filename = match_strdup(&args[fpos]);
10354                                 if (!filename) {
10355                                         ret = -ENOMEM;
10356                                         goto fail;
10357                                 }
10358                         }
10359
10360                         state = IF_STATE_END;
10361                         break;
10362
10363                 default:
10364                         goto fail;
10365                 }
10366
10367                 /*
10368                  * Filter definition is fully parsed, validate and install it.
10369                  * Make sure that it doesn't contradict itself or the event's
10370                  * attribute.
10371                  */
10372                 if (state == IF_STATE_END) {
10373                         ret = -EINVAL;
10374                         if (kernel && event->attr.exclude_kernel)
10375                                 goto fail;
10376
10377                         /*
10378                          * ACTION "filter" must have a non-zero length region
10379                          * specified.
10380                          */
10381                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10382                             !filter->size)
10383                                 goto fail;
10384
10385                         if (!kernel) {
10386                                 if (!filename)
10387                                         goto fail;
10388
10389                                 /*
10390                                  * For now, we only support file-based filters
10391                                  * in per-task events; doing so for CPU-wide
10392                                  * events requires additional context switching
10393                                  * trickery, since same object code will be
10394                                  * mapped at different virtual addresses in
10395                                  * different processes.
10396                                  */
10397                                 ret = -EOPNOTSUPP;
10398                                 if (!event->ctx->task)
10399                                         goto fail;
10400
10401                                 /* look up the path and grab its inode */
10402                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10403                                                 &filter->path);
10404                                 if (ret)
10405                                         goto fail;
10406
10407                                 ret = -EINVAL;
10408                                 if (!filter->path.dentry ||
10409                                     !S_ISREG(d_inode(filter->path.dentry)
10410                                              ->i_mode))
10411                                         goto fail;
10412
10413                                 event->addr_filters.nr_file_filters++;
10414                         }
10415
10416                         /* ready to consume more filters */
10417                         state = IF_STATE_ACTION;
10418                         filter = NULL;
10419                 }
10420         }
10421
10422         if (state != IF_STATE_ACTION)
10423                 goto fail;
10424
10425         kfree(filename);
10426         kfree(orig);
10427
10428         return 0;
10429
10430 fail:
10431         kfree(filename);
10432         free_filters_list(filters);
10433         kfree(orig);
10434
10435         return ret;
10436 }
10437
10438 static int
10439 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10440 {
10441         LIST_HEAD(filters);
10442         int ret;
10443
10444         /*
10445          * Since this is called in perf_ioctl() path, we're already holding
10446          * ctx::mutex.
10447          */
10448         lockdep_assert_held(&event->ctx->mutex);
10449
10450         if (WARN_ON_ONCE(event->parent))
10451                 return -EINVAL;
10452
10453         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10454         if (ret)
10455                 goto fail_clear_files;
10456
10457         ret = event->pmu->addr_filters_validate(&filters);
10458         if (ret)
10459                 goto fail_free_filters;
10460
10461         /* remove existing filters, if any */
10462         perf_addr_filters_splice(event, &filters);
10463
10464         /* install new filters */
10465         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10466
10467         return ret;
10468
10469 fail_free_filters:
10470         free_filters_list(&filters);
10471
10472 fail_clear_files:
10473         event->addr_filters.nr_file_filters = 0;
10474
10475         return ret;
10476 }
10477
10478 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10479 {
10480         int ret = -EINVAL;
10481         char *filter_str;
10482
10483         filter_str = strndup_user(arg, PAGE_SIZE);
10484         if (IS_ERR(filter_str))
10485                 return PTR_ERR(filter_str);
10486
10487 #ifdef CONFIG_EVENT_TRACING
10488         if (perf_event_is_tracing(event)) {
10489                 struct perf_event_context *ctx = event->ctx;
10490
10491                 /*
10492                  * Beware, here be dragons!!
10493                  *
10494                  * the tracepoint muck will deadlock against ctx->mutex, but
10495                  * the tracepoint stuff does not actually need it. So
10496                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10497                  * already have a reference on ctx.
10498                  *
10499                  * This can result in event getting moved to a different ctx,
10500                  * but that does not affect the tracepoint state.
10501                  */
10502                 mutex_unlock(&ctx->mutex);
10503                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10504                 mutex_lock(&ctx->mutex);
10505         } else
10506 #endif
10507         if (has_addr_filter(event))
10508                 ret = perf_event_set_addr_filter(event, filter_str);
10509
10510         kfree(filter_str);
10511         return ret;
10512 }
10513
10514 /*
10515  * hrtimer based swevent callback
10516  */
10517
10518 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10519 {
10520         enum hrtimer_restart ret = HRTIMER_RESTART;
10521         struct perf_sample_data data;
10522         struct pt_regs *regs;
10523         struct perf_event *event;
10524         u64 period;
10525
10526         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10527
10528         if (event->state != PERF_EVENT_STATE_ACTIVE)
10529                 return HRTIMER_NORESTART;
10530
10531         event->pmu->read(event);
10532
10533         perf_sample_data_init(&data, 0, event->hw.last_period);
10534         regs = get_irq_regs();
10535
10536         if (regs && !perf_exclude_event(event, regs)) {
10537                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10538                         if (__perf_event_overflow(event, 1, &data, regs))
10539                                 ret = HRTIMER_NORESTART;
10540         }
10541
10542         period = max_t(u64, 10000, event->hw.sample_period);
10543         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10544
10545         return ret;
10546 }
10547
10548 static void perf_swevent_start_hrtimer(struct perf_event *event)
10549 {
10550         struct hw_perf_event *hwc = &event->hw;
10551         s64 period;
10552
10553         if (!is_sampling_event(event))
10554                 return;
10555
10556         period = local64_read(&hwc->period_left);
10557         if (period) {
10558                 if (period < 0)
10559                         period = 10000;
10560
10561                 local64_set(&hwc->period_left, 0);
10562         } else {
10563                 period = max_t(u64, 10000, hwc->sample_period);
10564         }
10565         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10566                       HRTIMER_MODE_REL_PINNED_HARD);
10567 }
10568
10569 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10570 {
10571         struct hw_perf_event *hwc = &event->hw;
10572
10573         if (is_sampling_event(event)) {
10574                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10575                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10576
10577                 hrtimer_cancel(&hwc->hrtimer);
10578         }
10579 }
10580
10581 static void perf_swevent_init_hrtimer(struct perf_event *event)
10582 {
10583         struct hw_perf_event *hwc = &event->hw;
10584
10585         if (!is_sampling_event(event))
10586                 return;
10587
10588         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10589         hwc->hrtimer.function = perf_swevent_hrtimer;
10590
10591         /*
10592          * Since hrtimers have a fixed rate, we can do a static freq->period
10593          * mapping and avoid the whole period adjust feedback stuff.
10594          */
10595         if (event->attr.freq) {
10596                 long freq = event->attr.sample_freq;
10597
10598                 event->attr.sample_period = NSEC_PER_SEC / freq;
10599                 hwc->sample_period = event->attr.sample_period;
10600                 local64_set(&hwc->period_left, hwc->sample_period);
10601                 hwc->last_period = hwc->sample_period;
10602                 event->attr.freq = 0;
10603         }
10604 }
10605
10606 /*
10607  * Software event: cpu wall time clock
10608  */
10609
10610 static void cpu_clock_event_update(struct perf_event *event)
10611 {
10612         s64 prev;
10613         u64 now;
10614
10615         now = local_clock();
10616         prev = local64_xchg(&event->hw.prev_count, now);
10617         local64_add(now - prev, &event->count);
10618 }
10619
10620 static void cpu_clock_event_start(struct perf_event *event, int flags)
10621 {
10622         local64_set(&event->hw.prev_count, local_clock());
10623         perf_swevent_start_hrtimer(event);
10624 }
10625
10626 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10627 {
10628         perf_swevent_cancel_hrtimer(event);
10629         cpu_clock_event_update(event);
10630 }
10631
10632 static int cpu_clock_event_add(struct perf_event *event, int flags)
10633 {
10634         if (flags & PERF_EF_START)
10635                 cpu_clock_event_start(event, flags);
10636         perf_event_update_userpage(event);
10637
10638         return 0;
10639 }
10640
10641 static void cpu_clock_event_del(struct perf_event *event, int flags)
10642 {
10643         cpu_clock_event_stop(event, flags);
10644 }
10645
10646 static void cpu_clock_event_read(struct perf_event *event)
10647 {
10648         cpu_clock_event_update(event);
10649 }
10650
10651 static int cpu_clock_event_init(struct perf_event *event)
10652 {
10653         if (event->attr.type != PERF_TYPE_SOFTWARE)
10654                 return -ENOENT;
10655
10656         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10657                 return -ENOENT;
10658
10659         /*
10660          * no branch sampling for software events
10661          */
10662         if (has_branch_stack(event))
10663                 return -EOPNOTSUPP;
10664
10665         perf_swevent_init_hrtimer(event);
10666
10667         return 0;
10668 }
10669
10670 static struct pmu perf_cpu_clock = {
10671         .task_ctx_nr    = perf_sw_context,
10672
10673         .capabilities   = PERF_PMU_CAP_NO_NMI,
10674
10675         .event_init     = cpu_clock_event_init,
10676         .add            = cpu_clock_event_add,
10677         .del            = cpu_clock_event_del,
10678         .start          = cpu_clock_event_start,
10679         .stop           = cpu_clock_event_stop,
10680         .read           = cpu_clock_event_read,
10681 };
10682
10683 /*
10684  * Software event: task time clock
10685  */
10686
10687 static void task_clock_event_update(struct perf_event *event, u64 now)
10688 {
10689         u64 prev;
10690         s64 delta;
10691
10692         prev = local64_xchg(&event->hw.prev_count, now);
10693         delta = now - prev;
10694         local64_add(delta, &event->count);
10695 }
10696
10697 static void task_clock_event_start(struct perf_event *event, int flags)
10698 {
10699         local64_set(&event->hw.prev_count, event->ctx->time);
10700         perf_swevent_start_hrtimer(event);
10701 }
10702
10703 static void task_clock_event_stop(struct perf_event *event, int flags)
10704 {
10705         perf_swevent_cancel_hrtimer(event);
10706         task_clock_event_update(event, event->ctx->time);
10707 }
10708
10709 static int task_clock_event_add(struct perf_event *event, int flags)
10710 {
10711         if (flags & PERF_EF_START)
10712                 task_clock_event_start(event, flags);
10713         perf_event_update_userpage(event);
10714
10715         return 0;
10716 }
10717
10718 static void task_clock_event_del(struct perf_event *event, int flags)
10719 {
10720         task_clock_event_stop(event, PERF_EF_UPDATE);
10721 }
10722
10723 static void task_clock_event_read(struct perf_event *event)
10724 {
10725         u64 now = perf_clock();
10726         u64 delta = now - event->ctx->timestamp;
10727         u64 time = event->ctx->time + delta;
10728
10729         task_clock_event_update(event, time);
10730 }
10731
10732 static int task_clock_event_init(struct perf_event *event)
10733 {
10734         if (event->attr.type != PERF_TYPE_SOFTWARE)
10735                 return -ENOENT;
10736
10737         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10738                 return -ENOENT;
10739
10740         /*
10741          * no branch sampling for software events
10742          */
10743         if (has_branch_stack(event))
10744                 return -EOPNOTSUPP;
10745
10746         perf_swevent_init_hrtimer(event);
10747
10748         return 0;
10749 }
10750
10751 static struct pmu perf_task_clock = {
10752         .task_ctx_nr    = perf_sw_context,
10753
10754         .capabilities   = PERF_PMU_CAP_NO_NMI,
10755
10756         .event_init     = task_clock_event_init,
10757         .add            = task_clock_event_add,
10758         .del            = task_clock_event_del,
10759         .start          = task_clock_event_start,
10760         .stop           = task_clock_event_stop,
10761         .read           = task_clock_event_read,
10762 };
10763
10764 static void perf_pmu_nop_void(struct pmu *pmu)
10765 {
10766 }
10767
10768 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10769 {
10770 }
10771
10772 static int perf_pmu_nop_int(struct pmu *pmu)
10773 {
10774         return 0;
10775 }
10776
10777 static int perf_event_nop_int(struct perf_event *event, u64 value)
10778 {
10779         return 0;
10780 }
10781
10782 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10783
10784 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10785 {
10786         __this_cpu_write(nop_txn_flags, flags);
10787
10788         if (flags & ~PERF_PMU_TXN_ADD)
10789                 return;
10790
10791         perf_pmu_disable(pmu);
10792 }
10793
10794 static int perf_pmu_commit_txn(struct pmu *pmu)
10795 {
10796         unsigned int flags = __this_cpu_read(nop_txn_flags);
10797
10798         __this_cpu_write(nop_txn_flags, 0);
10799
10800         if (flags & ~PERF_PMU_TXN_ADD)
10801                 return 0;
10802
10803         perf_pmu_enable(pmu);
10804         return 0;
10805 }
10806
10807 static void perf_pmu_cancel_txn(struct pmu *pmu)
10808 {
10809         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10810
10811         __this_cpu_write(nop_txn_flags, 0);
10812
10813         if (flags & ~PERF_PMU_TXN_ADD)
10814                 return;
10815
10816         perf_pmu_enable(pmu);
10817 }
10818
10819 static int perf_event_idx_default(struct perf_event *event)
10820 {
10821         return 0;
10822 }
10823
10824 /*
10825  * Ensures all contexts with the same task_ctx_nr have the same
10826  * pmu_cpu_context too.
10827  */
10828 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10829 {
10830         struct pmu *pmu;
10831
10832         if (ctxn < 0)
10833                 return NULL;
10834
10835         list_for_each_entry(pmu, &pmus, entry) {
10836                 if (pmu->task_ctx_nr == ctxn)
10837                         return pmu->pmu_cpu_context;
10838         }
10839
10840         return NULL;
10841 }
10842
10843 static void free_pmu_context(struct pmu *pmu)
10844 {
10845         /*
10846          * Static contexts such as perf_sw_context have a global lifetime
10847          * and may be shared between different PMUs. Avoid freeing them
10848          * when a single PMU is going away.
10849          */
10850         if (pmu->task_ctx_nr > perf_invalid_context)
10851                 return;
10852
10853         free_percpu(pmu->pmu_cpu_context);
10854 }
10855
10856 /*
10857  * Let userspace know that this PMU supports address range filtering:
10858  */
10859 static ssize_t nr_addr_filters_show(struct device *dev,
10860                                     struct device_attribute *attr,
10861                                     char *page)
10862 {
10863         struct pmu *pmu = dev_get_drvdata(dev);
10864
10865         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10866 }
10867 DEVICE_ATTR_RO(nr_addr_filters);
10868
10869 static struct idr pmu_idr;
10870
10871 static ssize_t
10872 type_show(struct device *dev, struct device_attribute *attr, char *page)
10873 {
10874         struct pmu *pmu = dev_get_drvdata(dev);
10875
10876         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10877 }
10878 static DEVICE_ATTR_RO(type);
10879
10880 static ssize_t
10881 perf_event_mux_interval_ms_show(struct device *dev,
10882                                 struct device_attribute *attr,
10883                                 char *page)
10884 {
10885         struct pmu *pmu = dev_get_drvdata(dev);
10886
10887         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10888 }
10889
10890 static DEFINE_MUTEX(mux_interval_mutex);
10891
10892 static ssize_t
10893 perf_event_mux_interval_ms_store(struct device *dev,
10894                                  struct device_attribute *attr,
10895                                  const char *buf, size_t count)
10896 {
10897         struct pmu *pmu = dev_get_drvdata(dev);
10898         int timer, cpu, ret;
10899
10900         ret = kstrtoint(buf, 0, &timer);
10901         if (ret)
10902                 return ret;
10903
10904         if (timer < 1)
10905                 return -EINVAL;
10906
10907         /* same value, noting to do */
10908         if (timer == pmu->hrtimer_interval_ms)
10909                 return count;
10910
10911         mutex_lock(&mux_interval_mutex);
10912         pmu->hrtimer_interval_ms = timer;
10913
10914         /* update all cpuctx for this PMU */
10915         cpus_read_lock();
10916         for_each_online_cpu(cpu) {
10917                 struct perf_cpu_context *cpuctx;
10918                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10919                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10920
10921                 cpu_function_call(cpu,
10922                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10923         }
10924         cpus_read_unlock();
10925         mutex_unlock(&mux_interval_mutex);
10926
10927         return count;
10928 }
10929 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10930
10931 static struct attribute *pmu_dev_attrs[] = {
10932         &dev_attr_type.attr,
10933         &dev_attr_perf_event_mux_interval_ms.attr,
10934         NULL,
10935 };
10936 ATTRIBUTE_GROUPS(pmu_dev);
10937
10938 static int pmu_bus_running;
10939 static struct bus_type pmu_bus = {
10940         .name           = "event_source",
10941         .dev_groups     = pmu_dev_groups,
10942 };
10943
10944 static void pmu_dev_release(struct device *dev)
10945 {
10946         kfree(dev);
10947 }
10948
10949 static int pmu_dev_alloc(struct pmu *pmu)
10950 {
10951         int ret = -ENOMEM;
10952
10953         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10954         if (!pmu->dev)
10955                 goto out;
10956
10957         pmu->dev->groups = pmu->attr_groups;
10958         device_initialize(pmu->dev);
10959         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10960         if (ret)
10961                 goto free_dev;
10962
10963         dev_set_drvdata(pmu->dev, pmu);
10964         pmu->dev->bus = &pmu_bus;
10965         pmu->dev->release = pmu_dev_release;
10966         ret = device_add(pmu->dev);
10967         if (ret)
10968                 goto free_dev;
10969
10970         /* For PMUs with address filters, throw in an extra attribute: */
10971         if (pmu->nr_addr_filters)
10972                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10973
10974         if (ret)
10975                 goto del_dev;
10976
10977         if (pmu->attr_update)
10978                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10979
10980         if (ret)
10981                 goto del_dev;
10982
10983 out:
10984         return ret;
10985
10986 del_dev:
10987         device_del(pmu->dev);
10988
10989 free_dev:
10990         put_device(pmu->dev);
10991         goto out;
10992 }
10993
10994 static struct lock_class_key cpuctx_mutex;
10995 static struct lock_class_key cpuctx_lock;
10996
10997 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10998 {
10999         int cpu, ret, max = PERF_TYPE_MAX;
11000
11001         mutex_lock(&pmus_lock);
11002         ret = -ENOMEM;
11003         pmu->pmu_disable_count = alloc_percpu(int);
11004         if (!pmu->pmu_disable_count)
11005                 goto unlock;
11006
11007         pmu->type = -1;
11008         if (!name)
11009                 goto skip_type;
11010         pmu->name = name;
11011
11012         if (type != PERF_TYPE_SOFTWARE) {
11013                 if (type >= 0)
11014                         max = type;
11015
11016                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11017                 if (ret < 0)
11018                         goto free_pdc;
11019
11020                 WARN_ON(type >= 0 && ret != type);
11021
11022                 type = ret;
11023         }
11024         pmu->type = type;
11025
11026         if (pmu_bus_running) {
11027                 ret = pmu_dev_alloc(pmu);
11028                 if (ret)
11029                         goto free_idr;
11030         }
11031
11032 skip_type:
11033         if (pmu->task_ctx_nr == perf_hw_context) {
11034                 static int hw_context_taken = 0;
11035
11036                 /*
11037                  * Other than systems with heterogeneous CPUs, it never makes
11038                  * sense for two PMUs to share perf_hw_context. PMUs which are
11039                  * uncore must use perf_invalid_context.
11040                  */
11041                 if (WARN_ON_ONCE(hw_context_taken &&
11042                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11043                         pmu->task_ctx_nr = perf_invalid_context;
11044
11045                 hw_context_taken = 1;
11046         }
11047
11048         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11049         if (pmu->pmu_cpu_context)
11050                 goto got_cpu_context;
11051
11052         ret = -ENOMEM;
11053         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11054         if (!pmu->pmu_cpu_context)
11055                 goto free_dev;
11056
11057         for_each_possible_cpu(cpu) {
11058                 struct perf_cpu_context *cpuctx;
11059
11060                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11061                 __perf_event_init_context(&cpuctx->ctx);
11062                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11063                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11064                 cpuctx->ctx.pmu = pmu;
11065                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11066
11067                 __perf_mux_hrtimer_init(cpuctx, cpu);
11068
11069                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11070                 cpuctx->heap = cpuctx->heap_default;
11071         }
11072
11073 got_cpu_context:
11074         if (!pmu->start_txn) {
11075                 if (pmu->pmu_enable) {
11076                         /*
11077                          * If we have pmu_enable/pmu_disable calls, install
11078                          * transaction stubs that use that to try and batch
11079                          * hardware accesses.
11080                          */
11081                         pmu->start_txn  = perf_pmu_start_txn;
11082                         pmu->commit_txn = perf_pmu_commit_txn;
11083                         pmu->cancel_txn = perf_pmu_cancel_txn;
11084                 } else {
11085                         pmu->start_txn  = perf_pmu_nop_txn;
11086                         pmu->commit_txn = perf_pmu_nop_int;
11087                         pmu->cancel_txn = perf_pmu_nop_void;
11088                 }
11089         }
11090
11091         if (!pmu->pmu_enable) {
11092                 pmu->pmu_enable  = perf_pmu_nop_void;
11093                 pmu->pmu_disable = perf_pmu_nop_void;
11094         }
11095
11096         if (!pmu->check_period)
11097                 pmu->check_period = perf_event_nop_int;
11098
11099         if (!pmu->event_idx)
11100                 pmu->event_idx = perf_event_idx_default;
11101
11102         /*
11103          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11104          * since these cannot be in the IDR. This way the linear search
11105          * is fast, provided a valid software event is provided.
11106          */
11107         if (type == PERF_TYPE_SOFTWARE || !name)
11108                 list_add_rcu(&pmu->entry, &pmus);
11109         else
11110                 list_add_tail_rcu(&pmu->entry, &pmus);
11111
11112         atomic_set(&pmu->exclusive_cnt, 0);
11113         ret = 0;
11114 unlock:
11115         mutex_unlock(&pmus_lock);
11116
11117         return ret;
11118
11119 free_dev:
11120         device_del(pmu->dev);
11121         put_device(pmu->dev);
11122
11123 free_idr:
11124         if (pmu->type != PERF_TYPE_SOFTWARE)
11125                 idr_remove(&pmu_idr, pmu->type);
11126
11127 free_pdc:
11128         free_percpu(pmu->pmu_disable_count);
11129         goto unlock;
11130 }
11131 EXPORT_SYMBOL_GPL(perf_pmu_register);
11132
11133 void perf_pmu_unregister(struct pmu *pmu)
11134 {
11135         mutex_lock(&pmus_lock);
11136         list_del_rcu(&pmu->entry);
11137
11138         /*
11139          * We dereference the pmu list under both SRCU and regular RCU, so
11140          * synchronize against both of those.
11141          */
11142         synchronize_srcu(&pmus_srcu);
11143         synchronize_rcu();
11144
11145         free_percpu(pmu->pmu_disable_count);
11146         if (pmu->type != PERF_TYPE_SOFTWARE)
11147                 idr_remove(&pmu_idr, pmu->type);
11148         if (pmu_bus_running) {
11149                 if (pmu->nr_addr_filters)
11150                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11151                 device_del(pmu->dev);
11152                 put_device(pmu->dev);
11153         }
11154         free_pmu_context(pmu);
11155         mutex_unlock(&pmus_lock);
11156 }
11157 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11158
11159 static inline bool has_extended_regs(struct perf_event *event)
11160 {
11161         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11162                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11163 }
11164
11165 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11166 {
11167         struct perf_event_context *ctx = NULL;
11168         int ret;
11169
11170         if (!try_module_get(pmu->module))
11171                 return -ENODEV;
11172
11173         /*
11174          * A number of pmu->event_init() methods iterate the sibling_list to,
11175          * for example, validate if the group fits on the PMU. Therefore,
11176          * if this is a sibling event, acquire the ctx->mutex to protect
11177          * the sibling_list.
11178          */
11179         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11180                 /*
11181                  * This ctx->mutex can nest when we're called through
11182                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11183                  */
11184                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11185                                                  SINGLE_DEPTH_NESTING);
11186                 BUG_ON(!ctx);
11187         }
11188
11189         event->pmu = pmu;
11190         ret = pmu->event_init(event);
11191
11192         if (ctx)
11193                 perf_event_ctx_unlock(event->group_leader, ctx);
11194
11195         if (!ret) {
11196                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11197                     has_extended_regs(event))
11198                         ret = -EOPNOTSUPP;
11199
11200                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11201                     event_has_any_exclude_flag(event))
11202                         ret = -EINVAL;
11203
11204                 if (ret && event->destroy)
11205                         event->destroy(event);
11206         }
11207
11208         if (ret)
11209                 module_put(pmu->module);
11210
11211         return ret;
11212 }
11213
11214 static struct pmu *perf_init_event(struct perf_event *event)
11215 {
11216         bool extended_type = false;
11217         int idx, type, ret;
11218         struct pmu *pmu;
11219
11220         idx = srcu_read_lock(&pmus_srcu);
11221
11222         /* Try parent's PMU first: */
11223         if (event->parent && event->parent->pmu) {
11224                 pmu = event->parent->pmu;
11225                 ret = perf_try_init_event(pmu, event);
11226                 if (!ret)
11227                         goto unlock;
11228         }
11229
11230         /*
11231          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11232          * are often aliases for PERF_TYPE_RAW.
11233          */
11234         type = event->attr.type;
11235         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11236                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11237                 if (!type) {
11238                         type = PERF_TYPE_RAW;
11239                 } else {
11240                         extended_type = true;
11241                         event->attr.config &= PERF_HW_EVENT_MASK;
11242                 }
11243         }
11244
11245 again:
11246         rcu_read_lock();
11247         pmu = idr_find(&pmu_idr, type);
11248         rcu_read_unlock();
11249         if (pmu) {
11250                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11251                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11252                         goto fail;
11253
11254                 ret = perf_try_init_event(pmu, event);
11255                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11256                         type = event->attr.type;
11257                         goto again;
11258                 }
11259
11260                 if (ret)
11261                         pmu = ERR_PTR(ret);
11262
11263                 goto unlock;
11264         }
11265
11266         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11267                 ret = perf_try_init_event(pmu, event);
11268                 if (!ret)
11269                         goto unlock;
11270
11271                 if (ret != -ENOENT) {
11272                         pmu = ERR_PTR(ret);
11273                         goto unlock;
11274                 }
11275         }
11276 fail:
11277         pmu = ERR_PTR(-ENOENT);
11278 unlock:
11279         srcu_read_unlock(&pmus_srcu, idx);
11280
11281         return pmu;
11282 }
11283
11284 static void attach_sb_event(struct perf_event *event)
11285 {
11286         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11287
11288         raw_spin_lock(&pel->lock);
11289         list_add_rcu(&event->sb_list, &pel->list);
11290         raw_spin_unlock(&pel->lock);
11291 }
11292
11293 /*
11294  * We keep a list of all !task (and therefore per-cpu) events
11295  * that need to receive side-band records.
11296  *
11297  * This avoids having to scan all the various PMU per-cpu contexts
11298  * looking for them.
11299  */
11300 static void account_pmu_sb_event(struct perf_event *event)
11301 {
11302         if (is_sb_event(event))
11303                 attach_sb_event(event);
11304 }
11305
11306 static void account_event_cpu(struct perf_event *event, int cpu)
11307 {
11308         if (event->parent)
11309                 return;
11310
11311         if (is_cgroup_event(event))
11312                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11313 }
11314
11315 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11316 static void account_freq_event_nohz(void)
11317 {
11318 #ifdef CONFIG_NO_HZ_FULL
11319         /* Lock so we don't race with concurrent unaccount */
11320         spin_lock(&nr_freq_lock);
11321         if (atomic_inc_return(&nr_freq_events) == 1)
11322                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11323         spin_unlock(&nr_freq_lock);
11324 #endif
11325 }
11326
11327 static void account_freq_event(void)
11328 {
11329         if (tick_nohz_full_enabled())
11330                 account_freq_event_nohz();
11331         else
11332                 atomic_inc(&nr_freq_events);
11333 }
11334
11335
11336 static void account_event(struct perf_event *event)
11337 {
11338         bool inc = false;
11339
11340         if (event->parent)
11341                 return;
11342
11343         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11344                 inc = true;
11345         if (event->attr.mmap || event->attr.mmap_data)
11346                 atomic_inc(&nr_mmap_events);
11347         if (event->attr.build_id)
11348                 atomic_inc(&nr_build_id_events);
11349         if (event->attr.comm)
11350                 atomic_inc(&nr_comm_events);
11351         if (event->attr.namespaces)
11352                 atomic_inc(&nr_namespaces_events);
11353         if (event->attr.cgroup)
11354                 atomic_inc(&nr_cgroup_events);
11355         if (event->attr.task)
11356                 atomic_inc(&nr_task_events);
11357         if (event->attr.freq)
11358                 account_freq_event();
11359         if (event->attr.context_switch) {
11360                 atomic_inc(&nr_switch_events);
11361                 inc = true;
11362         }
11363         if (has_branch_stack(event))
11364                 inc = true;
11365         if (is_cgroup_event(event))
11366                 inc = true;
11367         if (event->attr.ksymbol)
11368                 atomic_inc(&nr_ksymbol_events);
11369         if (event->attr.bpf_event)
11370                 atomic_inc(&nr_bpf_events);
11371         if (event->attr.text_poke)
11372                 atomic_inc(&nr_text_poke_events);
11373
11374         if (inc) {
11375                 /*
11376                  * We need the mutex here because static_branch_enable()
11377                  * must complete *before* the perf_sched_count increment
11378                  * becomes visible.
11379                  */
11380                 if (atomic_inc_not_zero(&perf_sched_count))
11381                         goto enabled;
11382
11383                 mutex_lock(&perf_sched_mutex);
11384                 if (!atomic_read(&perf_sched_count)) {
11385                         static_branch_enable(&perf_sched_events);
11386                         /*
11387                          * Guarantee that all CPUs observe they key change and
11388                          * call the perf scheduling hooks before proceeding to
11389                          * install events that need them.
11390                          */
11391                         synchronize_rcu();
11392                 }
11393                 /*
11394                  * Now that we have waited for the sync_sched(), allow further
11395                  * increments to by-pass the mutex.
11396                  */
11397                 atomic_inc(&perf_sched_count);
11398                 mutex_unlock(&perf_sched_mutex);
11399         }
11400 enabled:
11401
11402         account_event_cpu(event, event->cpu);
11403
11404         account_pmu_sb_event(event);
11405 }
11406
11407 /*
11408  * Allocate and initialize an event structure
11409  */
11410 static struct perf_event *
11411 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11412                  struct task_struct *task,
11413                  struct perf_event *group_leader,
11414                  struct perf_event *parent_event,
11415                  perf_overflow_handler_t overflow_handler,
11416                  void *context, int cgroup_fd)
11417 {
11418         struct pmu *pmu;
11419         struct perf_event *event;
11420         struct hw_perf_event *hwc;
11421         long err = -EINVAL;
11422         int node;
11423
11424         if ((unsigned)cpu >= nr_cpu_ids) {
11425                 if (!task || cpu != -1)
11426                         return ERR_PTR(-EINVAL);
11427         }
11428         if (attr->sigtrap && !task) {
11429                 /* Requires a task: avoid signalling random tasks. */
11430                 return ERR_PTR(-EINVAL);
11431         }
11432
11433         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11434         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11435                                       node);
11436         if (!event)
11437                 return ERR_PTR(-ENOMEM);
11438
11439         /*
11440          * Single events are their own group leaders, with an
11441          * empty sibling list:
11442          */
11443         if (!group_leader)
11444                 group_leader = event;
11445
11446         mutex_init(&event->child_mutex);
11447         INIT_LIST_HEAD(&event->child_list);
11448
11449         INIT_LIST_HEAD(&event->event_entry);
11450         INIT_LIST_HEAD(&event->sibling_list);
11451         INIT_LIST_HEAD(&event->active_list);
11452         init_event_group(event);
11453         INIT_LIST_HEAD(&event->rb_entry);
11454         INIT_LIST_HEAD(&event->active_entry);
11455         INIT_LIST_HEAD(&event->addr_filters.list);
11456         INIT_HLIST_NODE(&event->hlist_entry);
11457
11458
11459         init_waitqueue_head(&event->waitq);
11460         event->pending_disable = -1;
11461         init_irq_work(&event->pending, perf_pending_event);
11462
11463         mutex_init(&event->mmap_mutex);
11464         raw_spin_lock_init(&event->addr_filters.lock);
11465
11466         atomic_long_set(&event->refcount, 1);
11467         event->cpu              = cpu;
11468         event->attr             = *attr;
11469         event->group_leader     = group_leader;
11470         event->pmu              = NULL;
11471         event->oncpu            = -1;
11472
11473         event->parent           = parent_event;
11474
11475         event->ns               = get_pid_ns(task_active_pid_ns(current));
11476         event->id               = atomic64_inc_return(&perf_event_id);
11477
11478         event->state            = PERF_EVENT_STATE_INACTIVE;
11479
11480         if (event->attr.sigtrap)
11481                 atomic_set(&event->event_limit, 1);
11482
11483         if (task) {
11484                 event->attach_state = PERF_ATTACH_TASK;
11485                 /*
11486                  * XXX pmu::event_init needs to know what task to account to
11487                  * and we cannot use the ctx information because we need the
11488                  * pmu before we get a ctx.
11489                  */
11490                 event->hw.target = get_task_struct(task);
11491         }
11492
11493         event->clock = &local_clock;
11494         if (parent_event)
11495                 event->clock = parent_event->clock;
11496
11497         if (!overflow_handler && parent_event) {
11498                 overflow_handler = parent_event->overflow_handler;
11499                 context = parent_event->overflow_handler_context;
11500 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11501                 if (overflow_handler == bpf_overflow_handler) {
11502                         struct bpf_prog *prog = parent_event->prog;
11503
11504                         bpf_prog_inc(prog);
11505                         event->prog = prog;
11506                         event->orig_overflow_handler =
11507                                 parent_event->orig_overflow_handler;
11508                 }
11509 #endif
11510         }
11511
11512         if (overflow_handler) {
11513                 event->overflow_handler = overflow_handler;
11514                 event->overflow_handler_context = context;
11515         } else if (is_write_backward(event)){
11516                 event->overflow_handler = perf_event_output_backward;
11517                 event->overflow_handler_context = NULL;
11518         } else {
11519                 event->overflow_handler = perf_event_output_forward;
11520                 event->overflow_handler_context = NULL;
11521         }
11522
11523         perf_event__state_init(event);
11524
11525         pmu = NULL;
11526
11527         hwc = &event->hw;
11528         hwc->sample_period = attr->sample_period;
11529         if (attr->freq && attr->sample_freq)
11530                 hwc->sample_period = 1;
11531         hwc->last_period = hwc->sample_period;
11532
11533         local64_set(&hwc->period_left, hwc->sample_period);
11534
11535         /*
11536          * We currently do not support PERF_SAMPLE_READ on inherited events.
11537          * See perf_output_read().
11538          */
11539         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11540                 goto err_ns;
11541
11542         if (!has_branch_stack(event))
11543                 event->attr.branch_sample_type = 0;
11544
11545         pmu = perf_init_event(event);
11546         if (IS_ERR(pmu)) {
11547                 err = PTR_ERR(pmu);
11548                 goto err_ns;
11549         }
11550
11551         /*
11552          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11553          * be different on other CPUs in the uncore mask.
11554          */
11555         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11556                 err = -EINVAL;
11557                 goto err_pmu;
11558         }
11559
11560         if (event->attr.aux_output &&
11561             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11562                 err = -EOPNOTSUPP;
11563                 goto err_pmu;
11564         }
11565
11566         if (cgroup_fd != -1) {
11567                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11568                 if (err)
11569                         goto err_pmu;
11570         }
11571
11572         err = exclusive_event_init(event);
11573         if (err)
11574                 goto err_pmu;
11575
11576         if (has_addr_filter(event)) {
11577                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11578                                                     sizeof(struct perf_addr_filter_range),
11579                                                     GFP_KERNEL);
11580                 if (!event->addr_filter_ranges) {
11581                         err = -ENOMEM;
11582                         goto err_per_task;
11583                 }
11584
11585                 /*
11586                  * Clone the parent's vma offsets: they are valid until exec()
11587                  * even if the mm is not shared with the parent.
11588                  */
11589                 if (event->parent) {
11590                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11591
11592                         raw_spin_lock_irq(&ifh->lock);
11593                         memcpy(event->addr_filter_ranges,
11594                                event->parent->addr_filter_ranges,
11595                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11596                         raw_spin_unlock_irq(&ifh->lock);
11597                 }
11598
11599                 /* force hw sync on the address filters */
11600                 event->addr_filters_gen = 1;
11601         }
11602
11603         if (!event->parent) {
11604                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11605                         err = get_callchain_buffers(attr->sample_max_stack);
11606                         if (err)
11607                                 goto err_addr_filters;
11608                 }
11609         }
11610
11611         err = security_perf_event_alloc(event);
11612         if (err)
11613                 goto err_callchain_buffer;
11614
11615         /* symmetric to unaccount_event() in _free_event() */
11616         account_event(event);
11617
11618         return event;
11619
11620 err_callchain_buffer:
11621         if (!event->parent) {
11622                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11623                         put_callchain_buffers();
11624         }
11625 err_addr_filters:
11626         kfree(event->addr_filter_ranges);
11627
11628 err_per_task:
11629         exclusive_event_destroy(event);
11630
11631 err_pmu:
11632         if (is_cgroup_event(event))
11633                 perf_detach_cgroup(event);
11634         if (event->destroy)
11635                 event->destroy(event);
11636         module_put(pmu->module);
11637 err_ns:
11638         if (event->ns)
11639                 put_pid_ns(event->ns);
11640         if (event->hw.target)
11641                 put_task_struct(event->hw.target);
11642         kmem_cache_free(perf_event_cache, event);
11643
11644         return ERR_PTR(err);
11645 }
11646
11647 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11648                           struct perf_event_attr *attr)
11649 {
11650         u32 size;
11651         int ret;
11652
11653         /* Zero the full structure, so that a short copy will be nice. */
11654         memset(attr, 0, sizeof(*attr));
11655
11656         ret = get_user(size, &uattr->size);
11657         if (ret)
11658                 return ret;
11659
11660         /* ABI compatibility quirk: */
11661         if (!size)
11662                 size = PERF_ATTR_SIZE_VER0;
11663         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11664                 goto err_size;
11665
11666         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11667         if (ret) {
11668                 if (ret == -E2BIG)
11669                         goto err_size;
11670                 return ret;
11671         }
11672
11673         attr->size = size;
11674
11675         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11676                 return -EINVAL;
11677
11678         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11679                 return -EINVAL;
11680
11681         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11682                 return -EINVAL;
11683
11684         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11685                 u64 mask = attr->branch_sample_type;
11686
11687                 /* only using defined bits */
11688                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11689                         return -EINVAL;
11690
11691                 /* at least one branch bit must be set */
11692                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11693                         return -EINVAL;
11694
11695                 /* propagate priv level, when not set for branch */
11696                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11697
11698                         /* exclude_kernel checked on syscall entry */
11699                         if (!attr->exclude_kernel)
11700                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11701
11702                         if (!attr->exclude_user)
11703                                 mask |= PERF_SAMPLE_BRANCH_USER;
11704
11705                         if (!attr->exclude_hv)
11706                                 mask |= PERF_SAMPLE_BRANCH_HV;
11707                         /*
11708                          * adjust user setting (for HW filter setup)
11709                          */
11710                         attr->branch_sample_type = mask;
11711                 }
11712                 /* privileged levels capture (kernel, hv): check permissions */
11713                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11714                         ret = perf_allow_kernel(attr);
11715                         if (ret)
11716                                 return ret;
11717                 }
11718         }
11719
11720         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11721                 ret = perf_reg_validate(attr->sample_regs_user);
11722                 if (ret)
11723                         return ret;
11724         }
11725
11726         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11727                 if (!arch_perf_have_user_stack_dump())
11728                         return -ENOSYS;
11729
11730                 /*
11731                  * We have __u32 type for the size, but so far
11732                  * we can only use __u16 as maximum due to the
11733                  * __u16 sample size limit.
11734                  */
11735                 if (attr->sample_stack_user >= USHRT_MAX)
11736                         return -EINVAL;
11737                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11738                         return -EINVAL;
11739         }
11740
11741         if (!attr->sample_max_stack)
11742                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11743
11744         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11745                 ret = perf_reg_validate(attr->sample_regs_intr);
11746
11747 #ifndef CONFIG_CGROUP_PERF
11748         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11749                 return -EINVAL;
11750 #endif
11751         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11752             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11753                 return -EINVAL;
11754
11755         if (!attr->inherit && attr->inherit_thread)
11756                 return -EINVAL;
11757
11758         if (attr->remove_on_exec && attr->enable_on_exec)
11759                 return -EINVAL;
11760
11761         if (attr->sigtrap && !attr->remove_on_exec)
11762                 return -EINVAL;
11763
11764 out:
11765         return ret;
11766
11767 err_size:
11768         put_user(sizeof(*attr), &uattr->size);
11769         ret = -E2BIG;
11770         goto out;
11771 }
11772
11773 static int
11774 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11775 {
11776         struct perf_buffer *rb = NULL;
11777         int ret = -EINVAL;
11778
11779         if (!output_event)
11780                 goto set;
11781
11782         /* don't allow circular references */
11783         if (event == output_event)
11784                 goto out;
11785
11786         /*
11787          * Don't allow cross-cpu buffers
11788          */
11789         if (output_event->cpu != event->cpu)
11790                 goto out;
11791
11792         /*
11793          * If its not a per-cpu rb, it must be the same task.
11794          */
11795         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11796                 goto out;
11797
11798         /*
11799          * Mixing clocks in the same buffer is trouble you don't need.
11800          */
11801         if (output_event->clock != event->clock)
11802                 goto out;
11803
11804         /*
11805          * Either writing ring buffer from beginning or from end.
11806          * Mixing is not allowed.
11807          */
11808         if (is_write_backward(output_event) != is_write_backward(event))
11809                 goto out;
11810
11811         /*
11812          * If both events generate aux data, they must be on the same PMU
11813          */
11814         if (has_aux(event) && has_aux(output_event) &&
11815             event->pmu != output_event->pmu)
11816                 goto out;
11817
11818 set:
11819         mutex_lock(&event->mmap_mutex);
11820         /* Can't redirect output if we've got an active mmap() */
11821         if (atomic_read(&event->mmap_count))
11822                 goto unlock;
11823
11824         if (output_event) {
11825                 /* get the rb we want to redirect to */
11826                 rb = ring_buffer_get(output_event);
11827                 if (!rb)
11828                         goto unlock;
11829         }
11830
11831         ring_buffer_attach(event, rb);
11832
11833         ret = 0;
11834 unlock:
11835         mutex_unlock(&event->mmap_mutex);
11836
11837 out:
11838         return ret;
11839 }
11840
11841 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11842 {
11843         if (b < a)
11844                 swap(a, b);
11845
11846         mutex_lock(a);
11847         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11848 }
11849
11850 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11851 {
11852         bool nmi_safe = false;
11853
11854         switch (clk_id) {
11855         case CLOCK_MONOTONIC:
11856                 event->clock = &ktime_get_mono_fast_ns;
11857                 nmi_safe = true;
11858                 break;
11859
11860         case CLOCK_MONOTONIC_RAW:
11861                 event->clock = &ktime_get_raw_fast_ns;
11862                 nmi_safe = true;
11863                 break;
11864
11865         case CLOCK_REALTIME:
11866                 event->clock = &ktime_get_real_ns;
11867                 break;
11868
11869         case CLOCK_BOOTTIME:
11870                 event->clock = &ktime_get_boottime_ns;
11871                 break;
11872
11873         case CLOCK_TAI:
11874                 event->clock = &ktime_get_clocktai_ns;
11875                 break;
11876
11877         default:
11878                 return -EINVAL;
11879         }
11880
11881         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11882                 return -EINVAL;
11883
11884         return 0;
11885 }
11886
11887 /*
11888  * Variation on perf_event_ctx_lock_nested(), except we take two context
11889  * mutexes.
11890  */
11891 static struct perf_event_context *
11892 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11893                              struct perf_event_context *ctx)
11894 {
11895         struct perf_event_context *gctx;
11896
11897 again:
11898         rcu_read_lock();
11899         gctx = READ_ONCE(group_leader->ctx);
11900         if (!refcount_inc_not_zero(&gctx->refcount)) {
11901                 rcu_read_unlock();
11902                 goto again;
11903         }
11904         rcu_read_unlock();
11905
11906         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11907
11908         if (group_leader->ctx != gctx) {
11909                 mutex_unlock(&ctx->mutex);
11910                 mutex_unlock(&gctx->mutex);
11911                 put_ctx(gctx);
11912                 goto again;
11913         }
11914
11915         return gctx;
11916 }
11917
11918 static bool
11919 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11920 {
11921         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11922         bool is_capable = perfmon_capable();
11923
11924         if (attr->sigtrap) {
11925                 /*
11926                  * perf_event_attr::sigtrap sends signals to the other task.
11927                  * Require the current task to also have CAP_KILL.
11928                  */
11929                 rcu_read_lock();
11930                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11931                 rcu_read_unlock();
11932
11933                 /*
11934                  * If the required capabilities aren't available, checks for
11935                  * ptrace permissions: upgrade to ATTACH, since sending signals
11936                  * can effectively change the target task.
11937                  */
11938                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
11939         }
11940
11941         /*
11942          * Preserve ptrace permission check for backwards compatibility. The
11943          * ptrace check also includes checks that the current task and other
11944          * task have matching uids, and is therefore not done here explicitly.
11945          */
11946         return is_capable || ptrace_may_access(task, ptrace_mode);
11947 }
11948
11949 /**
11950  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11951  *
11952  * @attr_uptr:  event_id type attributes for monitoring/sampling
11953  * @pid:                target pid
11954  * @cpu:                target cpu
11955  * @group_fd:           group leader event fd
11956  * @flags:              perf event open flags
11957  */
11958 SYSCALL_DEFINE5(perf_event_open,
11959                 struct perf_event_attr __user *, attr_uptr,
11960                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11961 {
11962         struct perf_event *group_leader = NULL, *output_event = NULL;
11963         struct perf_event *event, *sibling;
11964         struct perf_event_attr attr;
11965         struct perf_event_context *ctx, *gctx;
11966         struct file *event_file = NULL;
11967         struct fd group = {NULL, 0};
11968         struct task_struct *task = NULL;
11969         struct pmu *pmu;
11970         int event_fd;
11971         int move_group = 0;
11972         int err;
11973         int f_flags = O_RDWR;
11974         int cgroup_fd = -1;
11975
11976         /* for future expandability... */
11977         if (flags & ~PERF_FLAG_ALL)
11978                 return -EINVAL;
11979
11980         /* Do we allow access to perf_event_open(2) ? */
11981         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11982         if (err)
11983                 return err;
11984
11985         err = perf_copy_attr(attr_uptr, &attr);
11986         if (err)
11987                 return err;
11988
11989         if (!attr.exclude_kernel) {
11990                 err = perf_allow_kernel(&attr);
11991                 if (err)
11992                         return err;
11993         }
11994
11995         if (attr.namespaces) {
11996                 if (!perfmon_capable())
11997                         return -EACCES;
11998         }
11999
12000         if (attr.freq) {
12001                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12002                         return -EINVAL;
12003         } else {
12004                 if (attr.sample_period & (1ULL << 63))
12005                         return -EINVAL;
12006         }
12007
12008         /* Only privileged users can get physical addresses */
12009         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12010                 err = perf_allow_kernel(&attr);
12011                 if (err)
12012                         return err;
12013         }
12014
12015         /* REGS_INTR can leak data, lockdown must prevent this */
12016         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12017                 err = security_locked_down(LOCKDOWN_PERF);
12018                 if (err)
12019                         return err;
12020         }
12021
12022         /*
12023          * In cgroup mode, the pid argument is used to pass the fd
12024          * opened to the cgroup directory in cgroupfs. The cpu argument
12025          * designates the cpu on which to monitor threads from that
12026          * cgroup.
12027          */
12028         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12029                 return -EINVAL;
12030
12031         if (flags & PERF_FLAG_FD_CLOEXEC)
12032                 f_flags |= O_CLOEXEC;
12033
12034         event_fd = get_unused_fd_flags(f_flags);
12035         if (event_fd < 0)
12036                 return event_fd;
12037
12038         if (group_fd != -1) {
12039                 err = perf_fget_light(group_fd, &group);
12040                 if (err)
12041                         goto err_fd;
12042                 group_leader = group.file->private_data;
12043                 if (flags & PERF_FLAG_FD_OUTPUT)
12044                         output_event = group_leader;
12045                 if (flags & PERF_FLAG_FD_NO_GROUP)
12046                         group_leader = NULL;
12047         }
12048
12049         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12050                 task = find_lively_task_by_vpid(pid);
12051                 if (IS_ERR(task)) {
12052                         err = PTR_ERR(task);
12053                         goto err_group_fd;
12054                 }
12055         }
12056
12057         if (task && group_leader &&
12058             group_leader->attr.inherit != attr.inherit) {
12059                 err = -EINVAL;
12060                 goto err_task;
12061         }
12062
12063         if (flags & PERF_FLAG_PID_CGROUP)
12064                 cgroup_fd = pid;
12065
12066         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12067                                  NULL, NULL, cgroup_fd);
12068         if (IS_ERR(event)) {
12069                 err = PTR_ERR(event);
12070                 goto err_task;
12071         }
12072
12073         if (is_sampling_event(event)) {
12074                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12075                         err = -EOPNOTSUPP;
12076                         goto err_alloc;
12077                 }
12078         }
12079
12080         /*
12081          * Special case software events and allow them to be part of
12082          * any hardware group.
12083          */
12084         pmu = event->pmu;
12085
12086         if (attr.use_clockid) {
12087                 err = perf_event_set_clock(event, attr.clockid);
12088                 if (err)
12089                         goto err_alloc;
12090         }
12091
12092         if (pmu->task_ctx_nr == perf_sw_context)
12093                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12094
12095         if (group_leader) {
12096                 if (is_software_event(event) &&
12097                     !in_software_context(group_leader)) {
12098                         /*
12099                          * If the event is a sw event, but the group_leader
12100                          * is on hw context.
12101                          *
12102                          * Allow the addition of software events to hw
12103                          * groups, this is safe because software events
12104                          * never fail to schedule.
12105                          */
12106                         pmu = group_leader->ctx->pmu;
12107                 } else if (!is_software_event(event) &&
12108                            is_software_event(group_leader) &&
12109                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12110                         /*
12111                          * In case the group is a pure software group, and we
12112                          * try to add a hardware event, move the whole group to
12113                          * the hardware context.
12114                          */
12115                         move_group = 1;
12116                 }
12117         }
12118
12119         /*
12120          * Get the target context (task or percpu):
12121          */
12122         ctx = find_get_context(pmu, task, event);
12123         if (IS_ERR(ctx)) {
12124                 err = PTR_ERR(ctx);
12125                 goto err_alloc;
12126         }
12127
12128         /*
12129          * Look up the group leader (we will attach this event to it):
12130          */
12131         if (group_leader) {
12132                 err = -EINVAL;
12133
12134                 /*
12135                  * Do not allow a recursive hierarchy (this new sibling
12136                  * becoming part of another group-sibling):
12137                  */
12138                 if (group_leader->group_leader != group_leader)
12139                         goto err_context;
12140
12141                 /* All events in a group should have the same clock */
12142                 if (group_leader->clock != event->clock)
12143                         goto err_context;
12144
12145                 /*
12146                  * Make sure we're both events for the same CPU;
12147                  * grouping events for different CPUs is broken; since
12148                  * you can never concurrently schedule them anyhow.
12149                  */
12150                 if (group_leader->cpu != event->cpu)
12151                         goto err_context;
12152
12153                 /*
12154                  * Make sure we're both on the same task, or both
12155                  * per-CPU events.
12156                  */
12157                 if (group_leader->ctx->task != ctx->task)
12158                         goto err_context;
12159
12160                 /*
12161                  * Do not allow to attach to a group in a different task
12162                  * or CPU context. If we're moving SW events, we'll fix
12163                  * this up later, so allow that.
12164                  */
12165                 if (!move_group && group_leader->ctx != ctx)
12166                         goto err_context;
12167
12168                 /*
12169                  * Only a group leader can be exclusive or pinned
12170                  */
12171                 if (attr.exclusive || attr.pinned)
12172                         goto err_context;
12173         }
12174
12175         if (output_event) {
12176                 err = perf_event_set_output(event, output_event);
12177                 if (err)
12178                         goto err_context;
12179         }
12180
12181         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12182                                         f_flags);
12183         if (IS_ERR(event_file)) {
12184                 err = PTR_ERR(event_file);
12185                 event_file = NULL;
12186                 goto err_context;
12187         }
12188
12189         if (task) {
12190                 err = down_read_interruptible(&task->signal->exec_update_lock);
12191                 if (err)
12192                         goto err_file;
12193
12194                 /*
12195                  * We must hold exec_update_lock across this and any potential
12196                  * perf_install_in_context() call for this new event to
12197                  * serialize against exec() altering our credentials (and the
12198                  * perf_event_exit_task() that could imply).
12199                  */
12200                 err = -EACCES;
12201                 if (!perf_check_permission(&attr, task))
12202                         goto err_cred;
12203         }
12204
12205         if (move_group) {
12206                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12207
12208                 if (gctx->task == TASK_TOMBSTONE) {
12209                         err = -ESRCH;
12210                         goto err_locked;
12211                 }
12212
12213                 /*
12214                  * Check if we raced against another sys_perf_event_open() call
12215                  * moving the software group underneath us.
12216                  */
12217                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12218                         /*
12219                          * If someone moved the group out from under us, check
12220                          * if this new event wound up on the same ctx, if so
12221                          * its the regular !move_group case, otherwise fail.
12222                          */
12223                         if (gctx != ctx) {
12224                                 err = -EINVAL;
12225                                 goto err_locked;
12226                         } else {
12227                                 perf_event_ctx_unlock(group_leader, gctx);
12228                                 move_group = 0;
12229                         }
12230                 }
12231
12232                 /*
12233                  * Failure to create exclusive events returns -EBUSY.
12234                  */
12235                 err = -EBUSY;
12236                 if (!exclusive_event_installable(group_leader, ctx))
12237                         goto err_locked;
12238
12239                 for_each_sibling_event(sibling, group_leader) {
12240                         if (!exclusive_event_installable(sibling, ctx))
12241                                 goto err_locked;
12242                 }
12243         } else {
12244                 mutex_lock(&ctx->mutex);
12245         }
12246
12247         if (ctx->task == TASK_TOMBSTONE) {
12248                 err = -ESRCH;
12249                 goto err_locked;
12250         }
12251
12252         if (!perf_event_validate_size(event)) {
12253                 err = -E2BIG;
12254                 goto err_locked;
12255         }
12256
12257         if (!task) {
12258                 /*
12259                  * Check if the @cpu we're creating an event for is online.
12260                  *
12261                  * We use the perf_cpu_context::ctx::mutex to serialize against
12262                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12263                  */
12264                 struct perf_cpu_context *cpuctx =
12265                         container_of(ctx, struct perf_cpu_context, ctx);
12266
12267                 if (!cpuctx->online) {
12268                         err = -ENODEV;
12269                         goto err_locked;
12270                 }
12271         }
12272
12273         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12274                 err = -EINVAL;
12275                 goto err_locked;
12276         }
12277
12278         /*
12279          * Must be under the same ctx::mutex as perf_install_in_context(),
12280          * because we need to serialize with concurrent event creation.
12281          */
12282         if (!exclusive_event_installable(event, ctx)) {
12283                 err = -EBUSY;
12284                 goto err_locked;
12285         }
12286
12287         WARN_ON_ONCE(ctx->parent_ctx);
12288
12289         /*
12290          * This is the point on no return; we cannot fail hereafter. This is
12291          * where we start modifying current state.
12292          */
12293
12294         if (move_group) {
12295                 /*
12296                  * See perf_event_ctx_lock() for comments on the details
12297                  * of swizzling perf_event::ctx.
12298                  */
12299                 perf_remove_from_context(group_leader, 0);
12300                 put_ctx(gctx);
12301
12302                 for_each_sibling_event(sibling, group_leader) {
12303                         perf_remove_from_context(sibling, 0);
12304                         put_ctx(gctx);
12305                 }
12306
12307                 /*
12308                  * Wait for everybody to stop referencing the events through
12309                  * the old lists, before installing it on new lists.
12310                  */
12311                 synchronize_rcu();
12312
12313                 /*
12314                  * Install the group siblings before the group leader.
12315                  *
12316                  * Because a group leader will try and install the entire group
12317                  * (through the sibling list, which is still in-tact), we can
12318                  * end up with siblings installed in the wrong context.
12319                  *
12320                  * By installing siblings first we NO-OP because they're not
12321                  * reachable through the group lists.
12322                  */
12323                 for_each_sibling_event(sibling, group_leader) {
12324                         perf_event__state_init(sibling);
12325                         perf_install_in_context(ctx, sibling, sibling->cpu);
12326                         get_ctx(ctx);
12327                 }
12328
12329                 /*
12330                  * Removing from the context ends up with disabled
12331                  * event. What we want here is event in the initial
12332                  * startup state, ready to be add into new context.
12333                  */
12334                 perf_event__state_init(group_leader);
12335                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12336                 get_ctx(ctx);
12337         }
12338
12339         /*
12340          * Precalculate sample_data sizes; do while holding ctx::mutex such
12341          * that we're serialized against further additions and before
12342          * perf_install_in_context() which is the point the event is active and
12343          * can use these values.
12344          */
12345         perf_event__header_size(event);
12346         perf_event__id_header_size(event);
12347
12348         event->owner = current;
12349
12350         perf_install_in_context(ctx, event, event->cpu);
12351         perf_unpin_context(ctx);
12352
12353         if (move_group)
12354                 perf_event_ctx_unlock(group_leader, gctx);
12355         mutex_unlock(&ctx->mutex);
12356
12357         if (task) {
12358                 up_read(&task->signal->exec_update_lock);
12359                 put_task_struct(task);
12360         }
12361
12362         mutex_lock(&current->perf_event_mutex);
12363         list_add_tail(&event->owner_entry, &current->perf_event_list);
12364         mutex_unlock(&current->perf_event_mutex);
12365
12366         /*
12367          * Drop the reference on the group_event after placing the
12368          * new event on the sibling_list. This ensures destruction
12369          * of the group leader will find the pointer to itself in
12370          * perf_group_detach().
12371          */
12372         fdput(group);
12373         fd_install(event_fd, event_file);
12374         return event_fd;
12375
12376 err_locked:
12377         if (move_group)
12378                 perf_event_ctx_unlock(group_leader, gctx);
12379         mutex_unlock(&ctx->mutex);
12380 err_cred:
12381         if (task)
12382                 up_read(&task->signal->exec_update_lock);
12383 err_file:
12384         fput(event_file);
12385 err_context:
12386         perf_unpin_context(ctx);
12387         put_ctx(ctx);
12388 err_alloc:
12389         /*
12390          * If event_file is set, the fput() above will have called ->release()
12391          * and that will take care of freeing the event.
12392          */
12393         if (!event_file)
12394                 free_event(event);
12395 err_task:
12396         if (task)
12397                 put_task_struct(task);
12398 err_group_fd:
12399         fdput(group);
12400 err_fd:
12401         put_unused_fd(event_fd);
12402         return err;
12403 }
12404
12405 /**
12406  * perf_event_create_kernel_counter
12407  *
12408  * @attr: attributes of the counter to create
12409  * @cpu: cpu in which the counter is bound
12410  * @task: task to profile (NULL for percpu)
12411  * @overflow_handler: callback to trigger when we hit the event
12412  * @context: context data could be used in overflow_handler callback
12413  */
12414 struct perf_event *
12415 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12416                                  struct task_struct *task,
12417                                  perf_overflow_handler_t overflow_handler,
12418                                  void *context)
12419 {
12420         struct perf_event_context *ctx;
12421         struct perf_event *event;
12422         int err;
12423
12424         /*
12425          * Grouping is not supported for kernel events, neither is 'AUX',
12426          * make sure the caller's intentions are adjusted.
12427          */
12428         if (attr->aux_output)
12429                 return ERR_PTR(-EINVAL);
12430
12431         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12432                                  overflow_handler, context, -1);
12433         if (IS_ERR(event)) {
12434                 err = PTR_ERR(event);
12435                 goto err;
12436         }
12437
12438         /* Mark owner so we could distinguish it from user events. */
12439         event->owner = TASK_TOMBSTONE;
12440
12441         /*
12442          * Get the target context (task or percpu):
12443          */
12444         ctx = find_get_context(event->pmu, task, event);
12445         if (IS_ERR(ctx)) {
12446                 err = PTR_ERR(ctx);
12447                 goto err_free;
12448         }
12449
12450         WARN_ON_ONCE(ctx->parent_ctx);
12451         mutex_lock(&ctx->mutex);
12452         if (ctx->task == TASK_TOMBSTONE) {
12453                 err = -ESRCH;
12454                 goto err_unlock;
12455         }
12456
12457         if (!task) {
12458                 /*
12459                  * Check if the @cpu we're creating an event for is online.
12460                  *
12461                  * We use the perf_cpu_context::ctx::mutex to serialize against
12462                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12463                  */
12464                 struct perf_cpu_context *cpuctx =
12465                         container_of(ctx, struct perf_cpu_context, ctx);
12466                 if (!cpuctx->online) {
12467                         err = -ENODEV;
12468                         goto err_unlock;
12469                 }
12470         }
12471
12472         if (!exclusive_event_installable(event, ctx)) {
12473                 err = -EBUSY;
12474                 goto err_unlock;
12475         }
12476
12477         perf_install_in_context(ctx, event, event->cpu);
12478         perf_unpin_context(ctx);
12479         mutex_unlock(&ctx->mutex);
12480
12481         return event;
12482
12483 err_unlock:
12484         mutex_unlock(&ctx->mutex);
12485         perf_unpin_context(ctx);
12486         put_ctx(ctx);
12487 err_free:
12488         free_event(event);
12489 err:
12490         return ERR_PTR(err);
12491 }
12492 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12493
12494 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12495 {
12496         struct perf_event_context *src_ctx;
12497         struct perf_event_context *dst_ctx;
12498         struct perf_event *event, *tmp;
12499         LIST_HEAD(events);
12500
12501         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12502         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12503
12504         /*
12505          * See perf_event_ctx_lock() for comments on the details
12506          * of swizzling perf_event::ctx.
12507          */
12508         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12509         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12510                                  event_entry) {
12511                 perf_remove_from_context(event, 0);
12512                 unaccount_event_cpu(event, src_cpu);
12513                 put_ctx(src_ctx);
12514                 list_add(&event->migrate_entry, &events);
12515         }
12516
12517         /*
12518          * Wait for the events to quiesce before re-instating them.
12519          */
12520         synchronize_rcu();
12521
12522         /*
12523          * Re-instate events in 2 passes.
12524          *
12525          * Skip over group leaders and only install siblings on this first
12526          * pass, siblings will not get enabled without a leader, however a
12527          * leader will enable its siblings, even if those are still on the old
12528          * context.
12529          */
12530         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12531                 if (event->group_leader == event)
12532                         continue;
12533
12534                 list_del(&event->migrate_entry);
12535                 if (event->state >= PERF_EVENT_STATE_OFF)
12536                         event->state = PERF_EVENT_STATE_INACTIVE;
12537                 account_event_cpu(event, dst_cpu);
12538                 perf_install_in_context(dst_ctx, event, dst_cpu);
12539                 get_ctx(dst_ctx);
12540         }
12541
12542         /*
12543          * Once all the siblings are setup properly, install the group leaders
12544          * to make it go.
12545          */
12546         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12547                 list_del(&event->migrate_entry);
12548                 if (event->state >= PERF_EVENT_STATE_OFF)
12549                         event->state = PERF_EVENT_STATE_INACTIVE;
12550                 account_event_cpu(event, dst_cpu);
12551                 perf_install_in_context(dst_ctx, event, dst_cpu);
12552                 get_ctx(dst_ctx);
12553         }
12554         mutex_unlock(&dst_ctx->mutex);
12555         mutex_unlock(&src_ctx->mutex);
12556 }
12557 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12558
12559 static void sync_child_event(struct perf_event *child_event)
12560 {
12561         struct perf_event *parent_event = child_event->parent;
12562         u64 child_val;
12563
12564         if (child_event->attr.inherit_stat) {
12565                 struct task_struct *task = child_event->ctx->task;
12566
12567                 if (task && task != TASK_TOMBSTONE)
12568                         perf_event_read_event(child_event, task);
12569         }
12570
12571         child_val = perf_event_count(child_event);
12572
12573         /*
12574          * Add back the child's count to the parent's count:
12575          */
12576         atomic64_add(child_val, &parent_event->child_count);
12577         atomic64_add(child_event->total_time_enabled,
12578                      &parent_event->child_total_time_enabled);
12579         atomic64_add(child_event->total_time_running,
12580                      &parent_event->child_total_time_running);
12581 }
12582
12583 static void
12584 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12585 {
12586         struct perf_event *parent_event = event->parent;
12587         unsigned long detach_flags = 0;
12588
12589         if (parent_event) {
12590                 /*
12591                  * Do not destroy the 'original' grouping; because of the
12592                  * context switch optimization the original events could've
12593                  * ended up in a random child task.
12594                  *
12595                  * If we were to destroy the original group, all group related
12596                  * operations would cease to function properly after this
12597                  * random child dies.
12598                  *
12599                  * Do destroy all inherited groups, we don't care about those
12600                  * and being thorough is better.
12601                  */
12602                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12603                 mutex_lock(&parent_event->child_mutex);
12604         }
12605
12606         perf_remove_from_context(event, detach_flags);
12607
12608         raw_spin_lock_irq(&ctx->lock);
12609         if (event->state > PERF_EVENT_STATE_EXIT)
12610                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12611         raw_spin_unlock_irq(&ctx->lock);
12612
12613         /*
12614          * Child events can be freed.
12615          */
12616         if (parent_event) {
12617                 mutex_unlock(&parent_event->child_mutex);
12618                 /*
12619                  * Kick perf_poll() for is_event_hup();
12620                  */
12621                 perf_event_wakeup(parent_event);
12622                 free_event(event);
12623                 put_event(parent_event);
12624                 return;
12625         }
12626
12627         /*
12628          * Parent events are governed by their filedesc, retain them.
12629          */
12630         perf_event_wakeup(event);
12631 }
12632
12633 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12634 {
12635         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12636         struct perf_event *child_event, *next;
12637
12638         WARN_ON_ONCE(child != current);
12639
12640         child_ctx = perf_pin_task_context(child, ctxn);
12641         if (!child_ctx)
12642                 return;
12643
12644         /*
12645          * In order to reduce the amount of tricky in ctx tear-down, we hold
12646          * ctx::mutex over the entire thing. This serializes against almost
12647          * everything that wants to access the ctx.
12648          *
12649          * The exception is sys_perf_event_open() /
12650          * perf_event_create_kernel_count() which does find_get_context()
12651          * without ctx::mutex (it cannot because of the move_group double mutex
12652          * lock thing). See the comments in perf_install_in_context().
12653          */
12654         mutex_lock(&child_ctx->mutex);
12655
12656         /*
12657          * In a single ctx::lock section, de-schedule the events and detach the
12658          * context from the task such that we cannot ever get it scheduled back
12659          * in.
12660          */
12661         raw_spin_lock_irq(&child_ctx->lock);
12662         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12663
12664         /*
12665          * Now that the context is inactive, destroy the task <-> ctx relation
12666          * and mark the context dead.
12667          */
12668         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12669         put_ctx(child_ctx); /* cannot be last */
12670         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12671         put_task_struct(current); /* cannot be last */
12672
12673         clone_ctx = unclone_ctx(child_ctx);
12674         raw_spin_unlock_irq(&child_ctx->lock);
12675
12676         if (clone_ctx)
12677                 put_ctx(clone_ctx);
12678
12679         /*
12680          * Report the task dead after unscheduling the events so that we
12681          * won't get any samples after PERF_RECORD_EXIT. We can however still
12682          * get a few PERF_RECORD_READ events.
12683          */
12684         perf_event_task(child, child_ctx, 0);
12685
12686         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12687                 perf_event_exit_event(child_event, child_ctx);
12688
12689         mutex_unlock(&child_ctx->mutex);
12690
12691         put_ctx(child_ctx);
12692 }
12693
12694 /*
12695  * When a child task exits, feed back event values to parent events.
12696  *
12697  * Can be called with exec_update_lock held when called from
12698  * setup_new_exec().
12699  */
12700 void perf_event_exit_task(struct task_struct *child)
12701 {
12702         struct perf_event *event, *tmp;
12703         int ctxn;
12704
12705         mutex_lock(&child->perf_event_mutex);
12706         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12707                                  owner_entry) {
12708                 list_del_init(&event->owner_entry);
12709
12710                 /*
12711                  * Ensure the list deletion is visible before we clear
12712                  * the owner, closes a race against perf_release() where
12713                  * we need to serialize on the owner->perf_event_mutex.
12714                  */
12715                 smp_store_release(&event->owner, NULL);
12716         }
12717         mutex_unlock(&child->perf_event_mutex);
12718
12719         for_each_task_context_nr(ctxn)
12720                 perf_event_exit_task_context(child, ctxn);
12721
12722         /*
12723          * The perf_event_exit_task_context calls perf_event_task
12724          * with child's task_ctx, which generates EXIT events for
12725          * child contexts and sets child->perf_event_ctxp[] to NULL.
12726          * At this point we need to send EXIT events to cpu contexts.
12727          */
12728         perf_event_task(child, NULL, 0);
12729 }
12730
12731 static void perf_free_event(struct perf_event *event,
12732                             struct perf_event_context *ctx)
12733 {
12734         struct perf_event *parent = event->parent;
12735
12736         if (WARN_ON_ONCE(!parent))
12737                 return;
12738
12739         mutex_lock(&parent->child_mutex);
12740         list_del_init(&event->child_list);
12741         mutex_unlock(&parent->child_mutex);
12742
12743         put_event(parent);
12744
12745         raw_spin_lock_irq(&ctx->lock);
12746         perf_group_detach(event);
12747         list_del_event(event, ctx);
12748         raw_spin_unlock_irq(&ctx->lock);
12749         free_event(event);
12750 }
12751
12752 /*
12753  * Free a context as created by inheritance by perf_event_init_task() below,
12754  * used by fork() in case of fail.
12755  *
12756  * Even though the task has never lived, the context and events have been
12757  * exposed through the child_list, so we must take care tearing it all down.
12758  */
12759 void perf_event_free_task(struct task_struct *task)
12760 {
12761         struct perf_event_context *ctx;
12762         struct perf_event *event, *tmp;
12763         int ctxn;
12764
12765         for_each_task_context_nr(ctxn) {
12766                 ctx = task->perf_event_ctxp[ctxn];
12767                 if (!ctx)
12768                         continue;
12769
12770                 mutex_lock(&ctx->mutex);
12771                 raw_spin_lock_irq(&ctx->lock);
12772                 /*
12773                  * Destroy the task <-> ctx relation and mark the context dead.
12774                  *
12775                  * This is important because even though the task hasn't been
12776                  * exposed yet the context has been (through child_list).
12777                  */
12778                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12779                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12780                 put_task_struct(task); /* cannot be last */
12781                 raw_spin_unlock_irq(&ctx->lock);
12782
12783                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12784                         perf_free_event(event, ctx);
12785
12786                 mutex_unlock(&ctx->mutex);
12787
12788                 /*
12789                  * perf_event_release_kernel() could've stolen some of our
12790                  * child events and still have them on its free_list. In that
12791                  * case we must wait for these events to have been freed (in
12792                  * particular all their references to this task must've been
12793                  * dropped).
12794                  *
12795                  * Without this copy_process() will unconditionally free this
12796                  * task (irrespective of its reference count) and
12797                  * _free_event()'s put_task_struct(event->hw.target) will be a
12798                  * use-after-free.
12799                  *
12800                  * Wait for all events to drop their context reference.
12801                  */
12802                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12803                 put_ctx(ctx); /* must be last */
12804         }
12805 }
12806
12807 void perf_event_delayed_put(struct task_struct *task)
12808 {
12809         int ctxn;
12810
12811         for_each_task_context_nr(ctxn)
12812                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12813 }
12814
12815 struct file *perf_event_get(unsigned int fd)
12816 {
12817         struct file *file = fget(fd);
12818         if (!file)
12819                 return ERR_PTR(-EBADF);
12820
12821         if (file->f_op != &perf_fops) {
12822                 fput(file);
12823                 return ERR_PTR(-EBADF);
12824         }
12825
12826         return file;
12827 }
12828
12829 const struct perf_event *perf_get_event(struct file *file)
12830 {
12831         if (file->f_op != &perf_fops)
12832                 return ERR_PTR(-EINVAL);
12833
12834         return file->private_data;
12835 }
12836
12837 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12838 {
12839         if (!event)
12840                 return ERR_PTR(-EINVAL);
12841
12842         return &event->attr;
12843 }
12844
12845 /*
12846  * Inherit an event from parent task to child task.
12847  *
12848  * Returns:
12849  *  - valid pointer on success
12850  *  - NULL for orphaned events
12851  *  - IS_ERR() on error
12852  */
12853 static struct perf_event *
12854 inherit_event(struct perf_event *parent_event,
12855               struct task_struct *parent,
12856               struct perf_event_context *parent_ctx,
12857               struct task_struct *child,
12858               struct perf_event *group_leader,
12859               struct perf_event_context *child_ctx)
12860 {
12861         enum perf_event_state parent_state = parent_event->state;
12862         struct perf_event *child_event;
12863         unsigned long flags;
12864
12865         /*
12866          * Instead of creating recursive hierarchies of events,
12867          * we link inherited events back to the original parent,
12868          * which has a filp for sure, which we use as the reference
12869          * count:
12870          */
12871         if (parent_event->parent)
12872                 parent_event = parent_event->parent;
12873
12874         child_event = perf_event_alloc(&parent_event->attr,
12875                                            parent_event->cpu,
12876                                            child,
12877                                            group_leader, parent_event,
12878                                            NULL, NULL, -1);
12879         if (IS_ERR(child_event))
12880                 return child_event;
12881
12882
12883         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12884             !child_ctx->task_ctx_data) {
12885                 struct pmu *pmu = child_event->pmu;
12886
12887                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12888                 if (!child_ctx->task_ctx_data) {
12889                         free_event(child_event);
12890                         return ERR_PTR(-ENOMEM);
12891                 }
12892         }
12893
12894         /*
12895          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12896          * must be under the same lock in order to serialize against
12897          * perf_event_release_kernel(), such that either we must observe
12898          * is_orphaned_event() or they will observe us on the child_list.
12899          */
12900         mutex_lock(&parent_event->child_mutex);
12901         if (is_orphaned_event(parent_event) ||
12902             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12903                 mutex_unlock(&parent_event->child_mutex);
12904                 /* task_ctx_data is freed with child_ctx */
12905                 free_event(child_event);
12906                 return NULL;
12907         }
12908
12909         get_ctx(child_ctx);
12910
12911         /*
12912          * Make the child state follow the state of the parent event,
12913          * not its attr.disabled bit.  We hold the parent's mutex,
12914          * so we won't race with perf_event_{en, dis}able_family.
12915          */
12916         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12917                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12918         else
12919                 child_event->state = PERF_EVENT_STATE_OFF;
12920
12921         if (parent_event->attr.freq) {
12922                 u64 sample_period = parent_event->hw.sample_period;
12923                 struct hw_perf_event *hwc = &child_event->hw;
12924
12925                 hwc->sample_period = sample_period;
12926                 hwc->last_period   = sample_period;
12927
12928                 local64_set(&hwc->period_left, sample_period);
12929         }
12930
12931         child_event->ctx = child_ctx;
12932         child_event->overflow_handler = parent_event->overflow_handler;
12933         child_event->overflow_handler_context
12934                 = parent_event->overflow_handler_context;
12935
12936         /*
12937          * Precalculate sample_data sizes
12938          */
12939         perf_event__header_size(child_event);
12940         perf_event__id_header_size(child_event);
12941
12942         /*
12943          * Link it up in the child's context:
12944          */
12945         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12946         add_event_to_ctx(child_event, child_ctx);
12947         child_event->attach_state |= PERF_ATTACH_CHILD;
12948         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12949
12950         /*
12951          * Link this into the parent event's child list
12952          */
12953         list_add_tail(&child_event->child_list, &parent_event->child_list);
12954         mutex_unlock(&parent_event->child_mutex);
12955
12956         return child_event;
12957 }
12958
12959 /*
12960  * Inherits an event group.
12961  *
12962  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12963  * This matches with perf_event_release_kernel() removing all child events.
12964  *
12965  * Returns:
12966  *  - 0 on success
12967  *  - <0 on error
12968  */
12969 static int inherit_group(struct perf_event *parent_event,
12970               struct task_struct *parent,
12971               struct perf_event_context *parent_ctx,
12972               struct task_struct *child,
12973               struct perf_event_context *child_ctx)
12974 {
12975         struct perf_event *leader;
12976         struct perf_event *sub;
12977         struct perf_event *child_ctr;
12978
12979         leader = inherit_event(parent_event, parent, parent_ctx,
12980                                  child, NULL, child_ctx);
12981         if (IS_ERR(leader))
12982                 return PTR_ERR(leader);
12983         /*
12984          * @leader can be NULL here because of is_orphaned_event(). In this
12985          * case inherit_event() will create individual events, similar to what
12986          * perf_group_detach() would do anyway.
12987          */
12988         for_each_sibling_event(sub, parent_event) {
12989                 child_ctr = inherit_event(sub, parent, parent_ctx,
12990                                             child, leader, child_ctx);
12991                 if (IS_ERR(child_ctr))
12992                         return PTR_ERR(child_ctr);
12993
12994                 if (sub->aux_event == parent_event && child_ctr &&
12995                     !perf_get_aux_event(child_ctr, leader))
12996                         return -EINVAL;
12997         }
12998         return 0;
12999 }
13000
13001 /*
13002  * Creates the child task context and tries to inherit the event-group.
13003  *
13004  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13005  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13006  * consistent with perf_event_release_kernel() removing all child events.
13007  *
13008  * Returns:
13009  *  - 0 on success
13010  *  - <0 on error
13011  */
13012 static int
13013 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13014                    struct perf_event_context *parent_ctx,
13015                    struct task_struct *child, int ctxn,
13016                    u64 clone_flags, int *inherited_all)
13017 {
13018         int ret;
13019         struct perf_event_context *child_ctx;
13020
13021         if (!event->attr.inherit ||
13022             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13023             /* Do not inherit if sigtrap and signal handlers were cleared. */
13024             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13025                 *inherited_all = 0;
13026                 return 0;
13027         }
13028
13029         child_ctx = child->perf_event_ctxp[ctxn];
13030         if (!child_ctx) {
13031                 /*
13032                  * This is executed from the parent task context, so
13033                  * inherit events that have been marked for cloning.
13034                  * First allocate and initialize a context for the
13035                  * child.
13036                  */
13037                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13038                 if (!child_ctx)
13039                         return -ENOMEM;
13040
13041                 child->perf_event_ctxp[ctxn] = child_ctx;
13042         }
13043
13044         ret = inherit_group(event, parent, parent_ctx,
13045                             child, child_ctx);
13046
13047         if (ret)
13048                 *inherited_all = 0;
13049
13050         return ret;
13051 }
13052
13053 /*
13054  * Initialize the perf_event context in task_struct
13055  */
13056 static int perf_event_init_context(struct task_struct *child, int ctxn,
13057                                    u64 clone_flags)
13058 {
13059         struct perf_event_context *child_ctx, *parent_ctx;
13060         struct perf_event_context *cloned_ctx;
13061         struct perf_event *event;
13062         struct task_struct *parent = current;
13063         int inherited_all = 1;
13064         unsigned long flags;
13065         int ret = 0;
13066
13067         if (likely(!parent->perf_event_ctxp[ctxn]))
13068                 return 0;
13069
13070         /*
13071          * If the parent's context is a clone, pin it so it won't get
13072          * swapped under us.
13073          */
13074         parent_ctx = perf_pin_task_context(parent, ctxn);
13075         if (!parent_ctx)
13076                 return 0;
13077
13078         /*
13079          * No need to check if parent_ctx != NULL here; since we saw
13080          * it non-NULL earlier, the only reason for it to become NULL
13081          * is if we exit, and since we're currently in the middle of
13082          * a fork we can't be exiting at the same time.
13083          */
13084
13085         /*
13086          * Lock the parent list. No need to lock the child - not PID
13087          * hashed yet and not running, so nobody can access it.
13088          */
13089         mutex_lock(&parent_ctx->mutex);
13090
13091         /*
13092          * We dont have to disable NMIs - we are only looking at
13093          * the list, not manipulating it:
13094          */
13095         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13096                 ret = inherit_task_group(event, parent, parent_ctx,
13097                                          child, ctxn, clone_flags,
13098                                          &inherited_all);
13099                 if (ret)
13100                         goto out_unlock;
13101         }
13102
13103         /*
13104          * We can't hold ctx->lock when iterating the ->flexible_group list due
13105          * to allocations, but we need to prevent rotation because
13106          * rotate_ctx() will change the list from interrupt context.
13107          */
13108         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13109         parent_ctx->rotate_disable = 1;
13110         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13111
13112         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13113                 ret = inherit_task_group(event, parent, parent_ctx,
13114                                          child, ctxn, clone_flags,
13115                                          &inherited_all);
13116                 if (ret)
13117                         goto out_unlock;
13118         }
13119
13120         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13121         parent_ctx->rotate_disable = 0;
13122
13123         child_ctx = child->perf_event_ctxp[ctxn];
13124
13125         if (child_ctx && inherited_all) {
13126                 /*
13127                  * Mark the child context as a clone of the parent
13128                  * context, or of whatever the parent is a clone of.
13129                  *
13130                  * Note that if the parent is a clone, the holding of
13131                  * parent_ctx->lock avoids it from being uncloned.
13132                  */
13133                 cloned_ctx = parent_ctx->parent_ctx;
13134                 if (cloned_ctx) {
13135                         child_ctx->parent_ctx = cloned_ctx;
13136                         child_ctx->parent_gen = parent_ctx->parent_gen;
13137                 } else {
13138                         child_ctx->parent_ctx = parent_ctx;
13139                         child_ctx->parent_gen = parent_ctx->generation;
13140                 }
13141                 get_ctx(child_ctx->parent_ctx);
13142         }
13143
13144         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13145 out_unlock:
13146         mutex_unlock(&parent_ctx->mutex);
13147
13148         perf_unpin_context(parent_ctx);
13149         put_ctx(parent_ctx);
13150
13151         return ret;
13152 }
13153
13154 /*
13155  * Initialize the perf_event context in task_struct
13156  */
13157 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13158 {
13159         int ctxn, ret;
13160
13161         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13162         mutex_init(&child->perf_event_mutex);
13163         INIT_LIST_HEAD(&child->perf_event_list);
13164
13165         for_each_task_context_nr(ctxn) {
13166                 ret = perf_event_init_context(child, ctxn, clone_flags);
13167                 if (ret) {
13168                         perf_event_free_task(child);
13169                         return ret;
13170                 }
13171         }
13172
13173         return 0;
13174 }
13175
13176 static void __init perf_event_init_all_cpus(void)
13177 {
13178         struct swevent_htable *swhash;
13179         int cpu;
13180
13181         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13182
13183         for_each_possible_cpu(cpu) {
13184                 swhash = &per_cpu(swevent_htable, cpu);
13185                 mutex_init(&swhash->hlist_mutex);
13186                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13187
13188                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13189                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13190
13191 #ifdef CONFIG_CGROUP_PERF
13192                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13193 #endif
13194                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13195         }
13196 }
13197
13198 static void perf_swevent_init_cpu(unsigned int cpu)
13199 {
13200         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13201
13202         mutex_lock(&swhash->hlist_mutex);
13203         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13204                 struct swevent_hlist *hlist;
13205
13206                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13207                 WARN_ON(!hlist);
13208                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13209         }
13210         mutex_unlock(&swhash->hlist_mutex);
13211 }
13212
13213 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13214 static void __perf_event_exit_context(void *__info)
13215 {
13216         struct perf_event_context *ctx = __info;
13217         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13218         struct perf_event *event;
13219
13220         raw_spin_lock(&ctx->lock);
13221         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13222         list_for_each_entry(event, &ctx->event_list, event_entry)
13223                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13224         raw_spin_unlock(&ctx->lock);
13225 }
13226
13227 static void perf_event_exit_cpu_context(int cpu)
13228 {
13229         struct perf_cpu_context *cpuctx;
13230         struct perf_event_context *ctx;
13231         struct pmu *pmu;
13232
13233         mutex_lock(&pmus_lock);
13234         list_for_each_entry(pmu, &pmus, entry) {
13235                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13236                 ctx = &cpuctx->ctx;
13237
13238                 mutex_lock(&ctx->mutex);
13239                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13240                 cpuctx->online = 0;
13241                 mutex_unlock(&ctx->mutex);
13242         }
13243         cpumask_clear_cpu(cpu, perf_online_mask);
13244         mutex_unlock(&pmus_lock);
13245 }
13246 #else
13247
13248 static void perf_event_exit_cpu_context(int cpu) { }
13249
13250 #endif
13251
13252 int perf_event_init_cpu(unsigned int cpu)
13253 {
13254         struct perf_cpu_context *cpuctx;
13255         struct perf_event_context *ctx;
13256         struct pmu *pmu;
13257
13258         perf_swevent_init_cpu(cpu);
13259
13260         mutex_lock(&pmus_lock);
13261         cpumask_set_cpu(cpu, perf_online_mask);
13262         list_for_each_entry(pmu, &pmus, entry) {
13263                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13264                 ctx = &cpuctx->ctx;
13265
13266                 mutex_lock(&ctx->mutex);
13267                 cpuctx->online = 1;
13268                 mutex_unlock(&ctx->mutex);
13269         }
13270         mutex_unlock(&pmus_lock);
13271
13272         return 0;
13273 }
13274
13275 int perf_event_exit_cpu(unsigned int cpu)
13276 {
13277         perf_event_exit_cpu_context(cpu);
13278         return 0;
13279 }
13280
13281 static int
13282 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13283 {
13284         int cpu;
13285
13286         for_each_online_cpu(cpu)
13287                 perf_event_exit_cpu(cpu);
13288
13289         return NOTIFY_OK;
13290 }
13291
13292 /*
13293  * Run the perf reboot notifier at the very last possible moment so that
13294  * the generic watchdog code runs as long as possible.
13295  */
13296 static struct notifier_block perf_reboot_notifier = {
13297         .notifier_call = perf_reboot,
13298         .priority = INT_MIN,
13299 };
13300
13301 void __init perf_event_init(void)
13302 {
13303         int ret;
13304
13305         idr_init(&pmu_idr);
13306
13307         perf_event_init_all_cpus();
13308         init_srcu_struct(&pmus_srcu);
13309         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13310         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13311         perf_pmu_register(&perf_task_clock, NULL, -1);
13312         perf_tp_register();
13313         perf_event_init_cpu(smp_processor_id());
13314         register_reboot_notifier(&perf_reboot_notifier);
13315
13316         ret = init_hw_breakpoint();
13317         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13318
13319         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13320
13321         /*
13322          * Build time assertion that we keep the data_head at the intended
13323          * location.  IOW, validation we got the __reserved[] size right.
13324          */
13325         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13326                      != 1024);
13327 }
13328
13329 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13330                               char *page)
13331 {
13332         struct perf_pmu_events_attr *pmu_attr =
13333                 container_of(attr, struct perf_pmu_events_attr, attr);
13334
13335         if (pmu_attr->event_str)
13336                 return sprintf(page, "%s\n", pmu_attr->event_str);
13337
13338         return 0;
13339 }
13340 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13341
13342 static int __init perf_event_sysfs_init(void)
13343 {
13344         struct pmu *pmu;
13345         int ret;
13346
13347         mutex_lock(&pmus_lock);
13348
13349         ret = bus_register(&pmu_bus);
13350         if (ret)
13351                 goto unlock;
13352
13353         list_for_each_entry(pmu, &pmus, entry) {
13354                 if (!pmu->name || pmu->type < 0)
13355                         continue;
13356
13357                 ret = pmu_dev_alloc(pmu);
13358                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13359         }
13360         pmu_bus_running = 1;
13361         ret = 0;
13362
13363 unlock:
13364         mutex_unlock(&pmus_lock);
13365
13366         return ret;
13367 }
13368 device_initcall(perf_event_sysfs_init);
13369
13370 #ifdef CONFIG_CGROUP_PERF
13371 static struct cgroup_subsys_state *
13372 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13373 {
13374         struct perf_cgroup *jc;
13375
13376         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13377         if (!jc)
13378                 return ERR_PTR(-ENOMEM);
13379
13380         jc->info = alloc_percpu(struct perf_cgroup_info);
13381         if (!jc->info) {
13382                 kfree(jc);
13383                 return ERR_PTR(-ENOMEM);
13384         }
13385
13386         return &jc->css;
13387 }
13388
13389 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13390 {
13391         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13392
13393         free_percpu(jc->info);
13394         kfree(jc);
13395 }
13396
13397 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13398 {
13399         perf_event_cgroup(css->cgroup);
13400         return 0;
13401 }
13402
13403 static int __perf_cgroup_move(void *info)
13404 {
13405         struct task_struct *task = info;
13406         rcu_read_lock();
13407         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13408         rcu_read_unlock();
13409         return 0;
13410 }
13411
13412 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13413 {
13414         struct task_struct *task;
13415         struct cgroup_subsys_state *css;
13416
13417         cgroup_taskset_for_each(task, css, tset)
13418                 task_function_call(task, __perf_cgroup_move, task);
13419 }
13420
13421 struct cgroup_subsys perf_event_cgrp_subsys = {
13422         .css_alloc      = perf_cgroup_css_alloc,
13423         .css_free       = perf_cgroup_css_free,
13424         .css_online     = perf_cgroup_css_online,
13425         .attach         = perf_cgroup_attach,
13426         /*
13427          * Implicitly enable on dfl hierarchy so that perf events can
13428          * always be filtered by cgroup2 path as long as perf_event
13429          * controller is not mounted on a legacy hierarchy.
13430          */
13431         .implicit_on_dfl = true,
13432         .threaded       = true,
13433 };
13434 #endif /* CONFIG_CGROUP_PERF */