Merge tag 'gfs2-for-5.9' of git://git.kernel.org/pub/scm/linux/kernel/git/gfs2/linux...
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54
55 #include "internal.h"
56
57 #include <asm/irq_regs.h>
58
59 typedef int (*remote_function_f)(void *);
60
61 struct remote_function_call {
62         struct task_struct      *p;
63         remote_function_f       func;
64         void                    *info;
65         int                     ret;
66 };
67
68 static void remote_function(void *data)
69 {
70         struct remote_function_call *tfc = data;
71         struct task_struct *p = tfc->p;
72
73         if (p) {
74                 /* -EAGAIN */
75                 if (task_cpu(p) != smp_processor_id())
76                         return;
77
78                 /*
79                  * Now that we're on right CPU with IRQs disabled, we can test
80                  * if we hit the right task without races.
81                  */
82
83                 tfc->ret = -ESRCH; /* No such (running) process */
84                 if (p != current)
85                         return;
86         }
87
88         tfc->ret = tfc->func(tfc->info);
89 }
90
91 /**
92  * task_function_call - call a function on the cpu on which a task runs
93  * @p:          the task to evaluate
94  * @func:       the function to be called
95  * @info:       the function call argument
96  *
97  * Calls the function @func when the task is currently running. This might
98  * be on the current CPU, which just calls the function directly.  This will
99  * retry due to any failures in smp_call_function_single(), such as if the
100  * task_cpu() goes offline concurrently.
101  *
102  * returns @func return value or -ESRCH when the process isn't running
103  */
104 static int
105 task_function_call(struct task_struct *p, remote_function_f func, void *info)
106 {
107         struct remote_function_call data = {
108                 .p      = p,
109                 .func   = func,
110                 .info   = info,
111                 .ret    = -EAGAIN,
112         };
113         int ret;
114
115         for (;;) {
116                 ret = smp_call_function_single(task_cpu(p), remote_function,
117                                                &data, 1);
118                 ret = !ret ? data.ret : -EAGAIN;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         lockdep_assert_irqs_disabled();
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         lockdep_assert_irqs_disabled();
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394 static atomic_t nr_ksymbol_events __read_mostly;
395 static atomic_t nr_bpf_events __read_mostly;
396 static atomic_t nr_cgroup_events __read_mostly;
397 static atomic_t nr_text_poke_events __read_mostly;
398
399 static LIST_HEAD(pmus);
400 static DEFINE_MUTEX(pmus_lock);
401 static struct srcu_struct pmus_srcu;
402 static cpumask_var_t perf_online_mask;
403
404 /*
405  * perf event paranoia level:
406  *  -1 - not paranoid at all
407  *   0 - disallow raw tracepoint access for unpriv
408  *   1 - disallow cpu events for unpriv
409  *   2 - disallow kernel profiling for unpriv
410  */
411 int sysctl_perf_event_paranoid __read_mostly = 2;
412
413 /* Minimum for 512 kiB + 1 user control page */
414 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
415
416 /*
417  * max perf event sample rate
418  */
419 #define DEFAULT_MAX_SAMPLE_RATE         100000
420 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
421 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
422
423 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
424
425 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
426 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
427
428 static int perf_sample_allowed_ns __read_mostly =
429         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
430
431 static void update_perf_cpu_limits(void)
432 {
433         u64 tmp = perf_sample_period_ns;
434
435         tmp *= sysctl_perf_cpu_time_max_percent;
436         tmp = div_u64(tmp, 100);
437         if (!tmp)
438                 tmp = 1;
439
440         WRITE_ONCE(perf_sample_allowed_ns, tmp);
441 }
442
443 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
444
445 int perf_proc_update_handler(struct ctl_table *table, int write,
446                 void *buffer, size_t *lenp, loff_t *ppos)
447 {
448         int ret;
449         int perf_cpu = sysctl_perf_cpu_time_max_percent;
450         /*
451          * If throttling is disabled don't allow the write:
452          */
453         if (write && (perf_cpu == 100 || perf_cpu == 0))
454                 return -EINVAL;
455
456         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
457         if (ret || !write)
458                 return ret;
459
460         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
461         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
462         update_perf_cpu_limits();
463
464         return 0;
465 }
466
467 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
468
469 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
470                 void *buffer, size_t *lenp, loff_t *ppos)
471 {
472         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
473
474         if (ret || !write)
475                 return ret;
476
477         if (sysctl_perf_cpu_time_max_percent == 100 ||
478             sysctl_perf_cpu_time_max_percent == 0) {
479                 printk(KERN_WARNING
480                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
481                 WRITE_ONCE(perf_sample_allowed_ns, 0);
482         } else {
483                 update_perf_cpu_limits();
484         }
485
486         return 0;
487 }
488
489 /*
490  * perf samples are done in some very critical code paths (NMIs).
491  * If they take too much CPU time, the system can lock up and not
492  * get any real work done.  This will drop the sample rate when
493  * we detect that events are taking too long.
494  */
495 #define NR_ACCUMULATED_SAMPLES 128
496 static DEFINE_PER_CPU(u64, running_sample_length);
497
498 static u64 __report_avg;
499 static u64 __report_allowed;
500
501 static void perf_duration_warn(struct irq_work *w)
502 {
503         printk_ratelimited(KERN_INFO
504                 "perf: interrupt took too long (%lld > %lld), lowering "
505                 "kernel.perf_event_max_sample_rate to %d\n",
506                 __report_avg, __report_allowed,
507                 sysctl_perf_event_sample_rate);
508 }
509
510 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
511
512 void perf_sample_event_took(u64 sample_len_ns)
513 {
514         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
515         u64 running_len;
516         u64 avg_len;
517         u32 max;
518
519         if (max_len == 0)
520                 return;
521
522         /* Decay the counter by 1 average sample. */
523         running_len = __this_cpu_read(running_sample_length);
524         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
525         running_len += sample_len_ns;
526         __this_cpu_write(running_sample_length, running_len);
527
528         /*
529          * Note: this will be biased artifically low until we have
530          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
531          * from having to maintain a count.
532          */
533         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
534         if (avg_len <= max_len)
535                 return;
536
537         __report_avg = avg_len;
538         __report_allowed = max_len;
539
540         /*
541          * Compute a throttle threshold 25% below the current duration.
542          */
543         avg_len += avg_len / 4;
544         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
545         if (avg_len < max)
546                 max /= (u32)avg_len;
547         else
548                 max = 1;
549
550         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
551         WRITE_ONCE(max_samples_per_tick, max);
552
553         sysctl_perf_event_sample_rate = max * HZ;
554         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
555
556         if (!irq_work_queue(&perf_duration_work)) {
557                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
558                              "kernel.perf_event_max_sample_rate to %d\n",
559                              __report_avg, __report_allowed,
560                              sysctl_perf_event_sample_rate);
561         }
562 }
563
564 static atomic64_t perf_event_id;
565
566 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
567                               enum event_type_t event_type);
568
569 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
570                              enum event_type_t event_type,
571                              struct task_struct *task);
572
573 static void update_context_time(struct perf_event_context *ctx);
574 static u64 perf_event_time(struct perf_event *event);
575
576 void __weak perf_event_print_debug(void)        { }
577
578 extern __weak const char *perf_pmu_name(void)
579 {
580         return "pmu";
581 }
582
583 static inline u64 perf_clock(void)
584 {
585         return local_clock();
586 }
587
588 static inline u64 perf_event_clock(struct perf_event *event)
589 {
590         return event->clock();
591 }
592
593 /*
594  * State based event timekeeping...
595  *
596  * The basic idea is to use event->state to determine which (if any) time
597  * fields to increment with the current delta. This means we only need to
598  * update timestamps when we change state or when they are explicitly requested
599  * (read).
600  *
601  * Event groups make things a little more complicated, but not terribly so. The
602  * rules for a group are that if the group leader is OFF the entire group is
603  * OFF, irrespecive of what the group member states are. This results in
604  * __perf_effective_state().
605  *
606  * A futher ramification is that when a group leader flips between OFF and
607  * !OFF, we need to update all group member times.
608  *
609  *
610  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
611  * need to make sure the relevant context time is updated before we try and
612  * update our timestamps.
613  */
614
615 static __always_inline enum perf_event_state
616 __perf_effective_state(struct perf_event *event)
617 {
618         struct perf_event *leader = event->group_leader;
619
620         if (leader->state <= PERF_EVENT_STATE_OFF)
621                 return leader->state;
622
623         return event->state;
624 }
625
626 static __always_inline void
627 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
628 {
629         enum perf_event_state state = __perf_effective_state(event);
630         u64 delta = now - event->tstamp;
631
632         *enabled = event->total_time_enabled;
633         if (state >= PERF_EVENT_STATE_INACTIVE)
634                 *enabled += delta;
635
636         *running = event->total_time_running;
637         if (state >= PERF_EVENT_STATE_ACTIVE)
638                 *running += delta;
639 }
640
641 static void perf_event_update_time(struct perf_event *event)
642 {
643         u64 now = perf_event_time(event);
644
645         __perf_update_times(event, now, &event->total_time_enabled,
646                                         &event->total_time_running);
647         event->tstamp = now;
648 }
649
650 static void perf_event_update_sibling_time(struct perf_event *leader)
651 {
652         struct perf_event *sibling;
653
654         for_each_sibling_event(sibling, leader)
655                 perf_event_update_time(sibling);
656 }
657
658 static void
659 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
660 {
661         if (event->state == state)
662                 return;
663
664         perf_event_update_time(event);
665         /*
666          * If a group leader gets enabled/disabled all its siblings
667          * are affected too.
668          */
669         if ((event->state < 0) ^ (state < 0))
670                 perf_event_update_sibling_time(event);
671
672         WRITE_ONCE(event->state, state);
673 }
674
675 #ifdef CONFIG_CGROUP_PERF
676
677 static inline bool
678 perf_cgroup_match(struct perf_event *event)
679 {
680         struct perf_event_context *ctx = event->ctx;
681         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
682
683         /* @event doesn't care about cgroup */
684         if (!event->cgrp)
685                 return true;
686
687         /* wants specific cgroup scope but @cpuctx isn't associated with any */
688         if (!cpuctx->cgrp)
689                 return false;
690
691         /*
692          * Cgroup scoping is recursive.  An event enabled for a cgroup is
693          * also enabled for all its descendant cgroups.  If @cpuctx's
694          * cgroup is a descendant of @event's (the test covers identity
695          * case), it's a match.
696          */
697         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
698                                     event->cgrp->css.cgroup);
699 }
700
701 static inline void perf_detach_cgroup(struct perf_event *event)
702 {
703         css_put(&event->cgrp->css);
704         event->cgrp = NULL;
705 }
706
707 static inline int is_cgroup_event(struct perf_event *event)
708 {
709         return event->cgrp != NULL;
710 }
711
712 static inline u64 perf_cgroup_event_time(struct perf_event *event)
713 {
714         struct perf_cgroup_info *t;
715
716         t = per_cpu_ptr(event->cgrp->info, event->cpu);
717         return t->time;
718 }
719
720 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
721 {
722         struct perf_cgroup_info *info;
723         u64 now;
724
725         now = perf_clock();
726
727         info = this_cpu_ptr(cgrp->info);
728
729         info->time += now - info->timestamp;
730         info->timestamp = now;
731 }
732
733 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
734 {
735         struct perf_cgroup *cgrp = cpuctx->cgrp;
736         struct cgroup_subsys_state *css;
737
738         if (cgrp) {
739                 for (css = &cgrp->css; css; css = css->parent) {
740                         cgrp = container_of(css, struct perf_cgroup, css);
741                         __update_cgrp_time(cgrp);
742                 }
743         }
744 }
745
746 static inline void update_cgrp_time_from_event(struct perf_event *event)
747 {
748         struct perf_cgroup *cgrp;
749
750         /*
751          * ensure we access cgroup data only when needed and
752          * when we know the cgroup is pinned (css_get)
753          */
754         if (!is_cgroup_event(event))
755                 return;
756
757         cgrp = perf_cgroup_from_task(current, event->ctx);
758         /*
759          * Do not update time when cgroup is not active
760          */
761         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
762                 __update_cgrp_time(event->cgrp);
763 }
764
765 static inline void
766 perf_cgroup_set_timestamp(struct task_struct *task,
767                           struct perf_event_context *ctx)
768 {
769         struct perf_cgroup *cgrp;
770         struct perf_cgroup_info *info;
771         struct cgroup_subsys_state *css;
772
773         /*
774          * ctx->lock held by caller
775          * ensure we do not access cgroup data
776          * unless we have the cgroup pinned (css_get)
777          */
778         if (!task || !ctx->nr_cgroups)
779                 return;
780
781         cgrp = perf_cgroup_from_task(task, ctx);
782
783         for (css = &cgrp->css; css; css = css->parent) {
784                 cgrp = container_of(css, struct perf_cgroup, css);
785                 info = this_cpu_ptr(cgrp->info);
786                 info->timestamp = ctx->timestamp;
787         }
788 }
789
790 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
791
792 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
793 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
794
795 /*
796  * reschedule events based on the cgroup constraint of task.
797  *
798  * mode SWOUT : schedule out everything
799  * mode SWIN : schedule in based on cgroup for next
800  */
801 static void perf_cgroup_switch(struct task_struct *task, int mode)
802 {
803         struct perf_cpu_context *cpuctx;
804         struct list_head *list;
805         unsigned long flags;
806
807         /*
808          * Disable interrupts and preemption to avoid this CPU's
809          * cgrp_cpuctx_entry to change under us.
810          */
811         local_irq_save(flags);
812
813         list = this_cpu_ptr(&cgrp_cpuctx_list);
814         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
815                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
816
817                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
818                 perf_pmu_disable(cpuctx->ctx.pmu);
819
820                 if (mode & PERF_CGROUP_SWOUT) {
821                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
822                         /*
823                          * must not be done before ctxswout due
824                          * to event_filter_match() in event_sched_out()
825                          */
826                         cpuctx->cgrp = NULL;
827                 }
828
829                 if (mode & PERF_CGROUP_SWIN) {
830                         WARN_ON_ONCE(cpuctx->cgrp);
831                         /*
832                          * set cgrp before ctxsw in to allow
833                          * event_filter_match() to not have to pass
834                          * task around
835                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
836                          * because cgorup events are only per-cpu
837                          */
838                         cpuctx->cgrp = perf_cgroup_from_task(task,
839                                                              &cpuctx->ctx);
840                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
841                 }
842                 perf_pmu_enable(cpuctx->ctx.pmu);
843                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
844         }
845
846         local_irq_restore(flags);
847 }
848
849 static inline void perf_cgroup_sched_out(struct task_struct *task,
850                                          struct task_struct *next)
851 {
852         struct perf_cgroup *cgrp1;
853         struct perf_cgroup *cgrp2 = NULL;
854
855         rcu_read_lock();
856         /*
857          * we come here when we know perf_cgroup_events > 0
858          * we do not need to pass the ctx here because we know
859          * we are holding the rcu lock
860          */
861         cgrp1 = perf_cgroup_from_task(task, NULL);
862         cgrp2 = perf_cgroup_from_task(next, NULL);
863
864         /*
865          * only schedule out current cgroup events if we know
866          * that we are switching to a different cgroup. Otherwise,
867          * do no touch the cgroup events.
868          */
869         if (cgrp1 != cgrp2)
870                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
871
872         rcu_read_unlock();
873 }
874
875 static inline void perf_cgroup_sched_in(struct task_struct *prev,
876                                         struct task_struct *task)
877 {
878         struct perf_cgroup *cgrp1;
879         struct perf_cgroup *cgrp2 = NULL;
880
881         rcu_read_lock();
882         /*
883          * we come here when we know perf_cgroup_events > 0
884          * we do not need to pass the ctx here because we know
885          * we are holding the rcu lock
886          */
887         cgrp1 = perf_cgroup_from_task(task, NULL);
888         cgrp2 = perf_cgroup_from_task(prev, NULL);
889
890         /*
891          * only need to schedule in cgroup events if we are changing
892          * cgroup during ctxsw. Cgroup events were not scheduled
893          * out of ctxsw out if that was not the case.
894          */
895         if (cgrp1 != cgrp2)
896                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
897
898         rcu_read_unlock();
899 }
900
901 static int perf_cgroup_ensure_storage(struct perf_event *event,
902                                 struct cgroup_subsys_state *css)
903 {
904         struct perf_cpu_context *cpuctx;
905         struct perf_event **storage;
906         int cpu, heap_size, ret = 0;
907
908         /*
909          * Allow storage to have sufficent space for an iterator for each
910          * possibly nested cgroup plus an iterator for events with no cgroup.
911          */
912         for (heap_size = 1; css; css = css->parent)
913                 heap_size++;
914
915         for_each_possible_cpu(cpu) {
916                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
917                 if (heap_size <= cpuctx->heap_size)
918                         continue;
919
920                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
921                                        GFP_KERNEL, cpu_to_node(cpu));
922                 if (!storage) {
923                         ret = -ENOMEM;
924                         break;
925                 }
926
927                 raw_spin_lock_irq(&cpuctx->ctx.lock);
928                 if (cpuctx->heap_size < heap_size) {
929                         swap(cpuctx->heap, storage);
930                         if (storage == cpuctx->heap_default)
931                                 storage = NULL;
932                         cpuctx->heap_size = heap_size;
933                 }
934                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
935
936                 kfree(storage);
937         }
938
939         return ret;
940 }
941
942 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
943                                       struct perf_event_attr *attr,
944                                       struct perf_event *group_leader)
945 {
946         struct perf_cgroup *cgrp;
947         struct cgroup_subsys_state *css;
948         struct fd f = fdget(fd);
949         int ret = 0;
950
951         if (!f.file)
952                 return -EBADF;
953
954         css = css_tryget_online_from_dir(f.file->f_path.dentry,
955                                          &perf_event_cgrp_subsys);
956         if (IS_ERR(css)) {
957                 ret = PTR_ERR(css);
958                 goto out;
959         }
960
961         ret = perf_cgroup_ensure_storage(event, css);
962         if (ret)
963                 goto out;
964
965         cgrp = container_of(css, struct perf_cgroup, css);
966         event->cgrp = cgrp;
967
968         /*
969          * all events in a group must monitor
970          * the same cgroup because a task belongs
971          * to only one perf cgroup at a time
972          */
973         if (group_leader && group_leader->cgrp != cgrp) {
974                 perf_detach_cgroup(event);
975                 ret = -EINVAL;
976         }
977 out:
978         fdput(f);
979         return ret;
980 }
981
982 static inline void
983 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
984 {
985         struct perf_cgroup_info *t;
986         t = per_cpu_ptr(event->cgrp->info, event->cpu);
987         event->shadow_ctx_time = now - t->timestamp;
988 }
989
990 static inline void
991 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
992 {
993         struct perf_cpu_context *cpuctx;
994
995         if (!is_cgroup_event(event))
996                 return;
997
998         /*
999          * Because cgroup events are always per-cpu events,
1000          * @ctx == &cpuctx->ctx.
1001          */
1002         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1003
1004         /*
1005          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1006          * matching the event's cgroup, we must do this for every new event,
1007          * because if the first would mismatch, the second would not try again
1008          * and we would leave cpuctx->cgrp unset.
1009          */
1010         if (ctx->is_active && !cpuctx->cgrp) {
1011                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1012
1013                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1014                         cpuctx->cgrp = cgrp;
1015         }
1016
1017         if (ctx->nr_cgroups++)
1018                 return;
1019
1020         list_add(&cpuctx->cgrp_cpuctx_entry,
1021                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1022 }
1023
1024 static inline void
1025 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1026 {
1027         struct perf_cpu_context *cpuctx;
1028
1029         if (!is_cgroup_event(event))
1030                 return;
1031
1032         /*
1033          * Because cgroup events are always per-cpu events,
1034          * @ctx == &cpuctx->ctx.
1035          */
1036         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1037
1038         if (--ctx->nr_cgroups)
1039                 return;
1040
1041         if (ctx->is_active && cpuctx->cgrp)
1042                 cpuctx->cgrp = NULL;
1043
1044         list_del(&cpuctx->cgrp_cpuctx_entry);
1045 }
1046
1047 #else /* !CONFIG_CGROUP_PERF */
1048
1049 static inline bool
1050 perf_cgroup_match(struct perf_event *event)
1051 {
1052         return true;
1053 }
1054
1055 static inline void perf_detach_cgroup(struct perf_event *event)
1056 {}
1057
1058 static inline int is_cgroup_event(struct perf_event *event)
1059 {
1060         return 0;
1061 }
1062
1063 static inline void update_cgrp_time_from_event(struct perf_event *event)
1064 {
1065 }
1066
1067 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1068 {
1069 }
1070
1071 static inline void perf_cgroup_sched_out(struct task_struct *task,
1072                                          struct task_struct *next)
1073 {
1074 }
1075
1076 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1077                                         struct task_struct *task)
1078 {
1079 }
1080
1081 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1082                                       struct perf_event_attr *attr,
1083                                       struct perf_event *group_leader)
1084 {
1085         return -EINVAL;
1086 }
1087
1088 static inline void
1089 perf_cgroup_set_timestamp(struct task_struct *task,
1090                           struct perf_event_context *ctx)
1091 {
1092 }
1093
1094 static inline void
1095 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1096 {
1097 }
1098
1099 static inline void
1100 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1101 {
1102 }
1103
1104 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1105 {
1106         return 0;
1107 }
1108
1109 static inline void
1110 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1111 {
1112 }
1113
1114 static inline void
1115 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1116 {
1117 }
1118 #endif
1119
1120 /*
1121  * set default to be dependent on timer tick just
1122  * like original code
1123  */
1124 #define PERF_CPU_HRTIMER (1000 / HZ)
1125 /*
1126  * function must be called with interrupts disabled
1127  */
1128 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1129 {
1130         struct perf_cpu_context *cpuctx;
1131         bool rotations;
1132
1133         lockdep_assert_irqs_disabled();
1134
1135         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1136         rotations = perf_rotate_context(cpuctx);
1137
1138         raw_spin_lock(&cpuctx->hrtimer_lock);
1139         if (rotations)
1140                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1141         else
1142                 cpuctx->hrtimer_active = 0;
1143         raw_spin_unlock(&cpuctx->hrtimer_lock);
1144
1145         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1146 }
1147
1148 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1149 {
1150         struct hrtimer *timer = &cpuctx->hrtimer;
1151         struct pmu *pmu = cpuctx->ctx.pmu;
1152         u64 interval;
1153
1154         /* no multiplexing needed for SW PMU */
1155         if (pmu->task_ctx_nr == perf_sw_context)
1156                 return;
1157
1158         /*
1159          * check default is sane, if not set then force to
1160          * default interval (1/tick)
1161          */
1162         interval = pmu->hrtimer_interval_ms;
1163         if (interval < 1)
1164                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1165
1166         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1167
1168         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1169         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1170         timer->function = perf_mux_hrtimer_handler;
1171 }
1172
1173 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1174 {
1175         struct hrtimer *timer = &cpuctx->hrtimer;
1176         struct pmu *pmu = cpuctx->ctx.pmu;
1177         unsigned long flags;
1178
1179         /* not for SW PMU */
1180         if (pmu->task_ctx_nr == perf_sw_context)
1181                 return 0;
1182
1183         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1184         if (!cpuctx->hrtimer_active) {
1185                 cpuctx->hrtimer_active = 1;
1186                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1187                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1188         }
1189         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1190
1191         return 0;
1192 }
1193
1194 void perf_pmu_disable(struct pmu *pmu)
1195 {
1196         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1197         if (!(*count)++)
1198                 pmu->pmu_disable(pmu);
1199 }
1200
1201 void perf_pmu_enable(struct pmu *pmu)
1202 {
1203         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1204         if (!--(*count))
1205                 pmu->pmu_enable(pmu);
1206 }
1207
1208 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1209
1210 /*
1211  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1212  * perf_event_task_tick() are fully serialized because they're strictly cpu
1213  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1214  * disabled, while perf_event_task_tick is called from IRQ context.
1215  */
1216 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1217 {
1218         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1219
1220         lockdep_assert_irqs_disabled();
1221
1222         WARN_ON(!list_empty(&ctx->active_ctx_list));
1223
1224         list_add(&ctx->active_ctx_list, head);
1225 }
1226
1227 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1228 {
1229         lockdep_assert_irqs_disabled();
1230
1231         WARN_ON(list_empty(&ctx->active_ctx_list));
1232
1233         list_del_init(&ctx->active_ctx_list);
1234 }
1235
1236 static void get_ctx(struct perf_event_context *ctx)
1237 {
1238         refcount_inc(&ctx->refcount);
1239 }
1240
1241 static void *alloc_task_ctx_data(struct pmu *pmu)
1242 {
1243         if (pmu->task_ctx_cache)
1244                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1245
1246         return NULL;
1247 }
1248
1249 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1250 {
1251         if (pmu->task_ctx_cache && task_ctx_data)
1252                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1253 }
1254
1255 static void free_ctx(struct rcu_head *head)
1256 {
1257         struct perf_event_context *ctx;
1258
1259         ctx = container_of(head, struct perf_event_context, rcu_head);
1260         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1261         kfree(ctx);
1262 }
1263
1264 static void put_ctx(struct perf_event_context *ctx)
1265 {
1266         if (refcount_dec_and_test(&ctx->refcount)) {
1267                 if (ctx->parent_ctx)
1268                         put_ctx(ctx->parent_ctx);
1269                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1270                         put_task_struct(ctx->task);
1271                 call_rcu(&ctx->rcu_head, free_ctx);
1272         }
1273 }
1274
1275 /*
1276  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1277  * perf_pmu_migrate_context() we need some magic.
1278  *
1279  * Those places that change perf_event::ctx will hold both
1280  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1281  *
1282  * Lock ordering is by mutex address. There are two other sites where
1283  * perf_event_context::mutex nests and those are:
1284  *
1285  *  - perf_event_exit_task_context()    [ child , 0 ]
1286  *      perf_event_exit_event()
1287  *        put_event()                   [ parent, 1 ]
1288  *
1289  *  - perf_event_init_context()         [ parent, 0 ]
1290  *      inherit_task_group()
1291  *        inherit_group()
1292  *          inherit_event()
1293  *            perf_event_alloc()
1294  *              perf_init_event()
1295  *                perf_try_init_event() [ child , 1 ]
1296  *
1297  * While it appears there is an obvious deadlock here -- the parent and child
1298  * nesting levels are inverted between the two. This is in fact safe because
1299  * life-time rules separate them. That is an exiting task cannot fork, and a
1300  * spawning task cannot (yet) exit.
1301  *
1302  * But remember that that these are parent<->child context relations, and
1303  * migration does not affect children, therefore these two orderings should not
1304  * interact.
1305  *
1306  * The change in perf_event::ctx does not affect children (as claimed above)
1307  * because the sys_perf_event_open() case will install a new event and break
1308  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1309  * concerned with cpuctx and that doesn't have children.
1310  *
1311  * The places that change perf_event::ctx will issue:
1312  *
1313  *   perf_remove_from_context();
1314  *   synchronize_rcu();
1315  *   perf_install_in_context();
1316  *
1317  * to affect the change. The remove_from_context() + synchronize_rcu() should
1318  * quiesce the event, after which we can install it in the new location. This
1319  * means that only external vectors (perf_fops, prctl) can perturb the event
1320  * while in transit. Therefore all such accessors should also acquire
1321  * perf_event_context::mutex to serialize against this.
1322  *
1323  * However; because event->ctx can change while we're waiting to acquire
1324  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1325  * function.
1326  *
1327  * Lock order:
1328  *    exec_update_mutex
1329  *      task_struct::perf_event_mutex
1330  *        perf_event_context::mutex
1331  *          perf_event::child_mutex;
1332  *            perf_event_context::lock
1333  *          perf_event::mmap_mutex
1334  *          mmap_lock
1335  *            perf_addr_filters_head::lock
1336  *
1337  *    cpu_hotplug_lock
1338  *      pmus_lock
1339  *        cpuctx->mutex / perf_event_context::mutex
1340  */
1341 static struct perf_event_context *
1342 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1343 {
1344         struct perf_event_context *ctx;
1345
1346 again:
1347         rcu_read_lock();
1348         ctx = READ_ONCE(event->ctx);
1349         if (!refcount_inc_not_zero(&ctx->refcount)) {
1350                 rcu_read_unlock();
1351                 goto again;
1352         }
1353         rcu_read_unlock();
1354
1355         mutex_lock_nested(&ctx->mutex, nesting);
1356         if (event->ctx != ctx) {
1357                 mutex_unlock(&ctx->mutex);
1358                 put_ctx(ctx);
1359                 goto again;
1360         }
1361
1362         return ctx;
1363 }
1364
1365 static inline struct perf_event_context *
1366 perf_event_ctx_lock(struct perf_event *event)
1367 {
1368         return perf_event_ctx_lock_nested(event, 0);
1369 }
1370
1371 static void perf_event_ctx_unlock(struct perf_event *event,
1372                                   struct perf_event_context *ctx)
1373 {
1374         mutex_unlock(&ctx->mutex);
1375         put_ctx(ctx);
1376 }
1377
1378 /*
1379  * This must be done under the ctx->lock, such as to serialize against
1380  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1381  * calling scheduler related locks and ctx->lock nests inside those.
1382  */
1383 static __must_check struct perf_event_context *
1384 unclone_ctx(struct perf_event_context *ctx)
1385 {
1386         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1387
1388         lockdep_assert_held(&ctx->lock);
1389
1390         if (parent_ctx)
1391                 ctx->parent_ctx = NULL;
1392         ctx->generation++;
1393
1394         return parent_ctx;
1395 }
1396
1397 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1398                                 enum pid_type type)
1399 {
1400         u32 nr;
1401         /*
1402          * only top level events have the pid namespace they were created in
1403          */
1404         if (event->parent)
1405                 event = event->parent;
1406
1407         nr = __task_pid_nr_ns(p, type, event->ns);
1408         /* avoid -1 if it is idle thread or runs in another ns */
1409         if (!nr && !pid_alive(p))
1410                 nr = -1;
1411         return nr;
1412 }
1413
1414 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1415 {
1416         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1417 }
1418
1419 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1420 {
1421         return perf_event_pid_type(event, p, PIDTYPE_PID);
1422 }
1423
1424 /*
1425  * If we inherit events we want to return the parent event id
1426  * to userspace.
1427  */
1428 static u64 primary_event_id(struct perf_event *event)
1429 {
1430         u64 id = event->id;
1431
1432         if (event->parent)
1433                 id = event->parent->id;
1434
1435         return id;
1436 }
1437
1438 /*
1439  * Get the perf_event_context for a task and lock it.
1440  *
1441  * This has to cope with with the fact that until it is locked,
1442  * the context could get moved to another task.
1443  */
1444 static struct perf_event_context *
1445 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1446 {
1447         struct perf_event_context *ctx;
1448
1449 retry:
1450         /*
1451          * One of the few rules of preemptible RCU is that one cannot do
1452          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1453          * part of the read side critical section was irqs-enabled -- see
1454          * rcu_read_unlock_special().
1455          *
1456          * Since ctx->lock nests under rq->lock we must ensure the entire read
1457          * side critical section has interrupts disabled.
1458          */
1459         local_irq_save(*flags);
1460         rcu_read_lock();
1461         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1462         if (ctx) {
1463                 /*
1464                  * If this context is a clone of another, it might
1465                  * get swapped for another underneath us by
1466                  * perf_event_task_sched_out, though the
1467                  * rcu_read_lock() protects us from any context
1468                  * getting freed.  Lock the context and check if it
1469                  * got swapped before we could get the lock, and retry
1470                  * if so.  If we locked the right context, then it
1471                  * can't get swapped on us any more.
1472                  */
1473                 raw_spin_lock(&ctx->lock);
1474                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1475                         raw_spin_unlock(&ctx->lock);
1476                         rcu_read_unlock();
1477                         local_irq_restore(*flags);
1478                         goto retry;
1479                 }
1480
1481                 if (ctx->task == TASK_TOMBSTONE ||
1482                     !refcount_inc_not_zero(&ctx->refcount)) {
1483                         raw_spin_unlock(&ctx->lock);
1484                         ctx = NULL;
1485                 } else {
1486                         WARN_ON_ONCE(ctx->task != task);
1487                 }
1488         }
1489         rcu_read_unlock();
1490         if (!ctx)
1491                 local_irq_restore(*flags);
1492         return ctx;
1493 }
1494
1495 /*
1496  * Get the context for a task and increment its pin_count so it
1497  * can't get swapped to another task.  This also increments its
1498  * reference count so that the context can't get freed.
1499  */
1500 static struct perf_event_context *
1501 perf_pin_task_context(struct task_struct *task, int ctxn)
1502 {
1503         struct perf_event_context *ctx;
1504         unsigned long flags;
1505
1506         ctx = perf_lock_task_context(task, ctxn, &flags);
1507         if (ctx) {
1508                 ++ctx->pin_count;
1509                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1510         }
1511         return ctx;
1512 }
1513
1514 static void perf_unpin_context(struct perf_event_context *ctx)
1515 {
1516         unsigned long flags;
1517
1518         raw_spin_lock_irqsave(&ctx->lock, flags);
1519         --ctx->pin_count;
1520         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1521 }
1522
1523 /*
1524  * Update the record of the current time in a context.
1525  */
1526 static void update_context_time(struct perf_event_context *ctx)
1527 {
1528         u64 now = perf_clock();
1529
1530         ctx->time += now - ctx->timestamp;
1531         ctx->timestamp = now;
1532 }
1533
1534 static u64 perf_event_time(struct perf_event *event)
1535 {
1536         struct perf_event_context *ctx = event->ctx;
1537
1538         if (is_cgroup_event(event))
1539                 return perf_cgroup_event_time(event);
1540
1541         return ctx ? ctx->time : 0;
1542 }
1543
1544 static enum event_type_t get_event_type(struct perf_event *event)
1545 {
1546         struct perf_event_context *ctx = event->ctx;
1547         enum event_type_t event_type;
1548
1549         lockdep_assert_held(&ctx->lock);
1550
1551         /*
1552          * It's 'group type', really, because if our group leader is
1553          * pinned, so are we.
1554          */
1555         if (event->group_leader != event)
1556                 event = event->group_leader;
1557
1558         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1559         if (!ctx->task)
1560                 event_type |= EVENT_CPU;
1561
1562         return event_type;
1563 }
1564
1565 /*
1566  * Helper function to initialize event group nodes.
1567  */
1568 static void init_event_group(struct perf_event *event)
1569 {
1570         RB_CLEAR_NODE(&event->group_node);
1571         event->group_index = 0;
1572 }
1573
1574 /*
1575  * Extract pinned or flexible groups from the context
1576  * based on event attrs bits.
1577  */
1578 static struct perf_event_groups *
1579 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1580 {
1581         if (event->attr.pinned)
1582                 return &ctx->pinned_groups;
1583         else
1584                 return &ctx->flexible_groups;
1585 }
1586
1587 /*
1588  * Helper function to initializes perf_event_group trees.
1589  */
1590 static void perf_event_groups_init(struct perf_event_groups *groups)
1591 {
1592         groups->tree = RB_ROOT;
1593         groups->index = 0;
1594 }
1595
1596 /*
1597  * Compare function for event groups;
1598  *
1599  * Implements complex key that first sorts by CPU and then by virtual index
1600  * which provides ordering when rotating groups for the same CPU.
1601  */
1602 static bool
1603 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1604 {
1605         if (left->cpu < right->cpu)
1606                 return true;
1607         if (left->cpu > right->cpu)
1608                 return false;
1609
1610 #ifdef CONFIG_CGROUP_PERF
1611         if (left->cgrp != right->cgrp) {
1612                 if (!left->cgrp || !left->cgrp->css.cgroup) {
1613                         /*
1614                          * Left has no cgroup but right does, no cgroups come
1615                          * first.
1616                          */
1617                         return true;
1618                 }
1619                 if (!right->cgrp || !right->cgrp->css.cgroup) {
1620                         /*
1621                          * Right has no cgroup but left does, no cgroups come
1622                          * first.
1623                          */
1624                         return false;
1625                 }
1626                 /* Two dissimilar cgroups, order by id. */
1627                 if (left->cgrp->css.cgroup->kn->id < right->cgrp->css.cgroup->kn->id)
1628                         return true;
1629
1630                 return false;
1631         }
1632 #endif
1633
1634         if (left->group_index < right->group_index)
1635                 return true;
1636         if (left->group_index > right->group_index)
1637                 return false;
1638
1639         return false;
1640 }
1641
1642 /*
1643  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1644  * key (see perf_event_groups_less). This places it last inside the CPU
1645  * subtree.
1646  */
1647 static void
1648 perf_event_groups_insert(struct perf_event_groups *groups,
1649                          struct perf_event *event)
1650 {
1651         struct perf_event *node_event;
1652         struct rb_node *parent;
1653         struct rb_node **node;
1654
1655         event->group_index = ++groups->index;
1656
1657         node = &groups->tree.rb_node;
1658         parent = *node;
1659
1660         while (*node) {
1661                 parent = *node;
1662                 node_event = container_of(*node, struct perf_event, group_node);
1663
1664                 if (perf_event_groups_less(event, node_event))
1665                         node = &parent->rb_left;
1666                 else
1667                         node = &parent->rb_right;
1668         }
1669
1670         rb_link_node(&event->group_node, parent, node);
1671         rb_insert_color(&event->group_node, &groups->tree);
1672 }
1673
1674 /*
1675  * Helper function to insert event into the pinned or flexible groups.
1676  */
1677 static void
1678 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1679 {
1680         struct perf_event_groups *groups;
1681
1682         groups = get_event_groups(event, ctx);
1683         perf_event_groups_insert(groups, event);
1684 }
1685
1686 /*
1687  * Delete a group from a tree.
1688  */
1689 static void
1690 perf_event_groups_delete(struct perf_event_groups *groups,
1691                          struct perf_event *event)
1692 {
1693         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1694                      RB_EMPTY_ROOT(&groups->tree));
1695
1696         rb_erase(&event->group_node, &groups->tree);
1697         init_event_group(event);
1698 }
1699
1700 /*
1701  * Helper function to delete event from its groups.
1702  */
1703 static void
1704 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1705 {
1706         struct perf_event_groups *groups;
1707
1708         groups = get_event_groups(event, ctx);
1709         perf_event_groups_delete(groups, event);
1710 }
1711
1712 /*
1713  * Get the leftmost event in the cpu/cgroup subtree.
1714  */
1715 static struct perf_event *
1716 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1717                         struct cgroup *cgrp)
1718 {
1719         struct perf_event *node_event = NULL, *match = NULL;
1720         struct rb_node *node = groups->tree.rb_node;
1721 #ifdef CONFIG_CGROUP_PERF
1722         u64 node_cgrp_id, cgrp_id = 0;
1723
1724         if (cgrp)
1725                 cgrp_id = cgrp->kn->id;
1726 #endif
1727
1728         while (node) {
1729                 node_event = container_of(node, struct perf_event, group_node);
1730
1731                 if (cpu < node_event->cpu) {
1732                         node = node->rb_left;
1733                         continue;
1734                 }
1735                 if (cpu > node_event->cpu) {
1736                         node = node->rb_right;
1737                         continue;
1738                 }
1739 #ifdef CONFIG_CGROUP_PERF
1740                 node_cgrp_id = 0;
1741                 if (node_event->cgrp && node_event->cgrp->css.cgroup)
1742                         node_cgrp_id = node_event->cgrp->css.cgroup->kn->id;
1743
1744                 if (cgrp_id < node_cgrp_id) {
1745                         node = node->rb_left;
1746                         continue;
1747                 }
1748                 if (cgrp_id > node_cgrp_id) {
1749                         node = node->rb_right;
1750                         continue;
1751                 }
1752 #endif
1753                 match = node_event;
1754                 node = node->rb_left;
1755         }
1756
1757         return match;
1758 }
1759
1760 /*
1761  * Like rb_entry_next_safe() for the @cpu subtree.
1762  */
1763 static struct perf_event *
1764 perf_event_groups_next(struct perf_event *event)
1765 {
1766         struct perf_event *next;
1767 #ifdef CONFIG_CGROUP_PERF
1768         u64 curr_cgrp_id = 0;
1769         u64 next_cgrp_id = 0;
1770 #endif
1771
1772         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1773         if (next == NULL || next->cpu != event->cpu)
1774                 return NULL;
1775
1776 #ifdef CONFIG_CGROUP_PERF
1777         if (event->cgrp && event->cgrp->css.cgroup)
1778                 curr_cgrp_id = event->cgrp->css.cgroup->kn->id;
1779
1780         if (next->cgrp && next->cgrp->css.cgroup)
1781                 next_cgrp_id = next->cgrp->css.cgroup->kn->id;
1782
1783         if (curr_cgrp_id != next_cgrp_id)
1784                 return NULL;
1785 #endif
1786         return next;
1787 }
1788
1789 /*
1790  * Iterate through the whole groups tree.
1791  */
1792 #define perf_event_groups_for_each(event, groups)                       \
1793         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1794                                 typeof(*event), group_node); event;     \
1795                 event = rb_entry_safe(rb_next(&event->group_node),      \
1796                                 typeof(*event), group_node))
1797
1798 /*
1799  * Add an event from the lists for its context.
1800  * Must be called with ctx->mutex and ctx->lock held.
1801  */
1802 static void
1803 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1804 {
1805         lockdep_assert_held(&ctx->lock);
1806
1807         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1808         event->attach_state |= PERF_ATTACH_CONTEXT;
1809
1810         event->tstamp = perf_event_time(event);
1811
1812         /*
1813          * If we're a stand alone event or group leader, we go to the context
1814          * list, group events are kept attached to the group so that
1815          * perf_group_detach can, at all times, locate all siblings.
1816          */
1817         if (event->group_leader == event) {
1818                 event->group_caps = event->event_caps;
1819                 add_event_to_groups(event, ctx);
1820         }
1821
1822         list_add_rcu(&event->event_entry, &ctx->event_list);
1823         ctx->nr_events++;
1824         if (event->attr.inherit_stat)
1825                 ctx->nr_stat++;
1826
1827         if (event->state > PERF_EVENT_STATE_OFF)
1828                 perf_cgroup_event_enable(event, ctx);
1829
1830         ctx->generation++;
1831 }
1832
1833 /*
1834  * Initialize event state based on the perf_event_attr::disabled.
1835  */
1836 static inline void perf_event__state_init(struct perf_event *event)
1837 {
1838         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1839                                               PERF_EVENT_STATE_INACTIVE;
1840 }
1841
1842 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1843 {
1844         int entry = sizeof(u64); /* value */
1845         int size = 0;
1846         int nr = 1;
1847
1848         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1849                 size += sizeof(u64);
1850
1851         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1852                 size += sizeof(u64);
1853
1854         if (event->attr.read_format & PERF_FORMAT_ID)
1855                 entry += sizeof(u64);
1856
1857         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1858                 nr += nr_siblings;
1859                 size += sizeof(u64);
1860         }
1861
1862         size += entry * nr;
1863         event->read_size = size;
1864 }
1865
1866 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1867 {
1868         struct perf_sample_data *data;
1869         u16 size = 0;
1870
1871         if (sample_type & PERF_SAMPLE_IP)
1872                 size += sizeof(data->ip);
1873
1874         if (sample_type & PERF_SAMPLE_ADDR)
1875                 size += sizeof(data->addr);
1876
1877         if (sample_type & PERF_SAMPLE_PERIOD)
1878                 size += sizeof(data->period);
1879
1880         if (sample_type & PERF_SAMPLE_WEIGHT)
1881                 size += sizeof(data->weight);
1882
1883         if (sample_type & PERF_SAMPLE_READ)
1884                 size += event->read_size;
1885
1886         if (sample_type & PERF_SAMPLE_DATA_SRC)
1887                 size += sizeof(data->data_src.val);
1888
1889         if (sample_type & PERF_SAMPLE_TRANSACTION)
1890                 size += sizeof(data->txn);
1891
1892         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1893                 size += sizeof(data->phys_addr);
1894
1895         if (sample_type & PERF_SAMPLE_CGROUP)
1896                 size += sizeof(data->cgroup);
1897
1898         event->header_size = size;
1899 }
1900
1901 /*
1902  * Called at perf_event creation and when events are attached/detached from a
1903  * group.
1904  */
1905 static void perf_event__header_size(struct perf_event *event)
1906 {
1907         __perf_event_read_size(event,
1908                                event->group_leader->nr_siblings);
1909         __perf_event_header_size(event, event->attr.sample_type);
1910 }
1911
1912 static void perf_event__id_header_size(struct perf_event *event)
1913 {
1914         struct perf_sample_data *data;
1915         u64 sample_type = event->attr.sample_type;
1916         u16 size = 0;
1917
1918         if (sample_type & PERF_SAMPLE_TID)
1919                 size += sizeof(data->tid_entry);
1920
1921         if (sample_type & PERF_SAMPLE_TIME)
1922                 size += sizeof(data->time);
1923
1924         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1925                 size += sizeof(data->id);
1926
1927         if (sample_type & PERF_SAMPLE_ID)
1928                 size += sizeof(data->id);
1929
1930         if (sample_type & PERF_SAMPLE_STREAM_ID)
1931                 size += sizeof(data->stream_id);
1932
1933         if (sample_type & PERF_SAMPLE_CPU)
1934                 size += sizeof(data->cpu_entry);
1935
1936         event->id_header_size = size;
1937 }
1938
1939 static bool perf_event_validate_size(struct perf_event *event)
1940 {
1941         /*
1942          * The values computed here will be over-written when we actually
1943          * attach the event.
1944          */
1945         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1946         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1947         perf_event__id_header_size(event);
1948
1949         /*
1950          * Sum the lot; should not exceed the 64k limit we have on records.
1951          * Conservative limit to allow for callchains and other variable fields.
1952          */
1953         if (event->read_size + event->header_size +
1954             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1955                 return false;
1956
1957         return true;
1958 }
1959
1960 static void perf_group_attach(struct perf_event *event)
1961 {
1962         struct perf_event *group_leader = event->group_leader, *pos;
1963
1964         lockdep_assert_held(&event->ctx->lock);
1965
1966         /*
1967          * We can have double attach due to group movement in perf_event_open.
1968          */
1969         if (event->attach_state & PERF_ATTACH_GROUP)
1970                 return;
1971
1972         event->attach_state |= PERF_ATTACH_GROUP;
1973
1974         if (group_leader == event)
1975                 return;
1976
1977         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1978
1979         group_leader->group_caps &= event->event_caps;
1980
1981         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1982         group_leader->nr_siblings++;
1983
1984         perf_event__header_size(group_leader);
1985
1986         for_each_sibling_event(pos, group_leader)
1987                 perf_event__header_size(pos);
1988 }
1989
1990 /*
1991  * Remove an event from the lists for its context.
1992  * Must be called with ctx->mutex and ctx->lock held.
1993  */
1994 static void
1995 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1996 {
1997         WARN_ON_ONCE(event->ctx != ctx);
1998         lockdep_assert_held(&ctx->lock);
1999
2000         /*
2001          * We can have double detach due to exit/hot-unplug + close.
2002          */
2003         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2004                 return;
2005
2006         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2007
2008         ctx->nr_events--;
2009         if (event->attr.inherit_stat)
2010                 ctx->nr_stat--;
2011
2012         list_del_rcu(&event->event_entry);
2013
2014         if (event->group_leader == event)
2015                 del_event_from_groups(event, ctx);
2016
2017         /*
2018          * If event was in error state, then keep it
2019          * that way, otherwise bogus counts will be
2020          * returned on read(). The only way to get out
2021          * of error state is by explicit re-enabling
2022          * of the event
2023          */
2024         if (event->state > PERF_EVENT_STATE_OFF) {
2025                 perf_cgroup_event_disable(event, ctx);
2026                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2027         }
2028
2029         ctx->generation++;
2030 }
2031
2032 static int
2033 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2034 {
2035         if (!has_aux(aux_event))
2036                 return 0;
2037
2038         if (!event->pmu->aux_output_match)
2039                 return 0;
2040
2041         return event->pmu->aux_output_match(aux_event);
2042 }
2043
2044 static void put_event(struct perf_event *event);
2045 static void event_sched_out(struct perf_event *event,
2046                             struct perf_cpu_context *cpuctx,
2047                             struct perf_event_context *ctx);
2048
2049 static void perf_put_aux_event(struct perf_event *event)
2050 {
2051         struct perf_event_context *ctx = event->ctx;
2052         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2053         struct perf_event *iter;
2054
2055         /*
2056          * If event uses aux_event tear down the link
2057          */
2058         if (event->aux_event) {
2059                 iter = event->aux_event;
2060                 event->aux_event = NULL;
2061                 put_event(iter);
2062                 return;
2063         }
2064
2065         /*
2066          * If the event is an aux_event, tear down all links to
2067          * it from other events.
2068          */
2069         for_each_sibling_event(iter, event->group_leader) {
2070                 if (iter->aux_event != event)
2071                         continue;
2072
2073                 iter->aux_event = NULL;
2074                 put_event(event);
2075
2076                 /*
2077                  * If it's ACTIVE, schedule it out and put it into ERROR
2078                  * state so that we don't try to schedule it again. Note
2079                  * that perf_event_enable() will clear the ERROR status.
2080                  */
2081                 event_sched_out(iter, cpuctx, ctx);
2082                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2083         }
2084 }
2085
2086 static bool perf_need_aux_event(struct perf_event *event)
2087 {
2088         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2089 }
2090
2091 static int perf_get_aux_event(struct perf_event *event,
2092                               struct perf_event *group_leader)
2093 {
2094         /*
2095          * Our group leader must be an aux event if we want to be
2096          * an aux_output. This way, the aux event will precede its
2097          * aux_output events in the group, and therefore will always
2098          * schedule first.
2099          */
2100         if (!group_leader)
2101                 return 0;
2102
2103         /*
2104          * aux_output and aux_sample_size are mutually exclusive.
2105          */
2106         if (event->attr.aux_output && event->attr.aux_sample_size)
2107                 return 0;
2108
2109         if (event->attr.aux_output &&
2110             !perf_aux_output_match(event, group_leader))
2111                 return 0;
2112
2113         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2114                 return 0;
2115
2116         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2117                 return 0;
2118
2119         /*
2120          * Link aux_outputs to their aux event; this is undone in
2121          * perf_group_detach() by perf_put_aux_event(). When the
2122          * group in torn down, the aux_output events loose their
2123          * link to the aux_event and can't schedule any more.
2124          */
2125         event->aux_event = group_leader;
2126
2127         return 1;
2128 }
2129
2130 static inline struct list_head *get_event_list(struct perf_event *event)
2131 {
2132         struct perf_event_context *ctx = event->ctx;
2133         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2134 }
2135
2136 static void perf_group_detach(struct perf_event *event)
2137 {
2138         struct perf_event *sibling, *tmp;
2139         struct perf_event_context *ctx = event->ctx;
2140
2141         lockdep_assert_held(&ctx->lock);
2142
2143         /*
2144          * We can have double detach due to exit/hot-unplug + close.
2145          */
2146         if (!(event->attach_state & PERF_ATTACH_GROUP))
2147                 return;
2148
2149         event->attach_state &= ~PERF_ATTACH_GROUP;
2150
2151         perf_put_aux_event(event);
2152
2153         /*
2154          * If this is a sibling, remove it from its group.
2155          */
2156         if (event->group_leader != event) {
2157                 list_del_init(&event->sibling_list);
2158                 event->group_leader->nr_siblings--;
2159                 goto out;
2160         }
2161
2162         /*
2163          * If this was a group event with sibling events then
2164          * upgrade the siblings to singleton events by adding them
2165          * to whatever list we are on.
2166          */
2167         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2168
2169                 sibling->group_leader = sibling;
2170                 list_del_init(&sibling->sibling_list);
2171
2172                 /* Inherit group flags from the previous leader */
2173                 sibling->group_caps = event->group_caps;
2174
2175                 if (!RB_EMPTY_NODE(&event->group_node)) {
2176                         add_event_to_groups(sibling, event->ctx);
2177
2178                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2179                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2180                 }
2181
2182                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2183         }
2184
2185 out:
2186         perf_event__header_size(event->group_leader);
2187
2188         for_each_sibling_event(tmp, event->group_leader)
2189                 perf_event__header_size(tmp);
2190 }
2191
2192 static bool is_orphaned_event(struct perf_event *event)
2193 {
2194         return event->state == PERF_EVENT_STATE_DEAD;
2195 }
2196
2197 static inline int __pmu_filter_match(struct perf_event *event)
2198 {
2199         struct pmu *pmu = event->pmu;
2200         return pmu->filter_match ? pmu->filter_match(event) : 1;
2201 }
2202
2203 /*
2204  * Check whether we should attempt to schedule an event group based on
2205  * PMU-specific filtering. An event group can consist of HW and SW events,
2206  * potentially with a SW leader, so we must check all the filters, to
2207  * determine whether a group is schedulable:
2208  */
2209 static inline int pmu_filter_match(struct perf_event *event)
2210 {
2211         struct perf_event *sibling;
2212
2213         if (!__pmu_filter_match(event))
2214                 return 0;
2215
2216         for_each_sibling_event(sibling, event) {
2217                 if (!__pmu_filter_match(sibling))
2218                         return 0;
2219         }
2220
2221         return 1;
2222 }
2223
2224 static inline int
2225 event_filter_match(struct perf_event *event)
2226 {
2227         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2228                perf_cgroup_match(event) && pmu_filter_match(event);
2229 }
2230
2231 static void
2232 event_sched_out(struct perf_event *event,
2233                   struct perf_cpu_context *cpuctx,
2234                   struct perf_event_context *ctx)
2235 {
2236         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2237
2238         WARN_ON_ONCE(event->ctx != ctx);
2239         lockdep_assert_held(&ctx->lock);
2240
2241         if (event->state != PERF_EVENT_STATE_ACTIVE)
2242                 return;
2243
2244         /*
2245          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2246          * we can schedule events _OUT_ individually through things like
2247          * __perf_remove_from_context().
2248          */
2249         list_del_init(&event->active_list);
2250
2251         perf_pmu_disable(event->pmu);
2252
2253         event->pmu->del(event, 0);
2254         event->oncpu = -1;
2255
2256         if (READ_ONCE(event->pending_disable) >= 0) {
2257                 WRITE_ONCE(event->pending_disable, -1);
2258                 perf_cgroup_event_disable(event, ctx);
2259                 state = PERF_EVENT_STATE_OFF;
2260         }
2261         perf_event_set_state(event, state);
2262
2263         if (!is_software_event(event))
2264                 cpuctx->active_oncpu--;
2265         if (!--ctx->nr_active)
2266                 perf_event_ctx_deactivate(ctx);
2267         if (event->attr.freq && event->attr.sample_freq)
2268                 ctx->nr_freq--;
2269         if (event->attr.exclusive || !cpuctx->active_oncpu)
2270                 cpuctx->exclusive = 0;
2271
2272         perf_pmu_enable(event->pmu);
2273 }
2274
2275 static void
2276 group_sched_out(struct perf_event *group_event,
2277                 struct perf_cpu_context *cpuctx,
2278                 struct perf_event_context *ctx)
2279 {
2280         struct perf_event *event;
2281
2282         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2283                 return;
2284
2285         perf_pmu_disable(ctx->pmu);
2286
2287         event_sched_out(group_event, cpuctx, ctx);
2288
2289         /*
2290          * Schedule out siblings (if any):
2291          */
2292         for_each_sibling_event(event, group_event)
2293                 event_sched_out(event, cpuctx, ctx);
2294
2295         perf_pmu_enable(ctx->pmu);
2296
2297         if (group_event->attr.exclusive)
2298                 cpuctx->exclusive = 0;
2299 }
2300
2301 #define DETACH_GROUP    0x01UL
2302
2303 /*
2304  * Cross CPU call to remove a performance event
2305  *
2306  * We disable the event on the hardware level first. After that we
2307  * remove it from the context list.
2308  */
2309 static void
2310 __perf_remove_from_context(struct perf_event *event,
2311                            struct perf_cpu_context *cpuctx,
2312                            struct perf_event_context *ctx,
2313                            void *info)
2314 {
2315         unsigned long flags = (unsigned long)info;
2316
2317         if (ctx->is_active & EVENT_TIME) {
2318                 update_context_time(ctx);
2319                 update_cgrp_time_from_cpuctx(cpuctx);
2320         }
2321
2322         event_sched_out(event, cpuctx, ctx);
2323         if (flags & DETACH_GROUP)
2324                 perf_group_detach(event);
2325         list_del_event(event, ctx);
2326
2327         if (!ctx->nr_events && ctx->is_active) {
2328                 ctx->is_active = 0;
2329                 ctx->rotate_necessary = 0;
2330                 if (ctx->task) {
2331                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2332                         cpuctx->task_ctx = NULL;
2333                 }
2334         }
2335 }
2336
2337 /*
2338  * Remove the event from a task's (or a CPU's) list of events.
2339  *
2340  * If event->ctx is a cloned context, callers must make sure that
2341  * every task struct that event->ctx->task could possibly point to
2342  * remains valid.  This is OK when called from perf_release since
2343  * that only calls us on the top-level context, which can't be a clone.
2344  * When called from perf_event_exit_task, it's OK because the
2345  * context has been detached from its task.
2346  */
2347 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2348 {
2349         struct perf_event_context *ctx = event->ctx;
2350
2351         lockdep_assert_held(&ctx->mutex);
2352
2353         event_function_call(event, __perf_remove_from_context, (void *)flags);
2354
2355         /*
2356          * The above event_function_call() can NO-OP when it hits
2357          * TASK_TOMBSTONE. In that case we must already have been detached
2358          * from the context (by perf_event_exit_event()) but the grouping
2359          * might still be in-tact.
2360          */
2361         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2362         if ((flags & DETACH_GROUP) &&
2363             (event->attach_state & PERF_ATTACH_GROUP)) {
2364                 /*
2365                  * Since in that case we cannot possibly be scheduled, simply
2366                  * detach now.
2367                  */
2368                 raw_spin_lock_irq(&ctx->lock);
2369                 perf_group_detach(event);
2370                 raw_spin_unlock_irq(&ctx->lock);
2371         }
2372 }
2373
2374 /*
2375  * Cross CPU call to disable a performance event
2376  */
2377 static void __perf_event_disable(struct perf_event *event,
2378                                  struct perf_cpu_context *cpuctx,
2379                                  struct perf_event_context *ctx,
2380                                  void *info)
2381 {
2382         if (event->state < PERF_EVENT_STATE_INACTIVE)
2383                 return;
2384
2385         if (ctx->is_active & EVENT_TIME) {
2386                 update_context_time(ctx);
2387                 update_cgrp_time_from_event(event);
2388         }
2389
2390         if (event == event->group_leader)
2391                 group_sched_out(event, cpuctx, ctx);
2392         else
2393                 event_sched_out(event, cpuctx, ctx);
2394
2395         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2396         perf_cgroup_event_disable(event, ctx);
2397 }
2398
2399 /*
2400  * Disable an event.
2401  *
2402  * If event->ctx is a cloned context, callers must make sure that
2403  * every task struct that event->ctx->task could possibly point to
2404  * remains valid.  This condition is satisfied when called through
2405  * perf_event_for_each_child or perf_event_for_each because they
2406  * hold the top-level event's child_mutex, so any descendant that
2407  * goes to exit will block in perf_event_exit_event().
2408  *
2409  * When called from perf_pending_event it's OK because event->ctx
2410  * is the current context on this CPU and preemption is disabled,
2411  * hence we can't get into perf_event_task_sched_out for this context.
2412  */
2413 static void _perf_event_disable(struct perf_event *event)
2414 {
2415         struct perf_event_context *ctx = event->ctx;
2416
2417         raw_spin_lock_irq(&ctx->lock);
2418         if (event->state <= PERF_EVENT_STATE_OFF) {
2419                 raw_spin_unlock_irq(&ctx->lock);
2420                 return;
2421         }
2422         raw_spin_unlock_irq(&ctx->lock);
2423
2424         event_function_call(event, __perf_event_disable, NULL);
2425 }
2426
2427 void perf_event_disable_local(struct perf_event *event)
2428 {
2429         event_function_local(event, __perf_event_disable, NULL);
2430 }
2431
2432 /*
2433  * Strictly speaking kernel users cannot create groups and therefore this
2434  * interface does not need the perf_event_ctx_lock() magic.
2435  */
2436 void perf_event_disable(struct perf_event *event)
2437 {
2438         struct perf_event_context *ctx;
2439
2440         ctx = perf_event_ctx_lock(event);
2441         _perf_event_disable(event);
2442         perf_event_ctx_unlock(event, ctx);
2443 }
2444 EXPORT_SYMBOL_GPL(perf_event_disable);
2445
2446 void perf_event_disable_inatomic(struct perf_event *event)
2447 {
2448         WRITE_ONCE(event->pending_disable, smp_processor_id());
2449         /* can fail, see perf_pending_event_disable() */
2450         irq_work_queue(&event->pending);
2451 }
2452
2453 static void perf_set_shadow_time(struct perf_event *event,
2454                                  struct perf_event_context *ctx)
2455 {
2456         /*
2457          * use the correct time source for the time snapshot
2458          *
2459          * We could get by without this by leveraging the
2460          * fact that to get to this function, the caller
2461          * has most likely already called update_context_time()
2462          * and update_cgrp_time_xx() and thus both timestamp
2463          * are identical (or very close). Given that tstamp is,
2464          * already adjusted for cgroup, we could say that:
2465          *    tstamp - ctx->timestamp
2466          * is equivalent to
2467          *    tstamp - cgrp->timestamp.
2468          *
2469          * Then, in perf_output_read(), the calculation would
2470          * work with no changes because:
2471          * - event is guaranteed scheduled in
2472          * - no scheduled out in between
2473          * - thus the timestamp would be the same
2474          *
2475          * But this is a bit hairy.
2476          *
2477          * So instead, we have an explicit cgroup call to remain
2478          * within the time time source all along. We believe it
2479          * is cleaner and simpler to understand.
2480          */
2481         if (is_cgroup_event(event))
2482                 perf_cgroup_set_shadow_time(event, event->tstamp);
2483         else
2484                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2485 }
2486
2487 #define MAX_INTERRUPTS (~0ULL)
2488
2489 static void perf_log_throttle(struct perf_event *event, int enable);
2490 static void perf_log_itrace_start(struct perf_event *event);
2491
2492 static int
2493 event_sched_in(struct perf_event *event,
2494                  struct perf_cpu_context *cpuctx,
2495                  struct perf_event_context *ctx)
2496 {
2497         int ret = 0;
2498
2499         WARN_ON_ONCE(event->ctx != ctx);
2500
2501         lockdep_assert_held(&ctx->lock);
2502
2503         if (event->state <= PERF_EVENT_STATE_OFF)
2504                 return 0;
2505
2506         WRITE_ONCE(event->oncpu, smp_processor_id());
2507         /*
2508          * Order event::oncpu write to happen before the ACTIVE state is
2509          * visible. This allows perf_event_{stop,read}() to observe the correct
2510          * ->oncpu if it sees ACTIVE.
2511          */
2512         smp_wmb();
2513         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2514
2515         /*
2516          * Unthrottle events, since we scheduled we might have missed several
2517          * ticks already, also for a heavily scheduling task there is little
2518          * guarantee it'll get a tick in a timely manner.
2519          */
2520         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2521                 perf_log_throttle(event, 1);
2522                 event->hw.interrupts = 0;
2523         }
2524
2525         perf_pmu_disable(event->pmu);
2526
2527         perf_set_shadow_time(event, ctx);
2528
2529         perf_log_itrace_start(event);
2530
2531         if (event->pmu->add(event, PERF_EF_START)) {
2532                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2533                 event->oncpu = -1;
2534                 ret = -EAGAIN;
2535                 goto out;
2536         }
2537
2538         if (!is_software_event(event))
2539                 cpuctx->active_oncpu++;
2540         if (!ctx->nr_active++)
2541                 perf_event_ctx_activate(ctx);
2542         if (event->attr.freq && event->attr.sample_freq)
2543                 ctx->nr_freq++;
2544
2545         if (event->attr.exclusive)
2546                 cpuctx->exclusive = 1;
2547
2548 out:
2549         perf_pmu_enable(event->pmu);
2550
2551         return ret;
2552 }
2553
2554 static int
2555 group_sched_in(struct perf_event *group_event,
2556                struct perf_cpu_context *cpuctx,
2557                struct perf_event_context *ctx)
2558 {
2559         struct perf_event *event, *partial_group = NULL;
2560         struct pmu *pmu = ctx->pmu;
2561
2562         if (group_event->state == PERF_EVENT_STATE_OFF)
2563                 return 0;
2564
2565         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2566
2567         if (event_sched_in(group_event, cpuctx, ctx)) {
2568                 pmu->cancel_txn(pmu);
2569                 perf_mux_hrtimer_restart(cpuctx);
2570                 return -EAGAIN;
2571         }
2572
2573         /*
2574          * Schedule in siblings as one group (if any):
2575          */
2576         for_each_sibling_event(event, group_event) {
2577                 if (event_sched_in(event, cpuctx, ctx)) {
2578                         partial_group = event;
2579                         goto group_error;
2580                 }
2581         }
2582
2583         if (!pmu->commit_txn(pmu))
2584                 return 0;
2585
2586 group_error:
2587         /*
2588          * Groups can be scheduled in as one unit only, so undo any
2589          * partial group before returning:
2590          * The events up to the failed event are scheduled out normally.
2591          */
2592         for_each_sibling_event(event, group_event) {
2593                 if (event == partial_group)
2594                         break;
2595
2596                 event_sched_out(event, cpuctx, ctx);
2597         }
2598         event_sched_out(group_event, cpuctx, ctx);
2599
2600         pmu->cancel_txn(pmu);
2601
2602         perf_mux_hrtimer_restart(cpuctx);
2603
2604         return -EAGAIN;
2605 }
2606
2607 /*
2608  * Work out whether we can put this event group on the CPU now.
2609  */
2610 static int group_can_go_on(struct perf_event *event,
2611                            struct perf_cpu_context *cpuctx,
2612                            int can_add_hw)
2613 {
2614         /*
2615          * Groups consisting entirely of software events can always go on.
2616          */
2617         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2618                 return 1;
2619         /*
2620          * If an exclusive group is already on, no other hardware
2621          * events can go on.
2622          */
2623         if (cpuctx->exclusive)
2624                 return 0;
2625         /*
2626          * If this group is exclusive and there are already
2627          * events on the CPU, it can't go on.
2628          */
2629         if (event->attr.exclusive && cpuctx->active_oncpu)
2630                 return 0;
2631         /*
2632          * Otherwise, try to add it if all previous groups were able
2633          * to go on.
2634          */
2635         return can_add_hw;
2636 }
2637
2638 static void add_event_to_ctx(struct perf_event *event,
2639                                struct perf_event_context *ctx)
2640 {
2641         list_add_event(event, ctx);
2642         perf_group_attach(event);
2643 }
2644
2645 static void ctx_sched_out(struct perf_event_context *ctx,
2646                           struct perf_cpu_context *cpuctx,
2647                           enum event_type_t event_type);
2648 static void
2649 ctx_sched_in(struct perf_event_context *ctx,
2650              struct perf_cpu_context *cpuctx,
2651              enum event_type_t event_type,
2652              struct task_struct *task);
2653
2654 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2655                                struct perf_event_context *ctx,
2656                                enum event_type_t event_type)
2657 {
2658         if (!cpuctx->task_ctx)
2659                 return;
2660
2661         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2662                 return;
2663
2664         ctx_sched_out(ctx, cpuctx, event_type);
2665 }
2666
2667 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2668                                 struct perf_event_context *ctx,
2669                                 struct task_struct *task)
2670 {
2671         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2672         if (ctx)
2673                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2674         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2675         if (ctx)
2676                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2677 }
2678
2679 /*
2680  * We want to maintain the following priority of scheduling:
2681  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2682  *  - task pinned (EVENT_PINNED)
2683  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2684  *  - task flexible (EVENT_FLEXIBLE).
2685  *
2686  * In order to avoid unscheduling and scheduling back in everything every
2687  * time an event is added, only do it for the groups of equal priority and
2688  * below.
2689  *
2690  * This can be called after a batch operation on task events, in which case
2691  * event_type is a bit mask of the types of events involved. For CPU events,
2692  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2693  */
2694 static void ctx_resched(struct perf_cpu_context *cpuctx,
2695                         struct perf_event_context *task_ctx,
2696                         enum event_type_t event_type)
2697 {
2698         enum event_type_t ctx_event_type;
2699         bool cpu_event = !!(event_type & EVENT_CPU);
2700
2701         /*
2702          * If pinned groups are involved, flexible groups also need to be
2703          * scheduled out.
2704          */
2705         if (event_type & EVENT_PINNED)
2706                 event_type |= EVENT_FLEXIBLE;
2707
2708         ctx_event_type = event_type & EVENT_ALL;
2709
2710         perf_pmu_disable(cpuctx->ctx.pmu);
2711         if (task_ctx)
2712                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2713
2714         /*
2715          * Decide which cpu ctx groups to schedule out based on the types
2716          * of events that caused rescheduling:
2717          *  - EVENT_CPU: schedule out corresponding groups;
2718          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2719          *  - otherwise, do nothing more.
2720          */
2721         if (cpu_event)
2722                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2723         else if (ctx_event_type & EVENT_PINNED)
2724                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2725
2726         perf_event_sched_in(cpuctx, task_ctx, current);
2727         perf_pmu_enable(cpuctx->ctx.pmu);
2728 }
2729
2730 void perf_pmu_resched(struct pmu *pmu)
2731 {
2732         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2733         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2734
2735         perf_ctx_lock(cpuctx, task_ctx);
2736         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2737         perf_ctx_unlock(cpuctx, task_ctx);
2738 }
2739
2740 /*
2741  * Cross CPU call to install and enable a performance event
2742  *
2743  * Very similar to remote_function() + event_function() but cannot assume that
2744  * things like ctx->is_active and cpuctx->task_ctx are set.
2745  */
2746 static int  __perf_install_in_context(void *info)
2747 {
2748         struct perf_event *event = info;
2749         struct perf_event_context *ctx = event->ctx;
2750         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2751         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2752         bool reprogram = true;
2753         int ret = 0;
2754
2755         raw_spin_lock(&cpuctx->ctx.lock);
2756         if (ctx->task) {
2757                 raw_spin_lock(&ctx->lock);
2758                 task_ctx = ctx;
2759
2760                 reprogram = (ctx->task == current);
2761
2762                 /*
2763                  * If the task is running, it must be running on this CPU,
2764                  * otherwise we cannot reprogram things.
2765                  *
2766                  * If its not running, we don't care, ctx->lock will
2767                  * serialize against it becoming runnable.
2768                  */
2769                 if (task_curr(ctx->task) && !reprogram) {
2770                         ret = -ESRCH;
2771                         goto unlock;
2772                 }
2773
2774                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2775         } else if (task_ctx) {
2776                 raw_spin_lock(&task_ctx->lock);
2777         }
2778
2779 #ifdef CONFIG_CGROUP_PERF
2780         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2781                 /*
2782                  * If the current cgroup doesn't match the event's
2783                  * cgroup, we should not try to schedule it.
2784                  */
2785                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2786                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2787                                         event->cgrp->css.cgroup);
2788         }
2789 #endif
2790
2791         if (reprogram) {
2792                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2793                 add_event_to_ctx(event, ctx);
2794                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2795         } else {
2796                 add_event_to_ctx(event, ctx);
2797         }
2798
2799 unlock:
2800         perf_ctx_unlock(cpuctx, task_ctx);
2801
2802         return ret;
2803 }
2804
2805 static bool exclusive_event_installable(struct perf_event *event,
2806                                         struct perf_event_context *ctx);
2807
2808 /*
2809  * Attach a performance event to a context.
2810  *
2811  * Very similar to event_function_call, see comment there.
2812  */
2813 static void
2814 perf_install_in_context(struct perf_event_context *ctx,
2815                         struct perf_event *event,
2816                         int cpu)
2817 {
2818         struct task_struct *task = READ_ONCE(ctx->task);
2819
2820         lockdep_assert_held(&ctx->mutex);
2821
2822         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2823
2824         if (event->cpu != -1)
2825                 event->cpu = cpu;
2826
2827         /*
2828          * Ensures that if we can observe event->ctx, both the event and ctx
2829          * will be 'complete'. See perf_iterate_sb_cpu().
2830          */
2831         smp_store_release(&event->ctx, ctx);
2832
2833         /*
2834          * perf_event_attr::disabled events will not run and can be initialized
2835          * without IPI. Except when this is the first event for the context, in
2836          * that case we need the magic of the IPI to set ctx->is_active.
2837          *
2838          * The IOC_ENABLE that is sure to follow the creation of a disabled
2839          * event will issue the IPI and reprogram the hardware.
2840          */
2841         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2842                 raw_spin_lock_irq(&ctx->lock);
2843                 if (ctx->task == TASK_TOMBSTONE) {
2844                         raw_spin_unlock_irq(&ctx->lock);
2845                         return;
2846                 }
2847                 add_event_to_ctx(event, ctx);
2848                 raw_spin_unlock_irq(&ctx->lock);
2849                 return;
2850         }
2851
2852         if (!task) {
2853                 cpu_function_call(cpu, __perf_install_in_context, event);
2854                 return;
2855         }
2856
2857         /*
2858          * Should not happen, we validate the ctx is still alive before calling.
2859          */
2860         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2861                 return;
2862
2863         /*
2864          * Installing events is tricky because we cannot rely on ctx->is_active
2865          * to be set in case this is the nr_events 0 -> 1 transition.
2866          *
2867          * Instead we use task_curr(), which tells us if the task is running.
2868          * However, since we use task_curr() outside of rq::lock, we can race
2869          * against the actual state. This means the result can be wrong.
2870          *
2871          * If we get a false positive, we retry, this is harmless.
2872          *
2873          * If we get a false negative, things are complicated. If we are after
2874          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2875          * value must be correct. If we're before, it doesn't matter since
2876          * perf_event_context_sched_in() will program the counter.
2877          *
2878          * However, this hinges on the remote context switch having observed
2879          * our task->perf_event_ctxp[] store, such that it will in fact take
2880          * ctx::lock in perf_event_context_sched_in().
2881          *
2882          * We do this by task_function_call(), if the IPI fails to hit the task
2883          * we know any future context switch of task must see the
2884          * perf_event_ctpx[] store.
2885          */
2886
2887         /*
2888          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2889          * task_cpu() load, such that if the IPI then does not find the task
2890          * running, a future context switch of that task must observe the
2891          * store.
2892          */
2893         smp_mb();
2894 again:
2895         if (!task_function_call(task, __perf_install_in_context, event))
2896                 return;
2897
2898         raw_spin_lock_irq(&ctx->lock);
2899         task = ctx->task;
2900         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2901                 /*
2902                  * Cannot happen because we already checked above (which also
2903                  * cannot happen), and we hold ctx->mutex, which serializes us
2904                  * against perf_event_exit_task_context().
2905                  */
2906                 raw_spin_unlock_irq(&ctx->lock);
2907                 return;
2908         }
2909         /*
2910          * If the task is not running, ctx->lock will avoid it becoming so,
2911          * thus we can safely install the event.
2912          */
2913         if (task_curr(task)) {
2914                 raw_spin_unlock_irq(&ctx->lock);
2915                 goto again;
2916         }
2917         add_event_to_ctx(event, ctx);
2918         raw_spin_unlock_irq(&ctx->lock);
2919 }
2920
2921 /*
2922  * Cross CPU call to enable a performance event
2923  */
2924 static void __perf_event_enable(struct perf_event *event,
2925                                 struct perf_cpu_context *cpuctx,
2926                                 struct perf_event_context *ctx,
2927                                 void *info)
2928 {
2929         struct perf_event *leader = event->group_leader;
2930         struct perf_event_context *task_ctx;
2931
2932         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2933             event->state <= PERF_EVENT_STATE_ERROR)
2934                 return;
2935
2936         if (ctx->is_active)
2937                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2938
2939         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2940         perf_cgroup_event_enable(event, ctx);
2941
2942         if (!ctx->is_active)
2943                 return;
2944
2945         if (!event_filter_match(event)) {
2946                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2947                 return;
2948         }
2949
2950         /*
2951          * If the event is in a group and isn't the group leader,
2952          * then don't put it on unless the group is on.
2953          */
2954         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2955                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2956                 return;
2957         }
2958
2959         task_ctx = cpuctx->task_ctx;
2960         if (ctx->task)
2961                 WARN_ON_ONCE(task_ctx != ctx);
2962
2963         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2964 }
2965
2966 /*
2967  * Enable an event.
2968  *
2969  * If event->ctx is a cloned context, callers must make sure that
2970  * every task struct that event->ctx->task could possibly point to
2971  * remains valid.  This condition is satisfied when called through
2972  * perf_event_for_each_child or perf_event_for_each as described
2973  * for perf_event_disable.
2974  */
2975 static void _perf_event_enable(struct perf_event *event)
2976 {
2977         struct perf_event_context *ctx = event->ctx;
2978
2979         raw_spin_lock_irq(&ctx->lock);
2980         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2981             event->state <  PERF_EVENT_STATE_ERROR) {
2982                 raw_spin_unlock_irq(&ctx->lock);
2983                 return;
2984         }
2985
2986         /*
2987          * If the event is in error state, clear that first.
2988          *
2989          * That way, if we see the event in error state below, we know that it
2990          * has gone back into error state, as distinct from the task having
2991          * been scheduled away before the cross-call arrived.
2992          */
2993         if (event->state == PERF_EVENT_STATE_ERROR)
2994                 event->state = PERF_EVENT_STATE_OFF;
2995         raw_spin_unlock_irq(&ctx->lock);
2996
2997         event_function_call(event, __perf_event_enable, NULL);
2998 }
2999
3000 /*
3001  * See perf_event_disable();
3002  */
3003 void perf_event_enable(struct perf_event *event)
3004 {
3005         struct perf_event_context *ctx;
3006
3007         ctx = perf_event_ctx_lock(event);
3008         _perf_event_enable(event);
3009         perf_event_ctx_unlock(event, ctx);
3010 }
3011 EXPORT_SYMBOL_GPL(perf_event_enable);
3012
3013 struct stop_event_data {
3014         struct perf_event       *event;
3015         unsigned int            restart;
3016 };
3017
3018 static int __perf_event_stop(void *info)
3019 {
3020         struct stop_event_data *sd = info;
3021         struct perf_event *event = sd->event;
3022
3023         /* if it's already INACTIVE, do nothing */
3024         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3025                 return 0;
3026
3027         /* matches smp_wmb() in event_sched_in() */
3028         smp_rmb();
3029
3030         /*
3031          * There is a window with interrupts enabled before we get here,
3032          * so we need to check again lest we try to stop another CPU's event.
3033          */
3034         if (READ_ONCE(event->oncpu) != smp_processor_id())
3035                 return -EAGAIN;
3036
3037         event->pmu->stop(event, PERF_EF_UPDATE);
3038
3039         /*
3040          * May race with the actual stop (through perf_pmu_output_stop()),
3041          * but it is only used for events with AUX ring buffer, and such
3042          * events will refuse to restart because of rb::aux_mmap_count==0,
3043          * see comments in perf_aux_output_begin().
3044          *
3045          * Since this is happening on an event-local CPU, no trace is lost
3046          * while restarting.
3047          */
3048         if (sd->restart)
3049                 event->pmu->start(event, 0);
3050
3051         return 0;
3052 }
3053
3054 static int perf_event_stop(struct perf_event *event, int restart)
3055 {
3056         struct stop_event_data sd = {
3057                 .event          = event,
3058                 .restart        = restart,
3059         };
3060         int ret = 0;
3061
3062         do {
3063                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3064                         return 0;
3065
3066                 /* matches smp_wmb() in event_sched_in() */
3067                 smp_rmb();
3068
3069                 /*
3070                  * We only want to restart ACTIVE events, so if the event goes
3071                  * inactive here (event->oncpu==-1), there's nothing more to do;
3072                  * fall through with ret==-ENXIO.
3073                  */
3074                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3075                                         __perf_event_stop, &sd);
3076         } while (ret == -EAGAIN);
3077
3078         return ret;
3079 }
3080
3081 /*
3082  * In order to contain the amount of racy and tricky in the address filter
3083  * configuration management, it is a two part process:
3084  *
3085  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3086  *      we update the addresses of corresponding vmas in
3087  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3088  * (p2) when an event is scheduled in (pmu::add), it calls
3089  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3090  *      if the generation has changed since the previous call.
3091  *
3092  * If (p1) happens while the event is active, we restart it to force (p2).
3093  *
3094  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3095  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3096  *     ioctl;
3097  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3098  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3099  *     for reading;
3100  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3101  *     of exec.
3102  */
3103 void perf_event_addr_filters_sync(struct perf_event *event)
3104 {
3105         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3106
3107         if (!has_addr_filter(event))
3108                 return;
3109
3110         raw_spin_lock(&ifh->lock);
3111         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3112                 event->pmu->addr_filters_sync(event);
3113                 event->hw.addr_filters_gen = event->addr_filters_gen;
3114         }
3115         raw_spin_unlock(&ifh->lock);
3116 }
3117 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3118
3119 static int _perf_event_refresh(struct perf_event *event, int refresh)
3120 {
3121         /*
3122          * not supported on inherited events
3123          */
3124         if (event->attr.inherit || !is_sampling_event(event))
3125                 return -EINVAL;
3126
3127         atomic_add(refresh, &event->event_limit);
3128         _perf_event_enable(event);
3129
3130         return 0;
3131 }
3132
3133 /*
3134  * See perf_event_disable()
3135  */
3136 int perf_event_refresh(struct perf_event *event, int refresh)
3137 {
3138         struct perf_event_context *ctx;
3139         int ret;
3140
3141         ctx = perf_event_ctx_lock(event);
3142         ret = _perf_event_refresh(event, refresh);
3143         perf_event_ctx_unlock(event, ctx);
3144
3145         return ret;
3146 }
3147 EXPORT_SYMBOL_GPL(perf_event_refresh);
3148
3149 static int perf_event_modify_breakpoint(struct perf_event *bp,
3150                                          struct perf_event_attr *attr)
3151 {
3152         int err;
3153
3154         _perf_event_disable(bp);
3155
3156         err = modify_user_hw_breakpoint_check(bp, attr, true);
3157
3158         if (!bp->attr.disabled)
3159                 _perf_event_enable(bp);
3160
3161         return err;
3162 }
3163
3164 static int perf_event_modify_attr(struct perf_event *event,
3165                                   struct perf_event_attr *attr)
3166 {
3167         if (event->attr.type != attr->type)
3168                 return -EINVAL;
3169
3170         switch (event->attr.type) {
3171         case PERF_TYPE_BREAKPOINT:
3172                 return perf_event_modify_breakpoint(event, attr);
3173         default:
3174                 /* Place holder for future additions. */
3175                 return -EOPNOTSUPP;
3176         }
3177 }
3178
3179 static void ctx_sched_out(struct perf_event_context *ctx,
3180                           struct perf_cpu_context *cpuctx,
3181                           enum event_type_t event_type)
3182 {
3183         struct perf_event *event, *tmp;
3184         int is_active = ctx->is_active;
3185
3186         lockdep_assert_held(&ctx->lock);
3187
3188         if (likely(!ctx->nr_events)) {
3189                 /*
3190                  * See __perf_remove_from_context().
3191                  */
3192                 WARN_ON_ONCE(ctx->is_active);
3193                 if (ctx->task)
3194                         WARN_ON_ONCE(cpuctx->task_ctx);
3195                 return;
3196         }
3197
3198         ctx->is_active &= ~event_type;
3199         if (!(ctx->is_active & EVENT_ALL))
3200                 ctx->is_active = 0;
3201
3202         if (ctx->task) {
3203                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3204                 if (!ctx->is_active)
3205                         cpuctx->task_ctx = NULL;
3206         }
3207
3208         /*
3209          * Always update time if it was set; not only when it changes.
3210          * Otherwise we can 'forget' to update time for any but the last
3211          * context we sched out. For example:
3212          *
3213          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3214          *   ctx_sched_out(.event_type = EVENT_PINNED)
3215          *
3216          * would only update time for the pinned events.
3217          */
3218         if (is_active & EVENT_TIME) {
3219                 /* update (and stop) ctx time */
3220                 update_context_time(ctx);
3221                 update_cgrp_time_from_cpuctx(cpuctx);
3222         }
3223
3224         is_active ^= ctx->is_active; /* changed bits */
3225
3226         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3227                 return;
3228
3229         perf_pmu_disable(ctx->pmu);
3230         if (is_active & EVENT_PINNED) {
3231                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3232                         group_sched_out(event, cpuctx, ctx);
3233         }
3234
3235         if (is_active & EVENT_FLEXIBLE) {
3236                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3237                         group_sched_out(event, cpuctx, ctx);
3238
3239                 /*
3240                  * Since we cleared EVENT_FLEXIBLE, also clear
3241                  * rotate_necessary, is will be reset by
3242                  * ctx_flexible_sched_in() when needed.
3243                  */
3244                 ctx->rotate_necessary = 0;
3245         }
3246         perf_pmu_enable(ctx->pmu);
3247 }
3248
3249 /*
3250  * Test whether two contexts are equivalent, i.e. whether they have both been
3251  * cloned from the same version of the same context.
3252  *
3253  * Equivalence is measured using a generation number in the context that is
3254  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3255  * and list_del_event().
3256  */
3257 static int context_equiv(struct perf_event_context *ctx1,
3258                          struct perf_event_context *ctx2)
3259 {
3260         lockdep_assert_held(&ctx1->lock);
3261         lockdep_assert_held(&ctx2->lock);
3262
3263         /* Pinning disables the swap optimization */
3264         if (ctx1->pin_count || ctx2->pin_count)
3265                 return 0;
3266
3267         /* If ctx1 is the parent of ctx2 */
3268         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3269                 return 1;
3270
3271         /* If ctx2 is the parent of ctx1 */
3272         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3273                 return 1;
3274
3275         /*
3276          * If ctx1 and ctx2 have the same parent; we flatten the parent
3277          * hierarchy, see perf_event_init_context().
3278          */
3279         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3280                         ctx1->parent_gen == ctx2->parent_gen)
3281                 return 1;
3282
3283         /* Unmatched */
3284         return 0;
3285 }
3286
3287 static void __perf_event_sync_stat(struct perf_event *event,
3288                                      struct perf_event *next_event)
3289 {
3290         u64 value;
3291
3292         if (!event->attr.inherit_stat)
3293                 return;
3294
3295         /*
3296          * Update the event value, we cannot use perf_event_read()
3297          * because we're in the middle of a context switch and have IRQs
3298          * disabled, which upsets smp_call_function_single(), however
3299          * we know the event must be on the current CPU, therefore we
3300          * don't need to use it.
3301          */
3302         if (event->state == PERF_EVENT_STATE_ACTIVE)
3303                 event->pmu->read(event);
3304
3305         perf_event_update_time(event);
3306
3307         /*
3308          * In order to keep per-task stats reliable we need to flip the event
3309          * values when we flip the contexts.
3310          */
3311         value = local64_read(&next_event->count);
3312         value = local64_xchg(&event->count, value);
3313         local64_set(&next_event->count, value);
3314
3315         swap(event->total_time_enabled, next_event->total_time_enabled);
3316         swap(event->total_time_running, next_event->total_time_running);
3317
3318         /*
3319          * Since we swizzled the values, update the user visible data too.
3320          */
3321         perf_event_update_userpage(event);
3322         perf_event_update_userpage(next_event);
3323 }
3324
3325 static void perf_event_sync_stat(struct perf_event_context *ctx,
3326                                    struct perf_event_context *next_ctx)
3327 {
3328         struct perf_event *event, *next_event;
3329
3330         if (!ctx->nr_stat)
3331                 return;
3332
3333         update_context_time(ctx);
3334
3335         event = list_first_entry(&ctx->event_list,
3336                                    struct perf_event, event_entry);
3337
3338         next_event = list_first_entry(&next_ctx->event_list,
3339                                         struct perf_event, event_entry);
3340
3341         while (&event->event_entry != &ctx->event_list &&
3342                &next_event->event_entry != &next_ctx->event_list) {
3343
3344                 __perf_event_sync_stat(event, next_event);
3345
3346                 event = list_next_entry(event, event_entry);
3347                 next_event = list_next_entry(next_event, event_entry);
3348         }
3349 }
3350
3351 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3352                                          struct task_struct *next)
3353 {
3354         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3355         struct perf_event_context *next_ctx;
3356         struct perf_event_context *parent, *next_parent;
3357         struct perf_cpu_context *cpuctx;
3358         int do_switch = 1;
3359
3360         if (likely(!ctx))
3361                 return;
3362
3363         cpuctx = __get_cpu_context(ctx);
3364         if (!cpuctx->task_ctx)
3365                 return;
3366
3367         rcu_read_lock();
3368         next_ctx = next->perf_event_ctxp[ctxn];
3369         if (!next_ctx)
3370                 goto unlock;
3371
3372         parent = rcu_dereference(ctx->parent_ctx);
3373         next_parent = rcu_dereference(next_ctx->parent_ctx);
3374
3375         /* If neither context have a parent context; they cannot be clones. */
3376         if (!parent && !next_parent)
3377                 goto unlock;
3378
3379         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3380                 /*
3381                  * Looks like the two contexts are clones, so we might be
3382                  * able to optimize the context switch.  We lock both
3383                  * contexts and check that they are clones under the
3384                  * lock (including re-checking that neither has been
3385                  * uncloned in the meantime).  It doesn't matter which
3386                  * order we take the locks because no other cpu could
3387                  * be trying to lock both of these tasks.
3388                  */
3389                 raw_spin_lock(&ctx->lock);
3390                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3391                 if (context_equiv(ctx, next_ctx)) {
3392                         struct pmu *pmu = ctx->pmu;
3393
3394                         WRITE_ONCE(ctx->task, next);
3395                         WRITE_ONCE(next_ctx->task, task);
3396
3397                         /*
3398                          * PMU specific parts of task perf context can require
3399                          * additional synchronization. As an example of such
3400                          * synchronization see implementation details of Intel
3401                          * LBR call stack data profiling;
3402                          */
3403                         if (pmu->swap_task_ctx)
3404                                 pmu->swap_task_ctx(ctx, next_ctx);
3405                         else
3406                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3407
3408                         /*
3409                          * RCU_INIT_POINTER here is safe because we've not
3410                          * modified the ctx and the above modification of
3411                          * ctx->task and ctx->task_ctx_data are immaterial
3412                          * since those values are always verified under
3413                          * ctx->lock which we're now holding.
3414                          */
3415                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3416                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3417
3418                         do_switch = 0;
3419
3420                         perf_event_sync_stat(ctx, next_ctx);
3421                 }
3422                 raw_spin_unlock(&next_ctx->lock);
3423                 raw_spin_unlock(&ctx->lock);
3424         }
3425 unlock:
3426         rcu_read_unlock();
3427
3428         if (do_switch) {
3429                 raw_spin_lock(&ctx->lock);
3430                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3431                 raw_spin_unlock(&ctx->lock);
3432         }
3433 }
3434
3435 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3436
3437 void perf_sched_cb_dec(struct pmu *pmu)
3438 {
3439         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3440
3441         this_cpu_dec(perf_sched_cb_usages);
3442
3443         if (!--cpuctx->sched_cb_usage)
3444                 list_del(&cpuctx->sched_cb_entry);
3445 }
3446
3447
3448 void perf_sched_cb_inc(struct pmu *pmu)
3449 {
3450         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3451
3452         if (!cpuctx->sched_cb_usage++)
3453                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3454
3455         this_cpu_inc(perf_sched_cb_usages);
3456 }
3457
3458 /*
3459  * This function provides the context switch callback to the lower code
3460  * layer. It is invoked ONLY when the context switch callback is enabled.
3461  *
3462  * This callback is relevant even to per-cpu events; for example multi event
3463  * PEBS requires this to provide PID/TID information. This requires we flush
3464  * all queued PEBS records before we context switch to a new task.
3465  */
3466 static void perf_pmu_sched_task(struct task_struct *prev,
3467                                 struct task_struct *next,
3468                                 bool sched_in)
3469 {
3470         struct perf_cpu_context *cpuctx;
3471         struct pmu *pmu;
3472
3473         if (prev == next)
3474                 return;
3475
3476         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3477                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3478
3479                 if (WARN_ON_ONCE(!pmu->sched_task))
3480                         continue;
3481
3482                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3483                 perf_pmu_disable(pmu);
3484
3485                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3486
3487                 perf_pmu_enable(pmu);
3488                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3489         }
3490 }
3491
3492 static void perf_event_switch(struct task_struct *task,
3493                               struct task_struct *next_prev, bool sched_in);
3494
3495 #define for_each_task_context_nr(ctxn)                                  \
3496         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3497
3498 /*
3499  * Called from scheduler to remove the events of the current task,
3500  * with interrupts disabled.
3501  *
3502  * We stop each event and update the event value in event->count.
3503  *
3504  * This does not protect us against NMI, but disable()
3505  * sets the disabled bit in the control field of event _before_
3506  * accessing the event control register. If a NMI hits, then it will
3507  * not restart the event.
3508  */
3509 void __perf_event_task_sched_out(struct task_struct *task,
3510                                  struct task_struct *next)
3511 {
3512         int ctxn;
3513
3514         if (__this_cpu_read(perf_sched_cb_usages))
3515                 perf_pmu_sched_task(task, next, false);
3516
3517         if (atomic_read(&nr_switch_events))
3518                 perf_event_switch(task, next, false);
3519
3520         for_each_task_context_nr(ctxn)
3521                 perf_event_context_sched_out(task, ctxn, next);
3522
3523         /*
3524          * if cgroup events exist on this CPU, then we need
3525          * to check if we have to switch out PMU state.
3526          * cgroup event are system-wide mode only
3527          */
3528         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3529                 perf_cgroup_sched_out(task, next);
3530 }
3531
3532 /*
3533  * Called with IRQs disabled
3534  */
3535 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3536                               enum event_type_t event_type)
3537 {
3538         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3539 }
3540
3541 static bool perf_less_group_idx(const void *l, const void *r)
3542 {
3543         const struct perf_event *le = *(const struct perf_event **)l;
3544         const struct perf_event *re = *(const struct perf_event **)r;
3545
3546         return le->group_index < re->group_index;
3547 }
3548
3549 static void swap_ptr(void *l, void *r)
3550 {
3551         void **lp = l, **rp = r;
3552
3553         swap(*lp, *rp);
3554 }
3555
3556 static const struct min_heap_callbacks perf_min_heap = {
3557         .elem_size = sizeof(struct perf_event *),
3558         .less = perf_less_group_idx,
3559         .swp = swap_ptr,
3560 };
3561
3562 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3563 {
3564         struct perf_event **itrs = heap->data;
3565
3566         if (event) {
3567                 itrs[heap->nr] = event;
3568                 heap->nr++;
3569         }
3570 }
3571
3572 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3573                                 struct perf_event_groups *groups, int cpu,
3574                                 int (*func)(struct perf_event *, void *),
3575                                 void *data)
3576 {
3577 #ifdef CONFIG_CGROUP_PERF
3578         struct cgroup_subsys_state *css = NULL;
3579 #endif
3580         /* Space for per CPU and/or any CPU event iterators. */
3581         struct perf_event *itrs[2];
3582         struct min_heap event_heap;
3583         struct perf_event **evt;
3584         int ret;
3585
3586         if (cpuctx) {
3587                 event_heap = (struct min_heap){
3588                         .data = cpuctx->heap,
3589                         .nr = 0,
3590                         .size = cpuctx->heap_size,
3591                 };
3592
3593                 lockdep_assert_held(&cpuctx->ctx.lock);
3594
3595 #ifdef CONFIG_CGROUP_PERF
3596                 if (cpuctx->cgrp)
3597                         css = &cpuctx->cgrp->css;
3598 #endif
3599         } else {
3600                 event_heap = (struct min_heap){
3601                         .data = itrs,
3602                         .nr = 0,
3603                         .size = ARRAY_SIZE(itrs),
3604                 };
3605                 /* Events not within a CPU context may be on any CPU. */
3606                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3607         }
3608         evt = event_heap.data;
3609
3610         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3611
3612 #ifdef CONFIG_CGROUP_PERF
3613         for (; css; css = css->parent)
3614                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3615 #endif
3616
3617         min_heapify_all(&event_heap, &perf_min_heap);
3618
3619         while (event_heap.nr) {
3620                 ret = func(*evt, data);
3621                 if (ret)
3622                         return ret;
3623
3624                 *evt = perf_event_groups_next(*evt);
3625                 if (*evt)
3626                         min_heapify(&event_heap, 0, &perf_min_heap);
3627                 else
3628                         min_heap_pop(&event_heap, &perf_min_heap);
3629         }
3630
3631         return 0;
3632 }
3633
3634 static int merge_sched_in(struct perf_event *event, void *data)
3635 {
3636         struct perf_event_context *ctx = event->ctx;
3637         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3638         int *can_add_hw = data;
3639
3640         if (event->state <= PERF_EVENT_STATE_OFF)
3641                 return 0;
3642
3643         if (!event_filter_match(event))
3644                 return 0;
3645
3646         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3647                 if (!group_sched_in(event, cpuctx, ctx))
3648                         list_add_tail(&event->active_list, get_event_list(event));
3649         }
3650
3651         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3652                 if (event->attr.pinned) {
3653                         perf_cgroup_event_disable(event, ctx);
3654                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3655                 }
3656
3657                 *can_add_hw = 0;
3658                 ctx->rotate_necessary = 1;
3659         }
3660
3661         return 0;
3662 }
3663
3664 static void
3665 ctx_pinned_sched_in(struct perf_event_context *ctx,
3666                     struct perf_cpu_context *cpuctx)
3667 {
3668         int can_add_hw = 1;
3669
3670         if (ctx != &cpuctx->ctx)
3671                 cpuctx = NULL;
3672
3673         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3674                            smp_processor_id(),
3675                            merge_sched_in, &can_add_hw);
3676 }
3677
3678 static void
3679 ctx_flexible_sched_in(struct perf_event_context *ctx,
3680                       struct perf_cpu_context *cpuctx)
3681 {
3682         int can_add_hw = 1;
3683
3684         if (ctx != &cpuctx->ctx)
3685                 cpuctx = NULL;
3686
3687         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3688                            smp_processor_id(),
3689                            merge_sched_in, &can_add_hw);
3690 }
3691
3692 static void
3693 ctx_sched_in(struct perf_event_context *ctx,
3694              struct perf_cpu_context *cpuctx,
3695              enum event_type_t event_type,
3696              struct task_struct *task)
3697 {
3698         int is_active = ctx->is_active;
3699         u64 now;
3700
3701         lockdep_assert_held(&ctx->lock);
3702
3703         if (likely(!ctx->nr_events))
3704                 return;
3705
3706         ctx->is_active |= (event_type | EVENT_TIME);
3707         if (ctx->task) {
3708                 if (!is_active)
3709                         cpuctx->task_ctx = ctx;
3710                 else
3711                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3712         }
3713
3714         is_active ^= ctx->is_active; /* changed bits */
3715
3716         if (is_active & EVENT_TIME) {
3717                 /* start ctx time */
3718                 now = perf_clock();
3719                 ctx->timestamp = now;
3720                 perf_cgroup_set_timestamp(task, ctx);
3721         }
3722
3723         /*
3724          * First go through the list and put on any pinned groups
3725          * in order to give them the best chance of going on.
3726          */
3727         if (is_active & EVENT_PINNED)
3728                 ctx_pinned_sched_in(ctx, cpuctx);
3729
3730         /* Then walk through the lower prio flexible groups */
3731         if (is_active & EVENT_FLEXIBLE)
3732                 ctx_flexible_sched_in(ctx, cpuctx);
3733 }
3734
3735 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3736                              enum event_type_t event_type,
3737                              struct task_struct *task)
3738 {
3739         struct perf_event_context *ctx = &cpuctx->ctx;
3740
3741         ctx_sched_in(ctx, cpuctx, event_type, task);
3742 }
3743
3744 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3745                                         struct task_struct *task)
3746 {
3747         struct perf_cpu_context *cpuctx;
3748
3749         cpuctx = __get_cpu_context(ctx);
3750         if (cpuctx->task_ctx == ctx)
3751                 return;
3752
3753         perf_ctx_lock(cpuctx, ctx);
3754         /*
3755          * We must check ctx->nr_events while holding ctx->lock, such
3756          * that we serialize against perf_install_in_context().
3757          */
3758         if (!ctx->nr_events)
3759                 goto unlock;
3760
3761         perf_pmu_disable(ctx->pmu);
3762         /*
3763          * We want to keep the following priority order:
3764          * cpu pinned (that don't need to move), task pinned,
3765          * cpu flexible, task flexible.
3766          *
3767          * However, if task's ctx is not carrying any pinned
3768          * events, no need to flip the cpuctx's events around.
3769          */
3770         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3771                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3772         perf_event_sched_in(cpuctx, ctx, task);
3773         perf_pmu_enable(ctx->pmu);
3774
3775 unlock:
3776         perf_ctx_unlock(cpuctx, ctx);
3777 }
3778
3779 /*
3780  * Called from scheduler to add the events of the current task
3781  * with interrupts disabled.
3782  *
3783  * We restore the event value and then enable it.
3784  *
3785  * This does not protect us against NMI, but enable()
3786  * sets the enabled bit in the control field of event _before_
3787  * accessing the event control register. If a NMI hits, then it will
3788  * keep the event running.
3789  */
3790 void __perf_event_task_sched_in(struct task_struct *prev,
3791                                 struct task_struct *task)
3792 {
3793         struct perf_event_context *ctx;
3794         int ctxn;
3795
3796         /*
3797          * If cgroup events exist on this CPU, then we need to check if we have
3798          * to switch in PMU state; cgroup event are system-wide mode only.
3799          *
3800          * Since cgroup events are CPU events, we must schedule these in before
3801          * we schedule in the task events.
3802          */
3803         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3804                 perf_cgroup_sched_in(prev, task);
3805
3806         for_each_task_context_nr(ctxn) {
3807                 ctx = task->perf_event_ctxp[ctxn];
3808                 if (likely(!ctx))
3809                         continue;
3810
3811                 perf_event_context_sched_in(ctx, task);
3812         }
3813
3814         if (atomic_read(&nr_switch_events))
3815                 perf_event_switch(task, prev, true);
3816
3817         if (__this_cpu_read(perf_sched_cb_usages))
3818                 perf_pmu_sched_task(prev, task, true);
3819 }
3820
3821 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3822 {
3823         u64 frequency = event->attr.sample_freq;
3824         u64 sec = NSEC_PER_SEC;
3825         u64 divisor, dividend;
3826
3827         int count_fls, nsec_fls, frequency_fls, sec_fls;
3828
3829         count_fls = fls64(count);
3830         nsec_fls = fls64(nsec);
3831         frequency_fls = fls64(frequency);
3832         sec_fls = 30;
3833
3834         /*
3835          * We got @count in @nsec, with a target of sample_freq HZ
3836          * the target period becomes:
3837          *
3838          *             @count * 10^9
3839          * period = -------------------
3840          *          @nsec * sample_freq
3841          *
3842          */
3843
3844         /*
3845          * Reduce accuracy by one bit such that @a and @b converge
3846          * to a similar magnitude.
3847          */
3848 #define REDUCE_FLS(a, b)                \
3849 do {                                    \
3850         if (a##_fls > b##_fls) {        \
3851                 a >>= 1;                \
3852                 a##_fls--;              \
3853         } else {                        \
3854                 b >>= 1;                \
3855                 b##_fls--;              \
3856         }                               \
3857 } while (0)
3858
3859         /*
3860          * Reduce accuracy until either term fits in a u64, then proceed with
3861          * the other, so that finally we can do a u64/u64 division.
3862          */
3863         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3864                 REDUCE_FLS(nsec, frequency);
3865                 REDUCE_FLS(sec, count);
3866         }
3867
3868         if (count_fls + sec_fls > 64) {
3869                 divisor = nsec * frequency;
3870
3871                 while (count_fls + sec_fls > 64) {
3872                         REDUCE_FLS(count, sec);
3873                         divisor >>= 1;
3874                 }
3875
3876                 dividend = count * sec;
3877         } else {
3878                 dividend = count * sec;
3879
3880                 while (nsec_fls + frequency_fls > 64) {
3881                         REDUCE_FLS(nsec, frequency);
3882                         dividend >>= 1;
3883                 }
3884
3885                 divisor = nsec * frequency;
3886         }
3887
3888         if (!divisor)
3889                 return dividend;
3890
3891         return div64_u64(dividend, divisor);
3892 }
3893
3894 static DEFINE_PER_CPU(int, perf_throttled_count);
3895 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3896
3897 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3898 {
3899         struct hw_perf_event *hwc = &event->hw;
3900         s64 period, sample_period;
3901         s64 delta;
3902
3903         period = perf_calculate_period(event, nsec, count);
3904
3905         delta = (s64)(period - hwc->sample_period);
3906         delta = (delta + 7) / 8; /* low pass filter */
3907
3908         sample_period = hwc->sample_period + delta;
3909
3910         if (!sample_period)
3911                 sample_period = 1;
3912
3913         hwc->sample_period = sample_period;
3914
3915         if (local64_read(&hwc->period_left) > 8*sample_period) {
3916                 if (disable)
3917                         event->pmu->stop(event, PERF_EF_UPDATE);
3918
3919                 local64_set(&hwc->period_left, 0);
3920
3921                 if (disable)
3922                         event->pmu->start(event, PERF_EF_RELOAD);
3923         }
3924 }
3925
3926 /*
3927  * combine freq adjustment with unthrottling to avoid two passes over the
3928  * events. At the same time, make sure, having freq events does not change
3929  * the rate of unthrottling as that would introduce bias.
3930  */
3931 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3932                                            int needs_unthr)
3933 {
3934         struct perf_event *event;
3935         struct hw_perf_event *hwc;
3936         u64 now, period = TICK_NSEC;
3937         s64 delta;
3938
3939         /*
3940          * only need to iterate over all events iff:
3941          * - context have events in frequency mode (needs freq adjust)
3942          * - there are events to unthrottle on this cpu
3943          */
3944         if (!(ctx->nr_freq || needs_unthr))
3945                 return;
3946
3947         raw_spin_lock(&ctx->lock);
3948         perf_pmu_disable(ctx->pmu);
3949
3950         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3951                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3952                         continue;
3953
3954                 if (!event_filter_match(event))
3955                         continue;
3956
3957                 perf_pmu_disable(event->pmu);
3958
3959                 hwc = &event->hw;
3960
3961                 if (hwc->interrupts == MAX_INTERRUPTS) {
3962                         hwc->interrupts = 0;
3963                         perf_log_throttle(event, 1);
3964                         event->pmu->start(event, 0);
3965                 }
3966
3967                 if (!event->attr.freq || !event->attr.sample_freq)
3968                         goto next;
3969
3970                 /*
3971                  * stop the event and update event->count
3972                  */
3973                 event->pmu->stop(event, PERF_EF_UPDATE);
3974
3975                 now = local64_read(&event->count);
3976                 delta = now - hwc->freq_count_stamp;
3977                 hwc->freq_count_stamp = now;
3978
3979                 /*
3980                  * restart the event
3981                  * reload only if value has changed
3982                  * we have stopped the event so tell that
3983                  * to perf_adjust_period() to avoid stopping it
3984                  * twice.
3985                  */
3986                 if (delta > 0)
3987                         perf_adjust_period(event, period, delta, false);
3988
3989                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3990         next:
3991                 perf_pmu_enable(event->pmu);
3992         }
3993
3994         perf_pmu_enable(ctx->pmu);
3995         raw_spin_unlock(&ctx->lock);
3996 }
3997
3998 /*
3999  * Move @event to the tail of the @ctx's elegible events.
4000  */
4001 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4002 {
4003         /*
4004          * Rotate the first entry last of non-pinned groups. Rotation might be
4005          * disabled by the inheritance code.
4006          */
4007         if (ctx->rotate_disable)
4008                 return;
4009
4010         perf_event_groups_delete(&ctx->flexible_groups, event);
4011         perf_event_groups_insert(&ctx->flexible_groups, event);
4012 }
4013
4014 /* pick an event from the flexible_groups to rotate */
4015 static inline struct perf_event *
4016 ctx_event_to_rotate(struct perf_event_context *ctx)
4017 {
4018         struct perf_event *event;
4019
4020         /* pick the first active flexible event */
4021         event = list_first_entry_or_null(&ctx->flexible_active,
4022                                          struct perf_event, active_list);
4023
4024         /* if no active flexible event, pick the first event */
4025         if (!event) {
4026                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4027                                       typeof(*event), group_node);
4028         }
4029
4030         /*
4031          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4032          * finds there are unschedulable events, it will set it again.
4033          */
4034         ctx->rotate_necessary = 0;
4035
4036         return event;
4037 }
4038
4039 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4040 {
4041         struct perf_event *cpu_event = NULL, *task_event = NULL;
4042         struct perf_event_context *task_ctx = NULL;
4043         int cpu_rotate, task_rotate;
4044
4045         /*
4046          * Since we run this from IRQ context, nobody can install new
4047          * events, thus the event count values are stable.
4048          */
4049
4050         cpu_rotate = cpuctx->ctx.rotate_necessary;
4051         task_ctx = cpuctx->task_ctx;
4052         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4053
4054         if (!(cpu_rotate || task_rotate))
4055                 return false;
4056
4057         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4058         perf_pmu_disable(cpuctx->ctx.pmu);
4059
4060         if (task_rotate)
4061                 task_event = ctx_event_to_rotate(task_ctx);
4062         if (cpu_rotate)
4063                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4064
4065         /*
4066          * As per the order given at ctx_resched() first 'pop' task flexible
4067          * and then, if needed CPU flexible.
4068          */
4069         if (task_event || (task_ctx && cpu_event))
4070                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4071         if (cpu_event)
4072                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4073
4074         if (task_event)
4075                 rotate_ctx(task_ctx, task_event);
4076         if (cpu_event)
4077                 rotate_ctx(&cpuctx->ctx, cpu_event);
4078
4079         perf_event_sched_in(cpuctx, task_ctx, current);
4080
4081         perf_pmu_enable(cpuctx->ctx.pmu);
4082         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4083
4084         return true;
4085 }
4086
4087 void perf_event_task_tick(void)
4088 {
4089         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4090         struct perf_event_context *ctx, *tmp;
4091         int throttled;
4092
4093         lockdep_assert_irqs_disabled();
4094
4095         __this_cpu_inc(perf_throttled_seq);
4096         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4097         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4098
4099         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4100                 perf_adjust_freq_unthr_context(ctx, throttled);
4101 }
4102
4103 static int event_enable_on_exec(struct perf_event *event,
4104                                 struct perf_event_context *ctx)
4105 {
4106         if (!event->attr.enable_on_exec)
4107                 return 0;
4108
4109         event->attr.enable_on_exec = 0;
4110         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4111                 return 0;
4112
4113         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4114
4115         return 1;
4116 }
4117
4118 /*
4119  * Enable all of a task's events that have been marked enable-on-exec.
4120  * This expects task == current.
4121  */
4122 static void perf_event_enable_on_exec(int ctxn)
4123 {
4124         struct perf_event_context *ctx, *clone_ctx = NULL;
4125         enum event_type_t event_type = 0;
4126         struct perf_cpu_context *cpuctx;
4127         struct perf_event *event;
4128         unsigned long flags;
4129         int enabled = 0;
4130
4131         local_irq_save(flags);
4132         ctx = current->perf_event_ctxp[ctxn];
4133         if (!ctx || !ctx->nr_events)
4134                 goto out;
4135
4136         cpuctx = __get_cpu_context(ctx);
4137         perf_ctx_lock(cpuctx, ctx);
4138         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4139         list_for_each_entry(event, &ctx->event_list, event_entry) {
4140                 enabled |= event_enable_on_exec(event, ctx);
4141                 event_type |= get_event_type(event);
4142         }
4143
4144         /*
4145          * Unclone and reschedule this context if we enabled any event.
4146          */
4147         if (enabled) {
4148                 clone_ctx = unclone_ctx(ctx);
4149                 ctx_resched(cpuctx, ctx, event_type);
4150         } else {
4151                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4152         }
4153         perf_ctx_unlock(cpuctx, ctx);
4154
4155 out:
4156         local_irq_restore(flags);
4157
4158         if (clone_ctx)
4159                 put_ctx(clone_ctx);
4160 }
4161
4162 struct perf_read_data {
4163         struct perf_event *event;
4164         bool group;
4165         int ret;
4166 };
4167
4168 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4169 {
4170         u16 local_pkg, event_pkg;
4171
4172         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4173                 int local_cpu = smp_processor_id();
4174
4175                 event_pkg = topology_physical_package_id(event_cpu);
4176                 local_pkg = topology_physical_package_id(local_cpu);
4177
4178                 if (event_pkg == local_pkg)
4179                         return local_cpu;
4180         }
4181
4182         return event_cpu;
4183 }
4184
4185 /*
4186  * Cross CPU call to read the hardware event
4187  */
4188 static void __perf_event_read(void *info)
4189 {
4190         struct perf_read_data *data = info;
4191         struct perf_event *sub, *event = data->event;
4192         struct perf_event_context *ctx = event->ctx;
4193         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4194         struct pmu *pmu = event->pmu;
4195
4196         /*
4197          * If this is a task context, we need to check whether it is
4198          * the current task context of this cpu.  If not it has been
4199          * scheduled out before the smp call arrived.  In that case
4200          * event->count would have been updated to a recent sample
4201          * when the event was scheduled out.
4202          */
4203         if (ctx->task && cpuctx->task_ctx != ctx)
4204                 return;
4205
4206         raw_spin_lock(&ctx->lock);
4207         if (ctx->is_active & EVENT_TIME) {
4208                 update_context_time(ctx);
4209                 update_cgrp_time_from_event(event);
4210         }
4211
4212         perf_event_update_time(event);
4213         if (data->group)
4214                 perf_event_update_sibling_time(event);
4215
4216         if (event->state != PERF_EVENT_STATE_ACTIVE)
4217                 goto unlock;
4218
4219         if (!data->group) {
4220                 pmu->read(event);
4221                 data->ret = 0;
4222                 goto unlock;
4223         }
4224
4225         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4226
4227         pmu->read(event);
4228
4229         for_each_sibling_event(sub, event) {
4230                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4231                         /*
4232                          * Use sibling's PMU rather than @event's since
4233                          * sibling could be on different (eg: software) PMU.
4234                          */
4235                         sub->pmu->read(sub);
4236                 }
4237         }
4238
4239         data->ret = pmu->commit_txn(pmu);
4240
4241 unlock:
4242         raw_spin_unlock(&ctx->lock);
4243 }
4244
4245 static inline u64 perf_event_count(struct perf_event *event)
4246 {
4247         return local64_read(&event->count) + atomic64_read(&event->child_count);
4248 }
4249
4250 /*
4251  * NMI-safe method to read a local event, that is an event that
4252  * is:
4253  *   - either for the current task, or for this CPU
4254  *   - does not have inherit set, for inherited task events
4255  *     will not be local and we cannot read them atomically
4256  *   - must not have a pmu::count method
4257  */
4258 int perf_event_read_local(struct perf_event *event, u64 *value,
4259                           u64 *enabled, u64 *running)
4260 {
4261         unsigned long flags;
4262         int ret = 0;
4263
4264         /*
4265          * Disabling interrupts avoids all counter scheduling (context
4266          * switches, timer based rotation and IPIs).
4267          */
4268         local_irq_save(flags);
4269
4270         /*
4271          * It must not be an event with inherit set, we cannot read
4272          * all child counters from atomic context.
4273          */
4274         if (event->attr.inherit) {
4275                 ret = -EOPNOTSUPP;
4276                 goto out;
4277         }
4278
4279         /* If this is a per-task event, it must be for current */
4280         if ((event->attach_state & PERF_ATTACH_TASK) &&
4281             event->hw.target != current) {
4282                 ret = -EINVAL;
4283                 goto out;
4284         }
4285
4286         /* If this is a per-CPU event, it must be for this CPU */
4287         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4288             event->cpu != smp_processor_id()) {
4289                 ret = -EINVAL;
4290                 goto out;
4291         }
4292
4293         /* If this is a pinned event it must be running on this CPU */
4294         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4295                 ret = -EBUSY;
4296                 goto out;
4297         }
4298
4299         /*
4300          * If the event is currently on this CPU, its either a per-task event,
4301          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4302          * oncpu == -1).
4303          */
4304         if (event->oncpu == smp_processor_id())
4305                 event->pmu->read(event);
4306
4307         *value = local64_read(&event->count);
4308         if (enabled || running) {
4309                 u64 now = event->shadow_ctx_time + perf_clock();
4310                 u64 __enabled, __running;
4311
4312                 __perf_update_times(event, now, &__enabled, &__running);
4313                 if (enabled)
4314                         *enabled = __enabled;
4315                 if (running)
4316                         *running = __running;
4317         }
4318 out:
4319         local_irq_restore(flags);
4320
4321         return ret;
4322 }
4323
4324 static int perf_event_read(struct perf_event *event, bool group)
4325 {
4326         enum perf_event_state state = READ_ONCE(event->state);
4327         int event_cpu, ret = 0;
4328
4329         /*
4330          * If event is enabled and currently active on a CPU, update the
4331          * value in the event structure:
4332          */
4333 again:
4334         if (state == PERF_EVENT_STATE_ACTIVE) {
4335                 struct perf_read_data data;
4336
4337                 /*
4338                  * Orders the ->state and ->oncpu loads such that if we see
4339                  * ACTIVE we must also see the right ->oncpu.
4340                  *
4341                  * Matches the smp_wmb() from event_sched_in().
4342                  */
4343                 smp_rmb();
4344
4345                 event_cpu = READ_ONCE(event->oncpu);
4346                 if ((unsigned)event_cpu >= nr_cpu_ids)
4347                         return 0;
4348
4349                 data = (struct perf_read_data){
4350                         .event = event,
4351                         .group = group,
4352                         .ret = 0,
4353                 };
4354
4355                 preempt_disable();
4356                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4357
4358                 /*
4359                  * Purposely ignore the smp_call_function_single() return
4360                  * value.
4361                  *
4362                  * If event_cpu isn't a valid CPU it means the event got
4363                  * scheduled out and that will have updated the event count.
4364                  *
4365                  * Therefore, either way, we'll have an up-to-date event count
4366                  * after this.
4367                  */
4368                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4369                 preempt_enable();
4370                 ret = data.ret;
4371
4372         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4373                 struct perf_event_context *ctx = event->ctx;
4374                 unsigned long flags;
4375
4376                 raw_spin_lock_irqsave(&ctx->lock, flags);
4377                 state = event->state;
4378                 if (state != PERF_EVENT_STATE_INACTIVE) {
4379                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4380                         goto again;
4381                 }
4382
4383                 /*
4384                  * May read while context is not active (e.g., thread is
4385                  * blocked), in that case we cannot update context time
4386                  */
4387                 if (ctx->is_active & EVENT_TIME) {
4388                         update_context_time(ctx);
4389                         update_cgrp_time_from_event(event);
4390                 }
4391
4392                 perf_event_update_time(event);
4393                 if (group)
4394                         perf_event_update_sibling_time(event);
4395                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4396         }
4397
4398         return ret;
4399 }
4400
4401 /*
4402  * Initialize the perf_event context in a task_struct:
4403  */
4404 static void __perf_event_init_context(struct perf_event_context *ctx)
4405 {
4406         raw_spin_lock_init(&ctx->lock);
4407         mutex_init(&ctx->mutex);
4408         INIT_LIST_HEAD(&ctx->active_ctx_list);
4409         perf_event_groups_init(&ctx->pinned_groups);
4410         perf_event_groups_init(&ctx->flexible_groups);
4411         INIT_LIST_HEAD(&ctx->event_list);
4412         INIT_LIST_HEAD(&ctx->pinned_active);
4413         INIT_LIST_HEAD(&ctx->flexible_active);
4414         refcount_set(&ctx->refcount, 1);
4415 }
4416
4417 static struct perf_event_context *
4418 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4419 {
4420         struct perf_event_context *ctx;
4421
4422         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4423         if (!ctx)
4424                 return NULL;
4425
4426         __perf_event_init_context(ctx);
4427         if (task)
4428                 ctx->task = get_task_struct(task);
4429         ctx->pmu = pmu;
4430
4431         return ctx;
4432 }
4433
4434 static struct task_struct *
4435 find_lively_task_by_vpid(pid_t vpid)
4436 {
4437         struct task_struct *task;
4438
4439         rcu_read_lock();
4440         if (!vpid)
4441                 task = current;
4442         else
4443                 task = find_task_by_vpid(vpid);
4444         if (task)
4445                 get_task_struct(task);
4446         rcu_read_unlock();
4447
4448         if (!task)
4449                 return ERR_PTR(-ESRCH);
4450
4451         return task;
4452 }
4453
4454 /*
4455  * Returns a matching context with refcount and pincount.
4456  */
4457 static struct perf_event_context *
4458 find_get_context(struct pmu *pmu, struct task_struct *task,
4459                 struct perf_event *event)
4460 {
4461         struct perf_event_context *ctx, *clone_ctx = NULL;
4462         struct perf_cpu_context *cpuctx;
4463         void *task_ctx_data = NULL;
4464         unsigned long flags;
4465         int ctxn, err;
4466         int cpu = event->cpu;
4467
4468         if (!task) {
4469                 /* Must be root to operate on a CPU event: */
4470                 err = perf_allow_cpu(&event->attr);
4471                 if (err)
4472                         return ERR_PTR(err);
4473
4474                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4475                 ctx = &cpuctx->ctx;
4476                 get_ctx(ctx);
4477                 ++ctx->pin_count;
4478
4479                 return ctx;
4480         }
4481
4482         err = -EINVAL;
4483         ctxn = pmu->task_ctx_nr;
4484         if (ctxn < 0)
4485                 goto errout;
4486
4487         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4488                 task_ctx_data = alloc_task_ctx_data(pmu);
4489                 if (!task_ctx_data) {
4490                         err = -ENOMEM;
4491                         goto errout;
4492                 }
4493         }
4494
4495 retry:
4496         ctx = perf_lock_task_context(task, ctxn, &flags);
4497         if (ctx) {
4498                 clone_ctx = unclone_ctx(ctx);
4499                 ++ctx->pin_count;
4500
4501                 if (task_ctx_data && !ctx->task_ctx_data) {
4502                         ctx->task_ctx_data = task_ctx_data;
4503                         task_ctx_data = NULL;
4504                 }
4505                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4506
4507                 if (clone_ctx)
4508                         put_ctx(clone_ctx);
4509         } else {
4510                 ctx = alloc_perf_context(pmu, task);
4511                 err = -ENOMEM;
4512                 if (!ctx)
4513                         goto errout;
4514
4515                 if (task_ctx_data) {
4516                         ctx->task_ctx_data = task_ctx_data;
4517                         task_ctx_data = NULL;
4518                 }
4519
4520                 err = 0;
4521                 mutex_lock(&task->perf_event_mutex);
4522                 /*
4523                  * If it has already passed perf_event_exit_task().
4524                  * we must see PF_EXITING, it takes this mutex too.
4525                  */
4526                 if (task->flags & PF_EXITING)
4527                         err = -ESRCH;
4528                 else if (task->perf_event_ctxp[ctxn])
4529                         err = -EAGAIN;
4530                 else {
4531                         get_ctx(ctx);
4532                         ++ctx->pin_count;
4533                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4534                 }
4535                 mutex_unlock(&task->perf_event_mutex);
4536
4537                 if (unlikely(err)) {
4538                         put_ctx(ctx);
4539
4540                         if (err == -EAGAIN)
4541                                 goto retry;
4542                         goto errout;
4543                 }
4544         }
4545
4546         free_task_ctx_data(pmu, task_ctx_data);
4547         return ctx;
4548
4549 errout:
4550         free_task_ctx_data(pmu, task_ctx_data);
4551         return ERR_PTR(err);
4552 }
4553
4554 static void perf_event_free_filter(struct perf_event *event);
4555 static void perf_event_free_bpf_prog(struct perf_event *event);
4556
4557 static void free_event_rcu(struct rcu_head *head)
4558 {
4559         struct perf_event *event;
4560
4561         event = container_of(head, struct perf_event, rcu_head);
4562         if (event->ns)
4563                 put_pid_ns(event->ns);
4564         perf_event_free_filter(event);
4565         kfree(event);
4566 }
4567
4568 static void ring_buffer_attach(struct perf_event *event,
4569                                struct perf_buffer *rb);
4570
4571 static void detach_sb_event(struct perf_event *event)
4572 {
4573         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4574
4575         raw_spin_lock(&pel->lock);
4576         list_del_rcu(&event->sb_list);
4577         raw_spin_unlock(&pel->lock);
4578 }
4579
4580 static bool is_sb_event(struct perf_event *event)
4581 {
4582         struct perf_event_attr *attr = &event->attr;
4583
4584         if (event->parent)
4585                 return false;
4586
4587         if (event->attach_state & PERF_ATTACH_TASK)
4588                 return false;
4589
4590         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4591             attr->comm || attr->comm_exec ||
4592             attr->task || attr->ksymbol ||
4593             attr->context_switch || attr->text_poke ||
4594             attr->bpf_event)
4595                 return true;
4596         return false;
4597 }
4598
4599 static void unaccount_pmu_sb_event(struct perf_event *event)
4600 {
4601         if (is_sb_event(event))
4602                 detach_sb_event(event);
4603 }
4604
4605 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4606 {
4607         if (event->parent)
4608                 return;
4609
4610         if (is_cgroup_event(event))
4611                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4612 }
4613
4614 #ifdef CONFIG_NO_HZ_FULL
4615 static DEFINE_SPINLOCK(nr_freq_lock);
4616 #endif
4617
4618 static void unaccount_freq_event_nohz(void)
4619 {
4620 #ifdef CONFIG_NO_HZ_FULL
4621         spin_lock(&nr_freq_lock);
4622         if (atomic_dec_and_test(&nr_freq_events))
4623                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4624         spin_unlock(&nr_freq_lock);
4625 #endif
4626 }
4627
4628 static void unaccount_freq_event(void)
4629 {
4630         if (tick_nohz_full_enabled())
4631                 unaccount_freq_event_nohz();
4632         else
4633                 atomic_dec(&nr_freq_events);
4634 }
4635
4636 static void unaccount_event(struct perf_event *event)
4637 {
4638         bool dec = false;
4639
4640         if (event->parent)
4641                 return;
4642
4643         if (event->attach_state & PERF_ATTACH_TASK)
4644                 dec = true;
4645         if (event->attr.mmap || event->attr.mmap_data)
4646                 atomic_dec(&nr_mmap_events);
4647         if (event->attr.comm)
4648                 atomic_dec(&nr_comm_events);
4649         if (event->attr.namespaces)
4650                 atomic_dec(&nr_namespaces_events);
4651         if (event->attr.cgroup)
4652                 atomic_dec(&nr_cgroup_events);
4653         if (event->attr.task)
4654                 atomic_dec(&nr_task_events);
4655         if (event->attr.freq)
4656                 unaccount_freq_event();
4657         if (event->attr.context_switch) {
4658                 dec = true;
4659                 atomic_dec(&nr_switch_events);
4660         }
4661         if (is_cgroup_event(event))
4662                 dec = true;
4663         if (has_branch_stack(event))
4664                 dec = true;
4665         if (event->attr.ksymbol)
4666                 atomic_dec(&nr_ksymbol_events);
4667         if (event->attr.bpf_event)
4668                 atomic_dec(&nr_bpf_events);
4669         if (event->attr.text_poke)
4670                 atomic_dec(&nr_text_poke_events);
4671
4672         if (dec) {
4673                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4674                         schedule_delayed_work(&perf_sched_work, HZ);
4675         }
4676
4677         unaccount_event_cpu(event, event->cpu);
4678
4679         unaccount_pmu_sb_event(event);
4680 }
4681
4682 static void perf_sched_delayed(struct work_struct *work)
4683 {
4684         mutex_lock(&perf_sched_mutex);
4685         if (atomic_dec_and_test(&perf_sched_count))
4686                 static_branch_disable(&perf_sched_events);
4687         mutex_unlock(&perf_sched_mutex);
4688 }
4689
4690 /*
4691  * The following implement mutual exclusion of events on "exclusive" pmus
4692  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4693  * at a time, so we disallow creating events that might conflict, namely:
4694  *
4695  *  1) cpu-wide events in the presence of per-task events,
4696  *  2) per-task events in the presence of cpu-wide events,
4697  *  3) two matching events on the same context.
4698  *
4699  * The former two cases are handled in the allocation path (perf_event_alloc(),
4700  * _free_event()), the latter -- before the first perf_install_in_context().
4701  */
4702 static int exclusive_event_init(struct perf_event *event)
4703 {
4704         struct pmu *pmu = event->pmu;
4705
4706         if (!is_exclusive_pmu(pmu))
4707                 return 0;
4708
4709         /*
4710          * Prevent co-existence of per-task and cpu-wide events on the
4711          * same exclusive pmu.
4712          *
4713          * Negative pmu::exclusive_cnt means there are cpu-wide
4714          * events on this "exclusive" pmu, positive means there are
4715          * per-task events.
4716          *
4717          * Since this is called in perf_event_alloc() path, event::ctx
4718          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4719          * to mean "per-task event", because unlike other attach states it
4720          * never gets cleared.
4721          */
4722         if (event->attach_state & PERF_ATTACH_TASK) {
4723                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4724                         return -EBUSY;
4725         } else {
4726                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4727                         return -EBUSY;
4728         }
4729
4730         return 0;
4731 }
4732
4733 static void exclusive_event_destroy(struct perf_event *event)
4734 {
4735         struct pmu *pmu = event->pmu;
4736
4737         if (!is_exclusive_pmu(pmu))
4738                 return;
4739
4740         /* see comment in exclusive_event_init() */
4741         if (event->attach_state & PERF_ATTACH_TASK)
4742                 atomic_dec(&pmu->exclusive_cnt);
4743         else
4744                 atomic_inc(&pmu->exclusive_cnt);
4745 }
4746
4747 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4748 {
4749         if ((e1->pmu == e2->pmu) &&
4750             (e1->cpu == e2->cpu ||
4751              e1->cpu == -1 ||
4752              e2->cpu == -1))
4753                 return true;
4754         return false;
4755 }
4756
4757 static bool exclusive_event_installable(struct perf_event *event,
4758                                         struct perf_event_context *ctx)
4759 {
4760         struct perf_event *iter_event;
4761         struct pmu *pmu = event->pmu;
4762
4763         lockdep_assert_held(&ctx->mutex);
4764
4765         if (!is_exclusive_pmu(pmu))
4766                 return true;
4767
4768         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4769                 if (exclusive_event_match(iter_event, event))
4770                         return false;
4771         }
4772
4773         return true;
4774 }
4775
4776 static void perf_addr_filters_splice(struct perf_event *event,
4777                                        struct list_head *head);
4778
4779 static void _free_event(struct perf_event *event)
4780 {
4781         irq_work_sync(&event->pending);
4782
4783         unaccount_event(event);
4784
4785         security_perf_event_free(event);
4786
4787         if (event->rb) {
4788                 /*
4789                  * Can happen when we close an event with re-directed output.
4790                  *
4791                  * Since we have a 0 refcount, perf_mmap_close() will skip
4792                  * over us; possibly making our ring_buffer_put() the last.
4793                  */
4794                 mutex_lock(&event->mmap_mutex);
4795                 ring_buffer_attach(event, NULL);
4796                 mutex_unlock(&event->mmap_mutex);
4797         }
4798
4799         if (is_cgroup_event(event))
4800                 perf_detach_cgroup(event);
4801
4802         if (!event->parent) {
4803                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4804                         put_callchain_buffers();
4805         }
4806
4807         perf_event_free_bpf_prog(event);
4808         perf_addr_filters_splice(event, NULL);
4809         kfree(event->addr_filter_ranges);
4810
4811         if (event->destroy)
4812                 event->destroy(event);
4813
4814         /*
4815          * Must be after ->destroy(), due to uprobe_perf_close() using
4816          * hw.target.
4817          */
4818         if (event->hw.target)
4819                 put_task_struct(event->hw.target);
4820
4821         /*
4822          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4823          * all task references must be cleaned up.
4824          */
4825         if (event->ctx)
4826                 put_ctx(event->ctx);
4827
4828         exclusive_event_destroy(event);
4829         module_put(event->pmu->module);
4830
4831         call_rcu(&event->rcu_head, free_event_rcu);
4832 }
4833
4834 /*
4835  * Used to free events which have a known refcount of 1, such as in error paths
4836  * where the event isn't exposed yet and inherited events.
4837  */
4838 static void free_event(struct perf_event *event)
4839 {
4840         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4841                                 "unexpected event refcount: %ld; ptr=%p\n",
4842                                 atomic_long_read(&event->refcount), event)) {
4843                 /* leak to avoid use-after-free */
4844                 return;
4845         }
4846
4847         _free_event(event);
4848 }
4849
4850 /*
4851  * Remove user event from the owner task.
4852  */
4853 static void perf_remove_from_owner(struct perf_event *event)
4854 {
4855         struct task_struct *owner;
4856
4857         rcu_read_lock();
4858         /*
4859          * Matches the smp_store_release() in perf_event_exit_task(). If we
4860          * observe !owner it means the list deletion is complete and we can
4861          * indeed free this event, otherwise we need to serialize on
4862          * owner->perf_event_mutex.
4863          */
4864         owner = READ_ONCE(event->owner);
4865         if (owner) {
4866                 /*
4867                  * Since delayed_put_task_struct() also drops the last
4868                  * task reference we can safely take a new reference
4869                  * while holding the rcu_read_lock().
4870                  */
4871                 get_task_struct(owner);
4872         }
4873         rcu_read_unlock();
4874
4875         if (owner) {
4876                 /*
4877                  * If we're here through perf_event_exit_task() we're already
4878                  * holding ctx->mutex which would be an inversion wrt. the
4879                  * normal lock order.
4880                  *
4881                  * However we can safely take this lock because its the child
4882                  * ctx->mutex.
4883                  */
4884                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4885
4886                 /*
4887                  * We have to re-check the event->owner field, if it is cleared
4888                  * we raced with perf_event_exit_task(), acquiring the mutex
4889                  * ensured they're done, and we can proceed with freeing the
4890                  * event.
4891                  */
4892                 if (event->owner) {
4893                         list_del_init(&event->owner_entry);
4894                         smp_store_release(&event->owner, NULL);
4895                 }
4896                 mutex_unlock(&owner->perf_event_mutex);
4897                 put_task_struct(owner);
4898         }
4899 }
4900
4901 static void put_event(struct perf_event *event)
4902 {
4903         if (!atomic_long_dec_and_test(&event->refcount))
4904                 return;
4905
4906         _free_event(event);
4907 }
4908
4909 /*
4910  * Kill an event dead; while event:refcount will preserve the event
4911  * object, it will not preserve its functionality. Once the last 'user'
4912  * gives up the object, we'll destroy the thing.
4913  */
4914 int perf_event_release_kernel(struct perf_event *event)
4915 {
4916         struct perf_event_context *ctx = event->ctx;
4917         struct perf_event *child, *tmp;
4918         LIST_HEAD(free_list);
4919
4920         /*
4921          * If we got here through err_file: fput(event_file); we will not have
4922          * attached to a context yet.
4923          */
4924         if (!ctx) {
4925                 WARN_ON_ONCE(event->attach_state &
4926                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4927                 goto no_ctx;
4928         }
4929
4930         if (!is_kernel_event(event))
4931                 perf_remove_from_owner(event);
4932
4933         ctx = perf_event_ctx_lock(event);
4934         WARN_ON_ONCE(ctx->parent_ctx);
4935         perf_remove_from_context(event, DETACH_GROUP);
4936
4937         raw_spin_lock_irq(&ctx->lock);
4938         /*
4939          * Mark this event as STATE_DEAD, there is no external reference to it
4940          * anymore.
4941          *
4942          * Anybody acquiring event->child_mutex after the below loop _must_
4943          * also see this, most importantly inherit_event() which will avoid
4944          * placing more children on the list.
4945          *
4946          * Thus this guarantees that we will in fact observe and kill _ALL_
4947          * child events.
4948          */
4949         event->state = PERF_EVENT_STATE_DEAD;
4950         raw_spin_unlock_irq(&ctx->lock);
4951
4952         perf_event_ctx_unlock(event, ctx);
4953
4954 again:
4955         mutex_lock(&event->child_mutex);
4956         list_for_each_entry(child, &event->child_list, child_list) {
4957
4958                 /*
4959                  * Cannot change, child events are not migrated, see the
4960                  * comment with perf_event_ctx_lock_nested().
4961                  */
4962                 ctx = READ_ONCE(child->ctx);
4963                 /*
4964                  * Since child_mutex nests inside ctx::mutex, we must jump
4965                  * through hoops. We start by grabbing a reference on the ctx.
4966                  *
4967                  * Since the event cannot get freed while we hold the
4968                  * child_mutex, the context must also exist and have a !0
4969                  * reference count.
4970                  */
4971                 get_ctx(ctx);
4972
4973                 /*
4974                  * Now that we have a ctx ref, we can drop child_mutex, and
4975                  * acquire ctx::mutex without fear of it going away. Then we
4976                  * can re-acquire child_mutex.
4977                  */
4978                 mutex_unlock(&event->child_mutex);
4979                 mutex_lock(&ctx->mutex);
4980                 mutex_lock(&event->child_mutex);
4981
4982                 /*
4983                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4984                  * state, if child is still the first entry, it didn't get freed
4985                  * and we can continue doing so.
4986                  */
4987                 tmp = list_first_entry_or_null(&event->child_list,
4988                                                struct perf_event, child_list);
4989                 if (tmp == child) {
4990                         perf_remove_from_context(child, DETACH_GROUP);
4991                         list_move(&child->child_list, &free_list);
4992                         /*
4993                          * This matches the refcount bump in inherit_event();
4994                          * this can't be the last reference.
4995                          */
4996                         put_event(event);
4997                 }
4998
4999                 mutex_unlock(&event->child_mutex);
5000                 mutex_unlock(&ctx->mutex);
5001                 put_ctx(ctx);
5002                 goto again;
5003         }
5004         mutex_unlock(&event->child_mutex);
5005
5006         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5007                 void *var = &child->ctx->refcount;
5008
5009                 list_del(&child->child_list);
5010                 free_event(child);
5011
5012                 /*
5013                  * Wake any perf_event_free_task() waiting for this event to be
5014                  * freed.
5015                  */
5016                 smp_mb(); /* pairs with wait_var_event() */
5017                 wake_up_var(var);
5018         }
5019
5020 no_ctx:
5021         put_event(event); /* Must be the 'last' reference */
5022         return 0;
5023 }
5024 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5025
5026 /*
5027  * Called when the last reference to the file is gone.
5028  */
5029 static int perf_release(struct inode *inode, struct file *file)
5030 {
5031         perf_event_release_kernel(file->private_data);
5032         return 0;
5033 }
5034
5035 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5036 {
5037         struct perf_event *child;
5038         u64 total = 0;
5039
5040         *enabled = 0;
5041         *running = 0;
5042
5043         mutex_lock(&event->child_mutex);
5044
5045         (void)perf_event_read(event, false);
5046         total += perf_event_count(event);
5047
5048         *enabled += event->total_time_enabled +
5049                         atomic64_read(&event->child_total_time_enabled);
5050         *running += event->total_time_running +
5051                         atomic64_read(&event->child_total_time_running);
5052
5053         list_for_each_entry(child, &event->child_list, child_list) {
5054                 (void)perf_event_read(child, false);
5055                 total += perf_event_count(child);
5056                 *enabled += child->total_time_enabled;
5057                 *running += child->total_time_running;
5058         }
5059         mutex_unlock(&event->child_mutex);
5060
5061         return total;
5062 }
5063
5064 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5065 {
5066         struct perf_event_context *ctx;
5067         u64 count;
5068
5069         ctx = perf_event_ctx_lock(event);
5070         count = __perf_event_read_value(event, enabled, running);
5071         perf_event_ctx_unlock(event, ctx);
5072
5073         return count;
5074 }
5075 EXPORT_SYMBOL_GPL(perf_event_read_value);
5076
5077 static int __perf_read_group_add(struct perf_event *leader,
5078                                         u64 read_format, u64 *values)
5079 {
5080         struct perf_event_context *ctx = leader->ctx;
5081         struct perf_event *sub;
5082         unsigned long flags;
5083         int n = 1; /* skip @nr */
5084         int ret;
5085
5086         ret = perf_event_read(leader, true);
5087         if (ret)
5088                 return ret;
5089
5090         raw_spin_lock_irqsave(&ctx->lock, flags);
5091
5092         /*
5093          * Since we co-schedule groups, {enabled,running} times of siblings
5094          * will be identical to those of the leader, so we only publish one
5095          * set.
5096          */
5097         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5098                 values[n++] += leader->total_time_enabled +
5099                         atomic64_read(&leader->child_total_time_enabled);
5100         }
5101
5102         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5103                 values[n++] += leader->total_time_running +
5104                         atomic64_read(&leader->child_total_time_running);
5105         }
5106
5107         /*
5108          * Write {count,id} tuples for every sibling.
5109          */
5110         values[n++] += perf_event_count(leader);
5111         if (read_format & PERF_FORMAT_ID)
5112                 values[n++] = primary_event_id(leader);
5113
5114         for_each_sibling_event(sub, leader) {
5115                 values[n++] += perf_event_count(sub);
5116                 if (read_format & PERF_FORMAT_ID)
5117                         values[n++] = primary_event_id(sub);
5118         }
5119
5120         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5121         return 0;
5122 }
5123
5124 static int perf_read_group(struct perf_event *event,
5125                                    u64 read_format, char __user *buf)
5126 {
5127         struct perf_event *leader = event->group_leader, *child;
5128         struct perf_event_context *ctx = leader->ctx;
5129         int ret;
5130         u64 *values;
5131
5132         lockdep_assert_held(&ctx->mutex);
5133
5134         values = kzalloc(event->read_size, GFP_KERNEL);
5135         if (!values)
5136                 return -ENOMEM;
5137
5138         values[0] = 1 + leader->nr_siblings;
5139
5140         /*
5141          * By locking the child_mutex of the leader we effectively
5142          * lock the child list of all siblings.. XXX explain how.
5143          */
5144         mutex_lock(&leader->child_mutex);
5145
5146         ret = __perf_read_group_add(leader, read_format, values);
5147         if (ret)
5148                 goto unlock;
5149
5150         list_for_each_entry(child, &leader->child_list, child_list) {
5151                 ret = __perf_read_group_add(child, read_format, values);
5152                 if (ret)
5153                         goto unlock;
5154         }
5155
5156         mutex_unlock(&leader->child_mutex);
5157
5158         ret = event->read_size;
5159         if (copy_to_user(buf, values, event->read_size))
5160                 ret = -EFAULT;
5161         goto out;
5162
5163 unlock:
5164         mutex_unlock(&leader->child_mutex);
5165 out:
5166         kfree(values);
5167         return ret;
5168 }
5169
5170 static int perf_read_one(struct perf_event *event,
5171                                  u64 read_format, char __user *buf)
5172 {
5173         u64 enabled, running;
5174         u64 values[4];
5175         int n = 0;
5176
5177         values[n++] = __perf_event_read_value(event, &enabled, &running);
5178         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5179                 values[n++] = enabled;
5180         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5181                 values[n++] = running;
5182         if (read_format & PERF_FORMAT_ID)
5183                 values[n++] = primary_event_id(event);
5184
5185         if (copy_to_user(buf, values, n * sizeof(u64)))
5186                 return -EFAULT;
5187
5188         return n * sizeof(u64);
5189 }
5190
5191 static bool is_event_hup(struct perf_event *event)
5192 {
5193         bool no_children;
5194
5195         if (event->state > PERF_EVENT_STATE_EXIT)
5196                 return false;
5197
5198         mutex_lock(&event->child_mutex);
5199         no_children = list_empty(&event->child_list);
5200         mutex_unlock(&event->child_mutex);
5201         return no_children;
5202 }
5203
5204 /*
5205  * Read the performance event - simple non blocking version for now
5206  */
5207 static ssize_t
5208 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5209 {
5210         u64 read_format = event->attr.read_format;
5211         int ret;
5212
5213         /*
5214          * Return end-of-file for a read on an event that is in
5215          * error state (i.e. because it was pinned but it couldn't be
5216          * scheduled on to the CPU at some point).
5217          */
5218         if (event->state == PERF_EVENT_STATE_ERROR)
5219                 return 0;
5220
5221         if (count < event->read_size)
5222                 return -ENOSPC;
5223
5224         WARN_ON_ONCE(event->ctx->parent_ctx);
5225         if (read_format & PERF_FORMAT_GROUP)
5226                 ret = perf_read_group(event, read_format, buf);
5227         else
5228                 ret = perf_read_one(event, read_format, buf);
5229
5230         return ret;
5231 }
5232
5233 static ssize_t
5234 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5235 {
5236         struct perf_event *event = file->private_data;
5237         struct perf_event_context *ctx;
5238         int ret;
5239
5240         ret = security_perf_event_read(event);
5241         if (ret)
5242                 return ret;
5243
5244         ctx = perf_event_ctx_lock(event);
5245         ret = __perf_read(event, buf, count);
5246         perf_event_ctx_unlock(event, ctx);
5247
5248         return ret;
5249 }
5250
5251 static __poll_t perf_poll(struct file *file, poll_table *wait)
5252 {
5253         struct perf_event *event = file->private_data;
5254         struct perf_buffer *rb;
5255         __poll_t events = EPOLLHUP;
5256
5257         poll_wait(file, &event->waitq, wait);
5258
5259         if (is_event_hup(event))
5260                 return events;
5261
5262         /*
5263          * Pin the event->rb by taking event->mmap_mutex; otherwise
5264          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5265          */
5266         mutex_lock(&event->mmap_mutex);
5267         rb = event->rb;
5268         if (rb)
5269                 events = atomic_xchg(&rb->poll, 0);
5270         mutex_unlock(&event->mmap_mutex);
5271         return events;
5272 }
5273
5274 static void _perf_event_reset(struct perf_event *event)
5275 {
5276         (void)perf_event_read(event, false);
5277         local64_set(&event->count, 0);
5278         perf_event_update_userpage(event);
5279 }
5280
5281 /* Assume it's not an event with inherit set. */
5282 u64 perf_event_pause(struct perf_event *event, bool reset)
5283 {
5284         struct perf_event_context *ctx;
5285         u64 count;
5286
5287         ctx = perf_event_ctx_lock(event);
5288         WARN_ON_ONCE(event->attr.inherit);
5289         _perf_event_disable(event);
5290         count = local64_read(&event->count);
5291         if (reset)
5292                 local64_set(&event->count, 0);
5293         perf_event_ctx_unlock(event, ctx);
5294
5295         return count;
5296 }
5297 EXPORT_SYMBOL_GPL(perf_event_pause);
5298
5299 /*
5300  * Holding the top-level event's child_mutex means that any
5301  * descendant process that has inherited this event will block
5302  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5303  * task existence requirements of perf_event_enable/disable.
5304  */
5305 static void perf_event_for_each_child(struct perf_event *event,
5306                                         void (*func)(struct perf_event *))
5307 {
5308         struct perf_event *child;
5309
5310         WARN_ON_ONCE(event->ctx->parent_ctx);
5311
5312         mutex_lock(&event->child_mutex);
5313         func(event);
5314         list_for_each_entry(child, &event->child_list, child_list)
5315                 func(child);
5316         mutex_unlock(&event->child_mutex);
5317 }
5318
5319 static void perf_event_for_each(struct perf_event *event,
5320                                   void (*func)(struct perf_event *))
5321 {
5322         struct perf_event_context *ctx = event->ctx;
5323         struct perf_event *sibling;
5324
5325         lockdep_assert_held(&ctx->mutex);
5326
5327         event = event->group_leader;
5328
5329         perf_event_for_each_child(event, func);
5330         for_each_sibling_event(sibling, event)
5331                 perf_event_for_each_child(sibling, func);
5332 }
5333
5334 static void __perf_event_period(struct perf_event *event,
5335                                 struct perf_cpu_context *cpuctx,
5336                                 struct perf_event_context *ctx,
5337                                 void *info)
5338 {
5339         u64 value = *((u64 *)info);
5340         bool active;
5341
5342         if (event->attr.freq) {
5343                 event->attr.sample_freq = value;
5344         } else {
5345                 event->attr.sample_period = value;
5346                 event->hw.sample_period = value;
5347         }
5348
5349         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5350         if (active) {
5351                 perf_pmu_disable(ctx->pmu);
5352                 /*
5353                  * We could be throttled; unthrottle now to avoid the tick
5354                  * trying to unthrottle while we already re-started the event.
5355                  */
5356                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5357                         event->hw.interrupts = 0;
5358                         perf_log_throttle(event, 1);
5359                 }
5360                 event->pmu->stop(event, PERF_EF_UPDATE);
5361         }
5362
5363         local64_set(&event->hw.period_left, 0);
5364
5365         if (active) {
5366                 event->pmu->start(event, PERF_EF_RELOAD);
5367                 perf_pmu_enable(ctx->pmu);
5368         }
5369 }
5370
5371 static int perf_event_check_period(struct perf_event *event, u64 value)
5372 {
5373         return event->pmu->check_period(event, value);
5374 }
5375
5376 static int _perf_event_period(struct perf_event *event, u64 value)
5377 {
5378         if (!is_sampling_event(event))
5379                 return -EINVAL;
5380
5381         if (!value)
5382                 return -EINVAL;
5383
5384         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5385                 return -EINVAL;
5386
5387         if (perf_event_check_period(event, value))
5388                 return -EINVAL;
5389
5390         if (!event->attr.freq && (value & (1ULL << 63)))
5391                 return -EINVAL;
5392
5393         event_function_call(event, __perf_event_period, &value);
5394
5395         return 0;
5396 }
5397
5398 int perf_event_period(struct perf_event *event, u64 value)
5399 {
5400         struct perf_event_context *ctx;
5401         int ret;
5402
5403         ctx = perf_event_ctx_lock(event);
5404         ret = _perf_event_period(event, value);
5405         perf_event_ctx_unlock(event, ctx);
5406
5407         return ret;
5408 }
5409 EXPORT_SYMBOL_GPL(perf_event_period);
5410
5411 static const struct file_operations perf_fops;
5412
5413 static inline int perf_fget_light(int fd, struct fd *p)
5414 {
5415         struct fd f = fdget(fd);
5416         if (!f.file)
5417                 return -EBADF;
5418
5419         if (f.file->f_op != &perf_fops) {
5420                 fdput(f);
5421                 return -EBADF;
5422         }
5423         *p = f;
5424         return 0;
5425 }
5426
5427 static int perf_event_set_output(struct perf_event *event,
5428                                  struct perf_event *output_event);
5429 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5430 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5431 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5432                           struct perf_event_attr *attr);
5433
5434 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5435 {
5436         void (*func)(struct perf_event *);
5437         u32 flags = arg;
5438
5439         switch (cmd) {
5440         case PERF_EVENT_IOC_ENABLE:
5441                 func = _perf_event_enable;
5442                 break;
5443         case PERF_EVENT_IOC_DISABLE:
5444                 func = _perf_event_disable;
5445                 break;
5446         case PERF_EVENT_IOC_RESET:
5447                 func = _perf_event_reset;
5448                 break;
5449
5450         case PERF_EVENT_IOC_REFRESH:
5451                 return _perf_event_refresh(event, arg);
5452
5453         case PERF_EVENT_IOC_PERIOD:
5454         {
5455                 u64 value;
5456
5457                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5458                         return -EFAULT;
5459
5460                 return _perf_event_period(event, value);
5461         }
5462         case PERF_EVENT_IOC_ID:
5463         {
5464                 u64 id = primary_event_id(event);
5465
5466                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5467                         return -EFAULT;
5468                 return 0;
5469         }
5470
5471         case PERF_EVENT_IOC_SET_OUTPUT:
5472         {
5473                 int ret;
5474                 if (arg != -1) {
5475                         struct perf_event *output_event;
5476                         struct fd output;
5477                         ret = perf_fget_light(arg, &output);
5478                         if (ret)
5479                                 return ret;
5480                         output_event = output.file->private_data;
5481                         ret = perf_event_set_output(event, output_event);
5482                         fdput(output);
5483                 } else {
5484                         ret = perf_event_set_output(event, NULL);
5485                 }
5486                 return ret;
5487         }
5488
5489         case PERF_EVENT_IOC_SET_FILTER:
5490                 return perf_event_set_filter(event, (void __user *)arg);
5491
5492         case PERF_EVENT_IOC_SET_BPF:
5493                 return perf_event_set_bpf_prog(event, arg);
5494
5495         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5496                 struct perf_buffer *rb;
5497
5498                 rcu_read_lock();
5499                 rb = rcu_dereference(event->rb);
5500                 if (!rb || !rb->nr_pages) {
5501                         rcu_read_unlock();
5502                         return -EINVAL;
5503                 }
5504                 rb_toggle_paused(rb, !!arg);
5505                 rcu_read_unlock();
5506                 return 0;
5507         }
5508
5509         case PERF_EVENT_IOC_QUERY_BPF:
5510                 return perf_event_query_prog_array(event, (void __user *)arg);
5511
5512         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5513                 struct perf_event_attr new_attr;
5514                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5515                                          &new_attr);
5516
5517                 if (err)
5518                         return err;
5519
5520                 return perf_event_modify_attr(event,  &new_attr);
5521         }
5522         default:
5523                 return -ENOTTY;
5524         }
5525
5526         if (flags & PERF_IOC_FLAG_GROUP)
5527                 perf_event_for_each(event, func);
5528         else
5529                 perf_event_for_each_child(event, func);
5530
5531         return 0;
5532 }
5533
5534 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5535 {
5536         struct perf_event *event = file->private_data;
5537         struct perf_event_context *ctx;
5538         long ret;
5539
5540         /* Treat ioctl like writes as it is likely a mutating operation. */
5541         ret = security_perf_event_write(event);
5542         if (ret)
5543                 return ret;
5544
5545         ctx = perf_event_ctx_lock(event);
5546         ret = _perf_ioctl(event, cmd, arg);
5547         perf_event_ctx_unlock(event, ctx);
5548
5549         return ret;
5550 }
5551
5552 #ifdef CONFIG_COMPAT
5553 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5554                                 unsigned long arg)
5555 {
5556         switch (_IOC_NR(cmd)) {
5557         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5558         case _IOC_NR(PERF_EVENT_IOC_ID):
5559         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5560         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5561                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5562                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5563                         cmd &= ~IOCSIZE_MASK;
5564                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5565                 }
5566                 break;
5567         }
5568         return perf_ioctl(file, cmd, arg);
5569 }
5570 #else
5571 # define perf_compat_ioctl NULL
5572 #endif
5573
5574 int perf_event_task_enable(void)
5575 {
5576         struct perf_event_context *ctx;
5577         struct perf_event *event;
5578
5579         mutex_lock(&current->perf_event_mutex);
5580         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5581                 ctx = perf_event_ctx_lock(event);
5582                 perf_event_for_each_child(event, _perf_event_enable);
5583                 perf_event_ctx_unlock(event, ctx);
5584         }
5585         mutex_unlock(&current->perf_event_mutex);
5586
5587         return 0;
5588 }
5589
5590 int perf_event_task_disable(void)
5591 {
5592         struct perf_event_context *ctx;
5593         struct perf_event *event;
5594
5595         mutex_lock(&current->perf_event_mutex);
5596         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5597                 ctx = perf_event_ctx_lock(event);
5598                 perf_event_for_each_child(event, _perf_event_disable);
5599                 perf_event_ctx_unlock(event, ctx);
5600         }
5601         mutex_unlock(&current->perf_event_mutex);
5602
5603         return 0;
5604 }
5605
5606 static int perf_event_index(struct perf_event *event)
5607 {
5608         if (event->hw.state & PERF_HES_STOPPED)
5609                 return 0;
5610
5611         if (event->state != PERF_EVENT_STATE_ACTIVE)
5612                 return 0;
5613
5614         return event->pmu->event_idx(event);
5615 }
5616
5617 static void calc_timer_values(struct perf_event *event,
5618                                 u64 *now,
5619                                 u64 *enabled,
5620                                 u64 *running)
5621 {
5622         u64 ctx_time;
5623
5624         *now = perf_clock();
5625         ctx_time = event->shadow_ctx_time + *now;
5626         __perf_update_times(event, ctx_time, enabled, running);
5627 }
5628
5629 static void perf_event_init_userpage(struct perf_event *event)
5630 {
5631         struct perf_event_mmap_page *userpg;
5632         struct perf_buffer *rb;
5633
5634         rcu_read_lock();
5635         rb = rcu_dereference(event->rb);
5636         if (!rb)
5637                 goto unlock;
5638
5639         userpg = rb->user_page;
5640
5641         /* Allow new userspace to detect that bit 0 is deprecated */
5642         userpg->cap_bit0_is_deprecated = 1;
5643         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5644         userpg->data_offset = PAGE_SIZE;
5645         userpg->data_size = perf_data_size(rb);
5646
5647 unlock:
5648         rcu_read_unlock();
5649 }
5650
5651 void __weak arch_perf_update_userpage(
5652         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5653 {
5654 }
5655
5656 /*
5657  * Callers need to ensure there can be no nesting of this function, otherwise
5658  * the seqlock logic goes bad. We can not serialize this because the arch
5659  * code calls this from NMI context.
5660  */
5661 void perf_event_update_userpage(struct perf_event *event)
5662 {
5663         struct perf_event_mmap_page *userpg;
5664         struct perf_buffer *rb;
5665         u64 enabled, running, now;
5666
5667         rcu_read_lock();
5668         rb = rcu_dereference(event->rb);
5669         if (!rb)
5670                 goto unlock;
5671
5672         /*
5673          * compute total_time_enabled, total_time_running
5674          * based on snapshot values taken when the event
5675          * was last scheduled in.
5676          *
5677          * we cannot simply called update_context_time()
5678          * because of locking issue as we can be called in
5679          * NMI context
5680          */
5681         calc_timer_values(event, &now, &enabled, &running);
5682
5683         userpg = rb->user_page;
5684         /*
5685          * Disable preemption to guarantee consistent time stamps are stored to
5686          * the user page.
5687          */
5688         preempt_disable();
5689         ++userpg->lock;
5690         barrier();
5691         userpg->index = perf_event_index(event);
5692         userpg->offset = perf_event_count(event);
5693         if (userpg->index)
5694                 userpg->offset -= local64_read(&event->hw.prev_count);
5695
5696         userpg->time_enabled = enabled +
5697                         atomic64_read(&event->child_total_time_enabled);
5698
5699         userpg->time_running = running +
5700                         atomic64_read(&event->child_total_time_running);
5701
5702         arch_perf_update_userpage(event, userpg, now);
5703
5704         barrier();
5705         ++userpg->lock;
5706         preempt_enable();
5707 unlock:
5708         rcu_read_unlock();
5709 }
5710 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5711
5712 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5713 {
5714         struct perf_event *event = vmf->vma->vm_file->private_data;
5715         struct perf_buffer *rb;
5716         vm_fault_t ret = VM_FAULT_SIGBUS;
5717
5718         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5719                 if (vmf->pgoff == 0)
5720                         ret = 0;
5721                 return ret;
5722         }
5723
5724         rcu_read_lock();
5725         rb = rcu_dereference(event->rb);
5726         if (!rb)
5727                 goto unlock;
5728
5729         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5730                 goto unlock;
5731
5732         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5733         if (!vmf->page)
5734                 goto unlock;
5735
5736         get_page(vmf->page);
5737         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5738         vmf->page->index   = vmf->pgoff;
5739
5740         ret = 0;
5741 unlock:
5742         rcu_read_unlock();
5743
5744         return ret;
5745 }
5746
5747 static void ring_buffer_attach(struct perf_event *event,
5748                                struct perf_buffer *rb)
5749 {
5750         struct perf_buffer *old_rb = NULL;
5751         unsigned long flags;
5752
5753         if (event->rb) {
5754                 /*
5755                  * Should be impossible, we set this when removing
5756                  * event->rb_entry and wait/clear when adding event->rb_entry.
5757                  */
5758                 WARN_ON_ONCE(event->rcu_pending);
5759
5760                 old_rb = event->rb;
5761                 spin_lock_irqsave(&old_rb->event_lock, flags);
5762                 list_del_rcu(&event->rb_entry);
5763                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5764
5765                 event->rcu_batches = get_state_synchronize_rcu();
5766                 event->rcu_pending = 1;
5767         }
5768
5769         if (rb) {
5770                 if (event->rcu_pending) {
5771                         cond_synchronize_rcu(event->rcu_batches);
5772                         event->rcu_pending = 0;
5773                 }
5774
5775                 spin_lock_irqsave(&rb->event_lock, flags);
5776                 list_add_rcu(&event->rb_entry, &rb->event_list);
5777                 spin_unlock_irqrestore(&rb->event_lock, flags);
5778         }
5779
5780         /*
5781          * Avoid racing with perf_mmap_close(AUX): stop the event
5782          * before swizzling the event::rb pointer; if it's getting
5783          * unmapped, its aux_mmap_count will be 0 and it won't
5784          * restart. See the comment in __perf_pmu_output_stop().
5785          *
5786          * Data will inevitably be lost when set_output is done in
5787          * mid-air, but then again, whoever does it like this is
5788          * not in for the data anyway.
5789          */
5790         if (has_aux(event))
5791                 perf_event_stop(event, 0);
5792
5793         rcu_assign_pointer(event->rb, rb);
5794
5795         if (old_rb) {
5796                 ring_buffer_put(old_rb);
5797                 /*
5798                  * Since we detached before setting the new rb, so that we
5799                  * could attach the new rb, we could have missed a wakeup.
5800                  * Provide it now.
5801                  */
5802                 wake_up_all(&event->waitq);
5803         }
5804 }
5805
5806 static void ring_buffer_wakeup(struct perf_event *event)
5807 {
5808         struct perf_buffer *rb;
5809
5810         rcu_read_lock();
5811         rb = rcu_dereference(event->rb);
5812         if (rb) {
5813                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5814                         wake_up_all(&event->waitq);
5815         }
5816         rcu_read_unlock();
5817 }
5818
5819 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5820 {
5821         struct perf_buffer *rb;
5822
5823         rcu_read_lock();
5824         rb = rcu_dereference(event->rb);
5825         if (rb) {
5826                 if (!refcount_inc_not_zero(&rb->refcount))
5827                         rb = NULL;
5828         }
5829         rcu_read_unlock();
5830
5831         return rb;
5832 }
5833
5834 void ring_buffer_put(struct perf_buffer *rb)
5835 {
5836         if (!refcount_dec_and_test(&rb->refcount))
5837                 return;
5838
5839         WARN_ON_ONCE(!list_empty(&rb->event_list));
5840
5841         call_rcu(&rb->rcu_head, rb_free_rcu);
5842 }
5843
5844 static void perf_mmap_open(struct vm_area_struct *vma)
5845 {
5846         struct perf_event *event = vma->vm_file->private_data;
5847
5848         atomic_inc(&event->mmap_count);
5849         atomic_inc(&event->rb->mmap_count);
5850
5851         if (vma->vm_pgoff)
5852                 atomic_inc(&event->rb->aux_mmap_count);
5853
5854         if (event->pmu->event_mapped)
5855                 event->pmu->event_mapped(event, vma->vm_mm);
5856 }
5857
5858 static void perf_pmu_output_stop(struct perf_event *event);
5859
5860 /*
5861  * A buffer can be mmap()ed multiple times; either directly through the same
5862  * event, or through other events by use of perf_event_set_output().
5863  *
5864  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5865  * the buffer here, where we still have a VM context. This means we need
5866  * to detach all events redirecting to us.
5867  */
5868 static void perf_mmap_close(struct vm_area_struct *vma)
5869 {
5870         struct perf_event *event = vma->vm_file->private_data;
5871
5872         struct perf_buffer *rb = ring_buffer_get(event);
5873         struct user_struct *mmap_user = rb->mmap_user;
5874         int mmap_locked = rb->mmap_locked;
5875         unsigned long size = perf_data_size(rb);
5876
5877         if (event->pmu->event_unmapped)
5878                 event->pmu->event_unmapped(event, vma->vm_mm);
5879
5880         /*
5881          * rb->aux_mmap_count will always drop before rb->mmap_count and
5882          * event->mmap_count, so it is ok to use event->mmap_mutex to
5883          * serialize with perf_mmap here.
5884          */
5885         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5886             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5887                 /*
5888                  * Stop all AUX events that are writing to this buffer,
5889                  * so that we can free its AUX pages and corresponding PMU
5890                  * data. Note that after rb::aux_mmap_count dropped to zero,
5891                  * they won't start any more (see perf_aux_output_begin()).
5892                  */
5893                 perf_pmu_output_stop(event);
5894
5895                 /* now it's safe to free the pages */
5896                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
5897                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
5898
5899                 /* this has to be the last one */
5900                 rb_free_aux(rb);
5901                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
5902
5903                 mutex_unlock(&event->mmap_mutex);
5904         }
5905
5906         atomic_dec(&rb->mmap_count);
5907
5908         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5909                 goto out_put;
5910
5911         ring_buffer_attach(event, NULL);
5912         mutex_unlock(&event->mmap_mutex);
5913
5914         /* If there's still other mmap()s of this buffer, we're done. */
5915         if (atomic_read(&rb->mmap_count))
5916                 goto out_put;
5917
5918         /*
5919          * No other mmap()s, detach from all other events that might redirect
5920          * into the now unreachable buffer. Somewhat complicated by the
5921          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5922          */
5923 again:
5924         rcu_read_lock();
5925         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5926                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5927                         /*
5928                          * This event is en-route to free_event() which will
5929                          * detach it and remove it from the list.
5930                          */
5931                         continue;
5932                 }
5933                 rcu_read_unlock();
5934
5935                 mutex_lock(&event->mmap_mutex);
5936                 /*
5937                  * Check we didn't race with perf_event_set_output() which can
5938                  * swizzle the rb from under us while we were waiting to
5939                  * acquire mmap_mutex.
5940                  *
5941                  * If we find a different rb; ignore this event, a next
5942                  * iteration will no longer find it on the list. We have to
5943                  * still restart the iteration to make sure we're not now
5944                  * iterating the wrong list.
5945                  */
5946                 if (event->rb == rb)
5947                         ring_buffer_attach(event, NULL);
5948
5949                 mutex_unlock(&event->mmap_mutex);
5950                 put_event(event);
5951
5952                 /*
5953                  * Restart the iteration; either we're on the wrong list or
5954                  * destroyed its integrity by doing a deletion.
5955                  */
5956                 goto again;
5957         }
5958         rcu_read_unlock();
5959
5960         /*
5961          * It could be there's still a few 0-ref events on the list; they'll
5962          * get cleaned up by free_event() -- they'll also still have their
5963          * ref on the rb and will free it whenever they are done with it.
5964          *
5965          * Aside from that, this buffer is 'fully' detached and unmapped,
5966          * undo the VM accounting.
5967          */
5968
5969         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
5970                         &mmap_user->locked_vm);
5971         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
5972         free_uid(mmap_user);
5973
5974 out_put:
5975         ring_buffer_put(rb); /* could be last */
5976 }
5977
5978 static const struct vm_operations_struct perf_mmap_vmops = {
5979         .open           = perf_mmap_open,
5980         .close          = perf_mmap_close, /* non mergeable */
5981         .fault          = perf_mmap_fault,
5982         .page_mkwrite   = perf_mmap_fault,
5983 };
5984
5985 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5986 {
5987         struct perf_event *event = file->private_data;
5988         unsigned long user_locked, user_lock_limit;
5989         struct user_struct *user = current_user();
5990         struct perf_buffer *rb = NULL;
5991         unsigned long locked, lock_limit;
5992         unsigned long vma_size;
5993         unsigned long nr_pages;
5994         long user_extra = 0, extra = 0;
5995         int ret = 0, flags = 0;
5996
5997         /*
5998          * Don't allow mmap() of inherited per-task counters. This would
5999          * create a performance issue due to all children writing to the
6000          * same rb.
6001          */
6002         if (event->cpu == -1 && event->attr.inherit)
6003                 return -EINVAL;
6004
6005         if (!(vma->vm_flags & VM_SHARED))
6006                 return -EINVAL;
6007
6008         ret = security_perf_event_read(event);
6009         if (ret)
6010                 return ret;
6011
6012         vma_size = vma->vm_end - vma->vm_start;
6013
6014         if (vma->vm_pgoff == 0) {
6015                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6016         } else {
6017                 /*
6018                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6019                  * mapped, all subsequent mappings should have the same size
6020                  * and offset. Must be above the normal perf buffer.
6021                  */
6022                 u64 aux_offset, aux_size;
6023
6024                 if (!event->rb)
6025                         return -EINVAL;
6026
6027                 nr_pages = vma_size / PAGE_SIZE;
6028
6029                 mutex_lock(&event->mmap_mutex);
6030                 ret = -EINVAL;
6031
6032                 rb = event->rb;
6033                 if (!rb)
6034                         goto aux_unlock;
6035
6036                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6037                 aux_size = READ_ONCE(rb->user_page->aux_size);
6038
6039                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6040                         goto aux_unlock;
6041
6042                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6043                         goto aux_unlock;
6044
6045                 /* already mapped with a different offset */
6046                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6047                         goto aux_unlock;
6048
6049                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6050                         goto aux_unlock;
6051
6052                 /* already mapped with a different size */
6053                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6054                         goto aux_unlock;
6055
6056                 if (!is_power_of_2(nr_pages))
6057                         goto aux_unlock;
6058
6059                 if (!atomic_inc_not_zero(&rb->mmap_count))
6060                         goto aux_unlock;
6061
6062                 if (rb_has_aux(rb)) {
6063                         atomic_inc(&rb->aux_mmap_count);
6064                         ret = 0;
6065                         goto unlock;
6066                 }
6067
6068                 atomic_set(&rb->aux_mmap_count, 1);
6069                 user_extra = nr_pages;
6070
6071                 goto accounting;
6072         }
6073
6074         /*
6075          * If we have rb pages ensure they're a power-of-two number, so we
6076          * can do bitmasks instead of modulo.
6077          */
6078         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6079                 return -EINVAL;
6080
6081         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6082                 return -EINVAL;
6083
6084         WARN_ON_ONCE(event->ctx->parent_ctx);
6085 again:
6086         mutex_lock(&event->mmap_mutex);
6087         if (event->rb) {
6088                 if (event->rb->nr_pages != nr_pages) {
6089                         ret = -EINVAL;
6090                         goto unlock;
6091                 }
6092
6093                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6094                         /*
6095                          * Raced against perf_mmap_close() through
6096                          * perf_event_set_output(). Try again, hope for better
6097                          * luck.
6098                          */
6099                         mutex_unlock(&event->mmap_mutex);
6100                         goto again;
6101                 }
6102
6103                 goto unlock;
6104         }
6105
6106         user_extra = nr_pages + 1;
6107
6108 accounting:
6109         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6110
6111         /*
6112          * Increase the limit linearly with more CPUs:
6113          */
6114         user_lock_limit *= num_online_cpus();
6115
6116         user_locked = atomic_long_read(&user->locked_vm);
6117
6118         /*
6119          * sysctl_perf_event_mlock may have changed, so that
6120          *     user->locked_vm > user_lock_limit
6121          */
6122         if (user_locked > user_lock_limit)
6123                 user_locked = user_lock_limit;
6124         user_locked += user_extra;
6125
6126         if (user_locked > user_lock_limit) {
6127                 /*
6128                  * charge locked_vm until it hits user_lock_limit;
6129                  * charge the rest from pinned_vm
6130                  */
6131                 extra = user_locked - user_lock_limit;
6132                 user_extra -= extra;
6133         }
6134
6135         lock_limit = rlimit(RLIMIT_MEMLOCK);
6136         lock_limit >>= PAGE_SHIFT;
6137         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6138
6139         if ((locked > lock_limit) && perf_is_paranoid() &&
6140                 !capable(CAP_IPC_LOCK)) {
6141                 ret = -EPERM;
6142                 goto unlock;
6143         }
6144
6145         WARN_ON(!rb && event->rb);
6146
6147         if (vma->vm_flags & VM_WRITE)
6148                 flags |= RING_BUFFER_WRITABLE;
6149
6150         if (!rb) {
6151                 rb = rb_alloc(nr_pages,
6152                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6153                               event->cpu, flags);
6154
6155                 if (!rb) {
6156                         ret = -ENOMEM;
6157                         goto unlock;
6158                 }
6159
6160                 atomic_set(&rb->mmap_count, 1);
6161                 rb->mmap_user = get_current_user();
6162                 rb->mmap_locked = extra;
6163
6164                 ring_buffer_attach(event, rb);
6165
6166                 perf_event_init_userpage(event);
6167                 perf_event_update_userpage(event);
6168         } else {
6169                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6170                                    event->attr.aux_watermark, flags);
6171                 if (!ret)
6172                         rb->aux_mmap_locked = extra;
6173         }
6174
6175 unlock:
6176         if (!ret) {
6177                 atomic_long_add(user_extra, &user->locked_vm);
6178                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6179
6180                 atomic_inc(&event->mmap_count);
6181         } else if (rb) {
6182                 atomic_dec(&rb->mmap_count);
6183         }
6184 aux_unlock:
6185         mutex_unlock(&event->mmap_mutex);
6186
6187         /*
6188          * Since pinned accounting is per vm we cannot allow fork() to copy our
6189          * vma.
6190          */
6191         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6192         vma->vm_ops = &perf_mmap_vmops;
6193
6194         if (event->pmu->event_mapped)
6195                 event->pmu->event_mapped(event, vma->vm_mm);
6196
6197         return ret;
6198 }
6199
6200 static int perf_fasync(int fd, struct file *filp, int on)
6201 {
6202         struct inode *inode = file_inode(filp);
6203         struct perf_event *event = filp->private_data;
6204         int retval;
6205
6206         inode_lock(inode);
6207         retval = fasync_helper(fd, filp, on, &event->fasync);
6208         inode_unlock(inode);
6209
6210         if (retval < 0)
6211                 return retval;
6212
6213         return 0;
6214 }
6215
6216 static const struct file_operations perf_fops = {
6217         .llseek                 = no_llseek,
6218         .release                = perf_release,
6219         .read                   = perf_read,
6220         .poll                   = perf_poll,
6221         .unlocked_ioctl         = perf_ioctl,
6222         .compat_ioctl           = perf_compat_ioctl,
6223         .mmap                   = perf_mmap,
6224         .fasync                 = perf_fasync,
6225 };
6226
6227 /*
6228  * Perf event wakeup
6229  *
6230  * If there's data, ensure we set the poll() state and publish everything
6231  * to user-space before waking everybody up.
6232  */
6233
6234 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6235 {
6236         /* only the parent has fasync state */
6237         if (event->parent)
6238                 event = event->parent;
6239         return &event->fasync;
6240 }
6241
6242 void perf_event_wakeup(struct perf_event *event)
6243 {
6244         ring_buffer_wakeup(event);
6245
6246         if (event->pending_kill) {
6247                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6248                 event->pending_kill = 0;
6249         }
6250 }
6251
6252 static void perf_pending_event_disable(struct perf_event *event)
6253 {
6254         int cpu = READ_ONCE(event->pending_disable);
6255
6256         if (cpu < 0)
6257                 return;
6258
6259         if (cpu == smp_processor_id()) {
6260                 WRITE_ONCE(event->pending_disable, -1);
6261                 perf_event_disable_local(event);
6262                 return;
6263         }
6264
6265         /*
6266          *  CPU-A                       CPU-B
6267          *
6268          *  perf_event_disable_inatomic()
6269          *    @pending_disable = CPU-A;
6270          *    irq_work_queue();
6271          *
6272          *  sched-out
6273          *    @pending_disable = -1;
6274          *
6275          *                              sched-in
6276          *                              perf_event_disable_inatomic()
6277          *                                @pending_disable = CPU-B;
6278          *                                irq_work_queue(); // FAILS
6279          *
6280          *  irq_work_run()
6281          *    perf_pending_event()
6282          *
6283          * But the event runs on CPU-B and wants disabling there.
6284          */
6285         irq_work_queue_on(&event->pending, cpu);
6286 }
6287
6288 static void perf_pending_event(struct irq_work *entry)
6289 {
6290         struct perf_event *event = container_of(entry, struct perf_event, pending);
6291         int rctx;
6292
6293         rctx = perf_swevent_get_recursion_context();
6294         /*
6295          * If we 'fail' here, that's OK, it means recursion is already disabled
6296          * and we won't recurse 'further'.
6297          */
6298
6299         perf_pending_event_disable(event);
6300
6301         if (event->pending_wakeup) {
6302                 event->pending_wakeup = 0;
6303                 perf_event_wakeup(event);
6304         }
6305
6306         if (rctx >= 0)
6307                 perf_swevent_put_recursion_context(rctx);
6308 }
6309
6310 /*
6311  * We assume there is only KVM supporting the callbacks.
6312  * Later on, we might change it to a list if there is
6313  * another virtualization implementation supporting the callbacks.
6314  */
6315 struct perf_guest_info_callbacks *perf_guest_cbs;
6316
6317 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6318 {
6319         perf_guest_cbs = cbs;
6320         return 0;
6321 }
6322 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6323
6324 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6325 {
6326         perf_guest_cbs = NULL;
6327         return 0;
6328 }
6329 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6330
6331 static void
6332 perf_output_sample_regs(struct perf_output_handle *handle,
6333                         struct pt_regs *regs, u64 mask)
6334 {
6335         int bit;
6336         DECLARE_BITMAP(_mask, 64);
6337
6338         bitmap_from_u64(_mask, mask);
6339         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6340                 u64 val;
6341
6342                 val = perf_reg_value(regs, bit);
6343                 perf_output_put(handle, val);
6344         }
6345 }
6346
6347 static void perf_sample_regs_user(struct perf_regs *regs_user,
6348                                   struct pt_regs *regs,
6349                                   struct pt_regs *regs_user_copy)
6350 {
6351         if (user_mode(regs)) {
6352                 regs_user->abi = perf_reg_abi(current);
6353                 regs_user->regs = regs;
6354         } else if (!(current->flags & PF_KTHREAD)) {
6355                 perf_get_regs_user(regs_user, regs, regs_user_copy);
6356         } else {
6357                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6358                 regs_user->regs = NULL;
6359         }
6360 }
6361
6362 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6363                                   struct pt_regs *regs)
6364 {
6365         regs_intr->regs = regs;
6366         regs_intr->abi  = perf_reg_abi(current);
6367 }
6368
6369
6370 /*
6371  * Get remaining task size from user stack pointer.
6372  *
6373  * It'd be better to take stack vma map and limit this more
6374  * precisely, but there's no way to get it safely under interrupt,
6375  * so using TASK_SIZE as limit.
6376  */
6377 static u64 perf_ustack_task_size(struct pt_regs *regs)
6378 {
6379         unsigned long addr = perf_user_stack_pointer(regs);
6380
6381         if (!addr || addr >= TASK_SIZE)
6382                 return 0;
6383
6384         return TASK_SIZE - addr;
6385 }
6386
6387 static u16
6388 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6389                         struct pt_regs *regs)
6390 {
6391         u64 task_size;
6392
6393         /* No regs, no stack pointer, no dump. */
6394         if (!regs)
6395                 return 0;
6396
6397         /*
6398          * Check if we fit in with the requested stack size into the:
6399          * - TASK_SIZE
6400          *   If we don't, we limit the size to the TASK_SIZE.
6401          *
6402          * - remaining sample size
6403          *   If we don't, we customize the stack size to
6404          *   fit in to the remaining sample size.
6405          */
6406
6407         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6408         stack_size = min(stack_size, (u16) task_size);
6409
6410         /* Current header size plus static size and dynamic size. */
6411         header_size += 2 * sizeof(u64);
6412
6413         /* Do we fit in with the current stack dump size? */
6414         if ((u16) (header_size + stack_size) < header_size) {
6415                 /*
6416                  * If we overflow the maximum size for the sample,
6417                  * we customize the stack dump size to fit in.
6418                  */
6419                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6420                 stack_size = round_up(stack_size, sizeof(u64));
6421         }
6422
6423         return stack_size;
6424 }
6425
6426 static void
6427 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6428                           struct pt_regs *regs)
6429 {
6430         /* Case of a kernel thread, nothing to dump */
6431         if (!regs) {
6432                 u64 size = 0;
6433                 perf_output_put(handle, size);
6434         } else {
6435                 unsigned long sp;
6436                 unsigned int rem;
6437                 u64 dyn_size;
6438                 mm_segment_t fs;
6439
6440                 /*
6441                  * We dump:
6442                  * static size
6443                  *   - the size requested by user or the best one we can fit
6444                  *     in to the sample max size
6445                  * data
6446                  *   - user stack dump data
6447                  * dynamic size
6448                  *   - the actual dumped size
6449                  */
6450
6451                 /* Static size. */
6452                 perf_output_put(handle, dump_size);
6453
6454                 /* Data. */
6455                 sp = perf_user_stack_pointer(regs);
6456                 fs = get_fs();
6457                 set_fs(USER_DS);
6458                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6459                 set_fs(fs);
6460                 dyn_size = dump_size - rem;
6461
6462                 perf_output_skip(handle, rem);
6463
6464                 /* Dynamic size. */
6465                 perf_output_put(handle, dyn_size);
6466         }
6467 }
6468
6469 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6470                                           struct perf_sample_data *data,
6471                                           size_t size)
6472 {
6473         struct perf_event *sampler = event->aux_event;
6474         struct perf_buffer *rb;
6475
6476         data->aux_size = 0;
6477
6478         if (!sampler)
6479                 goto out;
6480
6481         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6482                 goto out;
6483
6484         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6485                 goto out;
6486
6487         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6488         if (!rb)
6489                 goto out;
6490
6491         /*
6492          * If this is an NMI hit inside sampling code, don't take
6493          * the sample. See also perf_aux_sample_output().
6494          */
6495         if (READ_ONCE(rb->aux_in_sampling)) {
6496                 data->aux_size = 0;
6497         } else {
6498                 size = min_t(size_t, size, perf_aux_size(rb));
6499                 data->aux_size = ALIGN(size, sizeof(u64));
6500         }
6501         ring_buffer_put(rb);
6502
6503 out:
6504         return data->aux_size;
6505 }
6506
6507 long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6508                            struct perf_event *event,
6509                            struct perf_output_handle *handle,
6510                            unsigned long size)
6511 {
6512         unsigned long flags;
6513         long ret;
6514
6515         /*
6516          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6517          * paths. If we start calling them in NMI context, they may race with
6518          * the IRQ ones, that is, for example, re-starting an event that's just
6519          * been stopped, which is why we're using a separate callback that
6520          * doesn't change the event state.
6521          *
6522          * IRQs need to be disabled to prevent IPIs from racing with us.
6523          */
6524         local_irq_save(flags);
6525         /*
6526          * Guard against NMI hits inside the critical section;
6527          * see also perf_prepare_sample_aux().
6528          */
6529         WRITE_ONCE(rb->aux_in_sampling, 1);
6530         barrier();
6531
6532         ret = event->pmu->snapshot_aux(event, handle, size);
6533
6534         barrier();
6535         WRITE_ONCE(rb->aux_in_sampling, 0);
6536         local_irq_restore(flags);
6537
6538         return ret;
6539 }
6540
6541 static void perf_aux_sample_output(struct perf_event *event,
6542                                    struct perf_output_handle *handle,
6543                                    struct perf_sample_data *data)
6544 {
6545         struct perf_event *sampler = event->aux_event;
6546         struct perf_buffer *rb;
6547         unsigned long pad;
6548         long size;
6549
6550         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6551                 return;
6552
6553         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6554         if (!rb)
6555                 return;
6556
6557         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6558
6559         /*
6560          * An error here means that perf_output_copy() failed (returned a
6561          * non-zero surplus that it didn't copy), which in its current
6562          * enlightened implementation is not possible. If that changes, we'd
6563          * like to know.
6564          */
6565         if (WARN_ON_ONCE(size < 0))
6566                 goto out_put;
6567
6568         /*
6569          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6570          * perf_prepare_sample_aux(), so should not be more than that.
6571          */
6572         pad = data->aux_size - size;
6573         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6574                 pad = 8;
6575
6576         if (pad) {
6577                 u64 zero = 0;
6578                 perf_output_copy(handle, &zero, pad);
6579         }
6580
6581 out_put:
6582         ring_buffer_put(rb);
6583 }
6584
6585 static void __perf_event_header__init_id(struct perf_event_header *header,
6586                                          struct perf_sample_data *data,
6587                                          struct perf_event *event)
6588 {
6589         u64 sample_type = event->attr.sample_type;
6590
6591         data->type = sample_type;
6592         header->size += event->id_header_size;
6593
6594         if (sample_type & PERF_SAMPLE_TID) {
6595                 /* namespace issues */
6596                 data->tid_entry.pid = perf_event_pid(event, current);
6597                 data->tid_entry.tid = perf_event_tid(event, current);
6598         }
6599
6600         if (sample_type & PERF_SAMPLE_TIME)
6601                 data->time = perf_event_clock(event);
6602
6603         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6604                 data->id = primary_event_id(event);
6605
6606         if (sample_type & PERF_SAMPLE_STREAM_ID)
6607                 data->stream_id = event->id;
6608
6609         if (sample_type & PERF_SAMPLE_CPU) {
6610                 data->cpu_entry.cpu      = raw_smp_processor_id();
6611                 data->cpu_entry.reserved = 0;
6612         }
6613 }
6614
6615 void perf_event_header__init_id(struct perf_event_header *header,
6616                                 struct perf_sample_data *data,
6617                                 struct perf_event *event)
6618 {
6619         if (event->attr.sample_id_all)
6620                 __perf_event_header__init_id(header, data, event);
6621 }
6622
6623 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6624                                            struct perf_sample_data *data)
6625 {
6626         u64 sample_type = data->type;
6627
6628         if (sample_type & PERF_SAMPLE_TID)
6629                 perf_output_put(handle, data->tid_entry);
6630
6631         if (sample_type & PERF_SAMPLE_TIME)
6632                 perf_output_put(handle, data->time);
6633
6634         if (sample_type & PERF_SAMPLE_ID)
6635                 perf_output_put(handle, data->id);
6636
6637         if (sample_type & PERF_SAMPLE_STREAM_ID)
6638                 perf_output_put(handle, data->stream_id);
6639
6640         if (sample_type & PERF_SAMPLE_CPU)
6641                 perf_output_put(handle, data->cpu_entry);
6642
6643         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6644                 perf_output_put(handle, data->id);
6645 }
6646
6647 void perf_event__output_id_sample(struct perf_event *event,
6648                                   struct perf_output_handle *handle,
6649                                   struct perf_sample_data *sample)
6650 {
6651         if (event->attr.sample_id_all)
6652                 __perf_event__output_id_sample(handle, sample);
6653 }
6654
6655 static void perf_output_read_one(struct perf_output_handle *handle,
6656                                  struct perf_event *event,
6657                                  u64 enabled, u64 running)
6658 {
6659         u64 read_format = event->attr.read_format;
6660         u64 values[4];
6661         int n = 0;
6662
6663         values[n++] = perf_event_count(event);
6664         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6665                 values[n++] = enabled +
6666                         atomic64_read(&event->child_total_time_enabled);
6667         }
6668         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6669                 values[n++] = running +
6670                         atomic64_read(&event->child_total_time_running);
6671         }
6672         if (read_format & PERF_FORMAT_ID)
6673                 values[n++] = primary_event_id(event);
6674
6675         __output_copy(handle, values, n * sizeof(u64));
6676 }
6677
6678 static void perf_output_read_group(struct perf_output_handle *handle,
6679                             struct perf_event *event,
6680                             u64 enabled, u64 running)
6681 {
6682         struct perf_event *leader = event->group_leader, *sub;
6683         u64 read_format = event->attr.read_format;
6684         u64 values[5];
6685         int n = 0;
6686
6687         values[n++] = 1 + leader->nr_siblings;
6688
6689         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6690                 values[n++] = enabled;
6691
6692         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6693                 values[n++] = running;
6694
6695         if ((leader != event) &&
6696             (leader->state == PERF_EVENT_STATE_ACTIVE))
6697                 leader->pmu->read(leader);
6698
6699         values[n++] = perf_event_count(leader);
6700         if (read_format & PERF_FORMAT_ID)
6701                 values[n++] = primary_event_id(leader);
6702
6703         __output_copy(handle, values, n * sizeof(u64));
6704
6705         for_each_sibling_event(sub, leader) {
6706                 n = 0;
6707
6708                 if ((sub != event) &&
6709                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6710                         sub->pmu->read(sub);
6711
6712                 values[n++] = perf_event_count(sub);
6713                 if (read_format & PERF_FORMAT_ID)
6714                         values[n++] = primary_event_id(sub);
6715
6716                 __output_copy(handle, values, n * sizeof(u64));
6717         }
6718 }
6719
6720 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6721                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6722
6723 /*
6724  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6725  *
6726  * The problem is that its both hard and excessively expensive to iterate the
6727  * child list, not to mention that its impossible to IPI the children running
6728  * on another CPU, from interrupt/NMI context.
6729  */
6730 static void perf_output_read(struct perf_output_handle *handle,
6731                              struct perf_event *event)
6732 {
6733         u64 enabled = 0, running = 0, now;
6734         u64 read_format = event->attr.read_format;
6735
6736         /*
6737          * compute total_time_enabled, total_time_running
6738          * based on snapshot values taken when the event
6739          * was last scheduled in.
6740          *
6741          * we cannot simply called update_context_time()
6742          * because of locking issue as we are called in
6743          * NMI context
6744          */
6745         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6746                 calc_timer_values(event, &now, &enabled, &running);
6747
6748         if (event->attr.read_format & PERF_FORMAT_GROUP)
6749                 perf_output_read_group(handle, event, enabled, running);
6750         else
6751                 perf_output_read_one(handle, event, enabled, running);
6752 }
6753
6754 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6755 {
6756         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6757 }
6758
6759 void perf_output_sample(struct perf_output_handle *handle,
6760                         struct perf_event_header *header,
6761                         struct perf_sample_data *data,
6762                         struct perf_event *event)
6763 {
6764         u64 sample_type = data->type;
6765
6766         perf_output_put(handle, *header);
6767
6768         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6769                 perf_output_put(handle, data->id);
6770
6771         if (sample_type & PERF_SAMPLE_IP)
6772                 perf_output_put(handle, data->ip);
6773
6774         if (sample_type & PERF_SAMPLE_TID)
6775                 perf_output_put(handle, data->tid_entry);
6776
6777         if (sample_type & PERF_SAMPLE_TIME)
6778                 perf_output_put(handle, data->time);
6779
6780         if (sample_type & PERF_SAMPLE_ADDR)
6781                 perf_output_put(handle, data->addr);
6782
6783         if (sample_type & PERF_SAMPLE_ID)
6784                 perf_output_put(handle, data->id);
6785
6786         if (sample_type & PERF_SAMPLE_STREAM_ID)
6787                 perf_output_put(handle, data->stream_id);
6788
6789         if (sample_type & PERF_SAMPLE_CPU)
6790                 perf_output_put(handle, data->cpu_entry);
6791
6792         if (sample_type & PERF_SAMPLE_PERIOD)
6793                 perf_output_put(handle, data->period);
6794
6795         if (sample_type & PERF_SAMPLE_READ)
6796                 perf_output_read(handle, event);
6797
6798         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6799                 int size = 1;
6800
6801                 size += data->callchain->nr;
6802                 size *= sizeof(u64);
6803                 __output_copy(handle, data->callchain, size);
6804         }
6805
6806         if (sample_type & PERF_SAMPLE_RAW) {
6807                 struct perf_raw_record *raw = data->raw;
6808
6809                 if (raw) {
6810                         struct perf_raw_frag *frag = &raw->frag;
6811
6812                         perf_output_put(handle, raw->size);
6813                         do {
6814                                 if (frag->copy) {
6815                                         __output_custom(handle, frag->copy,
6816                                                         frag->data, frag->size);
6817                                 } else {
6818                                         __output_copy(handle, frag->data,
6819                                                       frag->size);
6820                                 }
6821                                 if (perf_raw_frag_last(frag))
6822                                         break;
6823                                 frag = frag->next;
6824                         } while (1);
6825                         if (frag->pad)
6826                                 __output_skip(handle, NULL, frag->pad);
6827                 } else {
6828                         struct {
6829                                 u32     size;
6830                                 u32     data;
6831                         } raw = {
6832                                 .size = sizeof(u32),
6833                                 .data = 0,
6834                         };
6835                         perf_output_put(handle, raw);
6836                 }
6837         }
6838
6839         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6840                 if (data->br_stack) {
6841                         size_t size;
6842
6843                         size = data->br_stack->nr
6844                              * sizeof(struct perf_branch_entry);
6845
6846                         perf_output_put(handle, data->br_stack->nr);
6847                         if (perf_sample_save_hw_index(event))
6848                                 perf_output_put(handle, data->br_stack->hw_idx);
6849                         perf_output_copy(handle, data->br_stack->entries, size);
6850                 } else {
6851                         /*
6852                          * we always store at least the value of nr
6853                          */
6854                         u64 nr = 0;
6855                         perf_output_put(handle, nr);
6856                 }
6857         }
6858
6859         if (sample_type & PERF_SAMPLE_REGS_USER) {
6860                 u64 abi = data->regs_user.abi;
6861
6862                 /*
6863                  * If there are no regs to dump, notice it through
6864                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6865                  */
6866                 perf_output_put(handle, abi);
6867
6868                 if (abi) {
6869                         u64 mask = event->attr.sample_regs_user;
6870                         perf_output_sample_regs(handle,
6871                                                 data->regs_user.regs,
6872                                                 mask);
6873                 }
6874         }
6875
6876         if (sample_type & PERF_SAMPLE_STACK_USER) {
6877                 perf_output_sample_ustack(handle,
6878                                           data->stack_user_size,
6879                                           data->regs_user.regs);
6880         }
6881
6882         if (sample_type & PERF_SAMPLE_WEIGHT)
6883                 perf_output_put(handle, data->weight);
6884
6885         if (sample_type & PERF_SAMPLE_DATA_SRC)
6886                 perf_output_put(handle, data->data_src.val);
6887
6888         if (sample_type & PERF_SAMPLE_TRANSACTION)
6889                 perf_output_put(handle, data->txn);
6890
6891         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6892                 u64 abi = data->regs_intr.abi;
6893                 /*
6894                  * If there are no regs to dump, notice it through
6895                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6896                  */
6897                 perf_output_put(handle, abi);
6898
6899                 if (abi) {
6900                         u64 mask = event->attr.sample_regs_intr;
6901
6902                         perf_output_sample_regs(handle,
6903                                                 data->regs_intr.regs,
6904                                                 mask);
6905                 }
6906         }
6907
6908         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6909                 perf_output_put(handle, data->phys_addr);
6910
6911         if (sample_type & PERF_SAMPLE_CGROUP)
6912                 perf_output_put(handle, data->cgroup);
6913
6914         if (sample_type & PERF_SAMPLE_AUX) {
6915                 perf_output_put(handle, data->aux_size);
6916
6917                 if (data->aux_size)
6918                         perf_aux_sample_output(event, handle, data);
6919         }
6920
6921         if (!event->attr.watermark) {
6922                 int wakeup_events = event->attr.wakeup_events;
6923
6924                 if (wakeup_events) {
6925                         struct perf_buffer *rb = handle->rb;
6926                         int events = local_inc_return(&rb->events);
6927
6928                         if (events >= wakeup_events) {
6929                                 local_sub(wakeup_events, &rb->events);
6930                                 local_inc(&rb->wakeup);
6931                         }
6932                 }
6933         }
6934 }
6935
6936 static u64 perf_virt_to_phys(u64 virt)
6937 {
6938         u64 phys_addr = 0;
6939         struct page *p = NULL;
6940
6941         if (!virt)
6942                 return 0;
6943
6944         if (virt >= TASK_SIZE) {
6945                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6946                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6947                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6948                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6949         } else {
6950                 /*
6951                  * Walking the pages tables for user address.
6952                  * Interrupts are disabled, so it prevents any tear down
6953                  * of the page tables.
6954                  * Try IRQ-safe get_user_page_fast_only first.
6955                  * If failed, leave phys_addr as 0.
6956                  */
6957                 if (current->mm != NULL) {
6958                         pagefault_disable();
6959                         if (get_user_page_fast_only(virt, 0, &p))
6960                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6961                         pagefault_enable();
6962                 }
6963
6964                 if (p)
6965                         put_page(p);
6966         }
6967
6968         return phys_addr;
6969 }
6970
6971 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6972
6973 struct perf_callchain_entry *
6974 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6975 {
6976         bool kernel = !event->attr.exclude_callchain_kernel;
6977         bool user   = !event->attr.exclude_callchain_user;
6978         /* Disallow cross-task user callchains. */
6979         bool crosstask = event->ctx->task && event->ctx->task != current;
6980         const u32 max_stack = event->attr.sample_max_stack;
6981         struct perf_callchain_entry *callchain;
6982
6983         if (!kernel && !user)
6984                 return &__empty_callchain;
6985
6986         callchain = get_perf_callchain(regs, 0, kernel, user,
6987                                        max_stack, crosstask, true);
6988         return callchain ?: &__empty_callchain;
6989 }
6990
6991 void perf_prepare_sample(struct perf_event_header *header,
6992                          struct perf_sample_data *data,
6993                          struct perf_event *event,
6994                          struct pt_regs *regs)
6995 {
6996         u64 sample_type = event->attr.sample_type;
6997
6998         header->type = PERF_RECORD_SAMPLE;
6999         header->size = sizeof(*header) + event->header_size;
7000
7001         header->misc = 0;
7002         header->misc |= perf_misc_flags(regs);
7003
7004         __perf_event_header__init_id(header, data, event);
7005
7006         if (sample_type & PERF_SAMPLE_IP)
7007                 data->ip = perf_instruction_pointer(regs);
7008
7009         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7010                 int size = 1;
7011
7012                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7013                         data->callchain = perf_callchain(event, regs);
7014
7015                 size += data->callchain->nr;
7016
7017                 header->size += size * sizeof(u64);
7018         }
7019
7020         if (sample_type & PERF_SAMPLE_RAW) {
7021                 struct perf_raw_record *raw = data->raw;
7022                 int size;
7023
7024                 if (raw) {
7025                         struct perf_raw_frag *frag = &raw->frag;
7026                         u32 sum = 0;
7027
7028                         do {
7029                                 sum += frag->size;
7030                                 if (perf_raw_frag_last(frag))
7031                                         break;
7032                                 frag = frag->next;
7033                         } while (1);
7034
7035                         size = round_up(sum + sizeof(u32), sizeof(u64));
7036                         raw->size = size - sizeof(u32);
7037                         frag->pad = raw->size - sum;
7038                 } else {
7039                         size = sizeof(u64);
7040                 }
7041
7042                 header->size += size;
7043         }
7044
7045         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7046                 int size = sizeof(u64); /* nr */
7047                 if (data->br_stack) {
7048                         if (perf_sample_save_hw_index(event))
7049                                 size += sizeof(u64);
7050
7051                         size += data->br_stack->nr
7052                               * sizeof(struct perf_branch_entry);
7053                 }
7054                 header->size += size;
7055         }
7056
7057         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7058                 perf_sample_regs_user(&data->regs_user, regs,
7059                                       &data->regs_user_copy);
7060
7061         if (sample_type & PERF_SAMPLE_REGS_USER) {
7062                 /* regs dump ABI info */
7063                 int size = sizeof(u64);
7064
7065                 if (data->regs_user.regs) {
7066                         u64 mask = event->attr.sample_regs_user;
7067                         size += hweight64(mask) * sizeof(u64);
7068                 }
7069
7070                 header->size += size;
7071         }
7072
7073         if (sample_type & PERF_SAMPLE_STACK_USER) {
7074                 /*
7075                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7076                  * processed as the last one or have additional check added
7077                  * in case new sample type is added, because we could eat
7078                  * up the rest of the sample size.
7079                  */
7080                 u16 stack_size = event->attr.sample_stack_user;
7081                 u16 size = sizeof(u64);
7082
7083                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7084                                                      data->regs_user.regs);
7085
7086                 /*
7087                  * If there is something to dump, add space for the dump
7088                  * itself and for the field that tells the dynamic size,
7089                  * which is how many have been actually dumped.
7090                  */
7091                 if (stack_size)
7092                         size += sizeof(u64) + stack_size;
7093
7094                 data->stack_user_size = stack_size;
7095                 header->size += size;
7096         }
7097
7098         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7099                 /* regs dump ABI info */
7100                 int size = sizeof(u64);
7101
7102                 perf_sample_regs_intr(&data->regs_intr, regs);
7103
7104                 if (data->regs_intr.regs) {
7105                         u64 mask = event->attr.sample_regs_intr;
7106
7107                         size += hweight64(mask) * sizeof(u64);
7108                 }
7109
7110                 header->size += size;
7111         }
7112
7113         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7114                 data->phys_addr = perf_virt_to_phys(data->addr);
7115
7116 #ifdef CONFIG_CGROUP_PERF
7117         if (sample_type & PERF_SAMPLE_CGROUP) {
7118                 struct cgroup *cgrp;
7119
7120                 /* protected by RCU */
7121                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7122                 data->cgroup = cgroup_id(cgrp);
7123         }
7124 #endif
7125
7126         if (sample_type & PERF_SAMPLE_AUX) {
7127                 u64 size;
7128
7129                 header->size += sizeof(u64); /* size */
7130
7131                 /*
7132                  * Given the 16bit nature of header::size, an AUX sample can
7133                  * easily overflow it, what with all the preceding sample bits.
7134                  * Make sure this doesn't happen by using up to U16_MAX bytes
7135                  * per sample in total (rounded down to 8 byte boundary).
7136                  */
7137                 size = min_t(size_t, U16_MAX - header->size,
7138                              event->attr.aux_sample_size);
7139                 size = rounddown(size, 8);
7140                 size = perf_prepare_sample_aux(event, data, size);
7141
7142                 WARN_ON_ONCE(size + header->size > U16_MAX);
7143                 header->size += size;
7144         }
7145         /*
7146          * If you're adding more sample types here, you likely need to do
7147          * something about the overflowing header::size, like repurpose the
7148          * lowest 3 bits of size, which should be always zero at the moment.
7149          * This raises a more important question, do we really need 512k sized
7150          * samples and why, so good argumentation is in order for whatever you
7151          * do here next.
7152          */
7153         WARN_ON_ONCE(header->size & 7);
7154 }
7155
7156 static __always_inline int
7157 __perf_event_output(struct perf_event *event,
7158                     struct perf_sample_data *data,
7159                     struct pt_regs *regs,
7160                     int (*output_begin)(struct perf_output_handle *,
7161                                         struct perf_event *,
7162                                         unsigned int))
7163 {
7164         struct perf_output_handle handle;
7165         struct perf_event_header header;
7166         int err;
7167
7168         /* protect the callchain buffers */
7169         rcu_read_lock();
7170
7171         perf_prepare_sample(&header, data, event, regs);
7172
7173         err = output_begin(&handle, event, header.size);
7174         if (err)
7175                 goto exit;
7176
7177         perf_output_sample(&handle, &header, data, event);
7178
7179         perf_output_end(&handle);
7180
7181 exit:
7182         rcu_read_unlock();
7183         return err;
7184 }
7185
7186 void
7187 perf_event_output_forward(struct perf_event *event,
7188                          struct perf_sample_data *data,
7189                          struct pt_regs *regs)
7190 {
7191         __perf_event_output(event, data, regs, perf_output_begin_forward);
7192 }
7193
7194 void
7195 perf_event_output_backward(struct perf_event *event,
7196                            struct perf_sample_data *data,
7197                            struct pt_regs *regs)
7198 {
7199         __perf_event_output(event, data, regs, perf_output_begin_backward);
7200 }
7201
7202 int
7203 perf_event_output(struct perf_event *event,
7204                   struct perf_sample_data *data,
7205                   struct pt_regs *regs)
7206 {
7207         return __perf_event_output(event, data, regs, perf_output_begin);
7208 }
7209
7210 /*
7211  * read event_id
7212  */
7213
7214 struct perf_read_event {
7215         struct perf_event_header        header;
7216
7217         u32                             pid;
7218         u32                             tid;
7219 };
7220
7221 static void
7222 perf_event_read_event(struct perf_event *event,
7223                         struct task_struct *task)
7224 {
7225         struct perf_output_handle handle;
7226         struct perf_sample_data sample;
7227         struct perf_read_event read_event = {
7228                 .header = {
7229                         .type = PERF_RECORD_READ,
7230                         .misc = 0,
7231                         .size = sizeof(read_event) + event->read_size,
7232                 },
7233                 .pid = perf_event_pid(event, task),
7234                 .tid = perf_event_tid(event, task),
7235         };
7236         int ret;
7237
7238         perf_event_header__init_id(&read_event.header, &sample, event);
7239         ret = perf_output_begin(&handle, event, read_event.header.size);
7240         if (ret)
7241                 return;
7242
7243         perf_output_put(&handle, read_event);
7244         perf_output_read(&handle, event);
7245         perf_event__output_id_sample(event, &handle, &sample);
7246
7247         perf_output_end(&handle);
7248 }
7249
7250 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7251
7252 static void
7253 perf_iterate_ctx(struct perf_event_context *ctx,
7254                    perf_iterate_f output,
7255                    void *data, bool all)
7256 {
7257         struct perf_event *event;
7258
7259         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7260                 if (!all) {
7261                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7262                                 continue;
7263                         if (!event_filter_match(event))
7264                                 continue;
7265                 }
7266
7267                 output(event, data);
7268         }
7269 }
7270
7271 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7272 {
7273         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7274         struct perf_event *event;
7275
7276         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7277                 /*
7278                  * Skip events that are not fully formed yet; ensure that
7279                  * if we observe event->ctx, both event and ctx will be
7280                  * complete enough. See perf_install_in_context().
7281                  */
7282                 if (!smp_load_acquire(&event->ctx))
7283                         continue;
7284
7285                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7286                         continue;
7287                 if (!event_filter_match(event))
7288                         continue;
7289                 output(event, data);
7290         }
7291 }
7292
7293 /*
7294  * Iterate all events that need to receive side-band events.
7295  *
7296  * For new callers; ensure that account_pmu_sb_event() includes
7297  * your event, otherwise it might not get delivered.
7298  */
7299 static void
7300 perf_iterate_sb(perf_iterate_f output, void *data,
7301                struct perf_event_context *task_ctx)
7302 {
7303         struct perf_event_context *ctx;
7304         int ctxn;
7305
7306         rcu_read_lock();
7307         preempt_disable();
7308
7309         /*
7310          * If we have task_ctx != NULL we only notify the task context itself.
7311          * The task_ctx is set only for EXIT events before releasing task
7312          * context.
7313          */
7314         if (task_ctx) {
7315                 perf_iterate_ctx(task_ctx, output, data, false);
7316                 goto done;
7317         }
7318
7319         perf_iterate_sb_cpu(output, data);
7320
7321         for_each_task_context_nr(ctxn) {
7322                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7323                 if (ctx)
7324                         perf_iterate_ctx(ctx, output, data, false);
7325         }
7326 done:
7327         preempt_enable();
7328         rcu_read_unlock();
7329 }
7330
7331 /*
7332  * Clear all file-based filters at exec, they'll have to be
7333  * re-instated when/if these objects are mmapped again.
7334  */
7335 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7336 {
7337         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7338         struct perf_addr_filter *filter;
7339         unsigned int restart = 0, count = 0;
7340         unsigned long flags;
7341
7342         if (!has_addr_filter(event))
7343                 return;
7344
7345         raw_spin_lock_irqsave(&ifh->lock, flags);
7346         list_for_each_entry(filter, &ifh->list, entry) {
7347                 if (filter->path.dentry) {
7348                         event->addr_filter_ranges[count].start = 0;
7349                         event->addr_filter_ranges[count].size = 0;
7350                         restart++;
7351                 }
7352
7353                 count++;
7354         }
7355
7356         if (restart)
7357                 event->addr_filters_gen++;
7358         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7359
7360         if (restart)
7361                 perf_event_stop(event, 1);
7362 }
7363
7364 void perf_event_exec(void)
7365 {
7366         struct perf_event_context *ctx;
7367         int ctxn;
7368
7369         rcu_read_lock();
7370         for_each_task_context_nr(ctxn) {
7371                 ctx = current->perf_event_ctxp[ctxn];
7372                 if (!ctx)
7373                         continue;
7374
7375                 perf_event_enable_on_exec(ctxn);
7376
7377                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
7378                                    true);
7379         }
7380         rcu_read_unlock();
7381 }
7382
7383 struct remote_output {
7384         struct perf_buffer      *rb;
7385         int                     err;
7386 };
7387
7388 static void __perf_event_output_stop(struct perf_event *event, void *data)
7389 {
7390         struct perf_event *parent = event->parent;
7391         struct remote_output *ro = data;
7392         struct perf_buffer *rb = ro->rb;
7393         struct stop_event_data sd = {
7394                 .event  = event,
7395         };
7396
7397         if (!has_aux(event))
7398                 return;
7399
7400         if (!parent)
7401                 parent = event;
7402
7403         /*
7404          * In case of inheritance, it will be the parent that links to the
7405          * ring-buffer, but it will be the child that's actually using it.
7406          *
7407          * We are using event::rb to determine if the event should be stopped,
7408          * however this may race with ring_buffer_attach() (through set_output),
7409          * which will make us skip the event that actually needs to be stopped.
7410          * So ring_buffer_attach() has to stop an aux event before re-assigning
7411          * its rb pointer.
7412          */
7413         if (rcu_dereference(parent->rb) == rb)
7414                 ro->err = __perf_event_stop(&sd);
7415 }
7416
7417 static int __perf_pmu_output_stop(void *info)
7418 {
7419         struct perf_event *event = info;
7420         struct pmu *pmu = event->ctx->pmu;
7421         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7422         struct remote_output ro = {
7423                 .rb     = event->rb,
7424         };
7425
7426         rcu_read_lock();
7427         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7428         if (cpuctx->task_ctx)
7429                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7430                                    &ro, false);
7431         rcu_read_unlock();
7432
7433         return ro.err;
7434 }
7435
7436 static void perf_pmu_output_stop(struct perf_event *event)
7437 {
7438         struct perf_event *iter;
7439         int err, cpu;
7440
7441 restart:
7442         rcu_read_lock();
7443         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7444                 /*
7445                  * For per-CPU events, we need to make sure that neither they
7446                  * nor their children are running; for cpu==-1 events it's
7447                  * sufficient to stop the event itself if it's active, since
7448                  * it can't have children.
7449                  */
7450                 cpu = iter->cpu;
7451                 if (cpu == -1)
7452                         cpu = READ_ONCE(iter->oncpu);
7453
7454                 if (cpu == -1)
7455                         continue;
7456
7457                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7458                 if (err == -EAGAIN) {
7459                         rcu_read_unlock();
7460                         goto restart;
7461                 }
7462         }
7463         rcu_read_unlock();
7464 }
7465
7466 /*
7467  * task tracking -- fork/exit
7468  *
7469  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7470  */
7471
7472 struct perf_task_event {
7473         struct task_struct              *task;
7474         struct perf_event_context       *task_ctx;
7475
7476         struct {
7477                 struct perf_event_header        header;
7478
7479                 u32                             pid;
7480                 u32                             ppid;
7481                 u32                             tid;
7482                 u32                             ptid;
7483                 u64                             time;
7484         } event_id;
7485 };
7486
7487 static int perf_event_task_match(struct perf_event *event)
7488 {
7489         return event->attr.comm  || event->attr.mmap ||
7490                event->attr.mmap2 || event->attr.mmap_data ||
7491                event->attr.task;
7492 }
7493
7494 static void perf_event_task_output(struct perf_event *event,
7495                                    void *data)
7496 {
7497         struct perf_task_event *task_event = data;
7498         struct perf_output_handle handle;
7499         struct perf_sample_data sample;
7500         struct task_struct *task = task_event->task;
7501         int ret, size = task_event->event_id.header.size;
7502
7503         if (!perf_event_task_match(event))
7504                 return;
7505
7506         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7507
7508         ret = perf_output_begin(&handle, event,
7509                                 task_event->event_id.header.size);
7510         if (ret)
7511                 goto out;
7512
7513         task_event->event_id.pid = perf_event_pid(event, task);
7514         task_event->event_id.tid = perf_event_tid(event, task);
7515
7516         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7517                 task_event->event_id.ppid = perf_event_pid(event,
7518                                                         task->real_parent);
7519                 task_event->event_id.ptid = perf_event_pid(event,
7520                                                         task->real_parent);
7521         } else {  /* PERF_RECORD_FORK */
7522                 task_event->event_id.ppid = perf_event_pid(event, current);
7523                 task_event->event_id.ptid = perf_event_tid(event, current);
7524         }
7525
7526         task_event->event_id.time = perf_event_clock(event);
7527
7528         perf_output_put(&handle, task_event->event_id);
7529
7530         perf_event__output_id_sample(event, &handle, &sample);
7531
7532         perf_output_end(&handle);
7533 out:
7534         task_event->event_id.header.size = size;
7535 }
7536
7537 static void perf_event_task(struct task_struct *task,
7538                               struct perf_event_context *task_ctx,
7539                               int new)
7540 {
7541         struct perf_task_event task_event;
7542
7543         if (!atomic_read(&nr_comm_events) &&
7544             !atomic_read(&nr_mmap_events) &&
7545             !atomic_read(&nr_task_events))
7546                 return;
7547
7548         task_event = (struct perf_task_event){
7549                 .task     = task,
7550                 .task_ctx = task_ctx,
7551                 .event_id    = {
7552                         .header = {
7553                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7554                                 .misc = 0,
7555                                 .size = sizeof(task_event.event_id),
7556                         },
7557                         /* .pid  */
7558                         /* .ppid */
7559                         /* .tid  */
7560                         /* .ptid */
7561                         /* .time */
7562                 },
7563         };
7564
7565         perf_iterate_sb(perf_event_task_output,
7566                        &task_event,
7567                        task_ctx);
7568 }
7569
7570 void perf_event_fork(struct task_struct *task)
7571 {
7572         perf_event_task(task, NULL, 1);
7573         perf_event_namespaces(task);
7574 }
7575
7576 /*
7577  * comm tracking
7578  */
7579
7580 struct perf_comm_event {
7581         struct task_struct      *task;
7582         char                    *comm;
7583         int                     comm_size;
7584
7585         struct {
7586                 struct perf_event_header        header;
7587
7588                 u32                             pid;
7589                 u32                             tid;
7590         } event_id;
7591 };
7592
7593 static int perf_event_comm_match(struct perf_event *event)
7594 {
7595         return event->attr.comm;
7596 }
7597
7598 static void perf_event_comm_output(struct perf_event *event,
7599                                    void *data)
7600 {
7601         struct perf_comm_event *comm_event = data;
7602         struct perf_output_handle handle;
7603         struct perf_sample_data sample;
7604         int size = comm_event->event_id.header.size;
7605         int ret;
7606
7607         if (!perf_event_comm_match(event))
7608                 return;
7609
7610         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7611         ret = perf_output_begin(&handle, event,
7612                                 comm_event->event_id.header.size);
7613
7614         if (ret)
7615                 goto out;
7616
7617         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7618         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7619
7620         perf_output_put(&handle, comm_event->event_id);
7621         __output_copy(&handle, comm_event->comm,
7622                                    comm_event->comm_size);
7623
7624         perf_event__output_id_sample(event, &handle, &sample);
7625
7626         perf_output_end(&handle);
7627 out:
7628         comm_event->event_id.header.size = size;
7629 }
7630
7631 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7632 {
7633         char comm[TASK_COMM_LEN];
7634         unsigned int size;
7635
7636         memset(comm, 0, sizeof(comm));
7637         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7638         size = ALIGN(strlen(comm)+1, sizeof(u64));
7639
7640         comm_event->comm = comm;
7641         comm_event->comm_size = size;
7642
7643         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7644
7645         perf_iterate_sb(perf_event_comm_output,
7646                        comm_event,
7647                        NULL);
7648 }
7649
7650 void perf_event_comm(struct task_struct *task, bool exec)
7651 {
7652         struct perf_comm_event comm_event;
7653
7654         if (!atomic_read(&nr_comm_events))
7655                 return;
7656
7657         comm_event = (struct perf_comm_event){
7658                 .task   = task,
7659                 /* .comm      */
7660                 /* .comm_size */
7661                 .event_id  = {
7662                         .header = {
7663                                 .type = PERF_RECORD_COMM,
7664                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7665                                 /* .size */
7666                         },
7667                         /* .pid */
7668                         /* .tid */
7669                 },
7670         };
7671
7672         perf_event_comm_event(&comm_event);
7673 }
7674
7675 /*
7676  * namespaces tracking
7677  */
7678
7679 struct perf_namespaces_event {
7680         struct task_struct              *task;
7681
7682         struct {
7683                 struct perf_event_header        header;
7684
7685                 u32                             pid;
7686                 u32                             tid;
7687                 u64                             nr_namespaces;
7688                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7689         } event_id;
7690 };
7691
7692 static int perf_event_namespaces_match(struct perf_event *event)
7693 {
7694         return event->attr.namespaces;
7695 }
7696
7697 static void perf_event_namespaces_output(struct perf_event *event,
7698                                          void *data)
7699 {
7700         struct perf_namespaces_event *namespaces_event = data;
7701         struct perf_output_handle handle;
7702         struct perf_sample_data sample;
7703         u16 header_size = namespaces_event->event_id.header.size;
7704         int ret;
7705
7706         if (!perf_event_namespaces_match(event))
7707                 return;
7708
7709         perf_event_header__init_id(&namespaces_event->event_id.header,
7710                                    &sample, event);
7711         ret = perf_output_begin(&handle, event,
7712                                 namespaces_event->event_id.header.size);
7713         if (ret)
7714                 goto out;
7715
7716         namespaces_event->event_id.pid = perf_event_pid(event,
7717                                                         namespaces_event->task);
7718         namespaces_event->event_id.tid = perf_event_tid(event,
7719                                                         namespaces_event->task);
7720
7721         perf_output_put(&handle, namespaces_event->event_id);
7722
7723         perf_event__output_id_sample(event, &handle, &sample);
7724
7725         perf_output_end(&handle);
7726 out:
7727         namespaces_event->event_id.header.size = header_size;
7728 }
7729
7730 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7731                                    struct task_struct *task,
7732                                    const struct proc_ns_operations *ns_ops)
7733 {
7734         struct path ns_path;
7735         struct inode *ns_inode;
7736         int error;
7737
7738         error = ns_get_path(&ns_path, task, ns_ops);
7739         if (!error) {
7740                 ns_inode = ns_path.dentry->d_inode;
7741                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7742                 ns_link_info->ino = ns_inode->i_ino;
7743                 path_put(&ns_path);
7744         }
7745 }
7746
7747 void perf_event_namespaces(struct task_struct *task)
7748 {
7749         struct perf_namespaces_event namespaces_event;
7750         struct perf_ns_link_info *ns_link_info;
7751
7752         if (!atomic_read(&nr_namespaces_events))
7753                 return;
7754
7755         namespaces_event = (struct perf_namespaces_event){
7756                 .task   = task,
7757                 .event_id  = {
7758                         .header = {
7759                                 .type = PERF_RECORD_NAMESPACES,
7760                                 .misc = 0,
7761                                 .size = sizeof(namespaces_event.event_id),
7762                         },
7763                         /* .pid */
7764                         /* .tid */
7765                         .nr_namespaces = NR_NAMESPACES,
7766                         /* .link_info[NR_NAMESPACES] */
7767                 },
7768         };
7769
7770         ns_link_info = namespaces_event.event_id.link_info;
7771
7772         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7773                                task, &mntns_operations);
7774
7775 #ifdef CONFIG_USER_NS
7776         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7777                                task, &userns_operations);
7778 #endif
7779 #ifdef CONFIG_NET_NS
7780         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7781                                task, &netns_operations);
7782 #endif
7783 #ifdef CONFIG_UTS_NS
7784         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7785                                task, &utsns_operations);
7786 #endif
7787 #ifdef CONFIG_IPC_NS
7788         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7789                                task, &ipcns_operations);
7790 #endif
7791 #ifdef CONFIG_PID_NS
7792         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7793                                task, &pidns_operations);
7794 #endif
7795 #ifdef CONFIG_CGROUPS
7796         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7797                                task, &cgroupns_operations);
7798 #endif
7799
7800         perf_iterate_sb(perf_event_namespaces_output,
7801                         &namespaces_event,
7802                         NULL);
7803 }
7804
7805 /*
7806  * cgroup tracking
7807  */
7808 #ifdef CONFIG_CGROUP_PERF
7809
7810 struct perf_cgroup_event {
7811         char                            *path;
7812         int                             path_size;
7813         struct {
7814                 struct perf_event_header        header;
7815                 u64                             id;
7816                 char                            path[];
7817         } event_id;
7818 };
7819
7820 static int perf_event_cgroup_match(struct perf_event *event)
7821 {
7822         return event->attr.cgroup;
7823 }
7824
7825 static void perf_event_cgroup_output(struct perf_event *event, void *data)
7826 {
7827         struct perf_cgroup_event *cgroup_event = data;
7828         struct perf_output_handle handle;
7829         struct perf_sample_data sample;
7830         u16 header_size = cgroup_event->event_id.header.size;
7831         int ret;
7832
7833         if (!perf_event_cgroup_match(event))
7834                 return;
7835
7836         perf_event_header__init_id(&cgroup_event->event_id.header,
7837                                    &sample, event);
7838         ret = perf_output_begin(&handle, event,
7839                                 cgroup_event->event_id.header.size);
7840         if (ret)
7841                 goto out;
7842
7843         perf_output_put(&handle, cgroup_event->event_id);
7844         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
7845
7846         perf_event__output_id_sample(event, &handle, &sample);
7847
7848         perf_output_end(&handle);
7849 out:
7850         cgroup_event->event_id.header.size = header_size;
7851 }
7852
7853 static void perf_event_cgroup(struct cgroup *cgrp)
7854 {
7855         struct perf_cgroup_event cgroup_event;
7856         char path_enomem[16] = "//enomem";
7857         char *pathname;
7858         size_t size;
7859
7860         if (!atomic_read(&nr_cgroup_events))
7861                 return;
7862
7863         cgroup_event = (struct perf_cgroup_event){
7864                 .event_id  = {
7865                         .header = {
7866                                 .type = PERF_RECORD_CGROUP,
7867                                 .misc = 0,
7868                                 .size = sizeof(cgroup_event.event_id),
7869                         },
7870                         .id = cgroup_id(cgrp),
7871                 },
7872         };
7873
7874         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
7875         if (pathname == NULL) {
7876                 cgroup_event.path = path_enomem;
7877         } else {
7878                 /* just to be sure to have enough space for alignment */
7879                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
7880                 cgroup_event.path = pathname;
7881         }
7882
7883         /*
7884          * Since our buffer works in 8 byte units we need to align our string
7885          * size to a multiple of 8. However, we must guarantee the tail end is
7886          * zero'd out to avoid leaking random bits to userspace.
7887          */
7888         size = strlen(cgroup_event.path) + 1;
7889         while (!IS_ALIGNED(size, sizeof(u64)))
7890                 cgroup_event.path[size++] = '\0';
7891
7892         cgroup_event.event_id.header.size += size;
7893         cgroup_event.path_size = size;
7894
7895         perf_iterate_sb(perf_event_cgroup_output,
7896                         &cgroup_event,
7897                         NULL);
7898
7899         kfree(pathname);
7900 }
7901
7902 #endif
7903
7904 /*
7905  * mmap tracking
7906  */
7907
7908 struct perf_mmap_event {
7909         struct vm_area_struct   *vma;
7910
7911         const char              *file_name;
7912         int                     file_size;
7913         int                     maj, min;
7914         u64                     ino;
7915         u64                     ino_generation;
7916         u32                     prot, flags;
7917
7918         struct {
7919                 struct perf_event_header        header;
7920
7921                 u32                             pid;
7922                 u32                             tid;
7923                 u64                             start;
7924                 u64                             len;
7925                 u64                             pgoff;
7926         } event_id;
7927 };
7928
7929 static int perf_event_mmap_match(struct perf_event *event,
7930                                  void *data)
7931 {
7932         struct perf_mmap_event *mmap_event = data;
7933         struct vm_area_struct *vma = mmap_event->vma;
7934         int executable = vma->vm_flags & VM_EXEC;
7935
7936         return (!executable && event->attr.mmap_data) ||
7937                (executable && (event->attr.mmap || event->attr.mmap2));
7938 }
7939
7940 static void perf_event_mmap_output(struct perf_event *event,
7941                                    void *data)
7942 {
7943         struct perf_mmap_event *mmap_event = data;
7944         struct perf_output_handle handle;
7945         struct perf_sample_data sample;
7946         int size = mmap_event->event_id.header.size;
7947         u32 type = mmap_event->event_id.header.type;
7948         int ret;
7949
7950         if (!perf_event_mmap_match(event, data))
7951                 return;
7952
7953         if (event->attr.mmap2) {
7954                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7955                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7956                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7957                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7958                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7959                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7960                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7961         }
7962
7963         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7964         ret = perf_output_begin(&handle, event,
7965                                 mmap_event->event_id.header.size);
7966         if (ret)
7967                 goto out;
7968
7969         mmap_event->event_id.pid = perf_event_pid(event, current);
7970         mmap_event->event_id.tid = perf_event_tid(event, current);
7971
7972         perf_output_put(&handle, mmap_event->event_id);
7973
7974         if (event->attr.mmap2) {
7975                 perf_output_put(&handle, mmap_event->maj);
7976                 perf_output_put(&handle, mmap_event->min);
7977                 perf_output_put(&handle, mmap_event->ino);
7978                 perf_output_put(&handle, mmap_event->ino_generation);
7979                 perf_output_put(&handle, mmap_event->prot);
7980                 perf_output_put(&handle, mmap_event->flags);
7981         }
7982
7983         __output_copy(&handle, mmap_event->file_name,
7984                                    mmap_event->file_size);
7985
7986         perf_event__output_id_sample(event, &handle, &sample);
7987
7988         perf_output_end(&handle);
7989 out:
7990         mmap_event->event_id.header.size = size;
7991         mmap_event->event_id.header.type = type;
7992 }
7993
7994 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7995 {
7996         struct vm_area_struct *vma = mmap_event->vma;
7997         struct file *file = vma->vm_file;
7998         int maj = 0, min = 0;
7999         u64 ino = 0, gen = 0;
8000         u32 prot = 0, flags = 0;
8001         unsigned int size;
8002         char tmp[16];
8003         char *buf = NULL;
8004         char *name;
8005
8006         if (vma->vm_flags & VM_READ)
8007                 prot |= PROT_READ;
8008         if (vma->vm_flags & VM_WRITE)
8009                 prot |= PROT_WRITE;
8010         if (vma->vm_flags & VM_EXEC)
8011                 prot |= PROT_EXEC;
8012
8013         if (vma->vm_flags & VM_MAYSHARE)
8014                 flags = MAP_SHARED;
8015         else
8016                 flags = MAP_PRIVATE;
8017
8018         if (vma->vm_flags & VM_DENYWRITE)
8019                 flags |= MAP_DENYWRITE;
8020         if (vma->vm_flags & VM_MAYEXEC)
8021                 flags |= MAP_EXECUTABLE;
8022         if (vma->vm_flags & VM_LOCKED)
8023                 flags |= MAP_LOCKED;
8024         if (is_vm_hugetlb_page(vma))
8025                 flags |= MAP_HUGETLB;
8026
8027         if (file) {
8028                 struct inode *inode;
8029                 dev_t dev;
8030
8031                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8032                 if (!buf) {
8033                         name = "//enomem";
8034                         goto cpy_name;
8035                 }
8036                 /*
8037                  * d_path() works from the end of the rb backwards, so we
8038                  * need to add enough zero bytes after the string to handle
8039                  * the 64bit alignment we do later.
8040                  */
8041                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8042                 if (IS_ERR(name)) {
8043                         name = "//toolong";
8044                         goto cpy_name;
8045                 }
8046                 inode = file_inode(vma->vm_file);
8047                 dev = inode->i_sb->s_dev;
8048                 ino = inode->i_ino;
8049                 gen = inode->i_generation;
8050                 maj = MAJOR(dev);
8051                 min = MINOR(dev);
8052
8053                 goto got_name;
8054         } else {
8055                 if (vma->vm_ops && vma->vm_ops->name) {
8056                         name = (char *) vma->vm_ops->name(vma);
8057                         if (name)
8058                                 goto cpy_name;
8059                 }
8060
8061                 name = (char *)arch_vma_name(vma);
8062                 if (name)
8063                         goto cpy_name;
8064
8065                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8066                                 vma->vm_end >= vma->vm_mm->brk) {
8067                         name = "[heap]";
8068                         goto cpy_name;
8069                 }
8070                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8071                                 vma->vm_end >= vma->vm_mm->start_stack) {
8072                         name = "[stack]";
8073                         goto cpy_name;
8074                 }
8075
8076                 name = "//anon";
8077                 goto cpy_name;
8078         }
8079
8080 cpy_name:
8081         strlcpy(tmp, name, sizeof(tmp));
8082         name = tmp;
8083 got_name:
8084         /*
8085          * Since our buffer works in 8 byte units we need to align our string
8086          * size to a multiple of 8. However, we must guarantee the tail end is
8087          * zero'd out to avoid leaking random bits to userspace.
8088          */
8089         size = strlen(name)+1;
8090         while (!IS_ALIGNED(size, sizeof(u64)))
8091                 name[size++] = '\0';
8092
8093         mmap_event->file_name = name;
8094         mmap_event->file_size = size;
8095         mmap_event->maj = maj;
8096         mmap_event->min = min;
8097         mmap_event->ino = ino;
8098         mmap_event->ino_generation = gen;
8099         mmap_event->prot = prot;
8100         mmap_event->flags = flags;
8101
8102         if (!(vma->vm_flags & VM_EXEC))
8103                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8104
8105         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8106
8107         perf_iterate_sb(perf_event_mmap_output,
8108                        mmap_event,
8109                        NULL);
8110
8111         kfree(buf);
8112 }
8113
8114 /*
8115  * Check whether inode and address range match filter criteria.
8116  */
8117 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8118                                      struct file *file, unsigned long offset,
8119                                      unsigned long size)
8120 {
8121         /* d_inode(NULL) won't be equal to any mapped user-space file */
8122         if (!filter->path.dentry)
8123                 return false;
8124
8125         if (d_inode(filter->path.dentry) != file_inode(file))
8126                 return false;
8127
8128         if (filter->offset > offset + size)
8129                 return false;
8130
8131         if (filter->offset + filter->size < offset)
8132                 return false;
8133
8134         return true;
8135 }
8136
8137 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8138                                         struct vm_area_struct *vma,
8139                                         struct perf_addr_filter_range *fr)
8140 {
8141         unsigned long vma_size = vma->vm_end - vma->vm_start;
8142         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8143         struct file *file = vma->vm_file;
8144
8145         if (!perf_addr_filter_match(filter, file, off, vma_size))
8146                 return false;
8147
8148         if (filter->offset < off) {
8149                 fr->start = vma->vm_start;
8150                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8151         } else {
8152                 fr->start = vma->vm_start + filter->offset - off;
8153                 fr->size = min(vma->vm_end - fr->start, filter->size);
8154         }
8155
8156         return true;
8157 }
8158
8159 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8160 {
8161         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8162         struct vm_area_struct *vma = data;
8163         struct perf_addr_filter *filter;
8164         unsigned int restart = 0, count = 0;
8165         unsigned long flags;
8166
8167         if (!has_addr_filter(event))
8168                 return;
8169
8170         if (!vma->vm_file)
8171                 return;
8172
8173         raw_spin_lock_irqsave(&ifh->lock, flags);
8174         list_for_each_entry(filter, &ifh->list, entry) {
8175                 if (perf_addr_filter_vma_adjust(filter, vma,
8176                                                 &event->addr_filter_ranges[count]))
8177                         restart++;
8178
8179                 count++;
8180         }
8181
8182         if (restart)
8183                 event->addr_filters_gen++;
8184         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8185
8186         if (restart)
8187                 perf_event_stop(event, 1);
8188 }
8189
8190 /*
8191  * Adjust all task's events' filters to the new vma
8192  */
8193 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8194 {
8195         struct perf_event_context *ctx;
8196         int ctxn;
8197
8198         /*
8199          * Data tracing isn't supported yet and as such there is no need
8200          * to keep track of anything that isn't related to executable code:
8201          */
8202         if (!(vma->vm_flags & VM_EXEC))
8203                 return;
8204
8205         rcu_read_lock();
8206         for_each_task_context_nr(ctxn) {
8207                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8208                 if (!ctx)
8209                         continue;
8210
8211                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8212         }
8213         rcu_read_unlock();
8214 }
8215
8216 void perf_event_mmap(struct vm_area_struct *vma)
8217 {
8218         struct perf_mmap_event mmap_event;
8219
8220         if (!atomic_read(&nr_mmap_events))
8221                 return;
8222
8223         mmap_event = (struct perf_mmap_event){
8224                 .vma    = vma,
8225                 /* .file_name */
8226                 /* .file_size */
8227                 .event_id  = {
8228                         .header = {
8229                                 .type = PERF_RECORD_MMAP,
8230                                 .misc = PERF_RECORD_MISC_USER,
8231                                 /* .size */
8232                         },
8233                         /* .pid */
8234                         /* .tid */
8235                         .start  = vma->vm_start,
8236                         .len    = vma->vm_end - vma->vm_start,
8237                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8238                 },
8239                 /* .maj (attr_mmap2 only) */
8240                 /* .min (attr_mmap2 only) */
8241                 /* .ino (attr_mmap2 only) */
8242                 /* .ino_generation (attr_mmap2 only) */
8243                 /* .prot (attr_mmap2 only) */
8244                 /* .flags (attr_mmap2 only) */
8245         };
8246
8247         perf_addr_filters_adjust(vma);
8248         perf_event_mmap_event(&mmap_event);
8249 }
8250
8251 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8252                           unsigned long size, u64 flags)
8253 {
8254         struct perf_output_handle handle;
8255         struct perf_sample_data sample;
8256         struct perf_aux_event {
8257                 struct perf_event_header        header;
8258                 u64                             offset;
8259                 u64                             size;
8260                 u64                             flags;
8261         } rec = {
8262                 .header = {
8263                         .type = PERF_RECORD_AUX,
8264                         .misc = 0,
8265                         .size = sizeof(rec),
8266                 },
8267                 .offset         = head,
8268                 .size           = size,
8269                 .flags          = flags,
8270         };
8271         int ret;
8272
8273         perf_event_header__init_id(&rec.header, &sample, event);
8274         ret = perf_output_begin(&handle, event, rec.header.size);
8275
8276         if (ret)
8277                 return;
8278
8279         perf_output_put(&handle, rec);
8280         perf_event__output_id_sample(event, &handle, &sample);
8281
8282         perf_output_end(&handle);
8283 }
8284
8285 /*
8286  * Lost/dropped samples logging
8287  */
8288 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8289 {
8290         struct perf_output_handle handle;
8291         struct perf_sample_data sample;
8292         int ret;
8293
8294         struct {
8295                 struct perf_event_header        header;
8296                 u64                             lost;
8297         } lost_samples_event = {
8298                 .header = {
8299                         .type = PERF_RECORD_LOST_SAMPLES,
8300                         .misc = 0,
8301                         .size = sizeof(lost_samples_event),
8302                 },
8303                 .lost           = lost,
8304         };
8305
8306         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8307
8308         ret = perf_output_begin(&handle, event,
8309                                 lost_samples_event.header.size);
8310         if (ret)
8311                 return;
8312
8313         perf_output_put(&handle, lost_samples_event);
8314         perf_event__output_id_sample(event, &handle, &sample);
8315         perf_output_end(&handle);
8316 }
8317
8318 /*
8319  * context_switch tracking
8320  */
8321
8322 struct perf_switch_event {
8323         struct task_struct      *task;
8324         struct task_struct      *next_prev;
8325
8326         struct {
8327                 struct perf_event_header        header;
8328                 u32                             next_prev_pid;
8329                 u32                             next_prev_tid;
8330         } event_id;
8331 };
8332
8333 static int perf_event_switch_match(struct perf_event *event)
8334 {
8335         return event->attr.context_switch;
8336 }
8337
8338 static void perf_event_switch_output(struct perf_event *event, void *data)
8339 {
8340         struct perf_switch_event *se = data;
8341         struct perf_output_handle handle;
8342         struct perf_sample_data sample;
8343         int ret;
8344
8345         if (!perf_event_switch_match(event))
8346                 return;
8347
8348         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8349         if (event->ctx->task) {
8350                 se->event_id.header.type = PERF_RECORD_SWITCH;
8351                 se->event_id.header.size = sizeof(se->event_id.header);
8352         } else {
8353                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8354                 se->event_id.header.size = sizeof(se->event_id);
8355                 se->event_id.next_prev_pid =
8356                                         perf_event_pid(event, se->next_prev);
8357                 se->event_id.next_prev_tid =
8358                                         perf_event_tid(event, se->next_prev);
8359         }
8360
8361         perf_event_header__init_id(&se->event_id.header, &sample, event);
8362
8363         ret = perf_output_begin(&handle, event, se->event_id.header.size);
8364         if (ret)
8365                 return;
8366
8367         if (event->ctx->task)
8368                 perf_output_put(&handle, se->event_id.header);
8369         else
8370                 perf_output_put(&handle, se->event_id);
8371
8372         perf_event__output_id_sample(event, &handle, &sample);
8373
8374         perf_output_end(&handle);
8375 }
8376
8377 static void perf_event_switch(struct task_struct *task,
8378                               struct task_struct *next_prev, bool sched_in)
8379 {
8380         struct perf_switch_event switch_event;
8381
8382         /* N.B. caller checks nr_switch_events != 0 */
8383
8384         switch_event = (struct perf_switch_event){
8385                 .task           = task,
8386                 .next_prev      = next_prev,
8387                 .event_id       = {
8388                         .header = {
8389                                 /* .type */
8390                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8391                                 /* .size */
8392                         },
8393                         /* .next_prev_pid */
8394                         /* .next_prev_tid */
8395                 },
8396         };
8397
8398         if (!sched_in && task->state == TASK_RUNNING)
8399                 switch_event.event_id.header.misc |=
8400                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8401
8402         perf_iterate_sb(perf_event_switch_output,
8403                        &switch_event,
8404                        NULL);
8405 }
8406
8407 /*
8408  * IRQ throttle logging
8409  */
8410
8411 static void perf_log_throttle(struct perf_event *event, int enable)
8412 {
8413         struct perf_output_handle handle;
8414         struct perf_sample_data sample;
8415         int ret;
8416
8417         struct {
8418                 struct perf_event_header        header;
8419                 u64                             time;
8420                 u64                             id;
8421                 u64                             stream_id;
8422         } throttle_event = {
8423                 .header = {
8424                         .type = PERF_RECORD_THROTTLE,
8425                         .misc = 0,
8426                         .size = sizeof(throttle_event),
8427                 },
8428                 .time           = perf_event_clock(event),
8429                 .id             = primary_event_id(event),
8430                 .stream_id      = event->id,
8431         };
8432
8433         if (enable)
8434                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8435
8436         perf_event_header__init_id(&throttle_event.header, &sample, event);
8437
8438         ret = perf_output_begin(&handle, event,
8439                                 throttle_event.header.size);
8440         if (ret)
8441                 return;
8442
8443         perf_output_put(&handle, throttle_event);
8444         perf_event__output_id_sample(event, &handle, &sample);
8445         perf_output_end(&handle);
8446 }
8447
8448 /*
8449  * ksymbol register/unregister tracking
8450  */
8451
8452 struct perf_ksymbol_event {
8453         const char      *name;
8454         int             name_len;
8455         struct {
8456                 struct perf_event_header        header;
8457                 u64                             addr;
8458                 u32                             len;
8459                 u16                             ksym_type;
8460                 u16                             flags;
8461         } event_id;
8462 };
8463
8464 static int perf_event_ksymbol_match(struct perf_event *event)
8465 {
8466         return event->attr.ksymbol;
8467 }
8468
8469 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8470 {
8471         struct perf_ksymbol_event *ksymbol_event = data;
8472         struct perf_output_handle handle;
8473         struct perf_sample_data sample;
8474         int ret;
8475
8476         if (!perf_event_ksymbol_match(event))
8477                 return;
8478
8479         perf_event_header__init_id(&ksymbol_event->event_id.header,
8480                                    &sample, event);
8481         ret = perf_output_begin(&handle, event,
8482                                 ksymbol_event->event_id.header.size);
8483         if (ret)
8484                 return;
8485
8486         perf_output_put(&handle, ksymbol_event->event_id);
8487         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8488         perf_event__output_id_sample(event, &handle, &sample);
8489
8490         perf_output_end(&handle);
8491 }
8492
8493 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8494                         const char *sym)
8495 {
8496         struct perf_ksymbol_event ksymbol_event;
8497         char name[KSYM_NAME_LEN];
8498         u16 flags = 0;
8499         int name_len;
8500
8501         if (!atomic_read(&nr_ksymbol_events))
8502                 return;
8503
8504         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8505             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8506                 goto err;
8507
8508         strlcpy(name, sym, KSYM_NAME_LEN);
8509         name_len = strlen(name) + 1;
8510         while (!IS_ALIGNED(name_len, sizeof(u64)))
8511                 name[name_len++] = '\0';
8512         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8513
8514         if (unregister)
8515                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8516
8517         ksymbol_event = (struct perf_ksymbol_event){
8518                 .name = name,
8519                 .name_len = name_len,
8520                 .event_id = {
8521                         .header = {
8522                                 .type = PERF_RECORD_KSYMBOL,
8523                                 .size = sizeof(ksymbol_event.event_id) +
8524                                         name_len,
8525                         },
8526                         .addr = addr,
8527                         .len = len,
8528                         .ksym_type = ksym_type,
8529                         .flags = flags,
8530                 },
8531         };
8532
8533         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8534         return;
8535 err:
8536         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8537 }
8538
8539 /*
8540  * bpf program load/unload tracking
8541  */
8542
8543 struct perf_bpf_event {
8544         struct bpf_prog *prog;
8545         struct {
8546                 struct perf_event_header        header;
8547                 u16                             type;
8548                 u16                             flags;
8549                 u32                             id;
8550                 u8                              tag[BPF_TAG_SIZE];
8551         } event_id;
8552 };
8553
8554 static int perf_event_bpf_match(struct perf_event *event)
8555 {
8556         return event->attr.bpf_event;
8557 }
8558
8559 static void perf_event_bpf_output(struct perf_event *event, void *data)
8560 {
8561         struct perf_bpf_event *bpf_event = data;
8562         struct perf_output_handle handle;
8563         struct perf_sample_data sample;
8564         int ret;
8565
8566         if (!perf_event_bpf_match(event))
8567                 return;
8568
8569         perf_event_header__init_id(&bpf_event->event_id.header,
8570                                    &sample, event);
8571         ret = perf_output_begin(&handle, event,
8572                                 bpf_event->event_id.header.size);
8573         if (ret)
8574                 return;
8575
8576         perf_output_put(&handle, bpf_event->event_id);
8577         perf_event__output_id_sample(event, &handle, &sample);
8578
8579         perf_output_end(&handle);
8580 }
8581
8582 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8583                                          enum perf_bpf_event_type type)
8584 {
8585         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8586         int i;
8587
8588         if (prog->aux->func_cnt == 0) {
8589                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8590                                    (u64)(unsigned long)prog->bpf_func,
8591                                    prog->jited_len, unregister,
8592                                    prog->aux->ksym.name);
8593         } else {
8594                 for (i = 0; i < prog->aux->func_cnt; i++) {
8595                         struct bpf_prog *subprog = prog->aux->func[i];
8596
8597                         perf_event_ksymbol(
8598                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8599                                 (u64)(unsigned long)subprog->bpf_func,
8600                                 subprog->jited_len, unregister,
8601                                 prog->aux->ksym.name);
8602                 }
8603         }
8604 }
8605
8606 void perf_event_bpf_event(struct bpf_prog *prog,
8607                           enum perf_bpf_event_type type,
8608                           u16 flags)
8609 {
8610         struct perf_bpf_event bpf_event;
8611
8612         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8613             type >= PERF_BPF_EVENT_MAX)
8614                 return;
8615
8616         switch (type) {
8617         case PERF_BPF_EVENT_PROG_LOAD:
8618         case PERF_BPF_EVENT_PROG_UNLOAD:
8619                 if (atomic_read(&nr_ksymbol_events))
8620                         perf_event_bpf_emit_ksymbols(prog, type);
8621                 break;
8622         default:
8623                 break;
8624         }
8625
8626         if (!atomic_read(&nr_bpf_events))
8627                 return;
8628
8629         bpf_event = (struct perf_bpf_event){
8630                 .prog = prog,
8631                 .event_id = {
8632                         .header = {
8633                                 .type = PERF_RECORD_BPF_EVENT,
8634                                 .size = sizeof(bpf_event.event_id),
8635                         },
8636                         .type = type,
8637                         .flags = flags,
8638                         .id = prog->aux->id,
8639                 },
8640         };
8641
8642         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8643
8644         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8645         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8646 }
8647
8648 struct perf_text_poke_event {
8649         const void              *old_bytes;
8650         const void              *new_bytes;
8651         size_t                  pad;
8652         u16                     old_len;
8653         u16                     new_len;
8654
8655         struct {
8656                 struct perf_event_header        header;
8657
8658                 u64                             addr;
8659         } event_id;
8660 };
8661
8662 static int perf_event_text_poke_match(struct perf_event *event)
8663 {
8664         return event->attr.text_poke;
8665 }
8666
8667 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8668 {
8669         struct perf_text_poke_event *text_poke_event = data;
8670         struct perf_output_handle handle;
8671         struct perf_sample_data sample;
8672         u64 padding = 0;
8673         int ret;
8674
8675         if (!perf_event_text_poke_match(event))
8676                 return;
8677
8678         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8679
8680         ret = perf_output_begin(&handle, event, text_poke_event->event_id.header.size);
8681         if (ret)
8682                 return;
8683
8684         perf_output_put(&handle, text_poke_event->event_id);
8685         perf_output_put(&handle, text_poke_event->old_len);
8686         perf_output_put(&handle, text_poke_event->new_len);
8687
8688         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8689         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8690
8691         if (text_poke_event->pad)
8692                 __output_copy(&handle, &padding, text_poke_event->pad);
8693
8694         perf_event__output_id_sample(event, &handle, &sample);
8695
8696         perf_output_end(&handle);
8697 }
8698
8699 void perf_event_text_poke(const void *addr, const void *old_bytes,
8700                           size_t old_len, const void *new_bytes, size_t new_len)
8701 {
8702         struct perf_text_poke_event text_poke_event;
8703         size_t tot, pad;
8704
8705         if (!atomic_read(&nr_text_poke_events))
8706                 return;
8707
8708         tot  = sizeof(text_poke_event.old_len) + old_len;
8709         tot += sizeof(text_poke_event.new_len) + new_len;
8710         pad  = ALIGN(tot, sizeof(u64)) - tot;
8711
8712         text_poke_event = (struct perf_text_poke_event){
8713                 .old_bytes    = old_bytes,
8714                 .new_bytes    = new_bytes,
8715                 .pad          = pad,
8716                 .old_len      = old_len,
8717                 .new_len      = new_len,
8718                 .event_id  = {
8719                         .header = {
8720                                 .type = PERF_RECORD_TEXT_POKE,
8721                                 .misc = PERF_RECORD_MISC_KERNEL,
8722                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
8723                         },
8724                         .addr = (unsigned long)addr,
8725                 },
8726         };
8727
8728         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
8729 }
8730
8731 void perf_event_itrace_started(struct perf_event *event)
8732 {
8733         event->attach_state |= PERF_ATTACH_ITRACE;
8734 }
8735
8736 static void perf_log_itrace_start(struct perf_event *event)
8737 {
8738         struct perf_output_handle handle;
8739         struct perf_sample_data sample;
8740         struct perf_aux_event {
8741                 struct perf_event_header        header;
8742                 u32                             pid;
8743                 u32                             tid;
8744         } rec;
8745         int ret;
8746
8747         if (event->parent)
8748                 event = event->parent;
8749
8750         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
8751             event->attach_state & PERF_ATTACH_ITRACE)
8752                 return;
8753
8754         rec.header.type = PERF_RECORD_ITRACE_START;
8755         rec.header.misc = 0;
8756         rec.header.size = sizeof(rec);
8757         rec.pid = perf_event_pid(event, current);
8758         rec.tid = perf_event_tid(event, current);
8759
8760         perf_event_header__init_id(&rec.header, &sample, event);
8761         ret = perf_output_begin(&handle, event, rec.header.size);
8762
8763         if (ret)
8764                 return;
8765
8766         perf_output_put(&handle, rec);
8767         perf_event__output_id_sample(event, &handle, &sample);
8768
8769         perf_output_end(&handle);
8770 }
8771
8772 static int
8773 __perf_event_account_interrupt(struct perf_event *event, int throttle)
8774 {
8775         struct hw_perf_event *hwc = &event->hw;
8776         int ret = 0;
8777         u64 seq;
8778
8779         seq = __this_cpu_read(perf_throttled_seq);
8780         if (seq != hwc->interrupts_seq) {
8781                 hwc->interrupts_seq = seq;
8782                 hwc->interrupts = 1;
8783         } else {
8784                 hwc->interrupts++;
8785                 if (unlikely(throttle
8786                              && hwc->interrupts >= max_samples_per_tick)) {
8787                         __this_cpu_inc(perf_throttled_count);
8788                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
8789                         hwc->interrupts = MAX_INTERRUPTS;
8790                         perf_log_throttle(event, 0);
8791                         ret = 1;
8792                 }
8793         }
8794
8795         if (event->attr.freq) {
8796                 u64 now = perf_clock();
8797                 s64 delta = now - hwc->freq_time_stamp;
8798
8799                 hwc->freq_time_stamp = now;
8800
8801                 if (delta > 0 && delta < 2*TICK_NSEC)
8802                         perf_adjust_period(event, delta, hwc->last_period, true);
8803         }
8804
8805         return ret;
8806 }
8807
8808 int perf_event_account_interrupt(struct perf_event *event)
8809 {
8810         return __perf_event_account_interrupt(event, 1);
8811 }
8812
8813 /*
8814  * Generic event overflow handling, sampling.
8815  */
8816
8817 static int __perf_event_overflow(struct perf_event *event,
8818                                    int throttle, struct perf_sample_data *data,
8819                                    struct pt_regs *regs)
8820 {
8821         int events = atomic_read(&event->event_limit);
8822         int ret = 0;
8823
8824         /*
8825          * Non-sampling counters might still use the PMI to fold short
8826          * hardware counters, ignore those.
8827          */
8828         if (unlikely(!is_sampling_event(event)))
8829                 return 0;
8830
8831         ret = __perf_event_account_interrupt(event, throttle);
8832
8833         /*
8834          * XXX event_limit might not quite work as expected on inherited
8835          * events
8836          */
8837
8838         event->pending_kill = POLL_IN;
8839         if (events && atomic_dec_and_test(&event->event_limit)) {
8840                 ret = 1;
8841                 event->pending_kill = POLL_HUP;
8842
8843                 perf_event_disable_inatomic(event);
8844         }
8845
8846         READ_ONCE(event->overflow_handler)(event, data, regs);
8847
8848         if (*perf_event_fasync(event) && event->pending_kill) {
8849                 event->pending_wakeup = 1;
8850                 irq_work_queue(&event->pending);
8851         }
8852
8853         return ret;
8854 }
8855
8856 int perf_event_overflow(struct perf_event *event,
8857                           struct perf_sample_data *data,
8858                           struct pt_regs *regs)
8859 {
8860         return __perf_event_overflow(event, 1, data, regs);
8861 }
8862
8863 /*
8864  * Generic software event infrastructure
8865  */
8866
8867 struct swevent_htable {
8868         struct swevent_hlist            *swevent_hlist;
8869         struct mutex                    hlist_mutex;
8870         int                             hlist_refcount;
8871
8872         /* Recursion avoidance in each contexts */
8873         int                             recursion[PERF_NR_CONTEXTS];
8874 };
8875
8876 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
8877
8878 /*
8879  * We directly increment event->count and keep a second value in
8880  * event->hw.period_left to count intervals. This period event
8881  * is kept in the range [-sample_period, 0] so that we can use the
8882  * sign as trigger.
8883  */
8884
8885 u64 perf_swevent_set_period(struct perf_event *event)
8886 {
8887         struct hw_perf_event *hwc = &event->hw;
8888         u64 period = hwc->last_period;
8889         u64 nr, offset;
8890         s64 old, val;
8891
8892         hwc->last_period = hwc->sample_period;
8893
8894 again:
8895         old = val = local64_read(&hwc->period_left);
8896         if (val < 0)
8897                 return 0;
8898
8899         nr = div64_u64(period + val, period);
8900         offset = nr * period;
8901         val -= offset;
8902         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
8903                 goto again;
8904
8905         return nr;
8906 }
8907
8908 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
8909                                     struct perf_sample_data *data,
8910                                     struct pt_regs *regs)
8911 {
8912         struct hw_perf_event *hwc = &event->hw;
8913         int throttle = 0;
8914
8915         if (!overflow)
8916                 overflow = perf_swevent_set_period(event);
8917
8918         if (hwc->interrupts == MAX_INTERRUPTS)
8919                 return;
8920
8921         for (; overflow; overflow--) {
8922                 if (__perf_event_overflow(event, throttle,
8923                                             data, regs)) {
8924                         /*
8925                          * We inhibit the overflow from happening when
8926                          * hwc->interrupts == MAX_INTERRUPTS.
8927                          */
8928                         break;
8929                 }
8930                 throttle = 1;
8931         }
8932 }
8933
8934 static void perf_swevent_event(struct perf_event *event, u64 nr,
8935                                struct perf_sample_data *data,
8936                                struct pt_regs *regs)
8937 {
8938         struct hw_perf_event *hwc = &event->hw;
8939
8940         local64_add(nr, &event->count);
8941
8942         if (!regs)
8943                 return;
8944
8945         if (!is_sampling_event(event))
8946                 return;
8947
8948         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
8949                 data->period = nr;
8950                 return perf_swevent_overflow(event, 1, data, regs);
8951         } else
8952                 data->period = event->hw.last_period;
8953
8954         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
8955                 return perf_swevent_overflow(event, 1, data, regs);
8956
8957         if (local64_add_negative(nr, &hwc->period_left))
8958                 return;
8959
8960         perf_swevent_overflow(event, 0, data, regs);
8961 }
8962
8963 static int perf_exclude_event(struct perf_event *event,
8964                               struct pt_regs *regs)
8965 {
8966         if (event->hw.state & PERF_HES_STOPPED)
8967                 return 1;
8968
8969         if (regs) {
8970                 if (event->attr.exclude_user && user_mode(regs))
8971                         return 1;
8972
8973                 if (event->attr.exclude_kernel && !user_mode(regs))
8974                         return 1;
8975         }
8976
8977         return 0;
8978 }
8979
8980 static int perf_swevent_match(struct perf_event *event,
8981                                 enum perf_type_id type,
8982                                 u32 event_id,
8983                                 struct perf_sample_data *data,
8984                                 struct pt_regs *regs)
8985 {
8986         if (event->attr.type != type)
8987                 return 0;
8988
8989         if (event->attr.config != event_id)
8990                 return 0;
8991
8992         if (perf_exclude_event(event, regs))
8993                 return 0;
8994
8995         return 1;
8996 }
8997
8998 static inline u64 swevent_hash(u64 type, u32 event_id)
8999 {
9000         u64 val = event_id | (type << 32);
9001
9002         return hash_64(val, SWEVENT_HLIST_BITS);
9003 }
9004
9005 static inline struct hlist_head *
9006 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9007 {
9008         u64 hash = swevent_hash(type, event_id);
9009
9010         return &hlist->heads[hash];
9011 }
9012
9013 /* For the read side: events when they trigger */
9014 static inline struct hlist_head *
9015 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9016 {
9017         struct swevent_hlist *hlist;
9018
9019         hlist = rcu_dereference(swhash->swevent_hlist);
9020         if (!hlist)
9021                 return NULL;
9022
9023         return __find_swevent_head(hlist, type, event_id);
9024 }
9025
9026 /* For the event head insertion and removal in the hlist */
9027 static inline struct hlist_head *
9028 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9029 {
9030         struct swevent_hlist *hlist;
9031         u32 event_id = event->attr.config;
9032         u64 type = event->attr.type;
9033
9034         /*
9035          * Event scheduling is always serialized against hlist allocation
9036          * and release. Which makes the protected version suitable here.
9037          * The context lock guarantees that.
9038          */
9039         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9040                                           lockdep_is_held(&event->ctx->lock));
9041         if (!hlist)
9042                 return NULL;
9043
9044         return __find_swevent_head(hlist, type, event_id);
9045 }
9046
9047 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9048                                     u64 nr,
9049                                     struct perf_sample_data *data,
9050                                     struct pt_regs *regs)
9051 {
9052         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9053         struct perf_event *event;
9054         struct hlist_head *head;
9055
9056         rcu_read_lock();
9057         head = find_swevent_head_rcu(swhash, type, event_id);
9058         if (!head)
9059                 goto end;
9060
9061         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9062                 if (perf_swevent_match(event, type, event_id, data, regs))
9063                         perf_swevent_event(event, nr, data, regs);
9064         }
9065 end:
9066         rcu_read_unlock();
9067 }
9068
9069 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9070
9071 int perf_swevent_get_recursion_context(void)
9072 {
9073         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9074
9075         return get_recursion_context(swhash->recursion);
9076 }
9077 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9078
9079 void perf_swevent_put_recursion_context(int rctx)
9080 {
9081         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9082
9083         put_recursion_context(swhash->recursion, rctx);
9084 }
9085
9086 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9087 {
9088         struct perf_sample_data data;
9089
9090         if (WARN_ON_ONCE(!regs))
9091                 return;
9092
9093         perf_sample_data_init(&data, addr, 0);
9094         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9095 }
9096
9097 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9098 {
9099         int rctx;
9100
9101         preempt_disable_notrace();
9102         rctx = perf_swevent_get_recursion_context();
9103         if (unlikely(rctx < 0))
9104                 goto fail;
9105
9106         ___perf_sw_event(event_id, nr, regs, addr);
9107
9108         perf_swevent_put_recursion_context(rctx);
9109 fail:
9110         preempt_enable_notrace();
9111 }
9112
9113 static void perf_swevent_read(struct perf_event *event)
9114 {
9115 }
9116
9117 static int perf_swevent_add(struct perf_event *event, int flags)
9118 {
9119         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9120         struct hw_perf_event *hwc = &event->hw;
9121         struct hlist_head *head;
9122
9123         if (is_sampling_event(event)) {
9124                 hwc->last_period = hwc->sample_period;
9125                 perf_swevent_set_period(event);
9126         }
9127
9128         hwc->state = !(flags & PERF_EF_START);
9129
9130         head = find_swevent_head(swhash, event);
9131         if (WARN_ON_ONCE(!head))
9132                 return -EINVAL;
9133
9134         hlist_add_head_rcu(&event->hlist_entry, head);
9135         perf_event_update_userpage(event);
9136
9137         return 0;
9138 }
9139
9140 static void perf_swevent_del(struct perf_event *event, int flags)
9141 {
9142         hlist_del_rcu(&event->hlist_entry);
9143 }
9144
9145 static void perf_swevent_start(struct perf_event *event, int flags)
9146 {
9147         event->hw.state = 0;
9148 }
9149
9150 static void perf_swevent_stop(struct perf_event *event, int flags)
9151 {
9152         event->hw.state = PERF_HES_STOPPED;
9153 }
9154
9155 /* Deref the hlist from the update side */
9156 static inline struct swevent_hlist *
9157 swevent_hlist_deref(struct swevent_htable *swhash)
9158 {
9159         return rcu_dereference_protected(swhash->swevent_hlist,
9160                                          lockdep_is_held(&swhash->hlist_mutex));
9161 }
9162
9163 static void swevent_hlist_release(struct swevent_htable *swhash)
9164 {
9165         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9166
9167         if (!hlist)
9168                 return;
9169
9170         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9171         kfree_rcu(hlist, rcu_head);
9172 }
9173
9174 static void swevent_hlist_put_cpu(int cpu)
9175 {
9176         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9177
9178         mutex_lock(&swhash->hlist_mutex);
9179
9180         if (!--swhash->hlist_refcount)
9181                 swevent_hlist_release(swhash);
9182
9183         mutex_unlock(&swhash->hlist_mutex);
9184 }
9185
9186 static void swevent_hlist_put(void)
9187 {
9188         int cpu;
9189
9190         for_each_possible_cpu(cpu)
9191                 swevent_hlist_put_cpu(cpu);
9192 }
9193
9194 static int swevent_hlist_get_cpu(int cpu)
9195 {
9196         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9197         int err = 0;
9198
9199         mutex_lock(&swhash->hlist_mutex);
9200         if (!swevent_hlist_deref(swhash) &&
9201             cpumask_test_cpu(cpu, perf_online_mask)) {
9202                 struct swevent_hlist *hlist;
9203
9204                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9205                 if (!hlist) {
9206                         err = -ENOMEM;
9207                         goto exit;
9208                 }
9209                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9210         }
9211         swhash->hlist_refcount++;
9212 exit:
9213         mutex_unlock(&swhash->hlist_mutex);
9214
9215         return err;
9216 }
9217
9218 static int swevent_hlist_get(void)
9219 {
9220         int err, cpu, failed_cpu;
9221
9222         mutex_lock(&pmus_lock);
9223         for_each_possible_cpu(cpu) {
9224                 err = swevent_hlist_get_cpu(cpu);
9225                 if (err) {
9226                         failed_cpu = cpu;
9227                         goto fail;
9228                 }
9229         }
9230         mutex_unlock(&pmus_lock);
9231         return 0;
9232 fail:
9233         for_each_possible_cpu(cpu) {
9234                 if (cpu == failed_cpu)
9235                         break;
9236                 swevent_hlist_put_cpu(cpu);
9237         }
9238         mutex_unlock(&pmus_lock);
9239         return err;
9240 }
9241
9242 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9243
9244 static void sw_perf_event_destroy(struct perf_event *event)
9245 {
9246         u64 event_id = event->attr.config;
9247
9248         WARN_ON(event->parent);
9249
9250         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9251         swevent_hlist_put();
9252 }
9253
9254 static int perf_swevent_init(struct perf_event *event)
9255 {
9256         u64 event_id = event->attr.config;
9257
9258         if (event->attr.type != PERF_TYPE_SOFTWARE)
9259                 return -ENOENT;
9260
9261         /*
9262          * no branch sampling for software events
9263          */
9264         if (has_branch_stack(event))
9265                 return -EOPNOTSUPP;
9266
9267         switch (event_id) {
9268         case PERF_COUNT_SW_CPU_CLOCK:
9269         case PERF_COUNT_SW_TASK_CLOCK:
9270                 return -ENOENT;
9271
9272         default:
9273                 break;
9274         }
9275
9276         if (event_id >= PERF_COUNT_SW_MAX)
9277                 return -ENOENT;
9278
9279         if (!event->parent) {
9280                 int err;
9281
9282                 err = swevent_hlist_get();
9283                 if (err)
9284                         return err;
9285
9286                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9287                 event->destroy = sw_perf_event_destroy;
9288         }
9289
9290         return 0;
9291 }
9292
9293 static struct pmu perf_swevent = {
9294         .task_ctx_nr    = perf_sw_context,
9295
9296         .capabilities   = PERF_PMU_CAP_NO_NMI,
9297
9298         .event_init     = perf_swevent_init,
9299         .add            = perf_swevent_add,
9300         .del            = perf_swevent_del,
9301         .start          = perf_swevent_start,
9302         .stop           = perf_swevent_stop,
9303         .read           = perf_swevent_read,
9304 };
9305
9306 #ifdef CONFIG_EVENT_TRACING
9307
9308 static int perf_tp_filter_match(struct perf_event *event,
9309                                 struct perf_sample_data *data)
9310 {
9311         void *record = data->raw->frag.data;
9312
9313         /* only top level events have filters set */
9314         if (event->parent)
9315                 event = event->parent;
9316
9317         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9318                 return 1;
9319         return 0;
9320 }
9321
9322 static int perf_tp_event_match(struct perf_event *event,
9323                                 struct perf_sample_data *data,
9324                                 struct pt_regs *regs)
9325 {
9326         if (event->hw.state & PERF_HES_STOPPED)
9327                 return 0;
9328         /*
9329          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9330          */
9331         if (event->attr.exclude_kernel && !user_mode(regs))
9332                 return 0;
9333
9334         if (!perf_tp_filter_match(event, data))
9335                 return 0;
9336
9337         return 1;
9338 }
9339
9340 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9341                                struct trace_event_call *call, u64 count,
9342                                struct pt_regs *regs, struct hlist_head *head,
9343                                struct task_struct *task)
9344 {
9345         if (bpf_prog_array_valid(call)) {
9346                 *(struct pt_regs **)raw_data = regs;
9347                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9348                         perf_swevent_put_recursion_context(rctx);
9349                         return;
9350                 }
9351         }
9352         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9353                       rctx, task);
9354 }
9355 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9356
9357 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9358                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9359                    struct task_struct *task)
9360 {
9361         struct perf_sample_data data;
9362         struct perf_event *event;
9363
9364         struct perf_raw_record raw = {
9365                 .frag = {
9366                         .size = entry_size,
9367                         .data = record,
9368                 },
9369         };
9370
9371         perf_sample_data_init(&data, 0, 0);
9372         data.raw = &raw;
9373
9374         perf_trace_buf_update(record, event_type);
9375
9376         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9377                 if (perf_tp_event_match(event, &data, regs))
9378                         perf_swevent_event(event, count, &data, regs);
9379         }
9380
9381         /*
9382          * If we got specified a target task, also iterate its context and
9383          * deliver this event there too.
9384          */
9385         if (task && task != current) {
9386                 struct perf_event_context *ctx;
9387                 struct trace_entry *entry = record;
9388
9389                 rcu_read_lock();
9390                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9391                 if (!ctx)
9392                         goto unlock;
9393
9394                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9395                         if (event->cpu != smp_processor_id())
9396                                 continue;
9397                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9398                                 continue;
9399                         if (event->attr.config != entry->type)
9400                                 continue;
9401                         if (perf_tp_event_match(event, &data, regs))
9402                                 perf_swevent_event(event, count, &data, regs);
9403                 }
9404 unlock:
9405                 rcu_read_unlock();
9406         }
9407
9408         perf_swevent_put_recursion_context(rctx);
9409 }
9410 EXPORT_SYMBOL_GPL(perf_tp_event);
9411
9412 static void tp_perf_event_destroy(struct perf_event *event)
9413 {
9414         perf_trace_destroy(event);
9415 }
9416
9417 static int perf_tp_event_init(struct perf_event *event)
9418 {
9419         int err;
9420
9421         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9422                 return -ENOENT;
9423
9424         /*
9425          * no branch sampling for tracepoint events
9426          */
9427         if (has_branch_stack(event))
9428                 return -EOPNOTSUPP;
9429
9430         err = perf_trace_init(event);
9431         if (err)
9432                 return err;
9433
9434         event->destroy = tp_perf_event_destroy;
9435
9436         return 0;
9437 }
9438
9439 static struct pmu perf_tracepoint = {
9440         .task_ctx_nr    = perf_sw_context,
9441
9442         .event_init     = perf_tp_event_init,
9443         .add            = perf_trace_add,
9444         .del            = perf_trace_del,
9445         .start          = perf_swevent_start,
9446         .stop           = perf_swevent_stop,
9447         .read           = perf_swevent_read,
9448 };
9449
9450 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9451 /*
9452  * Flags in config, used by dynamic PMU kprobe and uprobe
9453  * The flags should match following PMU_FORMAT_ATTR().
9454  *
9455  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9456  *                               if not set, create kprobe/uprobe
9457  *
9458  * The following values specify a reference counter (or semaphore in the
9459  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9460  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9461  *
9462  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9463  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9464  */
9465 enum perf_probe_config {
9466         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9467         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9468         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9469 };
9470
9471 PMU_FORMAT_ATTR(retprobe, "config:0");
9472 #endif
9473
9474 #ifdef CONFIG_KPROBE_EVENTS
9475 static struct attribute *kprobe_attrs[] = {
9476         &format_attr_retprobe.attr,
9477         NULL,
9478 };
9479
9480 static struct attribute_group kprobe_format_group = {
9481         .name = "format",
9482         .attrs = kprobe_attrs,
9483 };
9484
9485 static const struct attribute_group *kprobe_attr_groups[] = {
9486         &kprobe_format_group,
9487         NULL,
9488 };
9489
9490 static int perf_kprobe_event_init(struct perf_event *event);
9491 static struct pmu perf_kprobe = {
9492         .task_ctx_nr    = perf_sw_context,
9493         .event_init     = perf_kprobe_event_init,
9494         .add            = perf_trace_add,
9495         .del            = perf_trace_del,
9496         .start          = perf_swevent_start,
9497         .stop           = perf_swevent_stop,
9498         .read           = perf_swevent_read,
9499         .attr_groups    = kprobe_attr_groups,
9500 };
9501
9502 static int perf_kprobe_event_init(struct perf_event *event)
9503 {
9504         int err;
9505         bool is_retprobe;
9506
9507         if (event->attr.type != perf_kprobe.type)
9508                 return -ENOENT;
9509
9510         if (!perfmon_capable())
9511                 return -EACCES;
9512
9513         /*
9514          * no branch sampling for probe events
9515          */
9516         if (has_branch_stack(event))
9517                 return -EOPNOTSUPP;
9518
9519         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9520         err = perf_kprobe_init(event, is_retprobe);
9521         if (err)
9522                 return err;
9523
9524         event->destroy = perf_kprobe_destroy;
9525
9526         return 0;
9527 }
9528 #endif /* CONFIG_KPROBE_EVENTS */
9529
9530 #ifdef CONFIG_UPROBE_EVENTS
9531 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9532
9533 static struct attribute *uprobe_attrs[] = {
9534         &format_attr_retprobe.attr,
9535         &format_attr_ref_ctr_offset.attr,
9536         NULL,
9537 };
9538
9539 static struct attribute_group uprobe_format_group = {
9540         .name = "format",
9541         .attrs = uprobe_attrs,
9542 };
9543
9544 static const struct attribute_group *uprobe_attr_groups[] = {
9545         &uprobe_format_group,
9546         NULL,
9547 };
9548
9549 static int perf_uprobe_event_init(struct perf_event *event);
9550 static struct pmu perf_uprobe = {
9551         .task_ctx_nr    = perf_sw_context,
9552         .event_init     = perf_uprobe_event_init,
9553         .add            = perf_trace_add,
9554         .del            = perf_trace_del,
9555         .start          = perf_swevent_start,
9556         .stop           = perf_swevent_stop,
9557         .read           = perf_swevent_read,
9558         .attr_groups    = uprobe_attr_groups,
9559 };
9560
9561 static int perf_uprobe_event_init(struct perf_event *event)
9562 {
9563         int err;
9564         unsigned long ref_ctr_offset;
9565         bool is_retprobe;
9566
9567         if (event->attr.type != perf_uprobe.type)
9568                 return -ENOENT;
9569
9570         if (!perfmon_capable())
9571                 return -EACCES;
9572
9573         /*
9574          * no branch sampling for probe events
9575          */
9576         if (has_branch_stack(event))
9577                 return -EOPNOTSUPP;
9578
9579         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9580         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9581         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9582         if (err)
9583                 return err;
9584
9585         event->destroy = perf_uprobe_destroy;
9586
9587         return 0;
9588 }
9589 #endif /* CONFIG_UPROBE_EVENTS */
9590
9591 static inline void perf_tp_register(void)
9592 {
9593         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9594 #ifdef CONFIG_KPROBE_EVENTS
9595         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9596 #endif
9597 #ifdef CONFIG_UPROBE_EVENTS
9598         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9599 #endif
9600 }
9601
9602 static void perf_event_free_filter(struct perf_event *event)
9603 {
9604         ftrace_profile_free_filter(event);
9605 }
9606
9607 #ifdef CONFIG_BPF_SYSCALL
9608 static void bpf_overflow_handler(struct perf_event *event,
9609                                  struct perf_sample_data *data,
9610                                  struct pt_regs *regs)
9611 {
9612         struct bpf_perf_event_data_kern ctx = {
9613                 .data = data,
9614                 .event = event,
9615         };
9616         int ret = 0;
9617
9618         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9619         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9620                 goto out;
9621         rcu_read_lock();
9622         ret = BPF_PROG_RUN(event->prog, &ctx);
9623         rcu_read_unlock();
9624 out:
9625         __this_cpu_dec(bpf_prog_active);
9626         if (!ret)
9627                 return;
9628
9629         event->orig_overflow_handler(event, data, regs);
9630 }
9631
9632 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9633 {
9634         struct bpf_prog *prog;
9635
9636         if (event->overflow_handler_context)
9637                 /* hw breakpoint or kernel counter */
9638                 return -EINVAL;
9639
9640         if (event->prog)
9641                 return -EEXIST;
9642
9643         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
9644         if (IS_ERR(prog))
9645                 return PTR_ERR(prog);
9646
9647         if (event->attr.precise_ip &&
9648             prog->call_get_stack &&
9649             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9650              event->attr.exclude_callchain_kernel ||
9651              event->attr.exclude_callchain_user)) {
9652                 /*
9653                  * On perf_event with precise_ip, calling bpf_get_stack()
9654                  * may trigger unwinder warnings and occasional crashes.
9655                  * bpf_get_[stack|stackid] works around this issue by using
9656                  * callchain attached to perf_sample_data. If the
9657                  * perf_event does not full (kernel and user) callchain
9658                  * attached to perf_sample_data, do not allow attaching BPF
9659                  * program that calls bpf_get_[stack|stackid].
9660                  */
9661                 bpf_prog_put(prog);
9662                 return -EPROTO;
9663         }
9664
9665         event->prog = prog;
9666         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9667         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9668         return 0;
9669 }
9670
9671 static void perf_event_free_bpf_handler(struct perf_event *event)
9672 {
9673         struct bpf_prog *prog = event->prog;
9674
9675         if (!prog)
9676                 return;
9677
9678         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9679         event->prog = NULL;
9680         bpf_prog_put(prog);
9681 }
9682 #else
9683 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
9684 {
9685         return -EOPNOTSUPP;
9686 }
9687 static void perf_event_free_bpf_handler(struct perf_event *event)
9688 {
9689 }
9690 #endif
9691
9692 /*
9693  * returns true if the event is a tracepoint, or a kprobe/upprobe created
9694  * with perf_event_open()
9695  */
9696 static inline bool perf_event_is_tracing(struct perf_event *event)
9697 {
9698         if (event->pmu == &perf_tracepoint)
9699                 return true;
9700 #ifdef CONFIG_KPROBE_EVENTS
9701         if (event->pmu == &perf_kprobe)
9702                 return true;
9703 #endif
9704 #ifdef CONFIG_UPROBE_EVENTS
9705         if (event->pmu == &perf_uprobe)
9706                 return true;
9707 #endif
9708         return false;
9709 }
9710
9711 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9712 {
9713         bool is_kprobe, is_tracepoint, is_syscall_tp;
9714         struct bpf_prog *prog;
9715         int ret;
9716
9717         if (!perf_event_is_tracing(event))
9718                 return perf_event_set_bpf_handler(event, prog_fd);
9719
9720         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
9721         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
9722         is_syscall_tp = is_syscall_trace_event(event->tp_event);
9723         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
9724                 /* bpf programs can only be attached to u/kprobe or tracepoint */
9725                 return -EINVAL;
9726
9727         prog = bpf_prog_get(prog_fd);
9728         if (IS_ERR(prog))
9729                 return PTR_ERR(prog);
9730
9731         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
9732             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
9733             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
9734                 /* valid fd, but invalid bpf program type */
9735                 bpf_prog_put(prog);
9736                 return -EINVAL;
9737         }
9738
9739         /* Kprobe override only works for kprobes, not uprobes. */
9740         if (prog->kprobe_override &&
9741             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
9742                 bpf_prog_put(prog);
9743                 return -EINVAL;
9744         }
9745
9746         if (is_tracepoint || is_syscall_tp) {
9747                 int off = trace_event_get_offsets(event->tp_event);
9748
9749                 if (prog->aux->max_ctx_offset > off) {
9750                         bpf_prog_put(prog);
9751                         return -EACCES;
9752                 }
9753         }
9754
9755         ret = perf_event_attach_bpf_prog(event, prog);
9756         if (ret)
9757                 bpf_prog_put(prog);
9758         return ret;
9759 }
9760
9761 static void perf_event_free_bpf_prog(struct perf_event *event)
9762 {
9763         if (!perf_event_is_tracing(event)) {
9764                 perf_event_free_bpf_handler(event);
9765                 return;
9766         }
9767         perf_event_detach_bpf_prog(event);
9768 }
9769
9770 #else
9771
9772 static inline void perf_tp_register(void)
9773 {
9774 }
9775
9776 static void perf_event_free_filter(struct perf_event *event)
9777 {
9778 }
9779
9780 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
9781 {
9782         return -ENOENT;
9783 }
9784
9785 static void perf_event_free_bpf_prog(struct perf_event *event)
9786 {
9787 }
9788 #endif /* CONFIG_EVENT_TRACING */
9789
9790 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9791 void perf_bp_event(struct perf_event *bp, void *data)
9792 {
9793         struct perf_sample_data sample;
9794         struct pt_regs *regs = data;
9795
9796         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
9797
9798         if (!bp->hw.state && !perf_exclude_event(bp, regs))
9799                 perf_swevent_event(bp, 1, &sample, regs);
9800 }
9801 #endif
9802
9803 /*
9804  * Allocate a new address filter
9805  */
9806 static struct perf_addr_filter *
9807 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
9808 {
9809         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
9810         struct perf_addr_filter *filter;
9811
9812         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
9813         if (!filter)
9814                 return NULL;
9815
9816         INIT_LIST_HEAD(&filter->entry);
9817         list_add_tail(&filter->entry, filters);
9818
9819         return filter;
9820 }
9821
9822 static void free_filters_list(struct list_head *filters)
9823 {
9824         struct perf_addr_filter *filter, *iter;
9825
9826         list_for_each_entry_safe(filter, iter, filters, entry) {
9827                 path_put(&filter->path);
9828                 list_del(&filter->entry);
9829                 kfree(filter);
9830         }
9831 }
9832
9833 /*
9834  * Free existing address filters and optionally install new ones
9835  */
9836 static void perf_addr_filters_splice(struct perf_event *event,
9837                                      struct list_head *head)
9838 {
9839         unsigned long flags;
9840         LIST_HEAD(list);
9841
9842         if (!has_addr_filter(event))
9843                 return;
9844
9845         /* don't bother with children, they don't have their own filters */
9846         if (event->parent)
9847                 return;
9848
9849         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
9850
9851         list_splice_init(&event->addr_filters.list, &list);
9852         if (head)
9853                 list_splice(head, &event->addr_filters.list);
9854
9855         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
9856
9857         free_filters_list(&list);
9858 }
9859
9860 /*
9861  * Scan through mm's vmas and see if one of them matches the
9862  * @filter; if so, adjust filter's address range.
9863  * Called with mm::mmap_lock down for reading.
9864  */
9865 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
9866                                    struct mm_struct *mm,
9867                                    struct perf_addr_filter_range *fr)
9868 {
9869         struct vm_area_struct *vma;
9870
9871         for (vma = mm->mmap; vma; vma = vma->vm_next) {
9872                 if (!vma->vm_file)
9873                         continue;
9874
9875                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
9876                         return;
9877         }
9878 }
9879
9880 /*
9881  * Update event's address range filters based on the
9882  * task's existing mappings, if any.
9883  */
9884 static void perf_event_addr_filters_apply(struct perf_event *event)
9885 {
9886         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
9887         struct task_struct *task = READ_ONCE(event->ctx->task);
9888         struct perf_addr_filter *filter;
9889         struct mm_struct *mm = NULL;
9890         unsigned int count = 0;
9891         unsigned long flags;
9892
9893         /*
9894          * We may observe TASK_TOMBSTONE, which means that the event tear-down
9895          * will stop on the parent's child_mutex that our caller is also holding
9896          */
9897         if (task == TASK_TOMBSTONE)
9898                 return;
9899
9900         if (ifh->nr_file_filters) {
9901                 mm = get_task_mm(event->ctx->task);
9902                 if (!mm)
9903                         goto restart;
9904
9905                 mmap_read_lock(mm);
9906         }
9907
9908         raw_spin_lock_irqsave(&ifh->lock, flags);
9909         list_for_each_entry(filter, &ifh->list, entry) {
9910                 if (filter->path.dentry) {
9911                         /*
9912                          * Adjust base offset if the filter is associated to a
9913                          * binary that needs to be mapped:
9914                          */
9915                         event->addr_filter_ranges[count].start = 0;
9916                         event->addr_filter_ranges[count].size = 0;
9917
9918                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
9919                 } else {
9920                         event->addr_filter_ranges[count].start = filter->offset;
9921                         event->addr_filter_ranges[count].size  = filter->size;
9922                 }
9923
9924                 count++;
9925         }
9926
9927         event->addr_filters_gen++;
9928         raw_spin_unlock_irqrestore(&ifh->lock, flags);
9929
9930         if (ifh->nr_file_filters) {
9931                 mmap_read_unlock(mm);
9932
9933                 mmput(mm);
9934         }
9935
9936 restart:
9937         perf_event_stop(event, 1);
9938 }
9939
9940 /*
9941  * Address range filtering: limiting the data to certain
9942  * instruction address ranges. Filters are ioctl()ed to us from
9943  * userspace as ascii strings.
9944  *
9945  * Filter string format:
9946  *
9947  * ACTION RANGE_SPEC
9948  * where ACTION is one of the
9949  *  * "filter": limit the trace to this region
9950  *  * "start": start tracing from this address
9951  *  * "stop": stop tracing at this address/region;
9952  * RANGE_SPEC is
9953  *  * for kernel addresses: <start address>[/<size>]
9954  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
9955  *
9956  * if <size> is not specified or is zero, the range is treated as a single
9957  * address; not valid for ACTION=="filter".
9958  */
9959 enum {
9960         IF_ACT_NONE = -1,
9961         IF_ACT_FILTER,
9962         IF_ACT_START,
9963         IF_ACT_STOP,
9964         IF_SRC_FILE,
9965         IF_SRC_KERNEL,
9966         IF_SRC_FILEADDR,
9967         IF_SRC_KERNELADDR,
9968 };
9969
9970 enum {
9971         IF_STATE_ACTION = 0,
9972         IF_STATE_SOURCE,
9973         IF_STATE_END,
9974 };
9975
9976 static const match_table_t if_tokens = {
9977         { IF_ACT_FILTER,        "filter" },
9978         { IF_ACT_START,         "start" },
9979         { IF_ACT_STOP,          "stop" },
9980         { IF_SRC_FILE,          "%u/%u@%s" },
9981         { IF_SRC_KERNEL,        "%u/%u" },
9982         { IF_SRC_FILEADDR,      "%u@%s" },
9983         { IF_SRC_KERNELADDR,    "%u" },
9984         { IF_ACT_NONE,          NULL },
9985 };
9986
9987 /*
9988  * Address filter string parser
9989  */
9990 static int
9991 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
9992                              struct list_head *filters)
9993 {
9994         struct perf_addr_filter *filter = NULL;
9995         char *start, *orig, *filename = NULL;
9996         substring_t args[MAX_OPT_ARGS];
9997         int state = IF_STATE_ACTION, token;
9998         unsigned int kernel = 0;
9999         int ret = -EINVAL;
10000
10001         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10002         if (!fstr)
10003                 return -ENOMEM;
10004
10005         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10006                 static const enum perf_addr_filter_action_t actions[] = {
10007                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10008                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10009                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10010                 };
10011                 ret = -EINVAL;
10012
10013                 if (!*start)
10014                         continue;
10015
10016                 /* filter definition begins */
10017                 if (state == IF_STATE_ACTION) {
10018                         filter = perf_addr_filter_new(event, filters);
10019                         if (!filter)
10020                                 goto fail;
10021                 }
10022
10023                 token = match_token(start, if_tokens, args);
10024                 switch (token) {
10025                 case IF_ACT_FILTER:
10026                 case IF_ACT_START:
10027                 case IF_ACT_STOP:
10028                         if (state != IF_STATE_ACTION)
10029                                 goto fail;
10030
10031                         filter->action = actions[token];
10032                         state = IF_STATE_SOURCE;
10033                         break;
10034
10035                 case IF_SRC_KERNELADDR:
10036                 case IF_SRC_KERNEL:
10037                         kernel = 1;
10038                         /* fall through */
10039
10040                 case IF_SRC_FILEADDR:
10041                 case IF_SRC_FILE:
10042                         if (state != IF_STATE_SOURCE)
10043                                 goto fail;
10044
10045                         *args[0].to = 0;
10046                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10047                         if (ret)
10048                                 goto fail;
10049
10050                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10051                                 *args[1].to = 0;
10052                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10053                                 if (ret)
10054                                         goto fail;
10055                         }
10056
10057                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10058                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10059
10060                                 filename = match_strdup(&args[fpos]);
10061                                 if (!filename) {
10062                                         ret = -ENOMEM;
10063                                         goto fail;
10064                                 }
10065                         }
10066
10067                         state = IF_STATE_END;
10068                         break;
10069
10070                 default:
10071                         goto fail;
10072                 }
10073
10074                 /*
10075                  * Filter definition is fully parsed, validate and install it.
10076                  * Make sure that it doesn't contradict itself or the event's
10077                  * attribute.
10078                  */
10079                 if (state == IF_STATE_END) {
10080                         ret = -EINVAL;
10081                         if (kernel && event->attr.exclude_kernel)
10082                                 goto fail;
10083
10084                         /*
10085                          * ACTION "filter" must have a non-zero length region
10086                          * specified.
10087                          */
10088                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10089                             !filter->size)
10090                                 goto fail;
10091
10092                         if (!kernel) {
10093                                 if (!filename)
10094                                         goto fail;
10095
10096                                 /*
10097                                  * For now, we only support file-based filters
10098                                  * in per-task events; doing so for CPU-wide
10099                                  * events requires additional context switching
10100                                  * trickery, since same object code will be
10101                                  * mapped at different virtual addresses in
10102                                  * different processes.
10103                                  */
10104                                 ret = -EOPNOTSUPP;
10105                                 if (!event->ctx->task)
10106                                         goto fail_free_name;
10107
10108                                 /* look up the path and grab its inode */
10109                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10110                                                 &filter->path);
10111                                 if (ret)
10112                                         goto fail_free_name;
10113
10114                                 kfree(filename);
10115                                 filename = NULL;
10116
10117                                 ret = -EINVAL;
10118                                 if (!filter->path.dentry ||
10119                                     !S_ISREG(d_inode(filter->path.dentry)
10120                                              ->i_mode))
10121                                         goto fail;
10122
10123                                 event->addr_filters.nr_file_filters++;
10124                         }
10125
10126                         /* ready to consume more filters */
10127                         state = IF_STATE_ACTION;
10128                         filter = NULL;
10129                 }
10130         }
10131
10132         if (state != IF_STATE_ACTION)
10133                 goto fail;
10134
10135         kfree(orig);
10136
10137         return 0;
10138
10139 fail_free_name:
10140         kfree(filename);
10141 fail:
10142         free_filters_list(filters);
10143         kfree(orig);
10144
10145         return ret;
10146 }
10147
10148 static int
10149 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10150 {
10151         LIST_HEAD(filters);
10152         int ret;
10153
10154         /*
10155          * Since this is called in perf_ioctl() path, we're already holding
10156          * ctx::mutex.
10157          */
10158         lockdep_assert_held(&event->ctx->mutex);
10159
10160         if (WARN_ON_ONCE(event->parent))
10161                 return -EINVAL;
10162
10163         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10164         if (ret)
10165                 goto fail_clear_files;
10166
10167         ret = event->pmu->addr_filters_validate(&filters);
10168         if (ret)
10169                 goto fail_free_filters;
10170
10171         /* remove existing filters, if any */
10172         perf_addr_filters_splice(event, &filters);
10173
10174         /* install new filters */
10175         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10176
10177         return ret;
10178
10179 fail_free_filters:
10180         free_filters_list(&filters);
10181
10182 fail_clear_files:
10183         event->addr_filters.nr_file_filters = 0;
10184
10185         return ret;
10186 }
10187
10188 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10189 {
10190         int ret = -EINVAL;
10191         char *filter_str;
10192
10193         filter_str = strndup_user(arg, PAGE_SIZE);
10194         if (IS_ERR(filter_str))
10195                 return PTR_ERR(filter_str);
10196
10197 #ifdef CONFIG_EVENT_TRACING
10198         if (perf_event_is_tracing(event)) {
10199                 struct perf_event_context *ctx = event->ctx;
10200
10201                 /*
10202                  * Beware, here be dragons!!
10203                  *
10204                  * the tracepoint muck will deadlock against ctx->mutex, but
10205                  * the tracepoint stuff does not actually need it. So
10206                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10207                  * already have a reference on ctx.
10208                  *
10209                  * This can result in event getting moved to a different ctx,
10210                  * but that does not affect the tracepoint state.
10211                  */
10212                 mutex_unlock(&ctx->mutex);
10213                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10214                 mutex_lock(&ctx->mutex);
10215         } else
10216 #endif
10217         if (has_addr_filter(event))
10218                 ret = perf_event_set_addr_filter(event, filter_str);
10219
10220         kfree(filter_str);
10221         return ret;
10222 }
10223
10224 /*
10225  * hrtimer based swevent callback
10226  */
10227
10228 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10229 {
10230         enum hrtimer_restart ret = HRTIMER_RESTART;
10231         struct perf_sample_data data;
10232         struct pt_regs *regs;
10233         struct perf_event *event;
10234         u64 period;
10235
10236         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10237
10238         if (event->state != PERF_EVENT_STATE_ACTIVE)
10239                 return HRTIMER_NORESTART;
10240
10241         event->pmu->read(event);
10242
10243         perf_sample_data_init(&data, 0, event->hw.last_period);
10244         regs = get_irq_regs();
10245
10246         if (regs && !perf_exclude_event(event, regs)) {
10247                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10248                         if (__perf_event_overflow(event, 1, &data, regs))
10249                                 ret = HRTIMER_NORESTART;
10250         }
10251
10252         period = max_t(u64, 10000, event->hw.sample_period);
10253         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10254
10255         return ret;
10256 }
10257
10258 static void perf_swevent_start_hrtimer(struct perf_event *event)
10259 {
10260         struct hw_perf_event *hwc = &event->hw;
10261         s64 period;
10262
10263         if (!is_sampling_event(event))
10264                 return;
10265
10266         period = local64_read(&hwc->period_left);
10267         if (period) {
10268                 if (period < 0)
10269                         period = 10000;
10270
10271                 local64_set(&hwc->period_left, 0);
10272         } else {
10273                 period = max_t(u64, 10000, hwc->sample_period);
10274         }
10275         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10276                       HRTIMER_MODE_REL_PINNED_HARD);
10277 }
10278
10279 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10280 {
10281         struct hw_perf_event *hwc = &event->hw;
10282
10283         if (is_sampling_event(event)) {
10284                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10285                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10286
10287                 hrtimer_cancel(&hwc->hrtimer);
10288         }
10289 }
10290
10291 static void perf_swevent_init_hrtimer(struct perf_event *event)
10292 {
10293         struct hw_perf_event *hwc = &event->hw;
10294
10295         if (!is_sampling_event(event))
10296                 return;
10297
10298         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10299         hwc->hrtimer.function = perf_swevent_hrtimer;
10300
10301         /*
10302          * Since hrtimers have a fixed rate, we can do a static freq->period
10303          * mapping and avoid the whole period adjust feedback stuff.
10304          */
10305         if (event->attr.freq) {
10306                 long freq = event->attr.sample_freq;
10307
10308                 event->attr.sample_period = NSEC_PER_SEC / freq;
10309                 hwc->sample_period = event->attr.sample_period;
10310                 local64_set(&hwc->period_left, hwc->sample_period);
10311                 hwc->last_period = hwc->sample_period;
10312                 event->attr.freq = 0;
10313         }
10314 }
10315
10316 /*
10317  * Software event: cpu wall time clock
10318  */
10319
10320 static void cpu_clock_event_update(struct perf_event *event)
10321 {
10322         s64 prev;
10323         u64 now;
10324
10325         now = local_clock();
10326         prev = local64_xchg(&event->hw.prev_count, now);
10327         local64_add(now - prev, &event->count);
10328 }
10329
10330 static void cpu_clock_event_start(struct perf_event *event, int flags)
10331 {
10332         local64_set(&event->hw.prev_count, local_clock());
10333         perf_swevent_start_hrtimer(event);
10334 }
10335
10336 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10337 {
10338         perf_swevent_cancel_hrtimer(event);
10339         cpu_clock_event_update(event);
10340 }
10341
10342 static int cpu_clock_event_add(struct perf_event *event, int flags)
10343 {
10344         if (flags & PERF_EF_START)
10345                 cpu_clock_event_start(event, flags);
10346         perf_event_update_userpage(event);
10347
10348         return 0;
10349 }
10350
10351 static void cpu_clock_event_del(struct perf_event *event, int flags)
10352 {
10353         cpu_clock_event_stop(event, flags);
10354 }
10355
10356 static void cpu_clock_event_read(struct perf_event *event)
10357 {
10358         cpu_clock_event_update(event);
10359 }
10360
10361 static int cpu_clock_event_init(struct perf_event *event)
10362 {
10363         if (event->attr.type != PERF_TYPE_SOFTWARE)
10364                 return -ENOENT;
10365
10366         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10367                 return -ENOENT;
10368
10369         /*
10370          * no branch sampling for software events
10371          */
10372         if (has_branch_stack(event))
10373                 return -EOPNOTSUPP;
10374
10375         perf_swevent_init_hrtimer(event);
10376
10377         return 0;
10378 }
10379
10380 static struct pmu perf_cpu_clock = {
10381         .task_ctx_nr    = perf_sw_context,
10382
10383         .capabilities   = PERF_PMU_CAP_NO_NMI,
10384
10385         .event_init     = cpu_clock_event_init,
10386         .add            = cpu_clock_event_add,
10387         .del            = cpu_clock_event_del,
10388         .start          = cpu_clock_event_start,
10389         .stop           = cpu_clock_event_stop,
10390         .read           = cpu_clock_event_read,
10391 };
10392
10393 /*
10394  * Software event: task time clock
10395  */
10396
10397 static void task_clock_event_update(struct perf_event *event, u64 now)
10398 {
10399         u64 prev;
10400         s64 delta;
10401
10402         prev = local64_xchg(&event->hw.prev_count, now);
10403         delta = now - prev;
10404         local64_add(delta, &event->count);
10405 }
10406
10407 static void task_clock_event_start(struct perf_event *event, int flags)
10408 {
10409         local64_set(&event->hw.prev_count, event->ctx->time);
10410         perf_swevent_start_hrtimer(event);
10411 }
10412
10413 static void task_clock_event_stop(struct perf_event *event, int flags)
10414 {
10415         perf_swevent_cancel_hrtimer(event);
10416         task_clock_event_update(event, event->ctx->time);
10417 }
10418
10419 static int task_clock_event_add(struct perf_event *event, int flags)
10420 {
10421         if (flags & PERF_EF_START)
10422                 task_clock_event_start(event, flags);
10423         perf_event_update_userpage(event);
10424
10425         return 0;
10426 }
10427
10428 static void task_clock_event_del(struct perf_event *event, int flags)
10429 {
10430         task_clock_event_stop(event, PERF_EF_UPDATE);
10431 }
10432
10433 static void task_clock_event_read(struct perf_event *event)
10434 {
10435         u64 now = perf_clock();
10436         u64 delta = now - event->ctx->timestamp;
10437         u64 time = event->ctx->time + delta;
10438
10439         task_clock_event_update(event, time);
10440 }
10441
10442 static int task_clock_event_init(struct perf_event *event)
10443 {
10444         if (event->attr.type != PERF_TYPE_SOFTWARE)
10445                 return -ENOENT;
10446
10447         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10448                 return -ENOENT;
10449
10450         /*
10451          * no branch sampling for software events
10452          */
10453         if (has_branch_stack(event))
10454                 return -EOPNOTSUPP;
10455
10456         perf_swevent_init_hrtimer(event);
10457
10458         return 0;
10459 }
10460
10461 static struct pmu perf_task_clock = {
10462         .task_ctx_nr    = perf_sw_context,
10463
10464         .capabilities   = PERF_PMU_CAP_NO_NMI,
10465
10466         .event_init     = task_clock_event_init,
10467         .add            = task_clock_event_add,
10468         .del            = task_clock_event_del,
10469         .start          = task_clock_event_start,
10470         .stop           = task_clock_event_stop,
10471         .read           = task_clock_event_read,
10472 };
10473
10474 static void perf_pmu_nop_void(struct pmu *pmu)
10475 {
10476 }
10477
10478 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10479 {
10480 }
10481
10482 static int perf_pmu_nop_int(struct pmu *pmu)
10483 {
10484         return 0;
10485 }
10486
10487 static int perf_event_nop_int(struct perf_event *event, u64 value)
10488 {
10489         return 0;
10490 }
10491
10492 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10493
10494 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10495 {
10496         __this_cpu_write(nop_txn_flags, flags);
10497
10498         if (flags & ~PERF_PMU_TXN_ADD)
10499                 return;
10500
10501         perf_pmu_disable(pmu);
10502 }
10503
10504 static int perf_pmu_commit_txn(struct pmu *pmu)
10505 {
10506         unsigned int flags = __this_cpu_read(nop_txn_flags);
10507
10508         __this_cpu_write(nop_txn_flags, 0);
10509
10510         if (flags & ~PERF_PMU_TXN_ADD)
10511                 return 0;
10512
10513         perf_pmu_enable(pmu);
10514         return 0;
10515 }
10516
10517 static void perf_pmu_cancel_txn(struct pmu *pmu)
10518 {
10519         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10520
10521         __this_cpu_write(nop_txn_flags, 0);
10522
10523         if (flags & ~PERF_PMU_TXN_ADD)
10524                 return;
10525
10526         perf_pmu_enable(pmu);
10527 }
10528
10529 static int perf_event_idx_default(struct perf_event *event)
10530 {
10531         return 0;
10532 }
10533
10534 /*
10535  * Ensures all contexts with the same task_ctx_nr have the same
10536  * pmu_cpu_context too.
10537  */
10538 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10539 {
10540         struct pmu *pmu;
10541
10542         if (ctxn < 0)
10543                 return NULL;
10544
10545         list_for_each_entry(pmu, &pmus, entry) {
10546                 if (pmu->task_ctx_nr == ctxn)
10547                         return pmu->pmu_cpu_context;
10548         }
10549
10550         return NULL;
10551 }
10552
10553 static void free_pmu_context(struct pmu *pmu)
10554 {
10555         /*
10556          * Static contexts such as perf_sw_context have a global lifetime
10557          * and may be shared between different PMUs. Avoid freeing them
10558          * when a single PMU is going away.
10559          */
10560         if (pmu->task_ctx_nr > perf_invalid_context)
10561                 return;
10562
10563         free_percpu(pmu->pmu_cpu_context);
10564 }
10565
10566 /*
10567  * Let userspace know that this PMU supports address range filtering:
10568  */
10569 static ssize_t nr_addr_filters_show(struct device *dev,
10570                                     struct device_attribute *attr,
10571                                     char *page)
10572 {
10573         struct pmu *pmu = dev_get_drvdata(dev);
10574
10575         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10576 }
10577 DEVICE_ATTR_RO(nr_addr_filters);
10578
10579 static struct idr pmu_idr;
10580
10581 static ssize_t
10582 type_show(struct device *dev, struct device_attribute *attr, char *page)
10583 {
10584         struct pmu *pmu = dev_get_drvdata(dev);
10585
10586         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10587 }
10588 static DEVICE_ATTR_RO(type);
10589
10590 static ssize_t
10591 perf_event_mux_interval_ms_show(struct device *dev,
10592                                 struct device_attribute *attr,
10593                                 char *page)
10594 {
10595         struct pmu *pmu = dev_get_drvdata(dev);
10596
10597         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10598 }
10599
10600 static DEFINE_MUTEX(mux_interval_mutex);
10601
10602 static ssize_t
10603 perf_event_mux_interval_ms_store(struct device *dev,
10604                                  struct device_attribute *attr,
10605                                  const char *buf, size_t count)
10606 {
10607         struct pmu *pmu = dev_get_drvdata(dev);
10608         int timer, cpu, ret;
10609
10610         ret = kstrtoint(buf, 0, &timer);
10611         if (ret)
10612                 return ret;
10613
10614         if (timer < 1)
10615                 return -EINVAL;
10616
10617         /* same value, noting to do */
10618         if (timer == pmu->hrtimer_interval_ms)
10619                 return count;
10620
10621         mutex_lock(&mux_interval_mutex);
10622         pmu->hrtimer_interval_ms = timer;
10623
10624         /* update all cpuctx for this PMU */
10625         cpus_read_lock();
10626         for_each_online_cpu(cpu) {
10627                 struct perf_cpu_context *cpuctx;
10628                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10629                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10630
10631                 cpu_function_call(cpu,
10632                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10633         }
10634         cpus_read_unlock();
10635         mutex_unlock(&mux_interval_mutex);
10636
10637         return count;
10638 }
10639 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10640
10641 static struct attribute *pmu_dev_attrs[] = {
10642         &dev_attr_type.attr,
10643         &dev_attr_perf_event_mux_interval_ms.attr,
10644         NULL,
10645 };
10646 ATTRIBUTE_GROUPS(pmu_dev);
10647
10648 static int pmu_bus_running;
10649 static struct bus_type pmu_bus = {
10650         .name           = "event_source",
10651         .dev_groups     = pmu_dev_groups,
10652 };
10653
10654 static void pmu_dev_release(struct device *dev)
10655 {
10656         kfree(dev);
10657 }
10658
10659 static int pmu_dev_alloc(struct pmu *pmu)
10660 {
10661         int ret = -ENOMEM;
10662
10663         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10664         if (!pmu->dev)
10665                 goto out;
10666
10667         pmu->dev->groups = pmu->attr_groups;
10668         device_initialize(pmu->dev);
10669         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10670         if (ret)
10671                 goto free_dev;
10672
10673         dev_set_drvdata(pmu->dev, pmu);
10674         pmu->dev->bus = &pmu_bus;
10675         pmu->dev->release = pmu_dev_release;
10676         ret = device_add(pmu->dev);
10677         if (ret)
10678                 goto free_dev;
10679
10680         /* For PMUs with address filters, throw in an extra attribute: */
10681         if (pmu->nr_addr_filters)
10682                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10683
10684         if (ret)
10685                 goto del_dev;
10686
10687         if (pmu->attr_update)
10688                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10689
10690         if (ret)
10691                 goto del_dev;
10692
10693 out:
10694         return ret;
10695
10696 del_dev:
10697         device_del(pmu->dev);
10698
10699 free_dev:
10700         put_device(pmu->dev);
10701         goto out;
10702 }
10703
10704 static struct lock_class_key cpuctx_mutex;
10705 static struct lock_class_key cpuctx_lock;
10706
10707 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
10708 {
10709         int cpu, ret, max = PERF_TYPE_MAX;
10710
10711         mutex_lock(&pmus_lock);
10712         ret = -ENOMEM;
10713         pmu->pmu_disable_count = alloc_percpu(int);
10714         if (!pmu->pmu_disable_count)
10715                 goto unlock;
10716
10717         pmu->type = -1;
10718         if (!name)
10719                 goto skip_type;
10720         pmu->name = name;
10721
10722         if (type != PERF_TYPE_SOFTWARE) {
10723                 if (type >= 0)
10724                         max = type;
10725
10726                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
10727                 if (ret < 0)
10728                         goto free_pdc;
10729
10730                 WARN_ON(type >= 0 && ret != type);
10731
10732                 type = ret;
10733         }
10734         pmu->type = type;
10735
10736         if (pmu_bus_running) {
10737                 ret = pmu_dev_alloc(pmu);
10738                 if (ret)
10739                         goto free_idr;
10740         }
10741
10742 skip_type:
10743         if (pmu->task_ctx_nr == perf_hw_context) {
10744                 static int hw_context_taken = 0;
10745
10746                 /*
10747                  * Other than systems with heterogeneous CPUs, it never makes
10748                  * sense for two PMUs to share perf_hw_context. PMUs which are
10749                  * uncore must use perf_invalid_context.
10750                  */
10751                 if (WARN_ON_ONCE(hw_context_taken &&
10752                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
10753                         pmu->task_ctx_nr = perf_invalid_context;
10754
10755                 hw_context_taken = 1;
10756         }
10757
10758         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
10759         if (pmu->pmu_cpu_context)
10760                 goto got_cpu_context;
10761
10762         ret = -ENOMEM;
10763         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
10764         if (!pmu->pmu_cpu_context)
10765                 goto free_dev;
10766
10767         for_each_possible_cpu(cpu) {
10768                 struct perf_cpu_context *cpuctx;
10769
10770                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10771                 __perf_event_init_context(&cpuctx->ctx);
10772                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
10773                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
10774                 cpuctx->ctx.pmu = pmu;
10775                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
10776
10777                 __perf_mux_hrtimer_init(cpuctx, cpu);
10778
10779                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
10780                 cpuctx->heap = cpuctx->heap_default;
10781         }
10782
10783 got_cpu_context:
10784         if (!pmu->start_txn) {
10785                 if (pmu->pmu_enable) {
10786                         /*
10787                          * If we have pmu_enable/pmu_disable calls, install
10788                          * transaction stubs that use that to try and batch
10789                          * hardware accesses.
10790                          */
10791                         pmu->start_txn  = perf_pmu_start_txn;
10792                         pmu->commit_txn = perf_pmu_commit_txn;
10793                         pmu->cancel_txn = perf_pmu_cancel_txn;
10794                 } else {
10795                         pmu->start_txn  = perf_pmu_nop_txn;
10796                         pmu->commit_txn = perf_pmu_nop_int;
10797                         pmu->cancel_txn = perf_pmu_nop_void;
10798                 }
10799         }
10800
10801         if (!pmu->pmu_enable) {
10802                 pmu->pmu_enable  = perf_pmu_nop_void;
10803                 pmu->pmu_disable = perf_pmu_nop_void;
10804         }
10805
10806         if (!pmu->check_period)
10807                 pmu->check_period = perf_event_nop_int;
10808
10809         if (!pmu->event_idx)
10810                 pmu->event_idx = perf_event_idx_default;
10811
10812         /*
10813          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10814          * since these cannot be in the IDR. This way the linear search
10815          * is fast, provided a valid software event is provided.
10816          */
10817         if (type == PERF_TYPE_SOFTWARE || !name)
10818                 list_add_rcu(&pmu->entry, &pmus);
10819         else
10820                 list_add_tail_rcu(&pmu->entry, &pmus);
10821
10822         atomic_set(&pmu->exclusive_cnt, 0);
10823         ret = 0;
10824 unlock:
10825         mutex_unlock(&pmus_lock);
10826
10827         return ret;
10828
10829 free_dev:
10830         device_del(pmu->dev);
10831         put_device(pmu->dev);
10832
10833 free_idr:
10834         if (pmu->type != PERF_TYPE_SOFTWARE)
10835                 idr_remove(&pmu_idr, pmu->type);
10836
10837 free_pdc:
10838         free_percpu(pmu->pmu_disable_count);
10839         goto unlock;
10840 }
10841 EXPORT_SYMBOL_GPL(perf_pmu_register);
10842
10843 void perf_pmu_unregister(struct pmu *pmu)
10844 {
10845         mutex_lock(&pmus_lock);
10846         list_del_rcu(&pmu->entry);
10847
10848         /*
10849          * We dereference the pmu list under both SRCU and regular RCU, so
10850          * synchronize against both of those.
10851          */
10852         synchronize_srcu(&pmus_srcu);
10853         synchronize_rcu();
10854
10855         free_percpu(pmu->pmu_disable_count);
10856         if (pmu->type != PERF_TYPE_SOFTWARE)
10857                 idr_remove(&pmu_idr, pmu->type);
10858         if (pmu_bus_running) {
10859                 if (pmu->nr_addr_filters)
10860                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
10861                 device_del(pmu->dev);
10862                 put_device(pmu->dev);
10863         }
10864         free_pmu_context(pmu);
10865         mutex_unlock(&pmus_lock);
10866 }
10867 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
10868
10869 static inline bool has_extended_regs(struct perf_event *event)
10870 {
10871         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
10872                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
10873 }
10874
10875 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
10876 {
10877         struct perf_event_context *ctx = NULL;
10878         int ret;
10879
10880         if (!try_module_get(pmu->module))
10881                 return -ENODEV;
10882
10883         /*
10884          * A number of pmu->event_init() methods iterate the sibling_list to,
10885          * for example, validate if the group fits on the PMU. Therefore,
10886          * if this is a sibling event, acquire the ctx->mutex to protect
10887          * the sibling_list.
10888          */
10889         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
10890                 /*
10891                  * This ctx->mutex can nest when we're called through
10892                  * inheritance. See the perf_event_ctx_lock_nested() comment.
10893                  */
10894                 ctx = perf_event_ctx_lock_nested(event->group_leader,
10895                                                  SINGLE_DEPTH_NESTING);
10896                 BUG_ON(!ctx);
10897         }
10898
10899         event->pmu = pmu;
10900         ret = pmu->event_init(event);
10901
10902         if (ctx)
10903                 perf_event_ctx_unlock(event->group_leader, ctx);
10904
10905         if (!ret) {
10906                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
10907                     has_extended_regs(event))
10908                         ret = -EOPNOTSUPP;
10909
10910                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
10911                     event_has_any_exclude_flag(event))
10912                         ret = -EINVAL;
10913
10914                 if (ret && event->destroy)
10915                         event->destroy(event);
10916         }
10917
10918         if (ret)
10919                 module_put(pmu->module);
10920
10921         return ret;
10922 }
10923
10924 static struct pmu *perf_init_event(struct perf_event *event)
10925 {
10926         int idx, type, ret;
10927         struct pmu *pmu;
10928
10929         idx = srcu_read_lock(&pmus_srcu);
10930
10931         /* Try parent's PMU first: */
10932         if (event->parent && event->parent->pmu) {
10933                 pmu = event->parent->pmu;
10934                 ret = perf_try_init_event(pmu, event);
10935                 if (!ret)
10936                         goto unlock;
10937         }
10938
10939         /*
10940          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10941          * are often aliases for PERF_TYPE_RAW.
10942          */
10943         type = event->attr.type;
10944         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE)
10945                 type = PERF_TYPE_RAW;
10946
10947 again:
10948         rcu_read_lock();
10949         pmu = idr_find(&pmu_idr, type);
10950         rcu_read_unlock();
10951         if (pmu) {
10952                 ret = perf_try_init_event(pmu, event);
10953                 if (ret == -ENOENT && event->attr.type != type) {
10954                         type = event->attr.type;
10955                         goto again;
10956                 }
10957
10958                 if (ret)
10959                         pmu = ERR_PTR(ret);
10960
10961                 goto unlock;
10962         }
10963
10964         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
10965                 ret = perf_try_init_event(pmu, event);
10966                 if (!ret)
10967                         goto unlock;
10968
10969                 if (ret != -ENOENT) {
10970                         pmu = ERR_PTR(ret);
10971                         goto unlock;
10972                 }
10973         }
10974         pmu = ERR_PTR(-ENOENT);
10975 unlock:
10976         srcu_read_unlock(&pmus_srcu, idx);
10977
10978         return pmu;
10979 }
10980
10981 static void attach_sb_event(struct perf_event *event)
10982 {
10983         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
10984
10985         raw_spin_lock(&pel->lock);
10986         list_add_rcu(&event->sb_list, &pel->list);
10987         raw_spin_unlock(&pel->lock);
10988 }
10989
10990 /*
10991  * We keep a list of all !task (and therefore per-cpu) events
10992  * that need to receive side-band records.
10993  *
10994  * This avoids having to scan all the various PMU per-cpu contexts
10995  * looking for them.
10996  */
10997 static void account_pmu_sb_event(struct perf_event *event)
10998 {
10999         if (is_sb_event(event))
11000                 attach_sb_event(event);
11001 }
11002
11003 static void account_event_cpu(struct perf_event *event, int cpu)
11004 {
11005         if (event->parent)
11006                 return;
11007
11008         if (is_cgroup_event(event))
11009                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11010 }
11011
11012 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11013 static void account_freq_event_nohz(void)
11014 {
11015 #ifdef CONFIG_NO_HZ_FULL
11016         /* Lock so we don't race with concurrent unaccount */
11017         spin_lock(&nr_freq_lock);
11018         if (atomic_inc_return(&nr_freq_events) == 1)
11019                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11020         spin_unlock(&nr_freq_lock);
11021 #endif
11022 }
11023
11024 static void account_freq_event(void)
11025 {
11026         if (tick_nohz_full_enabled())
11027                 account_freq_event_nohz();
11028         else
11029                 atomic_inc(&nr_freq_events);
11030 }
11031
11032
11033 static void account_event(struct perf_event *event)
11034 {
11035         bool inc = false;
11036
11037         if (event->parent)
11038                 return;
11039
11040         if (event->attach_state & PERF_ATTACH_TASK)
11041                 inc = true;
11042         if (event->attr.mmap || event->attr.mmap_data)
11043                 atomic_inc(&nr_mmap_events);
11044         if (event->attr.comm)
11045                 atomic_inc(&nr_comm_events);
11046         if (event->attr.namespaces)
11047                 atomic_inc(&nr_namespaces_events);
11048         if (event->attr.cgroup)
11049                 atomic_inc(&nr_cgroup_events);
11050         if (event->attr.task)
11051                 atomic_inc(&nr_task_events);
11052         if (event->attr.freq)
11053                 account_freq_event();
11054         if (event->attr.context_switch) {
11055                 atomic_inc(&nr_switch_events);
11056                 inc = true;
11057         }
11058         if (has_branch_stack(event))
11059                 inc = true;
11060         if (is_cgroup_event(event))
11061                 inc = true;
11062         if (event->attr.ksymbol)
11063                 atomic_inc(&nr_ksymbol_events);
11064         if (event->attr.bpf_event)
11065                 atomic_inc(&nr_bpf_events);
11066         if (event->attr.text_poke)
11067                 atomic_inc(&nr_text_poke_events);
11068
11069         if (inc) {
11070                 /*
11071                  * We need the mutex here because static_branch_enable()
11072                  * must complete *before* the perf_sched_count increment
11073                  * becomes visible.
11074                  */
11075                 if (atomic_inc_not_zero(&perf_sched_count))
11076                         goto enabled;
11077
11078                 mutex_lock(&perf_sched_mutex);
11079                 if (!atomic_read(&perf_sched_count)) {
11080                         static_branch_enable(&perf_sched_events);
11081                         /*
11082                          * Guarantee that all CPUs observe they key change and
11083                          * call the perf scheduling hooks before proceeding to
11084                          * install events that need them.
11085                          */
11086                         synchronize_rcu();
11087                 }
11088                 /*
11089                  * Now that we have waited for the sync_sched(), allow further
11090                  * increments to by-pass the mutex.
11091                  */
11092                 atomic_inc(&perf_sched_count);
11093                 mutex_unlock(&perf_sched_mutex);
11094         }
11095 enabled:
11096
11097         account_event_cpu(event, event->cpu);
11098
11099         account_pmu_sb_event(event);
11100 }
11101
11102 /*
11103  * Allocate and initialize an event structure
11104  */
11105 static struct perf_event *
11106 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11107                  struct task_struct *task,
11108                  struct perf_event *group_leader,
11109                  struct perf_event *parent_event,
11110                  perf_overflow_handler_t overflow_handler,
11111                  void *context, int cgroup_fd)
11112 {
11113         struct pmu *pmu;
11114         struct perf_event *event;
11115         struct hw_perf_event *hwc;
11116         long err = -EINVAL;
11117
11118         if ((unsigned)cpu >= nr_cpu_ids) {
11119                 if (!task || cpu != -1)
11120                         return ERR_PTR(-EINVAL);
11121         }
11122
11123         event = kzalloc(sizeof(*event), GFP_KERNEL);
11124         if (!event)
11125                 return ERR_PTR(-ENOMEM);
11126
11127         /*
11128          * Single events are their own group leaders, with an
11129          * empty sibling list:
11130          */
11131         if (!group_leader)
11132                 group_leader = event;
11133
11134         mutex_init(&event->child_mutex);
11135         INIT_LIST_HEAD(&event->child_list);
11136
11137         INIT_LIST_HEAD(&event->event_entry);
11138         INIT_LIST_HEAD(&event->sibling_list);
11139         INIT_LIST_HEAD(&event->active_list);
11140         init_event_group(event);
11141         INIT_LIST_HEAD(&event->rb_entry);
11142         INIT_LIST_HEAD(&event->active_entry);
11143         INIT_LIST_HEAD(&event->addr_filters.list);
11144         INIT_HLIST_NODE(&event->hlist_entry);
11145
11146
11147         init_waitqueue_head(&event->waitq);
11148         event->pending_disable = -1;
11149         init_irq_work(&event->pending, perf_pending_event);
11150
11151         mutex_init(&event->mmap_mutex);
11152         raw_spin_lock_init(&event->addr_filters.lock);
11153
11154         atomic_long_set(&event->refcount, 1);
11155         event->cpu              = cpu;
11156         event->attr             = *attr;
11157         event->group_leader     = group_leader;
11158         event->pmu              = NULL;
11159         event->oncpu            = -1;
11160
11161         event->parent           = parent_event;
11162
11163         event->ns               = get_pid_ns(task_active_pid_ns(current));
11164         event->id               = atomic64_inc_return(&perf_event_id);
11165
11166         event->state            = PERF_EVENT_STATE_INACTIVE;
11167
11168         if (task) {
11169                 event->attach_state = PERF_ATTACH_TASK;
11170                 /*
11171                  * XXX pmu::event_init needs to know what task to account to
11172                  * and we cannot use the ctx information because we need the
11173                  * pmu before we get a ctx.
11174                  */
11175                 event->hw.target = get_task_struct(task);
11176         }
11177
11178         event->clock = &local_clock;
11179         if (parent_event)
11180                 event->clock = parent_event->clock;
11181
11182         if (!overflow_handler && parent_event) {
11183                 overflow_handler = parent_event->overflow_handler;
11184                 context = parent_event->overflow_handler_context;
11185 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11186                 if (overflow_handler == bpf_overflow_handler) {
11187                         struct bpf_prog *prog = parent_event->prog;
11188
11189                         bpf_prog_inc(prog);
11190                         event->prog = prog;
11191                         event->orig_overflow_handler =
11192                                 parent_event->orig_overflow_handler;
11193                 }
11194 #endif
11195         }
11196
11197         if (overflow_handler) {
11198                 event->overflow_handler = overflow_handler;
11199                 event->overflow_handler_context = context;
11200         } else if (is_write_backward(event)){
11201                 event->overflow_handler = perf_event_output_backward;
11202                 event->overflow_handler_context = NULL;
11203         } else {
11204                 event->overflow_handler = perf_event_output_forward;
11205                 event->overflow_handler_context = NULL;
11206         }
11207
11208         perf_event__state_init(event);
11209
11210         pmu = NULL;
11211
11212         hwc = &event->hw;
11213         hwc->sample_period = attr->sample_period;
11214         if (attr->freq && attr->sample_freq)
11215                 hwc->sample_period = 1;
11216         hwc->last_period = hwc->sample_period;
11217
11218         local64_set(&hwc->period_left, hwc->sample_period);
11219
11220         /*
11221          * We currently do not support PERF_SAMPLE_READ on inherited events.
11222          * See perf_output_read().
11223          */
11224         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11225                 goto err_ns;
11226
11227         if (!has_branch_stack(event))
11228                 event->attr.branch_sample_type = 0;
11229
11230         pmu = perf_init_event(event);
11231         if (IS_ERR(pmu)) {
11232                 err = PTR_ERR(pmu);
11233                 goto err_ns;
11234         }
11235
11236         /*
11237          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11238          * be different on other CPUs in the uncore mask.
11239          */
11240         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11241                 err = -EINVAL;
11242                 goto err_pmu;
11243         }
11244
11245         if (event->attr.aux_output &&
11246             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11247                 err = -EOPNOTSUPP;
11248                 goto err_pmu;
11249         }
11250
11251         if (cgroup_fd != -1) {
11252                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11253                 if (err)
11254                         goto err_pmu;
11255         }
11256
11257         err = exclusive_event_init(event);
11258         if (err)
11259                 goto err_pmu;
11260
11261         if (has_addr_filter(event)) {
11262                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11263                                                     sizeof(struct perf_addr_filter_range),
11264                                                     GFP_KERNEL);
11265                 if (!event->addr_filter_ranges) {
11266                         err = -ENOMEM;
11267                         goto err_per_task;
11268                 }
11269
11270                 /*
11271                  * Clone the parent's vma offsets: they are valid until exec()
11272                  * even if the mm is not shared with the parent.
11273                  */
11274                 if (event->parent) {
11275                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11276
11277                         raw_spin_lock_irq(&ifh->lock);
11278                         memcpy(event->addr_filter_ranges,
11279                                event->parent->addr_filter_ranges,
11280                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11281                         raw_spin_unlock_irq(&ifh->lock);
11282                 }
11283
11284                 /* force hw sync on the address filters */
11285                 event->addr_filters_gen = 1;
11286         }
11287
11288         if (!event->parent) {
11289                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11290                         err = get_callchain_buffers(attr->sample_max_stack);
11291                         if (err)
11292                                 goto err_addr_filters;
11293                 }
11294         }
11295
11296         err = security_perf_event_alloc(event);
11297         if (err)
11298                 goto err_callchain_buffer;
11299
11300         /* symmetric to unaccount_event() in _free_event() */
11301         account_event(event);
11302
11303         return event;
11304
11305 err_callchain_buffer:
11306         if (!event->parent) {
11307                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11308                         put_callchain_buffers();
11309         }
11310 err_addr_filters:
11311         kfree(event->addr_filter_ranges);
11312
11313 err_per_task:
11314         exclusive_event_destroy(event);
11315
11316 err_pmu:
11317         if (is_cgroup_event(event))
11318                 perf_detach_cgroup(event);
11319         if (event->destroy)
11320                 event->destroy(event);
11321         module_put(pmu->module);
11322 err_ns:
11323         if (event->ns)
11324                 put_pid_ns(event->ns);
11325         if (event->hw.target)
11326                 put_task_struct(event->hw.target);
11327         kfree(event);
11328
11329         return ERR_PTR(err);
11330 }
11331
11332 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11333                           struct perf_event_attr *attr)
11334 {
11335         u32 size;
11336         int ret;
11337
11338         /* Zero the full structure, so that a short copy will be nice. */
11339         memset(attr, 0, sizeof(*attr));
11340
11341         ret = get_user(size, &uattr->size);
11342         if (ret)
11343                 return ret;
11344
11345         /* ABI compatibility quirk: */
11346         if (!size)
11347                 size = PERF_ATTR_SIZE_VER0;
11348         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11349                 goto err_size;
11350
11351         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11352         if (ret) {
11353                 if (ret == -E2BIG)
11354                         goto err_size;
11355                 return ret;
11356         }
11357
11358         attr->size = size;
11359
11360         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11361                 return -EINVAL;
11362
11363         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11364                 return -EINVAL;
11365
11366         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11367                 return -EINVAL;
11368
11369         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11370                 u64 mask = attr->branch_sample_type;
11371
11372                 /* only using defined bits */
11373                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11374                         return -EINVAL;
11375
11376                 /* at least one branch bit must be set */
11377                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11378                         return -EINVAL;
11379
11380                 /* propagate priv level, when not set for branch */
11381                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11382
11383                         /* exclude_kernel checked on syscall entry */
11384                         if (!attr->exclude_kernel)
11385                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11386
11387                         if (!attr->exclude_user)
11388                                 mask |= PERF_SAMPLE_BRANCH_USER;
11389
11390                         if (!attr->exclude_hv)
11391                                 mask |= PERF_SAMPLE_BRANCH_HV;
11392                         /*
11393                          * adjust user setting (for HW filter setup)
11394                          */
11395                         attr->branch_sample_type = mask;
11396                 }
11397                 /* privileged levels capture (kernel, hv): check permissions */
11398                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11399                         ret = perf_allow_kernel(attr);
11400                         if (ret)
11401                                 return ret;
11402                 }
11403         }
11404
11405         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11406                 ret = perf_reg_validate(attr->sample_regs_user);
11407                 if (ret)
11408                         return ret;
11409         }
11410
11411         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11412                 if (!arch_perf_have_user_stack_dump())
11413                         return -ENOSYS;
11414
11415                 /*
11416                  * We have __u32 type for the size, but so far
11417                  * we can only use __u16 as maximum due to the
11418                  * __u16 sample size limit.
11419                  */
11420                 if (attr->sample_stack_user >= USHRT_MAX)
11421                         return -EINVAL;
11422                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11423                         return -EINVAL;
11424         }
11425
11426         if (!attr->sample_max_stack)
11427                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11428
11429         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11430                 ret = perf_reg_validate(attr->sample_regs_intr);
11431
11432 #ifndef CONFIG_CGROUP_PERF
11433         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11434                 return -EINVAL;
11435 #endif
11436
11437 out:
11438         return ret;
11439
11440 err_size:
11441         put_user(sizeof(*attr), &uattr->size);
11442         ret = -E2BIG;
11443         goto out;
11444 }
11445
11446 static int
11447 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11448 {
11449         struct perf_buffer *rb = NULL;
11450         int ret = -EINVAL;
11451
11452         if (!output_event)
11453                 goto set;
11454
11455         /* don't allow circular references */
11456         if (event == output_event)
11457                 goto out;
11458
11459         /*
11460          * Don't allow cross-cpu buffers
11461          */
11462         if (output_event->cpu != event->cpu)
11463                 goto out;
11464
11465         /*
11466          * If its not a per-cpu rb, it must be the same task.
11467          */
11468         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11469                 goto out;
11470
11471         /*
11472          * Mixing clocks in the same buffer is trouble you don't need.
11473          */
11474         if (output_event->clock != event->clock)
11475                 goto out;
11476
11477         /*
11478          * Either writing ring buffer from beginning or from end.
11479          * Mixing is not allowed.
11480          */
11481         if (is_write_backward(output_event) != is_write_backward(event))
11482                 goto out;
11483
11484         /*
11485          * If both events generate aux data, they must be on the same PMU
11486          */
11487         if (has_aux(event) && has_aux(output_event) &&
11488             event->pmu != output_event->pmu)
11489                 goto out;
11490
11491 set:
11492         mutex_lock(&event->mmap_mutex);
11493         /* Can't redirect output if we've got an active mmap() */
11494         if (atomic_read(&event->mmap_count))
11495                 goto unlock;
11496
11497         if (output_event) {
11498                 /* get the rb we want to redirect to */
11499                 rb = ring_buffer_get(output_event);
11500                 if (!rb)
11501                         goto unlock;
11502         }
11503
11504         ring_buffer_attach(event, rb);
11505
11506         ret = 0;
11507 unlock:
11508         mutex_unlock(&event->mmap_mutex);
11509
11510 out:
11511         return ret;
11512 }
11513
11514 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11515 {
11516         if (b < a)
11517                 swap(a, b);
11518
11519         mutex_lock(a);
11520         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11521 }
11522
11523 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11524 {
11525         bool nmi_safe = false;
11526
11527         switch (clk_id) {
11528         case CLOCK_MONOTONIC:
11529                 event->clock = &ktime_get_mono_fast_ns;
11530                 nmi_safe = true;
11531                 break;
11532
11533         case CLOCK_MONOTONIC_RAW:
11534                 event->clock = &ktime_get_raw_fast_ns;
11535                 nmi_safe = true;
11536                 break;
11537
11538         case CLOCK_REALTIME:
11539                 event->clock = &ktime_get_real_ns;
11540                 break;
11541
11542         case CLOCK_BOOTTIME:
11543                 event->clock = &ktime_get_boottime_ns;
11544                 break;
11545
11546         case CLOCK_TAI:
11547                 event->clock = &ktime_get_clocktai_ns;
11548                 break;
11549
11550         default:
11551                 return -EINVAL;
11552         }
11553
11554         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11555                 return -EINVAL;
11556
11557         return 0;
11558 }
11559
11560 /*
11561  * Variation on perf_event_ctx_lock_nested(), except we take two context
11562  * mutexes.
11563  */
11564 static struct perf_event_context *
11565 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11566                              struct perf_event_context *ctx)
11567 {
11568         struct perf_event_context *gctx;
11569
11570 again:
11571         rcu_read_lock();
11572         gctx = READ_ONCE(group_leader->ctx);
11573         if (!refcount_inc_not_zero(&gctx->refcount)) {
11574                 rcu_read_unlock();
11575                 goto again;
11576         }
11577         rcu_read_unlock();
11578
11579         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11580
11581         if (group_leader->ctx != gctx) {
11582                 mutex_unlock(&ctx->mutex);
11583                 mutex_unlock(&gctx->mutex);
11584                 put_ctx(gctx);
11585                 goto again;
11586         }
11587
11588         return gctx;
11589 }
11590
11591 /**
11592  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11593  *
11594  * @attr_uptr:  event_id type attributes for monitoring/sampling
11595  * @pid:                target pid
11596  * @cpu:                target cpu
11597  * @group_fd:           group leader event fd
11598  */
11599 SYSCALL_DEFINE5(perf_event_open,
11600                 struct perf_event_attr __user *, attr_uptr,
11601                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11602 {
11603         struct perf_event *group_leader = NULL, *output_event = NULL;
11604         struct perf_event *event, *sibling;
11605         struct perf_event_attr attr;
11606         struct perf_event_context *ctx, *gctx;
11607         struct file *event_file = NULL;
11608         struct fd group = {NULL, 0};
11609         struct task_struct *task = NULL;
11610         struct pmu *pmu;
11611         int event_fd;
11612         int move_group = 0;
11613         int err;
11614         int f_flags = O_RDWR;
11615         int cgroup_fd = -1;
11616
11617         /* for future expandability... */
11618         if (flags & ~PERF_FLAG_ALL)
11619                 return -EINVAL;
11620
11621         /* Do we allow access to perf_event_open(2) ? */
11622         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11623         if (err)
11624                 return err;
11625
11626         err = perf_copy_attr(attr_uptr, &attr);
11627         if (err)
11628                 return err;
11629
11630         if (!attr.exclude_kernel) {
11631                 err = perf_allow_kernel(&attr);
11632                 if (err)
11633                         return err;
11634         }
11635
11636         if (attr.namespaces) {
11637                 if (!perfmon_capable())
11638                         return -EACCES;
11639         }
11640
11641         if (attr.freq) {
11642                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
11643                         return -EINVAL;
11644         } else {
11645                 if (attr.sample_period & (1ULL << 63))
11646                         return -EINVAL;
11647         }
11648
11649         /* Only privileged users can get physical addresses */
11650         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
11651                 err = perf_allow_kernel(&attr);
11652                 if (err)
11653                         return err;
11654         }
11655
11656         err = security_locked_down(LOCKDOWN_PERF);
11657         if (err && (attr.sample_type & PERF_SAMPLE_REGS_INTR))
11658                 /* REGS_INTR can leak data, lockdown must prevent this */
11659                 return err;
11660
11661         err = 0;
11662
11663         /*
11664          * In cgroup mode, the pid argument is used to pass the fd
11665          * opened to the cgroup directory in cgroupfs. The cpu argument
11666          * designates the cpu on which to monitor threads from that
11667          * cgroup.
11668          */
11669         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
11670                 return -EINVAL;
11671
11672         if (flags & PERF_FLAG_FD_CLOEXEC)
11673                 f_flags |= O_CLOEXEC;
11674
11675         event_fd = get_unused_fd_flags(f_flags);
11676         if (event_fd < 0)
11677                 return event_fd;
11678
11679         if (group_fd != -1) {
11680                 err = perf_fget_light(group_fd, &group);
11681                 if (err)
11682                         goto err_fd;
11683                 group_leader = group.file->private_data;
11684                 if (flags & PERF_FLAG_FD_OUTPUT)
11685                         output_event = group_leader;
11686                 if (flags & PERF_FLAG_FD_NO_GROUP)
11687                         group_leader = NULL;
11688         }
11689
11690         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
11691                 task = find_lively_task_by_vpid(pid);
11692                 if (IS_ERR(task)) {
11693                         err = PTR_ERR(task);
11694                         goto err_group_fd;
11695                 }
11696         }
11697
11698         if (task && group_leader &&
11699             group_leader->attr.inherit != attr.inherit) {
11700                 err = -EINVAL;
11701                 goto err_task;
11702         }
11703
11704         if (task) {
11705                 err = mutex_lock_interruptible(&task->signal->exec_update_mutex);
11706                 if (err)
11707                         goto err_task;
11708
11709                 /*
11710                  * Reuse ptrace permission checks for now.
11711                  *
11712                  * We must hold exec_update_mutex across this and any potential
11713                  * perf_install_in_context() call for this new event to
11714                  * serialize against exec() altering our credentials (and the
11715                  * perf_event_exit_task() that could imply).
11716                  */
11717                 err = -EACCES;
11718                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
11719                         goto err_cred;
11720         }
11721
11722         if (flags & PERF_FLAG_PID_CGROUP)
11723                 cgroup_fd = pid;
11724
11725         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
11726                                  NULL, NULL, cgroup_fd);
11727         if (IS_ERR(event)) {
11728                 err = PTR_ERR(event);
11729                 goto err_cred;
11730         }
11731
11732         if (is_sampling_event(event)) {
11733                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
11734                         err = -EOPNOTSUPP;
11735                         goto err_alloc;
11736                 }
11737         }
11738
11739         /*
11740          * Special case software events and allow them to be part of
11741          * any hardware group.
11742          */
11743         pmu = event->pmu;
11744
11745         if (attr.use_clockid) {
11746                 err = perf_event_set_clock(event, attr.clockid);
11747                 if (err)
11748                         goto err_alloc;
11749         }
11750
11751         if (pmu->task_ctx_nr == perf_sw_context)
11752                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
11753
11754         if (group_leader) {
11755                 if (is_software_event(event) &&
11756                     !in_software_context(group_leader)) {
11757                         /*
11758                          * If the event is a sw event, but the group_leader
11759                          * is on hw context.
11760                          *
11761                          * Allow the addition of software events to hw
11762                          * groups, this is safe because software events
11763                          * never fail to schedule.
11764                          */
11765                         pmu = group_leader->ctx->pmu;
11766                 } else if (!is_software_event(event) &&
11767                            is_software_event(group_leader) &&
11768                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11769                         /*
11770                          * In case the group is a pure software group, and we
11771                          * try to add a hardware event, move the whole group to
11772                          * the hardware context.
11773                          */
11774                         move_group = 1;
11775                 }
11776         }
11777
11778         /*
11779          * Get the target context (task or percpu):
11780          */
11781         ctx = find_get_context(pmu, task, event);
11782         if (IS_ERR(ctx)) {
11783                 err = PTR_ERR(ctx);
11784                 goto err_alloc;
11785         }
11786
11787         /*
11788          * Look up the group leader (we will attach this event to it):
11789          */
11790         if (group_leader) {
11791                 err = -EINVAL;
11792
11793                 /*
11794                  * Do not allow a recursive hierarchy (this new sibling
11795                  * becoming part of another group-sibling):
11796                  */
11797                 if (group_leader->group_leader != group_leader)
11798                         goto err_context;
11799
11800                 /* All events in a group should have the same clock */
11801                 if (group_leader->clock != event->clock)
11802                         goto err_context;
11803
11804                 /*
11805                  * Make sure we're both events for the same CPU;
11806                  * grouping events for different CPUs is broken; since
11807                  * you can never concurrently schedule them anyhow.
11808                  */
11809                 if (group_leader->cpu != event->cpu)
11810                         goto err_context;
11811
11812                 /*
11813                  * Make sure we're both on the same task, or both
11814                  * per-CPU events.
11815                  */
11816                 if (group_leader->ctx->task != ctx->task)
11817                         goto err_context;
11818
11819                 /*
11820                  * Do not allow to attach to a group in a different task
11821                  * or CPU context. If we're moving SW events, we'll fix
11822                  * this up later, so allow that.
11823                  */
11824                 if (!move_group && group_leader->ctx != ctx)
11825                         goto err_context;
11826
11827                 /*
11828                  * Only a group leader can be exclusive or pinned
11829                  */
11830                 if (attr.exclusive || attr.pinned)
11831                         goto err_context;
11832         }
11833
11834         if (output_event) {
11835                 err = perf_event_set_output(event, output_event);
11836                 if (err)
11837                         goto err_context;
11838         }
11839
11840         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
11841                                         f_flags);
11842         if (IS_ERR(event_file)) {
11843                 err = PTR_ERR(event_file);
11844                 event_file = NULL;
11845                 goto err_context;
11846         }
11847
11848         if (move_group) {
11849                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
11850
11851                 if (gctx->task == TASK_TOMBSTONE) {
11852                         err = -ESRCH;
11853                         goto err_locked;
11854                 }
11855
11856                 /*
11857                  * Check if we raced against another sys_perf_event_open() call
11858                  * moving the software group underneath us.
11859                  */
11860                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
11861                         /*
11862                          * If someone moved the group out from under us, check
11863                          * if this new event wound up on the same ctx, if so
11864                          * its the regular !move_group case, otherwise fail.
11865                          */
11866                         if (gctx != ctx) {
11867                                 err = -EINVAL;
11868                                 goto err_locked;
11869                         } else {
11870                                 perf_event_ctx_unlock(group_leader, gctx);
11871                                 move_group = 0;
11872                         }
11873                 }
11874
11875                 /*
11876                  * Failure to create exclusive events returns -EBUSY.
11877                  */
11878                 err = -EBUSY;
11879                 if (!exclusive_event_installable(group_leader, ctx))
11880                         goto err_locked;
11881
11882                 for_each_sibling_event(sibling, group_leader) {
11883                         if (!exclusive_event_installable(sibling, ctx))
11884                                 goto err_locked;
11885                 }
11886         } else {
11887                 mutex_lock(&ctx->mutex);
11888         }
11889
11890         if (ctx->task == TASK_TOMBSTONE) {
11891                 err = -ESRCH;
11892                 goto err_locked;
11893         }
11894
11895         if (!perf_event_validate_size(event)) {
11896                 err = -E2BIG;
11897                 goto err_locked;
11898         }
11899
11900         if (!task) {
11901                 /*
11902                  * Check if the @cpu we're creating an event for is online.
11903                  *
11904                  * We use the perf_cpu_context::ctx::mutex to serialize against
11905                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11906                  */
11907                 struct perf_cpu_context *cpuctx =
11908                         container_of(ctx, struct perf_cpu_context, ctx);
11909
11910                 if (!cpuctx->online) {
11911                         err = -ENODEV;
11912                         goto err_locked;
11913                 }
11914         }
11915
11916         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
11917                 err = -EINVAL;
11918                 goto err_locked;
11919         }
11920
11921         /*
11922          * Must be under the same ctx::mutex as perf_install_in_context(),
11923          * because we need to serialize with concurrent event creation.
11924          */
11925         if (!exclusive_event_installable(event, ctx)) {
11926                 err = -EBUSY;
11927                 goto err_locked;
11928         }
11929
11930         WARN_ON_ONCE(ctx->parent_ctx);
11931
11932         /*
11933          * This is the point on no return; we cannot fail hereafter. This is
11934          * where we start modifying current state.
11935          */
11936
11937         if (move_group) {
11938                 /*
11939                  * See perf_event_ctx_lock() for comments on the details
11940                  * of swizzling perf_event::ctx.
11941                  */
11942                 perf_remove_from_context(group_leader, 0);
11943                 put_ctx(gctx);
11944
11945                 for_each_sibling_event(sibling, group_leader) {
11946                         perf_remove_from_context(sibling, 0);
11947                         put_ctx(gctx);
11948                 }
11949
11950                 /*
11951                  * Wait for everybody to stop referencing the events through
11952                  * the old lists, before installing it on new lists.
11953                  */
11954                 synchronize_rcu();
11955
11956                 /*
11957                  * Install the group siblings before the group leader.
11958                  *
11959                  * Because a group leader will try and install the entire group
11960                  * (through the sibling list, which is still in-tact), we can
11961                  * end up with siblings installed in the wrong context.
11962                  *
11963                  * By installing siblings first we NO-OP because they're not
11964                  * reachable through the group lists.
11965                  */
11966                 for_each_sibling_event(sibling, group_leader) {
11967                         perf_event__state_init(sibling);
11968                         perf_install_in_context(ctx, sibling, sibling->cpu);
11969                         get_ctx(ctx);
11970                 }
11971
11972                 /*
11973                  * Removing from the context ends up with disabled
11974                  * event. What we want here is event in the initial
11975                  * startup state, ready to be add into new context.
11976                  */
11977                 perf_event__state_init(group_leader);
11978                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
11979                 get_ctx(ctx);
11980         }
11981
11982         /*
11983          * Precalculate sample_data sizes; do while holding ctx::mutex such
11984          * that we're serialized against further additions and before
11985          * perf_install_in_context() which is the point the event is active and
11986          * can use these values.
11987          */
11988         perf_event__header_size(event);
11989         perf_event__id_header_size(event);
11990
11991         event->owner = current;
11992
11993         perf_install_in_context(ctx, event, event->cpu);
11994         perf_unpin_context(ctx);
11995
11996         if (move_group)
11997                 perf_event_ctx_unlock(group_leader, gctx);
11998         mutex_unlock(&ctx->mutex);
11999
12000         if (task) {
12001                 mutex_unlock(&task->signal->exec_update_mutex);
12002                 put_task_struct(task);
12003         }
12004
12005         mutex_lock(&current->perf_event_mutex);
12006         list_add_tail(&event->owner_entry, &current->perf_event_list);
12007         mutex_unlock(&current->perf_event_mutex);
12008
12009         /*
12010          * Drop the reference on the group_event after placing the
12011          * new event on the sibling_list. This ensures destruction
12012          * of the group leader will find the pointer to itself in
12013          * perf_group_detach().
12014          */
12015         fdput(group);
12016         fd_install(event_fd, event_file);
12017         return event_fd;
12018
12019 err_locked:
12020         if (move_group)
12021                 perf_event_ctx_unlock(group_leader, gctx);
12022         mutex_unlock(&ctx->mutex);
12023 /* err_file: */
12024         fput(event_file);
12025 err_context:
12026         perf_unpin_context(ctx);
12027         put_ctx(ctx);
12028 err_alloc:
12029         /*
12030          * If event_file is set, the fput() above will have called ->release()
12031          * and that will take care of freeing the event.
12032          */
12033         if (!event_file)
12034                 free_event(event);
12035 err_cred:
12036         if (task)
12037                 mutex_unlock(&task->signal->exec_update_mutex);
12038 err_task:
12039         if (task)
12040                 put_task_struct(task);
12041 err_group_fd:
12042         fdput(group);
12043 err_fd:
12044         put_unused_fd(event_fd);
12045         return err;
12046 }
12047
12048 /**
12049  * perf_event_create_kernel_counter
12050  *
12051  * @attr: attributes of the counter to create
12052  * @cpu: cpu in which the counter is bound
12053  * @task: task to profile (NULL for percpu)
12054  */
12055 struct perf_event *
12056 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12057                                  struct task_struct *task,
12058                                  perf_overflow_handler_t overflow_handler,
12059                                  void *context)
12060 {
12061         struct perf_event_context *ctx;
12062         struct perf_event *event;
12063         int err;
12064
12065         /*
12066          * Grouping is not supported for kernel events, neither is 'AUX',
12067          * make sure the caller's intentions are adjusted.
12068          */
12069         if (attr->aux_output)
12070                 return ERR_PTR(-EINVAL);
12071
12072         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12073                                  overflow_handler, context, -1);
12074         if (IS_ERR(event)) {
12075                 err = PTR_ERR(event);
12076                 goto err;
12077         }
12078
12079         /* Mark owner so we could distinguish it from user events. */
12080         event->owner = TASK_TOMBSTONE;
12081
12082         /*
12083          * Get the target context (task or percpu):
12084          */
12085         ctx = find_get_context(event->pmu, task, event);
12086         if (IS_ERR(ctx)) {
12087                 err = PTR_ERR(ctx);
12088                 goto err_free;
12089         }
12090
12091         WARN_ON_ONCE(ctx->parent_ctx);
12092         mutex_lock(&ctx->mutex);
12093         if (ctx->task == TASK_TOMBSTONE) {
12094                 err = -ESRCH;
12095                 goto err_unlock;
12096         }
12097
12098         if (!task) {
12099                 /*
12100                  * Check if the @cpu we're creating an event for is online.
12101                  *
12102                  * We use the perf_cpu_context::ctx::mutex to serialize against
12103                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12104                  */
12105                 struct perf_cpu_context *cpuctx =
12106                         container_of(ctx, struct perf_cpu_context, ctx);
12107                 if (!cpuctx->online) {
12108                         err = -ENODEV;
12109                         goto err_unlock;
12110                 }
12111         }
12112
12113         if (!exclusive_event_installable(event, ctx)) {
12114                 err = -EBUSY;
12115                 goto err_unlock;
12116         }
12117
12118         perf_install_in_context(ctx, event, event->cpu);
12119         perf_unpin_context(ctx);
12120         mutex_unlock(&ctx->mutex);
12121
12122         return event;
12123
12124 err_unlock:
12125         mutex_unlock(&ctx->mutex);
12126         perf_unpin_context(ctx);
12127         put_ctx(ctx);
12128 err_free:
12129         free_event(event);
12130 err:
12131         return ERR_PTR(err);
12132 }
12133 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12134
12135 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12136 {
12137         struct perf_event_context *src_ctx;
12138         struct perf_event_context *dst_ctx;
12139         struct perf_event *event, *tmp;
12140         LIST_HEAD(events);
12141
12142         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12143         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12144
12145         /*
12146          * See perf_event_ctx_lock() for comments on the details
12147          * of swizzling perf_event::ctx.
12148          */
12149         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12150         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12151                                  event_entry) {
12152                 perf_remove_from_context(event, 0);
12153                 unaccount_event_cpu(event, src_cpu);
12154                 put_ctx(src_ctx);
12155                 list_add(&event->migrate_entry, &events);
12156         }
12157
12158         /*
12159          * Wait for the events to quiesce before re-instating them.
12160          */
12161         synchronize_rcu();
12162
12163         /*
12164          * Re-instate events in 2 passes.
12165          *
12166          * Skip over group leaders and only install siblings on this first
12167          * pass, siblings will not get enabled without a leader, however a
12168          * leader will enable its siblings, even if those are still on the old
12169          * context.
12170          */
12171         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12172                 if (event->group_leader == event)
12173                         continue;
12174
12175                 list_del(&event->migrate_entry);
12176                 if (event->state >= PERF_EVENT_STATE_OFF)
12177                         event->state = PERF_EVENT_STATE_INACTIVE;
12178                 account_event_cpu(event, dst_cpu);
12179                 perf_install_in_context(dst_ctx, event, dst_cpu);
12180                 get_ctx(dst_ctx);
12181         }
12182
12183         /*
12184          * Once all the siblings are setup properly, install the group leaders
12185          * to make it go.
12186          */
12187         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12188                 list_del(&event->migrate_entry);
12189                 if (event->state >= PERF_EVENT_STATE_OFF)
12190                         event->state = PERF_EVENT_STATE_INACTIVE;
12191                 account_event_cpu(event, dst_cpu);
12192                 perf_install_in_context(dst_ctx, event, dst_cpu);
12193                 get_ctx(dst_ctx);
12194         }
12195         mutex_unlock(&dst_ctx->mutex);
12196         mutex_unlock(&src_ctx->mutex);
12197 }
12198 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12199
12200 static void sync_child_event(struct perf_event *child_event,
12201                                struct task_struct *child)
12202 {
12203         struct perf_event *parent_event = child_event->parent;
12204         u64 child_val;
12205
12206         if (child_event->attr.inherit_stat)
12207                 perf_event_read_event(child_event, child);
12208
12209         child_val = perf_event_count(child_event);
12210
12211         /*
12212          * Add back the child's count to the parent's count:
12213          */
12214         atomic64_add(child_val, &parent_event->child_count);
12215         atomic64_add(child_event->total_time_enabled,
12216                      &parent_event->child_total_time_enabled);
12217         atomic64_add(child_event->total_time_running,
12218                      &parent_event->child_total_time_running);
12219 }
12220
12221 static void
12222 perf_event_exit_event(struct perf_event *child_event,
12223                       struct perf_event_context *child_ctx,
12224                       struct task_struct *child)
12225 {
12226         struct perf_event *parent_event = child_event->parent;
12227
12228         /*
12229          * Do not destroy the 'original' grouping; because of the context
12230          * switch optimization the original events could've ended up in a
12231          * random child task.
12232          *
12233          * If we were to destroy the original group, all group related
12234          * operations would cease to function properly after this random
12235          * child dies.
12236          *
12237          * Do destroy all inherited groups, we don't care about those
12238          * and being thorough is better.
12239          */
12240         raw_spin_lock_irq(&child_ctx->lock);
12241         WARN_ON_ONCE(child_ctx->is_active);
12242
12243         if (parent_event)
12244                 perf_group_detach(child_event);
12245         list_del_event(child_event, child_ctx);
12246         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
12247         raw_spin_unlock_irq(&child_ctx->lock);
12248
12249         /*
12250          * Parent events are governed by their filedesc, retain them.
12251          */
12252         if (!parent_event) {
12253                 perf_event_wakeup(child_event);
12254                 return;
12255         }
12256         /*
12257          * Child events can be cleaned up.
12258          */
12259
12260         sync_child_event(child_event, child);
12261
12262         /*
12263          * Remove this event from the parent's list
12264          */
12265         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
12266         mutex_lock(&parent_event->child_mutex);
12267         list_del_init(&child_event->child_list);
12268         mutex_unlock(&parent_event->child_mutex);
12269
12270         /*
12271          * Kick perf_poll() for is_event_hup().
12272          */
12273         perf_event_wakeup(parent_event);
12274         free_event(child_event);
12275         put_event(parent_event);
12276 }
12277
12278 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12279 {
12280         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12281         struct perf_event *child_event, *next;
12282
12283         WARN_ON_ONCE(child != current);
12284
12285         child_ctx = perf_pin_task_context(child, ctxn);
12286         if (!child_ctx)
12287                 return;
12288
12289         /*
12290          * In order to reduce the amount of tricky in ctx tear-down, we hold
12291          * ctx::mutex over the entire thing. This serializes against almost
12292          * everything that wants to access the ctx.
12293          *
12294          * The exception is sys_perf_event_open() /
12295          * perf_event_create_kernel_count() which does find_get_context()
12296          * without ctx::mutex (it cannot because of the move_group double mutex
12297          * lock thing). See the comments in perf_install_in_context().
12298          */
12299         mutex_lock(&child_ctx->mutex);
12300
12301         /*
12302          * In a single ctx::lock section, de-schedule the events and detach the
12303          * context from the task such that we cannot ever get it scheduled back
12304          * in.
12305          */
12306         raw_spin_lock_irq(&child_ctx->lock);
12307         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12308
12309         /*
12310          * Now that the context is inactive, destroy the task <-> ctx relation
12311          * and mark the context dead.
12312          */
12313         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12314         put_ctx(child_ctx); /* cannot be last */
12315         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12316         put_task_struct(current); /* cannot be last */
12317
12318         clone_ctx = unclone_ctx(child_ctx);
12319         raw_spin_unlock_irq(&child_ctx->lock);
12320
12321         if (clone_ctx)
12322                 put_ctx(clone_ctx);
12323
12324         /*
12325          * Report the task dead after unscheduling the events so that we
12326          * won't get any samples after PERF_RECORD_EXIT. We can however still
12327          * get a few PERF_RECORD_READ events.
12328          */
12329         perf_event_task(child, child_ctx, 0);
12330
12331         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12332                 perf_event_exit_event(child_event, child_ctx, child);
12333
12334         mutex_unlock(&child_ctx->mutex);
12335
12336         put_ctx(child_ctx);
12337 }
12338
12339 /*
12340  * When a child task exits, feed back event values to parent events.
12341  *
12342  * Can be called with exec_update_mutex held when called from
12343  * setup_new_exec().
12344  */
12345 void perf_event_exit_task(struct task_struct *child)
12346 {
12347         struct perf_event *event, *tmp;
12348         int ctxn;
12349
12350         mutex_lock(&child->perf_event_mutex);
12351         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12352                                  owner_entry) {
12353                 list_del_init(&event->owner_entry);
12354
12355                 /*
12356                  * Ensure the list deletion is visible before we clear
12357                  * the owner, closes a race against perf_release() where
12358                  * we need to serialize on the owner->perf_event_mutex.
12359                  */
12360                 smp_store_release(&event->owner, NULL);
12361         }
12362         mutex_unlock(&child->perf_event_mutex);
12363
12364         for_each_task_context_nr(ctxn)
12365                 perf_event_exit_task_context(child, ctxn);
12366
12367         /*
12368          * The perf_event_exit_task_context calls perf_event_task
12369          * with child's task_ctx, which generates EXIT events for
12370          * child contexts and sets child->perf_event_ctxp[] to NULL.
12371          * At this point we need to send EXIT events to cpu contexts.
12372          */
12373         perf_event_task(child, NULL, 0);
12374 }
12375
12376 static void perf_free_event(struct perf_event *event,
12377                             struct perf_event_context *ctx)
12378 {
12379         struct perf_event *parent = event->parent;
12380
12381         if (WARN_ON_ONCE(!parent))
12382                 return;
12383
12384         mutex_lock(&parent->child_mutex);
12385         list_del_init(&event->child_list);
12386         mutex_unlock(&parent->child_mutex);
12387
12388         put_event(parent);
12389
12390         raw_spin_lock_irq(&ctx->lock);
12391         perf_group_detach(event);
12392         list_del_event(event, ctx);
12393         raw_spin_unlock_irq(&ctx->lock);
12394         free_event(event);
12395 }
12396
12397 /*
12398  * Free a context as created by inheritance by perf_event_init_task() below,
12399  * used by fork() in case of fail.
12400  *
12401  * Even though the task has never lived, the context and events have been
12402  * exposed through the child_list, so we must take care tearing it all down.
12403  */
12404 void perf_event_free_task(struct task_struct *task)
12405 {
12406         struct perf_event_context *ctx;
12407         struct perf_event *event, *tmp;
12408         int ctxn;
12409
12410         for_each_task_context_nr(ctxn) {
12411                 ctx = task->perf_event_ctxp[ctxn];
12412                 if (!ctx)
12413                         continue;
12414
12415                 mutex_lock(&ctx->mutex);
12416                 raw_spin_lock_irq(&ctx->lock);
12417                 /*
12418                  * Destroy the task <-> ctx relation and mark the context dead.
12419                  *
12420                  * This is important because even though the task hasn't been
12421                  * exposed yet the context has been (through child_list).
12422                  */
12423                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12424                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12425                 put_task_struct(task); /* cannot be last */
12426                 raw_spin_unlock_irq(&ctx->lock);
12427
12428                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12429                         perf_free_event(event, ctx);
12430
12431                 mutex_unlock(&ctx->mutex);
12432
12433                 /*
12434                  * perf_event_release_kernel() could've stolen some of our
12435                  * child events and still have them on its free_list. In that
12436                  * case we must wait for these events to have been freed (in
12437                  * particular all their references to this task must've been
12438                  * dropped).
12439                  *
12440                  * Without this copy_process() will unconditionally free this
12441                  * task (irrespective of its reference count) and
12442                  * _free_event()'s put_task_struct(event->hw.target) will be a
12443                  * use-after-free.
12444                  *
12445                  * Wait for all events to drop their context reference.
12446                  */
12447                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12448                 put_ctx(ctx); /* must be last */
12449         }
12450 }
12451
12452 void perf_event_delayed_put(struct task_struct *task)
12453 {
12454         int ctxn;
12455
12456         for_each_task_context_nr(ctxn)
12457                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12458 }
12459
12460 struct file *perf_event_get(unsigned int fd)
12461 {
12462         struct file *file = fget(fd);
12463         if (!file)
12464                 return ERR_PTR(-EBADF);
12465
12466         if (file->f_op != &perf_fops) {
12467                 fput(file);
12468                 return ERR_PTR(-EBADF);
12469         }
12470
12471         return file;
12472 }
12473
12474 const struct perf_event *perf_get_event(struct file *file)
12475 {
12476         if (file->f_op != &perf_fops)
12477                 return ERR_PTR(-EINVAL);
12478
12479         return file->private_data;
12480 }
12481
12482 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12483 {
12484         if (!event)
12485                 return ERR_PTR(-EINVAL);
12486
12487         return &event->attr;
12488 }
12489
12490 /*
12491  * Inherit an event from parent task to child task.
12492  *
12493  * Returns:
12494  *  - valid pointer on success
12495  *  - NULL for orphaned events
12496  *  - IS_ERR() on error
12497  */
12498 static struct perf_event *
12499 inherit_event(struct perf_event *parent_event,
12500               struct task_struct *parent,
12501               struct perf_event_context *parent_ctx,
12502               struct task_struct *child,
12503               struct perf_event *group_leader,
12504               struct perf_event_context *child_ctx)
12505 {
12506         enum perf_event_state parent_state = parent_event->state;
12507         struct perf_event *child_event;
12508         unsigned long flags;
12509
12510         /*
12511          * Instead of creating recursive hierarchies of events,
12512          * we link inherited events back to the original parent,
12513          * which has a filp for sure, which we use as the reference
12514          * count:
12515          */
12516         if (parent_event->parent)
12517                 parent_event = parent_event->parent;
12518
12519         child_event = perf_event_alloc(&parent_event->attr,
12520                                            parent_event->cpu,
12521                                            child,
12522                                            group_leader, parent_event,
12523                                            NULL, NULL, -1);
12524         if (IS_ERR(child_event))
12525                 return child_event;
12526
12527
12528         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12529             !child_ctx->task_ctx_data) {
12530                 struct pmu *pmu = child_event->pmu;
12531
12532                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12533                 if (!child_ctx->task_ctx_data) {
12534                         free_event(child_event);
12535                         return ERR_PTR(-ENOMEM);
12536                 }
12537         }
12538
12539         /*
12540          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12541          * must be under the same lock in order to serialize against
12542          * perf_event_release_kernel(), such that either we must observe
12543          * is_orphaned_event() or they will observe us on the child_list.
12544          */
12545         mutex_lock(&parent_event->child_mutex);
12546         if (is_orphaned_event(parent_event) ||
12547             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12548                 mutex_unlock(&parent_event->child_mutex);
12549                 /* task_ctx_data is freed with child_ctx */
12550                 free_event(child_event);
12551                 return NULL;
12552         }
12553
12554         get_ctx(child_ctx);
12555
12556         /*
12557          * Make the child state follow the state of the parent event,
12558          * not its attr.disabled bit.  We hold the parent's mutex,
12559          * so we won't race with perf_event_{en, dis}able_family.
12560          */
12561         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12562                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12563         else
12564                 child_event->state = PERF_EVENT_STATE_OFF;
12565
12566         if (parent_event->attr.freq) {
12567                 u64 sample_period = parent_event->hw.sample_period;
12568                 struct hw_perf_event *hwc = &child_event->hw;
12569
12570                 hwc->sample_period = sample_period;
12571                 hwc->last_period   = sample_period;
12572
12573                 local64_set(&hwc->period_left, sample_period);
12574         }
12575
12576         child_event->ctx = child_ctx;
12577         child_event->overflow_handler = parent_event->overflow_handler;
12578         child_event->overflow_handler_context
12579                 = parent_event->overflow_handler_context;
12580
12581         /*
12582          * Precalculate sample_data sizes
12583          */
12584         perf_event__header_size(child_event);
12585         perf_event__id_header_size(child_event);
12586
12587         /*
12588          * Link it up in the child's context:
12589          */
12590         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12591         add_event_to_ctx(child_event, child_ctx);
12592         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12593
12594         /*
12595          * Link this into the parent event's child list
12596          */
12597         list_add_tail(&child_event->child_list, &parent_event->child_list);
12598         mutex_unlock(&parent_event->child_mutex);
12599
12600         return child_event;
12601 }
12602
12603 /*
12604  * Inherits an event group.
12605  *
12606  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12607  * This matches with perf_event_release_kernel() removing all child events.
12608  *
12609  * Returns:
12610  *  - 0 on success
12611  *  - <0 on error
12612  */
12613 static int inherit_group(struct perf_event *parent_event,
12614               struct task_struct *parent,
12615               struct perf_event_context *parent_ctx,
12616               struct task_struct *child,
12617               struct perf_event_context *child_ctx)
12618 {
12619         struct perf_event *leader;
12620         struct perf_event *sub;
12621         struct perf_event *child_ctr;
12622
12623         leader = inherit_event(parent_event, parent, parent_ctx,
12624                                  child, NULL, child_ctx);
12625         if (IS_ERR(leader))
12626                 return PTR_ERR(leader);
12627         /*
12628          * @leader can be NULL here because of is_orphaned_event(). In this
12629          * case inherit_event() will create individual events, similar to what
12630          * perf_group_detach() would do anyway.
12631          */
12632         for_each_sibling_event(sub, parent_event) {
12633                 child_ctr = inherit_event(sub, parent, parent_ctx,
12634                                             child, leader, child_ctx);
12635                 if (IS_ERR(child_ctr))
12636                         return PTR_ERR(child_ctr);
12637
12638                 if (sub->aux_event == parent_event && child_ctr &&
12639                     !perf_get_aux_event(child_ctr, leader))
12640                         return -EINVAL;
12641         }
12642         return 0;
12643 }
12644
12645 /*
12646  * Creates the child task context and tries to inherit the event-group.
12647  *
12648  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12649  * inherited_all set when we 'fail' to inherit an orphaned event; this is
12650  * consistent with perf_event_release_kernel() removing all child events.
12651  *
12652  * Returns:
12653  *  - 0 on success
12654  *  - <0 on error
12655  */
12656 static int
12657 inherit_task_group(struct perf_event *event, struct task_struct *parent,
12658                    struct perf_event_context *parent_ctx,
12659                    struct task_struct *child, int ctxn,
12660                    int *inherited_all)
12661 {
12662         int ret;
12663         struct perf_event_context *child_ctx;
12664
12665         if (!event->attr.inherit) {
12666                 *inherited_all = 0;
12667                 return 0;
12668         }
12669
12670         child_ctx = child->perf_event_ctxp[ctxn];
12671         if (!child_ctx) {
12672                 /*
12673                  * This is executed from the parent task context, so
12674                  * inherit events that have been marked for cloning.
12675                  * First allocate and initialize a context for the
12676                  * child.
12677                  */
12678                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
12679                 if (!child_ctx)
12680                         return -ENOMEM;
12681
12682                 child->perf_event_ctxp[ctxn] = child_ctx;
12683         }
12684
12685         ret = inherit_group(event, parent, parent_ctx,
12686                             child, child_ctx);
12687
12688         if (ret)
12689                 *inherited_all = 0;
12690
12691         return ret;
12692 }
12693
12694 /*
12695  * Initialize the perf_event context in task_struct
12696  */
12697 static int perf_event_init_context(struct task_struct *child, int ctxn)
12698 {
12699         struct perf_event_context *child_ctx, *parent_ctx;
12700         struct perf_event_context *cloned_ctx;
12701         struct perf_event *event;
12702         struct task_struct *parent = current;
12703         int inherited_all = 1;
12704         unsigned long flags;
12705         int ret = 0;
12706
12707         if (likely(!parent->perf_event_ctxp[ctxn]))
12708                 return 0;
12709
12710         /*
12711          * If the parent's context is a clone, pin it so it won't get
12712          * swapped under us.
12713          */
12714         parent_ctx = perf_pin_task_context(parent, ctxn);
12715         if (!parent_ctx)
12716                 return 0;
12717
12718         /*
12719          * No need to check if parent_ctx != NULL here; since we saw
12720          * it non-NULL earlier, the only reason for it to become NULL
12721          * is if we exit, and since we're currently in the middle of
12722          * a fork we can't be exiting at the same time.
12723          */
12724
12725         /*
12726          * Lock the parent list. No need to lock the child - not PID
12727          * hashed yet and not running, so nobody can access it.
12728          */
12729         mutex_lock(&parent_ctx->mutex);
12730
12731         /*
12732          * We dont have to disable NMIs - we are only looking at
12733          * the list, not manipulating it:
12734          */
12735         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
12736                 ret = inherit_task_group(event, parent, parent_ctx,
12737                                          child, ctxn, &inherited_all);
12738                 if (ret)
12739                         goto out_unlock;
12740         }
12741
12742         /*
12743          * We can't hold ctx->lock when iterating the ->flexible_group list due
12744          * to allocations, but we need to prevent rotation because
12745          * rotate_ctx() will change the list from interrupt context.
12746          */
12747         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12748         parent_ctx->rotate_disable = 1;
12749         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12750
12751         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
12752                 ret = inherit_task_group(event, parent, parent_ctx,
12753                                          child, ctxn, &inherited_all);
12754                 if (ret)
12755                         goto out_unlock;
12756         }
12757
12758         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
12759         parent_ctx->rotate_disable = 0;
12760
12761         child_ctx = child->perf_event_ctxp[ctxn];
12762
12763         if (child_ctx && inherited_all) {
12764                 /*
12765                  * Mark the child context as a clone of the parent
12766                  * context, or of whatever the parent is a clone of.
12767                  *
12768                  * Note that if the parent is a clone, the holding of
12769                  * parent_ctx->lock avoids it from being uncloned.
12770                  */
12771                 cloned_ctx = parent_ctx->parent_ctx;
12772                 if (cloned_ctx) {
12773                         child_ctx->parent_ctx = cloned_ctx;
12774                         child_ctx->parent_gen = parent_ctx->parent_gen;
12775                 } else {
12776                         child_ctx->parent_ctx = parent_ctx;
12777                         child_ctx->parent_gen = parent_ctx->generation;
12778                 }
12779                 get_ctx(child_ctx->parent_ctx);
12780         }
12781
12782         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
12783 out_unlock:
12784         mutex_unlock(&parent_ctx->mutex);
12785
12786         perf_unpin_context(parent_ctx);
12787         put_ctx(parent_ctx);
12788
12789         return ret;
12790 }
12791
12792 /*
12793  * Initialize the perf_event context in task_struct
12794  */
12795 int perf_event_init_task(struct task_struct *child)
12796 {
12797         int ctxn, ret;
12798
12799         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
12800         mutex_init(&child->perf_event_mutex);
12801         INIT_LIST_HEAD(&child->perf_event_list);
12802
12803         for_each_task_context_nr(ctxn) {
12804                 ret = perf_event_init_context(child, ctxn);
12805                 if (ret) {
12806                         perf_event_free_task(child);
12807                         return ret;
12808                 }
12809         }
12810
12811         return 0;
12812 }
12813
12814 static void __init perf_event_init_all_cpus(void)
12815 {
12816         struct swevent_htable *swhash;
12817         int cpu;
12818
12819         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
12820
12821         for_each_possible_cpu(cpu) {
12822                 swhash = &per_cpu(swevent_htable, cpu);
12823                 mutex_init(&swhash->hlist_mutex);
12824                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
12825
12826                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
12827                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
12828
12829 #ifdef CONFIG_CGROUP_PERF
12830                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
12831 #endif
12832                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
12833         }
12834 }
12835
12836 static void perf_swevent_init_cpu(unsigned int cpu)
12837 {
12838         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
12839
12840         mutex_lock(&swhash->hlist_mutex);
12841         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
12842                 struct swevent_hlist *hlist;
12843
12844                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
12845                 WARN_ON(!hlist);
12846                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
12847         }
12848         mutex_unlock(&swhash->hlist_mutex);
12849 }
12850
12851 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12852 static void __perf_event_exit_context(void *__info)
12853 {
12854         struct perf_event_context *ctx = __info;
12855         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
12856         struct perf_event *event;
12857
12858         raw_spin_lock(&ctx->lock);
12859         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
12860         list_for_each_entry(event, &ctx->event_list, event_entry)
12861                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
12862         raw_spin_unlock(&ctx->lock);
12863 }
12864
12865 static void perf_event_exit_cpu_context(int cpu)
12866 {
12867         struct perf_cpu_context *cpuctx;
12868         struct perf_event_context *ctx;
12869         struct pmu *pmu;
12870
12871         mutex_lock(&pmus_lock);
12872         list_for_each_entry(pmu, &pmus, entry) {
12873                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12874                 ctx = &cpuctx->ctx;
12875
12876                 mutex_lock(&ctx->mutex);
12877                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
12878                 cpuctx->online = 0;
12879                 mutex_unlock(&ctx->mutex);
12880         }
12881         cpumask_clear_cpu(cpu, perf_online_mask);
12882         mutex_unlock(&pmus_lock);
12883 }
12884 #else
12885
12886 static void perf_event_exit_cpu_context(int cpu) { }
12887
12888 #endif
12889
12890 int perf_event_init_cpu(unsigned int cpu)
12891 {
12892         struct perf_cpu_context *cpuctx;
12893         struct perf_event_context *ctx;
12894         struct pmu *pmu;
12895
12896         perf_swevent_init_cpu(cpu);
12897
12898         mutex_lock(&pmus_lock);
12899         cpumask_set_cpu(cpu, perf_online_mask);
12900         list_for_each_entry(pmu, &pmus, entry) {
12901                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
12902                 ctx = &cpuctx->ctx;
12903
12904                 mutex_lock(&ctx->mutex);
12905                 cpuctx->online = 1;
12906                 mutex_unlock(&ctx->mutex);
12907         }
12908         mutex_unlock(&pmus_lock);
12909
12910         return 0;
12911 }
12912
12913 int perf_event_exit_cpu(unsigned int cpu)
12914 {
12915         perf_event_exit_cpu_context(cpu);
12916         return 0;
12917 }
12918
12919 static int
12920 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
12921 {
12922         int cpu;
12923
12924         for_each_online_cpu(cpu)
12925                 perf_event_exit_cpu(cpu);
12926
12927         return NOTIFY_OK;
12928 }
12929
12930 /*
12931  * Run the perf reboot notifier at the very last possible moment so that
12932  * the generic watchdog code runs as long as possible.
12933  */
12934 static struct notifier_block perf_reboot_notifier = {
12935         .notifier_call = perf_reboot,
12936         .priority = INT_MIN,
12937 };
12938
12939 void __init perf_event_init(void)
12940 {
12941         int ret;
12942
12943         idr_init(&pmu_idr);
12944
12945         perf_event_init_all_cpus();
12946         init_srcu_struct(&pmus_srcu);
12947         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
12948         perf_pmu_register(&perf_cpu_clock, NULL, -1);
12949         perf_pmu_register(&perf_task_clock, NULL, -1);
12950         perf_tp_register();
12951         perf_event_init_cpu(smp_processor_id());
12952         register_reboot_notifier(&perf_reboot_notifier);
12953
12954         ret = init_hw_breakpoint();
12955         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
12956
12957         /*
12958          * Build time assertion that we keep the data_head at the intended
12959          * location.  IOW, validation we got the __reserved[] size right.
12960          */
12961         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
12962                      != 1024);
12963 }
12964
12965 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
12966                               char *page)
12967 {
12968         struct perf_pmu_events_attr *pmu_attr =
12969                 container_of(attr, struct perf_pmu_events_attr, attr);
12970
12971         if (pmu_attr->event_str)
12972                 return sprintf(page, "%s\n", pmu_attr->event_str);
12973
12974         return 0;
12975 }
12976 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
12977
12978 static int __init perf_event_sysfs_init(void)
12979 {
12980         struct pmu *pmu;
12981         int ret;
12982
12983         mutex_lock(&pmus_lock);
12984
12985         ret = bus_register(&pmu_bus);
12986         if (ret)
12987                 goto unlock;
12988
12989         list_for_each_entry(pmu, &pmus, entry) {
12990                 if (!pmu->name || pmu->type < 0)
12991                         continue;
12992
12993                 ret = pmu_dev_alloc(pmu);
12994                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
12995         }
12996         pmu_bus_running = 1;
12997         ret = 0;
12998
12999 unlock:
13000         mutex_unlock(&pmus_lock);
13001
13002         return ret;
13003 }
13004 device_initcall(perf_event_sysfs_init);
13005
13006 #ifdef CONFIG_CGROUP_PERF
13007 static struct cgroup_subsys_state *
13008 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13009 {
13010         struct perf_cgroup *jc;
13011
13012         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13013         if (!jc)
13014                 return ERR_PTR(-ENOMEM);
13015
13016         jc->info = alloc_percpu(struct perf_cgroup_info);
13017         if (!jc->info) {
13018                 kfree(jc);
13019                 return ERR_PTR(-ENOMEM);
13020         }
13021
13022         return &jc->css;
13023 }
13024
13025 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13026 {
13027         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13028
13029         free_percpu(jc->info);
13030         kfree(jc);
13031 }
13032
13033 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13034 {
13035         perf_event_cgroup(css->cgroup);
13036         return 0;
13037 }
13038
13039 static int __perf_cgroup_move(void *info)
13040 {
13041         struct task_struct *task = info;
13042         rcu_read_lock();
13043         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13044         rcu_read_unlock();
13045         return 0;
13046 }
13047
13048 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13049 {
13050         struct task_struct *task;
13051         struct cgroup_subsys_state *css;
13052
13053         cgroup_taskset_for_each(task, css, tset)
13054                 task_function_call(task, __perf_cgroup_move, task);
13055 }
13056
13057 struct cgroup_subsys perf_event_cgrp_subsys = {
13058         .css_alloc      = perf_cgroup_css_alloc,
13059         .css_free       = perf_cgroup_css_free,
13060         .css_online     = perf_cgroup_css_online,
13061         .attach         = perf_cgroup_attach,
13062         /*
13063          * Implicitly enable on dfl hierarchy so that perf events can
13064          * always be filtered by cgroup2 path as long as perf_event
13065          * controller is not mounted on a legacy hierarchy.
13066          */
13067         .implicit_on_dfl = true,
13068         .threaded       = true,
13069 };
13070 #endif /* CONFIG_CGROUP_PERF */