Merge tag 'ovl-update-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 #ifdef CONFIG_CGROUP_PERF
678
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682         struct perf_event_context *ctx = event->ctx;
683         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684
685         /* @event doesn't care about cgroup */
686         if (!event->cgrp)
687                 return true;
688
689         /* wants specific cgroup scope but @cpuctx isn't associated with any */
690         if (!cpuctx->cgrp)
691                 return false;
692
693         /*
694          * Cgroup scoping is recursive.  An event enabled for a cgroup is
695          * also enabled for all its descendant cgroups.  If @cpuctx's
696          * cgroup is a descendant of @event's (the test covers identity
697          * case), it's a match.
698          */
699         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700                                     event->cgrp->css.cgroup);
701 }
702
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705         css_put(&event->cgrp->css);
706         event->cgrp = NULL;
707 }
708
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711         return event->cgrp != NULL;
712 }
713
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716         struct perf_cgroup_info *t;
717
718         t = per_cpu_ptr(event->cgrp->info, event->cpu);
719         return t->time;
720 }
721
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724         struct perf_cgroup_info *info;
725         u64 now;
726
727         now = perf_clock();
728
729         info = this_cpu_ptr(cgrp->info);
730
731         info->time += now - info->timestamp;
732         info->timestamp = now;
733 }
734
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737         struct perf_cgroup *cgrp = cpuctx->cgrp;
738         struct cgroup_subsys_state *css;
739
740         if (cgrp) {
741                 for (css = &cgrp->css; css; css = css->parent) {
742                         cgrp = container_of(css, struct perf_cgroup, css);
743                         __update_cgrp_time(cgrp);
744                 }
745         }
746 }
747
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750         struct perf_cgroup *cgrp;
751
752         /*
753          * ensure we access cgroup data only when needed and
754          * when we know the cgroup is pinned (css_get)
755          */
756         if (!is_cgroup_event(event))
757                 return;
758
759         cgrp = perf_cgroup_from_task(current, event->ctx);
760         /*
761          * Do not update time when cgroup is not active
762          */
763         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764                 __update_cgrp_time(event->cgrp);
765 }
766
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769                           struct perf_event_context *ctx)
770 {
771         struct perf_cgroup *cgrp;
772         struct perf_cgroup_info *info;
773         struct cgroup_subsys_state *css;
774
775         /*
776          * ctx->lock held by caller
777          * ensure we do not access cgroup data
778          * unless we have the cgroup pinned (css_get)
779          */
780         if (!task || !ctx->nr_cgroups)
781                 return;
782
783         cgrp = perf_cgroup_from_task(task, ctx);
784
785         for (css = &cgrp->css; css; css = css->parent) {
786                 cgrp = container_of(css, struct perf_cgroup, css);
787                 info = this_cpu_ptr(cgrp->info);
788                 info->timestamp = ctx->timestamp;
789         }
790 }
791
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793
794 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
796
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805         struct perf_cpu_context *cpuctx;
806         struct list_head *list;
807         unsigned long flags;
808
809         /*
810          * Disable interrupts and preemption to avoid this CPU's
811          * cgrp_cpuctx_entry to change under us.
812          */
813         local_irq_save(flags);
814
815         list = this_cpu_ptr(&cgrp_cpuctx_list);
816         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818
819                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820                 perf_pmu_disable(cpuctx->ctx.pmu);
821
822                 if (mode & PERF_CGROUP_SWOUT) {
823                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824                         /*
825                          * must not be done before ctxswout due
826                          * to event_filter_match() in event_sched_out()
827                          */
828                         cpuctx->cgrp = NULL;
829                 }
830
831                 if (mode & PERF_CGROUP_SWIN) {
832                         WARN_ON_ONCE(cpuctx->cgrp);
833                         /*
834                          * set cgrp before ctxsw in to allow
835                          * event_filter_match() to not have to pass
836                          * task around
837                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
838                          * because cgorup events are only per-cpu
839                          */
840                         cpuctx->cgrp = perf_cgroup_from_task(task,
841                                                              &cpuctx->ctx);
842                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843                 }
844                 perf_pmu_enable(cpuctx->ctx.pmu);
845                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846         }
847
848         local_irq_restore(flags);
849 }
850
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852                                          struct task_struct *next)
853 {
854         struct perf_cgroup *cgrp1;
855         struct perf_cgroup *cgrp2 = NULL;
856
857         rcu_read_lock();
858         /*
859          * we come here when we know perf_cgroup_events > 0
860          * we do not need to pass the ctx here because we know
861          * we are holding the rcu lock
862          */
863         cgrp1 = perf_cgroup_from_task(task, NULL);
864         cgrp2 = perf_cgroup_from_task(next, NULL);
865
866         /*
867          * only schedule out current cgroup events if we know
868          * that we are switching to a different cgroup. Otherwise,
869          * do no touch the cgroup events.
870          */
871         if (cgrp1 != cgrp2)
872                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873
874         rcu_read_unlock();
875 }
876
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878                                         struct task_struct *task)
879 {
880         struct perf_cgroup *cgrp1;
881         struct perf_cgroup *cgrp2 = NULL;
882
883         rcu_read_lock();
884         /*
885          * we come here when we know perf_cgroup_events > 0
886          * we do not need to pass the ctx here because we know
887          * we are holding the rcu lock
888          */
889         cgrp1 = perf_cgroup_from_task(task, NULL);
890         cgrp2 = perf_cgroup_from_task(prev, NULL);
891
892         /*
893          * only need to schedule in cgroup events if we are changing
894          * cgroup during ctxsw. Cgroup events were not scheduled
895          * out of ctxsw out if that was not the case.
896          */
897         if (cgrp1 != cgrp2)
898                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899
900         rcu_read_unlock();
901 }
902
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904                                 struct cgroup_subsys_state *css)
905 {
906         struct perf_cpu_context *cpuctx;
907         struct perf_event **storage;
908         int cpu, heap_size, ret = 0;
909
910         /*
911          * Allow storage to have sufficent space for an iterator for each
912          * possibly nested cgroup plus an iterator for events with no cgroup.
913          */
914         for (heap_size = 1; css; css = css->parent)
915                 heap_size++;
916
917         for_each_possible_cpu(cpu) {
918                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919                 if (heap_size <= cpuctx->heap_size)
920                         continue;
921
922                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923                                        GFP_KERNEL, cpu_to_node(cpu));
924                 if (!storage) {
925                         ret = -ENOMEM;
926                         break;
927                 }
928
929                 raw_spin_lock_irq(&cpuctx->ctx.lock);
930                 if (cpuctx->heap_size < heap_size) {
931                         swap(cpuctx->heap, storage);
932                         if (storage == cpuctx->heap_default)
933                                 storage = NULL;
934                         cpuctx->heap_size = heap_size;
935                 }
936                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
937
938                 kfree(storage);
939         }
940
941         return ret;
942 }
943
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945                                       struct perf_event_attr *attr,
946                                       struct perf_event *group_leader)
947 {
948         struct perf_cgroup *cgrp;
949         struct cgroup_subsys_state *css;
950         struct fd f = fdget(fd);
951         int ret = 0;
952
953         if (!f.file)
954                 return -EBADF;
955
956         css = css_tryget_online_from_dir(f.file->f_path.dentry,
957                                          &perf_event_cgrp_subsys);
958         if (IS_ERR(css)) {
959                 ret = PTR_ERR(css);
960                 goto out;
961         }
962
963         ret = perf_cgroup_ensure_storage(event, css);
964         if (ret)
965                 goto out;
966
967         cgrp = container_of(css, struct perf_cgroup, css);
968         event->cgrp = cgrp;
969
970         /*
971          * all events in a group must monitor
972          * the same cgroup because a task belongs
973          * to only one perf cgroup at a time
974          */
975         if (group_leader && group_leader->cgrp != cgrp) {
976                 perf_detach_cgroup(event);
977                 ret = -EINVAL;
978         }
979 out:
980         fdput(f);
981         return ret;
982 }
983
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987         struct perf_cgroup_info *t;
988         t = per_cpu_ptr(event->cgrp->info, event->cpu);
989         event->shadow_ctx_time = now - t->timestamp;
990 }
991
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995         struct perf_cpu_context *cpuctx;
996
997         if (!is_cgroup_event(event))
998                 return;
999
1000         /*
1001          * Because cgroup events are always per-cpu events,
1002          * @ctx == &cpuctx->ctx.
1003          */
1004         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005
1006         /*
1007          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008          * matching the event's cgroup, we must do this for every new event,
1009          * because if the first would mismatch, the second would not try again
1010          * and we would leave cpuctx->cgrp unset.
1011          */
1012         if (ctx->is_active && !cpuctx->cgrp) {
1013                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
1015                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016                         cpuctx->cgrp = cgrp;
1017         }
1018
1019         if (ctx->nr_cgroups++)
1020                 return;
1021
1022         list_add(&cpuctx->cgrp_cpuctx_entry,
1023                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029         struct perf_cpu_context *cpuctx;
1030
1031         if (!is_cgroup_event(event))
1032                 return;
1033
1034         /*
1035          * Because cgroup events are always per-cpu events,
1036          * @ctx == &cpuctx->ctx.
1037          */
1038         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039
1040         if (--ctx->nr_cgroups)
1041                 return;
1042
1043         if (ctx->is_active && cpuctx->cgrp)
1044                 cpuctx->cgrp = NULL;
1045
1046         list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048
1049 #else /* !CONFIG_CGROUP_PERF */
1050
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054         return true;
1055 }
1056
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062         return 0;
1063 }
1064
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074                                          struct task_struct *next)
1075 {
1076 }
1077
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079                                         struct task_struct *task)
1080 {
1081 }
1082
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084                                       struct perf_event_attr *attr,
1085                                       struct perf_event *group_leader)
1086 {
1087         return -EINVAL;
1088 }
1089
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092                           struct perf_event_context *ctx)
1093 {
1094 }
1095
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108         return 0;
1109 }
1110
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132         struct perf_cpu_context *cpuctx;
1133         bool rotations;
1134
1135         lockdep_assert_irqs_disabled();
1136
1137         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138         rotations = perf_rotate_context(cpuctx);
1139
1140         raw_spin_lock(&cpuctx->hrtimer_lock);
1141         if (rotations)
1142                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143         else
1144                 cpuctx->hrtimer_active = 0;
1145         raw_spin_unlock(&cpuctx->hrtimer_lock);
1146
1147         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152         struct hrtimer *timer = &cpuctx->hrtimer;
1153         struct pmu *pmu = cpuctx->ctx.pmu;
1154         u64 interval;
1155
1156         /* no multiplexing needed for SW PMU */
1157         if (pmu->task_ctx_nr == perf_sw_context)
1158                 return;
1159
1160         /*
1161          * check default is sane, if not set then force to
1162          * default interval (1/tick)
1163          */
1164         interval = pmu->hrtimer_interval_ms;
1165         if (interval < 1)
1166                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167
1168         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169
1170         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172         timer->function = perf_mux_hrtimer_handler;
1173 }
1174
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177         struct hrtimer *timer = &cpuctx->hrtimer;
1178         struct pmu *pmu = cpuctx->ctx.pmu;
1179         unsigned long flags;
1180
1181         /* not for SW PMU */
1182         if (pmu->task_ctx_nr == perf_sw_context)
1183                 return 0;
1184
1185         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186         if (!cpuctx->hrtimer_active) {
1187                 cpuctx->hrtimer_active = 1;
1188                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190         }
1191         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192
1193         return 0;
1194 }
1195
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199         if (!(*count)++)
1200                 pmu->pmu_disable(pmu);
1201 }
1202
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206         if (!--(*count))
1207                 pmu->pmu_enable(pmu);
1208 }
1209
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221
1222         lockdep_assert_irqs_disabled();
1223
1224         WARN_ON(!list_empty(&ctx->active_ctx_list));
1225
1226         list_add(&ctx->active_ctx_list, head);
1227 }
1228
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231         lockdep_assert_irqs_disabled();
1232
1233         WARN_ON(list_empty(&ctx->active_ctx_list));
1234
1235         list_del_init(&ctx->active_ctx_list);
1236 }
1237
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240         refcount_inc(&ctx->refcount);
1241 }
1242
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245         if (pmu->task_ctx_cache)
1246                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247
1248         return NULL;
1249 }
1250
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253         if (pmu->task_ctx_cache && task_ctx_data)
1254                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259         struct perf_event_context *ctx;
1260
1261         ctx = container_of(head, struct perf_event_context, rcu_head);
1262         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263         kfree(ctx);
1264 }
1265
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268         if (refcount_dec_and_test(&ctx->refcount)) {
1269                 if (ctx->parent_ctx)
1270                         put_ctx(ctx->parent_ctx);
1271                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272                         put_task_struct(ctx->task);
1273                 call_rcu(&ctx->rcu_head, free_ctx);
1274         }
1275 }
1276
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()    [ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()                   [ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()         [ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event() [ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *      task_struct::perf_event_mutex
1332  *        perf_event_context::mutex
1333  *          perf_event::child_mutex;
1334  *            perf_event_context::lock
1335  *          perf_event::mmap_mutex
1336  *          mmap_lock
1337  *            perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *        cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346         struct perf_event_context *ctx;
1347
1348 again:
1349         rcu_read_lock();
1350         ctx = READ_ONCE(event->ctx);
1351         if (!refcount_inc_not_zero(&ctx->refcount)) {
1352                 rcu_read_unlock();
1353                 goto again;
1354         }
1355         rcu_read_unlock();
1356
1357         mutex_lock_nested(&ctx->mutex, nesting);
1358         if (event->ctx != ctx) {
1359                 mutex_unlock(&ctx->mutex);
1360                 put_ctx(ctx);
1361                 goto again;
1362         }
1363
1364         return ctx;
1365 }
1366
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370         return perf_event_ctx_lock_nested(event, 0);
1371 }
1372
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374                                   struct perf_event_context *ctx)
1375 {
1376         mutex_unlock(&ctx->mutex);
1377         put_ctx(ctx);
1378 }
1379
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389
1390         lockdep_assert_held(&ctx->lock);
1391
1392         if (parent_ctx)
1393                 ctx->parent_ctx = NULL;
1394         ctx->generation++;
1395
1396         return parent_ctx;
1397 }
1398
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400                                 enum pid_type type)
1401 {
1402         u32 nr;
1403         /*
1404          * only top level events have the pid namespace they were created in
1405          */
1406         if (event->parent)
1407                 event = event->parent;
1408
1409         nr = __task_pid_nr_ns(p, type, event->ns);
1410         /* avoid -1 if it is idle thread or runs in another ns */
1411         if (!nr && !pid_alive(p))
1412                 nr = -1;
1413         return nr;
1414 }
1415
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423         return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432         u64 id = event->id;
1433
1434         if (event->parent)
1435                 id = event->parent->id;
1436
1437         return id;
1438 }
1439
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449         struct perf_event_context *ctx;
1450
1451 retry:
1452         /*
1453          * One of the few rules of preemptible RCU is that one cannot do
1454          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455          * part of the read side critical section was irqs-enabled -- see
1456          * rcu_read_unlock_special().
1457          *
1458          * Since ctx->lock nests under rq->lock we must ensure the entire read
1459          * side critical section has interrupts disabled.
1460          */
1461         local_irq_save(*flags);
1462         rcu_read_lock();
1463         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464         if (ctx) {
1465                 /*
1466                  * If this context is a clone of another, it might
1467                  * get swapped for another underneath us by
1468                  * perf_event_task_sched_out, though the
1469                  * rcu_read_lock() protects us from any context
1470                  * getting freed.  Lock the context and check if it
1471                  * got swapped before we could get the lock, and retry
1472                  * if so.  If we locked the right context, then it
1473                  * can't get swapped on us any more.
1474                  */
1475                 raw_spin_lock(&ctx->lock);
1476                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477                         raw_spin_unlock(&ctx->lock);
1478                         rcu_read_unlock();
1479                         local_irq_restore(*flags);
1480                         goto retry;
1481                 }
1482
1483                 if (ctx->task == TASK_TOMBSTONE ||
1484                     !refcount_inc_not_zero(&ctx->refcount)) {
1485                         raw_spin_unlock(&ctx->lock);
1486                         ctx = NULL;
1487                 } else {
1488                         WARN_ON_ONCE(ctx->task != task);
1489                 }
1490         }
1491         rcu_read_unlock();
1492         if (!ctx)
1493                 local_irq_restore(*flags);
1494         return ctx;
1495 }
1496
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505         struct perf_event_context *ctx;
1506         unsigned long flags;
1507
1508         ctx = perf_lock_task_context(task, ctxn, &flags);
1509         if (ctx) {
1510                 ++ctx->pin_count;
1511                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512         }
1513         return ctx;
1514 }
1515
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518         unsigned long flags;
1519
1520         raw_spin_lock_irqsave(&ctx->lock, flags);
1521         --ctx->pin_count;
1522         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530         u64 now = perf_clock();
1531
1532         ctx->time += now - ctx->timestamp;
1533         ctx->timestamp = now;
1534 }
1535
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538         struct perf_event_context *ctx = event->ctx;
1539
1540         if (is_cgroup_event(event))
1541                 return perf_cgroup_event_time(event);
1542
1543         return ctx ? ctx->time : 0;
1544 }
1545
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548         struct perf_event_context *ctx = event->ctx;
1549         enum event_type_t event_type;
1550
1551         lockdep_assert_held(&ctx->lock);
1552
1553         /*
1554          * It's 'group type', really, because if our group leader is
1555          * pinned, so are we.
1556          */
1557         if (event->group_leader != event)
1558                 event = event->group_leader;
1559
1560         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561         if (!ctx->task)
1562                 event_type |= EVENT_CPU;
1563
1564         return event_type;
1565 }
1566
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572         RB_CLEAR_NODE(&event->group_node);
1573         event->group_index = 0;
1574 }
1575
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583         if (event->attr.pinned)
1584                 return &ctx->pinned_groups;
1585         else
1586                 return &ctx->flexible_groups;
1587 }
1588
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594         groups->tree = RB_ROOT;
1595         groups->index = 0;
1596 }
1597
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600         struct cgroup *cgroup = NULL;
1601
1602 #ifdef CONFIG_CGROUP_PERF
1603         if (event->cgrp)
1604                 cgroup = event->cgrp->css.cgroup;
1605 #endif
1606
1607         return cgroup;
1608 }
1609
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618                       const u64 left_group_index, const struct perf_event *right)
1619 {
1620         if (left_cpu < right->cpu)
1621                 return -1;
1622         if (left_cpu > right->cpu)
1623                 return 1;
1624
1625 #ifdef CONFIG_CGROUP_PERF
1626         {
1627                 const struct cgroup *right_cgroup = event_cgroup(right);
1628
1629                 if (left_cgroup != right_cgroup) {
1630                         if (!left_cgroup) {
1631                                 /*
1632                                  * Left has no cgroup but right does, no
1633                                  * cgroups come first.
1634                                  */
1635                                 return -1;
1636                         }
1637                         if (!right_cgroup) {
1638                                 /*
1639                                  * Right has no cgroup but left does, no
1640                                  * cgroups come first.
1641                                  */
1642                                 return 1;
1643                         }
1644                         /* Two dissimilar cgroups, order by id. */
1645                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646                                 return -1;
1647
1648                         return 1;
1649                 }
1650         }
1651 #endif
1652
1653         if (left_group_index < right->group_index)
1654                 return -1;
1655         if (left_group_index > right->group_index)
1656                 return 1;
1657
1658         return 0;
1659 }
1660
1661 #define __node_2_pe(node) \
1662         rb_entry((node), struct perf_event, group_node)
1663
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666         struct perf_event *e = __node_2_pe(a);
1667         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668                                      __node_2_pe(b)) < 0;
1669 }
1670
1671 struct __group_key {
1672         int cpu;
1673         struct cgroup *cgroup;
1674 };
1675
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678         const struct __group_key *a = key;
1679         const struct perf_event *b = __node_2_pe(node);
1680
1681         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         event->group_index = ++groups->index;
1695
1696         rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705         struct perf_event_groups *groups;
1706
1707         groups = get_event_groups(event, ctx);
1708         perf_event_groups_insert(groups, event);
1709 }
1710
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716                          struct perf_event *event)
1717 {
1718         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719                      RB_EMPTY_ROOT(&groups->tree));
1720
1721         rb_erase(&event->group_node, &groups->tree);
1722         init_event_group(event);
1723 }
1724
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731         struct perf_event_groups *groups;
1732
1733         groups = get_event_groups(event, ctx);
1734         perf_event_groups_delete(groups, event);
1735 }
1736
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742                         struct cgroup *cgrp)
1743 {
1744         struct __group_key key = {
1745                 .cpu = cpu,
1746                 .cgroup = cgrp,
1747         };
1748         struct rb_node *node;
1749
1750         node = rb_find_first(&key, &groups->tree, __group_cmp);
1751         if (node)
1752                 return __node_2_pe(node);
1753
1754         return NULL;
1755 }
1756
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763         struct __group_key key = {
1764                 .cpu = event->cpu,
1765                 .cgroup = event_cgroup(event),
1766         };
1767         struct rb_node *next;
1768
1769         next = rb_next_match(&key, &event->group_node, __group_cmp);
1770         if (next)
1771                 return __node_2_pe(next);
1772
1773         return NULL;
1774 }
1775
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)                       \
1780         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1781                                 typeof(*event), group_node); event;     \
1782                 event = rb_entry_safe(rb_next(&event->group_node),      \
1783                                 typeof(*event), group_node))
1784
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792         lockdep_assert_held(&ctx->lock);
1793
1794         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795         event->attach_state |= PERF_ATTACH_CONTEXT;
1796
1797         event->tstamp = perf_event_time(event);
1798
1799         /*
1800          * If we're a stand alone event or group leader, we go to the context
1801          * list, group events are kept attached to the group so that
1802          * perf_group_detach can, at all times, locate all siblings.
1803          */
1804         if (event->group_leader == event) {
1805                 event->group_caps = event->event_caps;
1806                 add_event_to_groups(event, ctx);
1807         }
1808
1809         list_add_rcu(&event->event_entry, &ctx->event_list);
1810         ctx->nr_events++;
1811         if (event->attr.inherit_stat)
1812                 ctx->nr_stat++;
1813
1814         if (event->state > PERF_EVENT_STATE_OFF)
1815                 perf_cgroup_event_enable(event, ctx);
1816
1817         ctx->generation++;
1818 }
1819
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826                                               PERF_EVENT_STATE_INACTIVE;
1827 }
1828
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831         int entry = sizeof(u64); /* value */
1832         int size = 0;
1833         int nr = 1;
1834
1835         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836                 size += sizeof(u64);
1837
1838         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839                 size += sizeof(u64);
1840
1841         if (event->attr.read_format & PERF_FORMAT_ID)
1842                 entry += sizeof(u64);
1843
1844         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845                 nr += nr_siblings;
1846                 size += sizeof(u64);
1847         }
1848
1849         size += entry * nr;
1850         event->read_size = size;
1851 }
1852
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855         struct perf_sample_data *data;
1856         u16 size = 0;
1857
1858         if (sample_type & PERF_SAMPLE_IP)
1859                 size += sizeof(data->ip);
1860
1861         if (sample_type & PERF_SAMPLE_ADDR)
1862                 size += sizeof(data->addr);
1863
1864         if (sample_type & PERF_SAMPLE_PERIOD)
1865                 size += sizeof(data->period);
1866
1867         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868                 size += sizeof(data->weight.full);
1869
1870         if (sample_type & PERF_SAMPLE_READ)
1871                 size += event->read_size;
1872
1873         if (sample_type & PERF_SAMPLE_DATA_SRC)
1874                 size += sizeof(data->data_src.val);
1875
1876         if (sample_type & PERF_SAMPLE_TRANSACTION)
1877                 size += sizeof(data->txn);
1878
1879         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880                 size += sizeof(data->phys_addr);
1881
1882         if (sample_type & PERF_SAMPLE_CGROUP)
1883                 size += sizeof(data->cgroup);
1884
1885         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886                 size += sizeof(data->data_page_size);
1887
1888         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889                 size += sizeof(data->code_page_size);
1890
1891         event->header_size = size;
1892 }
1893
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900         __perf_event_read_size(event,
1901                                event->group_leader->nr_siblings);
1902         __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907         struct perf_sample_data *data;
1908         u64 sample_type = event->attr.sample_type;
1909         u16 size = 0;
1910
1911         if (sample_type & PERF_SAMPLE_TID)
1912                 size += sizeof(data->tid_entry);
1913
1914         if (sample_type & PERF_SAMPLE_TIME)
1915                 size += sizeof(data->time);
1916
1917         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918                 size += sizeof(data->id);
1919
1920         if (sample_type & PERF_SAMPLE_ID)
1921                 size += sizeof(data->id);
1922
1923         if (sample_type & PERF_SAMPLE_STREAM_ID)
1924                 size += sizeof(data->stream_id);
1925
1926         if (sample_type & PERF_SAMPLE_CPU)
1927                 size += sizeof(data->cpu_entry);
1928
1929         event->id_header_size = size;
1930 }
1931
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934         /*
1935          * The values computed here will be over-written when we actually
1936          * attach the event.
1937          */
1938         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940         perf_event__id_header_size(event);
1941
1942         /*
1943          * Sum the lot; should not exceed the 64k limit we have on records.
1944          * Conservative limit to allow for callchains and other variable fields.
1945          */
1946         if (event->read_size + event->header_size +
1947             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948                 return false;
1949
1950         return true;
1951 }
1952
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955         struct perf_event *group_leader = event->group_leader, *pos;
1956
1957         lockdep_assert_held(&event->ctx->lock);
1958
1959         /*
1960          * We can have double attach due to group movement in perf_event_open.
1961          */
1962         if (event->attach_state & PERF_ATTACH_GROUP)
1963                 return;
1964
1965         event->attach_state |= PERF_ATTACH_GROUP;
1966
1967         if (group_leader == event)
1968                 return;
1969
1970         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971
1972         group_leader->group_caps &= event->event_caps;
1973
1974         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975         group_leader->nr_siblings++;
1976
1977         perf_event__header_size(group_leader);
1978
1979         for_each_sibling_event(pos, group_leader)
1980                 perf_event__header_size(pos);
1981 }
1982
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990         WARN_ON_ONCE(event->ctx != ctx);
1991         lockdep_assert_held(&ctx->lock);
1992
1993         /*
1994          * We can have double detach due to exit/hot-unplug + close.
1995          */
1996         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997                 return;
1998
1999         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000
2001         ctx->nr_events--;
2002         if (event->attr.inherit_stat)
2003                 ctx->nr_stat--;
2004
2005         list_del_rcu(&event->event_entry);
2006
2007         if (event->group_leader == event)
2008                 del_event_from_groups(event, ctx);
2009
2010         /*
2011          * If event was in error state, then keep it
2012          * that way, otherwise bogus counts will be
2013          * returned on read(). The only way to get out
2014          * of error state is by explicit re-enabling
2015          * of the event
2016          */
2017         if (event->state > PERF_EVENT_STATE_OFF) {
2018                 perf_cgroup_event_disable(event, ctx);
2019                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020         }
2021
2022         ctx->generation++;
2023 }
2024
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028         if (!has_aux(aux_event))
2029                 return 0;
2030
2031         if (!event->pmu->aux_output_match)
2032                 return 0;
2033
2034         return event->pmu->aux_output_match(aux_event);
2035 }
2036
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039                             struct perf_cpu_context *cpuctx,
2040                             struct perf_event_context *ctx);
2041
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044         struct perf_event_context *ctx = event->ctx;
2045         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046         struct perf_event *iter;
2047
2048         /*
2049          * If event uses aux_event tear down the link
2050          */
2051         if (event->aux_event) {
2052                 iter = event->aux_event;
2053                 event->aux_event = NULL;
2054                 put_event(iter);
2055                 return;
2056         }
2057
2058         /*
2059          * If the event is an aux_event, tear down all links to
2060          * it from other events.
2061          */
2062         for_each_sibling_event(iter, event->group_leader) {
2063                 if (iter->aux_event != event)
2064                         continue;
2065
2066                 iter->aux_event = NULL;
2067                 put_event(event);
2068
2069                 /*
2070                  * If it's ACTIVE, schedule it out and put it into ERROR
2071                  * state so that we don't try to schedule it again. Note
2072                  * that perf_event_enable() will clear the ERROR status.
2073                  */
2074                 event_sched_out(iter, cpuctx, ctx);
2075                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076         }
2077 }
2078
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083
2084 static int perf_get_aux_event(struct perf_event *event,
2085                               struct perf_event *group_leader)
2086 {
2087         /*
2088          * Our group leader must be an aux event if we want to be
2089          * an aux_output. This way, the aux event will precede its
2090          * aux_output events in the group, and therefore will always
2091          * schedule first.
2092          */
2093         if (!group_leader)
2094                 return 0;
2095
2096         /*
2097          * aux_output and aux_sample_size are mutually exclusive.
2098          */
2099         if (event->attr.aux_output && event->attr.aux_sample_size)
2100                 return 0;
2101
2102         if (event->attr.aux_output &&
2103             !perf_aux_output_match(event, group_leader))
2104                 return 0;
2105
2106         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107                 return 0;
2108
2109         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110                 return 0;
2111
2112         /*
2113          * Link aux_outputs to their aux event; this is undone in
2114          * perf_group_detach() by perf_put_aux_event(). When the
2115          * group in torn down, the aux_output events loose their
2116          * link to the aux_event and can't schedule any more.
2117          */
2118         event->aux_event = group_leader;
2119
2120         return 1;
2121 }
2122
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125         struct perf_event_context *ctx = event->ctx;
2126         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137         struct perf_event_context *ctx = event->ctx;
2138         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139
2140         event_sched_out(event, cpuctx, ctx);
2141         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146         struct perf_event *leader = event->group_leader;
2147         struct perf_event *sibling, *tmp;
2148         struct perf_event_context *ctx = event->ctx;
2149
2150         lockdep_assert_held(&ctx->lock);
2151
2152         /*
2153          * We can have double detach due to exit/hot-unplug + close.
2154          */
2155         if (!(event->attach_state & PERF_ATTACH_GROUP))
2156                 return;
2157
2158         event->attach_state &= ~PERF_ATTACH_GROUP;
2159
2160         perf_put_aux_event(event);
2161
2162         /*
2163          * If this is a sibling, remove it from its group.
2164          */
2165         if (leader != event) {
2166                 list_del_init(&event->sibling_list);
2167                 event->group_leader->nr_siblings--;
2168                 goto out;
2169         }
2170
2171         /*
2172          * If this was a group event with sibling events then
2173          * upgrade the siblings to singleton events by adding them
2174          * to whatever list we are on.
2175          */
2176         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177
2178                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179                         perf_remove_sibling_event(sibling);
2180
2181                 sibling->group_leader = sibling;
2182                 list_del_init(&sibling->sibling_list);
2183
2184                 /* Inherit group flags from the previous leader */
2185                 sibling->group_caps = event->group_caps;
2186
2187                 if (!RB_EMPTY_NODE(&event->group_node)) {
2188                         add_event_to_groups(sibling, event->ctx);
2189
2190                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2192                 }
2193
2194                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2195         }
2196
2197 out:
2198         for_each_sibling_event(tmp, leader)
2199                 perf_event__header_size(tmp);
2200
2201         perf_event__header_size(leader);
2202 }
2203
2204 static void sync_child_event(struct perf_event *child_event);
2205
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208         struct perf_event *parent_event = event->parent;
2209
2210         if (!(event->attach_state & PERF_ATTACH_CHILD))
2211                 return;
2212
2213         event->attach_state &= ~PERF_ATTACH_CHILD;
2214
2215         if (WARN_ON_ONCE(!parent_event))
2216                 return;
2217
2218         lockdep_assert_held(&parent_event->child_mutex);
2219
2220         sync_child_event(event);
2221         list_del_init(&event->child_list);
2222 }
2223
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226         return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231         struct pmu *pmu = event->pmu;
2232         return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243         struct perf_event *sibling;
2244
2245         if (!__pmu_filter_match(event))
2246                 return 0;
2247
2248         for_each_sibling_event(sibling, event) {
2249                 if (!__pmu_filter_match(sibling))
2250                         return 0;
2251         }
2252
2253         return 1;
2254 }
2255
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260                perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262
2263 static void
2264 event_sched_out(struct perf_event *event,
2265                   struct perf_cpu_context *cpuctx,
2266                   struct perf_event_context *ctx)
2267 {
2268         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269
2270         WARN_ON_ONCE(event->ctx != ctx);
2271         lockdep_assert_held(&ctx->lock);
2272
2273         if (event->state != PERF_EVENT_STATE_ACTIVE)
2274                 return;
2275
2276         /*
2277          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278          * we can schedule events _OUT_ individually through things like
2279          * __perf_remove_from_context().
2280          */
2281         list_del_init(&event->active_list);
2282
2283         perf_pmu_disable(event->pmu);
2284
2285         event->pmu->del(event, 0);
2286         event->oncpu = -1;
2287
2288         if (READ_ONCE(event->pending_disable) >= 0) {
2289                 WRITE_ONCE(event->pending_disable, -1);
2290                 perf_cgroup_event_disable(event, ctx);
2291                 state = PERF_EVENT_STATE_OFF;
2292         }
2293         perf_event_set_state(event, state);
2294
2295         if (!is_software_event(event))
2296                 cpuctx->active_oncpu--;
2297         if (!--ctx->nr_active)
2298                 perf_event_ctx_deactivate(ctx);
2299         if (event->attr.freq && event->attr.sample_freq)
2300                 ctx->nr_freq--;
2301         if (event->attr.exclusive || !cpuctx->active_oncpu)
2302                 cpuctx->exclusive = 0;
2303
2304         perf_pmu_enable(event->pmu);
2305 }
2306
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309                 struct perf_cpu_context *cpuctx,
2310                 struct perf_event_context *ctx)
2311 {
2312         struct perf_event *event;
2313
2314         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315                 return;
2316
2317         perf_pmu_disable(ctx->pmu);
2318
2319         event_sched_out(group_event, cpuctx, ctx);
2320
2321         /*
2322          * Schedule out siblings (if any):
2323          */
2324         for_each_sibling_event(event, group_event)
2325                 event_sched_out(event, cpuctx, ctx);
2326
2327         perf_pmu_enable(ctx->pmu);
2328 }
2329
2330 #define DETACH_GROUP    0x01UL
2331 #define DETACH_CHILD    0x02UL
2332
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341                            struct perf_cpu_context *cpuctx,
2342                            struct perf_event_context *ctx,
2343                            void *info)
2344 {
2345         unsigned long flags = (unsigned long)info;
2346
2347         if (ctx->is_active & EVENT_TIME) {
2348                 update_context_time(ctx);
2349                 update_cgrp_time_from_cpuctx(cpuctx);
2350         }
2351
2352         event_sched_out(event, cpuctx, ctx);
2353         if (flags & DETACH_GROUP)
2354                 perf_group_detach(event);
2355         if (flags & DETACH_CHILD)
2356                 perf_child_detach(event);
2357         list_del_event(event, ctx);
2358
2359         if (!ctx->nr_events && ctx->is_active) {
2360                 ctx->is_active = 0;
2361                 ctx->rotate_necessary = 0;
2362                 if (ctx->task) {
2363                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364                         cpuctx->task_ctx = NULL;
2365                 }
2366         }
2367 }
2368
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381         struct perf_event_context *ctx = event->ctx;
2382
2383         lockdep_assert_held(&ctx->mutex);
2384
2385         /*
2386          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387          * to work in the face of TASK_TOMBSTONE, unlike every other
2388          * event_function_call() user.
2389          */
2390         raw_spin_lock_irq(&ctx->lock);
2391         if (!ctx->is_active) {
2392                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2393                                            ctx, (void *)flags);
2394                 raw_spin_unlock_irq(&ctx->lock);
2395                 return;
2396         }
2397         raw_spin_unlock_irq(&ctx->lock);
2398
2399         event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406                                  struct perf_cpu_context *cpuctx,
2407                                  struct perf_event_context *ctx,
2408                                  void *info)
2409 {
2410         if (event->state < PERF_EVENT_STATE_INACTIVE)
2411                 return;
2412
2413         if (ctx->is_active & EVENT_TIME) {
2414                 update_context_time(ctx);
2415                 update_cgrp_time_from_event(event);
2416         }
2417
2418         if (event == event->group_leader)
2419                 group_sched_out(event, cpuctx, ctx);
2420         else
2421                 event_sched_out(event, cpuctx, ctx);
2422
2423         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424         perf_cgroup_event_disable(event, ctx);
2425 }
2426
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443         struct perf_event_context *ctx = event->ctx;
2444
2445         raw_spin_lock_irq(&ctx->lock);
2446         if (event->state <= PERF_EVENT_STATE_OFF) {
2447                 raw_spin_unlock_irq(&ctx->lock);
2448                 return;
2449         }
2450         raw_spin_unlock_irq(&ctx->lock);
2451
2452         event_function_call(event, __perf_event_disable, NULL);
2453 }
2454
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457         event_function_local(event, __perf_event_disable, NULL);
2458 }
2459
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466         struct perf_event_context *ctx;
2467
2468         ctx = perf_event_ctx_lock(event);
2469         _perf_event_disable(event);
2470         perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476         WRITE_ONCE(event->pending_disable, smp_processor_id());
2477         /* can fail, see perf_pending_event_disable() */
2478         irq_work_queue(&event->pending);
2479 }
2480
2481 static void perf_set_shadow_time(struct perf_event *event,
2482                                  struct perf_event_context *ctx)
2483 {
2484         /*
2485          * use the correct time source for the time snapshot
2486          *
2487          * We could get by without this by leveraging the
2488          * fact that to get to this function, the caller
2489          * has most likely already called update_context_time()
2490          * and update_cgrp_time_xx() and thus both timestamp
2491          * are identical (or very close). Given that tstamp is,
2492          * already adjusted for cgroup, we could say that:
2493          *    tstamp - ctx->timestamp
2494          * is equivalent to
2495          *    tstamp - cgrp->timestamp.
2496          *
2497          * Then, in perf_output_read(), the calculation would
2498          * work with no changes because:
2499          * - event is guaranteed scheduled in
2500          * - no scheduled out in between
2501          * - thus the timestamp would be the same
2502          *
2503          * But this is a bit hairy.
2504          *
2505          * So instead, we have an explicit cgroup call to remain
2506          * within the time source all along. We believe it
2507          * is cleaner and simpler to understand.
2508          */
2509         if (is_cgroup_event(event))
2510                 perf_cgroup_set_shadow_time(event, event->tstamp);
2511         else
2512                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514
2515 #define MAX_INTERRUPTS (~0ULL)
2516
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519
2520 static int
2521 event_sched_in(struct perf_event *event,
2522                  struct perf_cpu_context *cpuctx,
2523                  struct perf_event_context *ctx)
2524 {
2525         int ret = 0;
2526
2527         WARN_ON_ONCE(event->ctx != ctx);
2528
2529         lockdep_assert_held(&ctx->lock);
2530
2531         if (event->state <= PERF_EVENT_STATE_OFF)
2532                 return 0;
2533
2534         WRITE_ONCE(event->oncpu, smp_processor_id());
2535         /*
2536          * Order event::oncpu write to happen before the ACTIVE state is
2537          * visible. This allows perf_event_{stop,read}() to observe the correct
2538          * ->oncpu if it sees ACTIVE.
2539          */
2540         smp_wmb();
2541         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542
2543         /*
2544          * Unthrottle events, since we scheduled we might have missed several
2545          * ticks already, also for a heavily scheduling task there is little
2546          * guarantee it'll get a tick in a timely manner.
2547          */
2548         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549                 perf_log_throttle(event, 1);
2550                 event->hw.interrupts = 0;
2551         }
2552
2553         perf_pmu_disable(event->pmu);
2554
2555         perf_set_shadow_time(event, ctx);
2556
2557         perf_log_itrace_start(event);
2558
2559         if (event->pmu->add(event, PERF_EF_START)) {
2560                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561                 event->oncpu = -1;
2562                 ret = -EAGAIN;
2563                 goto out;
2564         }
2565
2566         if (!is_software_event(event))
2567                 cpuctx->active_oncpu++;
2568         if (!ctx->nr_active++)
2569                 perf_event_ctx_activate(ctx);
2570         if (event->attr.freq && event->attr.sample_freq)
2571                 ctx->nr_freq++;
2572
2573         if (event->attr.exclusive)
2574                 cpuctx->exclusive = 1;
2575
2576 out:
2577         perf_pmu_enable(event->pmu);
2578
2579         return ret;
2580 }
2581
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584                struct perf_cpu_context *cpuctx,
2585                struct perf_event_context *ctx)
2586 {
2587         struct perf_event *event, *partial_group = NULL;
2588         struct pmu *pmu = ctx->pmu;
2589
2590         if (group_event->state == PERF_EVENT_STATE_OFF)
2591                 return 0;
2592
2593         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594
2595         if (event_sched_in(group_event, cpuctx, ctx))
2596                 goto error;
2597
2598         /*
2599          * Schedule in siblings as one group (if any):
2600          */
2601         for_each_sibling_event(event, group_event) {
2602                 if (event_sched_in(event, cpuctx, ctx)) {
2603                         partial_group = event;
2604                         goto group_error;
2605                 }
2606         }
2607
2608         if (!pmu->commit_txn(pmu))
2609                 return 0;
2610
2611 group_error:
2612         /*
2613          * Groups can be scheduled in as one unit only, so undo any
2614          * partial group before returning:
2615          * The events up to the failed event are scheduled out normally.
2616          */
2617         for_each_sibling_event(event, group_event) {
2618                 if (event == partial_group)
2619                         break;
2620
2621                 event_sched_out(event, cpuctx, ctx);
2622         }
2623         event_sched_out(group_event, cpuctx, ctx);
2624
2625 error:
2626         pmu->cancel_txn(pmu);
2627         return -EAGAIN;
2628 }
2629
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634                            struct perf_cpu_context *cpuctx,
2635                            int can_add_hw)
2636 {
2637         /*
2638          * Groups consisting entirely of software events can always go on.
2639          */
2640         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641                 return 1;
2642         /*
2643          * If an exclusive group is already on, no other hardware
2644          * events can go on.
2645          */
2646         if (cpuctx->exclusive)
2647                 return 0;
2648         /*
2649          * If this group is exclusive and there are already
2650          * events on the CPU, it can't go on.
2651          */
2652         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653                 return 0;
2654         /*
2655          * Otherwise, try to add it if all previous groups were able
2656          * to go on.
2657          */
2658         return can_add_hw;
2659 }
2660
2661 static void add_event_to_ctx(struct perf_event *event,
2662                                struct perf_event_context *ctx)
2663 {
2664         list_add_event(event, ctx);
2665         perf_group_attach(event);
2666 }
2667
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669                           struct perf_cpu_context *cpuctx,
2670                           enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673              struct perf_cpu_context *cpuctx,
2674              enum event_type_t event_type,
2675              struct task_struct *task);
2676
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678                                struct perf_event_context *ctx,
2679                                enum event_type_t event_type)
2680 {
2681         if (!cpuctx->task_ctx)
2682                 return;
2683
2684         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685                 return;
2686
2687         ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691                                 struct perf_event_context *ctx,
2692                                 struct task_struct *task)
2693 {
2694         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695         if (ctx)
2696                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698         if (ctx)
2699                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718                         struct perf_event_context *task_ctx,
2719                         enum event_type_t event_type)
2720 {
2721         enum event_type_t ctx_event_type;
2722         bool cpu_event = !!(event_type & EVENT_CPU);
2723
2724         /*
2725          * If pinned groups are involved, flexible groups also need to be
2726          * scheduled out.
2727          */
2728         if (event_type & EVENT_PINNED)
2729                 event_type |= EVENT_FLEXIBLE;
2730
2731         ctx_event_type = event_type & EVENT_ALL;
2732
2733         perf_pmu_disable(cpuctx->ctx.pmu);
2734         if (task_ctx)
2735                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736
2737         /*
2738          * Decide which cpu ctx groups to schedule out based on the types
2739          * of events that caused rescheduling:
2740          *  - EVENT_CPU: schedule out corresponding groups;
2741          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742          *  - otherwise, do nothing more.
2743          */
2744         if (cpu_event)
2745                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746         else if (ctx_event_type & EVENT_PINNED)
2747                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748
2749         perf_event_sched_in(cpuctx, task_ctx, current);
2750         perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757
2758         perf_ctx_lock(cpuctx, task_ctx);
2759         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760         perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771         struct perf_event *event = info;
2772         struct perf_event_context *ctx = event->ctx;
2773         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775         bool reprogram = true;
2776         int ret = 0;
2777
2778         raw_spin_lock(&cpuctx->ctx.lock);
2779         if (ctx->task) {
2780                 raw_spin_lock(&ctx->lock);
2781                 task_ctx = ctx;
2782
2783                 reprogram = (ctx->task == current);
2784
2785                 /*
2786                  * If the task is running, it must be running on this CPU,
2787                  * otherwise we cannot reprogram things.
2788                  *
2789                  * If its not running, we don't care, ctx->lock will
2790                  * serialize against it becoming runnable.
2791                  */
2792                 if (task_curr(ctx->task) && !reprogram) {
2793                         ret = -ESRCH;
2794                         goto unlock;
2795                 }
2796
2797                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798         } else if (task_ctx) {
2799                 raw_spin_lock(&task_ctx->lock);
2800         }
2801
2802 #ifdef CONFIG_CGROUP_PERF
2803         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804                 /*
2805                  * If the current cgroup doesn't match the event's
2806                  * cgroup, we should not try to schedule it.
2807                  */
2808                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810                                         event->cgrp->css.cgroup);
2811         }
2812 #endif
2813
2814         if (reprogram) {
2815                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816                 add_event_to_ctx(event, ctx);
2817                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818         } else {
2819                 add_event_to_ctx(event, ctx);
2820         }
2821
2822 unlock:
2823         perf_ctx_unlock(cpuctx, task_ctx);
2824
2825         return ret;
2826 }
2827
2828 static bool exclusive_event_installable(struct perf_event *event,
2829                                         struct perf_event_context *ctx);
2830
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838                         struct perf_event *event,
2839                         int cpu)
2840 {
2841         struct task_struct *task = READ_ONCE(ctx->task);
2842
2843         lockdep_assert_held(&ctx->mutex);
2844
2845         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846
2847         if (event->cpu != -1)
2848                 event->cpu = cpu;
2849
2850         /*
2851          * Ensures that if we can observe event->ctx, both the event and ctx
2852          * will be 'complete'. See perf_iterate_sb_cpu().
2853          */
2854         smp_store_release(&event->ctx, ctx);
2855
2856         /*
2857          * perf_event_attr::disabled events will not run and can be initialized
2858          * without IPI. Except when this is the first event for the context, in
2859          * that case we need the magic of the IPI to set ctx->is_active.
2860          *
2861          * The IOC_ENABLE that is sure to follow the creation of a disabled
2862          * event will issue the IPI and reprogram the hardware.
2863          */
2864         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865                 raw_spin_lock_irq(&ctx->lock);
2866                 if (ctx->task == TASK_TOMBSTONE) {
2867                         raw_spin_unlock_irq(&ctx->lock);
2868                         return;
2869                 }
2870                 add_event_to_ctx(event, ctx);
2871                 raw_spin_unlock_irq(&ctx->lock);
2872                 return;
2873         }
2874
2875         if (!task) {
2876                 cpu_function_call(cpu, __perf_install_in_context, event);
2877                 return;
2878         }
2879
2880         /*
2881          * Should not happen, we validate the ctx is still alive before calling.
2882          */
2883         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884                 return;
2885
2886         /*
2887          * Installing events is tricky because we cannot rely on ctx->is_active
2888          * to be set in case this is the nr_events 0 -> 1 transition.
2889          *
2890          * Instead we use task_curr(), which tells us if the task is running.
2891          * However, since we use task_curr() outside of rq::lock, we can race
2892          * against the actual state. This means the result can be wrong.
2893          *
2894          * If we get a false positive, we retry, this is harmless.
2895          *
2896          * If we get a false negative, things are complicated. If we are after
2897          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898          * value must be correct. If we're before, it doesn't matter since
2899          * perf_event_context_sched_in() will program the counter.
2900          *
2901          * However, this hinges on the remote context switch having observed
2902          * our task->perf_event_ctxp[] store, such that it will in fact take
2903          * ctx::lock in perf_event_context_sched_in().
2904          *
2905          * We do this by task_function_call(), if the IPI fails to hit the task
2906          * we know any future context switch of task must see the
2907          * perf_event_ctpx[] store.
2908          */
2909
2910         /*
2911          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912          * task_cpu() load, such that if the IPI then does not find the task
2913          * running, a future context switch of that task must observe the
2914          * store.
2915          */
2916         smp_mb();
2917 again:
2918         if (!task_function_call(task, __perf_install_in_context, event))
2919                 return;
2920
2921         raw_spin_lock_irq(&ctx->lock);
2922         task = ctx->task;
2923         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924                 /*
2925                  * Cannot happen because we already checked above (which also
2926                  * cannot happen), and we hold ctx->mutex, which serializes us
2927                  * against perf_event_exit_task_context().
2928                  */
2929                 raw_spin_unlock_irq(&ctx->lock);
2930                 return;
2931         }
2932         /*
2933          * If the task is not running, ctx->lock will avoid it becoming so,
2934          * thus we can safely install the event.
2935          */
2936         if (task_curr(task)) {
2937                 raw_spin_unlock_irq(&ctx->lock);
2938                 goto again;
2939         }
2940         add_event_to_ctx(event, ctx);
2941         raw_spin_unlock_irq(&ctx->lock);
2942 }
2943
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948                                 struct perf_cpu_context *cpuctx,
2949                                 struct perf_event_context *ctx,
2950                                 void *info)
2951 {
2952         struct perf_event *leader = event->group_leader;
2953         struct perf_event_context *task_ctx;
2954
2955         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956             event->state <= PERF_EVENT_STATE_ERROR)
2957                 return;
2958
2959         if (ctx->is_active)
2960                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961
2962         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963         perf_cgroup_event_enable(event, ctx);
2964
2965         if (!ctx->is_active)
2966                 return;
2967
2968         if (!event_filter_match(event)) {
2969                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970                 return;
2971         }
2972
2973         /*
2974          * If the event is in a group and isn't the group leader,
2975          * then don't put it on unless the group is on.
2976          */
2977         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979                 return;
2980         }
2981
2982         task_ctx = cpuctx->task_ctx;
2983         if (ctx->task)
2984                 WARN_ON_ONCE(task_ctx != ctx);
2985
2986         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000         struct perf_event_context *ctx = event->ctx;
3001
3002         raw_spin_lock_irq(&ctx->lock);
3003         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004             event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006                 raw_spin_unlock_irq(&ctx->lock);
3007                 return;
3008         }
3009
3010         /*
3011          * If the event is in error state, clear that first.
3012          *
3013          * That way, if we see the event in error state below, we know that it
3014          * has gone back into error state, as distinct from the task having
3015          * been scheduled away before the cross-call arrived.
3016          */
3017         if (event->state == PERF_EVENT_STATE_ERROR) {
3018                 /*
3019                  * Detached SIBLING events cannot leave ERROR state.
3020                  */
3021                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022                     event->group_leader == event)
3023                         goto out;
3024
3025                 event->state = PERF_EVENT_STATE_OFF;
3026         }
3027         raw_spin_unlock_irq(&ctx->lock);
3028
3029         event_function_call(event, __perf_event_enable, NULL);
3030 }
3031
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037         struct perf_event_context *ctx;
3038
3039         ctx = perf_event_ctx_lock(event);
3040         _perf_event_enable(event);
3041         perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044
3045 struct stop_event_data {
3046         struct perf_event       *event;
3047         unsigned int            restart;
3048 };
3049
3050 static int __perf_event_stop(void *info)
3051 {
3052         struct stop_event_data *sd = info;
3053         struct perf_event *event = sd->event;
3054
3055         /* if it's already INACTIVE, do nothing */
3056         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057                 return 0;
3058
3059         /* matches smp_wmb() in event_sched_in() */
3060         smp_rmb();
3061
3062         /*
3063          * There is a window with interrupts enabled before we get here,
3064          * so we need to check again lest we try to stop another CPU's event.
3065          */
3066         if (READ_ONCE(event->oncpu) != smp_processor_id())
3067                 return -EAGAIN;
3068
3069         event->pmu->stop(event, PERF_EF_UPDATE);
3070
3071         /*
3072          * May race with the actual stop (through perf_pmu_output_stop()),
3073          * but it is only used for events with AUX ring buffer, and such
3074          * events will refuse to restart because of rb::aux_mmap_count==0,
3075          * see comments in perf_aux_output_begin().
3076          *
3077          * Since this is happening on an event-local CPU, no trace is lost
3078          * while restarting.
3079          */
3080         if (sd->restart)
3081                 event->pmu->start(event, 0);
3082
3083         return 0;
3084 }
3085
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088         struct stop_event_data sd = {
3089                 .event          = event,
3090                 .restart        = restart,
3091         };
3092         int ret = 0;
3093
3094         do {
3095                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096                         return 0;
3097
3098                 /* matches smp_wmb() in event_sched_in() */
3099                 smp_rmb();
3100
3101                 /*
3102                  * We only want to restart ACTIVE events, so if the event goes
3103                  * inactive here (event->oncpu==-1), there's nothing more to do;
3104                  * fall through with ret==-ENXIO.
3105                  */
3106                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3107                                         __perf_event_stop, &sd);
3108         } while (ret == -EAGAIN);
3109
3110         return ret;
3111 }
3112
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138
3139         if (!has_addr_filter(event))
3140                 return;
3141
3142         raw_spin_lock(&ifh->lock);
3143         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144                 event->pmu->addr_filters_sync(event);
3145                 event->hw.addr_filters_gen = event->addr_filters_gen;
3146         }
3147         raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153         /*
3154          * not supported on inherited events
3155          */
3156         if (event->attr.inherit || !is_sampling_event(event))
3157                 return -EINVAL;
3158
3159         atomic_add(refresh, &event->event_limit);
3160         _perf_event_enable(event);
3161
3162         return 0;
3163 }
3164
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170         struct perf_event_context *ctx;
3171         int ret;
3172
3173         ctx = perf_event_ctx_lock(event);
3174         ret = _perf_event_refresh(event, refresh);
3175         perf_event_ctx_unlock(event, ctx);
3176
3177         return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182                                          struct perf_event_attr *attr)
3183 {
3184         int err;
3185
3186         _perf_event_disable(bp);
3187
3188         err = modify_user_hw_breakpoint_check(bp, attr, true);
3189
3190         if (!bp->attr.disabled)
3191                 _perf_event_enable(bp);
3192
3193         return err;
3194 }
3195
3196 static int perf_event_modify_attr(struct perf_event *event,
3197                                   struct perf_event_attr *attr)
3198 {
3199         int (*func)(struct perf_event *, struct perf_event_attr *);
3200         struct perf_event *child;
3201         int err;
3202
3203         if (event->attr.type != attr->type)
3204                 return -EINVAL;
3205
3206         switch (event->attr.type) {
3207         case PERF_TYPE_BREAKPOINT:
3208                 func = perf_event_modify_breakpoint;
3209                 break;
3210         default:
3211                 /* Place holder for future additions. */
3212                 return -EOPNOTSUPP;
3213         }
3214
3215         WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217         mutex_lock(&event->child_mutex);
3218         err = func(event, attr);
3219         if (err)
3220                 goto out;
3221         list_for_each_entry(child, &event->child_list, child_list) {
3222                 err = func(child, attr);
3223                 if (err)
3224                         goto out;
3225         }
3226 out:
3227         mutex_unlock(&event->child_mutex);
3228         return err;
3229 }
3230
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232                           struct perf_cpu_context *cpuctx,
3233                           enum event_type_t event_type)
3234 {
3235         struct perf_event *event, *tmp;
3236         int is_active = ctx->is_active;
3237
3238         lockdep_assert_held(&ctx->lock);
3239
3240         if (likely(!ctx->nr_events)) {
3241                 /*
3242                  * See __perf_remove_from_context().
3243                  */
3244                 WARN_ON_ONCE(ctx->is_active);
3245                 if (ctx->task)
3246                         WARN_ON_ONCE(cpuctx->task_ctx);
3247                 return;
3248         }
3249
3250         ctx->is_active &= ~event_type;
3251         if (!(ctx->is_active & EVENT_ALL))
3252                 ctx->is_active = 0;
3253
3254         if (ctx->task) {
3255                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256                 if (!ctx->is_active)
3257                         cpuctx->task_ctx = NULL;
3258         }
3259
3260         /*
3261          * Always update time if it was set; not only when it changes.
3262          * Otherwise we can 'forget' to update time for any but the last
3263          * context we sched out. For example:
3264          *
3265          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266          *   ctx_sched_out(.event_type = EVENT_PINNED)
3267          *
3268          * would only update time for the pinned events.
3269          */
3270         if (is_active & EVENT_TIME) {
3271                 /* update (and stop) ctx time */
3272                 update_context_time(ctx);
3273                 update_cgrp_time_from_cpuctx(cpuctx);
3274         }
3275
3276         is_active ^= ctx->is_active; /* changed bits */
3277
3278         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279                 return;
3280
3281         perf_pmu_disable(ctx->pmu);
3282         if (is_active & EVENT_PINNED) {
3283                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284                         group_sched_out(event, cpuctx, ctx);
3285         }
3286
3287         if (is_active & EVENT_FLEXIBLE) {
3288                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289                         group_sched_out(event, cpuctx, ctx);
3290
3291                 /*
3292                  * Since we cleared EVENT_FLEXIBLE, also clear
3293                  * rotate_necessary, is will be reset by
3294                  * ctx_flexible_sched_in() when needed.
3295                  */
3296                 ctx->rotate_necessary = 0;
3297         }
3298         perf_pmu_enable(ctx->pmu);
3299 }
3300
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310                          struct perf_event_context *ctx2)
3311 {
3312         lockdep_assert_held(&ctx1->lock);
3313         lockdep_assert_held(&ctx2->lock);
3314
3315         /* Pinning disables the swap optimization */
3316         if (ctx1->pin_count || ctx2->pin_count)
3317                 return 0;
3318
3319         /* If ctx1 is the parent of ctx2 */
3320         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321                 return 1;
3322
3323         /* If ctx2 is the parent of ctx1 */
3324         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325                 return 1;
3326
3327         /*
3328          * If ctx1 and ctx2 have the same parent; we flatten the parent
3329          * hierarchy, see perf_event_init_context().
3330          */
3331         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332                         ctx1->parent_gen == ctx2->parent_gen)
3333                 return 1;
3334
3335         /* Unmatched */
3336         return 0;
3337 }
3338
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340                                      struct perf_event *next_event)
3341 {
3342         u64 value;
3343
3344         if (!event->attr.inherit_stat)
3345                 return;
3346
3347         /*
3348          * Update the event value, we cannot use perf_event_read()
3349          * because we're in the middle of a context switch and have IRQs
3350          * disabled, which upsets smp_call_function_single(), however
3351          * we know the event must be on the current CPU, therefore we
3352          * don't need to use it.
3353          */
3354         if (event->state == PERF_EVENT_STATE_ACTIVE)
3355                 event->pmu->read(event);
3356
3357         perf_event_update_time(event);
3358
3359         /*
3360          * In order to keep per-task stats reliable we need to flip the event
3361          * values when we flip the contexts.
3362          */
3363         value = local64_read(&next_event->count);
3364         value = local64_xchg(&event->count, value);
3365         local64_set(&next_event->count, value);
3366
3367         swap(event->total_time_enabled, next_event->total_time_enabled);
3368         swap(event->total_time_running, next_event->total_time_running);
3369
3370         /*
3371          * Since we swizzled the values, update the user visible data too.
3372          */
3373         perf_event_update_userpage(event);
3374         perf_event_update_userpage(next_event);
3375 }
3376
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378                                    struct perf_event_context *next_ctx)
3379 {
3380         struct perf_event *event, *next_event;
3381
3382         if (!ctx->nr_stat)
3383                 return;
3384
3385         update_context_time(ctx);
3386
3387         event = list_first_entry(&ctx->event_list,
3388                                    struct perf_event, event_entry);
3389
3390         next_event = list_first_entry(&next_ctx->event_list,
3391                                         struct perf_event, event_entry);
3392
3393         while (&event->event_entry != &ctx->event_list &&
3394                &next_event->event_entry != &next_ctx->event_list) {
3395
3396                 __perf_event_sync_stat(event, next_event);
3397
3398                 event = list_next_entry(event, event_entry);
3399                 next_event = list_next_entry(next_event, event_entry);
3400         }
3401 }
3402
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404                                          struct task_struct *next)
3405 {
3406         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407         struct perf_event_context *next_ctx;
3408         struct perf_event_context *parent, *next_parent;
3409         struct perf_cpu_context *cpuctx;
3410         int do_switch = 1;
3411         struct pmu *pmu;
3412
3413         if (likely(!ctx))
3414                 return;
3415
3416         pmu = ctx->pmu;
3417         cpuctx = __get_cpu_context(ctx);
3418         if (!cpuctx->task_ctx)
3419                 return;
3420
3421         rcu_read_lock();
3422         next_ctx = next->perf_event_ctxp[ctxn];
3423         if (!next_ctx)
3424                 goto unlock;
3425
3426         parent = rcu_dereference(ctx->parent_ctx);
3427         next_parent = rcu_dereference(next_ctx->parent_ctx);
3428
3429         /* If neither context have a parent context; they cannot be clones. */
3430         if (!parent && !next_parent)
3431                 goto unlock;
3432
3433         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434                 /*
3435                  * Looks like the two contexts are clones, so we might be
3436                  * able to optimize the context switch.  We lock both
3437                  * contexts and check that they are clones under the
3438                  * lock (including re-checking that neither has been
3439                  * uncloned in the meantime).  It doesn't matter which
3440                  * order we take the locks because no other cpu could
3441                  * be trying to lock both of these tasks.
3442                  */
3443                 raw_spin_lock(&ctx->lock);
3444                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445                 if (context_equiv(ctx, next_ctx)) {
3446
3447                         WRITE_ONCE(ctx->task, next);
3448                         WRITE_ONCE(next_ctx->task, task);
3449
3450                         perf_pmu_disable(pmu);
3451
3452                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3453                                 pmu->sched_task(ctx, false);
3454
3455                         /*
3456                          * PMU specific parts of task perf context can require
3457                          * additional synchronization. As an example of such
3458                          * synchronization see implementation details of Intel
3459                          * LBR call stack data profiling;
3460                          */
3461                         if (pmu->swap_task_ctx)
3462                                 pmu->swap_task_ctx(ctx, next_ctx);
3463                         else
3464                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465
3466                         perf_pmu_enable(pmu);
3467
3468                         /*
3469                          * RCU_INIT_POINTER here is safe because we've not
3470                          * modified the ctx and the above modification of
3471                          * ctx->task and ctx->task_ctx_data are immaterial
3472                          * since those values are always verified under
3473                          * ctx->lock which we're now holding.
3474                          */
3475                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477
3478                         do_switch = 0;
3479
3480                         perf_event_sync_stat(ctx, next_ctx);
3481                 }
3482                 raw_spin_unlock(&next_ctx->lock);
3483                 raw_spin_unlock(&ctx->lock);
3484         }
3485 unlock:
3486         rcu_read_unlock();
3487
3488         if (do_switch) {
3489                 raw_spin_lock(&ctx->lock);
3490                 perf_pmu_disable(pmu);
3491
3492                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3493                         pmu->sched_task(ctx, false);
3494                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495
3496                 perf_pmu_enable(pmu);
3497                 raw_spin_unlock(&ctx->lock);
3498         }
3499 }
3500
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506
3507         this_cpu_dec(perf_sched_cb_usages);
3508
3509         if (!--cpuctx->sched_cb_usage)
3510                 list_del(&cpuctx->sched_cb_entry);
3511 }
3512
3513
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517
3518         if (!cpuctx->sched_cb_usage++)
3519                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520
3521         this_cpu_inc(perf_sched_cb_usages);
3522 }
3523
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534         struct pmu *pmu;
3535
3536         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537
3538         if (WARN_ON_ONCE(!pmu->sched_task))
3539                 return;
3540
3541         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542         perf_pmu_disable(pmu);
3543
3544         pmu->sched_task(cpuctx->task_ctx, sched_in);
3545
3546         perf_pmu_enable(pmu);
3547         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551                                 struct task_struct *next,
3552                                 bool sched_in)
3553 {
3554         struct perf_cpu_context *cpuctx;
3555
3556         if (prev == next)
3557                 return;
3558
3559         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560                 /* will be handled in perf_event_context_sched_in/out */
3561                 if (cpuctx->task_ctx)
3562                         continue;
3563
3564                 __perf_pmu_sched_task(cpuctx, sched_in);
3565         }
3566 }
3567
3568 static void perf_event_switch(struct task_struct *task,
3569                               struct task_struct *next_prev, bool sched_in);
3570
3571 #define for_each_task_context_nr(ctxn)                                  \
3572         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586                                  struct task_struct *next)
3587 {
3588         int ctxn;
3589
3590         if (__this_cpu_read(perf_sched_cb_usages))
3591                 perf_pmu_sched_task(task, next, false);
3592
3593         if (atomic_read(&nr_switch_events))
3594                 perf_event_switch(task, next, false);
3595
3596         for_each_task_context_nr(ctxn)
3597                 perf_event_context_sched_out(task, ctxn, next);
3598
3599         /*
3600          * if cgroup events exist on this CPU, then we need
3601          * to check if we have to switch out PMU state.
3602          * cgroup event are system-wide mode only
3603          */
3604         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605                 perf_cgroup_sched_out(task, next);
3606 }
3607
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612                               enum event_type_t event_type)
3613 {
3614         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619         const struct perf_event *le = *(const struct perf_event **)l;
3620         const struct perf_event *re = *(const struct perf_event **)r;
3621
3622         return le->group_index < re->group_index;
3623 }
3624
3625 static void swap_ptr(void *l, void *r)
3626 {
3627         void **lp = l, **rp = r;
3628
3629         swap(*lp, *rp);
3630 }
3631
3632 static const struct min_heap_callbacks perf_min_heap = {
3633         .elem_size = sizeof(struct perf_event *),
3634         .less = perf_less_group_idx,
3635         .swp = swap_ptr,
3636 };
3637
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640         struct perf_event **itrs = heap->data;
3641
3642         if (event) {
3643                 itrs[heap->nr] = event;
3644                 heap->nr++;
3645         }
3646 }
3647
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649                                 struct perf_event_groups *groups, int cpu,
3650                                 int (*func)(struct perf_event *, void *),
3651                                 void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654         struct cgroup_subsys_state *css = NULL;
3655 #endif
3656         /* Space for per CPU and/or any CPU event iterators. */
3657         struct perf_event *itrs[2];
3658         struct min_heap event_heap;
3659         struct perf_event **evt;
3660         int ret;
3661
3662         if (cpuctx) {
3663                 event_heap = (struct min_heap){
3664                         .data = cpuctx->heap,
3665                         .nr = 0,
3666                         .size = cpuctx->heap_size,
3667                 };
3668
3669                 lockdep_assert_held(&cpuctx->ctx.lock);
3670
3671 #ifdef CONFIG_CGROUP_PERF
3672                 if (cpuctx->cgrp)
3673                         css = &cpuctx->cgrp->css;
3674 #endif
3675         } else {
3676                 event_heap = (struct min_heap){
3677                         .data = itrs,
3678                         .nr = 0,
3679                         .size = ARRAY_SIZE(itrs),
3680                 };
3681                 /* Events not within a CPU context may be on any CPU. */
3682                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683         }
3684         evt = event_heap.data;
3685
3686         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687
3688 #ifdef CONFIG_CGROUP_PERF
3689         for (; css; css = css->parent)
3690                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692
3693         min_heapify_all(&event_heap, &perf_min_heap);
3694
3695         while (event_heap.nr) {
3696                 ret = func(*evt, data);
3697                 if (ret)
3698                         return ret;
3699
3700                 *evt = perf_event_groups_next(*evt);
3701                 if (*evt)
3702                         min_heapify(&event_heap, 0, &perf_min_heap);
3703                 else
3704                         min_heap_pop(&event_heap, &perf_min_heap);
3705         }
3706
3707         return 0;
3708 }
3709
3710 static int merge_sched_in(struct perf_event *event, void *data)
3711 {
3712         struct perf_event_context *ctx = event->ctx;
3713         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3714         int *can_add_hw = data;
3715
3716         if (event->state <= PERF_EVENT_STATE_OFF)
3717                 return 0;
3718
3719         if (!event_filter_match(event))
3720                 return 0;
3721
3722         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3723                 if (!group_sched_in(event, cpuctx, ctx))
3724                         list_add_tail(&event->active_list, get_event_list(event));
3725         }
3726
3727         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3728                 if (event->attr.pinned) {
3729                         perf_cgroup_event_disable(event, ctx);
3730                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3731                 }
3732
3733                 *can_add_hw = 0;
3734                 ctx->rotate_necessary = 1;
3735                 perf_mux_hrtimer_restart(cpuctx);
3736         }
3737
3738         return 0;
3739 }
3740
3741 static void
3742 ctx_pinned_sched_in(struct perf_event_context *ctx,
3743                     struct perf_cpu_context *cpuctx)
3744 {
3745         int can_add_hw = 1;
3746
3747         if (ctx != &cpuctx->ctx)
3748                 cpuctx = NULL;
3749
3750         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3751                            smp_processor_id(),
3752                            merge_sched_in, &can_add_hw);
3753 }
3754
3755 static void
3756 ctx_flexible_sched_in(struct perf_event_context *ctx,
3757                       struct perf_cpu_context *cpuctx)
3758 {
3759         int can_add_hw = 1;
3760
3761         if (ctx != &cpuctx->ctx)
3762                 cpuctx = NULL;
3763
3764         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3765                            smp_processor_id(),
3766                            merge_sched_in, &can_add_hw);
3767 }
3768
3769 static void
3770 ctx_sched_in(struct perf_event_context *ctx,
3771              struct perf_cpu_context *cpuctx,
3772              enum event_type_t event_type,
3773              struct task_struct *task)
3774 {
3775         int is_active = ctx->is_active;
3776         u64 now;
3777
3778         lockdep_assert_held(&ctx->lock);
3779
3780         if (likely(!ctx->nr_events))
3781                 return;
3782
3783         ctx->is_active |= (event_type | EVENT_TIME);
3784         if (ctx->task) {
3785                 if (!is_active)
3786                         cpuctx->task_ctx = ctx;
3787                 else
3788                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3789         }
3790
3791         is_active ^= ctx->is_active; /* changed bits */
3792
3793         if (is_active & EVENT_TIME) {
3794                 /* start ctx time */
3795                 now = perf_clock();
3796                 ctx->timestamp = now;
3797                 perf_cgroup_set_timestamp(task, ctx);
3798         }
3799
3800         /*
3801          * First go through the list and put on any pinned groups
3802          * in order to give them the best chance of going on.
3803          */
3804         if (is_active & EVENT_PINNED)
3805                 ctx_pinned_sched_in(ctx, cpuctx);
3806
3807         /* Then walk through the lower prio flexible groups */
3808         if (is_active & EVENT_FLEXIBLE)
3809                 ctx_flexible_sched_in(ctx, cpuctx);
3810 }
3811
3812 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3813                              enum event_type_t event_type,
3814                              struct task_struct *task)
3815 {
3816         struct perf_event_context *ctx = &cpuctx->ctx;
3817
3818         ctx_sched_in(ctx, cpuctx, event_type, task);
3819 }
3820
3821 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3822                                         struct task_struct *task)
3823 {
3824         struct perf_cpu_context *cpuctx;
3825         struct pmu *pmu;
3826
3827         cpuctx = __get_cpu_context(ctx);
3828
3829         /*
3830          * HACK: for HETEROGENEOUS the task context might have switched to a
3831          * different PMU, force (re)set the context,
3832          */
3833         pmu = ctx->pmu = cpuctx->ctx.pmu;
3834
3835         if (cpuctx->task_ctx == ctx) {
3836                 if (cpuctx->sched_cb_usage)
3837                         __perf_pmu_sched_task(cpuctx, true);
3838                 return;
3839         }
3840
3841         perf_ctx_lock(cpuctx, ctx);
3842         /*
3843          * We must check ctx->nr_events while holding ctx->lock, such
3844          * that we serialize against perf_install_in_context().
3845          */
3846         if (!ctx->nr_events)
3847                 goto unlock;
3848
3849         perf_pmu_disable(pmu);
3850         /*
3851          * We want to keep the following priority order:
3852          * cpu pinned (that don't need to move), task pinned,
3853          * cpu flexible, task flexible.
3854          *
3855          * However, if task's ctx is not carrying any pinned
3856          * events, no need to flip the cpuctx's events around.
3857          */
3858         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3859                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3860         perf_event_sched_in(cpuctx, ctx, task);
3861
3862         if (cpuctx->sched_cb_usage && pmu->sched_task)
3863                 pmu->sched_task(cpuctx->task_ctx, true);
3864
3865         perf_pmu_enable(pmu);
3866
3867 unlock:
3868         perf_ctx_unlock(cpuctx, ctx);
3869 }
3870
3871 /*
3872  * Called from scheduler to add the events of the current task
3873  * with interrupts disabled.
3874  *
3875  * We restore the event value and then enable it.
3876  *
3877  * This does not protect us against NMI, but enable()
3878  * sets the enabled bit in the control field of event _before_
3879  * accessing the event control register. If a NMI hits, then it will
3880  * keep the event running.
3881  */
3882 void __perf_event_task_sched_in(struct task_struct *prev,
3883                                 struct task_struct *task)
3884 {
3885         struct perf_event_context *ctx;
3886         int ctxn;
3887
3888         /*
3889          * If cgroup events exist on this CPU, then we need to check if we have
3890          * to switch in PMU state; cgroup event are system-wide mode only.
3891          *
3892          * Since cgroup events are CPU events, we must schedule these in before
3893          * we schedule in the task events.
3894          */
3895         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3896                 perf_cgroup_sched_in(prev, task);
3897
3898         for_each_task_context_nr(ctxn) {
3899                 ctx = task->perf_event_ctxp[ctxn];
3900                 if (likely(!ctx))
3901                         continue;
3902
3903                 perf_event_context_sched_in(ctx, task);
3904         }
3905
3906         if (atomic_read(&nr_switch_events))
3907                 perf_event_switch(task, prev, true);
3908
3909         if (__this_cpu_read(perf_sched_cb_usages))
3910                 perf_pmu_sched_task(prev, task, true);
3911 }
3912
3913 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3914 {
3915         u64 frequency = event->attr.sample_freq;
3916         u64 sec = NSEC_PER_SEC;
3917         u64 divisor, dividend;
3918
3919         int count_fls, nsec_fls, frequency_fls, sec_fls;
3920
3921         count_fls = fls64(count);
3922         nsec_fls = fls64(nsec);
3923         frequency_fls = fls64(frequency);
3924         sec_fls = 30;
3925
3926         /*
3927          * We got @count in @nsec, with a target of sample_freq HZ
3928          * the target period becomes:
3929          *
3930          *             @count * 10^9
3931          * period = -------------------
3932          *          @nsec * sample_freq
3933          *
3934          */
3935
3936         /*
3937          * Reduce accuracy by one bit such that @a and @b converge
3938          * to a similar magnitude.
3939          */
3940 #define REDUCE_FLS(a, b)                \
3941 do {                                    \
3942         if (a##_fls > b##_fls) {        \
3943                 a >>= 1;                \
3944                 a##_fls--;              \
3945         } else {                        \
3946                 b >>= 1;                \
3947                 b##_fls--;              \
3948         }                               \
3949 } while (0)
3950
3951         /*
3952          * Reduce accuracy until either term fits in a u64, then proceed with
3953          * the other, so that finally we can do a u64/u64 division.
3954          */
3955         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3956                 REDUCE_FLS(nsec, frequency);
3957                 REDUCE_FLS(sec, count);
3958         }
3959
3960         if (count_fls + sec_fls > 64) {
3961                 divisor = nsec * frequency;
3962
3963                 while (count_fls + sec_fls > 64) {
3964                         REDUCE_FLS(count, sec);
3965                         divisor >>= 1;
3966                 }
3967
3968                 dividend = count * sec;
3969         } else {
3970                 dividend = count * sec;
3971
3972                 while (nsec_fls + frequency_fls > 64) {
3973                         REDUCE_FLS(nsec, frequency);
3974                         dividend >>= 1;
3975                 }
3976
3977                 divisor = nsec * frequency;
3978         }
3979
3980         if (!divisor)
3981                 return dividend;
3982
3983         return div64_u64(dividend, divisor);
3984 }
3985
3986 static DEFINE_PER_CPU(int, perf_throttled_count);
3987 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3988
3989 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3990 {
3991         struct hw_perf_event *hwc = &event->hw;
3992         s64 period, sample_period;
3993         s64 delta;
3994
3995         period = perf_calculate_period(event, nsec, count);
3996
3997         delta = (s64)(period - hwc->sample_period);
3998         delta = (delta + 7) / 8; /* low pass filter */
3999
4000         sample_period = hwc->sample_period + delta;
4001
4002         if (!sample_period)
4003                 sample_period = 1;
4004
4005         hwc->sample_period = sample_period;
4006
4007         if (local64_read(&hwc->period_left) > 8*sample_period) {
4008                 if (disable)
4009                         event->pmu->stop(event, PERF_EF_UPDATE);
4010
4011                 local64_set(&hwc->period_left, 0);
4012
4013                 if (disable)
4014                         event->pmu->start(event, PERF_EF_RELOAD);
4015         }
4016 }
4017
4018 /*
4019  * combine freq adjustment with unthrottling to avoid two passes over the
4020  * events. At the same time, make sure, having freq events does not change
4021  * the rate of unthrottling as that would introduce bias.
4022  */
4023 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4024                                            int needs_unthr)
4025 {
4026         struct perf_event *event;
4027         struct hw_perf_event *hwc;
4028         u64 now, period = TICK_NSEC;
4029         s64 delta;
4030
4031         /*
4032          * only need to iterate over all events iff:
4033          * - context have events in frequency mode (needs freq adjust)
4034          * - there are events to unthrottle on this cpu
4035          */
4036         if (!(ctx->nr_freq || needs_unthr))
4037                 return;
4038
4039         raw_spin_lock(&ctx->lock);
4040         perf_pmu_disable(ctx->pmu);
4041
4042         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4043                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4044                         continue;
4045
4046                 if (!event_filter_match(event))
4047                         continue;
4048
4049                 perf_pmu_disable(event->pmu);
4050
4051                 hwc = &event->hw;
4052
4053                 if (hwc->interrupts == MAX_INTERRUPTS) {
4054                         hwc->interrupts = 0;
4055                         perf_log_throttle(event, 1);
4056                         event->pmu->start(event, 0);
4057                 }
4058
4059                 if (!event->attr.freq || !event->attr.sample_freq)
4060                         goto next;
4061
4062                 /*
4063                  * stop the event and update event->count
4064                  */
4065                 event->pmu->stop(event, PERF_EF_UPDATE);
4066
4067                 now = local64_read(&event->count);
4068                 delta = now - hwc->freq_count_stamp;
4069                 hwc->freq_count_stamp = now;
4070
4071                 /*
4072                  * restart the event
4073                  * reload only if value has changed
4074                  * we have stopped the event so tell that
4075                  * to perf_adjust_period() to avoid stopping it
4076                  * twice.
4077                  */
4078                 if (delta > 0)
4079                         perf_adjust_period(event, period, delta, false);
4080
4081                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4082         next:
4083                 perf_pmu_enable(event->pmu);
4084         }
4085
4086         perf_pmu_enable(ctx->pmu);
4087         raw_spin_unlock(&ctx->lock);
4088 }
4089
4090 /*
4091  * Move @event to the tail of the @ctx's elegible events.
4092  */
4093 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4094 {
4095         /*
4096          * Rotate the first entry last of non-pinned groups. Rotation might be
4097          * disabled by the inheritance code.
4098          */
4099         if (ctx->rotate_disable)
4100                 return;
4101
4102         perf_event_groups_delete(&ctx->flexible_groups, event);
4103         perf_event_groups_insert(&ctx->flexible_groups, event);
4104 }
4105
4106 /* pick an event from the flexible_groups to rotate */
4107 static inline struct perf_event *
4108 ctx_event_to_rotate(struct perf_event_context *ctx)
4109 {
4110         struct perf_event *event;
4111
4112         /* pick the first active flexible event */
4113         event = list_first_entry_or_null(&ctx->flexible_active,
4114                                          struct perf_event, active_list);
4115
4116         /* if no active flexible event, pick the first event */
4117         if (!event) {
4118                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4119                                       typeof(*event), group_node);
4120         }
4121
4122         /*
4123          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4124          * finds there are unschedulable events, it will set it again.
4125          */
4126         ctx->rotate_necessary = 0;
4127
4128         return event;
4129 }
4130
4131 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4132 {
4133         struct perf_event *cpu_event = NULL, *task_event = NULL;
4134         struct perf_event_context *task_ctx = NULL;
4135         int cpu_rotate, task_rotate;
4136
4137         /*
4138          * Since we run this from IRQ context, nobody can install new
4139          * events, thus the event count values are stable.
4140          */
4141
4142         cpu_rotate = cpuctx->ctx.rotate_necessary;
4143         task_ctx = cpuctx->task_ctx;
4144         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4145
4146         if (!(cpu_rotate || task_rotate))
4147                 return false;
4148
4149         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4150         perf_pmu_disable(cpuctx->ctx.pmu);
4151
4152         if (task_rotate)
4153                 task_event = ctx_event_to_rotate(task_ctx);
4154         if (cpu_rotate)
4155                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4156
4157         /*
4158          * As per the order given at ctx_resched() first 'pop' task flexible
4159          * and then, if needed CPU flexible.
4160          */
4161         if (task_event || (task_ctx && cpu_event))
4162                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4163         if (cpu_event)
4164                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4165
4166         if (task_event)
4167                 rotate_ctx(task_ctx, task_event);
4168         if (cpu_event)
4169                 rotate_ctx(&cpuctx->ctx, cpu_event);
4170
4171         perf_event_sched_in(cpuctx, task_ctx, current);
4172
4173         perf_pmu_enable(cpuctx->ctx.pmu);
4174         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4175
4176         return true;
4177 }
4178
4179 void perf_event_task_tick(void)
4180 {
4181         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4182         struct perf_event_context *ctx, *tmp;
4183         int throttled;
4184
4185         lockdep_assert_irqs_disabled();
4186
4187         __this_cpu_inc(perf_throttled_seq);
4188         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4189         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4190
4191         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4192                 perf_adjust_freq_unthr_context(ctx, throttled);
4193 }
4194
4195 static int event_enable_on_exec(struct perf_event *event,
4196                                 struct perf_event_context *ctx)
4197 {
4198         if (!event->attr.enable_on_exec)
4199                 return 0;
4200
4201         event->attr.enable_on_exec = 0;
4202         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4203                 return 0;
4204
4205         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4206
4207         return 1;
4208 }
4209
4210 /*
4211  * Enable all of a task's events that have been marked enable-on-exec.
4212  * This expects task == current.
4213  */
4214 static void perf_event_enable_on_exec(int ctxn)
4215 {
4216         struct perf_event_context *ctx, *clone_ctx = NULL;
4217         enum event_type_t event_type = 0;
4218         struct perf_cpu_context *cpuctx;
4219         struct perf_event *event;
4220         unsigned long flags;
4221         int enabled = 0;
4222
4223         local_irq_save(flags);
4224         ctx = current->perf_event_ctxp[ctxn];
4225         if (!ctx || !ctx->nr_events)
4226                 goto out;
4227
4228         cpuctx = __get_cpu_context(ctx);
4229         perf_ctx_lock(cpuctx, ctx);
4230         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4231         list_for_each_entry(event, &ctx->event_list, event_entry) {
4232                 enabled |= event_enable_on_exec(event, ctx);
4233                 event_type |= get_event_type(event);
4234         }
4235
4236         /*
4237          * Unclone and reschedule this context if we enabled any event.
4238          */
4239         if (enabled) {
4240                 clone_ctx = unclone_ctx(ctx);
4241                 ctx_resched(cpuctx, ctx, event_type);
4242         } else {
4243                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4244         }
4245         perf_ctx_unlock(cpuctx, ctx);
4246
4247 out:
4248         local_irq_restore(flags);
4249
4250         if (clone_ctx)
4251                 put_ctx(clone_ctx);
4252 }
4253
4254 static void perf_remove_from_owner(struct perf_event *event);
4255 static void perf_event_exit_event(struct perf_event *event,
4256                                   struct perf_event_context *ctx);
4257
4258 /*
4259  * Removes all events from the current task that have been marked
4260  * remove-on-exec, and feeds their values back to parent events.
4261  */
4262 static void perf_event_remove_on_exec(int ctxn)
4263 {
4264         struct perf_event_context *ctx, *clone_ctx = NULL;
4265         struct perf_event *event, *next;
4266         LIST_HEAD(free_list);
4267         unsigned long flags;
4268         bool modified = false;
4269
4270         ctx = perf_pin_task_context(current, ctxn);
4271         if (!ctx)
4272                 return;
4273
4274         mutex_lock(&ctx->mutex);
4275
4276         if (WARN_ON_ONCE(ctx->task != current))
4277                 goto unlock;
4278
4279         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4280                 if (!event->attr.remove_on_exec)
4281                         continue;
4282
4283                 if (!is_kernel_event(event))
4284                         perf_remove_from_owner(event);
4285
4286                 modified = true;
4287
4288                 perf_event_exit_event(event, ctx);
4289         }
4290
4291         raw_spin_lock_irqsave(&ctx->lock, flags);
4292         if (modified)
4293                 clone_ctx = unclone_ctx(ctx);
4294         --ctx->pin_count;
4295         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4296
4297 unlock:
4298         mutex_unlock(&ctx->mutex);
4299
4300         put_ctx(ctx);
4301         if (clone_ctx)
4302                 put_ctx(clone_ctx);
4303 }
4304
4305 struct perf_read_data {
4306         struct perf_event *event;
4307         bool group;
4308         int ret;
4309 };
4310
4311 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4312 {
4313         u16 local_pkg, event_pkg;
4314
4315         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4316                 int local_cpu = smp_processor_id();
4317
4318                 event_pkg = topology_physical_package_id(event_cpu);
4319                 local_pkg = topology_physical_package_id(local_cpu);
4320
4321                 if (event_pkg == local_pkg)
4322                         return local_cpu;
4323         }
4324
4325         return event_cpu;
4326 }
4327
4328 /*
4329  * Cross CPU call to read the hardware event
4330  */
4331 static void __perf_event_read(void *info)
4332 {
4333         struct perf_read_data *data = info;
4334         struct perf_event *sub, *event = data->event;
4335         struct perf_event_context *ctx = event->ctx;
4336         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4337         struct pmu *pmu = event->pmu;
4338
4339         /*
4340          * If this is a task context, we need to check whether it is
4341          * the current task context of this cpu.  If not it has been
4342          * scheduled out before the smp call arrived.  In that case
4343          * event->count would have been updated to a recent sample
4344          * when the event was scheduled out.
4345          */
4346         if (ctx->task && cpuctx->task_ctx != ctx)
4347                 return;
4348
4349         raw_spin_lock(&ctx->lock);
4350         if (ctx->is_active & EVENT_TIME) {
4351                 update_context_time(ctx);
4352                 update_cgrp_time_from_event(event);
4353         }
4354
4355         perf_event_update_time(event);
4356         if (data->group)
4357                 perf_event_update_sibling_time(event);
4358
4359         if (event->state != PERF_EVENT_STATE_ACTIVE)
4360                 goto unlock;
4361
4362         if (!data->group) {
4363                 pmu->read(event);
4364                 data->ret = 0;
4365                 goto unlock;
4366         }
4367
4368         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4369
4370         pmu->read(event);
4371
4372         for_each_sibling_event(sub, event) {
4373                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4374                         /*
4375                          * Use sibling's PMU rather than @event's since
4376                          * sibling could be on different (eg: software) PMU.
4377                          */
4378                         sub->pmu->read(sub);
4379                 }
4380         }
4381
4382         data->ret = pmu->commit_txn(pmu);
4383
4384 unlock:
4385         raw_spin_unlock(&ctx->lock);
4386 }
4387
4388 static inline u64 perf_event_count(struct perf_event *event)
4389 {
4390         return local64_read(&event->count) + atomic64_read(&event->child_count);
4391 }
4392
4393 /*
4394  * NMI-safe method to read a local event, that is an event that
4395  * is:
4396  *   - either for the current task, or for this CPU
4397  *   - does not have inherit set, for inherited task events
4398  *     will not be local and we cannot read them atomically
4399  *   - must not have a pmu::count method
4400  */
4401 int perf_event_read_local(struct perf_event *event, u64 *value,
4402                           u64 *enabled, u64 *running)
4403 {
4404         unsigned long flags;
4405         int ret = 0;
4406
4407         /*
4408          * Disabling interrupts avoids all counter scheduling (context
4409          * switches, timer based rotation and IPIs).
4410          */
4411         local_irq_save(flags);
4412
4413         /*
4414          * It must not be an event with inherit set, we cannot read
4415          * all child counters from atomic context.
4416          */
4417         if (event->attr.inherit) {
4418                 ret = -EOPNOTSUPP;
4419                 goto out;
4420         }
4421
4422         /* If this is a per-task event, it must be for current */
4423         if ((event->attach_state & PERF_ATTACH_TASK) &&
4424             event->hw.target != current) {
4425                 ret = -EINVAL;
4426                 goto out;
4427         }
4428
4429         /* If this is a per-CPU event, it must be for this CPU */
4430         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4431             event->cpu != smp_processor_id()) {
4432                 ret = -EINVAL;
4433                 goto out;
4434         }
4435
4436         /* If this is a pinned event it must be running on this CPU */
4437         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4438                 ret = -EBUSY;
4439                 goto out;
4440         }
4441
4442         /*
4443          * If the event is currently on this CPU, its either a per-task event,
4444          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4445          * oncpu == -1).
4446          */
4447         if (event->oncpu == smp_processor_id())
4448                 event->pmu->read(event);
4449
4450         *value = local64_read(&event->count);
4451         if (enabled || running) {
4452                 u64 now = event->shadow_ctx_time + perf_clock();
4453                 u64 __enabled, __running;
4454
4455                 __perf_update_times(event, now, &__enabled, &__running);
4456                 if (enabled)
4457                         *enabled = __enabled;
4458                 if (running)
4459                         *running = __running;
4460         }
4461 out:
4462         local_irq_restore(flags);
4463
4464         return ret;
4465 }
4466
4467 static int perf_event_read(struct perf_event *event, bool group)
4468 {
4469         enum perf_event_state state = READ_ONCE(event->state);
4470         int event_cpu, ret = 0;
4471
4472         /*
4473          * If event is enabled and currently active on a CPU, update the
4474          * value in the event structure:
4475          */
4476 again:
4477         if (state == PERF_EVENT_STATE_ACTIVE) {
4478                 struct perf_read_data data;
4479
4480                 /*
4481                  * Orders the ->state and ->oncpu loads such that if we see
4482                  * ACTIVE we must also see the right ->oncpu.
4483                  *
4484                  * Matches the smp_wmb() from event_sched_in().
4485                  */
4486                 smp_rmb();
4487
4488                 event_cpu = READ_ONCE(event->oncpu);
4489                 if ((unsigned)event_cpu >= nr_cpu_ids)
4490                         return 0;
4491
4492                 data = (struct perf_read_data){
4493                         .event = event,
4494                         .group = group,
4495                         .ret = 0,
4496                 };
4497
4498                 preempt_disable();
4499                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4500
4501                 /*
4502                  * Purposely ignore the smp_call_function_single() return
4503                  * value.
4504                  *
4505                  * If event_cpu isn't a valid CPU it means the event got
4506                  * scheduled out and that will have updated the event count.
4507                  *
4508                  * Therefore, either way, we'll have an up-to-date event count
4509                  * after this.
4510                  */
4511                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4512                 preempt_enable();
4513                 ret = data.ret;
4514
4515         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4516                 struct perf_event_context *ctx = event->ctx;
4517                 unsigned long flags;
4518
4519                 raw_spin_lock_irqsave(&ctx->lock, flags);
4520                 state = event->state;
4521                 if (state != PERF_EVENT_STATE_INACTIVE) {
4522                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4523                         goto again;
4524                 }
4525
4526                 /*
4527                  * May read while context is not active (e.g., thread is
4528                  * blocked), in that case we cannot update context time
4529                  */
4530                 if (ctx->is_active & EVENT_TIME) {
4531                         update_context_time(ctx);
4532                         update_cgrp_time_from_event(event);
4533                 }
4534
4535                 perf_event_update_time(event);
4536                 if (group)
4537                         perf_event_update_sibling_time(event);
4538                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4539         }
4540
4541         return ret;
4542 }
4543
4544 /*
4545  * Initialize the perf_event context in a task_struct:
4546  */
4547 static void __perf_event_init_context(struct perf_event_context *ctx)
4548 {
4549         raw_spin_lock_init(&ctx->lock);
4550         mutex_init(&ctx->mutex);
4551         INIT_LIST_HEAD(&ctx->active_ctx_list);
4552         perf_event_groups_init(&ctx->pinned_groups);
4553         perf_event_groups_init(&ctx->flexible_groups);
4554         INIT_LIST_HEAD(&ctx->event_list);
4555         INIT_LIST_HEAD(&ctx->pinned_active);
4556         INIT_LIST_HEAD(&ctx->flexible_active);
4557         refcount_set(&ctx->refcount, 1);
4558 }
4559
4560 static struct perf_event_context *
4561 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4562 {
4563         struct perf_event_context *ctx;
4564
4565         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4566         if (!ctx)
4567                 return NULL;
4568
4569         __perf_event_init_context(ctx);
4570         if (task)
4571                 ctx->task = get_task_struct(task);
4572         ctx->pmu = pmu;
4573
4574         return ctx;
4575 }
4576
4577 static struct task_struct *
4578 find_lively_task_by_vpid(pid_t vpid)
4579 {
4580         struct task_struct *task;
4581
4582         rcu_read_lock();
4583         if (!vpid)
4584                 task = current;
4585         else
4586                 task = find_task_by_vpid(vpid);
4587         if (task)
4588                 get_task_struct(task);
4589         rcu_read_unlock();
4590
4591         if (!task)
4592                 return ERR_PTR(-ESRCH);
4593
4594         return task;
4595 }
4596
4597 /*
4598  * Returns a matching context with refcount and pincount.
4599  */
4600 static struct perf_event_context *
4601 find_get_context(struct pmu *pmu, struct task_struct *task,
4602                 struct perf_event *event)
4603 {
4604         struct perf_event_context *ctx, *clone_ctx = NULL;
4605         struct perf_cpu_context *cpuctx;
4606         void *task_ctx_data = NULL;
4607         unsigned long flags;
4608         int ctxn, err;
4609         int cpu = event->cpu;
4610
4611         if (!task) {
4612                 /* Must be root to operate on a CPU event: */
4613                 err = perf_allow_cpu(&event->attr);
4614                 if (err)
4615                         return ERR_PTR(err);
4616
4617                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4618                 ctx = &cpuctx->ctx;
4619                 get_ctx(ctx);
4620                 raw_spin_lock_irqsave(&ctx->lock, flags);
4621                 ++ctx->pin_count;
4622                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4623
4624                 return ctx;
4625         }
4626
4627         err = -EINVAL;
4628         ctxn = pmu->task_ctx_nr;
4629         if (ctxn < 0)
4630                 goto errout;
4631
4632         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4633                 task_ctx_data = alloc_task_ctx_data(pmu);
4634                 if (!task_ctx_data) {
4635                         err = -ENOMEM;
4636                         goto errout;
4637                 }
4638         }
4639
4640 retry:
4641         ctx = perf_lock_task_context(task, ctxn, &flags);
4642         if (ctx) {
4643                 clone_ctx = unclone_ctx(ctx);
4644                 ++ctx->pin_count;
4645
4646                 if (task_ctx_data && !ctx->task_ctx_data) {
4647                         ctx->task_ctx_data = task_ctx_data;
4648                         task_ctx_data = NULL;
4649                 }
4650                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4651
4652                 if (clone_ctx)
4653                         put_ctx(clone_ctx);
4654         } else {
4655                 ctx = alloc_perf_context(pmu, task);
4656                 err = -ENOMEM;
4657                 if (!ctx)
4658                         goto errout;
4659
4660                 if (task_ctx_data) {
4661                         ctx->task_ctx_data = task_ctx_data;
4662                         task_ctx_data = NULL;
4663                 }
4664
4665                 err = 0;
4666                 mutex_lock(&task->perf_event_mutex);
4667                 /*
4668                  * If it has already passed perf_event_exit_task().
4669                  * we must see PF_EXITING, it takes this mutex too.
4670                  */
4671                 if (task->flags & PF_EXITING)
4672                         err = -ESRCH;
4673                 else if (task->perf_event_ctxp[ctxn])
4674                         err = -EAGAIN;
4675                 else {
4676                         get_ctx(ctx);
4677                         ++ctx->pin_count;
4678                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4679                 }
4680                 mutex_unlock(&task->perf_event_mutex);
4681
4682                 if (unlikely(err)) {
4683                         put_ctx(ctx);
4684
4685                         if (err == -EAGAIN)
4686                                 goto retry;
4687                         goto errout;
4688                 }
4689         }
4690
4691         free_task_ctx_data(pmu, task_ctx_data);
4692         return ctx;
4693
4694 errout:
4695         free_task_ctx_data(pmu, task_ctx_data);
4696         return ERR_PTR(err);
4697 }
4698
4699 static void perf_event_free_filter(struct perf_event *event);
4700
4701 static void free_event_rcu(struct rcu_head *head)
4702 {
4703         struct perf_event *event;
4704
4705         event = container_of(head, struct perf_event, rcu_head);
4706         if (event->ns)
4707                 put_pid_ns(event->ns);
4708         perf_event_free_filter(event);
4709         kmem_cache_free(perf_event_cache, event);
4710 }
4711
4712 static void ring_buffer_attach(struct perf_event *event,
4713                                struct perf_buffer *rb);
4714
4715 static void detach_sb_event(struct perf_event *event)
4716 {
4717         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4718
4719         raw_spin_lock(&pel->lock);
4720         list_del_rcu(&event->sb_list);
4721         raw_spin_unlock(&pel->lock);
4722 }
4723
4724 static bool is_sb_event(struct perf_event *event)
4725 {
4726         struct perf_event_attr *attr = &event->attr;
4727
4728         if (event->parent)
4729                 return false;
4730
4731         if (event->attach_state & PERF_ATTACH_TASK)
4732                 return false;
4733
4734         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4735             attr->comm || attr->comm_exec ||
4736             attr->task || attr->ksymbol ||
4737             attr->context_switch || attr->text_poke ||
4738             attr->bpf_event)
4739                 return true;
4740         return false;
4741 }
4742
4743 static void unaccount_pmu_sb_event(struct perf_event *event)
4744 {
4745         if (is_sb_event(event))
4746                 detach_sb_event(event);
4747 }
4748
4749 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4750 {
4751         if (event->parent)
4752                 return;
4753
4754         if (is_cgroup_event(event))
4755                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4756 }
4757
4758 #ifdef CONFIG_NO_HZ_FULL
4759 static DEFINE_SPINLOCK(nr_freq_lock);
4760 #endif
4761
4762 static void unaccount_freq_event_nohz(void)
4763 {
4764 #ifdef CONFIG_NO_HZ_FULL
4765         spin_lock(&nr_freq_lock);
4766         if (atomic_dec_and_test(&nr_freq_events))
4767                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4768         spin_unlock(&nr_freq_lock);
4769 #endif
4770 }
4771
4772 static void unaccount_freq_event(void)
4773 {
4774         if (tick_nohz_full_enabled())
4775                 unaccount_freq_event_nohz();
4776         else
4777                 atomic_dec(&nr_freq_events);
4778 }
4779
4780 static void unaccount_event(struct perf_event *event)
4781 {
4782         bool dec = false;
4783
4784         if (event->parent)
4785                 return;
4786
4787         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4788                 dec = true;
4789         if (event->attr.mmap || event->attr.mmap_data)
4790                 atomic_dec(&nr_mmap_events);
4791         if (event->attr.build_id)
4792                 atomic_dec(&nr_build_id_events);
4793         if (event->attr.comm)
4794                 atomic_dec(&nr_comm_events);
4795         if (event->attr.namespaces)
4796                 atomic_dec(&nr_namespaces_events);
4797         if (event->attr.cgroup)
4798                 atomic_dec(&nr_cgroup_events);
4799         if (event->attr.task)
4800                 atomic_dec(&nr_task_events);
4801         if (event->attr.freq)
4802                 unaccount_freq_event();
4803         if (event->attr.context_switch) {
4804                 dec = true;
4805                 atomic_dec(&nr_switch_events);
4806         }
4807         if (is_cgroup_event(event))
4808                 dec = true;
4809         if (has_branch_stack(event))
4810                 dec = true;
4811         if (event->attr.ksymbol)
4812                 atomic_dec(&nr_ksymbol_events);
4813         if (event->attr.bpf_event)
4814                 atomic_dec(&nr_bpf_events);
4815         if (event->attr.text_poke)
4816                 atomic_dec(&nr_text_poke_events);
4817
4818         if (dec) {
4819                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4820                         schedule_delayed_work(&perf_sched_work, HZ);
4821         }
4822
4823         unaccount_event_cpu(event, event->cpu);
4824
4825         unaccount_pmu_sb_event(event);
4826 }
4827
4828 static void perf_sched_delayed(struct work_struct *work)
4829 {
4830         mutex_lock(&perf_sched_mutex);
4831         if (atomic_dec_and_test(&perf_sched_count))
4832                 static_branch_disable(&perf_sched_events);
4833         mutex_unlock(&perf_sched_mutex);
4834 }
4835
4836 /*
4837  * The following implement mutual exclusion of events on "exclusive" pmus
4838  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4839  * at a time, so we disallow creating events that might conflict, namely:
4840  *
4841  *  1) cpu-wide events in the presence of per-task events,
4842  *  2) per-task events in the presence of cpu-wide events,
4843  *  3) two matching events on the same context.
4844  *
4845  * The former two cases are handled in the allocation path (perf_event_alloc(),
4846  * _free_event()), the latter -- before the first perf_install_in_context().
4847  */
4848 static int exclusive_event_init(struct perf_event *event)
4849 {
4850         struct pmu *pmu = event->pmu;
4851
4852         if (!is_exclusive_pmu(pmu))
4853                 return 0;
4854
4855         /*
4856          * Prevent co-existence of per-task and cpu-wide events on the
4857          * same exclusive pmu.
4858          *
4859          * Negative pmu::exclusive_cnt means there are cpu-wide
4860          * events on this "exclusive" pmu, positive means there are
4861          * per-task events.
4862          *
4863          * Since this is called in perf_event_alloc() path, event::ctx
4864          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4865          * to mean "per-task event", because unlike other attach states it
4866          * never gets cleared.
4867          */
4868         if (event->attach_state & PERF_ATTACH_TASK) {
4869                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4870                         return -EBUSY;
4871         } else {
4872                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4873                         return -EBUSY;
4874         }
4875
4876         return 0;
4877 }
4878
4879 static void exclusive_event_destroy(struct perf_event *event)
4880 {
4881         struct pmu *pmu = event->pmu;
4882
4883         if (!is_exclusive_pmu(pmu))
4884                 return;
4885
4886         /* see comment in exclusive_event_init() */
4887         if (event->attach_state & PERF_ATTACH_TASK)
4888                 atomic_dec(&pmu->exclusive_cnt);
4889         else
4890                 atomic_inc(&pmu->exclusive_cnt);
4891 }
4892
4893 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4894 {
4895         if ((e1->pmu == e2->pmu) &&
4896             (e1->cpu == e2->cpu ||
4897              e1->cpu == -1 ||
4898              e2->cpu == -1))
4899                 return true;
4900         return false;
4901 }
4902
4903 static bool exclusive_event_installable(struct perf_event *event,
4904                                         struct perf_event_context *ctx)
4905 {
4906         struct perf_event *iter_event;
4907         struct pmu *pmu = event->pmu;
4908
4909         lockdep_assert_held(&ctx->mutex);
4910
4911         if (!is_exclusive_pmu(pmu))
4912                 return true;
4913
4914         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4915                 if (exclusive_event_match(iter_event, event))
4916                         return false;
4917         }
4918
4919         return true;
4920 }
4921
4922 static void perf_addr_filters_splice(struct perf_event *event,
4923                                        struct list_head *head);
4924
4925 static void _free_event(struct perf_event *event)
4926 {
4927         irq_work_sync(&event->pending);
4928
4929         unaccount_event(event);
4930
4931         security_perf_event_free(event);
4932
4933         if (event->rb) {
4934                 /*
4935                  * Can happen when we close an event with re-directed output.
4936                  *
4937                  * Since we have a 0 refcount, perf_mmap_close() will skip
4938                  * over us; possibly making our ring_buffer_put() the last.
4939                  */
4940                 mutex_lock(&event->mmap_mutex);
4941                 ring_buffer_attach(event, NULL);
4942                 mutex_unlock(&event->mmap_mutex);
4943         }
4944
4945         if (is_cgroup_event(event))
4946                 perf_detach_cgroup(event);
4947
4948         if (!event->parent) {
4949                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4950                         put_callchain_buffers();
4951         }
4952
4953         perf_event_free_bpf_prog(event);
4954         perf_addr_filters_splice(event, NULL);
4955         kfree(event->addr_filter_ranges);
4956
4957         if (event->destroy)
4958                 event->destroy(event);
4959
4960         /*
4961          * Must be after ->destroy(), due to uprobe_perf_close() using
4962          * hw.target.
4963          */
4964         if (event->hw.target)
4965                 put_task_struct(event->hw.target);
4966
4967         /*
4968          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4969          * all task references must be cleaned up.
4970          */
4971         if (event->ctx)
4972                 put_ctx(event->ctx);
4973
4974         exclusive_event_destroy(event);
4975         module_put(event->pmu->module);
4976
4977         call_rcu(&event->rcu_head, free_event_rcu);
4978 }
4979
4980 /*
4981  * Used to free events which have a known refcount of 1, such as in error paths
4982  * where the event isn't exposed yet and inherited events.
4983  */
4984 static void free_event(struct perf_event *event)
4985 {
4986         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4987                                 "unexpected event refcount: %ld; ptr=%p\n",
4988                                 atomic_long_read(&event->refcount), event)) {
4989                 /* leak to avoid use-after-free */
4990                 return;
4991         }
4992
4993         _free_event(event);
4994 }
4995
4996 /*
4997  * Remove user event from the owner task.
4998  */
4999 static void perf_remove_from_owner(struct perf_event *event)
5000 {
5001         struct task_struct *owner;
5002
5003         rcu_read_lock();
5004         /*
5005          * Matches the smp_store_release() in perf_event_exit_task(). If we
5006          * observe !owner it means the list deletion is complete and we can
5007          * indeed free this event, otherwise we need to serialize on
5008          * owner->perf_event_mutex.
5009          */
5010         owner = READ_ONCE(event->owner);
5011         if (owner) {
5012                 /*
5013                  * Since delayed_put_task_struct() also drops the last
5014                  * task reference we can safely take a new reference
5015                  * while holding the rcu_read_lock().
5016                  */
5017                 get_task_struct(owner);
5018         }
5019         rcu_read_unlock();
5020
5021         if (owner) {
5022                 /*
5023                  * If we're here through perf_event_exit_task() we're already
5024                  * holding ctx->mutex which would be an inversion wrt. the
5025                  * normal lock order.
5026                  *
5027                  * However we can safely take this lock because its the child
5028                  * ctx->mutex.
5029                  */
5030                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5031
5032                 /*
5033                  * We have to re-check the event->owner field, if it is cleared
5034                  * we raced with perf_event_exit_task(), acquiring the mutex
5035                  * ensured they're done, and we can proceed with freeing the
5036                  * event.
5037                  */
5038                 if (event->owner) {
5039                         list_del_init(&event->owner_entry);
5040                         smp_store_release(&event->owner, NULL);
5041                 }
5042                 mutex_unlock(&owner->perf_event_mutex);
5043                 put_task_struct(owner);
5044         }
5045 }
5046
5047 static void put_event(struct perf_event *event)
5048 {
5049         if (!atomic_long_dec_and_test(&event->refcount))
5050                 return;
5051
5052         _free_event(event);
5053 }
5054
5055 /*
5056  * Kill an event dead; while event:refcount will preserve the event
5057  * object, it will not preserve its functionality. Once the last 'user'
5058  * gives up the object, we'll destroy the thing.
5059  */
5060 int perf_event_release_kernel(struct perf_event *event)
5061 {
5062         struct perf_event_context *ctx = event->ctx;
5063         struct perf_event *child, *tmp;
5064         LIST_HEAD(free_list);
5065
5066         /*
5067          * If we got here through err_file: fput(event_file); we will not have
5068          * attached to a context yet.
5069          */
5070         if (!ctx) {
5071                 WARN_ON_ONCE(event->attach_state &
5072                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5073                 goto no_ctx;
5074         }
5075
5076         if (!is_kernel_event(event))
5077                 perf_remove_from_owner(event);
5078
5079         ctx = perf_event_ctx_lock(event);
5080         WARN_ON_ONCE(ctx->parent_ctx);
5081         perf_remove_from_context(event, DETACH_GROUP);
5082
5083         raw_spin_lock_irq(&ctx->lock);
5084         /*
5085          * Mark this event as STATE_DEAD, there is no external reference to it
5086          * anymore.
5087          *
5088          * Anybody acquiring event->child_mutex after the below loop _must_
5089          * also see this, most importantly inherit_event() which will avoid
5090          * placing more children on the list.
5091          *
5092          * Thus this guarantees that we will in fact observe and kill _ALL_
5093          * child events.
5094          */
5095         event->state = PERF_EVENT_STATE_DEAD;
5096         raw_spin_unlock_irq(&ctx->lock);
5097
5098         perf_event_ctx_unlock(event, ctx);
5099
5100 again:
5101         mutex_lock(&event->child_mutex);
5102         list_for_each_entry(child, &event->child_list, child_list) {
5103
5104                 /*
5105                  * Cannot change, child events are not migrated, see the
5106                  * comment with perf_event_ctx_lock_nested().
5107                  */
5108                 ctx = READ_ONCE(child->ctx);
5109                 /*
5110                  * Since child_mutex nests inside ctx::mutex, we must jump
5111                  * through hoops. We start by grabbing a reference on the ctx.
5112                  *
5113                  * Since the event cannot get freed while we hold the
5114                  * child_mutex, the context must also exist and have a !0
5115                  * reference count.
5116                  */
5117                 get_ctx(ctx);
5118
5119                 /*
5120                  * Now that we have a ctx ref, we can drop child_mutex, and
5121                  * acquire ctx::mutex without fear of it going away. Then we
5122                  * can re-acquire child_mutex.
5123                  */
5124                 mutex_unlock(&event->child_mutex);
5125                 mutex_lock(&ctx->mutex);
5126                 mutex_lock(&event->child_mutex);
5127
5128                 /*
5129                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5130                  * state, if child is still the first entry, it didn't get freed
5131                  * and we can continue doing so.
5132                  */
5133                 tmp = list_first_entry_or_null(&event->child_list,
5134                                                struct perf_event, child_list);
5135                 if (tmp == child) {
5136                         perf_remove_from_context(child, DETACH_GROUP);
5137                         list_move(&child->child_list, &free_list);
5138                         /*
5139                          * This matches the refcount bump in inherit_event();
5140                          * this can't be the last reference.
5141                          */
5142                         put_event(event);
5143                 }
5144
5145                 mutex_unlock(&event->child_mutex);
5146                 mutex_unlock(&ctx->mutex);
5147                 put_ctx(ctx);
5148                 goto again;
5149         }
5150         mutex_unlock(&event->child_mutex);
5151
5152         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5153                 void *var = &child->ctx->refcount;
5154
5155                 list_del(&child->child_list);
5156                 free_event(child);
5157
5158                 /*
5159                  * Wake any perf_event_free_task() waiting for this event to be
5160                  * freed.
5161                  */
5162                 smp_mb(); /* pairs with wait_var_event() */
5163                 wake_up_var(var);
5164         }
5165
5166 no_ctx:
5167         put_event(event); /* Must be the 'last' reference */
5168         return 0;
5169 }
5170 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5171
5172 /*
5173  * Called when the last reference to the file is gone.
5174  */
5175 static int perf_release(struct inode *inode, struct file *file)
5176 {
5177         perf_event_release_kernel(file->private_data);
5178         return 0;
5179 }
5180
5181 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5182 {
5183         struct perf_event *child;
5184         u64 total = 0;
5185
5186         *enabled = 0;
5187         *running = 0;
5188
5189         mutex_lock(&event->child_mutex);
5190
5191         (void)perf_event_read(event, false);
5192         total += perf_event_count(event);
5193
5194         *enabled += event->total_time_enabled +
5195                         atomic64_read(&event->child_total_time_enabled);
5196         *running += event->total_time_running +
5197                         atomic64_read(&event->child_total_time_running);
5198
5199         list_for_each_entry(child, &event->child_list, child_list) {
5200                 (void)perf_event_read(child, false);
5201                 total += perf_event_count(child);
5202                 *enabled += child->total_time_enabled;
5203                 *running += child->total_time_running;
5204         }
5205         mutex_unlock(&event->child_mutex);
5206
5207         return total;
5208 }
5209
5210 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5211 {
5212         struct perf_event_context *ctx;
5213         u64 count;
5214
5215         ctx = perf_event_ctx_lock(event);
5216         count = __perf_event_read_value(event, enabled, running);
5217         perf_event_ctx_unlock(event, ctx);
5218
5219         return count;
5220 }
5221 EXPORT_SYMBOL_GPL(perf_event_read_value);
5222
5223 static int __perf_read_group_add(struct perf_event *leader,
5224                                         u64 read_format, u64 *values)
5225 {
5226         struct perf_event_context *ctx = leader->ctx;
5227         struct perf_event *sub;
5228         unsigned long flags;
5229         int n = 1; /* skip @nr */
5230         int ret;
5231
5232         ret = perf_event_read(leader, true);
5233         if (ret)
5234                 return ret;
5235
5236         raw_spin_lock_irqsave(&ctx->lock, flags);
5237
5238         /*
5239          * Since we co-schedule groups, {enabled,running} times of siblings
5240          * will be identical to those of the leader, so we only publish one
5241          * set.
5242          */
5243         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5244                 values[n++] += leader->total_time_enabled +
5245                         atomic64_read(&leader->child_total_time_enabled);
5246         }
5247
5248         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5249                 values[n++] += leader->total_time_running +
5250                         atomic64_read(&leader->child_total_time_running);
5251         }
5252
5253         /*
5254          * Write {count,id} tuples for every sibling.
5255          */
5256         values[n++] += perf_event_count(leader);
5257         if (read_format & PERF_FORMAT_ID)
5258                 values[n++] = primary_event_id(leader);
5259
5260         for_each_sibling_event(sub, leader) {
5261                 values[n++] += perf_event_count(sub);
5262                 if (read_format & PERF_FORMAT_ID)
5263                         values[n++] = primary_event_id(sub);
5264         }
5265
5266         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5267         return 0;
5268 }
5269
5270 static int perf_read_group(struct perf_event *event,
5271                                    u64 read_format, char __user *buf)
5272 {
5273         struct perf_event *leader = event->group_leader, *child;
5274         struct perf_event_context *ctx = leader->ctx;
5275         int ret;
5276         u64 *values;
5277
5278         lockdep_assert_held(&ctx->mutex);
5279
5280         values = kzalloc(event->read_size, GFP_KERNEL);
5281         if (!values)
5282                 return -ENOMEM;
5283
5284         values[0] = 1 + leader->nr_siblings;
5285
5286         /*
5287          * By locking the child_mutex of the leader we effectively
5288          * lock the child list of all siblings.. XXX explain how.
5289          */
5290         mutex_lock(&leader->child_mutex);
5291
5292         ret = __perf_read_group_add(leader, read_format, values);
5293         if (ret)
5294                 goto unlock;
5295
5296         list_for_each_entry(child, &leader->child_list, child_list) {
5297                 ret = __perf_read_group_add(child, read_format, values);
5298                 if (ret)
5299                         goto unlock;
5300         }
5301
5302         mutex_unlock(&leader->child_mutex);
5303
5304         ret = event->read_size;
5305         if (copy_to_user(buf, values, event->read_size))
5306                 ret = -EFAULT;
5307         goto out;
5308
5309 unlock:
5310         mutex_unlock(&leader->child_mutex);
5311 out:
5312         kfree(values);
5313         return ret;
5314 }
5315
5316 static int perf_read_one(struct perf_event *event,
5317                                  u64 read_format, char __user *buf)
5318 {
5319         u64 enabled, running;
5320         u64 values[4];
5321         int n = 0;
5322
5323         values[n++] = __perf_event_read_value(event, &enabled, &running);
5324         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5325                 values[n++] = enabled;
5326         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5327                 values[n++] = running;
5328         if (read_format & PERF_FORMAT_ID)
5329                 values[n++] = primary_event_id(event);
5330
5331         if (copy_to_user(buf, values, n * sizeof(u64)))
5332                 return -EFAULT;
5333
5334         return n * sizeof(u64);
5335 }
5336
5337 static bool is_event_hup(struct perf_event *event)
5338 {
5339         bool no_children;
5340
5341         if (event->state > PERF_EVENT_STATE_EXIT)
5342                 return false;
5343
5344         mutex_lock(&event->child_mutex);
5345         no_children = list_empty(&event->child_list);
5346         mutex_unlock(&event->child_mutex);
5347         return no_children;
5348 }
5349
5350 /*
5351  * Read the performance event - simple non blocking version for now
5352  */
5353 static ssize_t
5354 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5355 {
5356         u64 read_format = event->attr.read_format;
5357         int ret;
5358
5359         /*
5360          * Return end-of-file for a read on an event that is in
5361          * error state (i.e. because it was pinned but it couldn't be
5362          * scheduled on to the CPU at some point).
5363          */
5364         if (event->state == PERF_EVENT_STATE_ERROR)
5365                 return 0;
5366
5367         if (count < event->read_size)
5368                 return -ENOSPC;
5369
5370         WARN_ON_ONCE(event->ctx->parent_ctx);
5371         if (read_format & PERF_FORMAT_GROUP)
5372                 ret = perf_read_group(event, read_format, buf);
5373         else
5374                 ret = perf_read_one(event, read_format, buf);
5375
5376         return ret;
5377 }
5378
5379 static ssize_t
5380 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5381 {
5382         struct perf_event *event = file->private_data;
5383         struct perf_event_context *ctx;
5384         int ret;
5385
5386         ret = security_perf_event_read(event);
5387         if (ret)
5388                 return ret;
5389
5390         ctx = perf_event_ctx_lock(event);
5391         ret = __perf_read(event, buf, count);
5392         perf_event_ctx_unlock(event, ctx);
5393
5394         return ret;
5395 }
5396
5397 static __poll_t perf_poll(struct file *file, poll_table *wait)
5398 {
5399         struct perf_event *event = file->private_data;
5400         struct perf_buffer *rb;
5401         __poll_t events = EPOLLHUP;
5402
5403         poll_wait(file, &event->waitq, wait);
5404
5405         if (is_event_hup(event))
5406                 return events;
5407
5408         /*
5409          * Pin the event->rb by taking event->mmap_mutex; otherwise
5410          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5411          */
5412         mutex_lock(&event->mmap_mutex);
5413         rb = event->rb;
5414         if (rb)
5415                 events = atomic_xchg(&rb->poll, 0);
5416         mutex_unlock(&event->mmap_mutex);
5417         return events;
5418 }
5419
5420 static void _perf_event_reset(struct perf_event *event)
5421 {
5422         (void)perf_event_read(event, false);
5423         local64_set(&event->count, 0);
5424         perf_event_update_userpage(event);
5425 }
5426
5427 /* Assume it's not an event with inherit set. */
5428 u64 perf_event_pause(struct perf_event *event, bool reset)
5429 {
5430         struct perf_event_context *ctx;
5431         u64 count;
5432
5433         ctx = perf_event_ctx_lock(event);
5434         WARN_ON_ONCE(event->attr.inherit);
5435         _perf_event_disable(event);
5436         count = local64_read(&event->count);
5437         if (reset)
5438                 local64_set(&event->count, 0);
5439         perf_event_ctx_unlock(event, ctx);
5440
5441         return count;
5442 }
5443 EXPORT_SYMBOL_GPL(perf_event_pause);
5444
5445 /*
5446  * Holding the top-level event's child_mutex means that any
5447  * descendant process that has inherited this event will block
5448  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5449  * task existence requirements of perf_event_enable/disable.
5450  */
5451 static void perf_event_for_each_child(struct perf_event *event,
5452                                         void (*func)(struct perf_event *))
5453 {
5454         struct perf_event *child;
5455
5456         WARN_ON_ONCE(event->ctx->parent_ctx);
5457
5458         mutex_lock(&event->child_mutex);
5459         func(event);
5460         list_for_each_entry(child, &event->child_list, child_list)
5461                 func(child);
5462         mutex_unlock(&event->child_mutex);
5463 }
5464
5465 static void perf_event_for_each(struct perf_event *event,
5466                                   void (*func)(struct perf_event *))
5467 {
5468         struct perf_event_context *ctx = event->ctx;
5469         struct perf_event *sibling;
5470
5471         lockdep_assert_held(&ctx->mutex);
5472
5473         event = event->group_leader;
5474
5475         perf_event_for_each_child(event, func);
5476         for_each_sibling_event(sibling, event)
5477                 perf_event_for_each_child(sibling, func);
5478 }
5479
5480 static void __perf_event_period(struct perf_event *event,
5481                                 struct perf_cpu_context *cpuctx,
5482                                 struct perf_event_context *ctx,
5483                                 void *info)
5484 {
5485         u64 value = *((u64 *)info);
5486         bool active;
5487
5488         if (event->attr.freq) {
5489                 event->attr.sample_freq = value;
5490         } else {
5491                 event->attr.sample_period = value;
5492                 event->hw.sample_period = value;
5493         }
5494
5495         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5496         if (active) {
5497                 perf_pmu_disable(ctx->pmu);
5498                 /*
5499                  * We could be throttled; unthrottle now to avoid the tick
5500                  * trying to unthrottle while we already re-started the event.
5501                  */
5502                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5503                         event->hw.interrupts = 0;
5504                         perf_log_throttle(event, 1);
5505                 }
5506                 event->pmu->stop(event, PERF_EF_UPDATE);
5507         }
5508
5509         local64_set(&event->hw.period_left, 0);
5510
5511         if (active) {
5512                 event->pmu->start(event, PERF_EF_RELOAD);
5513                 perf_pmu_enable(ctx->pmu);
5514         }
5515 }
5516
5517 static int perf_event_check_period(struct perf_event *event, u64 value)
5518 {
5519         return event->pmu->check_period(event, value);
5520 }
5521
5522 static int _perf_event_period(struct perf_event *event, u64 value)
5523 {
5524         if (!is_sampling_event(event))
5525                 return -EINVAL;
5526
5527         if (!value)
5528                 return -EINVAL;
5529
5530         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5531                 return -EINVAL;
5532
5533         if (perf_event_check_period(event, value))
5534                 return -EINVAL;
5535
5536         if (!event->attr.freq && (value & (1ULL << 63)))
5537                 return -EINVAL;
5538
5539         event_function_call(event, __perf_event_period, &value);
5540
5541         return 0;
5542 }
5543
5544 int perf_event_period(struct perf_event *event, u64 value)
5545 {
5546         struct perf_event_context *ctx;
5547         int ret;
5548
5549         ctx = perf_event_ctx_lock(event);
5550         ret = _perf_event_period(event, value);
5551         perf_event_ctx_unlock(event, ctx);
5552
5553         return ret;
5554 }
5555 EXPORT_SYMBOL_GPL(perf_event_period);
5556
5557 static const struct file_operations perf_fops;
5558
5559 static inline int perf_fget_light(int fd, struct fd *p)
5560 {
5561         struct fd f = fdget(fd);
5562         if (!f.file)
5563                 return -EBADF;
5564
5565         if (f.file->f_op != &perf_fops) {
5566                 fdput(f);
5567                 return -EBADF;
5568         }
5569         *p = f;
5570         return 0;
5571 }
5572
5573 static int perf_event_set_output(struct perf_event *event,
5574                                  struct perf_event *output_event);
5575 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5576 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5577                           struct perf_event_attr *attr);
5578
5579 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5580 {
5581         void (*func)(struct perf_event *);
5582         u32 flags = arg;
5583
5584         switch (cmd) {
5585         case PERF_EVENT_IOC_ENABLE:
5586                 func = _perf_event_enable;
5587                 break;
5588         case PERF_EVENT_IOC_DISABLE:
5589                 func = _perf_event_disable;
5590                 break;
5591         case PERF_EVENT_IOC_RESET:
5592                 func = _perf_event_reset;
5593                 break;
5594
5595         case PERF_EVENT_IOC_REFRESH:
5596                 return _perf_event_refresh(event, arg);
5597
5598         case PERF_EVENT_IOC_PERIOD:
5599         {
5600                 u64 value;
5601
5602                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5603                         return -EFAULT;
5604
5605                 return _perf_event_period(event, value);
5606         }
5607         case PERF_EVENT_IOC_ID:
5608         {
5609                 u64 id = primary_event_id(event);
5610
5611                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5612                         return -EFAULT;
5613                 return 0;
5614         }
5615
5616         case PERF_EVENT_IOC_SET_OUTPUT:
5617         {
5618                 int ret;
5619                 if (arg != -1) {
5620                         struct perf_event *output_event;
5621                         struct fd output;
5622                         ret = perf_fget_light(arg, &output);
5623                         if (ret)
5624                                 return ret;
5625                         output_event = output.file->private_data;
5626                         ret = perf_event_set_output(event, output_event);
5627                         fdput(output);
5628                 } else {
5629                         ret = perf_event_set_output(event, NULL);
5630                 }
5631                 return ret;
5632         }
5633
5634         case PERF_EVENT_IOC_SET_FILTER:
5635                 return perf_event_set_filter(event, (void __user *)arg);
5636
5637         case PERF_EVENT_IOC_SET_BPF:
5638         {
5639                 struct bpf_prog *prog;
5640                 int err;
5641
5642                 prog = bpf_prog_get(arg);
5643                 if (IS_ERR(prog))
5644                         return PTR_ERR(prog);
5645
5646                 err = perf_event_set_bpf_prog(event, prog, 0);
5647                 if (err) {
5648                         bpf_prog_put(prog);
5649                         return err;
5650                 }
5651
5652                 return 0;
5653         }
5654
5655         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5656                 struct perf_buffer *rb;
5657
5658                 rcu_read_lock();
5659                 rb = rcu_dereference(event->rb);
5660                 if (!rb || !rb->nr_pages) {
5661                         rcu_read_unlock();
5662                         return -EINVAL;
5663                 }
5664                 rb_toggle_paused(rb, !!arg);
5665                 rcu_read_unlock();
5666                 return 0;
5667         }
5668
5669         case PERF_EVENT_IOC_QUERY_BPF:
5670                 return perf_event_query_prog_array(event, (void __user *)arg);
5671
5672         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5673                 struct perf_event_attr new_attr;
5674                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5675                                          &new_attr);
5676
5677                 if (err)
5678                         return err;
5679
5680                 return perf_event_modify_attr(event,  &new_attr);
5681         }
5682         default:
5683                 return -ENOTTY;
5684         }
5685
5686         if (flags & PERF_IOC_FLAG_GROUP)
5687                 perf_event_for_each(event, func);
5688         else
5689                 perf_event_for_each_child(event, func);
5690
5691         return 0;
5692 }
5693
5694 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5695 {
5696         struct perf_event *event = file->private_data;
5697         struct perf_event_context *ctx;
5698         long ret;
5699
5700         /* Treat ioctl like writes as it is likely a mutating operation. */
5701         ret = security_perf_event_write(event);
5702         if (ret)
5703                 return ret;
5704
5705         ctx = perf_event_ctx_lock(event);
5706         ret = _perf_ioctl(event, cmd, arg);
5707         perf_event_ctx_unlock(event, ctx);
5708
5709         return ret;
5710 }
5711
5712 #ifdef CONFIG_COMPAT
5713 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5714                                 unsigned long arg)
5715 {
5716         switch (_IOC_NR(cmd)) {
5717         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5718         case _IOC_NR(PERF_EVENT_IOC_ID):
5719         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5720         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5721                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5722                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5723                         cmd &= ~IOCSIZE_MASK;
5724                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5725                 }
5726                 break;
5727         }
5728         return perf_ioctl(file, cmd, arg);
5729 }
5730 #else
5731 # define perf_compat_ioctl NULL
5732 #endif
5733
5734 int perf_event_task_enable(void)
5735 {
5736         struct perf_event_context *ctx;
5737         struct perf_event *event;
5738
5739         mutex_lock(&current->perf_event_mutex);
5740         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5741                 ctx = perf_event_ctx_lock(event);
5742                 perf_event_for_each_child(event, _perf_event_enable);
5743                 perf_event_ctx_unlock(event, ctx);
5744         }
5745         mutex_unlock(&current->perf_event_mutex);
5746
5747         return 0;
5748 }
5749
5750 int perf_event_task_disable(void)
5751 {
5752         struct perf_event_context *ctx;
5753         struct perf_event *event;
5754
5755         mutex_lock(&current->perf_event_mutex);
5756         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5757                 ctx = perf_event_ctx_lock(event);
5758                 perf_event_for_each_child(event, _perf_event_disable);
5759                 perf_event_ctx_unlock(event, ctx);
5760         }
5761         mutex_unlock(&current->perf_event_mutex);
5762
5763         return 0;
5764 }
5765
5766 static int perf_event_index(struct perf_event *event)
5767 {
5768         if (event->hw.state & PERF_HES_STOPPED)
5769                 return 0;
5770
5771         if (event->state != PERF_EVENT_STATE_ACTIVE)
5772                 return 0;
5773
5774         return event->pmu->event_idx(event);
5775 }
5776
5777 static void calc_timer_values(struct perf_event *event,
5778                                 u64 *now,
5779                                 u64 *enabled,
5780                                 u64 *running)
5781 {
5782         u64 ctx_time;
5783
5784         *now = perf_clock();
5785         ctx_time = event->shadow_ctx_time + *now;
5786         __perf_update_times(event, ctx_time, enabled, running);
5787 }
5788
5789 static void perf_event_init_userpage(struct perf_event *event)
5790 {
5791         struct perf_event_mmap_page *userpg;
5792         struct perf_buffer *rb;
5793
5794         rcu_read_lock();
5795         rb = rcu_dereference(event->rb);
5796         if (!rb)
5797                 goto unlock;
5798
5799         userpg = rb->user_page;
5800
5801         /* Allow new userspace to detect that bit 0 is deprecated */
5802         userpg->cap_bit0_is_deprecated = 1;
5803         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5804         userpg->data_offset = PAGE_SIZE;
5805         userpg->data_size = perf_data_size(rb);
5806
5807 unlock:
5808         rcu_read_unlock();
5809 }
5810
5811 void __weak arch_perf_update_userpage(
5812         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5813 {
5814 }
5815
5816 /*
5817  * Callers need to ensure there can be no nesting of this function, otherwise
5818  * the seqlock logic goes bad. We can not serialize this because the arch
5819  * code calls this from NMI context.
5820  */
5821 void perf_event_update_userpage(struct perf_event *event)
5822 {
5823         struct perf_event_mmap_page *userpg;
5824         struct perf_buffer *rb;
5825         u64 enabled, running, now;
5826
5827         rcu_read_lock();
5828         rb = rcu_dereference(event->rb);
5829         if (!rb)
5830                 goto unlock;
5831
5832         /*
5833          * compute total_time_enabled, total_time_running
5834          * based on snapshot values taken when the event
5835          * was last scheduled in.
5836          *
5837          * we cannot simply called update_context_time()
5838          * because of locking issue as we can be called in
5839          * NMI context
5840          */
5841         calc_timer_values(event, &now, &enabled, &running);
5842
5843         userpg = rb->user_page;
5844         /*
5845          * Disable preemption to guarantee consistent time stamps are stored to
5846          * the user page.
5847          */
5848         preempt_disable();
5849         ++userpg->lock;
5850         barrier();
5851         userpg->index = perf_event_index(event);
5852         userpg->offset = perf_event_count(event);
5853         if (userpg->index)
5854                 userpg->offset -= local64_read(&event->hw.prev_count);
5855
5856         userpg->time_enabled = enabled +
5857                         atomic64_read(&event->child_total_time_enabled);
5858
5859         userpg->time_running = running +
5860                         atomic64_read(&event->child_total_time_running);
5861
5862         arch_perf_update_userpage(event, userpg, now);
5863
5864         barrier();
5865         ++userpg->lock;
5866         preempt_enable();
5867 unlock:
5868         rcu_read_unlock();
5869 }
5870 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5871
5872 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5873 {
5874         struct perf_event *event = vmf->vma->vm_file->private_data;
5875         struct perf_buffer *rb;
5876         vm_fault_t ret = VM_FAULT_SIGBUS;
5877
5878         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5879                 if (vmf->pgoff == 0)
5880                         ret = 0;
5881                 return ret;
5882         }
5883
5884         rcu_read_lock();
5885         rb = rcu_dereference(event->rb);
5886         if (!rb)
5887                 goto unlock;
5888
5889         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5890                 goto unlock;
5891
5892         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5893         if (!vmf->page)
5894                 goto unlock;
5895
5896         get_page(vmf->page);
5897         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5898         vmf->page->index   = vmf->pgoff;
5899
5900         ret = 0;
5901 unlock:
5902         rcu_read_unlock();
5903
5904         return ret;
5905 }
5906
5907 static void ring_buffer_attach(struct perf_event *event,
5908                                struct perf_buffer *rb)
5909 {
5910         struct perf_buffer *old_rb = NULL;
5911         unsigned long flags;
5912
5913         if (event->rb) {
5914                 /*
5915                  * Should be impossible, we set this when removing
5916                  * event->rb_entry and wait/clear when adding event->rb_entry.
5917                  */
5918                 WARN_ON_ONCE(event->rcu_pending);
5919
5920                 old_rb = event->rb;
5921                 spin_lock_irqsave(&old_rb->event_lock, flags);
5922                 list_del_rcu(&event->rb_entry);
5923                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5924
5925                 event->rcu_batches = get_state_synchronize_rcu();
5926                 event->rcu_pending = 1;
5927         }
5928
5929         if (rb) {
5930                 if (event->rcu_pending) {
5931                         cond_synchronize_rcu(event->rcu_batches);
5932                         event->rcu_pending = 0;
5933                 }
5934
5935                 spin_lock_irqsave(&rb->event_lock, flags);
5936                 list_add_rcu(&event->rb_entry, &rb->event_list);
5937                 spin_unlock_irqrestore(&rb->event_lock, flags);
5938         }
5939
5940         /*
5941          * Avoid racing with perf_mmap_close(AUX): stop the event
5942          * before swizzling the event::rb pointer; if it's getting
5943          * unmapped, its aux_mmap_count will be 0 and it won't
5944          * restart. See the comment in __perf_pmu_output_stop().
5945          *
5946          * Data will inevitably be lost when set_output is done in
5947          * mid-air, but then again, whoever does it like this is
5948          * not in for the data anyway.
5949          */
5950         if (has_aux(event))
5951                 perf_event_stop(event, 0);
5952
5953         rcu_assign_pointer(event->rb, rb);
5954
5955         if (old_rb) {
5956                 ring_buffer_put(old_rb);
5957                 /*
5958                  * Since we detached before setting the new rb, so that we
5959                  * could attach the new rb, we could have missed a wakeup.
5960                  * Provide it now.
5961                  */
5962                 wake_up_all(&event->waitq);
5963         }
5964 }
5965
5966 static void ring_buffer_wakeup(struct perf_event *event)
5967 {
5968         struct perf_buffer *rb;
5969
5970         rcu_read_lock();
5971         rb = rcu_dereference(event->rb);
5972         if (rb) {
5973                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5974                         wake_up_all(&event->waitq);
5975         }
5976         rcu_read_unlock();
5977 }
5978
5979 struct perf_buffer *ring_buffer_get(struct perf_event *event)
5980 {
5981         struct perf_buffer *rb;
5982
5983         rcu_read_lock();
5984         rb = rcu_dereference(event->rb);
5985         if (rb) {
5986                 if (!refcount_inc_not_zero(&rb->refcount))
5987                         rb = NULL;
5988         }
5989         rcu_read_unlock();
5990
5991         return rb;
5992 }
5993
5994 void ring_buffer_put(struct perf_buffer *rb)
5995 {
5996         if (!refcount_dec_and_test(&rb->refcount))
5997                 return;
5998
5999         WARN_ON_ONCE(!list_empty(&rb->event_list));
6000
6001         call_rcu(&rb->rcu_head, rb_free_rcu);
6002 }
6003
6004 static void perf_mmap_open(struct vm_area_struct *vma)
6005 {
6006         struct perf_event *event = vma->vm_file->private_data;
6007
6008         atomic_inc(&event->mmap_count);
6009         atomic_inc(&event->rb->mmap_count);
6010
6011         if (vma->vm_pgoff)
6012                 atomic_inc(&event->rb->aux_mmap_count);
6013
6014         if (event->pmu->event_mapped)
6015                 event->pmu->event_mapped(event, vma->vm_mm);
6016 }
6017
6018 static void perf_pmu_output_stop(struct perf_event *event);
6019
6020 /*
6021  * A buffer can be mmap()ed multiple times; either directly through the same
6022  * event, or through other events by use of perf_event_set_output().
6023  *
6024  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6025  * the buffer here, where we still have a VM context. This means we need
6026  * to detach all events redirecting to us.
6027  */
6028 static void perf_mmap_close(struct vm_area_struct *vma)
6029 {
6030         struct perf_event *event = vma->vm_file->private_data;
6031         struct perf_buffer *rb = ring_buffer_get(event);
6032         struct user_struct *mmap_user = rb->mmap_user;
6033         int mmap_locked = rb->mmap_locked;
6034         unsigned long size = perf_data_size(rb);
6035         bool detach_rest = false;
6036
6037         if (event->pmu->event_unmapped)
6038                 event->pmu->event_unmapped(event, vma->vm_mm);
6039
6040         /*
6041          * rb->aux_mmap_count will always drop before rb->mmap_count and
6042          * event->mmap_count, so it is ok to use event->mmap_mutex to
6043          * serialize with perf_mmap here.
6044          */
6045         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6046             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6047                 /*
6048                  * Stop all AUX events that are writing to this buffer,
6049                  * so that we can free its AUX pages and corresponding PMU
6050                  * data. Note that after rb::aux_mmap_count dropped to zero,
6051                  * they won't start any more (see perf_aux_output_begin()).
6052                  */
6053                 perf_pmu_output_stop(event);
6054
6055                 /* now it's safe to free the pages */
6056                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6057                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6058
6059                 /* this has to be the last one */
6060                 rb_free_aux(rb);
6061                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6062
6063                 mutex_unlock(&event->mmap_mutex);
6064         }
6065
6066         if (atomic_dec_and_test(&rb->mmap_count))
6067                 detach_rest = true;
6068
6069         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6070                 goto out_put;
6071
6072         ring_buffer_attach(event, NULL);
6073         mutex_unlock(&event->mmap_mutex);
6074
6075         /* If there's still other mmap()s of this buffer, we're done. */
6076         if (!detach_rest)
6077                 goto out_put;
6078
6079         /*
6080          * No other mmap()s, detach from all other events that might redirect
6081          * into the now unreachable buffer. Somewhat complicated by the
6082          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6083          */
6084 again:
6085         rcu_read_lock();
6086         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6087                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6088                         /*
6089                          * This event is en-route to free_event() which will
6090                          * detach it and remove it from the list.
6091                          */
6092                         continue;
6093                 }
6094                 rcu_read_unlock();
6095
6096                 mutex_lock(&event->mmap_mutex);
6097                 /*
6098                  * Check we didn't race with perf_event_set_output() which can
6099                  * swizzle the rb from under us while we were waiting to
6100                  * acquire mmap_mutex.
6101                  *
6102                  * If we find a different rb; ignore this event, a next
6103                  * iteration will no longer find it on the list. We have to
6104                  * still restart the iteration to make sure we're not now
6105                  * iterating the wrong list.
6106                  */
6107                 if (event->rb == rb)
6108                         ring_buffer_attach(event, NULL);
6109
6110                 mutex_unlock(&event->mmap_mutex);
6111                 put_event(event);
6112
6113                 /*
6114                  * Restart the iteration; either we're on the wrong list or
6115                  * destroyed its integrity by doing a deletion.
6116                  */
6117                 goto again;
6118         }
6119         rcu_read_unlock();
6120
6121         /*
6122          * It could be there's still a few 0-ref events on the list; they'll
6123          * get cleaned up by free_event() -- they'll also still have their
6124          * ref on the rb and will free it whenever they are done with it.
6125          *
6126          * Aside from that, this buffer is 'fully' detached and unmapped,
6127          * undo the VM accounting.
6128          */
6129
6130         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6131                         &mmap_user->locked_vm);
6132         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6133         free_uid(mmap_user);
6134
6135 out_put:
6136         ring_buffer_put(rb); /* could be last */
6137 }
6138
6139 static const struct vm_operations_struct perf_mmap_vmops = {
6140         .open           = perf_mmap_open,
6141         .close          = perf_mmap_close, /* non mergeable */
6142         .fault          = perf_mmap_fault,
6143         .page_mkwrite   = perf_mmap_fault,
6144 };
6145
6146 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6147 {
6148         struct perf_event *event = file->private_data;
6149         unsigned long user_locked, user_lock_limit;
6150         struct user_struct *user = current_user();
6151         struct perf_buffer *rb = NULL;
6152         unsigned long locked, lock_limit;
6153         unsigned long vma_size;
6154         unsigned long nr_pages;
6155         long user_extra = 0, extra = 0;
6156         int ret = 0, flags = 0;
6157
6158         /*
6159          * Don't allow mmap() of inherited per-task counters. This would
6160          * create a performance issue due to all children writing to the
6161          * same rb.
6162          */
6163         if (event->cpu == -1 && event->attr.inherit)
6164                 return -EINVAL;
6165
6166         if (!(vma->vm_flags & VM_SHARED))
6167                 return -EINVAL;
6168
6169         ret = security_perf_event_read(event);
6170         if (ret)
6171                 return ret;
6172
6173         vma_size = vma->vm_end - vma->vm_start;
6174
6175         if (vma->vm_pgoff == 0) {
6176                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6177         } else {
6178                 /*
6179                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6180                  * mapped, all subsequent mappings should have the same size
6181                  * and offset. Must be above the normal perf buffer.
6182                  */
6183                 u64 aux_offset, aux_size;
6184
6185                 if (!event->rb)
6186                         return -EINVAL;
6187
6188                 nr_pages = vma_size / PAGE_SIZE;
6189
6190                 mutex_lock(&event->mmap_mutex);
6191                 ret = -EINVAL;
6192
6193                 rb = event->rb;
6194                 if (!rb)
6195                         goto aux_unlock;
6196
6197                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6198                 aux_size = READ_ONCE(rb->user_page->aux_size);
6199
6200                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6201                         goto aux_unlock;
6202
6203                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6204                         goto aux_unlock;
6205
6206                 /* already mapped with a different offset */
6207                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6208                         goto aux_unlock;
6209
6210                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6211                         goto aux_unlock;
6212
6213                 /* already mapped with a different size */
6214                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6215                         goto aux_unlock;
6216
6217                 if (!is_power_of_2(nr_pages))
6218                         goto aux_unlock;
6219
6220                 if (!atomic_inc_not_zero(&rb->mmap_count))
6221                         goto aux_unlock;
6222
6223                 if (rb_has_aux(rb)) {
6224                         atomic_inc(&rb->aux_mmap_count);
6225                         ret = 0;
6226                         goto unlock;
6227                 }
6228
6229                 atomic_set(&rb->aux_mmap_count, 1);
6230                 user_extra = nr_pages;
6231
6232                 goto accounting;
6233         }
6234
6235         /*
6236          * If we have rb pages ensure they're a power-of-two number, so we
6237          * can do bitmasks instead of modulo.
6238          */
6239         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6240                 return -EINVAL;
6241
6242         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6243                 return -EINVAL;
6244
6245         WARN_ON_ONCE(event->ctx->parent_ctx);
6246 again:
6247         mutex_lock(&event->mmap_mutex);
6248         if (event->rb) {
6249                 if (event->rb->nr_pages != nr_pages) {
6250                         ret = -EINVAL;
6251                         goto unlock;
6252                 }
6253
6254                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6255                         /*
6256                          * Raced against perf_mmap_close() through
6257                          * perf_event_set_output(). Try again, hope for better
6258                          * luck.
6259                          */
6260                         mutex_unlock(&event->mmap_mutex);
6261                         goto again;
6262                 }
6263
6264                 goto unlock;
6265         }
6266
6267         user_extra = nr_pages + 1;
6268
6269 accounting:
6270         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6271
6272         /*
6273          * Increase the limit linearly with more CPUs:
6274          */
6275         user_lock_limit *= num_online_cpus();
6276
6277         user_locked = atomic_long_read(&user->locked_vm);
6278
6279         /*
6280          * sysctl_perf_event_mlock may have changed, so that
6281          *     user->locked_vm > user_lock_limit
6282          */
6283         if (user_locked > user_lock_limit)
6284                 user_locked = user_lock_limit;
6285         user_locked += user_extra;
6286
6287         if (user_locked > user_lock_limit) {
6288                 /*
6289                  * charge locked_vm until it hits user_lock_limit;
6290                  * charge the rest from pinned_vm
6291                  */
6292                 extra = user_locked - user_lock_limit;
6293                 user_extra -= extra;
6294         }
6295
6296         lock_limit = rlimit(RLIMIT_MEMLOCK);
6297         lock_limit >>= PAGE_SHIFT;
6298         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6299
6300         if ((locked > lock_limit) && perf_is_paranoid() &&
6301                 !capable(CAP_IPC_LOCK)) {
6302                 ret = -EPERM;
6303                 goto unlock;
6304         }
6305
6306         WARN_ON(!rb && event->rb);
6307
6308         if (vma->vm_flags & VM_WRITE)
6309                 flags |= RING_BUFFER_WRITABLE;
6310
6311         if (!rb) {
6312                 rb = rb_alloc(nr_pages,
6313                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6314                               event->cpu, flags);
6315
6316                 if (!rb) {
6317                         ret = -ENOMEM;
6318                         goto unlock;
6319                 }
6320
6321                 atomic_set(&rb->mmap_count, 1);
6322                 rb->mmap_user = get_current_user();
6323                 rb->mmap_locked = extra;
6324
6325                 ring_buffer_attach(event, rb);
6326
6327                 perf_event_init_userpage(event);
6328                 perf_event_update_userpage(event);
6329         } else {
6330                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6331                                    event->attr.aux_watermark, flags);
6332                 if (!ret)
6333                         rb->aux_mmap_locked = extra;
6334         }
6335
6336 unlock:
6337         if (!ret) {
6338                 atomic_long_add(user_extra, &user->locked_vm);
6339                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6340
6341                 atomic_inc(&event->mmap_count);
6342         } else if (rb) {
6343                 atomic_dec(&rb->mmap_count);
6344         }
6345 aux_unlock:
6346         mutex_unlock(&event->mmap_mutex);
6347
6348         /*
6349          * Since pinned accounting is per vm we cannot allow fork() to copy our
6350          * vma.
6351          */
6352         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6353         vma->vm_ops = &perf_mmap_vmops;
6354
6355         if (event->pmu->event_mapped)
6356                 event->pmu->event_mapped(event, vma->vm_mm);
6357
6358         return ret;
6359 }
6360
6361 static int perf_fasync(int fd, struct file *filp, int on)
6362 {
6363         struct inode *inode = file_inode(filp);
6364         struct perf_event *event = filp->private_data;
6365         int retval;
6366
6367         inode_lock(inode);
6368         retval = fasync_helper(fd, filp, on, &event->fasync);
6369         inode_unlock(inode);
6370
6371         if (retval < 0)
6372                 return retval;
6373
6374         return 0;
6375 }
6376
6377 static const struct file_operations perf_fops = {
6378         .llseek                 = no_llseek,
6379         .release                = perf_release,
6380         .read                   = perf_read,
6381         .poll                   = perf_poll,
6382         .unlocked_ioctl         = perf_ioctl,
6383         .compat_ioctl           = perf_compat_ioctl,
6384         .mmap                   = perf_mmap,
6385         .fasync                 = perf_fasync,
6386 };
6387
6388 /*
6389  * Perf event wakeup
6390  *
6391  * If there's data, ensure we set the poll() state and publish everything
6392  * to user-space before waking everybody up.
6393  */
6394
6395 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6396 {
6397         /* only the parent has fasync state */
6398         if (event->parent)
6399                 event = event->parent;
6400         return &event->fasync;
6401 }
6402
6403 void perf_event_wakeup(struct perf_event *event)
6404 {
6405         ring_buffer_wakeup(event);
6406
6407         if (event->pending_kill) {
6408                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6409                 event->pending_kill = 0;
6410         }
6411 }
6412
6413 static void perf_sigtrap(struct perf_event *event)
6414 {
6415         /*
6416          * We'd expect this to only occur if the irq_work is delayed and either
6417          * ctx->task or current has changed in the meantime. This can be the
6418          * case on architectures that do not implement arch_irq_work_raise().
6419          */
6420         if (WARN_ON_ONCE(event->ctx->task != current))
6421                 return;
6422
6423         /*
6424          * perf_pending_event() can race with the task exiting.
6425          */
6426         if (current->flags & PF_EXITING)
6427                 return;
6428
6429         force_sig_perf((void __user *)event->pending_addr,
6430                        event->attr.type, event->attr.sig_data);
6431 }
6432
6433 static void perf_pending_event_disable(struct perf_event *event)
6434 {
6435         int cpu = READ_ONCE(event->pending_disable);
6436
6437         if (cpu < 0)
6438                 return;
6439
6440         if (cpu == smp_processor_id()) {
6441                 WRITE_ONCE(event->pending_disable, -1);
6442
6443                 if (event->attr.sigtrap) {
6444                         perf_sigtrap(event);
6445                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6446                         return;
6447                 }
6448
6449                 perf_event_disable_local(event);
6450                 return;
6451         }
6452
6453         /*
6454          *  CPU-A                       CPU-B
6455          *
6456          *  perf_event_disable_inatomic()
6457          *    @pending_disable = CPU-A;
6458          *    irq_work_queue();
6459          *
6460          *  sched-out
6461          *    @pending_disable = -1;
6462          *
6463          *                              sched-in
6464          *                              perf_event_disable_inatomic()
6465          *                                @pending_disable = CPU-B;
6466          *                                irq_work_queue(); // FAILS
6467          *
6468          *  irq_work_run()
6469          *    perf_pending_event()
6470          *
6471          * But the event runs on CPU-B and wants disabling there.
6472          */
6473         irq_work_queue_on(&event->pending, cpu);
6474 }
6475
6476 static void perf_pending_event(struct irq_work *entry)
6477 {
6478         struct perf_event *event = container_of(entry, struct perf_event, pending);
6479         int rctx;
6480
6481         rctx = perf_swevent_get_recursion_context();
6482         /*
6483          * If we 'fail' here, that's OK, it means recursion is already disabled
6484          * and we won't recurse 'further'.
6485          */
6486
6487         perf_pending_event_disable(event);
6488
6489         if (event->pending_wakeup) {
6490                 event->pending_wakeup = 0;
6491                 perf_event_wakeup(event);
6492         }
6493
6494         if (rctx >= 0)
6495                 perf_swevent_put_recursion_context(rctx);
6496 }
6497
6498 /*
6499  * We assume there is only KVM supporting the callbacks.
6500  * Later on, we might change it to a list if there is
6501  * another virtualization implementation supporting the callbacks.
6502  */
6503 struct perf_guest_info_callbacks *perf_guest_cbs;
6504
6505 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6506 {
6507         perf_guest_cbs = cbs;
6508         return 0;
6509 }
6510 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6511
6512 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6513 {
6514         perf_guest_cbs = NULL;
6515         return 0;
6516 }
6517 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6518
6519 static void
6520 perf_output_sample_regs(struct perf_output_handle *handle,
6521                         struct pt_regs *regs, u64 mask)
6522 {
6523         int bit;
6524         DECLARE_BITMAP(_mask, 64);
6525
6526         bitmap_from_u64(_mask, mask);
6527         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6528                 u64 val;
6529
6530                 val = perf_reg_value(regs, bit);
6531                 perf_output_put(handle, val);
6532         }
6533 }
6534
6535 static void perf_sample_regs_user(struct perf_regs *regs_user,
6536                                   struct pt_regs *regs)
6537 {
6538         if (user_mode(regs)) {
6539                 regs_user->abi = perf_reg_abi(current);
6540                 regs_user->regs = regs;
6541         } else if (!(current->flags & PF_KTHREAD)) {
6542                 perf_get_regs_user(regs_user, regs);
6543         } else {
6544                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6545                 regs_user->regs = NULL;
6546         }
6547 }
6548
6549 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6550                                   struct pt_regs *regs)
6551 {
6552         regs_intr->regs = regs;
6553         regs_intr->abi  = perf_reg_abi(current);
6554 }
6555
6556
6557 /*
6558  * Get remaining task size from user stack pointer.
6559  *
6560  * It'd be better to take stack vma map and limit this more
6561  * precisely, but there's no way to get it safely under interrupt,
6562  * so using TASK_SIZE as limit.
6563  */
6564 static u64 perf_ustack_task_size(struct pt_regs *regs)
6565 {
6566         unsigned long addr = perf_user_stack_pointer(regs);
6567
6568         if (!addr || addr >= TASK_SIZE)
6569                 return 0;
6570
6571         return TASK_SIZE - addr;
6572 }
6573
6574 static u16
6575 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6576                         struct pt_regs *regs)
6577 {
6578         u64 task_size;
6579
6580         /* No regs, no stack pointer, no dump. */
6581         if (!regs)
6582                 return 0;
6583
6584         /*
6585          * Check if we fit in with the requested stack size into the:
6586          * - TASK_SIZE
6587          *   If we don't, we limit the size to the TASK_SIZE.
6588          *
6589          * - remaining sample size
6590          *   If we don't, we customize the stack size to
6591          *   fit in to the remaining sample size.
6592          */
6593
6594         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6595         stack_size = min(stack_size, (u16) task_size);
6596
6597         /* Current header size plus static size and dynamic size. */
6598         header_size += 2 * sizeof(u64);
6599
6600         /* Do we fit in with the current stack dump size? */
6601         if ((u16) (header_size + stack_size) < header_size) {
6602                 /*
6603                  * If we overflow the maximum size for the sample,
6604                  * we customize the stack dump size to fit in.
6605                  */
6606                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6607                 stack_size = round_up(stack_size, sizeof(u64));
6608         }
6609
6610         return stack_size;
6611 }
6612
6613 static void
6614 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6615                           struct pt_regs *regs)
6616 {
6617         /* Case of a kernel thread, nothing to dump */
6618         if (!regs) {
6619                 u64 size = 0;
6620                 perf_output_put(handle, size);
6621         } else {
6622                 unsigned long sp;
6623                 unsigned int rem;
6624                 u64 dyn_size;
6625                 mm_segment_t fs;
6626
6627                 /*
6628                  * We dump:
6629                  * static size
6630                  *   - the size requested by user or the best one we can fit
6631                  *     in to the sample max size
6632                  * data
6633                  *   - user stack dump data
6634                  * dynamic size
6635                  *   - the actual dumped size
6636                  */
6637
6638                 /* Static size. */
6639                 perf_output_put(handle, dump_size);
6640
6641                 /* Data. */
6642                 sp = perf_user_stack_pointer(regs);
6643                 fs = force_uaccess_begin();
6644                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6645                 force_uaccess_end(fs);
6646                 dyn_size = dump_size - rem;
6647
6648                 perf_output_skip(handle, rem);
6649
6650                 /* Dynamic size. */
6651                 perf_output_put(handle, dyn_size);
6652         }
6653 }
6654
6655 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6656                                           struct perf_sample_data *data,
6657                                           size_t size)
6658 {
6659         struct perf_event *sampler = event->aux_event;
6660         struct perf_buffer *rb;
6661
6662         data->aux_size = 0;
6663
6664         if (!sampler)
6665                 goto out;
6666
6667         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6668                 goto out;
6669
6670         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6671                 goto out;
6672
6673         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6674         if (!rb)
6675                 goto out;
6676
6677         /*
6678          * If this is an NMI hit inside sampling code, don't take
6679          * the sample. See also perf_aux_sample_output().
6680          */
6681         if (READ_ONCE(rb->aux_in_sampling)) {
6682                 data->aux_size = 0;
6683         } else {
6684                 size = min_t(size_t, size, perf_aux_size(rb));
6685                 data->aux_size = ALIGN(size, sizeof(u64));
6686         }
6687         ring_buffer_put(rb);
6688
6689 out:
6690         return data->aux_size;
6691 }
6692
6693 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6694                                  struct perf_event *event,
6695                                  struct perf_output_handle *handle,
6696                                  unsigned long size)
6697 {
6698         unsigned long flags;
6699         long ret;
6700
6701         /*
6702          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6703          * paths. If we start calling them in NMI context, they may race with
6704          * the IRQ ones, that is, for example, re-starting an event that's just
6705          * been stopped, which is why we're using a separate callback that
6706          * doesn't change the event state.
6707          *
6708          * IRQs need to be disabled to prevent IPIs from racing with us.
6709          */
6710         local_irq_save(flags);
6711         /*
6712          * Guard against NMI hits inside the critical section;
6713          * see also perf_prepare_sample_aux().
6714          */
6715         WRITE_ONCE(rb->aux_in_sampling, 1);
6716         barrier();
6717
6718         ret = event->pmu->snapshot_aux(event, handle, size);
6719
6720         barrier();
6721         WRITE_ONCE(rb->aux_in_sampling, 0);
6722         local_irq_restore(flags);
6723
6724         return ret;
6725 }
6726
6727 static void perf_aux_sample_output(struct perf_event *event,
6728                                    struct perf_output_handle *handle,
6729                                    struct perf_sample_data *data)
6730 {
6731         struct perf_event *sampler = event->aux_event;
6732         struct perf_buffer *rb;
6733         unsigned long pad;
6734         long size;
6735
6736         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6737                 return;
6738
6739         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6740         if (!rb)
6741                 return;
6742
6743         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6744
6745         /*
6746          * An error here means that perf_output_copy() failed (returned a
6747          * non-zero surplus that it didn't copy), which in its current
6748          * enlightened implementation is not possible. If that changes, we'd
6749          * like to know.
6750          */
6751         if (WARN_ON_ONCE(size < 0))
6752                 goto out_put;
6753
6754         /*
6755          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6756          * perf_prepare_sample_aux(), so should not be more than that.
6757          */
6758         pad = data->aux_size - size;
6759         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6760                 pad = 8;
6761
6762         if (pad) {
6763                 u64 zero = 0;
6764                 perf_output_copy(handle, &zero, pad);
6765         }
6766
6767 out_put:
6768         ring_buffer_put(rb);
6769 }
6770
6771 static void __perf_event_header__init_id(struct perf_event_header *header,
6772                                          struct perf_sample_data *data,
6773                                          struct perf_event *event)
6774 {
6775         u64 sample_type = event->attr.sample_type;
6776
6777         data->type = sample_type;
6778         header->size += event->id_header_size;
6779
6780         if (sample_type & PERF_SAMPLE_TID) {
6781                 /* namespace issues */
6782                 data->tid_entry.pid = perf_event_pid(event, current);
6783                 data->tid_entry.tid = perf_event_tid(event, current);
6784         }
6785
6786         if (sample_type & PERF_SAMPLE_TIME)
6787                 data->time = perf_event_clock(event);
6788
6789         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6790                 data->id = primary_event_id(event);
6791
6792         if (sample_type & PERF_SAMPLE_STREAM_ID)
6793                 data->stream_id = event->id;
6794
6795         if (sample_type & PERF_SAMPLE_CPU) {
6796                 data->cpu_entry.cpu      = raw_smp_processor_id();
6797                 data->cpu_entry.reserved = 0;
6798         }
6799 }
6800
6801 void perf_event_header__init_id(struct perf_event_header *header,
6802                                 struct perf_sample_data *data,
6803                                 struct perf_event *event)
6804 {
6805         if (event->attr.sample_id_all)
6806                 __perf_event_header__init_id(header, data, event);
6807 }
6808
6809 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6810                                            struct perf_sample_data *data)
6811 {
6812         u64 sample_type = data->type;
6813
6814         if (sample_type & PERF_SAMPLE_TID)
6815                 perf_output_put(handle, data->tid_entry);
6816
6817         if (sample_type & PERF_SAMPLE_TIME)
6818                 perf_output_put(handle, data->time);
6819
6820         if (sample_type & PERF_SAMPLE_ID)
6821                 perf_output_put(handle, data->id);
6822
6823         if (sample_type & PERF_SAMPLE_STREAM_ID)
6824                 perf_output_put(handle, data->stream_id);
6825
6826         if (sample_type & PERF_SAMPLE_CPU)
6827                 perf_output_put(handle, data->cpu_entry);
6828
6829         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6830                 perf_output_put(handle, data->id);
6831 }
6832
6833 void perf_event__output_id_sample(struct perf_event *event,
6834                                   struct perf_output_handle *handle,
6835                                   struct perf_sample_data *sample)
6836 {
6837         if (event->attr.sample_id_all)
6838                 __perf_event__output_id_sample(handle, sample);
6839 }
6840
6841 static void perf_output_read_one(struct perf_output_handle *handle,
6842                                  struct perf_event *event,
6843                                  u64 enabled, u64 running)
6844 {
6845         u64 read_format = event->attr.read_format;
6846         u64 values[4];
6847         int n = 0;
6848
6849         values[n++] = perf_event_count(event);
6850         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6851                 values[n++] = enabled +
6852                         atomic64_read(&event->child_total_time_enabled);
6853         }
6854         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6855                 values[n++] = running +
6856                         atomic64_read(&event->child_total_time_running);
6857         }
6858         if (read_format & PERF_FORMAT_ID)
6859                 values[n++] = primary_event_id(event);
6860
6861         __output_copy(handle, values, n * sizeof(u64));
6862 }
6863
6864 static void perf_output_read_group(struct perf_output_handle *handle,
6865                             struct perf_event *event,
6866                             u64 enabled, u64 running)
6867 {
6868         struct perf_event *leader = event->group_leader, *sub;
6869         u64 read_format = event->attr.read_format;
6870         u64 values[5];
6871         int n = 0;
6872
6873         values[n++] = 1 + leader->nr_siblings;
6874
6875         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6876                 values[n++] = enabled;
6877
6878         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6879                 values[n++] = running;
6880
6881         if ((leader != event) &&
6882             (leader->state == PERF_EVENT_STATE_ACTIVE))
6883                 leader->pmu->read(leader);
6884
6885         values[n++] = perf_event_count(leader);
6886         if (read_format & PERF_FORMAT_ID)
6887                 values[n++] = primary_event_id(leader);
6888
6889         __output_copy(handle, values, n * sizeof(u64));
6890
6891         for_each_sibling_event(sub, leader) {
6892                 n = 0;
6893
6894                 if ((sub != event) &&
6895                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6896                         sub->pmu->read(sub);
6897
6898                 values[n++] = perf_event_count(sub);
6899                 if (read_format & PERF_FORMAT_ID)
6900                         values[n++] = primary_event_id(sub);
6901
6902                 __output_copy(handle, values, n * sizeof(u64));
6903         }
6904 }
6905
6906 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6907                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6908
6909 /*
6910  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6911  *
6912  * The problem is that its both hard and excessively expensive to iterate the
6913  * child list, not to mention that its impossible to IPI the children running
6914  * on another CPU, from interrupt/NMI context.
6915  */
6916 static void perf_output_read(struct perf_output_handle *handle,
6917                              struct perf_event *event)
6918 {
6919         u64 enabled = 0, running = 0, now;
6920         u64 read_format = event->attr.read_format;
6921
6922         /*
6923          * compute total_time_enabled, total_time_running
6924          * based on snapshot values taken when the event
6925          * was last scheduled in.
6926          *
6927          * we cannot simply called update_context_time()
6928          * because of locking issue as we are called in
6929          * NMI context
6930          */
6931         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6932                 calc_timer_values(event, &now, &enabled, &running);
6933
6934         if (event->attr.read_format & PERF_FORMAT_GROUP)
6935                 perf_output_read_group(handle, event, enabled, running);
6936         else
6937                 perf_output_read_one(handle, event, enabled, running);
6938 }
6939
6940 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6941 {
6942         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6943 }
6944
6945 void perf_output_sample(struct perf_output_handle *handle,
6946                         struct perf_event_header *header,
6947                         struct perf_sample_data *data,
6948                         struct perf_event *event)
6949 {
6950         u64 sample_type = data->type;
6951
6952         perf_output_put(handle, *header);
6953
6954         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6955                 perf_output_put(handle, data->id);
6956
6957         if (sample_type & PERF_SAMPLE_IP)
6958                 perf_output_put(handle, data->ip);
6959
6960         if (sample_type & PERF_SAMPLE_TID)
6961                 perf_output_put(handle, data->tid_entry);
6962
6963         if (sample_type & PERF_SAMPLE_TIME)
6964                 perf_output_put(handle, data->time);
6965
6966         if (sample_type & PERF_SAMPLE_ADDR)
6967                 perf_output_put(handle, data->addr);
6968
6969         if (sample_type & PERF_SAMPLE_ID)
6970                 perf_output_put(handle, data->id);
6971
6972         if (sample_type & PERF_SAMPLE_STREAM_ID)
6973                 perf_output_put(handle, data->stream_id);
6974
6975         if (sample_type & PERF_SAMPLE_CPU)
6976                 perf_output_put(handle, data->cpu_entry);
6977
6978         if (sample_type & PERF_SAMPLE_PERIOD)
6979                 perf_output_put(handle, data->period);
6980
6981         if (sample_type & PERF_SAMPLE_READ)
6982                 perf_output_read(handle, event);
6983
6984         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6985                 int size = 1;
6986
6987                 size += data->callchain->nr;
6988                 size *= sizeof(u64);
6989                 __output_copy(handle, data->callchain, size);
6990         }
6991
6992         if (sample_type & PERF_SAMPLE_RAW) {
6993                 struct perf_raw_record *raw = data->raw;
6994
6995                 if (raw) {
6996                         struct perf_raw_frag *frag = &raw->frag;
6997
6998                         perf_output_put(handle, raw->size);
6999                         do {
7000                                 if (frag->copy) {
7001                                         __output_custom(handle, frag->copy,
7002                                                         frag->data, frag->size);
7003                                 } else {
7004                                         __output_copy(handle, frag->data,
7005                                                       frag->size);
7006                                 }
7007                                 if (perf_raw_frag_last(frag))
7008                                         break;
7009                                 frag = frag->next;
7010                         } while (1);
7011                         if (frag->pad)
7012                                 __output_skip(handle, NULL, frag->pad);
7013                 } else {
7014                         struct {
7015                                 u32     size;
7016                                 u32     data;
7017                         } raw = {
7018                                 .size = sizeof(u32),
7019                                 .data = 0,
7020                         };
7021                         perf_output_put(handle, raw);
7022                 }
7023         }
7024
7025         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7026                 if (data->br_stack) {
7027                         size_t size;
7028
7029                         size = data->br_stack->nr
7030                              * sizeof(struct perf_branch_entry);
7031
7032                         perf_output_put(handle, data->br_stack->nr);
7033                         if (perf_sample_save_hw_index(event))
7034                                 perf_output_put(handle, data->br_stack->hw_idx);
7035                         perf_output_copy(handle, data->br_stack->entries, size);
7036                 } else {
7037                         /*
7038                          * we always store at least the value of nr
7039                          */
7040                         u64 nr = 0;
7041                         perf_output_put(handle, nr);
7042                 }
7043         }
7044
7045         if (sample_type & PERF_SAMPLE_REGS_USER) {
7046                 u64 abi = data->regs_user.abi;
7047
7048                 /*
7049                  * If there are no regs to dump, notice it through
7050                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7051                  */
7052                 perf_output_put(handle, abi);
7053
7054                 if (abi) {
7055                         u64 mask = event->attr.sample_regs_user;
7056                         perf_output_sample_regs(handle,
7057                                                 data->regs_user.regs,
7058                                                 mask);
7059                 }
7060         }
7061
7062         if (sample_type & PERF_SAMPLE_STACK_USER) {
7063                 perf_output_sample_ustack(handle,
7064                                           data->stack_user_size,
7065                                           data->regs_user.regs);
7066         }
7067
7068         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7069                 perf_output_put(handle, data->weight.full);
7070
7071         if (sample_type & PERF_SAMPLE_DATA_SRC)
7072                 perf_output_put(handle, data->data_src.val);
7073
7074         if (sample_type & PERF_SAMPLE_TRANSACTION)
7075                 perf_output_put(handle, data->txn);
7076
7077         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7078                 u64 abi = data->regs_intr.abi;
7079                 /*
7080                  * If there are no regs to dump, notice it through
7081                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7082                  */
7083                 perf_output_put(handle, abi);
7084
7085                 if (abi) {
7086                         u64 mask = event->attr.sample_regs_intr;
7087
7088                         perf_output_sample_regs(handle,
7089                                                 data->regs_intr.regs,
7090                                                 mask);
7091                 }
7092         }
7093
7094         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7095                 perf_output_put(handle, data->phys_addr);
7096
7097         if (sample_type & PERF_SAMPLE_CGROUP)
7098                 perf_output_put(handle, data->cgroup);
7099
7100         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7101                 perf_output_put(handle, data->data_page_size);
7102
7103         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7104                 perf_output_put(handle, data->code_page_size);
7105
7106         if (sample_type & PERF_SAMPLE_AUX) {
7107                 perf_output_put(handle, data->aux_size);
7108
7109                 if (data->aux_size)
7110                         perf_aux_sample_output(event, handle, data);
7111         }
7112
7113         if (!event->attr.watermark) {
7114                 int wakeup_events = event->attr.wakeup_events;
7115
7116                 if (wakeup_events) {
7117                         struct perf_buffer *rb = handle->rb;
7118                         int events = local_inc_return(&rb->events);
7119
7120                         if (events >= wakeup_events) {
7121                                 local_sub(wakeup_events, &rb->events);
7122                                 local_inc(&rb->wakeup);
7123                         }
7124                 }
7125         }
7126 }
7127
7128 static u64 perf_virt_to_phys(u64 virt)
7129 {
7130         u64 phys_addr = 0;
7131         struct page *p = NULL;
7132
7133         if (!virt)
7134                 return 0;
7135
7136         if (virt >= TASK_SIZE) {
7137                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7138                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7139                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7140                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7141         } else {
7142                 /*
7143                  * Walking the pages tables for user address.
7144                  * Interrupts are disabled, so it prevents any tear down
7145                  * of the page tables.
7146                  * Try IRQ-safe get_user_page_fast_only first.
7147                  * If failed, leave phys_addr as 0.
7148                  */
7149                 if (current->mm != NULL) {
7150                         pagefault_disable();
7151                         if (get_user_page_fast_only(virt, 0, &p))
7152                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7153                         pagefault_enable();
7154                 }
7155
7156                 if (p)
7157                         put_page(p);
7158         }
7159
7160         return phys_addr;
7161 }
7162
7163 /*
7164  * Return the pagetable size of a given virtual address.
7165  */
7166 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7167 {
7168         u64 size = 0;
7169
7170 #ifdef CONFIG_HAVE_FAST_GUP
7171         pgd_t *pgdp, pgd;
7172         p4d_t *p4dp, p4d;
7173         pud_t *pudp, pud;
7174         pmd_t *pmdp, pmd;
7175         pte_t *ptep, pte;
7176
7177         pgdp = pgd_offset(mm, addr);
7178         pgd = READ_ONCE(*pgdp);
7179         if (pgd_none(pgd))
7180                 return 0;
7181
7182         if (pgd_leaf(pgd))
7183                 return pgd_leaf_size(pgd);
7184
7185         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7186         p4d = READ_ONCE(*p4dp);
7187         if (!p4d_present(p4d))
7188                 return 0;
7189
7190         if (p4d_leaf(p4d))
7191                 return p4d_leaf_size(p4d);
7192
7193         pudp = pud_offset_lockless(p4dp, p4d, addr);
7194         pud = READ_ONCE(*pudp);
7195         if (!pud_present(pud))
7196                 return 0;
7197
7198         if (pud_leaf(pud))
7199                 return pud_leaf_size(pud);
7200
7201         pmdp = pmd_offset_lockless(pudp, pud, addr);
7202         pmd = READ_ONCE(*pmdp);
7203         if (!pmd_present(pmd))
7204                 return 0;
7205
7206         if (pmd_leaf(pmd))
7207                 return pmd_leaf_size(pmd);
7208
7209         ptep = pte_offset_map(&pmd, addr);
7210         pte = ptep_get_lockless(ptep);
7211         if (pte_present(pte))
7212                 size = pte_leaf_size(pte);
7213         pte_unmap(ptep);
7214 #endif /* CONFIG_HAVE_FAST_GUP */
7215
7216         return size;
7217 }
7218
7219 static u64 perf_get_page_size(unsigned long addr)
7220 {
7221         struct mm_struct *mm;
7222         unsigned long flags;
7223         u64 size;
7224
7225         if (!addr)
7226                 return 0;
7227
7228         /*
7229          * Software page-table walkers must disable IRQs,
7230          * which prevents any tear down of the page tables.
7231          */
7232         local_irq_save(flags);
7233
7234         mm = current->mm;
7235         if (!mm) {
7236                 /*
7237                  * For kernel threads and the like, use init_mm so that
7238                  * we can find kernel memory.
7239                  */
7240                 mm = &init_mm;
7241         }
7242
7243         size = perf_get_pgtable_size(mm, addr);
7244
7245         local_irq_restore(flags);
7246
7247         return size;
7248 }
7249
7250 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7251
7252 struct perf_callchain_entry *
7253 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7254 {
7255         bool kernel = !event->attr.exclude_callchain_kernel;
7256         bool user   = !event->attr.exclude_callchain_user;
7257         /* Disallow cross-task user callchains. */
7258         bool crosstask = event->ctx->task && event->ctx->task != current;
7259         const u32 max_stack = event->attr.sample_max_stack;
7260         struct perf_callchain_entry *callchain;
7261
7262         if (!kernel && !user)
7263                 return &__empty_callchain;
7264
7265         callchain = get_perf_callchain(regs, 0, kernel, user,
7266                                        max_stack, crosstask, true);
7267         return callchain ?: &__empty_callchain;
7268 }
7269
7270 void perf_prepare_sample(struct perf_event_header *header,
7271                          struct perf_sample_data *data,
7272                          struct perf_event *event,
7273                          struct pt_regs *regs)
7274 {
7275         u64 sample_type = event->attr.sample_type;
7276
7277         header->type = PERF_RECORD_SAMPLE;
7278         header->size = sizeof(*header) + event->header_size;
7279
7280         header->misc = 0;
7281         header->misc |= perf_misc_flags(regs);
7282
7283         __perf_event_header__init_id(header, data, event);
7284
7285         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7286                 data->ip = perf_instruction_pointer(regs);
7287
7288         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7289                 int size = 1;
7290
7291                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7292                         data->callchain = perf_callchain(event, regs);
7293
7294                 size += data->callchain->nr;
7295
7296                 header->size += size * sizeof(u64);
7297         }
7298
7299         if (sample_type & PERF_SAMPLE_RAW) {
7300                 struct perf_raw_record *raw = data->raw;
7301                 int size;
7302
7303                 if (raw) {
7304                         struct perf_raw_frag *frag = &raw->frag;
7305                         u32 sum = 0;
7306
7307                         do {
7308                                 sum += frag->size;
7309                                 if (perf_raw_frag_last(frag))
7310                                         break;
7311                                 frag = frag->next;
7312                         } while (1);
7313
7314                         size = round_up(sum + sizeof(u32), sizeof(u64));
7315                         raw->size = size - sizeof(u32);
7316                         frag->pad = raw->size - sum;
7317                 } else {
7318                         size = sizeof(u64);
7319                 }
7320
7321                 header->size += size;
7322         }
7323
7324         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7325                 int size = sizeof(u64); /* nr */
7326                 if (data->br_stack) {
7327                         if (perf_sample_save_hw_index(event))
7328                                 size += sizeof(u64);
7329
7330                         size += data->br_stack->nr
7331                               * sizeof(struct perf_branch_entry);
7332                 }
7333                 header->size += size;
7334         }
7335
7336         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7337                 perf_sample_regs_user(&data->regs_user, regs);
7338
7339         if (sample_type & PERF_SAMPLE_REGS_USER) {
7340                 /* regs dump ABI info */
7341                 int size = sizeof(u64);
7342
7343                 if (data->regs_user.regs) {
7344                         u64 mask = event->attr.sample_regs_user;
7345                         size += hweight64(mask) * sizeof(u64);
7346                 }
7347
7348                 header->size += size;
7349         }
7350
7351         if (sample_type & PERF_SAMPLE_STACK_USER) {
7352                 /*
7353                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7354                  * processed as the last one or have additional check added
7355                  * in case new sample type is added, because we could eat
7356                  * up the rest of the sample size.
7357                  */
7358                 u16 stack_size = event->attr.sample_stack_user;
7359                 u16 size = sizeof(u64);
7360
7361                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7362                                                      data->regs_user.regs);
7363
7364                 /*
7365                  * If there is something to dump, add space for the dump
7366                  * itself and for the field that tells the dynamic size,
7367                  * which is how many have been actually dumped.
7368                  */
7369                 if (stack_size)
7370                         size += sizeof(u64) + stack_size;
7371
7372                 data->stack_user_size = stack_size;
7373                 header->size += size;
7374         }
7375
7376         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7377                 /* regs dump ABI info */
7378                 int size = sizeof(u64);
7379
7380                 perf_sample_regs_intr(&data->regs_intr, regs);
7381
7382                 if (data->regs_intr.regs) {
7383                         u64 mask = event->attr.sample_regs_intr;
7384
7385                         size += hweight64(mask) * sizeof(u64);
7386                 }
7387
7388                 header->size += size;
7389         }
7390
7391         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7392                 data->phys_addr = perf_virt_to_phys(data->addr);
7393
7394 #ifdef CONFIG_CGROUP_PERF
7395         if (sample_type & PERF_SAMPLE_CGROUP) {
7396                 struct cgroup *cgrp;
7397
7398                 /* protected by RCU */
7399                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7400                 data->cgroup = cgroup_id(cgrp);
7401         }
7402 #endif
7403
7404         /*
7405          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7406          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7407          * but the value will not dump to the userspace.
7408          */
7409         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7410                 data->data_page_size = perf_get_page_size(data->addr);
7411
7412         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7413                 data->code_page_size = perf_get_page_size(data->ip);
7414
7415         if (sample_type & PERF_SAMPLE_AUX) {
7416                 u64 size;
7417
7418                 header->size += sizeof(u64); /* size */
7419
7420                 /*
7421                  * Given the 16bit nature of header::size, an AUX sample can
7422                  * easily overflow it, what with all the preceding sample bits.
7423                  * Make sure this doesn't happen by using up to U16_MAX bytes
7424                  * per sample in total (rounded down to 8 byte boundary).
7425                  */
7426                 size = min_t(size_t, U16_MAX - header->size,
7427                              event->attr.aux_sample_size);
7428                 size = rounddown(size, 8);
7429                 size = perf_prepare_sample_aux(event, data, size);
7430
7431                 WARN_ON_ONCE(size + header->size > U16_MAX);
7432                 header->size += size;
7433         }
7434         /*
7435          * If you're adding more sample types here, you likely need to do
7436          * something about the overflowing header::size, like repurpose the
7437          * lowest 3 bits of size, which should be always zero at the moment.
7438          * This raises a more important question, do we really need 512k sized
7439          * samples and why, so good argumentation is in order for whatever you
7440          * do here next.
7441          */
7442         WARN_ON_ONCE(header->size & 7);
7443 }
7444
7445 static __always_inline int
7446 __perf_event_output(struct perf_event *event,
7447                     struct perf_sample_data *data,
7448                     struct pt_regs *regs,
7449                     int (*output_begin)(struct perf_output_handle *,
7450                                         struct perf_sample_data *,
7451                                         struct perf_event *,
7452                                         unsigned int))
7453 {
7454         struct perf_output_handle handle;
7455         struct perf_event_header header;
7456         int err;
7457
7458         /* protect the callchain buffers */
7459         rcu_read_lock();
7460
7461         perf_prepare_sample(&header, data, event, regs);
7462
7463         err = output_begin(&handle, data, event, header.size);
7464         if (err)
7465                 goto exit;
7466
7467         perf_output_sample(&handle, &header, data, event);
7468
7469         perf_output_end(&handle);
7470
7471 exit:
7472         rcu_read_unlock();
7473         return err;
7474 }
7475
7476 void
7477 perf_event_output_forward(struct perf_event *event,
7478                          struct perf_sample_data *data,
7479                          struct pt_regs *regs)
7480 {
7481         __perf_event_output(event, data, regs, perf_output_begin_forward);
7482 }
7483
7484 void
7485 perf_event_output_backward(struct perf_event *event,
7486                            struct perf_sample_data *data,
7487                            struct pt_regs *regs)
7488 {
7489         __perf_event_output(event, data, regs, perf_output_begin_backward);
7490 }
7491
7492 int
7493 perf_event_output(struct perf_event *event,
7494                   struct perf_sample_data *data,
7495                   struct pt_regs *regs)
7496 {
7497         return __perf_event_output(event, data, regs, perf_output_begin);
7498 }
7499
7500 /*
7501  * read event_id
7502  */
7503
7504 struct perf_read_event {
7505         struct perf_event_header        header;
7506
7507         u32                             pid;
7508         u32                             tid;
7509 };
7510
7511 static void
7512 perf_event_read_event(struct perf_event *event,
7513                         struct task_struct *task)
7514 {
7515         struct perf_output_handle handle;
7516         struct perf_sample_data sample;
7517         struct perf_read_event read_event = {
7518                 .header = {
7519                         .type = PERF_RECORD_READ,
7520                         .misc = 0,
7521                         .size = sizeof(read_event) + event->read_size,
7522                 },
7523                 .pid = perf_event_pid(event, task),
7524                 .tid = perf_event_tid(event, task),
7525         };
7526         int ret;
7527
7528         perf_event_header__init_id(&read_event.header, &sample, event);
7529         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7530         if (ret)
7531                 return;
7532
7533         perf_output_put(&handle, read_event);
7534         perf_output_read(&handle, event);
7535         perf_event__output_id_sample(event, &handle, &sample);
7536
7537         perf_output_end(&handle);
7538 }
7539
7540 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7541
7542 static void
7543 perf_iterate_ctx(struct perf_event_context *ctx,
7544                    perf_iterate_f output,
7545                    void *data, bool all)
7546 {
7547         struct perf_event *event;
7548
7549         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7550                 if (!all) {
7551                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7552                                 continue;
7553                         if (!event_filter_match(event))
7554                                 continue;
7555                 }
7556
7557                 output(event, data);
7558         }
7559 }
7560
7561 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7562 {
7563         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7564         struct perf_event *event;
7565
7566         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7567                 /*
7568                  * Skip events that are not fully formed yet; ensure that
7569                  * if we observe event->ctx, both event and ctx will be
7570                  * complete enough. See perf_install_in_context().
7571                  */
7572                 if (!smp_load_acquire(&event->ctx))
7573                         continue;
7574
7575                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7576                         continue;
7577                 if (!event_filter_match(event))
7578                         continue;
7579                 output(event, data);
7580         }
7581 }
7582
7583 /*
7584  * Iterate all events that need to receive side-band events.
7585  *
7586  * For new callers; ensure that account_pmu_sb_event() includes
7587  * your event, otherwise it might not get delivered.
7588  */
7589 static void
7590 perf_iterate_sb(perf_iterate_f output, void *data,
7591                struct perf_event_context *task_ctx)
7592 {
7593         struct perf_event_context *ctx;
7594         int ctxn;
7595
7596         rcu_read_lock();
7597         preempt_disable();
7598
7599         /*
7600          * If we have task_ctx != NULL we only notify the task context itself.
7601          * The task_ctx is set only for EXIT events before releasing task
7602          * context.
7603          */
7604         if (task_ctx) {
7605                 perf_iterate_ctx(task_ctx, output, data, false);
7606                 goto done;
7607         }
7608
7609         perf_iterate_sb_cpu(output, data);
7610
7611         for_each_task_context_nr(ctxn) {
7612                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7613                 if (ctx)
7614                         perf_iterate_ctx(ctx, output, data, false);
7615         }
7616 done:
7617         preempt_enable();
7618         rcu_read_unlock();
7619 }
7620
7621 /*
7622  * Clear all file-based filters at exec, they'll have to be
7623  * re-instated when/if these objects are mmapped again.
7624  */
7625 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7626 {
7627         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7628         struct perf_addr_filter *filter;
7629         unsigned int restart = 0, count = 0;
7630         unsigned long flags;
7631
7632         if (!has_addr_filter(event))
7633                 return;
7634
7635         raw_spin_lock_irqsave(&ifh->lock, flags);
7636         list_for_each_entry(filter, &ifh->list, entry) {
7637                 if (filter->path.dentry) {
7638                         event->addr_filter_ranges[count].start = 0;
7639                         event->addr_filter_ranges[count].size = 0;
7640                         restart++;
7641                 }
7642
7643                 count++;
7644         }
7645
7646         if (restart)
7647                 event->addr_filters_gen++;
7648         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7649
7650         if (restart)
7651                 perf_event_stop(event, 1);
7652 }
7653
7654 void perf_event_exec(void)
7655 {
7656         struct perf_event_context *ctx;
7657         int ctxn;
7658
7659         for_each_task_context_nr(ctxn) {
7660                 perf_event_enable_on_exec(ctxn);
7661                 perf_event_remove_on_exec(ctxn);
7662
7663                 rcu_read_lock();
7664                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7665                 if (ctx) {
7666                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7667                                          NULL, true);
7668                 }
7669                 rcu_read_unlock();
7670         }
7671 }
7672
7673 struct remote_output {
7674         struct perf_buffer      *rb;
7675         int                     err;
7676 };
7677
7678 static void __perf_event_output_stop(struct perf_event *event, void *data)
7679 {
7680         struct perf_event *parent = event->parent;
7681         struct remote_output *ro = data;
7682         struct perf_buffer *rb = ro->rb;
7683         struct stop_event_data sd = {
7684                 .event  = event,
7685         };
7686
7687         if (!has_aux(event))
7688                 return;
7689
7690         if (!parent)
7691                 parent = event;
7692
7693         /*
7694          * In case of inheritance, it will be the parent that links to the
7695          * ring-buffer, but it will be the child that's actually using it.
7696          *
7697          * We are using event::rb to determine if the event should be stopped,
7698          * however this may race with ring_buffer_attach() (through set_output),
7699          * which will make us skip the event that actually needs to be stopped.
7700          * So ring_buffer_attach() has to stop an aux event before re-assigning
7701          * its rb pointer.
7702          */
7703         if (rcu_dereference(parent->rb) == rb)
7704                 ro->err = __perf_event_stop(&sd);
7705 }
7706
7707 static int __perf_pmu_output_stop(void *info)
7708 {
7709         struct perf_event *event = info;
7710         struct pmu *pmu = event->ctx->pmu;
7711         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7712         struct remote_output ro = {
7713                 .rb     = event->rb,
7714         };
7715
7716         rcu_read_lock();
7717         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7718         if (cpuctx->task_ctx)
7719                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7720                                    &ro, false);
7721         rcu_read_unlock();
7722
7723         return ro.err;
7724 }
7725
7726 static void perf_pmu_output_stop(struct perf_event *event)
7727 {
7728         struct perf_event *iter;
7729         int err, cpu;
7730
7731 restart:
7732         rcu_read_lock();
7733         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7734                 /*
7735                  * For per-CPU events, we need to make sure that neither they
7736                  * nor their children are running; for cpu==-1 events it's
7737                  * sufficient to stop the event itself if it's active, since
7738                  * it can't have children.
7739                  */
7740                 cpu = iter->cpu;
7741                 if (cpu == -1)
7742                         cpu = READ_ONCE(iter->oncpu);
7743
7744                 if (cpu == -1)
7745                         continue;
7746
7747                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7748                 if (err == -EAGAIN) {
7749                         rcu_read_unlock();
7750                         goto restart;
7751                 }
7752         }
7753         rcu_read_unlock();
7754 }
7755
7756 /*
7757  * task tracking -- fork/exit
7758  *
7759  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7760  */
7761
7762 struct perf_task_event {
7763         struct task_struct              *task;
7764         struct perf_event_context       *task_ctx;
7765
7766         struct {
7767                 struct perf_event_header        header;
7768
7769                 u32                             pid;
7770                 u32                             ppid;
7771                 u32                             tid;
7772                 u32                             ptid;
7773                 u64                             time;
7774         } event_id;
7775 };
7776
7777 static int perf_event_task_match(struct perf_event *event)
7778 {
7779         return event->attr.comm  || event->attr.mmap ||
7780                event->attr.mmap2 || event->attr.mmap_data ||
7781                event->attr.task;
7782 }
7783
7784 static void perf_event_task_output(struct perf_event *event,
7785                                    void *data)
7786 {
7787         struct perf_task_event *task_event = data;
7788         struct perf_output_handle handle;
7789         struct perf_sample_data sample;
7790         struct task_struct *task = task_event->task;
7791         int ret, size = task_event->event_id.header.size;
7792
7793         if (!perf_event_task_match(event))
7794                 return;
7795
7796         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7797
7798         ret = perf_output_begin(&handle, &sample, event,
7799                                 task_event->event_id.header.size);
7800         if (ret)
7801                 goto out;
7802
7803         task_event->event_id.pid = perf_event_pid(event, task);
7804         task_event->event_id.tid = perf_event_tid(event, task);
7805
7806         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7807                 task_event->event_id.ppid = perf_event_pid(event,
7808                                                         task->real_parent);
7809                 task_event->event_id.ptid = perf_event_pid(event,
7810                                                         task->real_parent);
7811         } else {  /* PERF_RECORD_FORK */
7812                 task_event->event_id.ppid = perf_event_pid(event, current);
7813                 task_event->event_id.ptid = perf_event_tid(event, current);
7814         }
7815
7816         task_event->event_id.time = perf_event_clock(event);
7817
7818         perf_output_put(&handle, task_event->event_id);
7819
7820         perf_event__output_id_sample(event, &handle, &sample);
7821
7822         perf_output_end(&handle);
7823 out:
7824         task_event->event_id.header.size = size;
7825 }
7826
7827 static void perf_event_task(struct task_struct *task,
7828                               struct perf_event_context *task_ctx,
7829                               int new)
7830 {
7831         struct perf_task_event task_event;
7832
7833         if (!atomic_read(&nr_comm_events) &&
7834             !atomic_read(&nr_mmap_events) &&
7835             !atomic_read(&nr_task_events))
7836                 return;
7837
7838         task_event = (struct perf_task_event){
7839                 .task     = task,
7840                 .task_ctx = task_ctx,
7841                 .event_id    = {
7842                         .header = {
7843                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7844                                 .misc = 0,
7845                                 .size = sizeof(task_event.event_id),
7846                         },
7847                         /* .pid  */
7848                         /* .ppid */
7849                         /* .tid  */
7850                         /* .ptid */
7851                         /* .time */
7852                 },
7853         };
7854
7855         perf_iterate_sb(perf_event_task_output,
7856                        &task_event,
7857                        task_ctx);
7858 }
7859
7860 void perf_event_fork(struct task_struct *task)
7861 {
7862         perf_event_task(task, NULL, 1);
7863         perf_event_namespaces(task);
7864 }
7865
7866 /*
7867  * comm tracking
7868  */
7869
7870 struct perf_comm_event {
7871         struct task_struct      *task;
7872         char                    *comm;
7873         int                     comm_size;
7874
7875         struct {
7876                 struct perf_event_header        header;
7877
7878                 u32                             pid;
7879                 u32                             tid;
7880         } event_id;
7881 };
7882
7883 static int perf_event_comm_match(struct perf_event *event)
7884 {
7885         return event->attr.comm;
7886 }
7887
7888 static void perf_event_comm_output(struct perf_event *event,
7889                                    void *data)
7890 {
7891         struct perf_comm_event *comm_event = data;
7892         struct perf_output_handle handle;
7893         struct perf_sample_data sample;
7894         int size = comm_event->event_id.header.size;
7895         int ret;
7896
7897         if (!perf_event_comm_match(event))
7898                 return;
7899
7900         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7901         ret = perf_output_begin(&handle, &sample, event,
7902                                 comm_event->event_id.header.size);
7903
7904         if (ret)
7905                 goto out;
7906
7907         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7908         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7909
7910         perf_output_put(&handle, comm_event->event_id);
7911         __output_copy(&handle, comm_event->comm,
7912                                    comm_event->comm_size);
7913
7914         perf_event__output_id_sample(event, &handle, &sample);
7915
7916         perf_output_end(&handle);
7917 out:
7918         comm_event->event_id.header.size = size;
7919 }
7920
7921 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7922 {
7923         char comm[TASK_COMM_LEN];
7924         unsigned int size;
7925
7926         memset(comm, 0, sizeof(comm));
7927         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7928         size = ALIGN(strlen(comm)+1, sizeof(u64));
7929
7930         comm_event->comm = comm;
7931         comm_event->comm_size = size;
7932
7933         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7934
7935         perf_iterate_sb(perf_event_comm_output,
7936                        comm_event,
7937                        NULL);
7938 }
7939
7940 void perf_event_comm(struct task_struct *task, bool exec)
7941 {
7942         struct perf_comm_event comm_event;
7943
7944         if (!atomic_read(&nr_comm_events))
7945                 return;
7946
7947         comm_event = (struct perf_comm_event){
7948                 .task   = task,
7949                 /* .comm      */
7950                 /* .comm_size */
7951                 .event_id  = {
7952                         .header = {
7953                                 .type = PERF_RECORD_COMM,
7954                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7955                                 /* .size */
7956                         },
7957                         /* .pid */
7958                         /* .tid */
7959                 },
7960         };
7961
7962         perf_event_comm_event(&comm_event);
7963 }
7964
7965 /*
7966  * namespaces tracking
7967  */
7968
7969 struct perf_namespaces_event {
7970         struct task_struct              *task;
7971
7972         struct {
7973                 struct perf_event_header        header;
7974
7975                 u32                             pid;
7976                 u32                             tid;
7977                 u64                             nr_namespaces;
7978                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7979         } event_id;
7980 };
7981
7982 static int perf_event_namespaces_match(struct perf_event *event)
7983 {
7984         return event->attr.namespaces;
7985 }
7986
7987 static void perf_event_namespaces_output(struct perf_event *event,
7988                                          void *data)
7989 {
7990         struct perf_namespaces_event *namespaces_event = data;
7991         struct perf_output_handle handle;
7992         struct perf_sample_data sample;
7993         u16 header_size = namespaces_event->event_id.header.size;
7994         int ret;
7995
7996         if (!perf_event_namespaces_match(event))
7997                 return;
7998
7999         perf_event_header__init_id(&namespaces_event->event_id.header,
8000                                    &sample, event);
8001         ret = perf_output_begin(&handle, &sample, event,
8002                                 namespaces_event->event_id.header.size);
8003         if (ret)
8004                 goto out;
8005
8006         namespaces_event->event_id.pid = perf_event_pid(event,
8007                                                         namespaces_event->task);
8008         namespaces_event->event_id.tid = perf_event_tid(event,
8009                                                         namespaces_event->task);
8010
8011         perf_output_put(&handle, namespaces_event->event_id);
8012
8013         perf_event__output_id_sample(event, &handle, &sample);
8014
8015         perf_output_end(&handle);
8016 out:
8017         namespaces_event->event_id.header.size = header_size;
8018 }
8019
8020 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8021                                    struct task_struct *task,
8022                                    const struct proc_ns_operations *ns_ops)
8023 {
8024         struct path ns_path;
8025         struct inode *ns_inode;
8026         int error;
8027
8028         error = ns_get_path(&ns_path, task, ns_ops);
8029         if (!error) {
8030                 ns_inode = ns_path.dentry->d_inode;
8031                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8032                 ns_link_info->ino = ns_inode->i_ino;
8033                 path_put(&ns_path);
8034         }
8035 }
8036
8037 void perf_event_namespaces(struct task_struct *task)
8038 {
8039         struct perf_namespaces_event namespaces_event;
8040         struct perf_ns_link_info *ns_link_info;
8041
8042         if (!atomic_read(&nr_namespaces_events))
8043                 return;
8044
8045         namespaces_event = (struct perf_namespaces_event){
8046                 .task   = task,
8047                 .event_id  = {
8048                         .header = {
8049                                 .type = PERF_RECORD_NAMESPACES,
8050                                 .misc = 0,
8051                                 .size = sizeof(namespaces_event.event_id),
8052                         },
8053                         /* .pid */
8054                         /* .tid */
8055                         .nr_namespaces = NR_NAMESPACES,
8056                         /* .link_info[NR_NAMESPACES] */
8057                 },
8058         };
8059
8060         ns_link_info = namespaces_event.event_id.link_info;
8061
8062         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8063                                task, &mntns_operations);
8064
8065 #ifdef CONFIG_USER_NS
8066         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8067                                task, &userns_operations);
8068 #endif
8069 #ifdef CONFIG_NET_NS
8070         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8071                                task, &netns_operations);
8072 #endif
8073 #ifdef CONFIG_UTS_NS
8074         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8075                                task, &utsns_operations);
8076 #endif
8077 #ifdef CONFIG_IPC_NS
8078         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8079                                task, &ipcns_operations);
8080 #endif
8081 #ifdef CONFIG_PID_NS
8082         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8083                                task, &pidns_operations);
8084 #endif
8085 #ifdef CONFIG_CGROUPS
8086         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8087                                task, &cgroupns_operations);
8088 #endif
8089
8090         perf_iterate_sb(perf_event_namespaces_output,
8091                         &namespaces_event,
8092                         NULL);
8093 }
8094
8095 /*
8096  * cgroup tracking
8097  */
8098 #ifdef CONFIG_CGROUP_PERF
8099
8100 struct perf_cgroup_event {
8101         char                            *path;
8102         int                             path_size;
8103         struct {
8104                 struct perf_event_header        header;
8105                 u64                             id;
8106                 char                            path[];
8107         } event_id;
8108 };
8109
8110 static int perf_event_cgroup_match(struct perf_event *event)
8111 {
8112         return event->attr.cgroup;
8113 }
8114
8115 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8116 {
8117         struct perf_cgroup_event *cgroup_event = data;
8118         struct perf_output_handle handle;
8119         struct perf_sample_data sample;
8120         u16 header_size = cgroup_event->event_id.header.size;
8121         int ret;
8122
8123         if (!perf_event_cgroup_match(event))
8124                 return;
8125
8126         perf_event_header__init_id(&cgroup_event->event_id.header,
8127                                    &sample, event);
8128         ret = perf_output_begin(&handle, &sample, event,
8129                                 cgroup_event->event_id.header.size);
8130         if (ret)
8131                 goto out;
8132
8133         perf_output_put(&handle, cgroup_event->event_id);
8134         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8135
8136         perf_event__output_id_sample(event, &handle, &sample);
8137
8138         perf_output_end(&handle);
8139 out:
8140         cgroup_event->event_id.header.size = header_size;
8141 }
8142
8143 static void perf_event_cgroup(struct cgroup *cgrp)
8144 {
8145         struct perf_cgroup_event cgroup_event;
8146         char path_enomem[16] = "//enomem";
8147         char *pathname;
8148         size_t size;
8149
8150         if (!atomic_read(&nr_cgroup_events))
8151                 return;
8152
8153         cgroup_event = (struct perf_cgroup_event){
8154                 .event_id  = {
8155                         .header = {
8156                                 .type = PERF_RECORD_CGROUP,
8157                                 .misc = 0,
8158                                 .size = sizeof(cgroup_event.event_id),
8159                         },
8160                         .id = cgroup_id(cgrp),
8161                 },
8162         };
8163
8164         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8165         if (pathname == NULL) {
8166                 cgroup_event.path = path_enomem;
8167         } else {
8168                 /* just to be sure to have enough space for alignment */
8169                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8170                 cgroup_event.path = pathname;
8171         }
8172
8173         /*
8174          * Since our buffer works in 8 byte units we need to align our string
8175          * size to a multiple of 8. However, we must guarantee the tail end is
8176          * zero'd out to avoid leaking random bits to userspace.
8177          */
8178         size = strlen(cgroup_event.path) + 1;
8179         while (!IS_ALIGNED(size, sizeof(u64)))
8180                 cgroup_event.path[size++] = '\0';
8181
8182         cgroup_event.event_id.header.size += size;
8183         cgroup_event.path_size = size;
8184
8185         perf_iterate_sb(perf_event_cgroup_output,
8186                         &cgroup_event,
8187                         NULL);
8188
8189         kfree(pathname);
8190 }
8191
8192 #endif
8193
8194 /*
8195  * mmap tracking
8196  */
8197
8198 struct perf_mmap_event {
8199         struct vm_area_struct   *vma;
8200
8201         const char              *file_name;
8202         int                     file_size;
8203         int                     maj, min;
8204         u64                     ino;
8205         u64                     ino_generation;
8206         u32                     prot, flags;
8207         u8                      build_id[BUILD_ID_SIZE_MAX];
8208         u32                     build_id_size;
8209
8210         struct {
8211                 struct perf_event_header        header;
8212
8213                 u32                             pid;
8214                 u32                             tid;
8215                 u64                             start;
8216                 u64                             len;
8217                 u64                             pgoff;
8218         } event_id;
8219 };
8220
8221 static int perf_event_mmap_match(struct perf_event *event,
8222                                  void *data)
8223 {
8224         struct perf_mmap_event *mmap_event = data;
8225         struct vm_area_struct *vma = mmap_event->vma;
8226         int executable = vma->vm_flags & VM_EXEC;
8227
8228         return (!executable && event->attr.mmap_data) ||
8229                (executable && (event->attr.mmap || event->attr.mmap2));
8230 }
8231
8232 static void perf_event_mmap_output(struct perf_event *event,
8233                                    void *data)
8234 {
8235         struct perf_mmap_event *mmap_event = data;
8236         struct perf_output_handle handle;
8237         struct perf_sample_data sample;
8238         int size = mmap_event->event_id.header.size;
8239         u32 type = mmap_event->event_id.header.type;
8240         bool use_build_id;
8241         int ret;
8242
8243         if (!perf_event_mmap_match(event, data))
8244                 return;
8245
8246         if (event->attr.mmap2) {
8247                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8248                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8249                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8250                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8251                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8252                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8253                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8254         }
8255
8256         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8257         ret = perf_output_begin(&handle, &sample, event,
8258                                 mmap_event->event_id.header.size);
8259         if (ret)
8260                 goto out;
8261
8262         mmap_event->event_id.pid = perf_event_pid(event, current);
8263         mmap_event->event_id.tid = perf_event_tid(event, current);
8264
8265         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8266
8267         if (event->attr.mmap2 && use_build_id)
8268                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8269
8270         perf_output_put(&handle, mmap_event->event_id);
8271
8272         if (event->attr.mmap2) {
8273                 if (use_build_id) {
8274                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8275
8276                         __output_copy(&handle, size, 4);
8277                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8278                 } else {
8279                         perf_output_put(&handle, mmap_event->maj);
8280                         perf_output_put(&handle, mmap_event->min);
8281                         perf_output_put(&handle, mmap_event->ino);
8282                         perf_output_put(&handle, mmap_event->ino_generation);
8283                 }
8284                 perf_output_put(&handle, mmap_event->prot);
8285                 perf_output_put(&handle, mmap_event->flags);
8286         }
8287
8288         __output_copy(&handle, mmap_event->file_name,
8289                                    mmap_event->file_size);
8290
8291         perf_event__output_id_sample(event, &handle, &sample);
8292
8293         perf_output_end(&handle);
8294 out:
8295         mmap_event->event_id.header.size = size;
8296         mmap_event->event_id.header.type = type;
8297 }
8298
8299 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8300 {
8301         struct vm_area_struct *vma = mmap_event->vma;
8302         struct file *file = vma->vm_file;
8303         int maj = 0, min = 0;
8304         u64 ino = 0, gen = 0;
8305         u32 prot = 0, flags = 0;
8306         unsigned int size;
8307         char tmp[16];
8308         char *buf = NULL;
8309         char *name;
8310
8311         if (vma->vm_flags & VM_READ)
8312                 prot |= PROT_READ;
8313         if (vma->vm_flags & VM_WRITE)
8314                 prot |= PROT_WRITE;
8315         if (vma->vm_flags & VM_EXEC)
8316                 prot |= PROT_EXEC;
8317
8318         if (vma->vm_flags & VM_MAYSHARE)
8319                 flags = MAP_SHARED;
8320         else
8321                 flags = MAP_PRIVATE;
8322
8323         if (vma->vm_flags & VM_DENYWRITE)
8324                 flags |= MAP_DENYWRITE;
8325         if (vma->vm_flags & VM_LOCKED)
8326                 flags |= MAP_LOCKED;
8327         if (is_vm_hugetlb_page(vma))
8328                 flags |= MAP_HUGETLB;
8329
8330         if (file) {
8331                 struct inode *inode;
8332                 dev_t dev;
8333
8334                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8335                 if (!buf) {
8336                         name = "//enomem";
8337                         goto cpy_name;
8338                 }
8339                 /*
8340                  * d_path() works from the end of the rb backwards, so we
8341                  * need to add enough zero bytes after the string to handle
8342                  * the 64bit alignment we do later.
8343                  */
8344                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8345                 if (IS_ERR(name)) {
8346                         name = "//toolong";
8347                         goto cpy_name;
8348                 }
8349                 inode = file_inode(vma->vm_file);
8350                 dev = inode->i_sb->s_dev;
8351                 ino = inode->i_ino;
8352                 gen = inode->i_generation;
8353                 maj = MAJOR(dev);
8354                 min = MINOR(dev);
8355
8356                 goto got_name;
8357         } else {
8358                 if (vma->vm_ops && vma->vm_ops->name) {
8359                         name = (char *) vma->vm_ops->name(vma);
8360                         if (name)
8361                                 goto cpy_name;
8362                 }
8363
8364                 name = (char *)arch_vma_name(vma);
8365                 if (name)
8366                         goto cpy_name;
8367
8368                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8369                                 vma->vm_end >= vma->vm_mm->brk) {
8370                         name = "[heap]";
8371                         goto cpy_name;
8372                 }
8373                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8374                                 vma->vm_end >= vma->vm_mm->start_stack) {
8375                         name = "[stack]";
8376                         goto cpy_name;
8377                 }
8378
8379                 name = "//anon";
8380                 goto cpy_name;
8381         }
8382
8383 cpy_name:
8384         strlcpy(tmp, name, sizeof(tmp));
8385         name = tmp;
8386 got_name:
8387         /*
8388          * Since our buffer works in 8 byte units we need to align our string
8389          * size to a multiple of 8. However, we must guarantee the tail end is
8390          * zero'd out to avoid leaking random bits to userspace.
8391          */
8392         size = strlen(name)+1;
8393         while (!IS_ALIGNED(size, sizeof(u64)))
8394                 name[size++] = '\0';
8395
8396         mmap_event->file_name = name;
8397         mmap_event->file_size = size;
8398         mmap_event->maj = maj;
8399         mmap_event->min = min;
8400         mmap_event->ino = ino;
8401         mmap_event->ino_generation = gen;
8402         mmap_event->prot = prot;
8403         mmap_event->flags = flags;
8404
8405         if (!(vma->vm_flags & VM_EXEC))
8406                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8407
8408         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8409
8410         if (atomic_read(&nr_build_id_events))
8411                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8412
8413         perf_iterate_sb(perf_event_mmap_output,
8414                        mmap_event,
8415                        NULL);
8416
8417         kfree(buf);
8418 }
8419
8420 /*
8421  * Check whether inode and address range match filter criteria.
8422  */
8423 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8424                                      struct file *file, unsigned long offset,
8425                                      unsigned long size)
8426 {
8427         /* d_inode(NULL) won't be equal to any mapped user-space file */
8428         if (!filter->path.dentry)
8429                 return false;
8430
8431         if (d_inode(filter->path.dentry) != file_inode(file))
8432                 return false;
8433
8434         if (filter->offset > offset + size)
8435                 return false;
8436
8437         if (filter->offset + filter->size < offset)
8438                 return false;
8439
8440         return true;
8441 }
8442
8443 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8444                                         struct vm_area_struct *vma,
8445                                         struct perf_addr_filter_range *fr)
8446 {
8447         unsigned long vma_size = vma->vm_end - vma->vm_start;
8448         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8449         struct file *file = vma->vm_file;
8450
8451         if (!perf_addr_filter_match(filter, file, off, vma_size))
8452                 return false;
8453
8454         if (filter->offset < off) {
8455                 fr->start = vma->vm_start;
8456                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8457         } else {
8458                 fr->start = vma->vm_start + filter->offset - off;
8459                 fr->size = min(vma->vm_end - fr->start, filter->size);
8460         }
8461
8462         return true;
8463 }
8464
8465 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8466 {
8467         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8468         struct vm_area_struct *vma = data;
8469         struct perf_addr_filter *filter;
8470         unsigned int restart = 0, count = 0;
8471         unsigned long flags;
8472
8473         if (!has_addr_filter(event))
8474                 return;
8475
8476         if (!vma->vm_file)
8477                 return;
8478
8479         raw_spin_lock_irqsave(&ifh->lock, flags);
8480         list_for_each_entry(filter, &ifh->list, entry) {
8481                 if (perf_addr_filter_vma_adjust(filter, vma,
8482                                                 &event->addr_filter_ranges[count]))
8483                         restart++;
8484
8485                 count++;
8486         }
8487
8488         if (restart)
8489                 event->addr_filters_gen++;
8490         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8491
8492         if (restart)
8493                 perf_event_stop(event, 1);
8494 }
8495
8496 /*
8497  * Adjust all task's events' filters to the new vma
8498  */
8499 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8500 {
8501         struct perf_event_context *ctx;
8502         int ctxn;
8503
8504         /*
8505          * Data tracing isn't supported yet and as such there is no need
8506          * to keep track of anything that isn't related to executable code:
8507          */
8508         if (!(vma->vm_flags & VM_EXEC))
8509                 return;
8510
8511         rcu_read_lock();
8512         for_each_task_context_nr(ctxn) {
8513                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8514                 if (!ctx)
8515                         continue;
8516
8517                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8518         }
8519         rcu_read_unlock();
8520 }
8521
8522 void perf_event_mmap(struct vm_area_struct *vma)
8523 {
8524         struct perf_mmap_event mmap_event;
8525
8526         if (!atomic_read(&nr_mmap_events))
8527                 return;
8528
8529         mmap_event = (struct perf_mmap_event){
8530                 .vma    = vma,
8531                 /* .file_name */
8532                 /* .file_size */
8533                 .event_id  = {
8534                         .header = {
8535                                 .type = PERF_RECORD_MMAP,
8536                                 .misc = PERF_RECORD_MISC_USER,
8537                                 /* .size */
8538                         },
8539                         /* .pid */
8540                         /* .tid */
8541                         .start  = vma->vm_start,
8542                         .len    = vma->vm_end - vma->vm_start,
8543                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8544                 },
8545                 /* .maj (attr_mmap2 only) */
8546                 /* .min (attr_mmap2 only) */
8547                 /* .ino (attr_mmap2 only) */
8548                 /* .ino_generation (attr_mmap2 only) */
8549                 /* .prot (attr_mmap2 only) */
8550                 /* .flags (attr_mmap2 only) */
8551         };
8552
8553         perf_addr_filters_adjust(vma);
8554         perf_event_mmap_event(&mmap_event);
8555 }
8556
8557 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8558                           unsigned long size, u64 flags)
8559 {
8560         struct perf_output_handle handle;
8561         struct perf_sample_data sample;
8562         struct perf_aux_event {
8563                 struct perf_event_header        header;
8564                 u64                             offset;
8565                 u64                             size;
8566                 u64                             flags;
8567         } rec = {
8568                 .header = {
8569                         .type = PERF_RECORD_AUX,
8570                         .misc = 0,
8571                         .size = sizeof(rec),
8572                 },
8573                 .offset         = head,
8574                 .size           = size,
8575                 .flags          = flags,
8576         };
8577         int ret;
8578
8579         perf_event_header__init_id(&rec.header, &sample, event);
8580         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8581
8582         if (ret)
8583                 return;
8584
8585         perf_output_put(&handle, rec);
8586         perf_event__output_id_sample(event, &handle, &sample);
8587
8588         perf_output_end(&handle);
8589 }
8590
8591 /*
8592  * Lost/dropped samples logging
8593  */
8594 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8595 {
8596         struct perf_output_handle handle;
8597         struct perf_sample_data sample;
8598         int ret;
8599
8600         struct {
8601                 struct perf_event_header        header;
8602                 u64                             lost;
8603         } lost_samples_event = {
8604                 .header = {
8605                         .type = PERF_RECORD_LOST_SAMPLES,
8606                         .misc = 0,
8607                         .size = sizeof(lost_samples_event),
8608                 },
8609                 .lost           = lost,
8610         };
8611
8612         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8613
8614         ret = perf_output_begin(&handle, &sample, event,
8615                                 lost_samples_event.header.size);
8616         if (ret)
8617                 return;
8618
8619         perf_output_put(&handle, lost_samples_event);
8620         perf_event__output_id_sample(event, &handle, &sample);
8621         perf_output_end(&handle);
8622 }
8623
8624 /*
8625  * context_switch tracking
8626  */
8627
8628 struct perf_switch_event {
8629         struct task_struct      *task;
8630         struct task_struct      *next_prev;
8631
8632         struct {
8633                 struct perf_event_header        header;
8634                 u32                             next_prev_pid;
8635                 u32                             next_prev_tid;
8636         } event_id;
8637 };
8638
8639 static int perf_event_switch_match(struct perf_event *event)
8640 {
8641         return event->attr.context_switch;
8642 }
8643
8644 static void perf_event_switch_output(struct perf_event *event, void *data)
8645 {
8646         struct perf_switch_event *se = data;
8647         struct perf_output_handle handle;
8648         struct perf_sample_data sample;
8649         int ret;
8650
8651         if (!perf_event_switch_match(event))
8652                 return;
8653
8654         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8655         if (event->ctx->task) {
8656                 se->event_id.header.type = PERF_RECORD_SWITCH;
8657                 se->event_id.header.size = sizeof(se->event_id.header);
8658         } else {
8659                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8660                 se->event_id.header.size = sizeof(se->event_id);
8661                 se->event_id.next_prev_pid =
8662                                         perf_event_pid(event, se->next_prev);
8663                 se->event_id.next_prev_tid =
8664                                         perf_event_tid(event, se->next_prev);
8665         }
8666
8667         perf_event_header__init_id(&se->event_id.header, &sample, event);
8668
8669         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8670         if (ret)
8671                 return;
8672
8673         if (event->ctx->task)
8674                 perf_output_put(&handle, se->event_id.header);
8675         else
8676                 perf_output_put(&handle, se->event_id);
8677
8678         perf_event__output_id_sample(event, &handle, &sample);
8679
8680         perf_output_end(&handle);
8681 }
8682
8683 static void perf_event_switch(struct task_struct *task,
8684                               struct task_struct *next_prev, bool sched_in)
8685 {
8686         struct perf_switch_event switch_event;
8687
8688         /* N.B. caller checks nr_switch_events != 0 */
8689
8690         switch_event = (struct perf_switch_event){
8691                 .task           = task,
8692                 .next_prev      = next_prev,
8693                 .event_id       = {
8694                         .header = {
8695                                 /* .type */
8696                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8697                                 /* .size */
8698                         },
8699                         /* .next_prev_pid */
8700                         /* .next_prev_tid */
8701                 },
8702         };
8703
8704         if (!sched_in && task->on_rq) {
8705                 switch_event.event_id.header.misc |=
8706                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8707         }
8708
8709         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8710 }
8711
8712 /*
8713  * IRQ throttle logging
8714  */
8715
8716 static void perf_log_throttle(struct perf_event *event, int enable)
8717 {
8718         struct perf_output_handle handle;
8719         struct perf_sample_data sample;
8720         int ret;
8721
8722         struct {
8723                 struct perf_event_header        header;
8724                 u64                             time;
8725                 u64                             id;
8726                 u64                             stream_id;
8727         } throttle_event = {
8728                 .header = {
8729                         .type = PERF_RECORD_THROTTLE,
8730                         .misc = 0,
8731                         .size = sizeof(throttle_event),
8732                 },
8733                 .time           = perf_event_clock(event),
8734                 .id             = primary_event_id(event),
8735                 .stream_id      = event->id,
8736         };
8737
8738         if (enable)
8739                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8740
8741         perf_event_header__init_id(&throttle_event.header, &sample, event);
8742
8743         ret = perf_output_begin(&handle, &sample, event,
8744                                 throttle_event.header.size);
8745         if (ret)
8746                 return;
8747
8748         perf_output_put(&handle, throttle_event);
8749         perf_event__output_id_sample(event, &handle, &sample);
8750         perf_output_end(&handle);
8751 }
8752
8753 /*
8754  * ksymbol register/unregister tracking
8755  */
8756
8757 struct perf_ksymbol_event {
8758         const char      *name;
8759         int             name_len;
8760         struct {
8761                 struct perf_event_header        header;
8762                 u64                             addr;
8763                 u32                             len;
8764                 u16                             ksym_type;
8765                 u16                             flags;
8766         } event_id;
8767 };
8768
8769 static int perf_event_ksymbol_match(struct perf_event *event)
8770 {
8771         return event->attr.ksymbol;
8772 }
8773
8774 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8775 {
8776         struct perf_ksymbol_event *ksymbol_event = data;
8777         struct perf_output_handle handle;
8778         struct perf_sample_data sample;
8779         int ret;
8780
8781         if (!perf_event_ksymbol_match(event))
8782                 return;
8783
8784         perf_event_header__init_id(&ksymbol_event->event_id.header,
8785                                    &sample, event);
8786         ret = perf_output_begin(&handle, &sample, event,
8787                                 ksymbol_event->event_id.header.size);
8788         if (ret)
8789                 return;
8790
8791         perf_output_put(&handle, ksymbol_event->event_id);
8792         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8793         perf_event__output_id_sample(event, &handle, &sample);
8794
8795         perf_output_end(&handle);
8796 }
8797
8798 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8799                         const char *sym)
8800 {
8801         struct perf_ksymbol_event ksymbol_event;
8802         char name[KSYM_NAME_LEN];
8803         u16 flags = 0;
8804         int name_len;
8805
8806         if (!atomic_read(&nr_ksymbol_events))
8807                 return;
8808
8809         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8810             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8811                 goto err;
8812
8813         strlcpy(name, sym, KSYM_NAME_LEN);
8814         name_len = strlen(name) + 1;
8815         while (!IS_ALIGNED(name_len, sizeof(u64)))
8816                 name[name_len++] = '\0';
8817         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8818
8819         if (unregister)
8820                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8821
8822         ksymbol_event = (struct perf_ksymbol_event){
8823                 .name = name,
8824                 .name_len = name_len,
8825                 .event_id = {
8826                         .header = {
8827                                 .type = PERF_RECORD_KSYMBOL,
8828                                 .size = sizeof(ksymbol_event.event_id) +
8829                                         name_len,
8830                         },
8831                         .addr = addr,
8832                         .len = len,
8833                         .ksym_type = ksym_type,
8834                         .flags = flags,
8835                 },
8836         };
8837
8838         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8839         return;
8840 err:
8841         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8842 }
8843
8844 /*
8845  * bpf program load/unload tracking
8846  */
8847
8848 struct perf_bpf_event {
8849         struct bpf_prog *prog;
8850         struct {
8851                 struct perf_event_header        header;
8852                 u16                             type;
8853                 u16                             flags;
8854                 u32                             id;
8855                 u8                              tag[BPF_TAG_SIZE];
8856         } event_id;
8857 };
8858
8859 static int perf_event_bpf_match(struct perf_event *event)
8860 {
8861         return event->attr.bpf_event;
8862 }
8863
8864 static void perf_event_bpf_output(struct perf_event *event, void *data)
8865 {
8866         struct perf_bpf_event *bpf_event = data;
8867         struct perf_output_handle handle;
8868         struct perf_sample_data sample;
8869         int ret;
8870
8871         if (!perf_event_bpf_match(event))
8872                 return;
8873
8874         perf_event_header__init_id(&bpf_event->event_id.header,
8875                                    &sample, event);
8876         ret = perf_output_begin(&handle, data, event,
8877                                 bpf_event->event_id.header.size);
8878         if (ret)
8879                 return;
8880
8881         perf_output_put(&handle, bpf_event->event_id);
8882         perf_event__output_id_sample(event, &handle, &sample);
8883
8884         perf_output_end(&handle);
8885 }
8886
8887 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8888                                          enum perf_bpf_event_type type)
8889 {
8890         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8891         int i;
8892
8893         if (prog->aux->func_cnt == 0) {
8894                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8895                                    (u64)(unsigned long)prog->bpf_func,
8896                                    prog->jited_len, unregister,
8897                                    prog->aux->ksym.name);
8898         } else {
8899                 for (i = 0; i < prog->aux->func_cnt; i++) {
8900                         struct bpf_prog *subprog = prog->aux->func[i];
8901
8902                         perf_event_ksymbol(
8903                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8904                                 (u64)(unsigned long)subprog->bpf_func,
8905                                 subprog->jited_len, unregister,
8906                                 prog->aux->ksym.name);
8907                 }
8908         }
8909 }
8910
8911 void perf_event_bpf_event(struct bpf_prog *prog,
8912                           enum perf_bpf_event_type type,
8913                           u16 flags)
8914 {
8915         struct perf_bpf_event bpf_event;
8916
8917         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8918             type >= PERF_BPF_EVENT_MAX)
8919                 return;
8920
8921         switch (type) {
8922         case PERF_BPF_EVENT_PROG_LOAD:
8923         case PERF_BPF_EVENT_PROG_UNLOAD:
8924                 if (atomic_read(&nr_ksymbol_events))
8925                         perf_event_bpf_emit_ksymbols(prog, type);
8926                 break;
8927         default:
8928                 break;
8929         }
8930
8931         if (!atomic_read(&nr_bpf_events))
8932                 return;
8933
8934         bpf_event = (struct perf_bpf_event){
8935                 .prog = prog,
8936                 .event_id = {
8937                         .header = {
8938                                 .type = PERF_RECORD_BPF_EVENT,
8939                                 .size = sizeof(bpf_event.event_id),
8940                         },
8941                         .type = type,
8942                         .flags = flags,
8943                         .id = prog->aux->id,
8944                 },
8945         };
8946
8947         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8948
8949         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8950         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8951 }
8952
8953 struct perf_text_poke_event {
8954         const void              *old_bytes;
8955         const void              *new_bytes;
8956         size_t                  pad;
8957         u16                     old_len;
8958         u16                     new_len;
8959
8960         struct {
8961                 struct perf_event_header        header;
8962
8963                 u64                             addr;
8964         } event_id;
8965 };
8966
8967 static int perf_event_text_poke_match(struct perf_event *event)
8968 {
8969         return event->attr.text_poke;
8970 }
8971
8972 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8973 {
8974         struct perf_text_poke_event *text_poke_event = data;
8975         struct perf_output_handle handle;
8976         struct perf_sample_data sample;
8977         u64 padding = 0;
8978         int ret;
8979
8980         if (!perf_event_text_poke_match(event))
8981                 return;
8982
8983         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
8984
8985         ret = perf_output_begin(&handle, &sample, event,
8986                                 text_poke_event->event_id.header.size);
8987         if (ret)
8988                 return;
8989
8990         perf_output_put(&handle, text_poke_event->event_id);
8991         perf_output_put(&handle, text_poke_event->old_len);
8992         perf_output_put(&handle, text_poke_event->new_len);
8993
8994         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
8995         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
8996
8997         if (text_poke_event->pad)
8998                 __output_copy(&handle, &padding, text_poke_event->pad);
8999
9000         perf_event__output_id_sample(event, &handle, &sample);
9001
9002         perf_output_end(&handle);
9003 }
9004
9005 void perf_event_text_poke(const void *addr, const void *old_bytes,
9006                           size_t old_len, const void *new_bytes, size_t new_len)
9007 {
9008         struct perf_text_poke_event text_poke_event;
9009         size_t tot, pad;
9010
9011         if (!atomic_read(&nr_text_poke_events))
9012                 return;
9013
9014         tot  = sizeof(text_poke_event.old_len) + old_len;
9015         tot += sizeof(text_poke_event.new_len) + new_len;
9016         pad  = ALIGN(tot, sizeof(u64)) - tot;
9017
9018         text_poke_event = (struct perf_text_poke_event){
9019                 .old_bytes    = old_bytes,
9020                 .new_bytes    = new_bytes,
9021                 .pad          = pad,
9022                 .old_len      = old_len,
9023                 .new_len      = new_len,
9024                 .event_id  = {
9025                         .header = {
9026                                 .type = PERF_RECORD_TEXT_POKE,
9027                                 .misc = PERF_RECORD_MISC_KERNEL,
9028                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9029                         },
9030                         .addr = (unsigned long)addr,
9031                 },
9032         };
9033
9034         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9035 }
9036
9037 void perf_event_itrace_started(struct perf_event *event)
9038 {
9039         event->attach_state |= PERF_ATTACH_ITRACE;
9040 }
9041
9042 static void perf_log_itrace_start(struct perf_event *event)
9043 {
9044         struct perf_output_handle handle;
9045         struct perf_sample_data sample;
9046         struct perf_aux_event {
9047                 struct perf_event_header        header;
9048                 u32                             pid;
9049                 u32                             tid;
9050         } rec;
9051         int ret;
9052
9053         if (event->parent)
9054                 event = event->parent;
9055
9056         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9057             event->attach_state & PERF_ATTACH_ITRACE)
9058                 return;
9059
9060         rec.header.type = PERF_RECORD_ITRACE_START;
9061         rec.header.misc = 0;
9062         rec.header.size = sizeof(rec);
9063         rec.pid = perf_event_pid(event, current);
9064         rec.tid = perf_event_tid(event, current);
9065
9066         perf_event_header__init_id(&rec.header, &sample, event);
9067         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9068
9069         if (ret)
9070                 return;
9071
9072         perf_output_put(&handle, rec);
9073         perf_event__output_id_sample(event, &handle, &sample);
9074
9075         perf_output_end(&handle);
9076 }
9077
9078 static int
9079 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9080 {
9081         struct hw_perf_event *hwc = &event->hw;
9082         int ret = 0;
9083         u64 seq;
9084
9085         seq = __this_cpu_read(perf_throttled_seq);
9086         if (seq != hwc->interrupts_seq) {
9087                 hwc->interrupts_seq = seq;
9088                 hwc->interrupts = 1;
9089         } else {
9090                 hwc->interrupts++;
9091                 if (unlikely(throttle
9092                              && hwc->interrupts >= max_samples_per_tick)) {
9093                         __this_cpu_inc(perf_throttled_count);
9094                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9095                         hwc->interrupts = MAX_INTERRUPTS;
9096                         perf_log_throttle(event, 0);
9097                         ret = 1;
9098                 }
9099         }
9100
9101         if (event->attr.freq) {
9102                 u64 now = perf_clock();
9103                 s64 delta = now - hwc->freq_time_stamp;
9104
9105                 hwc->freq_time_stamp = now;
9106
9107                 if (delta > 0 && delta < 2*TICK_NSEC)
9108                         perf_adjust_period(event, delta, hwc->last_period, true);
9109         }
9110
9111         return ret;
9112 }
9113
9114 int perf_event_account_interrupt(struct perf_event *event)
9115 {
9116         return __perf_event_account_interrupt(event, 1);
9117 }
9118
9119 /*
9120  * Generic event overflow handling, sampling.
9121  */
9122
9123 static int __perf_event_overflow(struct perf_event *event,
9124                                    int throttle, struct perf_sample_data *data,
9125                                    struct pt_regs *regs)
9126 {
9127         int events = atomic_read(&event->event_limit);
9128         int ret = 0;
9129
9130         /*
9131          * Non-sampling counters might still use the PMI to fold short
9132          * hardware counters, ignore those.
9133          */
9134         if (unlikely(!is_sampling_event(event)))
9135                 return 0;
9136
9137         ret = __perf_event_account_interrupt(event, throttle);
9138
9139         /*
9140          * XXX event_limit might not quite work as expected on inherited
9141          * events
9142          */
9143
9144         event->pending_kill = POLL_IN;
9145         if (events && atomic_dec_and_test(&event->event_limit)) {
9146                 ret = 1;
9147                 event->pending_kill = POLL_HUP;
9148                 event->pending_addr = data->addr;
9149
9150                 perf_event_disable_inatomic(event);
9151         }
9152
9153         READ_ONCE(event->overflow_handler)(event, data, regs);
9154
9155         if (*perf_event_fasync(event) && event->pending_kill) {
9156                 event->pending_wakeup = 1;
9157                 irq_work_queue(&event->pending);
9158         }
9159
9160         return ret;
9161 }
9162
9163 int perf_event_overflow(struct perf_event *event,
9164                           struct perf_sample_data *data,
9165                           struct pt_regs *regs)
9166 {
9167         return __perf_event_overflow(event, 1, data, regs);
9168 }
9169
9170 /*
9171  * Generic software event infrastructure
9172  */
9173
9174 struct swevent_htable {
9175         struct swevent_hlist            *swevent_hlist;
9176         struct mutex                    hlist_mutex;
9177         int                             hlist_refcount;
9178
9179         /* Recursion avoidance in each contexts */
9180         int                             recursion[PERF_NR_CONTEXTS];
9181 };
9182
9183 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9184
9185 /*
9186  * We directly increment event->count and keep a second value in
9187  * event->hw.period_left to count intervals. This period event
9188  * is kept in the range [-sample_period, 0] so that we can use the
9189  * sign as trigger.
9190  */
9191
9192 u64 perf_swevent_set_period(struct perf_event *event)
9193 {
9194         struct hw_perf_event *hwc = &event->hw;
9195         u64 period = hwc->last_period;
9196         u64 nr, offset;
9197         s64 old, val;
9198
9199         hwc->last_period = hwc->sample_period;
9200
9201 again:
9202         old = val = local64_read(&hwc->period_left);
9203         if (val < 0)
9204                 return 0;
9205
9206         nr = div64_u64(period + val, period);
9207         offset = nr * period;
9208         val -= offset;
9209         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9210                 goto again;
9211
9212         return nr;
9213 }
9214
9215 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9216                                     struct perf_sample_data *data,
9217                                     struct pt_regs *regs)
9218 {
9219         struct hw_perf_event *hwc = &event->hw;
9220         int throttle = 0;
9221
9222         if (!overflow)
9223                 overflow = perf_swevent_set_period(event);
9224
9225         if (hwc->interrupts == MAX_INTERRUPTS)
9226                 return;
9227
9228         for (; overflow; overflow--) {
9229                 if (__perf_event_overflow(event, throttle,
9230                                             data, regs)) {
9231                         /*
9232                          * We inhibit the overflow from happening when
9233                          * hwc->interrupts == MAX_INTERRUPTS.
9234                          */
9235                         break;
9236                 }
9237                 throttle = 1;
9238         }
9239 }
9240
9241 static void perf_swevent_event(struct perf_event *event, u64 nr,
9242                                struct perf_sample_data *data,
9243                                struct pt_regs *regs)
9244 {
9245         struct hw_perf_event *hwc = &event->hw;
9246
9247         local64_add(nr, &event->count);
9248
9249         if (!regs)
9250                 return;
9251
9252         if (!is_sampling_event(event))
9253                 return;
9254
9255         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9256                 data->period = nr;
9257                 return perf_swevent_overflow(event, 1, data, regs);
9258         } else
9259                 data->period = event->hw.last_period;
9260
9261         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9262                 return perf_swevent_overflow(event, 1, data, regs);
9263
9264         if (local64_add_negative(nr, &hwc->period_left))
9265                 return;
9266
9267         perf_swevent_overflow(event, 0, data, regs);
9268 }
9269
9270 static int perf_exclude_event(struct perf_event *event,
9271                               struct pt_regs *regs)
9272 {
9273         if (event->hw.state & PERF_HES_STOPPED)
9274                 return 1;
9275
9276         if (regs) {
9277                 if (event->attr.exclude_user && user_mode(regs))
9278                         return 1;
9279
9280                 if (event->attr.exclude_kernel && !user_mode(regs))
9281                         return 1;
9282         }
9283
9284         return 0;
9285 }
9286
9287 static int perf_swevent_match(struct perf_event *event,
9288                                 enum perf_type_id type,
9289                                 u32 event_id,
9290                                 struct perf_sample_data *data,
9291                                 struct pt_regs *regs)
9292 {
9293         if (event->attr.type != type)
9294                 return 0;
9295
9296         if (event->attr.config != event_id)
9297                 return 0;
9298
9299         if (perf_exclude_event(event, regs))
9300                 return 0;
9301
9302         return 1;
9303 }
9304
9305 static inline u64 swevent_hash(u64 type, u32 event_id)
9306 {
9307         u64 val = event_id | (type << 32);
9308
9309         return hash_64(val, SWEVENT_HLIST_BITS);
9310 }
9311
9312 static inline struct hlist_head *
9313 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9314 {
9315         u64 hash = swevent_hash(type, event_id);
9316
9317         return &hlist->heads[hash];
9318 }
9319
9320 /* For the read side: events when they trigger */
9321 static inline struct hlist_head *
9322 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9323 {
9324         struct swevent_hlist *hlist;
9325
9326         hlist = rcu_dereference(swhash->swevent_hlist);
9327         if (!hlist)
9328                 return NULL;
9329
9330         return __find_swevent_head(hlist, type, event_id);
9331 }
9332
9333 /* For the event head insertion and removal in the hlist */
9334 static inline struct hlist_head *
9335 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9336 {
9337         struct swevent_hlist *hlist;
9338         u32 event_id = event->attr.config;
9339         u64 type = event->attr.type;
9340
9341         /*
9342          * Event scheduling is always serialized against hlist allocation
9343          * and release. Which makes the protected version suitable here.
9344          * The context lock guarantees that.
9345          */
9346         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9347                                           lockdep_is_held(&event->ctx->lock));
9348         if (!hlist)
9349                 return NULL;
9350
9351         return __find_swevent_head(hlist, type, event_id);
9352 }
9353
9354 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9355                                     u64 nr,
9356                                     struct perf_sample_data *data,
9357                                     struct pt_regs *regs)
9358 {
9359         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9360         struct perf_event *event;
9361         struct hlist_head *head;
9362
9363         rcu_read_lock();
9364         head = find_swevent_head_rcu(swhash, type, event_id);
9365         if (!head)
9366                 goto end;
9367
9368         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9369                 if (perf_swevent_match(event, type, event_id, data, regs))
9370                         perf_swevent_event(event, nr, data, regs);
9371         }
9372 end:
9373         rcu_read_unlock();
9374 }
9375
9376 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9377
9378 int perf_swevent_get_recursion_context(void)
9379 {
9380         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9381
9382         return get_recursion_context(swhash->recursion);
9383 }
9384 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9385
9386 void perf_swevent_put_recursion_context(int rctx)
9387 {
9388         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9389
9390         put_recursion_context(swhash->recursion, rctx);
9391 }
9392
9393 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9394 {
9395         struct perf_sample_data data;
9396
9397         if (WARN_ON_ONCE(!regs))
9398                 return;
9399
9400         perf_sample_data_init(&data, addr, 0);
9401         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9402 }
9403
9404 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9405 {
9406         int rctx;
9407
9408         preempt_disable_notrace();
9409         rctx = perf_swevent_get_recursion_context();
9410         if (unlikely(rctx < 0))
9411                 goto fail;
9412
9413         ___perf_sw_event(event_id, nr, regs, addr);
9414
9415         perf_swevent_put_recursion_context(rctx);
9416 fail:
9417         preempt_enable_notrace();
9418 }
9419
9420 static void perf_swevent_read(struct perf_event *event)
9421 {
9422 }
9423
9424 static int perf_swevent_add(struct perf_event *event, int flags)
9425 {
9426         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9427         struct hw_perf_event *hwc = &event->hw;
9428         struct hlist_head *head;
9429
9430         if (is_sampling_event(event)) {
9431                 hwc->last_period = hwc->sample_period;
9432                 perf_swevent_set_period(event);
9433         }
9434
9435         hwc->state = !(flags & PERF_EF_START);
9436
9437         head = find_swevent_head(swhash, event);
9438         if (WARN_ON_ONCE(!head))
9439                 return -EINVAL;
9440
9441         hlist_add_head_rcu(&event->hlist_entry, head);
9442         perf_event_update_userpage(event);
9443
9444         return 0;
9445 }
9446
9447 static void perf_swevent_del(struct perf_event *event, int flags)
9448 {
9449         hlist_del_rcu(&event->hlist_entry);
9450 }
9451
9452 static void perf_swevent_start(struct perf_event *event, int flags)
9453 {
9454         event->hw.state = 0;
9455 }
9456
9457 static void perf_swevent_stop(struct perf_event *event, int flags)
9458 {
9459         event->hw.state = PERF_HES_STOPPED;
9460 }
9461
9462 /* Deref the hlist from the update side */
9463 static inline struct swevent_hlist *
9464 swevent_hlist_deref(struct swevent_htable *swhash)
9465 {
9466         return rcu_dereference_protected(swhash->swevent_hlist,
9467                                          lockdep_is_held(&swhash->hlist_mutex));
9468 }
9469
9470 static void swevent_hlist_release(struct swevent_htable *swhash)
9471 {
9472         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9473
9474         if (!hlist)
9475                 return;
9476
9477         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9478         kfree_rcu(hlist, rcu_head);
9479 }
9480
9481 static void swevent_hlist_put_cpu(int cpu)
9482 {
9483         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9484
9485         mutex_lock(&swhash->hlist_mutex);
9486
9487         if (!--swhash->hlist_refcount)
9488                 swevent_hlist_release(swhash);
9489
9490         mutex_unlock(&swhash->hlist_mutex);
9491 }
9492
9493 static void swevent_hlist_put(void)
9494 {
9495         int cpu;
9496
9497         for_each_possible_cpu(cpu)
9498                 swevent_hlist_put_cpu(cpu);
9499 }
9500
9501 static int swevent_hlist_get_cpu(int cpu)
9502 {
9503         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9504         int err = 0;
9505
9506         mutex_lock(&swhash->hlist_mutex);
9507         if (!swevent_hlist_deref(swhash) &&
9508             cpumask_test_cpu(cpu, perf_online_mask)) {
9509                 struct swevent_hlist *hlist;
9510
9511                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9512                 if (!hlist) {
9513                         err = -ENOMEM;
9514                         goto exit;
9515                 }
9516                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9517         }
9518         swhash->hlist_refcount++;
9519 exit:
9520         mutex_unlock(&swhash->hlist_mutex);
9521
9522         return err;
9523 }
9524
9525 static int swevent_hlist_get(void)
9526 {
9527         int err, cpu, failed_cpu;
9528
9529         mutex_lock(&pmus_lock);
9530         for_each_possible_cpu(cpu) {
9531                 err = swevent_hlist_get_cpu(cpu);
9532                 if (err) {
9533                         failed_cpu = cpu;
9534                         goto fail;
9535                 }
9536         }
9537         mutex_unlock(&pmus_lock);
9538         return 0;
9539 fail:
9540         for_each_possible_cpu(cpu) {
9541                 if (cpu == failed_cpu)
9542                         break;
9543                 swevent_hlist_put_cpu(cpu);
9544         }
9545         mutex_unlock(&pmus_lock);
9546         return err;
9547 }
9548
9549 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9550
9551 static void sw_perf_event_destroy(struct perf_event *event)
9552 {
9553         u64 event_id = event->attr.config;
9554
9555         WARN_ON(event->parent);
9556
9557         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9558         swevent_hlist_put();
9559 }
9560
9561 static int perf_swevent_init(struct perf_event *event)
9562 {
9563         u64 event_id = event->attr.config;
9564
9565         if (event->attr.type != PERF_TYPE_SOFTWARE)
9566                 return -ENOENT;
9567
9568         /*
9569          * no branch sampling for software events
9570          */
9571         if (has_branch_stack(event))
9572                 return -EOPNOTSUPP;
9573
9574         switch (event_id) {
9575         case PERF_COUNT_SW_CPU_CLOCK:
9576         case PERF_COUNT_SW_TASK_CLOCK:
9577                 return -ENOENT;
9578
9579         default:
9580                 break;
9581         }
9582
9583         if (event_id >= PERF_COUNT_SW_MAX)
9584                 return -ENOENT;
9585
9586         if (!event->parent) {
9587                 int err;
9588
9589                 err = swevent_hlist_get();
9590                 if (err)
9591                         return err;
9592
9593                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9594                 event->destroy = sw_perf_event_destroy;
9595         }
9596
9597         return 0;
9598 }
9599
9600 static struct pmu perf_swevent = {
9601         .task_ctx_nr    = perf_sw_context,
9602
9603         .capabilities   = PERF_PMU_CAP_NO_NMI,
9604
9605         .event_init     = perf_swevent_init,
9606         .add            = perf_swevent_add,
9607         .del            = perf_swevent_del,
9608         .start          = perf_swevent_start,
9609         .stop           = perf_swevent_stop,
9610         .read           = perf_swevent_read,
9611 };
9612
9613 #ifdef CONFIG_EVENT_TRACING
9614
9615 static int perf_tp_filter_match(struct perf_event *event,
9616                                 struct perf_sample_data *data)
9617 {
9618         void *record = data->raw->frag.data;
9619
9620         /* only top level events have filters set */
9621         if (event->parent)
9622                 event = event->parent;
9623
9624         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9625                 return 1;
9626         return 0;
9627 }
9628
9629 static int perf_tp_event_match(struct perf_event *event,
9630                                 struct perf_sample_data *data,
9631                                 struct pt_regs *regs)
9632 {
9633         if (event->hw.state & PERF_HES_STOPPED)
9634                 return 0;
9635         /*
9636          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9637          */
9638         if (event->attr.exclude_kernel && !user_mode(regs))
9639                 return 0;
9640
9641         if (!perf_tp_filter_match(event, data))
9642                 return 0;
9643
9644         return 1;
9645 }
9646
9647 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9648                                struct trace_event_call *call, u64 count,
9649                                struct pt_regs *regs, struct hlist_head *head,
9650                                struct task_struct *task)
9651 {
9652         if (bpf_prog_array_valid(call)) {
9653                 *(struct pt_regs **)raw_data = regs;
9654                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9655                         perf_swevent_put_recursion_context(rctx);
9656                         return;
9657                 }
9658         }
9659         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9660                       rctx, task);
9661 }
9662 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9663
9664 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9665                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9666                    struct task_struct *task)
9667 {
9668         struct perf_sample_data data;
9669         struct perf_event *event;
9670
9671         struct perf_raw_record raw = {
9672                 .frag = {
9673                         .size = entry_size,
9674                         .data = record,
9675                 },
9676         };
9677
9678         perf_sample_data_init(&data, 0, 0);
9679         data.raw = &raw;
9680
9681         perf_trace_buf_update(record, event_type);
9682
9683         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9684                 if (perf_tp_event_match(event, &data, regs))
9685                         perf_swevent_event(event, count, &data, regs);
9686         }
9687
9688         /*
9689          * If we got specified a target task, also iterate its context and
9690          * deliver this event there too.
9691          */
9692         if (task && task != current) {
9693                 struct perf_event_context *ctx;
9694                 struct trace_entry *entry = record;
9695
9696                 rcu_read_lock();
9697                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9698                 if (!ctx)
9699                         goto unlock;
9700
9701                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9702                         if (event->cpu != smp_processor_id())
9703                                 continue;
9704                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9705                                 continue;
9706                         if (event->attr.config != entry->type)
9707                                 continue;
9708                         if (perf_tp_event_match(event, &data, regs))
9709                                 perf_swevent_event(event, count, &data, regs);
9710                 }
9711 unlock:
9712                 rcu_read_unlock();
9713         }
9714
9715         perf_swevent_put_recursion_context(rctx);
9716 }
9717 EXPORT_SYMBOL_GPL(perf_tp_event);
9718
9719 static void tp_perf_event_destroy(struct perf_event *event)
9720 {
9721         perf_trace_destroy(event);
9722 }
9723
9724 static int perf_tp_event_init(struct perf_event *event)
9725 {
9726         int err;
9727
9728         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9729                 return -ENOENT;
9730
9731         /*
9732          * no branch sampling for tracepoint events
9733          */
9734         if (has_branch_stack(event))
9735                 return -EOPNOTSUPP;
9736
9737         err = perf_trace_init(event);
9738         if (err)
9739                 return err;
9740
9741         event->destroy = tp_perf_event_destroy;
9742
9743         return 0;
9744 }
9745
9746 static struct pmu perf_tracepoint = {
9747         .task_ctx_nr    = perf_sw_context,
9748
9749         .event_init     = perf_tp_event_init,
9750         .add            = perf_trace_add,
9751         .del            = perf_trace_del,
9752         .start          = perf_swevent_start,
9753         .stop           = perf_swevent_stop,
9754         .read           = perf_swevent_read,
9755 };
9756
9757 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9758 /*
9759  * Flags in config, used by dynamic PMU kprobe and uprobe
9760  * The flags should match following PMU_FORMAT_ATTR().
9761  *
9762  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9763  *                               if not set, create kprobe/uprobe
9764  *
9765  * The following values specify a reference counter (or semaphore in the
9766  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9767  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9768  *
9769  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9770  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9771  */
9772 enum perf_probe_config {
9773         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9774         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9775         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9776 };
9777
9778 PMU_FORMAT_ATTR(retprobe, "config:0");
9779 #endif
9780
9781 #ifdef CONFIG_KPROBE_EVENTS
9782 static struct attribute *kprobe_attrs[] = {
9783         &format_attr_retprobe.attr,
9784         NULL,
9785 };
9786
9787 static struct attribute_group kprobe_format_group = {
9788         .name = "format",
9789         .attrs = kprobe_attrs,
9790 };
9791
9792 static const struct attribute_group *kprobe_attr_groups[] = {
9793         &kprobe_format_group,
9794         NULL,
9795 };
9796
9797 static int perf_kprobe_event_init(struct perf_event *event);
9798 static struct pmu perf_kprobe = {
9799         .task_ctx_nr    = perf_sw_context,
9800         .event_init     = perf_kprobe_event_init,
9801         .add            = perf_trace_add,
9802         .del            = perf_trace_del,
9803         .start          = perf_swevent_start,
9804         .stop           = perf_swevent_stop,
9805         .read           = perf_swevent_read,
9806         .attr_groups    = kprobe_attr_groups,
9807 };
9808
9809 static int perf_kprobe_event_init(struct perf_event *event)
9810 {
9811         int err;
9812         bool is_retprobe;
9813
9814         if (event->attr.type != perf_kprobe.type)
9815                 return -ENOENT;
9816
9817         if (!perfmon_capable())
9818                 return -EACCES;
9819
9820         /*
9821          * no branch sampling for probe events
9822          */
9823         if (has_branch_stack(event))
9824                 return -EOPNOTSUPP;
9825
9826         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9827         err = perf_kprobe_init(event, is_retprobe);
9828         if (err)
9829                 return err;
9830
9831         event->destroy = perf_kprobe_destroy;
9832
9833         return 0;
9834 }
9835 #endif /* CONFIG_KPROBE_EVENTS */
9836
9837 #ifdef CONFIG_UPROBE_EVENTS
9838 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9839
9840 static struct attribute *uprobe_attrs[] = {
9841         &format_attr_retprobe.attr,
9842         &format_attr_ref_ctr_offset.attr,
9843         NULL,
9844 };
9845
9846 static struct attribute_group uprobe_format_group = {
9847         .name = "format",
9848         .attrs = uprobe_attrs,
9849 };
9850
9851 static const struct attribute_group *uprobe_attr_groups[] = {
9852         &uprobe_format_group,
9853         NULL,
9854 };
9855
9856 static int perf_uprobe_event_init(struct perf_event *event);
9857 static struct pmu perf_uprobe = {
9858         .task_ctx_nr    = perf_sw_context,
9859         .event_init     = perf_uprobe_event_init,
9860         .add            = perf_trace_add,
9861         .del            = perf_trace_del,
9862         .start          = perf_swevent_start,
9863         .stop           = perf_swevent_stop,
9864         .read           = perf_swevent_read,
9865         .attr_groups    = uprobe_attr_groups,
9866 };
9867
9868 static int perf_uprobe_event_init(struct perf_event *event)
9869 {
9870         int err;
9871         unsigned long ref_ctr_offset;
9872         bool is_retprobe;
9873
9874         if (event->attr.type != perf_uprobe.type)
9875                 return -ENOENT;
9876
9877         if (!perfmon_capable())
9878                 return -EACCES;
9879
9880         /*
9881          * no branch sampling for probe events
9882          */
9883         if (has_branch_stack(event))
9884                 return -EOPNOTSUPP;
9885
9886         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9887         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9888         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9889         if (err)
9890                 return err;
9891
9892         event->destroy = perf_uprobe_destroy;
9893
9894         return 0;
9895 }
9896 #endif /* CONFIG_UPROBE_EVENTS */
9897
9898 static inline void perf_tp_register(void)
9899 {
9900         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9901 #ifdef CONFIG_KPROBE_EVENTS
9902         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9903 #endif
9904 #ifdef CONFIG_UPROBE_EVENTS
9905         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9906 #endif
9907 }
9908
9909 static void perf_event_free_filter(struct perf_event *event)
9910 {
9911         ftrace_profile_free_filter(event);
9912 }
9913
9914 #ifdef CONFIG_BPF_SYSCALL
9915 static void bpf_overflow_handler(struct perf_event *event,
9916                                  struct perf_sample_data *data,
9917                                  struct pt_regs *regs)
9918 {
9919         struct bpf_perf_event_data_kern ctx = {
9920                 .data = data,
9921                 .event = event,
9922         };
9923         struct bpf_prog *prog;
9924         int ret = 0;
9925
9926         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9927         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9928                 goto out;
9929         rcu_read_lock();
9930         prog = READ_ONCE(event->prog);
9931         if (prog)
9932                 ret = bpf_prog_run(prog, &ctx);
9933         rcu_read_unlock();
9934 out:
9935         __this_cpu_dec(bpf_prog_active);
9936         if (!ret)
9937                 return;
9938
9939         event->orig_overflow_handler(event, data, regs);
9940 }
9941
9942 static int perf_event_set_bpf_handler(struct perf_event *event,
9943                                       struct bpf_prog *prog,
9944                                       u64 bpf_cookie)
9945 {
9946         if (event->overflow_handler_context)
9947                 /* hw breakpoint or kernel counter */
9948                 return -EINVAL;
9949
9950         if (event->prog)
9951                 return -EEXIST;
9952
9953         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9954                 return -EINVAL;
9955
9956         if (event->attr.precise_ip &&
9957             prog->call_get_stack &&
9958             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
9959              event->attr.exclude_callchain_kernel ||
9960              event->attr.exclude_callchain_user)) {
9961                 /*
9962                  * On perf_event with precise_ip, calling bpf_get_stack()
9963                  * may trigger unwinder warnings and occasional crashes.
9964                  * bpf_get_[stack|stackid] works around this issue by using
9965                  * callchain attached to perf_sample_data. If the
9966                  * perf_event does not full (kernel and user) callchain
9967                  * attached to perf_sample_data, do not allow attaching BPF
9968                  * program that calls bpf_get_[stack|stackid].
9969                  */
9970                 return -EPROTO;
9971         }
9972
9973         event->prog = prog;
9974         event->bpf_cookie = bpf_cookie;
9975         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
9976         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
9977         return 0;
9978 }
9979
9980 static void perf_event_free_bpf_handler(struct perf_event *event)
9981 {
9982         struct bpf_prog *prog = event->prog;
9983
9984         if (!prog)
9985                 return;
9986
9987         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
9988         event->prog = NULL;
9989         bpf_prog_put(prog);
9990 }
9991 #else
9992 static int perf_event_set_bpf_handler(struct perf_event *event,
9993                                       struct bpf_prog *prog,
9994                                       u64 bpf_cookie)
9995 {
9996         return -EOPNOTSUPP;
9997 }
9998 static void perf_event_free_bpf_handler(struct perf_event *event)
9999 {
10000 }
10001 #endif
10002
10003 /*
10004  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10005  * with perf_event_open()
10006  */
10007 static inline bool perf_event_is_tracing(struct perf_event *event)
10008 {
10009         if (event->pmu == &perf_tracepoint)
10010                 return true;
10011 #ifdef CONFIG_KPROBE_EVENTS
10012         if (event->pmu == &perf_kprobe)
10013                 return true;
10014 #endif
10015 #ifdef CONFIG_UPROBE_EVENTS
10016         if (event->pmu == &perf_uprobe)
10017                 return true;
10018 #endif
10019         return false;
10020 }
10021
10022 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10023                             u64 bpf_cookie)
10024 {
10025         bool is_kprobe, is_tracepoint, is_syscall_tp;
10026
10027         if (!perf_event_is_tracing(event))
10028                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10029
10030         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10031         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10032         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10033         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10034                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10035                 return -EINVAL;
10036
10037         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10038             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10039             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10040                 return -EINVAL;
10041
10042         /* Kprobe override only works for kprobes, not uprobes. */
10043         if (prog->kprobe_override &&
10044             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10045                 return -EINVAL;
10046
10047         if (is_tracepoint || is_syscall_tp) {
10048                 int off = trace_event_get_offsets(event->tp_event);
10049
10050                 if (prog->aux->max_ctx_offset > off)
10051                         return -EACCES;
10052         }
10053
10054         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10055 }
10056
10057 void perf_event_free_bpf_prog(struct perf_event *event)
10058 {
10059         if (!perf_event_is_tracing(event)) {
10060                 perf_event_free_bpf_handler(event);
10061                 return;
10062         }
10063         perf_event_detach_bpf_prog(event);
10064 }
10065
10066 #else
10067
10068 static inline void perf_tp_register(void)
10069 {
10070 }
10071
10072 static void perf_event_free_filter(struct perf_event *event)
10073 {
10074 }
10075
10076 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10077                             u64 bpf_cookie)
10078 {
10079         return -ENOENT;
10080 }
10081
10082 void perf_event_free_bpf_prog(struct perf_event *event)
10083 {
10084 }
10085 #endif /* CONFIG_EVENT_TRACING */
10086
10087 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10088 void perf_bp_event(struct perf_event *bp, void *data)
10089 {
10090         struct perf_sample_data sample;
10091         struct pt_regs *regs = data;
10092
10093         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10094
10095         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10096                 perf_swevent_event(bp, 1, &sample, regs);
10097 }
10098 #endif
10099
10100 /*
10101  * Allocate a new address filter
10102  */
10103 static struct perf_addr_filter *
10104 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10105 {
10106         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10107         struct perf_addr_filter *filter;
10108
10109         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10110         if (!filter)
10111                 return NULL;
10112
10113         INIT_LIST_HEAD(&filter->entry);
10114         list_add_tail(&filter->entry, filters);
10115
10116         return filter;
10117 }
10118
10119 static void free_filters_list(struct list_head *filters)
10120 {
10121         struct perf_addr_filter *filter, *iter;
10122
10123         list_for_each_entry_safe(filter, iter, filters, entry) {
10124                 path_put(&filter->path);
10125                 list_del(&filter->entry);
10126                 kfree(filter);
10127         }
10128 }
10129
10130 /*
10131  * Free existing address filters and optionally install new ones
10132  */
10133 static void perf_addr_filters_splice(struct perf_event *event,
10134                                      struct list_head *head)
10135 {
10136         unsigned long flags;
10137         LIST_HEAD(list);
10138
10139         if (!has_addr_filter(event))
10140                 return;
10141
10142         /* don't bother with children, they don't have their own filters */
10143         if (event->parent)
10144                 return;
10145
10146         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10147
10148         list_splice_init(&event->addr_filters.list, &list);
10149         if (head)
10150                 list_splice(head, &event->addr_filters.list);
10151
10152         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10153
10154         free_filters_list(&list);
10155 }
10156
10157 /*
10158  * Scan through mm's vmas and see if one of them matches the
10159  * @filter; if so, adjust filter's address range.
10160  * Called with mm::mmap_lock down for reading.
10161  */
10162 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10163                                    struct mm_struct *mm,
10164                                    struct perf_addr_filter_range *fr)
10165 {
10166         struct vm_area_struct *vma;
10167
10168         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10169                 if (!vma->vm_file)
10170                         continue;
10171
10172                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10173                         return;
10174         }
10175 }
10176
10177 /*
10178  * Update event's address range filters based on the
10179  * task's existing mappings, if any.
10180  */
10181 static void perf_event_addr_filters_apply(struct perf_event *event)
10182 {
10183         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10184         struct task_struct *task = READ_ONCE(event->ctx->task);
10185         struct perf_addr_filter *filter;
10186         struct mm_struct *mm = NULL;
10187         unsigned int count = 0;
10188         unsigned long flags;
10189
10190         /*
10191          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10192          * will stop on the parent's child_mutex that our caller is also holding
10193          */
10194         if (task == TASK_TOMBSTONE)
10195                 return;
10196
10197         if (ifh->nr_file_filters) {
10198                 mm = get_task_mm(event->ctx->task);
10199                 if (!mm)
10200                         goto restart;
10201
10202                 mmap_read_lock(mm);
10203         }
10204
10205         raw_spin_lock_irqsave(&ifh->lock, flags);
10206         list_for_each_entry(filter, &ifh->list, entry) {
10207                 if (filter->path.dentry) {
10208                         /*
10209                          * Adjust base offset if the filter is associated to a
10210                          * binary that needs to be mapped:
10211                          */
10212                         event->addr_filter_ranges[count].start = 0;
10213                         event->addr_filter_ranges[count].size = 0;
10214
10215                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10216                 } else {
10217                         event->addr_filter_ranges[count].start = filter->offset;
10218                         event->addr_filter_ranges[count].size  = filter->size;
10219                 }
10220
10221                 count++;
10222         }
10223
10224         event->addr_filters_gen++;
10225         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10226
10227         if (ifh->nr_file_filters) {
10228                 mmap_read_unlock(mm);
10229
10230                 mmput(mm);
10231         }
10232
10233 restart:
10234         perf_event_stop(event, 1);
10235 }
10236
10237 /*
10238  * Address range filtering: limiting the data to certain
10239  * instruction address ranges. Filters are ioctl()ed to us from
10240  * userspace as ascii strings.
10241  *
10242  * Filter string format:
10243  *
10244  * ACTION RANGE_SPEC
10245  * where ACTION is one of the
10246  *  * "filter": limit the trace to this region
10247  *  * "start": start tracing from this address
10248  *  * "stop": stop tracing at this address/region;
10249  * RANGE_SPEC is
10250  *  * for kernel addresses: <start address>[/<size>]
10251  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10252  *
10253  * if <size> is not specified or is zero, the range is treated as a single
10254  * address; not valid for ACTION=="filter".
10255  */
10256 enum {
10257         IF_ACT_NONE = -1,
10258         IF_ACT_FILTER,
10259         IF_ACT_START,
10260         IF_ACT_STOP,
10261         IF_SRC_FILE,
10262         IF_SRC_KERNEL,
10263         IF_SRC_FILEADDR,
10264         IF_SRC_KERNELADDR,
10265 };
10266
10267 enum {
10268         IF_STATE_ACTION = 0,
10269         IF_STATE_SOURCE,
10270         IF_STATE_END,
10271 };
10272
10273 static const match_table_t if_tokens = {
10274         { IF_ACT_FILTER,        "filter" },
10275         { IF_ACT_START,         "start" },
10276         { IF_ACT_STOP,          "stop" },
10277         { IF_SRC_FILE,          "%u/%u@%s" },
10278         { IF_SRC_KERNEL,        "%u/%u" },
10279         { IF_SRC_FILEADDR,      "%u@%s" },
10280         { IF_SRC_KERNELADDR,    "%u" },
10281         { IF_ACT_NONE,          NULL },
10282 };
10283
10284 /*
10285  * Address filter string parser
10286  */
10287 static int
10288 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10289                              struct list_head *filters)
10290 {
10291         struct perf_addr_filter *filter = NULL;
10292         char *start, *orig, *filename = NULL;
10293         substring_t args[MAX_OPT_ARGS];
10294         int state = IF_STATE_ACTION, token;
10295         unsigned int kernel = 0;
10296         int ret = -EINVAL;
10297
10298         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10299         if (!fstr)
10300                 return -ENOMEM;
10301
10302         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10303                 static const enum perf_addr_filter_action_t actions[] = {
10304                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10305                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10306                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10307                 };
10308                 ret = -EINVAL;
10309
10310                 if (!*start)
10311                         continue;
10312
10313                 /* filter definition begins */
10314                 if (state == IF_STATE_ACTION) {
10315                         filter = perf_addr_filter_new(event, filters);
10316                         if (!filter)
10317                                 goto fail;
10318                 }
10319
10320                 token = match_token(start, if_tokens, args);
10321                 switch (token) {
10322                 case IF_ACT_FILTER:
10323                 case IF_ACT_START:
10324                 case IF_ACT_STOP:
10325                         if (state != IF_STATE_ACTION)
10326                                 goto fail;
10327
10328                         filter->action = actions[token];
10329                         state = IF_STATE_SOURCE;
10330                         break;
10331
10332                 case IF_SRC_KERNELADDR:
10333                 case IF_SRC_KERNEL:
10334                         kernel = 1;
10335                         fallthrough;
10336
10337                 case IF_SRC_FILEADDR:
10338                 case IF_SRC_FILE:
10339                         if (state != IF_STATE_SOURCE)
10340                                 goto fail;
10341
10342                         *args[0].to = 0;
10343                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10344                         if (ret)
10345                                 goto fail;
10346
10347                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10348                                 *args[1].to = 0;
10349                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10350                                 if (ret)
10351                                         goto fail;
10352                         }
10353
10354                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10355                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10356
10357                                 kfree(filename);
10358                                 filename = match_strdup(&args[fpos]);
10359                                 if (!filename) {
10360                                         ret = -ENOMEM;
10361                                         goto fail;
10362                                 }
10363                         }
10364
10365                         state = IF_STATE_END;
10366                         break;
10367
10368                 default:
10369                         goto fail;
10370                 }
10371
10372                 /*
10373                  * Filter definition is fully parsed, validate and install it.
10374                  * Make sure that it doesn't contradict itself or the event's
10375                  * attribute.
10376                  */
10377                 if (state == IF_STATE_END) {
10378                         ret = -EINVAL;
10379                         if (kernel && event->attr.exclude_kernel)
10380                                 goto fail;
10381
10382                         /*
10383                          * ACTION "filter" must have a non-zero length region
10384                          * specified.
10385                          */
10386                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10387                             !filter->size)
10388                                 goto fail;
10389
10390                         if (!kernel) {
10391                                 if (!filename)
10392                                         goto fail;
10393
10394                                 /*
10395                                  * For now, we only support file-based filters
10396                                  * in per-task events; doing so for CPU-wide
10397                                  * events requires additional context switching
10398                                  * trickery, since same object code will be
10399                                  * mapped at different virtual addresses in
10400                                  * different processes.
10401                                  */
10402                                 ret = -EOPNOTSUPP;
10403                                 if (!event->ctx->task)
10404                                         goto fail;
10405
10406                                 /* look up the path and grab its inode */
10407                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10408                                                 &filter->path);
10409                                 if (ret)
10410                                         goto fail;
10411
10412                                 ret = -EINVAL;
10413                                 if (!filter->path.dentry ||
10414                                     !S_ISREG(d_inode(filter->path.dentry)
10415                                              ->i_mode))
10416                                         goto fail;
10417
10418                                 event->addr_filters.nr_file_filters++;
10419                         }
10420
10421                         /* ready to consume more filters */
10422                         state = IF_STATE_ACTION;
10423                         filter = NULL;
10424                 }
10425         }
10426
10427         if (state != IF_STATE_ACTION)
10428                 goto fail;
10429
10430         kfree(filename);
10431         kfree(orig);
10432
10433         return 0;
10434
10435 fail:
10436         kfree(filename);
10437         free_filters_list(filters);
10438         kfree(orig);
10439
10440         return ret;
10441 }
10442
10443 static int
10444 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10445 {
10446         LIST_HEAD(filters);
10447         int ret;
10448
10449         /*
10450          * Since this is called in perf_ioctl() path, we're already holding
10451          * ctx::mutex.
10452          */
10453         lockdep_assert_held(&event->ctx->mutex);
10454
10455         if (WARN_ON_ONCE(event->parent))
10456                 return -EINVAL;
10457
10458         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10459         if (ret)
10460                 goto fail_clear_files;
10461
10462         ret = event->pmu->addr_filters_validate(&filters);
10463         if (ret)
10464                 goto fail_free_filters;
10465
10466         /* remove existing filters, if any */
10467         perf_addr_filters_splice(event, &filters);
10468
10469         /* install new filters */
10470         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10471
10472         return ret;
10473
10474 fail_free_filters:
10475         free_filters_list(&filters);
10476
10477 fail_clear_files:
10478         event->addr_filters.nr_file_filters = 0;
10479
10480         return ret;
10481 }
10482
10483 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10484 {
10485         int ret = -EINVAL;
10486         char *filter_str;
10487
10488         filter_str = strndup_user(arg, PAGE_SIZE);
10489         if (IS_ERR(filter_str))
10490                 return PTR_ERR(filter_str);
10491
10492 #ifdef CONFIG_EVENT_TRACING
10493         if (perf_event_is_tracing(event)) {
10494                 struct perf_event_context *ctx = event->ctx;
10495
10496                 /*
10497                  * Beware, here be dragons!!
10498                  *
10499                  * the tracepoint muck will deadlock against ctx->mutex, but
10500                  * the tracepoint stuff does not actually need it. So
10501                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10502                  * already have a reference on ctx.
10503                  *
10504                  * This can result in event getting moved to a different ctx,
10505                  * but that does not affect the tracepoint state.
10506                  */
10507                 mutex_unlock(&ctx->mutex);
10508                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10509                 mutex_lock(&ctx->mutex);
10510         } else
10511 #endif
10512         if (has_addr_filter(event))
10513                 ret = perf_event_set_addr_filter(event, filter_str);
10514
10515         kfree(filter_str);
10516         return ret;
10517 }
10518
10519 /*
10520  * hrtimer based swevent callback
10521  */
10522
10523 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10524 {
10525         enum hrtimer_restart ret = HRTIMER_RESTART;
10526         struct perf_sample_data data;
10527         struct pt_regs *regs;
10528         struct perf_event *event;
10529         u64 period;
10530
10531         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10532
10533         if (event->state != PERF_EVENT_STATE_ACTIVE)
10534                 return HRTIMER_NORESTART;
10535
10536         event->pmu->read(event);
10537
10538         perf_sample_data_init(&data, 0, event->hw.last_period);
10539         regs = get_irq_regs();
10540
10541         if (regs && !perf_exclude_event(event, regs)) {
10542                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10543                         if (__perf_event_overflow(event, 1, &data, regs))
10544                                 ret = HRTIMER_NORESTART;
10545         }
10546
10547         period = max_t(u64, 10000, event->hw.sample_period);
10548         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10549
10550         return ret;
10551 }
10552
10553 static void perf_swevent_start_hrtimer(struct perf_event *event)
10554 {
10555         struct hw_perf_event *hwc = &event->hw;
10556         s64 period;
10557
10558         if (!is_sampling_event(event))
10559                 return;
10560
10561         period = local64_read(&hwc->period_left);
10562         if (period) {
10563                 if (period < 0)
10564                         period = 10000;
10565
10566                 local64_set(&hwc->period_left, 0);
10567         } else {
10568                 period = max_t(u64, 10000, hwc->sample_period);
10569         }
10570         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10571                       HRTIMER_MODE_REL_PINNED_HARD);
10572 }
10573
10574 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10575 {
10576         struct hw_perf_event *hwc = &event->hw;
10577
10578         if (is_sampling_event(event)) {
10579                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10580                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10581
10582                 hrtimer_cancel(&hwc->hrtimer);
10583         }
10584 }
10585
10586 static void perf_swevent_init_hrtimer(struct perf_event *event)
10587 {
10588         struct hw_perf_event *hwc = &event->hw;
10589
10590         if (!is_sampling_event(event))
10591                 return;
10592
10593         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10594         hwc->hrtimer.function = perf_swevent_hrtimer;
10595
10596         /*
10597          * Since hrtimers have a fixed rate, we can do a static freq->period
10598          * mapping and avoid the whole period adjust feedback stuff.
10599          */
10600         if (event->attr.freq) {
10601                 long freq = event->attr.sample_freq;
10602
10603                 event->attr.sample_period = NSEC_PER_SEC / freq;
10604                 hwc->sample_period = event->attr.sample_period;
10605                 local64_set(&hwc->period_left, hwc->sample_period);
10606                 hwc->last_period = hwc->sample_period;
10607                 event->attr.freq = 0;
10608         }
10609 }
10610
10611 /*
10612  * Software event: cpu wall time clock
10613  */
10614
10615 static void cpu_clock_event_update(struct perf_event *event)
10616 {
10617         s64 prev;
10618         u64 now;
10619
10620         now = local_clock();
10621         prev = local64_xchg(&event->hw.prev_count, now);
10622         local64_add(now - prev, &event->count);
10623 }
10624
10625 static void cpu_clock_event_start(struct perf_event *event, int flags)
10626 {
10627         local64_set(&event->hw.prev_count, local_clock());
10628         perf_swevent_start_hrtimer(event);
10629 }
10630
10631 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10632 {
10633         perf_swevent_cancel_hrtimer(event);
10634         cpu_clock_event_update(event);
10635 }
10636
10637 static int cpu_clock_event_add(struct perf_event *event, int flags)
10638 {
10639         if (flags & PERF_EF_START)
10640                 cpu_clock_event_start(event, flags);
10641         perf_event_update_userpage(event);
10642
10643         return 0;
10644 }
10645
10646 static void cpu_clock_event_del(struct perf_event *event, int flags)
10647 {
10648         cpu_clock_event_stop(event, flags);
10649 }
10650
10651 static void cpu_clock_event_read(struct perf_event *event)
10652 {
10653         cpu_clock_event_update(event);
10654 }
10655
10656 static int cpu_clock_event_init(struct perf_event *event)
10657 {
10658         if (event->attr.type != PERF_TYPE_SOFTWARE)
10659                 return -ENOENT;
10660
10661         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10662                 return -ENOENT;
10663
10664         /*
10665          * no branch sampling for software events
10666          */
10667         if (has_branch_stack(event))
10668                 return -EOPNOTSUPP;
10669
10670         perf_swevent_init_hrtimer(event);
10671
10672         return 0;
10673 }
10674
10675 static struct pmu perf_cpu_clock = {
10676         .task_ctx_nr    = perf_sw_context,
10677
10678         .capabilities   = PERF_PMU_CAP_NO_NMI,
10679
10680         .event_init     = cpu_clock_event_init,
10681         .add            = cpu_clock_event_add,
10682         .del            = cpu_clock_event_del,
10683         .start          = cpu_clock_event_start,
10684         .stop           = cpu_clock_event_stop,
10685         .read           = cpu_clock_event_read,
10686 };
10687
10688 /*
10689  * Software event: task time clock
10690  */
10691
10692 static void task_clock_event_update(struct perf_event *event, u64 now)
10693 {
10694         u64 prev;
10695         s64 delta;
10696
10697         prev = local64_xchg(&event->hw.prev_count, now);
10698         delta = now - prev;
10699         local64_add(delta, &event->count);
10700 }
10701
10702 static void task_clock_event_start(struct perf_event *event, int flags)
10703 {
10704         local64_set(&event->hw.prev_count, event->ctx->time);
10705         perf_swevent_start_hrtimer(event);
10706 }
10707
10708 static void task_clock_event_stop(struct perf_event *event, int flags)
10709 {
10710         perf_swevent_cancel_hrtimer(event);
10711         task_clock_event_update(event, event->ctx->time);
10712 }
10713
10714 static int task_clock_event_add(struct perf_event *event, int flags)
10715 {
10716         if (flags & PERF_EF_START)
10717                 task_clock_event_start(event, flags);
10718         perf_event_update_userpage(event);
10719
10720         return 0;
10721 }
10722
10723 static void task_clock_event_del(struct perf_event *event, int flags)
10724 {
10725         task_clock_event_stop(event, PERF_EF_UPDATE);
10726 }
10727
10728 static void task_clock_event_read(struct perf_event *event)
10729 {
10730         u64 now = perf_clock();
10731         u64 delta = now - event->ctx->timestamp;
10732         u64 time = event->ctx->time + delta;
10733
10734         task_clock_event_update(event, time);
10735 }
10736
10737 static int task_clock_event_init(struct perf_event *event)
10738 {
10739         if (event->attr.type != PERF_TYPE_SOFTWARE)
10740                 return -ENOENT;
10741
10742         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10743                 return -ENOENT;
10744
10745         /*
10746          * no branch sampling for software events
10747          */
10748         if (has_branch_stack(event))
10749                 return -EOPNOTSUPP;
10750
10751         perf_swevent_init_hrtimer(event);
10752
10753         return 0;
10754 }
10755
10756 static struct pmu perf_task_clock = {
10757         .task_ctx_nr    = perf_sw_context,
10758
10759         .capabilities   = PERF_PMU_CAP_NO_NMI,
10760
10761         .event_init     = task_clock_event_init,
10762         .add            = task_clock_event_add,
10763         .del            = task_clock_event_del,
10764         .start          = task_clock_event_start,
10765         .stop           = task_clock_event_stop,
10766         .read           = task_clock_event_read,
10767 };
10768
10769 static void perf_pmu_nop_void(struct pmu *pmu)
10770 {
10771 }
10772
10773 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10774 {
10775 }
10776
10777 static int perf_pmu_nop_int(struct pmu *pmu)
10778 {
10779         return 0;
10780 }
10781
10782 static int perf_event_nop_int(struct perf_event *event, u64 value)
10783 {
10784         return 0;
10785 }
10786
10787 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10788
10789 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10790 {
10791         __this_cpu_write(nop_txn_flags, flags);
10792
10793         if (flags & ~PERF_PMU_TXN_ADD)
10794                 return;
10795
10796         perf_pmu_disable(pmu);
10797 }
10798
10799 static int perf_pmu_commit_txn(struct pmu *pmu)
10800 {
10801         unsigned int flags = __this_cpu_read(nop_txn_flags);
10802
10803         __this_cpu_write(nop_txn_flags, 0);
10804
10805         if (flags & ~PERF_PMU_TXN_ADD)
10806                 return 0;
10807
10808         perf_pmu_enable(pmu);
10809         return 0;
10810 }
10811
10812 static void perf_pmu_cancel_txn(struct pmu *pmu)
10813 {
10814         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10815
10816         __this_cpu_write(nop_txn_flags, 0);
10817
10818         if (flags & ~PERF_PMU_TXN_ADD)
10819                 return;
10820
10821         perf_pmu_enable(pmu);
10822 }
10823
10824 static int perf_event_idx_default(struct perf_event *event)
10825 {
10826         return 0;
10827 }
10828
10829 /*
10830  * Ensures all contexts with the same task_ctx_nr have the same
10831  * pmu_cpu_context too.
10832  */
10833 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10834 {
10835         struct pmu *pmu;
10836
10837         if (ctxn < 0)
10838                 return NULL;
10839
10840         list_for_each_entry(pmu, &pmus, entry) {
10841                 if (pmu->task_ctx_nr == ctxn)
10842                         return pmu->pmu_cpu_context;
10843         }
10844
10845         return NULL;
10846 }
10847
10848 static void free_pmu_context(struct pmu *pmu)
10849 {
10850         /*
10851          * Static contexts such as perf_sw_context have a global lifetime
10852          * and may be shared between different PMUs. Avoid freeing them
10853          * when a single PMU is going away.
10854          */
10855         if (pmu->task_ctx_nr > perf_invalid_context)
10856                 return;
10857
10858         free_percpu(pmu->pmu_cpu_context);
10859 }
10860
10861 /*
10862  * Let userspace know that this PMU supports address range filtering:
10863  */
10864 static ssize_t nr_addr_filters_show(struct device *dev,
10865                                     struct device_attribute *attr,
10866                                     char *page)
10867 {
10868         struct pmu *pmu = dev_get_drvdata(dev);
10869
10870         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10871 }
10872 DEVICE_ATTR_RO(nr_addr_filters);
10873
10874 static struct idr pmu_idr;
10875
10876 static ssize_t
10877 type_show(struct device *dev, struct device_attribute *attr, char *page)
10878 {
10879         struct pmu *pmu = dev_get_drvdata(dev);
10880
10881         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10882 }
10883 static DEVICE_ATTR_RO(type);
10884
10885 static ssize_t
10886 perf_event_mux_interval_ms_show(struct device *dev,
10887                                 struct device_attribute *attr,
10888                                 char *page)
10889 {
10890         struct pmu *pmu = dev_get_drvdata(dev);
10891
10892         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10893 }
10894
10895 static DEFINE_MUTEX(mux_interval_mutex);
10896
10897 static ssize_t
10898 perf_event_mux_interval_ms_store(struct device *dev,
10899                                  struct device_attribute *attr,
10900                                  const char *buf, size_t count)
10901 {
10902         struct pmu *pmu = dev_get_drvdata(dev);
10903         int timer, cpu, ret;
10904
10905         ret = kstrtoint(buf, 0, &timer);
10906         if (ret)
10907                 return ret;
10908
10909         if (timer < 1)
10910                 return -EINVAL;
10911
10912         /* same value, noting to do */
10913         if (timer == pmu->hrtimer_interval_ms)
10914                 return count;
10915
10916         mutex_lock(&mux_interval_mutex);
10917         pmu->hrtimer_interval_ms = timer;
10918
10919         /* update all cpuctx for this PMU */
10920         cpus_read_lock();
10921         for_each_online_cpu(cpu) {
10922                 struct perf_cpu_context *cpuctx;
10923                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10924                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10925
10926                 cpu_function_call(cpu,
10927                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10928         }
10929         cpus_read_unlock();
10930         mutex_unlock(&mux_interval_mutex);
10931
10932         return count;
10933 }
10934 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10935
10936 static struct attribute *pmu_dev_attrs[] = {
10937         &dev_attr_type.attr,
10938         &dev_attr_perf_event_mux_interval_ms.attr,
10939         NULL,
10940 };
10941 ATTRIBUTE_GROUPS(pmu_dev);
10942
10943 static int pmu_bus_running;
10944 static struct bus_type pmu_bus = {
10945         .name           = "event_source",
10946         .dev_groups     = pmu_dev_groups,
10947 };
10948
10949 static void pmu_dev_release(struct device *dev)
10950 {
10951         kfree(dev);
10952 }
10953
10954 static int pmu_dev_alloc(struct pmu *pmu)
10955 {
10956         int ret = -ENOMEM;
10957
10958         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
10959         if (!pmu->dev)
10960                 goto out;
10961
10962         pmu->dev->groups = pmu->attr_groups;
10963         device_initialize(pmu->dev);
10964         ret = dev_set_name(pmu->dev, "%s", pmu->name);
10965         if (ret)
10966                 goto free_dev;
10967
10968         dev_set_drvdata(pmu->dev, pmu);
10969         pmu->dev->bus = &pmu_bus;
10970         pmu->dev->release = pmu_dev_release;
10971         ret = device_add(pmu->dev);
10972         if (ret)
10973                 goto free_dev;
10974
10975         /* For PMUs with address filters, throw in an extra attribute: */
10976         if (pmu->nr_addr_filters)
10977                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
10978
10979         if (ret)
10980                 goto del_dev;
10981
10982         if (pmu->attr_update)
10983                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
10984
10985         if (ret)
10986                 goto del_dev;
10987
10988 out:
10989         return ret;
10990
10991 del_dev:
10992         device_del(pmu->dev);
10993
10994 free_dev:
10995         put_device(pmu->dev);
10996         goto out;
10997 }
10998
10999 static struct lock_class_key cpuctx_mutex;
11000 static struct lock_class_key cpuctx_lock;
11001
11002 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11003 {
11004         int cpu, ret, max = PERF_TYPE_MAX;
11005
11006         mutex_lock(&pmus_lock);
11007         ret = -ENOMEM;
11008         pmu->pmu_disable_count = alloc_percpu(int);
11009         if (!pmu->pmu_disable_count)
11010                 goto unlock;
11011
11012         pmu->type = -1;
11013         if (!name)
11014                 goto skip_type;
11015         pmu->name = name;
11016
11017         if (type != PERF_TYPE_SOFTWARE) {
11018                 if (type >= 0)
11019                         max = type;
11020
11021                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11022                 if (ret < 0)
11023                         goto free_pdc;
11024
11025                 WARN_ON(type >= 0 && ret != type);
11026
11027                 type = ret;
11028         }
11029         pmu->type = type;
11030
11031         if (pmu_bus_running) {
11032                 ret = pmu_dev_alloc(pmu);
11033                 if (ret)
11034                         goto free_idr;
11035         }
11036
11037 skip_type:
11038         if (pmu->task_ctx_nr == perf_hw_context) {
11039                 static int hw_context_taken = 0;
11040
11041                 /*
11042                  * Other than systems with heterogeneous CPUs, it never makes
11043                  * sense for two PMUs to share perf_hw_context. PMUs which are
11044                  * uncore must use perf_invalid_context.
11045                  */
11046                 if (WARN_ON_ONCE(hw_context_taken &&
11047                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11048                         pmu->task_ctx_nr = perf_invalid_context;
11049
11050                 hw_context_taken = 1;
11051         }
11052
11053         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11054         if (pmu->pmu_cpu_context)
11055                 goto got_cpu_context;
11056
11057         ret = -ENOMEM;
11058         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11059         if (!pmu->pmu_cpu_context)
11060                 goto free_dev;
11061
11062         for_each_possible_cpu(cpu) {
11063                 struct perf_cpu_context *cpuctx;
11064
11065                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11066                 __perf_event_init_context(&cpuctx->ctx);
11067                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11068                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11069                 cpuctx->ctx.pmu = pmu;
11070                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11071
11072                 __perf_mux_hrtimer_init(cpuctx, cpu);
11073
11074                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11075                 cpuctx->heap = cpuctx->heap_default;
11076         }
11077
11078 got_cpu_context:
11079         if (!pmu->start_txn) {
11080                 if (pmu->pmu_enable) {
11081                         /*
11082                          * If we have pmu_enable/pmu_disable calls, install
11083                          * transaction stubs that use that to try and batch
11084                          * hardware accesses.
11085                          */
11086                         pmu->start_txn  = perf_pmu_start_txn;
11087                         pmu->commit_txn = perf_pmu_commit_txn;
11088                         pmu->cancel_txn = perf_pmu_cancel_txn;
11089                 } else {
11090                         pmu->start_txn  = perf_pmu_nop_txn;
11091                         pmu->commit_txn = perf_pmu_nop_int;
11092                         pmu->cancel_txn = perf_pmu_nop_void;
11093                 }
11094         }
11095
11096         if (!pmu->pmu_enable) {
11097                 pmu->pmu_enable  = perf_pmu_nop_void;
11098                 pmu->pmu_disable = perf_pmu_nop_void;
11099         }
11100
11101         if (!pmu->check_period)
11102                 pmu->check_period = perf_event_nop_int;
11103
11104         if (!pmu->event_idx)
11105                 pmu->event_idx = perf_event_idx_default;
11106
11107         /*
11108          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11109          * since these cannot be in the IDR. This way the linear search
11110          * is fast, provided a valid software event is provided.
11111          */
11112         if (type == PERF_TYPE_SOFTWARE || !name)
11113                 list_add_rcu(&pmu->entry, &pmus);
11114         else
11115                 list_add_tail_rcu(&pmu->entry, &pmus);
11116
11117         atomic_set(&pmu->exclusive_cnt, 0);
11118         ret = 0;
11119 unlock:
11120         mutex_unlock(&pmus_lock);
11121
11122         return ret;
11123
11124 free_dev:
11125         device_del(pmu->dev);
11126         put_device(pmu->dev);
11127
11128 free_idr:
11129         if (pmu->type != PERF_TYPE_SOFTWARE)
11130                 idr_remove(&pmu_idr, pmu->type);
11131
11132 free_pdc:
11133         free_percpu(pmu->pmu_disable_count);
11134         goto unlock;
11135 }
11136 EXPORT_SYMBOL_GPL(perf_pmu_register);
11137
11138 void perf_pmu_unregister(struct pmu *pmu)
11139 {
11140         mutex_lock(&pmus_lock);
11141         list_del_rcu(&pmu->entry);
11142
11143         /*
11144          * We dereference the pmu list under both SRCU and regular RCU, so
11145          * synchronize against both of those.
11146          */
11147         synchronize_srcu(&pmus_srcu);
11148         synchronize_rcu();
11149
11150         free_percpu(pmu->pmu_disable_count);
11151         if (pmu->type != PERF_TYPE_SOFTWARE)
11152                 idr_remove(&pmu_idr, pmu->type);
11153         if (pmu_bus_running) {
11154                 if (pmu->nr_addr_filters)
11155                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11156                 device_del(pmu->dev);
11157                 put_device(pmu->dev);
11158         }
11159         free_pmu_context(pmu);
11160         mutex_unlock(&pmus_lock);
11161 }
11162 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11163
11164 static inline bool has_extended_regs(struct perf_event *event)
11165 {
11166         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11167                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11168 }
11169
11170 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11171 {
11172         struct perf_event_context *ctx = NULL;
11173         int ret;
11174
11175         if (!try_module_get(pmu->module))
11176                 return -ENODEV;
11177
11178         /*
11179          * A number of pmu->event_init() methods iterate the sibling_list to,
11180          * for example, validate if the group fits on the PMU. Therefore,
11181          * if this is a sibling event, acquire the ctx->mutex to protect
11182          * the sibling_list.
11183          */
11184         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11185                 /*
11186                  * This ctx->mutex can nest when we're called through
11187                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11188                  */
11189                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11190                                                  SINGLE_DEPTH_NESTING);
11191                 BUG_ON(!ctx);
11192         }
11193
11194         event->pmu = pmu;
11195         ret = pmu->event_init(event);
11196
11197         if (ctx)
11198                 perf_event_ctx_unlock(event->group_leader, ctx);
11199
11200         if (!ret) {
11201                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11202                     has_extended_regs(event))
11203                         ret = -EOPNOTSUPP;
11204
11205                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11206                     event_has_any_exclude_flag(event))
11207                         ret = -EINVAL;
11208
11209                 if (ret && event->destroy)
11210                         event->destroy(event);
11211         }
11212
11213         if (ret)
11214                 module_put(pmu->module);
11215
11216         return ret;
11217 }
11218
11219 static struct pmu *perf_init_event(struct perf_event *event)
11220 {
11221         bool extended_type = false;
11222         int idx, type, ret;
11223         struct pmu *pmu;
11224
11225         idx = srcu_read_lock(&pmus_srcu);
11226
11227         /* Try parent's PMU first: */
11228         if (event->parent && event->parent->pmu) {
11229                 pmu = event->parent->pmu;
11230                 ret = perf_try_init_event(pmu, event);
11231                 if (!ret)
11232                         goto unlock;
11233         }
11234
11235         /*
11236          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11237          * are often aliases for PERF_TYPE_RAW.
11238          */
11239         type = event->attr.type;
11240         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11241                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11242                 if (!type) {
11243                         type = PERF_TYPE_RAW;
11244                 } else {
11245                         extended_type = true;
11246                         event->attr.config &= PERF_HW_EVENT_MASK;
11247                 }
11248         }
11249
11250 again:
11251         rcu_read_lock();
11252         pmu = idr_find(&pmu_idr, type);
11253         rcu_read_unlock();
11254         if (pmu) {
11255                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11256                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11257                         goto fail;
11258
11259                 ret = perf_try_init_event(pmu, event);
11260                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11261                         type = event->attr.type;
11262                         goto again;
11263                 }
11264
11265                 if (ret)
11266                         pmu = ERR_PTR(ret);
11267
11268                 goto unlock;
11269         }
11270
11271         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11272                 ret = perf_try_init_event(pmu, event);
11273                 if (!ret)
11274                         goto unlock;
11275
11276                 if (ret != -ENOENT) {
11277                         pmu = ERR_PTR(ret);
11278                         goto unlock;
11279                 }
11280         }
11281 fail:
11282         pmu = ERR_PTR(-ENOENT);
11283 unlock:
11284         srcu_read_unlock(&pmus_srcu, idx);
11285
11286         return pmu;
11287 }
11288
11289 static void attach_sb_event(struct perf_event *event)
11290 {
11291         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11292
11293         raw_spin_lock(&pel->lock);
11294         list_add_rcu(&event->sb_list, &pel->list);
11295         raw_spin_unlock(&pel->lock);
11296 }
11297
11298 /*
11299  * We keep a list of all !task (and therefore per-cpu) events
11300  * that need to receive side-band records.
11301  *
11302  * This avoids having to scan all the various PMU per-cpu contexts
11303  * looking for them.
11304  */
11305 static void account_pmu_sb_event(struct perf_event *event)
11306 {
11307         if (is_sb_event(event))
11308                 attach_sb_event(event);
11309 }
11310
11311 static void account_event_cpu(struct perf_event *event, int cpu)
11312 {
11313         if (event->parent)
11314                 return;
11315
11316         if (is_cgroup_event(event))
11317                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11318 }
11319
11320 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11321 static void account_freq_event_nohz(void)
11322 {
11323 #ifdef CONFIG_NO_HZ_FULL
11324         /* Lock so we don't race with concurrent unaccount */
11325         spin_lock(&nr_freq_lock);
11326         if (atomic_inc_return(&nr_freq_events) == 1)
11327                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11328         spin_unlock(&nr_freq_lock);
11329 #endif
11330 }
11331
11332 static void account_freq_event(void)
11333 {
11334         if (tick_nohz_full_enabled())
11335                 account_freq_event_nohz();
11336         else
11337                 atomic_inc(&nr_freq_events);
11338 }
11339
11340
11341 static void account_event(struct perf_event *event)
11342 {
11343         bool inc = false;
11344
11345         if (event->parent)
11346                 return;
11347
11348         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11349                 inc = true;
11350         if (event->attr.mmap || event->attr.mmap_data)
11351                 atomic_inc(&nr_mmap_events);
11352         if (event->attr.build_id)
11353                 atomic_inc(&nr_build_id_events);
11354         if (event->attr.comm)
11355                 atomic_inc(&nr_comm_events);
11356         if (event->attr.namespaces)
11357                 atomic_inc(&nr_namespaces_events);
11358         if (event->attr.cgroup)
11359                 atomic_inc(&nr_cgroup_events);
11360         if (event->attr.task)
11361                 atomic_inc(&nr_task_events);
11362         if (event->attr.freq)
11363                 account_freq_event();
11364         if (event->attr.context_switch) {
11365                 atomic_inc(&nr_switch_events);
11366                 inc = true;
11367         }
11368         if (has_branch_stack(event))
11369                 inc = true;
11370         if (is_cgroup_event(event))
11371                 inc = true;
11372         if (event->attr.ksymbol)
11373                 atomic_inc(&nr_ksymbol_events);
11374         if (event->attr.bpf_event)
11375                 atomic_inc(&nr_bpf_events);
11376         if (event->attr.text_poke)
11377                 atomic_inc(&nr_text_poke_events);
11378
11379         if (inc) {
11380                 /*
11381                  * We need the mutex here because static_branch_enable()
11382                  * must complete *before* the perf_sched_count increment
11383                  * becomes visible.
11384                  */
11385                 if (atomic_inc_not_zero(&perf_sched_count))
11386                         goto enabled;
11387
11388                 mutex_lock(&perf_sched_mutex);
11389                 if (!atomic_read(&perf_sched_count)) {
11390                         static_branch_enable(&perf_sched_events);
11391                         /*
11392                          * Guarantee that all CPUs observe they key change and
11393                          * call the perf scheduling hooks before proceeding to
11394                          * install events that need them.
11395                          */
11396                         synchronize_rcu();
11397                 }
11398                 /*
11399                  * Now that we have waited for the sync_sched(), allow further
11400                  * increments to by-pass the mutex.
11401                  */
11402                 atomic_inc(&perf_sched_count);
11403                 mutex_unlock(&perf_sched_mutex);
11404         }
11405 enabled:
11406
11407         account_event_cpu(event, event->cpu);
11408
11409         account_pmu_sb_event(event);
11410 }
11411
11412 /*
11413  * Allocate and initialize an event structure
11414  */
11415 static struct perf_event *
11416 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11417                  struct task_struct *task,
11418                  struct perf_event *group_leader,
11419                  struct perf_event *parent_event,
11420                  perf_overflow_handler_t overflow_handler,
11421                  void *context, int cgroup_fd)
11422 {
11423         struct pmu *pmu;
11424         struct perf_event *event;
11425         struct hw_perf_event *hwc;
11426         long err = -EINVAL;
11427         int node;
11428
11429         if ((unsigned)cpu >= nr_cpu_ids) {
11430                 if (!task || cpu != -1)
11431                         return ERR_PTR(-EINVAL);
11432         }
11433         if (attr->sigtrap && !task) {
11434                 /* Requires a task: avoid signalling random tasks. */
11435                 return ERR_PTR(-EINVAL);
11436         }
11437
11438         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11439         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11440                                       node);
11441         if (!event)
11442                 return ERR_PTR(-ENOMEM);
11443
11444         /*
11445          * Single events are their own group leaders, with an
11446          * empty sibling list:
11447          */
11448         if (!group_leader)
11449                 group_leader = event;
11450
11451         mutex_init(&event->child_mutex);
11452         INIT_LIST_HEAD(&event->child_list);
11453
11454         INIT_LIST_HEAD(&event->event_entry);
11455         INIT_LIST_HEAD(&event->sibling_list);
11456         INIT_LIST_HEAD(&event->active_list);
11457         init_event_group(event);
11458         INIT_LIST_HEAD(&event->rb_entry);
11459         INIT_LIST_HEAD(&event->active_entry);
11460         INIT_LIST_HEAD(&event->addr_filters.list);
11461         INIT_HLIST_NODE(&event->hlist_entry);
11462
11463
11464         init_waitqueue_head(&event->waitq);
11465         event->pending_disable = -1;
11466         init_irq_work(&event->pending, perf_pending_event);
11467
11468         mutex_init(&event->mmap_mutex);
11469         raw_spin_lock_init(&event->addr_filters.lock);
11470
11471         atomic_long_set(&event->refcount, 1);
11472         event->cpu              = cpu;
11473         event->attr             = *attr;
11474         event->group_leader     = group_leader;
11475         event->pmu              = NULL;
11476         event->oncpu            = -1;
11477
11478         event->parent           = parent_event;
11479
11480         event->ns               = get_pid_ns(task_active_pid_ns(current));
11481         event->id               = atomic64_inc_return(&perf_event_id);
11482
11483         event->state            = PERF_EVENT_STATE_INACTIVE;
11484
11485         if (event->attr.sigtrap)
11486                 atomic_set(&event->event_limit, 1);
11487
11488         if (task) {
11489                 event->attach_state = PERF_ATTACH_TASK;
11490                 /*
11491                  * XXX pmu::event_init needs to know what task to account to
11492                  * and we cannot use the ctx information because we need the
11493                  * pmu before we get a ctx.
11494                  */
11495                 event->hw.target = get_task_struct(task);
11496         }
11497
11498         event->clock = &local_clock;
11499         if (parent_event)
11500                 event->clock = parent_event->clock;
11501
11502         if (!overflow_handler && parent_event) {
11503                 overflow_handler = parent_event->overflow_handler;
11504                 context = parent_event->overflow_handler_context;
11505 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11506                 if (overflow_handler == bpf_overflow_handler) {
11507                         struct bpf_prog *prog = parent_event->prog;
11508
11509                         bpf_prog_inc(prog);
11510                         event->prog = prog;
11511                         event->orig_overflow_handler =
11512                                 parent_event->orig_overflow_handler;
11513                 }
11514 #endif
11515         }
11516
11517         if (overflow_handler) {
11518                 event->overflow_handler = overflow_handler;
11519                 event->overflow_handler_context = context;
11520         } else if (is_write_backward(event)){
11521                 event->overflow_handler = perf_event_output_backward;
11522                 event->overflow_handler_context = NULL;
11523         } else {
11524                 event->overflow_handler = perf_event_output_forward;
11525                 event->overflow_handler_context = NULL;
11526         }
11527
11528         perf_event__state_init(event);
11529
11530         pmu = NULL;
11531
11532         hwc = &event->hw;
11533         hwc->sample_period = attr->sample_period;
11534         if (attr->freq && attr->sample_freq)
11535                 hwc->sample_period = 1;
11536         hwc->last_period = hwc->sample_period;
11537
11538         local64_set(&hwc->period_left, hwc->sample_period);
11539
11540         /*
11541          * We currently do not support PERF_SAMPLE_READ on inherited events.
11542          * See perf_output_read().
11543          */
11544         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11545                 goto err_ns;
11546
11547         if (!has_branch_stack(event))
11548                 event->attr.branch_sample_type = 0;
11549
11550         pmu = perf_init_event(event);
11551         if (IS_ERR(pmu)) {
11552                 err = PTR_ERR(pmu);
11553                 goto err_ns;
11554         }
11555
11556         /*
11557          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11558          * be different on other CPUs in the uncore mask.
11559          */
11560         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11561                 err = -EINVAL;
11562                 goto err_pmu;
11563         }
11564
11565         if (event->attr.aux_output &&
11566             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11567                 err = -EOPNOTSUPP;
11568                 goto err_pmu;
11569         }
11570
11571         if (cgroup_fd != -1) {
11572                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11573                 if (err)
11574                         goto err_pmu;
11575         }
11576
11577         err = exclusive_event_init(event);
11578         if (err)
11579                 goto err_pmu;
11580
11581         if (has_addr_filter(event)) {
11582                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11583                                                     sizeof(struct perf_addr_filter_range),
11584                                                     GFP_KERNEL);
11585                 if (!event->addr_filter_ranges) {
11586                         err = -ENOMEM;
11587                         goto err_per_task;
11588                 }
11589
11590                 /*
11591                  * Clone the parent's vma offsets: they are valid until exec()
11592                  * even if the mm is not shared with the parent.
11593                  */
11594                 if (event->parent) {
11595                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11596
11597                         raw_spin_lock_irq(&ifh->lock);
11598                         memcpy(event->addr_filter_ranges,
11599                                event->parent->addr_filter_ranges,
11600                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11601                         raw_spin_unlock_irq(&ifh->lock);
11602                 }
11603
11604                 /* force hw sync on the address filters */
11605                 event->addr_filters_gen = 1;
11606         }
11607
11608         if (!event->parent) {
11609                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11610                         err = get_callchain_buffers(attr->sample_max_stack);
11611                         if (err)
11612                                 goto err_addr_filters;
11613                 }
11614         }
11615
11616         err = security_perf_event_alloc(event);
11617         if (err)
11618                 goto err_callchain_buffer;
11619
11620         /* symmetric to unaccount_event() in _free_event() */
11621         account_event(event);
11622
11623         return event;
11624
11625 err_callchain_buffer:
11626         if (!event->parent) {
11627                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11628                         put_callchain_buffers();
11629         }
11630 err_addr_filters:
11631         kfree(event->addr_filter_ranges);
11632
11633 err_per_task:
11634         exclusive_event_destroy(event);
11635
11636 err_pmu:
11637         if (is_cgroup_event(event))
11638                 perf_detach_cgroup(event);
11639         if (event->destroy)
11640                 event->destroy(event);
11641         module_put(pmu->module);
11642 err_ns:
11643         if (event->ns)
11644                 put_pid_ns(event->ns);
11645         if (event->hw.target)
11646                 put_task_struct(event->hw.target);
11647         kmem_cache_free(perf_event_cache, event);
11648
11649         return ERR_PTR(err);
11650 }
11651
11652 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11653                           struct perf_event_attr *attr)
11654 {
11655         u32 size;
11656         int ret;
11657
11658         /* Zero the full structure, so that a short copy will be nice. */
11659         memset(attr, 0, sizeof(*attr));
11660
11661         ret = get_user(size, &uattr->size);
11662         if (ret)
11663                 return ret;
11664
11665         /* ABI compatibility quirk: */
11666         if (!size)
11667                 size = PERF_ATTR_SIZE_VER0;
11668         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11669                 goto err_size;
11670
11671         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11672         if (ret) {
11673                 if (ret == -E2BIG)
11674                         goto err_size;
11675                 return ret;
11676         }
11677
11678         attr->size = size;
11679
11680         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11681                 return -EINVAL;
11682
11683         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11684                 return -EINVAL;
11685
11686         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11687                 return -EINVAL;
11688
11689         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11690                 u64 mask = attr->branch_sample_type;
11691
11692                 /* only using defined bits */
11693                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11694                         return -EINVAL;
11695
11696                 /* at least one branch bit must be set */
11697                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11698                         return -EINVAL;
11699
11700                 /* propagate priv level, when not set for branch */
11701                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11702
11703                         /* exclude_kernel checked on syscall entry */
11704                         if (!attr->exclude_kernel)
11705                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11706
11707                         if (!attr->exclude_user)
11708                                 mask |= PERF_SAMPLE_BRANCH_USER;
11709
11710                         if (!attr->exclude_hv)
11711                                 mask |= PERF_SAMPLE_BRANCH_HV;
11712                         /*
11713                          * adjust user setting (for HW filter setup)
11714                          */
11715                         attr->branch_sample_type = mask;
11716                 }
11717                 /* privileged levels capture (kernel, hv): check permissions */
11718                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11719                         ret = perf_allow_kernel(attr);
11720                         if (ret)
11721                                 return ret;
11722                 }
11723         }
11724
11725         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11726                 ret = perf_reg_validate(attr->sample_regs_user);
11727                 if (ret)
11728                         return ret;
11729         }
11730
11731         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11732                 if (!arch_perf_have_user_stack_dump())
11733                         return -ENOSYS;
11734
11735                 /*
11736                  * We have __u32 type for the size, but so far
11737                  * we can only use __u16 as maximum due to the
11738                  * __u16 sample size limit.
11739                  */
11740                 if (attr->sample_stack_user >= USHRT_MAX)
11741                         return -EINVAL;
11742                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11743                         return -EINVAL;
11744         }
11745
11746         if (!attr->sample_max_stack)
11747                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11748
11749         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11750                 ret = perf_reg_validate(attr->sample_regs_intr);
11751
11752 #ifndef CONFIG_CGROUP_PERF
11753         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11754                 return -EINVAL;
11755 #endif
11756         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11757             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11758                 return -EINVAL;
11759
11760         if (!attr->inherit && attr->inherit_thread)
11761                 return -EINVAL;
11762
11763         if (attr->remove_on_exec && attr->enable_on_exec)
11764                 return -EINVAL;
11765
11766         if (attr->sigtrap && !attr->remove_on_exec)
11767                 return -EINVAL;
11768
11769 out:
11770         return ret;
11771
11772 err_size:
11773         put_user(sizeof(*attr), &uattr->size);
11774         ret = -E2BIG;
11775         goto out;
11776 }
11777
11778 static int
11779 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11780 {
11781         struct perf_buffer *rb = NULL;
11782         int ret = -EINVAL;
11783
11784         if (!output_event)
11785                 goto set;
11786
11787         /* don't allow circular references */
11788         if (event == output_event)
11789                 goto out;
11790
11791         /*
11792          * Don't allow cross-cpu buffers
11793          */
11794         if (output_event->cpu != event->cpu)
11795                 goto out;
11796
11797         /*
11798          * If its not a per-cpu rb, it must be the same task.
11799          */
11800         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11801                 goto out;
11802
11803         /*
11804          * Mixing clocks in the same buffer is trouble you don't need.
11805          */
11806         if (output_event->clock != event->clock)
11807                 goto out;
11808
11809         /*
11810          * Either writing ring buffer from beginning or from end.
11811          * Mixing is not allowed.
11812          */
11813         if (is_write_backward(output_event) != is_write_backward(event))
11814                 goto out;
11815
11816         /*
11817          * If both events generate aux data, they must be on the same PMU
11818          */
11819         if (has_aux(event) && has_aux(output_event) &&
11820             event->pmu != output_event->pmu)
11821                 goto out;
11822
11823 set:
11824         mutex_lock(&event->mmap_mutex);
11825         /* Can't redirect output if we've got an active mmap() */
11826         if (atomic_read(&event->mmap_count))
11827                 goto unlock;
11828
11829         if (output_event) {
11830                 /* get the rb we want to redirect to */
11831                 rb = ring_buffer_get(output_event);
11832                 if (!rb)
11833                         goto unlock;
11834         }
11835
11836         ring_buffer_attach(event, rb);
11837
11838         ret = 0;
11839 unlock:
11840         mutex_unlock(&event->mmap_mutex);
11841
11842 out:
11843         return ret;
11844 }
11845
11846 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11847 {
11848         if (b < a)
11849                 swap(a, b);
11850
11851         mutex_lock(a);
11852         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11853 }
11854
11855 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11856 {
11857         bool nmi_safe = false;
11858
11859         switch (clk_id) {
11860         case CLOCK_MONOTONIC:
11861                 event->clock = &ktime_get_mono_fast_ns;
11862                 nmi_safe = true;
11863                 break;
11864
11865         case CLOCK_MONOTONIC_RAW:
11866                 event->clock = &ktime_get_raw_fast_ns;
11867                 nmi_safe = true;
11868                 break;
11869
11870         case CLOCK_REALTIME:
11871                 event->clock = &ktime_get_real_ns;
11872                 break;
11873
11874         case CLOCK_BOOTTIME:
11875                 event->clock = &ktime_get_boottime_ns;
11876                 break;
11877
11878         case CLOCK_TAI:
11879                 event->clock = &ktime_get_clocktai_ns;
11880                 break;
11881
11882         default:
11883                 return -EINVAL;
11884         }
11885
11886         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11887                 return -EINVAL;
11888
11889         return 0;
11890 }
11891
11892 /*
11893  * Variation on perf_event_ctx_lock_nested(), except we take two context
11894  * mutexes.
11895  */
11896 static struct perf_event_context *
11897 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11898                              struct perf_event_context *ctx)
11899 {
11900         struct perf_event_context *gctx;
11901
11902 again:
11903         rcu_read_lock();
11904         gctx = READ_ONCE(group_leader->ctx);
11905         if (!refcount_inc_not_zero(&gctx->refcount)) {
11906                 rcu_read_unlock();
11907                 goto again;
11908         }
11909         rcu_read_unlock();
11910
11911         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11912
11913         if (group_leader->ctx != gctx) {
11914                 mutex_unlock(&ctx->mutex);
11915                 mutex_unlock(&gctx->mutex);
11916                 put_ctx(gctx);
11917                 goto again;
11918         }
11919
11920         return gctx;
11921 }
11922
11923 static bool
11924 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11925 {
11926         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11927         bool is_capable = perfmon_capable();
11928
11929         if (attr->sigtrap) {
11930                 /*
11931                  * perf_event_attr::sigtrap sends signals to the other task.
11932                  * Require the current task to also have CAP_KILL.
11933                  */
11934                 rcu_read_lock();
11935                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11936                 rcu_read_unlock();
11937
11938                 /*
11939                  * If the required capabilities aren't available, checks for
11940                  * ptrace permissions: upgrade to ATTACH, since sending signals
11941                  * can effectively change the target task.
11942                  */
11943                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
11944         }
11945
11946         /*
11947          * Preserve ptrace permission check for backwards compatibility. The
11948          * ptrace check also includes checks that the current task and other
11949          * task have matching uids, and is therefore not done here explicitly.
11950          */
11951         return is_capable || ptrace_may_access(task, ptrace_mode);
11952 }
11953
11954 /**
11955  * sys_perf_event_open - open a performance event, associate it to a task/cpu
11956  *
11957  * @attr_uptr:  event_id type attributes for monitoring/sampling
11958  * @pid:                target pid
11959  * @cpu:                target cpu
11960  * @group_fd:           group leader event fd
11961  * @flags:              perf event open flags
11962  */
11963 SYSCALL_DEFINE5(perf_event_open,
11964                 struct perf_event_attr __user *, attr_uptr,
11965                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
11966 {
11967         struct perf_event *group_leader = NULL, *output_event = NULL;
11968         struct perf_event *event, *sibling;
11969         struct perf_event_attr attr;
11970         struct perf_event_context *ctx, *gctx;
11971         struct file *event_file = NULL;
11972         struct fd group = {NULL, 0};
11973         struct task_struct *task = NULL;
11974         struct pmu *pmu;
11975         int event_fd;
11976         int move_group = 0;
11977         int err;
11978         int f_flags = O_RDWR;
11979         int cgroup_fd = -1;
11980
11981         /* for future expandability... */
11982         if (flags & ~PERF_FLAG_ALL)
11983                 return -EINVAL;
11984
11985         /* Do we allow access to perf_event_open(2) ? */
11986         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
11987         if (err)
11988                 return err;
11989
11990         err = perf_copy_attr(attr_uptr, &attr);
11991         if (err)
11992                 return err;
11993
11994         if (!attr.exclude_kernel) {
11995                 err = perf_allow_kernel(&attr);
11996                 if (err)
11997                         return err;
11998         }
11999
12000         if (attr.namespaces) {
12001                 if (!perfmon_capable())
12002                         return -EACCES;
12003         }
12004
12005         if (attr.freq) {
12006                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12007                         return -EINVAL;
12008         } else {
12009                 if (attr.sample_period & (1ULL << 63))
12010                         return -EINVAL;
12011         }
12012
12013         /* Only privileged users can get physical addresses */
12014         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12015                 err = perf_allow_kernel(&attr);
12016                 if (err)
12017                         return err;
12018         }
12019
12020         /* REGS_INTR can leak data, lockdown must prevent this */
12021         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12022                 err = security_locked_down(LOCKDOWN_PERF);
12023                 if (err)
12024                         return err;
12025         }
12026
12027         /*
12028          * In cgroup mode, the pid argument is used to pass the fd
12029          * opened to the cgroup directory in cgroupfs. The cpu argument
12030          * designates the cpu on which to monitor threads from that
12031          * cgroup.
12032          */
12033         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12034                 return -EINVAL;
12035
12036         if (flags & PERF_FLAG_FD_CLOEXEC)
12037                 f_flags |= O_CLOEXEC;
12038
12039         event_fd = get_unused_fd_flags(f_flags);
12040         if (event_fd < 0)
12041                 return event_fd;
12042
12043         if (group_fd != -1) {
12044                 err = perf_fget_light(group_fd, &group);
12045                 if (err)
12046                         goto err_fd;
12047                 group_leader = group.file->private_data;
12048                 if (flags & PERF_FLAG_FD_OUTPUT)
12049                         output_event = group_leader;
12050                 if (flags & PERF_FLAG_FD_NO_GROUP)
12051                         group_leader = NULL;
12052         }
12053
12054         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12055                 task = find_lively_task_by_vpid(pid);
12056                 if (IS_ERR(task)) {
12057                         err = PTR_ERR(task);
12058                         goto err_group_fd;
12059                 }
12060         }
12061
12062         if (task && group_leader &&
12063             group_leader->attr.inherit != attr.inherit) {
12064                 err = -EINVAL;
12065                 goto err_task;
12066         }
12067
12068         if (flags & PERF_FLAG_PID_CGROUP)
12069                 cgroup_fd = pid;
12070
12071         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12072                                  NULL, NULL, cgroup_fd);
12073         if (IS_ERR(event)) {
12074                 err = PTR_ERR(event);
12075                 goto err_task;
12076         }
12077
12078         if (is_sampling_event(event)) {
12079                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12080                         err = -EOPNOTSUPP;
12081                         goto err_alloc;
12082                 }
12083         }
12084
12085         /*
12086          * Special case software events and allow them to be part of
12087          * any hardware group.
12088          */
12089         pmu = event->pmu;
12090
12091         if (attr.use_clockid) {
12092                 err = perf_event_set_clock(event, attr.clockid);
12093                 if (err)
12094                         goto err_alloc;
12095         }
12096
12097         if (pmu->task_ctx_nr == perf_sw_context)
12098                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12099
12100         if (group_leader) {
12101                 if (is_software_event(event) &&
12102                     !in_software_context(group_leader)) {
12103                         /*
12104                          * If the event is a sw event, but the group_leader
12105                          * is on hw context.
12106                          *
12107                          * Allow the addition of software events to hw
12108                          * groups, this is safe because software events
12109                          * never fail to schedule.
12110                          */
12111                         pmu = group_leader->ctx->pmu;
12112                 } else if (!is_software_event(event) &&
12113                            is_software_event(group_leader) &&
12114                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12115                         /*
12116                          * In case the group is a pure software group, and we
12117                          * try to add a hardware event, move the whole group to
12118                          * the hardware context.
12119                          */
12120                         move_group = 1;
12121                 }
12122         }
12123
12124         /*
12125          * Get the target context (task or percpu):
12126          */
12127         ctx = find_get_context(pmu, task, event);
12128         if (IS_ERR(ctx)) {
12129                 err = PTR_ERR(ctx);
12130                 goto err_alloc;
12131         }
12132
12133         /*
12134          * Look up the group leader (we will attach this event to it):
12135          */
12136         if (group_leader) {
12137                 err = -EINVAL;
12138
12139                 /*
12140                  * Do not allow a recursive hierarchy (this new sibling
12141                  * becoming part of another group-sibling):
12142                  */
12143                 if (group_leader->group_leader != group_leader)
12144                         goto err_context;
12145
12146                 /* All events in a group should have the same clock */
12147                 if (group_leader->clock != event->clock)
12148                         goto err_context;
12149
12150                 /*
12151                  * Make sure we're both events for the same CPU;
12152                  * grouping events for different CPUs is broken; since
12153                  * you can never concurrently schedule them anyhow.
12154                  */
12155                 if (group_leader->cpu != event->cpu)
12156                         goto err_context;
12157
12158                 /*
12159                  * Make sure we're both on the same task, or both
12160                  * per-CPU events.
12161                  */
12162                 if (group_leader->ctx->task != ctx->task)
12163                         goto err_context;
12164
12165                 /*
12166                  * Do not allow to attach to a group in a different task
12167                  * or CPU context. If we're moving SW events, we'll fix
12168                  * this up later, so allow that.
12169                  */
12170                 if (!move_group && group_leader->ctx != ctx)
12171                         goto err_context;
12172
12173                 /*
12174                  * Only a group leader can be exclusive or pinned
12175                  */
12176                 if (attr.exclusive || attr.pinned)
12177                         goto err_context;
12178         }
12179
12180         if (output_event) {
12181                 err = perf_event_set_output(event, output_event);
12182                 if (err)
12183                         goto err_context;
12184         }
12185
12186         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12187                                         f_flags);
12188         if (IS_ERR(event_file)) {
12189                 err = PTR_ERR(event_file);
12190                 event_file = NULL;
12191                 goto err_context;
12192         }
12193
12194         if (task) {
12195                 err = down_read_interruptible(&task->signal->exec_update_lock);
12196                 if (err)
12197                         goto err_file;
12198
12199                 /*
12200                  * We must hold exec_update_lock across this and any potential
12201                  * perf_install_in_context() call for this new event to
12202                  * serialize against exec() altering our credentials (and the
12203                  * perf_event_exit_task() that could imply).
12204                  */
12205                 err = -EACCES;
12206                 if (!perf_check_permission(&attr, task))
12207                         goto err_cred;
12208         }
12209
12210         if (move_group) {
12211                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12212
12213                 if (gctx->task == TASK_TOMBSTONE) {
12214                         err = -ESRCH;
12215                         goto err_locked;
12216                 }
12217
12218                 /*
12219                  * Check if we raced against another sys_perf_event_open() call
12220                  * moving the software group underneath us.
12221                  */
12222                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12223                         /*
12224                          * If someone moved the group out from under us, check
12225                          * if this new event wound up on the same ctx, if so
12226                          * its the regular !move_group case, otherwise fail.
12227                          */
12228                         if (gctx != ctx) {
12229                                 err = -EINVAL;
12230                                 goto err_locked;
12231                         } else {
12232                                 perf_event_ctx_unlock(group_leader, gctx);
12233                                 move_group = 0;
12234                         }
12235                 }
12236
12237                 /*
12238                  * Failure to create exclusive events returns -EBUSY.
12239                  */
12240                 err = -EBUSY;
12241                 if (!exclusive_event_installable(group_leader, ctx))
12242                         goto err_locked;
12243
12244                 for_each_sibling_event(sibling, group_leader) {
12245                         if (!exclusive_event_installable(sibling, ctx))
12246                                 goto err_locked;
12247                 }
12248         } else {
12249                 mutex_lock(&ctx->mutex);
12250         }
12251
12252         if (ctx->task == TASK_TOMBSTONE) {
12253                 err = -ESRCH;
12254                 goto err_locked;
12255         }
12256
12257         if (!perf_event_validate_size(event)) {
12258                 err = -E2BIG;
12259                 goto err_locked;
12260         }
12261
12262         if (!task) {
12263                 /*
12264                  * Check if the @cpu we're creating an event for is online.
12265                  *
12266                  * We use the perf_cpu_context::ctx::mutex to serialize against
12267                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12268                  */
12269                 struct perf_cpu_context *cpuctx =
12270                         container_of(ctx, struct perf_cpu_context, ctx);
12271
12272                 if (!cpuctx->online) {
12273                         err = -ENODEV;
12274                         goto err_locked;
12275                 }
12276         }
12277
12278         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12279                 err = -EINVAL;
12280                 goto err_locked;
12281         }
12282
12283         /*
12284          * Must be under the same ctx::mutex as perf_install_in_context(),
12285          * because we need to serialize with concurrent event creation.
12286          */
12287         if (!exclusive_event_installable(event, ctx)) {
12288                 err = -EBUSY;
12289                 goto err_locked;
12290         }
12291
12292         WARN_ON_ONCE(ctx->parent_ctx);
12293
12294         /*
12295          * This is the point on no return; we cannot fail hereafter. This is
12296          * where we start modifying current state.
12297          */
12298
12299         if (move_group) {
12300                 /*
12301                  * See perf_event_ctx_lock() for comments on the details
12302                  * of swizzling perf_event::ctx.
12303                  */
12304                 perf_remove_from_context(group_leader, 0);
12305                 put_ctx(gctx);
12306
12307                 for_each_sibling_event(sibling, group_leader) {
12308                         perf_remove_from_context(sibling, 0);
12309                         put_ctx(gctx);
12310                 }
12311
12312                 /*
12313                  * Wait for everybody to stop referencing the events through
12314                  * the old lists, before installing it on new lists.
12315                  */
12316                 synchronize_rcu();
12317
12318                 /*
12319                  * Install the group siblings before the group leader.
12320                  *
12321                  * Because a group leader will try and install the entire group
12322                  * (through the sibling list, which is still in-tact), we can
12323                  * end up with siblings installed in the wrong context.
12324                  *
12325                  * By installing siblings first we NO-OP because they're not
12326                  * reachable through the group lists.
12327                  */
12328                 for_each_sibling_event(sibling, group_leader) {
12329                         perf_event__state_init(sibling);
12330                         perf_install_in_context(ctx, sibling, sibling->cpu);
12331                         get_ctx(ctx);
12332                 }
12333
12334                 /*
12335                  * Removing from the context ends up with disabled
12336                  * event. What we want here is event in the initial
12337                  * startup state, ready to be add into new context.
12338                  */
12339                 perf_event__state_init(group_leader);
12340                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12341                 get_ctx(ctx);
12342         }
12343
12344         /*
12345          * Precalculate sample_data sizes; do while holding ctx::mutex such
12346          * that we're serialized against further additions and before
12347          * perf_install_in_context() which is the point the event is active and
12348          * can use these values.
12349          */
12350         perf_event__header_size(event);
12351         perf_event__id_header_size(event);
12352
12353         event->owner = current;
12354
12355         perf_install_in_context(ctx, event, event->cpu);
12356         perf_unpin_context(ctx);
12357
12358         if (move_group)
12359                 perf_event_ctx_unlock(group_leader, gctx);
12360         mutex_unlock(&ctx->mutex);
12361
12362         if (task) {
12363                 up_read(&task->signal->exec_update_lock);
12364                 put_task_struct(task);
12365         }
12366
12367         mutex_lock(&current->perf_event_mutex);
12368         list_add_tail(&event->owner_entry, &current->perf_event_list);
12369         mutex_unlock(&current->perf_event_mutex);
12370
12371         /*
12372          * Drop the reference on the group_event after placing the
12373          * new event on the sibling_list. This ensures destruction
12374          * of the group leader will find the pointer to itself in
12375          * perf_group_detach().
12376          */
12377         fdput(group);
12378         fd_install(event_fd, event_file);
12379         return event_fd;
12380
12381 err_locked:
12382         if (move_group)
12383                 perf_event_ctx_unlock(group_leader, gctx);
12384         mutex_unlock(&ctx->mutex);
12385 err_cred:
12386         if (task)
12387                 up_read(&task->signal->exec_update_lock);
12388 err_file:
12389         fput(event_file);
12390 err_context:
12391         perf_unpin_context(ctx);
12392         put_ctx(ctx);
12393 err_alloc:
12394         /*
12395          * If event_file is set, the fput() above will have called ->release()
12396          * and that will take care of freeing the event.
12397          */
12398         if (!event_file)
12399                 free_event(event);
12400 err_task:
12401         if (task)
12402                 put_task_struct(task);
12403 err_group_fd:
12404         fdput(group);
12405 err_fd:
12406         put_unused_fd(event_fd);
12407         return err;
12408 }
12409
12410 /**
12411  * perf_event_create_kernel_counter
12412  *
12413  * @attr: attributes of the counter to create
12414  * @cpu: cpu in which the counter is bound
12415  * @task: task to profile (NULL for percpu)
12416  * @overflow_handler: callback to trigger when we hit the event
12417  * @context: context data could be used in overflow_handler callback
12418  */
12419 struct perf_event *
12420 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12421                                  struct task_struct *task,
12422                                  perf_overflow_handler_t overflow_handler,
12423                                  void *context)
12424 {
12425         struct perf_event_context *ctx;
12426         struct perf_event *event;
12427         int err;
12428
12429         /*
12430          * Grouping is not supported for kernel events, neither is 'AUX',
12431          * make sure the caller's intentions are adjusted.
12432          */
12433         if (attr->aux_output)
12434                 return ERR_PTR(-EINVAL);
12435
12436         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12437                                  overflow_handler, context, -1);
12438         if (IS_ERR(event)) {
12439                 err = PTR_ERR(event);
12440                 goto err;
12441         }
12442
12443         /* Mark owner so we could distinguish it from user events. */
12444         event->owner = TASK_TOMBSTONE;
12445
12446         /*
12447          * Get the target context (task or percpu):
12448          */
12449         ctx = find_get_context(event->pmu, task, event);
12450         if (IS_ERR(ctx)) {
12451                 err = PTR_ERR(ctx);
12452                 goto err_free;
12453         }
12454
12455         WARN_ON_ONCE(ctx->parent_ctx);
12456         mutex_lock(&ctx->mutex);
12457         if (ctx->task == TASK_TOMBSTONE) {
12458                 err = -ESRCH;
12459                 goto err_unlock;
12460         }
12461
12462         if (!task) {
12463                 /*
12464                  * Check if the @cpu we're creating an event for is online.
12465                  *
12466                  * We use the perf_cpu_context::ctx::mutex to serialize against
12467                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12468                  */
12469                 struct perf_cpu_context *cpuctx =
12470                         container_of(ctx, struct perf_cpu_context, ctx);
12471                 if (!cpuctx->online) {
12472                         err = -ENODEV;
12473                         goto err_unlock;
12474                 }
12475         }
12476
12477         if (!exclusive_event_installable(event, ctx)) {
12478                 err = -EBUSY;
12479                 goto err_unlock;
12480         }
12481
12482         perf_install_in_context(ctx, event, event->cpu);
12483         perf_unpin_context(ctx);
12484         mutex_unlock(&ctx->mutex);
12485
12486         return event;
12487
12488 err_unlock:
12489         mutex_unlock(&ctx->mutex);
12490         perf_unpin_context(ctx);
12491         put_ctx(ctx);
12492 err_free:
12493         free_event(event);
12494 err:
12495         return ERR_PTR(err);
12496 }
12497 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12498
12499 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12500 {
12501         struct perf_event_context *src_ctx;
12502         struct perf_event_context *dst_ctx;
12503         struct perf_event *event, *tmp;
12504         LIST_HEAD(events);
12505
12506         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12507         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12508
12509         /*
12510          * See perf_event_ctx_lock() for comments on the details
12511          * of swizzling perf_event::ctx.
12512          */
12513         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12514         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12515                                  event_entry) {
12516                 perf_remove_from_context(event, 0);
12517                 unaccount_event_cpu(event, src_cpu);
12518                 put_ctx(src_ctx);
12519                 list_add(&event->migrate_entry, &events);
12520         }
12521
12522         /*
12523          * Wait for the events to quiesce before re-instating them.
12524          */
12525         synchronize_rcu();
12526
12527         /*
12528          * Re-instate events in 2 passes.
12529          *
12530          * Skip over group leaders and only install siblings on this first
12531          * pass, siblings will not get enabled without a leader, however a
12532          * leader will enable its siblings, even if those are still on the old
12533          * context.
12534          */
12535         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12536                 if (event->group_leader == event)
12537                         continue;
12538
12539                 list_del(&event->migrate_entry);
12540                 if (event->state >= PERF_EVENT_STATE_OFF)
12541                         event->state = PERF_EVENT_STATE_INACTIVE;
12542                 account_event_cpu(event, dst_cpu);
12543                 perf_install_in_context(dst_ctx, event, dst_cpu);
12544                 get_ctx(dst_ctx);
12545         }
12546
12547         /*
12548          * Once all the siblings are setup properly, install the group leaders
12549          * to make it go.
12550          */
12551         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12552                 list_del(&event->migrate_entry);
12553                 if (event->state >= PERF_EVENT_STATE_OFF)
12554                         event->state = PERF_EVENT_STATE_INACTIVE;
12555                 account_event_cpu(event, dst_cpu);
12556                 perf_install_in_context(dst_ctx, event, dst_cpu);
12557                 get_ctx(dst_ctx);
12558         }
12559         mutex_unlock(&dst_ctx->mutex);
12560         mutex_unlock(&src_ctx->mutex);
12561 }
12562 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12563
12564 static void sync_child_event(struct perf_event *child_event)
12565 {
12566         struct perf_event *parent_event = child_event->parent;
12567         u64 child_val;
12568
12569         if (child_event->attr.inherit_stat) {
12570                 struct task_struct *task = child_event->ctx->task;
12571
12572                 if (task && task != TASK_TOMBSTONE)
12573                         perf_event_read_event(child_event, task);
12574         }
12575
12576         child_val = perf_event_count(child_event);
12577
12578         /*
12579          * Add back the child's count to the parent's count:
12580          */
12581         atomic64_add(child_val, &parent_event->child_count);
12582         atomic64_add(child_event->total_time_enabled,
12583                      &parent_event->child_total_time_enabled);
12584         atomic64_add(child_event->total_time_running,
12585                      &parent_event->child_total_time_running);
12586 }
12587
12588 static void
12589 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12590 {
12591         struct perf_event *parent_event = event->parent;
12592         unsigned long detach_flags = 0;
12593
12594         if (parent_event) {
12595                 /*
12596                  * Do not destroy the 'original' grouping; because of the
12597                  * context switch optimization the original events could've
12598                  * ended up in a random child task.
12599                  *
12600                  * If we were to destroy the original group, all group related
12601                  * operations would cease to function properly after this
12602                  * random child dies.
12603                  *
12604                  * Do destroy all inherited groups, we don't care about those
12605                  * and being thorough is better.
12606                  */
12607                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12608                 mutex_lock(&parent_event->child_mutex);
12609         }
12610
12611         perf_remove_from_context(event, detach_flags);
12612
12613         raw_spin_lock_irq(&ctx->lock);
12614         if (event->state > PERF_EVENT_STATE_EXIT)
12615                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12616         raw_spin_unlock_irq(&ctx->lock);
12617
12618         /*
12619          * Child events can be freed.
12620          */
12621         if (parent_event) {
12622                 mutex_unlock(&parent_event->child_mutex);
12623                 /*
12624                  * Kick perf_poll() for is_event_hup();
12625                  */
12626                 perf_event_wakeup(parent_event);
12627                 free_event(event);
12628                 put_event(parent_event);
12629                 return;
12630         }
12631
12632         /*
12633          * Parent events are governed by their filedesc, retain them.
12634          */
12635         perf_event_wakeup(event);
12636 }
12637
12638 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12639 {
12640         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12641         struct perf_event *child_event, *next;
12642
12643         WARN_ON_ONCE(child != current);
12644
12645         child_ctx = perf_pin_task_context(child, ctxn);
12646         if (!child_ctx)
12647                 return;
12648
12649         /*
12650          * In order to reduce the amount of tricky in ctx tear-down, we hold
12651          * ctx::mutex over the entire thing. This serializes against almost
12652          * everything that wants to access the ctx.
12653          *
12654          * The exception is sys_perf_event_open() /
12655          * perf_event_create_kernel_count() which does find_get_context()
12656          * without ctx::mutex (it cannot because of the move_group double mutex
12657          * lock thing). See the comments in perf_install_in_context().
12658          */
12659         mutex_lock(&child_ctx->mutex);
12660
12661         /*
12662          * In a single ctx::lock section, de-schedule the events and detach the
12663          * context from the task such that we cannot ever get it scheduled back
12664          * in.
12665          */
12666         raw_spin_lock_irq(&child_ctx->lock);
12667         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12668
12669         /*
12670          * Now that the context is inactive, destroy the task <-> ctx relation
12671          * and mark the context dead.
12672          */
12673         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12674         put_ctx(child_ctx); /* cannot be last */
12675         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12676         put_task_struct(current); /* cannot be last */
12677
12678         clone_ctx = unclone_ctx(child_ctx);
12679         raw_spin_unlock_irq(&child_ctx->lock);
12680
12681         if (clone_ctx)
12682                 put_ctx(clone_ctx);
12683
12684         /*
12685          * Report the task dead after unscheduling the events so that we
12686          * won't get any samples after PERF_RECORD_EXIT. We can however still
12687          * get a few PERF_RECORD_READ events.
12688          */
12689         perf_event_task(child, child_ctx, 0);
12690
12691         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12692                 perf_event_exit_event(child_event, child_ctx);
12693
12694         mutex_unlock(&child_ctx->mutex);
12695
12696         put_ctx(child_ctx);
12697 }
12698
12699 /*
12700  * When a child task exits, feed back event values to parent events.
12701  *
12702  * Can be called with exec_update_lock held when called from
12703  * setup_new_exec().
12704  */
12705 void perf_event_exit_task(struct task_struct *child)
12706 {
12707         struct perf_event *event, *tmp;
12708         int ctxn;
12709
12710         mutex_lock(&child->perf_event_mutex);
12711         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12712                                  owner_entry) {
12713                 list_del_init(&event->owner_entry);
12714
12715                 /*
12716                  * Ensure the list deletion is visible before we clear
12717                  * the owner, closes a race against perf_release() where
12718                  * we need to serialize on the owner->perf_event_mutex.
12719                  */
12720                 smp_store_release(&event->owner, NULL);
12721         }
12722         mutex_unlock(&child->perf_event_mutex);
12723
12724         for_each_task_context_nr(ctxn)
12725                 perf_event_exit_task_context(child, ctxn);
12726
12727         /*
12728          * The perf_event_exit_task_context calls perf_event_task
12729          * with child's task_ctx, which generates EXIT events for
12730          * child contexts and sets child->perf_event_ctxp[] to NULL.
12731          * At this point we need to send EXIT events to cpu contexts.
12732          */
12733         perf_event_task(child, NULL, 0);
12734 }
12735
12736 static void perf_free_event(struct perf_event *event,
12737                             struct perf_event_context *ctx)
12738 {
12739         struct perf_event *parent = event->parent;
12740
12741         if (WARN_ON_ONCE(!parent))
12742                 return;
12743
12744         mutex_lock(&parent->child_mutex);
12745         list_del_init(&event->child_list);
12746         mutex_unlock(&parent->child_mutex);
12747
12748         put_event(parent);
12749
12750         raw_spin_lock_irq(&ctx->lock);
12751         perf_group_detach(event);
12752         list_del_event(event, ctx);
12753         raw_spin_unlock_irq(&ctx->lock);
12754         free_event(event);
12755 }
12756
12757 /*
12758  * Free a context as created by inheritance by perf_event_init_task() below,
12759  * used by fork() in case of fail.
12760  *
12761  * Even though the task has never lived, the context and events have been
12762  * exposed through the child_list, so we must take care tearing it all down.
12763  */
12764 void perf_event_free_task(struct task_struct *task)
12765 {
12766         struct perf_event_context *ctx;
12767         struct perf_event *event, *tmp;
12768         int ctxn;
12769
12770         for_each_task_context_nr(ctxn) {
12771                 ctx = task->perf_event_ctxp[ctxn];
12772                 if (!ctx)
12773                         continue;
12774
12775                 mutex_lock(&ctx->mutex);
12776                 raw_spin_lock_irq(&ctx->lock);
12777                 /*
12778                  * Destroy the task <-> ctx relation and mark the context dead.
12779                  *
12780                  * This is important because even though the task hasn't been
12781                  * exposed yet the context has been (through child_list).
12782                  */
12783                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12784                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12785                 put_task_struct(task); /* cannot be last */
12786                 raw_spin_unlock_irq(&ctx->lock);
12787
12788                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12789                         perf_free_event(event, ctx);
12790
12791                 mutex_unlock(&ctx->mutex);
12792
12793                 /*
12794                  * perf_event_release_kernel() could've stolen some of our
12795                  * child events and still have them on its free_list. In that
12796                  * case we must wait for these events to have been freed (in
12797                  * particular all their references to this task must've been
12798                  * dropped).
12799                  *
12800                  * Without this copy_process() will unconditionally free this
12801                  * task (irrespective of its reference count) and
12802                  * _free_event()'s put_task_struct(event->hw.target) will be a
12803                  * use-after-free.
12804                  *
12805                  * Wait for all events to drop their context reference.
12806                  */
12807                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12808                 put_ctx(ctx); /* must be last */
12809         }
12810 }
12811
12812 void perf_event_delayed_put(struct task_struct *task)
12813 {
12814         int ctxn;
12815
12816         for_each_task_context_nr(ctxn)
12817                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12818 }
12819
12820 struct file *perf_event_get(unsigned int fd)
12821 {
12822         struct file *file = fget(fd);
12823         if (!file)
12824                 return ERR_PTR(-EBADF);
12825
12826         if (file->f_op != &perf_fops) {
12827                 fput(file);
12828                 return ERR_PTR(-EBADF);
12829         }
12830
12831         return file;
12832 }
12833
12834 const struct perf_event *perf_get_event(struct file *file)
12835 {
12836         if (file->f_op != &perf_fops)
12837                 return ERR_PTR(-EINVAL);
12838
12839         return file->private_data;
12840 }
12841
12842 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12843 {
12844         if (!event)
12845                 return ERR_PTR(-EINVAL);
12846
12847         return &event->attr;
12848 }
12849
12850 /*
12851  * Inherit an event from parent task to child task.
12852  *
12853  * Returns:
12854  *  - valid pointer on success
12855  *  - NULL for orphaned events
12856  *  - IS_ERR() on error
12857  */
12858 static struct perf_event *
12859 inherit_event(struct perf_event *parent_event,
12860               struct task_struct *parent,
12861               struct perf_event_context *parent_ctx,
12862               struct task_struct *child,
12863               struct perf_event *group_leader,
12864               struct perf_event_context *child_ctx)
12865 {
12866         enum perf_event_state parent_state = parent_event->state;
12867         struct perf_event *child_event;
12868         unsigned long flags;
12869
12870         /*
12871          * Instead of creating recursive hierarchies of events,
12872          * we link inherited events back to the original parent,
12873          * which has a filp for sure, which we use as the reference
12874          * count:
12875          */
12876         if (parent_event->parent)
12877                 parent_event = parent_event->parent;
12878
12879         child_event = perf_event_alloc(&parent_event->attr,
12880                                            parent_event->cpu,
12881                                            child,
12882                                            group_leader, parent_event,
12883                                            NULL, NULL, -1);
12884         if (IS_ERR(child_event))
12885                 return child_event;
12886
12887
12888         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12889             !child_ctx->task_ctx_data) {
12890                 struct pmu *pmu = child_event->pmu;
12891
12892                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12893                 if (!child_ctx->task_ctx_data) {
12894                         free_event(child_event);
12895                         return ERR_PTR(-ENOMEM);
12896                 }
12897         }
12898
12899         /*
12900          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12901          * must be under the same lock in order to serialize against
12902          * perf_event_release_kernel(), such that either we must observe
12903          * is_orphaned_event() or they will observe us on the child_list.
12904          */
12905         mutex_lock(&parent_event->child_mutex);
12906         if (is_orphaned_event(parent_event) ||
12907             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12908                 mutex_unlock(&parent_event->child_mutex);
12909                 /* task_ctx_data is freed with child_ctx */
12910                 free_event(child_event);
12911                 return NULL;
12912         }
12913
12914         get_ctx(child_ctx);
12915
12916         /*
12917          * Make the child state follow the state of the parent event,
12918          * not its attr.disabled bit.  We hold the parent's mutex,
12919          * so we won't race with perf_event_{en, dis}able_family.
12920          */
12921         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12922                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12923         else
12924                 child_event->state = PERF_EVENT_STATE_OFF;
12925
12926         if (parent_event->attr.freq) {
12927                 u64 sample_period = parent_event->hw.sample_period;
12928                 struct hw_perf_event *hwc = &child_event->hw;
12929
12930                 hwc->sample_period = sample_period;
12931                 hwc->last_period   = sample_period;
12932
12933                 local64_set(&hwc->period_left, sample_period);
12934         }
12935
12936         child_event->ctx = child_ctx;
12937         child_event->overflow_handler = parent_event->overflow_handler;
12938         child_event->overflow_handler_context
12939                 = parent_event->overflow_handler_context;
12940
12941         /*
12942          * Precalculate sample_data sizes
12943          */
12944         perf_event__header_size(child_event);
12945         perf_event__id_header_size(child_event);
12946
12947         /*
12948          * Link it up in the child's context:
12949          */
12950         raw_spin_lock_irqsave(&child_ctx->lock, flags);
12951         add_event_to_ctx(child_event, child_ctx);
12952         child_event->attach_state |= PERF_ATTACH_CHILD;
12953         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
12954
12955         /*
12956          * Link this into the parent event's child list
12957          */
12958         list_add_tail(&child_event->child_list, &parent_event->child_list);
12959         mutex_unlock(&parent_event->child_mutex);
12960
12961         return child_event;
12962 }
12963
12964 /*
12965  * Inherits an event group.
12966  *
12967  * This will quietly suppress orphaned events; !inherit_event() is not an error.
12968  * This matches with perf_event_release_kernel() removing all child events.
12969  *
12970  * Returns:
12971  *  - 0 on success
12972  *  - <0 on error
12973  */
12974 static int inherit_group(struct perf_event *parent_event,
12975               struct task_struct *parent,
12976               struct perf_event_context *parent_ctx,
12977               struct task_struct *child,
12978               struct perf_event_context *child_ctx)
12979 {
12980         struct perf_event *leader;
12981         struct perf_event *sub;
12982         struct perf_event *child_ctr;
12983
12984         leader = inherit_event(parent_event, parent, parent_ctx,
12985                                  child, NULL, child_ctx);
12986         if (IS_ERR(leader))
12987                 return PTR_ERR(leader);
12988         /*
12989          * @leader can be NULL here because of is_orphaned_event(). In this
12990          * case inherit_event() will create individual events, similar to what
12991          * perf_group_detach() would do anyway.
12992          */
12993         for_each_sibling_event(sub, parent_event) {
12994                 child_ctr = inherit_event(sub, parent, parent_ctx,
12995                                             child, leader, child_ctx);
12996                 if (IS_ERR(child_ctr))
12997                         return PTR_ERR(child_ctr);
12998
12999                 if (sub->aux_event == parent_event && child_ctr &&
13000                     !perf_get_aux_event(child_ctr, leader))
13001                         return -EINVAL;
13002         }
13003         return 0;
13004 }
13005
13006 /*
13007  * Creates the child task context and tries to inherit the event-group.
13008  *
13009  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13010  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13011  * consistent with perf_event_release_kernel() removing all child events.
13012  *
13013  * Returns:
13014  *  - 0 on success
13015  *  - <0 on error
13016  */
13017 static int
13018 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13019                    struct perf_event_context *parent_ctx,
13020                    struct task_struct *child, int ctxn,
13021                    u64 clone_flags, int *inherited_all)
13022 {
13023         int ret;
13024         struct perf_event_context *child_ctx;
13025
13026         if (!event->attr.inherit ||
13027             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13028             /* Do not inherit if sigtrap and signal handlers were cleared. */
13029             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13030                 *inherited_all = 0;
13031                 return 0;
13032         }
13033
13034         child_ctx = child->perf_event_ctxp[ctxn];
13035         if (!child_ctx) {
13036                 /*
13037                  * This is executed from the parent task context, so
13038                  * inherit events that have been marked for cloning.
13039                  * First allocate and initialize a context for the
13040                  * child.
13041                  */
13042                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13043                 if (!child_ctx)
13044                         return -ENOMEM;
13045
13046                 child->perf_event_ctxp[ctxn] = child_ctx;
13047         }
13048
13049         ret = inherit_group(event, parent, parent_ctx,
13050                             child, child_ctx);
13051
13052         if (ret)
13053                 *inherited_all = 0;
13054
13055         return ret;
13056 }
13057
13058 /*
13059  * Initialize the perf_event context in task_struct
13060  */
13061 static int perf_event_init_context(struct task_struct *child, int ctxn,
13062                                    u64 clone_flags)
13063 {
13064         struct perf_event_context *child_ctx, *parent_ctx;
13065         struct perf_event_context *cloned_ctx;
13066         struct perf_event *event;
13067         struct task_struct *parent = current;
13068         int inherited_all = 1;
13069         unsigned long flags;
13070         int ret = 0;
13071
13072         if (likely(!parent->perf_event_ctxp[ctxn]))
13073                 return 0;
13074
13075         /*
13076          * If the parent's context is a clone, pin it so it won't get
13077          * swapped under us.
13078          */
13079         parent_ctx = perf_pin_task_context(parent, ctxn);
13080         if (!parent_ctx)
13081                 return 0;
13082
13083         /*
13084          * No need to check if parent_ctx != NULL here; since we saw
13085          * it non-NULL earlier, the only reason for it to become NULL
13086          * is if we exit, and since we're currently in the middle of
13087          * a fork we can't be exiting at the same time.
13088          */
13089
13090         /*
13091          * Lock the parent list. No need to lock the child - not PID
13092          * hashed yet and not running, so nobody can access it.
13093          */
13094         mutex_lock(&parent_ctx->mutex);
13095
13096         /*
13097          * We dont have to disable NMIs - we are only looking at
13098          * the list, not manipulating it:
13099          */
13100         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13101                 ret = inherit_task_group(event, parent, parent_ctx,
13102                                          child, ctxn, clone_flags,
13103                                          &inherited_all);
13104                 if (ret)
13105                         goto out_unlock;
13106         }
13107
13108         /*
13109          * We can't hold ctx->lock when iterating the ->flexible_group list due
13110          * to allocations, but we need to prevent rotation because
13111          * rotate_ctx() will change the list from interrupt context.
13112          */
13113         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13114         parent_ctx->rotate_disable = 1;
13115         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13116
13117         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13118                 ret = inherit_task_group(event, parent, parent_ctx,
13119                                          child, ctxn, clone_flags,
13120                                          &inherited_all);
13121                 if (ret)
13122                         goto out_unlock;
13123         }
13124
13125         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13126         parent_ctx->rotate_disable = 0;
13127
13128         child_ctx = child->perf_event_ctxp[ctxn];
13129
13130         if (child_ctx && inherited_all) {
13131                 /*
13132                  * Mark the child context as a clone of the parent
13133                  * context, or of whatever the parent is a clone of.
13134                  *
13135                  * Note that if the parent is a clone, the holding of
13136                  * parent_ctx->lock avoids it from being uncloned.
13137                  */
13138                 cloned_ctx = parent_ctx->parent_ctx;
13139                 if (cloned_ctx) {
13140                         child_ctx->parent_ctx = cloned_ctx;
13141                         child_ctx->parent_gen = parent_ctx->parent_gen;
13142                 } else {
13143                         child_ctx->parent_ctx = parent_ctx;
13144                         child_ctx->parent_gen = parent_ctx->generation;
13145                 }
13146                 get_ctx(child_ctx->parent_ctx);
13147         }
13148
13149         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13150 out_unlock:
13151         mutex_unlock(&parent_ctx->mutex);
13152
13153         perf_unpin_context(parent_ctx);
13154         put_ctx(parent_ctx);
13155
13156         return ret;
13157 }
13158
13159 /*
13160  * Initialize the perf_event context in task_struct
13161  */
13162 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13163 {
13164         int ctxn, ret;
13165
13166         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13167         mutex_init(&child->perf_event_mutex);
13168         INIT_LIST_HEAD(&child->perf_event_list);
13169
13170         for_each_task_context_nr(ctxn) {
13171                 ret = perf_event_init_context(child, ctxn, clone_flags);
13172                 if (ret) {
13173                         perf_event_free_task(child);
13174                         return ret;
13175                 }
13176         }
13177
13178         return 0;
13179 }
13180
13181 static void __init perf_event_init_all_cpus(void)
13182 {
13183         struct swevent_htable *swhash;
13184         int cpu;
13185
13186         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13187
13188         for_each_possible_cpu(cpu) {
13189                 swhash = &per_cpu(swevent_htable, cpu);
13190                 mutex_init(&swhash->hlist_mutex);
13191                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13192
13193                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13194                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13195
13196 #ifdef CONFIG_CGROUP_PERF
13197                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13198 #endif
13199                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13200         }
13201 }
13202
13203 static void perf_swevent_init_cpu(unsigned int cpu)
13204 {
13205         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13206
13207         mutex_lock(&swhash->hlist_mutex);
13208         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13209                 struct swevent_hlist *hlist;
13210
13211                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13212                 WARN_ON(!hlist);
13213                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13214         }
13215         mutex_unlock(&swhash->hlist_mutex);
13216 }
13217
13218 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13219 static void __perf_event_exit_context(void *__info)
13220 {
13221         struct perf_event_context *ctx = __info;
13222         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13223         struct perf_event *event;
13224
13225         raw_spin_lock(&ctx->lock);
13226         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13227         list_for_each_entry(event, &ctx->event_list, event_entry)
13228                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13229         raw_spin_unlock(&ctx->lock);
13230 }
13231
13232 static void perf_event_exit_cpu_context(int cpu)
13233 {
13234         struct perf_cpu_context *cpuctx;
13235         struct perf_event_context *ctx;
13236         struct pmu *pmu;
13237
13238         mutex_lock(&pmus_lock);
13239         list_for_each_entry(pmu, &pmus, entry) {
13240                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13241                 ctx = &cpuctx->ctx;
13242
13243                 mutex_lock(&ctx->mutex);
13244                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13245                 cpuctx->online = 0;
13246                 mutex_unlock(&ctx->mutex);
13247         }
13248         cpumask_clear_cpu(cpu, perf_online_mask);
13249         mutex_unlock(&pmus_lock);
13250 }
13251 #else
13252
13253 static void perf_event_exit_cpu_context(int cpu) { }
13254
13255 #endif
13256
13257 int perf_event_init_cpu(unsigned int cpu)
13258 {
13259         struct perf_cpu_context *cpuctx;
13260         struct perf_event_context *ctx;
13261         struct pmu *pmu;
13262
13263         perf_swevent_init_cpu(cpu);
13264
13265         mutex_lock(&pmus_lock);
13266         cpumask_set_cpu(cpu, perf_online_mask);
13267         list_for_each_entry(pmu, &pmus, entry) {
13268                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13269                 ctx = &cpuctx->ctx;
13270
13271                 mutex_lock(&ctx->mutex);
13272                 cpuctx->online = 1;
13273                 mutex_unlock(&ctx->mutex);
13274         }
13275         mutex_unlock(&pmus_lock);
13276
13277         return 0;
13278 }
13279
13280 int perf_event_exit_cpu(unsigned int cpu)
13281 {
13282         perf_event_exit_cpu_context(cpu);
13283         return 0;
13284 }
13285
13286 static int
13287 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13288 {
13289         int cpu;
13290
13291         for_each_online_cpu(cpu)
13292                 perf_event_exit_cpu(cpu);
13293
13294         return NOTIFY_OK;
13295 }
13296
13297 /*
13298  * Run the perf reboot notifier at the very last possible moment so that
13299  * the generic watchdog code runs as long as possible.
13300  */
13301 static struct notifier_block perf_reboot_notifier = {
13302         .notifier_call = perf_reboot,
13303         .priority = INT_MIN,
13304 };
13305
13306 void __init perf_event_init(void)
13307 {
13308         int ret;
13309
13310         idr_init(&pmu_idr);
13311
13312         perf_event_init_all_cpus();
13313         init_srcu_struct(&pmus_srcu);
13314         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13315         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13316         perf_pmu_register(&perf_task_clock, NULL, -1);
13317         perf_tp_register();
13318         perf_event_init_cpu(smp_processor_id());
13319         register_reboot_notifier(&perf_reboot_notifier);
13320
13321         ret = init_hw_breakpoint();
13322         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13323
13324         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13325
13326         /*
13327          * Build time assertion that we keep the data_head at the intended
13328          * location.  IOW, validation we got the __reserved[] size right.
13329          */
13330         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13331                      != 1024);
13332 }
13333
13334 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13335                               char *page)
13336 {
13337         struct perf_pmu_events_attr *pmu_attr =
13338                 container_of(attr, struct perf_pmu_events_attr, attr);
13339
13340         if (pmu_attr->event_str)
13341                 return sprintf(page, "%s\n", pmu_attr->event_str);
13342
13343         return 0;
13344 }
13345 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13346
13347 static int __init perf_event_sysfs_init(void)
13348 {
13349         struct pmu *pmu;
13350         int ret;
13351
13352         mutex_lock(&pmus_lock);
13353
13354         ret = bus_register(&pmu_bus);
13355         if (ret)
13356                 goto unlock;
13357
13358         list_for_each_entry(pmu, &pmus, entry) {
13359                 if (!pmu->name || pmu->type < 0)
13360                         continue;
13361
13362                 ret = pmu_dev_alloc(pmu);
13363                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13364         }
13365         pmu_bus_running = 1;
13366         ret = 0;
13367
13368 unlock:
13369         mutex_unlock(&pmus_lock);
13370
13371         return ret;
13372 }
13373 device_initcall(perf_event_sysfs_init);
13374
13375 #ifdef CONFIG_CGROUP_PERF
13376 static struct cgroup_subsys_state *
13377 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13378 {
13379         struct perf_cgroup *jc;
13380
13381         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13382         if (!jc)
13383                 return ERR_PTR(-ENOMEM);
13384
13385         jc->info = alloc_percpu(struct perf_cgroup_info);
13386         if (!jc->info) {
13387                 kfree(jc);
13388                 return ERR_PTR(-ENOMEM);
13389         }
13390
13391         return &jc->css;
13392 }
13393
13394 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13395 {
13396         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13397
13398         free_percpu(jc->info);
13399         kfree(jc);
13400 }
13401
13402 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13403 {
13404         perf_event_cgroup(css->cgroup);
13405         return 0;
13406 }
13407
13408 static int __perf_cgroup_move(void *info)
13409 {
13410         struct task_struct *task = info;
13411         rcu_read_lock();
13412         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13413         rcu_read_unlock();
13414         return 0;
13415 }
13416
13417 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13418 {
13419         struct task_struct *task;
13420         struct cgroup_subsys_state *css;
13421
13422         cgroup_taskset_for_each(task, css, tset)
13423                 task_function_call(task, __perf_cgroup_move, task);
13424 }
13425
13426 struct cgroup_subsys perf_event_cgrp_subsys = {
13427         .css_alloc      = perf_cgroup_css_alloc,
13428         .css_free       = perf_cgroup_css_free,
13429         .css_online     = perf_cgroup_css_online,
13430         .attach         = perf_cgroup_attach,
13431         /*
13432          * Implicitly enable on dfl hierarchy so that perf events can
13433          * always be filtered by cgroup2 path as long as perf_event
13434          * controller is not mounted on a legacy hierarchy.
13435          */
13436         .implicit_on_dfl = true,
13437         .threaded       = true,
13438 };
13439 #endif /* CONFIG_CGROUP_PERF */