Merge tag 'ceph-for-5.17-rc1' of git://github.com/ceph/ceph-client
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 #ifdef CONFIG_CGROUP_PERF
678
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682         struct perf_event_context *ctx = event->ctx;
683         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684
685         /* @event doesn't care about cgroup */
686         if (!event->cgrp)
687                 return true;
688
689         /* wants specific cgroup scope but @cpuctx isn't associated with any */
690         if (!cpuctx->cgrp)
691                 return false;
692
693         /*
694          * Cgroup scoping is recursive.  An event enabled for a cgroup is
695          * also enabled for all its descendant cgroups.  If @cpuctx's
696          * cgroup is a descendant of @event's (the test covers identity
697          * case), it's a match.
698          */
699         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700                                     event->cgrp->css.cgroup);
701 }
702
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705         css_put(&event->cgrp->css);
706         event->cgrp = NULL;
707 }
708
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711         return event->cgrp != NULL;
712 }
713
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716         struct perf_cgroup_info *t;
717
718         t = per_cpu_ptr(event->cgrp->info, event->cpu);
719         return t->time;
720 }
721
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724         struct perf_cgroup_info *info;
725         u64 now;
726
727         now = perf_clock();
728
729         info = this_cpu_ptr(cgrp->info);
730
731         info->time += now - info->timestamp;
732         info->timestamp = now;
733 }
734
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737         struct perf_cgroup *cgrp = cpuctx->cgrp;
738         struct cgroup_subsys_state *css;
739
740         if (cgrp) {
741                 for (css = &cgrp->css; css; css = css->parent) {
742                         cgrp = container_of(css, struct perf_cgroup, css);
743                         __update_cgrp_time(cgrp);
744                 }
745         }
746 }
747
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750         struct perf_cgroup *cgrp;
751
752         /*
753          * ensure we access cgroup data only when needed and
754          * when we know the cgroup is pinned (css_get)
755          */
756         if (!is_cgroup_event(event))
757                 return;
758
759         cgrp = perf_cgroup_from_task(current, event->ctx);
760         /*
761          * Do not update time when cgroup is not active
762          */
763         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764                 __update_cgrp_time(event->cgrp);
765 }
766
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769                           struct perf_event_context *ctx)
770 {
771         struct perf_cgroup *cgrp;
772         struct perf_cgroup_info *info;
773         struct cgroup_subsys_state *css;
774
775         /*
776          * ctx->lock held by caller
777          * ensure we do not access cgroup data
778          * unless we have the cgroup pinned (css_get)
779          */
780         if (!task || !ctx->nr_cgroups)
781                 return;
782
783         cgrp = perf_cgroup_from_task(task, ctx);
784
785         for (css = &cgrp->css; css; css = css->parent) {
786                 cgrp = container_of(css, struct perf_cgroup, css);
787                 info = this_cpu_ptr(cgrp->info);
788                 info->timestamp = ctx->timestamp;
789         }
790 }
791
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793
794 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
796
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805         struct perf_cpu_context *cpuctx;
806         struct list_head *list;
807         unsigned long flags;
808
809         /*
810          * Disable interrupts and preemption to avoid this CPU's
811          * cgrp_cpuctx_entry to change under us.
812          */
813         local_irq_save(flags);
814
815         list = this_cpu_ptr(&cgrp_cpuctx_list);
816         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818
819                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820                 perf_pmu_disable(cpuctx->ctx.pmu);
821
822                 if (mode & PERF_CGROUP_SWOUT) {
823                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824                         /*
825                          * must not be done before ctxswout due
826                          * to event_filter_match() in event_sched_out()
827                          */
828                         cpuctx->cgrp = NULL;
829                 }
830
831                 if (mode & PERF_CGROUP_SWIN) {
832                         WARN_ON_ONCE(cpuctx->cgrp);
833                         /*
834                          * set cgrp before ctxsw in to allow
835                          * event_filter_match() to not have to pass
836                          * task around
837                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
838                          * because cgorup events are only per-cpu
839                          */
840                         cpuctx->cgrp = perf_cgroup_from_task(task,
841                                                              &cpuctx->ctx);
842                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843                 }
844                 perf_pmu_enable(cpuctx->ctx.pmu);
845                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846         }
847
848         local_irq_restore(flags);
849 }
850
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852                                          struct task_struct *next)
853 {
854         struct perf_cgroup *cgrp1;
855         struct perf_cgroup *cgrp2 = NULL;
856
857         rcu_read_lock();
858         /*
859          * we come here when we know perf_cgroup_events > 0
860          * we do not need to pass the ctx here because we know
861          * we are holding the rcu lock
862          */
863         cgrp1 = perf_cgroup_from_task(task, NULL);
864         cgrp2 = perf_cgroup_from_task(next, NULL);
865
866         /*
867          * only schedule out current cgroup events if we know
868          * that we are switching to a different cgroup. Otherwise,
869          * do no touch the cgroup events.
870          */
871         if (cgrp1 != cgrp2)
872                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873
874         rcu_read_unlock();
875 }
876
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878                                         struct task_struct *task)
879 {
880         struct perf_cgroup *cgrp1;
881         struct perf_cgroup *cgrp2 = NULL;
882
883         rcu_read_lock();
884         /*
885          * we come here when we know perf_cgroup_events > 0
886          * we do not need to pass the ctx here because we know
887          * we are holding the rcu lock
888          */
889         cgrp1 = perf_cgroup_from_task(task, NULL);
890         cgrp2 = perf_cgroup_from_task(prev, NULL);
891
892         /*
893          * only need to schedule in cgroup events if we are changing
894          * cgroup during ctxsw. Cgroup events were not scheduled
895          * out of ctxsw out if that was not the case.
896          */
897         if (cgrp1 != cgrp2)
898                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899
900         rcu_read_unlock();
901 }
902
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904                                 struct cgroup_subsys_state *css)
905 {
906         struct perf_cpu_context *cpuctx;
907         struct perf_event **storage;
908         int cpu, heap_size, ret = 0;
909
910         /*
911          * Allow storage to have sufficent space for an iterator for each
912          * possibly nested cgroup plus an iterator for events with no cgroup.
913          */
914         for (heap_size = 1; css; css = css->parent)
915                 heap_size++;
916
917         for_each_possible_cpu(cpu) {
918                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919                 if (heap_size <= cpuctx->heap_size)
920                         continue;
921
922                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923                                        GFP_KERNEL, cpu_to_node(cpu));
924                 if (!storage) {
925                         ret = -ENOMEM;
926                         break;
927                 }
928
929                 raw_spin_lock_irq(&cpuctx->ctx.lock);
930                 if (cpuctx->heap_size < heap_size) {
931                         swap(cpuctx->heap, storage);
932                         if (storage == cpuctx->heap_default)
933                                 storage = NULL;
934                         cpuctx->heap_size = heap_size;
935                 }
936                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
937
938                 kfree(storage);
939         }
940
941         return ret;
942 }
943
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945                                       struct perf_event_attr *attr,
946                                       struct perf_event *group_leader)
947 {
948         struct perf_cgroup *cgrp;
949         struct cgroup_subsys_state *css;
950         struct fd f = fdget(fd);
951         int ret = 0;
952
953         if (!f.file)
954                 return -EBADF;
955
956         css = css_tryget_online_from_dir(f.file->f_path.dentry,
957                                          &perf_event_cgrp_subsys);
958         if (IS_ERR(css)) {
959                 ret = PTR_ERR(css);
960                 goto out;
961         }
962
963         ret = perf_cgroup_ensure_storage(event, css);
964         if (ret)
965                 goto out;
966
967         cgrp = container_of(css, struct perf_cgroup, css);
968         event->cgrp = cgrp;
969
970         /*
971          * all events in a group must monitor
972          * the same cgroup because a task belongs
973          * to only one perf cgroup at a time
974          */
975         if (group_leader && group_leader->cgrp != cgrp) {
976                 perf_detach_cgroup(event);
977                 ret = -EINVAL;
978         }
979 out:
980         fdput(f);
981         return ret;
982 }
983
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987         struct perf_cgroup_info *t;
988         t = per_cpu_ptr(event->cgrp->info, event->cpu);
989         event->shadow_ctx_time = now - t->timestamp;
990 }
991
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995         struct perf_cpu_context *cpuctx;
996
997         if (!is_cgroup_event(event))
998                 return;
999
1000         /*
1001          * Because cgroup events are always per-cpu events,
1002          * @ctx == &cpuctx->ctx.
1003          */
1004         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005
1006         /*
1007          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008          * matching the event's cgroup, we must do this for every new event,
1009          * because if the first would mismatch, the second would not try again
1010          * and we would leave cpuctx->cgrp unset.
1011          */
1012         if (ctx->is_active && !cpuctx->cgrp) {
1013                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
1015                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016                         cpuctx->cgrp = cgrp;
1017         }
1018
1019         if (ctx->nr_cgroups++)
1020                 return;
1021
1022         list_add(&cpuctx->cgrp_cpuctx_entry,
1023                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029         struct perf_cpu_context *cpuctx;
1030
1031         if (!is_cgroup_event(event))
1032                 return;
1033
1034         /*
1035          * Because cgroup events are always per-cpu events,
1036          * @ctx == &cpuctx->ctx.
1037          */
1038         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039
1040         if (--ctx->nr_cgroups)
1041                 return;
1042
1043         if (ctx->is_active && cpuctx->cgrp)
1044                 cpuctx->cgrp = NULL;
1045
1046         list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048
1049 #else /* !CONFIG_CGROUP_PERF */
1050
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054         return true;
1055 }
1056
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062         return 0;
1063 }
1064
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074                                          struct task_struct *next)
1075 {
1076 }
1077
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079                                         struct task_struct *task)
1080 {
1081 }
1082
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084                                       struct perf_event_attr *attr,
1085                                       struct perf_event *group_leader)
1086 {
1087         return -EINVAL;
1088 }
1089
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092                           struct perf_event_context *ctx)
1093 {
1094 }
1095
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108         return 0;
1109 }
1110
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132         struct perf_cpu_context *cpuctx;
1133         bool rotations;
1134
1135         lockdep_assert_irqs_disabled();
1136
1137         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138         rotations = perf_rotate_context(cpuctx);
1139
1140         raw_spin_lock(&cpuctx->hrtimer_lock);
1141         if (rotations)
1142                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143         else
1144                 cpuctx->hrtimer_active = 0;
1145         raw_spin_unlock(&cpuctx->hrtimer_lock);
1146
1147         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152         struct hrtimer *timer = &cpuctx->hrtimer;
1153         struct pmu *pmu = cpuctx->ctx.pmu;
1154         u64 interval;
1155
1156         /* no multiplexing needed for SW PMU */
1157         if (pmu->task_ctx_nr == perf_sw_context)
1158                 return;
1159
1160         /*
1161          * check default is sane, if not set then force to
1162          * default interval (1/tick)
1163          */
1164         interval = pmu->hrtimer_interval_ms;
1165         if (interval < 1)
1166                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167
1168         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169
1170         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172         timer->function = perf_mux_hrtimer_handler;
1173 }
1174
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177         struct hrtimer *timer = &cpuctx->hrtimer;
1178         struct pmu *pmu = cpuctx->ctx.pmu;
1179         unsigned long flags;
1180
1181         /* not for SW PMU */
1182         if (pmu->task_ctx_nr == perf_sw_context)
1183                 return 0;
1184
1185         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186         if (!cpuctx->hrtimer_active) {
1187                 cpuctx->hrtimer_active = 1;
1188                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190         }
1191         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192
1193         return 0;
1194 }
1195
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199         if (!(*count)++)
1200                 pmu->pmu_disable(pmu);
1201 }
1202
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206         if (!--(*count))
1207                 pmu->pmu_enable(pmu);
1208 }
1209
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221
1222         lockdep_assert_irqs_disabled();
1223
1224         WARN_ON(!list_empty(&ctx->active_ctx_list));
1225
1226         list_add(&ctx->active_ctx_list, head);
1227 }
1228
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231         lockdep_assert_irqs_disabled();
1232
1233         WARN_ON(list_empty(&ctx->active_ctx_list));
1234
1235         list_del_init(&ctx->active_ctx_list);
1236 }
1237
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240         refcount_inc(&ctx->refcount);
1241 }
1242
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245         if (pmu->task_ctx_cache)
1246                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247
1248         return NULL;
1249 }
1250
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253         if (pmu->task_ctx_cache && task_ctx_data)
1254                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259         struct perf_event_context *ctx;
1260
1261         ctx = container_of(head, struct perf_event_context, rcu_head);
1262         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263         kfree(ctx);
1264 }
1265
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268         if (refcount_dec_and_test(&ctx->refcount)) {
1269                 if (ctx->parent_ctx)
1270                         put_ctx(ctx->parent_ctx);
1271                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272                         put_task_struct(ctx->task);
1273                 call_rcu(&ctx->rcu_head, free_ctx);
1274         }
1275 }
1276
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()    [ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()                   [ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()         [ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event() [ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *      task_struct::perf_event_mutex
1332  *        perf_event_context::mutex
1333  *          perf_event::child_mutex;
1334  *            perf_event_context::lock
1335  *          perf_event::mmap_mutex
1336  *          mmap_lock
1337  *            perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *        cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346         struct perf_event_context *ctx;
1347
1348 again:
1349         rcu_read_lock();
1350         ctx = READ_ONCE(event->ctx);
1351         if (!refcount_inc_not_zero(&ctx->refcount)) {
1352                 rcu_read_unlock();
1353                 goto again;
1354         }
1355         rcu_read_unlock();
1356
1357         mutex_lock_nested(&ctx->mutex, nesting);
1358         if (event->ctx != ctx) {
1359                 mutex_unlock(&ctx->mutex);
1360                 put_ctx(ctx);
1361                 goto again;
1362         }
1363
1364         return ctx;
1365 }
1366
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370         return perf_event_ctx_lock_nested(event, 0);
1371 }
1372
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374                                   struct perf_event_context *ctx)
1375 {
1376         mutex_unlock(&ctx->mutex);
1377         put_ctx(ctx);
1378 }
1379
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389
1390         lockdep_assert_held(&ctx->lock);
1391
1392         if (parent_ctx)
1393                 ctx->parent_ctx = NULL;
1394         ctx->generation++;
1395
1396         return parent_ctx;
1397 }
1398
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400                                 enum pid_type type)
1401 {
1402         u32 nr;
1403         /*
1404          * only top level events have the pid namespace they were created in
1405          */
1406         if (event->parent)
1407                 event = event->parent;
1408
1409         nr = __task_pid_nr_ns(p, type, event->ns);
1410         /* avoid -1 if it is idle thread or runs in another ns */
1411         if (!nr && !pid_alive(p))
1412                 nr = -1;
1413         return nr;
1414 }
1415
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423         return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432         u64 id = event->id;
1433
1434         if (event->parent)
1435                 id = event->parent->id;
1436
1437         return id;
1438 }
1439
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449         struct perf_event_context *ctx;
1450
1451 retry:
1452         /*
1453          * One of the few rules of preemptible RCU is that one cannot do
1454          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455          * part of the read side critical section was irqs-enabled -- see
1456          * rcu_read_unlock_special().
1457          *
1458          * Since ctx->lock nests under rq->lock we must ensure the entire read
1459          * side critical section has interrupts disabled.
1460          */
1461         local_irq_save(*flags);
1462         rcu_read_lock();
1463         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464         if (ctx) {
1465                 /*
1466                  * If this context is a clone of another, it might
1467                  * get swapped for another underneath us by
1468                  * perf_event_task_sched_out, though the
1469                  * rcu_read_lock() protects us from any context
1470                  * getting freed.  Lock the context and check if it
1471                  * got swapped before we could get the lock, and retry
1472                  * if so.  If we locked the right context, then it
1473                  * can't get swapped on us any more.
1474                  */
1475                 raw_spin_lock(&ctx->lock);
1476                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477                         raw_spin_unlock(&ctx->lock);
1478                         rcu_read_unlock();
1479                         local_irq_restore(*flags);
1480                         goto retry;
1481                 }
1482
1483                 if (ctx->task == TASK_TOMBSTONE ||
1484                     !refcount_inc_not_zero(&ctx->refcount)) {
1485                         raw_spin_unlock(&ctx->lock);
1486                         ctx = NULL;
1487                 } else {
1488                         WARN_ON_ONCE(ctx->task != task);
1489                 }
1490         }
1491         rcu_read_unlock();
1492         if (!ctx)
1493                 local_irq_restore(*flags);
1494         return ctx;
1495 }
1496
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505         struct perf_event_context *ctx;
1506         unsigned long flags;
1507
1508         ctx = perf_lock_task_context(task, ctxn, &flags);
1509         if (ctx) {
1510                 ++ctx->pin_count;
1511                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512         }
1513         return ctx;
1514 }
1515
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518         unsigned long flags;
1519
1520         raw_spin_lock_irqsave(&ctx->lock, flags);
1521         --ctx->pin_count;
1522         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530         u64 now = perf_clock();
1531
1532         ctx->time += now - ctx->timestamp;
1533         ctx->timestamp = now;
1534 }
1535
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538         struct perf_event_context *ctx = event->ctx;
1539
1540         if (is_cgroup_event(event))
1541                 return perf_cgroup_event_time(event);
1542
1543         return ctx ? ctx->time : 0;
1544 }
1545
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548         struct perf_event_context *ctx = event->ctx;
1549         enum event_type_t event_type;
1550
1551         lockdep_assert_held(&ctx->lock);
1552
1553         /*
1554          * It's 'group type', really, because if our group leader is
1555          * pinned, so are we.
1556          */
1557         if (event->group_leader != event)
1558                 event = event->group_leader;
1559
1560         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561         if (!ctx->task)
1562                 event_type |= EVENT_CPU;
1563
1564         return event_type;
1565 }
1566
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572         RB_CLEAR_NODE(&event->group_node);
1573         event->group_index = 0;
1574 }
1575
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583         if (event->attr.pinned)
1584                 return &ctx->pinned_groups;
1585         else
1586                 return &ctx->flexible_groups;
1587 }
1588
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594         groups->tree = RB_ROOT;
1595         groups->index = 0;
1596 }
1597
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600         struct cgroup *cgroup = NULL;
1601
1602 #ifdef CONFIG_CGROUP_PERF
1603         if (event->cgrp)
1604                 cgroup = event->cgrp->css.cgroup;
1605 #endif
1606
1607         return cgroup;
1608 }
1609
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618                       const u64 left_group_index, const struct perf_event *right)
1619 {
1620         if (left_cpu < right->cpu)
1621                 return -1;
1622         if (left_cpu > right->cpu)
1623                 return 1;
1624
1625 #ifdef CONFIG_CGROUP_PERF
1626         {
1627                 const struct cgroup *right_cgroup = event_cgroup(right);
1628
1629                 if (left_cgroup != right_cgroup) {
1630                         if (!left_cgroup) {
1631                                 /*
1632                                  * Left has no cgroup but right does, no
1633                                  * cgroups come first.
1634                                  */
1635                                 return -1;
1636                         }
1637                         if (!right_cgroup) {
1638                                 /*
1639                                  * Right has no cgroup but left does, no
1640                                  * cgroups come first.
1641                                  */
1642                                 return 1;
1643                         }
1644                         /* Two dissimilar cgroups, order by id. */
1645                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646                                 return -1;
1647
1648                         return 1;
1649                 }
1650         }
1651 #endif
1652
1653         if (left_group_index < right->group_index)
1654                 return -1;
1655         if (left_group_index > right->group_index)
1656                 return 1;
1657
1658         return 0;
1659 }
1660
1661 #define __node_2_pe(node) \
1662         rb_entry((node), struct perf_event, group_node)
1663
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666         struct perf_event *e = __node_2_pe(a);
1667         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668                                      __node_2_pe(b)) < 0;
1669 }
1670
1671 struct __group_key {
1672         int cpu;
1673         struct cgroup *cgroup;
1674 };
1675
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678         const struct __group_key *a = key;
1679         const struct perf_event *b = __node_2_pe(node);
1680
1681         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         event->group_index = ++groups->index;
1695
1696         rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705         struct perf_event_groups *groups;
1706
1707         groups = get_event_groups(event, ctx);
1708         perf_event_groups_insert(groups, event);
1709 }
1710
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716                          struct perf_event *event)
1717 {
1718         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719                      RB_EMPTY_ROOT(&groups->tree));
1720
1721         rb_erase(&event->group_node, &groups->tree);
1722         init_event_group(event);
1723 }
1724
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731         struct perf_event_groups *groups;
1732
1733         groups = get_event_groups(event, ctx);
1734         perf_event_groups_delete(groups, event);
1735 }
1736
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742                         struct cgroup *cgrp)
1743 {
1744         struct __group_key key = {
1745                 .cpu = cpu,
1746                 .cgroup = cgrp,
1747         };
1748         struct rb_node *node;
1749
1750         node = rb_find_first(&key, &groups->tree, __group_cmp);
1751         if (node)
1752                 return __node_2_pe(node);
1753
1754         return NULL;
1755 }
1756
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763         struct __group_key key = {
1764                 .cpu = event->cpu,
1765                 .cgroup = event_cgroup(event),
1766         };
1767         struct rb_node *next;
1768
1769         next = rb_next_match(&key, &event->group_node, __group_cmp);
1770         if (next)
1771                 return __node_2_pe(next);
1772
1773         return NULL;
1774 }
1775
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)                       \
1780         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1781                                 typeof(*event), group_node); event;     \
1782                 event = rb_entry_safe(rb_next(&event->group_node),      \
1783                                 typeof(*event), group_node))
1784
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792         lockdep_assert_held(&ctx->lock);
1793
1794         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795         event->attach_state |= PERF_ATTACH_CONTEXT;
1796
1797         event->tstamp = perf_event_time(event);
1798
1799         /*
1800          * If we're a stand alone event or group leader, we go to the context
1801          * list, group events are kept attached to the group so that
1802          * perf_group_detach can, at all times, locate all siblings.
1803          */
1804         if (event->group_leader == event) {
1805                 event->group_caps = event->event_caps;
1806                 add_event_to_groups(event, ctx);
1807         }
1808
1809         list_add_rcu(&event->event_entry, &ctx->event_list);
1810         ctx->nr_events++;
1811         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1812                 ctx->nr_user++;
1813         if (event->attr.inherit_stat)
1814                 ctx->nr_stat++;
1815
1816         if (event->state > PERF_EVENT_STATE_OFF)
1817                 perf_cgroup_event_enable(event, ctx);
1818
1819         ctx->generation++;
1820 }
1821
1822 /*
1823  * Initialize event state based on the perf_event_attr::disabled.
1824  */
1825 static inline void perf_event__state_init(struct perf_event *event)
1826 {
1827         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1828                                               PERF_EVENT_STATE_INACTIVE;
1829 }
1830
1831 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1832 {
1833         int entry = sizeof(u64); /* value */
1834         int size = 0;
1835         int nr = 1;
1836
1837         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1838                 size += sizeof(u64);
1839
1840         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1841                 size += sizeof(u64);
1842
1843         if (event->attr.read_format & PERF_FORMAT_ID)
1844                 entry += sizeof(u64);
1845
1846         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1847                 nr += nr_siblings;
1848                 size += sizeof(u64);
1849         }
1850
1851         size += entry * nr;
1852         event->read_size = size;
1853 }
1854
1855 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1856 {
1857         struct perf_sample_data *data;
1858         u16 size = 0;
1859
1860         if (sample_type & PERF_SAMPLE_IP)
1861                 size += sizeof(data->ip);
1862
1863         if (sample_type & PERF_SAMPLE_ADDR)
1864                 size += sizeof(data->addr);
1865
1866         if (sample_type & PERF_SAMPLE_PERIOD)
1867                 size += sizeof(data->period);
1868
1869         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1870                 size += sizeof(data->weight.full);
1871
1872         if (sample_type & PERF_SAMPLE_READ)
1873                 size += event->read_size;
1874
1875         if (sample_type & PERF_SAMPLE_DATA_SRC)
1876                 size += sizeof(data->data_src.val);
1877
1878         if (sample_type & PERF_SAMPLE_TRANSACTION)
1879                 size += sizeof(data->txn);
1880
1881         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1882                 size += sizeof(data->phys_addr);
1883
1884         if (sample_type & PERF_SAMPLE_CGROUP)
1885                 size += sizeof(data->cgroup);
1886
1887         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1888                 size += sizeof(data->data_page_size);
1889
1890         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1891                 size += sizeof(data->code_page_size);
1892
1893         event->header_size = size;
1894 }
1895
1896 /*
1897  * Called at perf_event creation and when events are attached/detached from a
1898  * group.
1899  */
1900 static void perf_event__header_size(struct perf_event *event)
1901 {
1902         __perf_event_read_size(event,
1903                                event->group_leader->nr_siblings);
1904         __perf_event_header_size(event, event->attr.sample_type);
1905 }
1906
1907 static void perf_event__id_header_size(struct perf_event *event)
1908 {
1909         struct perf_sample_data *data;
1910         u64 sample_type = event->attr.sample_type;
1911         u16 size = 0;
1912
1913         if (sample_type & PERF_SAMPLE_TID)
1914                 size += sizeof(data->tid_entry);
1915
1916         if (sample_type & PERF_SAMPLE_TIME)
1917                 size += sizeof(data->time);
1918
1919         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1920                 size += sizeof(data->id);
1921
1922         if (sample_type & PERF_SAMPLE_ID)
1923                 size += sizeof(data->id);
1924
1925         if (sample_type & PERF_SAMPLE_STREAM_ID)
1926                 size += sizeof(data->stream_id);
1927
1928         if (sample_type & PERF_SAMPLE_CPU)
1929                 size += sizeof(data->cpu_entry);
1930
1931         event->id_header_size = size;
1932 }
1933
1934 static bool perf_event_validate_size(struct perf_event *event)
1935 {
1936         /*
1937          * The values computed here will be over-written when we actually
1938          * attach the event.
1939          */
1940         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1941         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1942         perf_event__id_header_size(event);
1943
1944         /*
1945          * Sum the lot; should not exceed the 64k limit we have on records.
1946          * Conservative limit to allow for callchains and other variable fields.
1947          */
1948         if (event->read_size + event->header_size +
1949             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1950                 return false;
1951
1952         return true;
1953 }
1954
1955 static void perf_group_attach(struct perf_event *event)
1956 {
1957         struct perf_event *group_leader = event->group_leader, *pos;
1958
1959         lockdep_assert_held(&event->ctx->lock);
1960
1961         /*
1962          * We can have double attach due to group movement in perf_event_open.
1963          */
1964         if (event->attach_state & PERF_ATTACH_GROUP)
1965                 return;
1966
1967         event->attach_state |= PERF_ATTACH_GROUP;
1968
1969         if (group_leader == event)
1970                 return;
1971
1972         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1973
1974         group_leader->group_caps &= event->event_caps;
1975
1976         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1977         group_leader->nr_siblings++;
1978
1979         perf_event__header_size(group_leader);
1980
1981         for_each_sibling_event(pos, group_leader)
1982                 perf_event__header_size(pos);
1983 }
1984
1985 /*
1986  * Remove an event from the lists for its context.
1987  * Must be called with ctx->mutex and ctx->lock held.
1988  */
1989 static void
1990 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1991 {
1992         WARN_ON_ONCE(event->ctx != ctx);
1993         lockdep_assert_held(&ctx->lock);
1994
1995         /*
1996          * We can have double detach due to exit/hot-unplug + close.
1997          */
1998         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1999                 return;
2000
2001         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2002
2003         ctx->nr_events--;
2004         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2005                 ctx->nr_user--;
2006         if (event->attr.inherit_stat)
2007                 ctx->nr_stat--;
2008
2009         list_del_rcu(&event->event_entry);
2010
2011         if (event->group_leader == event)
2012                 del_event_from_groups(event, ctx);
2013
2014         /*
2015          * If event was in error state, then keep it
2016          * that way, otherwise bogus counts will be
2017          * returned on read(). The only way to get out
2018          * of error state is by explicit re-enabling
2019          * of the event
2020          */
2021         if (event->state > PERF_EVENT_STATE_OFF) {
2022                 perf_cgroup_event_disable(event, ctx);
2023                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2024         }
2025
2026         ctx->generation++;
2027 }
2028
2029 static int
2030 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2031 {
2032         if (!has_aux(aux_event))
2033                 return 0;
2034
2035         if (!event->pmu->aux_output_match)
2036                 return 0;
2037
2038         return event->pmu->aux_output_match(aux_event);
2039 }
2040
2041 static void put_event(struct perf_event *event);
2042 static void event_sched_out(struct perf_event *event,
2043                             struct perf_cpu_context *cpuctx,
2044                             struct perf_event_context *ctx);
2045
2046 static void perf_put_aux_event(struct perf_event *event)
2047 {
2048         struct perf_event_context *ctx = event->ctx;
2049         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2050         struct perf_event *iter;
2051
2052         /*
2053          * If event uses aux_event tear down the link
2054          */
2055         if (event->aux_event) {
2056                 iter = event->aux_event;
2057                 event->aux_event = NULL;
2058                 put_event(iter);
2059                 return;
2060         }
2061
2062         /*
2063          * If the event is an aux_event, tear down all links to
2064          * it from other events.
2065          */
2066         for_each_sibling_event(iter, event->group_leader) {
2067                 if (iter->aux_event != event)
2068                         continue;
2069
2070                 iter->aux_event = NULL;
2071                 put_event(event);
2072
2073                 /*
2074                  * If it's ACTIVE, schedule it out and put it into ERROR
2075                  * state so that we don't try to schedule it again. Note
2076                  * that perf_event_enable() will clear the ERROR status.
2077                  */
2078                 event_sched_out(iter, cpuctx, ctx);
2079                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2080         }
2081 }
2082
2083 static bool perf_need_aux_event(struct perf_event *event)
2084 {
2085         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2086 }
2087
2088 static int perf_get_aux_event(struct perf_event *event,
2089                               struct perf_event *group_leader)
2090 {
2091         /*
2092          * Our group leader must be an aux event if we want to be
2093          * an aux_output. This way, the aux event will precede its
2094          * aux_output events in the group, and therefore will always
2095          * schedule first.
2096          */
2097         if (!group_leader)
2098                 return 0;
2099
2100         /*
2101          * aux_output and aux_sample_size are mutually exclusive.
2102          */
2103         if (event->attr.aux_output && event->attr.aux_sample_size)
2104                 return 0;
2105
2106         if (event->attr.aux_output &&
2107             !perf_aux_output_match(event, group_leader))
2108                 return 0;
2109
2110         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2111                 return 0;
2112
2113         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2114                 return 0;
2115
2116         /*
2117          * Link aux_outputs to their aux event; this is undone in
2118          * perf_group_detach() by perf_put_aux_event(). When the
2119          * group in torn down, the aux_output events loose their
2120          * link to the aux_event and can't schedule any more.
2121          */
2122         event->aux_event = group_leader;
2123
2124         return 1;
2125 }
2126
2127 static inline struct list_head *get_event_list(struct perf_event *event)
2128 {
2129         struct perf_event_context *ctx = event->ctx;
2130         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2131 }
2132
2133 /*
2134  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2135  * cannot exist on their own, schedule them out and move them into the ERROR
2136  * state. Also see _perf_event_enable(), it will not be able to recover
2137  * this ERROR state.
2138  */
2139 static inline void perf_remove_sibling_event(struct perf_event *event)
2140 {
2141         struct perf_event_context *ctx = event->ctx;
2142         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2143
2144         event_sched_out(event, cpuctx, ctx);
2145         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2146 }
2147
2148 static void perf_group_detach(struct perf_event *event)
2149 {
2150         struct perf_event *leader = event->group_leader;
2151         struct perf_event *sibling, *tmp;
2152         struct perf_event_context *ctx = event->ctx;
2153
2154         lockdep_assert_held(&ctx->lock);
2155
2156         /*
2157          * We can have double detach due to exit/hot-unplug + close.
2158          */
2159         if (!(event->attach_state & PERF_ATTACH_GROUP))
2160                 return;
2161
2162         event->attach_state &= ~PERF_ATTACH_GROUP;
2163
2164         perf_put_aux_event(event);
2165
2166         /*
2167          * If this is a sibling, remove it from its group.
2168          */
2169         if (leader != event) {
2170                 list_del_init(&event->sibling_list);
2171                 event->group_leader->nr_siblings--;
2172                 goto out;
2173         }
2174
2175         /*
2176          * If this was a group event with sibling events then
2177          * upgrade the siblings to singleton events by adding them
2178          * to whatever list we are on.
2179          */
2180         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2181
2182                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2183                         perf_remove_sibling_event(sibling);
2184
2185                 sibling->group_leader = sibling;
2186                 list_del_init(&sibling->sibling_list);
2187
2188                 /* Inherit group flags from the previous leader */
2189                 sibling->group_caps = event->group_caps;
2190
2191                 if (!RB_EMPTY_NODE(&event->group_node)) {
2192                         add_event_to_groups(sibling, event->ctx);
2193
2194                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2195                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2196                 }
2197
2198                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2199         }
2200
2201 out:
2202         for_each_sibling_event(tmp, leader)
2203                 perf_event__header_size(tmp);
2204
2205         perf_event__header_size(leader);
2206 }
2207
2208 static void sync_child_event(struct perf_event *child_event);
2209
2210 static void perf_child_detach(struct perf_event *event)
2211 {
2212         struct perf_event *parent_event = event->parent;
2213
2214         if (!(event->attach_state & PERF_ATTACH_CHILD))
2215                 return;
2216
2217         event->attach_state &= ~PERF_ATTACH_CHILD;
2218
2219         if (WARN_ON_ONCE(!parent_event))
2220                 return;
2221
2222         lockdep_assert_held(&parent_event->child_mutex);
2223
2224         sync_child_event(event);
2225         list_del_init(&event->child_list);
2226 }
2227
2228 static bool is_orphaned_event(struct perf_event *event)
2229 {
2230         return event->state == PERF_EVENT_STATE_DEAD;
2231 }
2232
2233 static inline int __pmu_filter_match(struct perf_event *event)
2234 {
2235         struct pmu *pmu = event->pmu;
2236         return pmu->filter_match ? pmu->filter_match(event) : 1;
2237 }
2238
2239 /*
2240  * Check whether we should attempt to schedule an event group based on
2241  * PMU-specific filtering. An event group can consist of HW and SW events,
2242  * potentially with a SW leader, so we must check all the filters, to
2243  * determine whether a group is schedulable:
2244  */
2245 static inline int pmu_filter_match(struct perf_event *event)
2246 {
2247         struct perf_event *sibling;
2248
2249         if (!__pmu_filter_match(event))
2250                 return 0;
2251
2252         for_each_sibling_event(sibling, event) {
2253                 if (!__pmu_filter_match(sibling))
2254                         return 0;
2255         }
2256
2257         return 1;
2258 }
2259
2260 static inline int
2261 event_filter_match(struct perf_event *event)
2262 {
2263         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2264                perf_cgroup_match(event) && pmu_filter_match(event);
2265 }
2266
2267 static void
2268 event_sched_out(struct perf_event *event,
2269                   struct perf_cpu_context *cpuctx,
2270                   struct perf_event_context *ctx)
2271 {
2272         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2273
2274         WARN_ON_ONCE(event->ctx != ctx);
2275         lockdep_assert_held(&ctx->lock);
2276
2277         if (event->state != PERF_EVENT_STATE_ACTIVE)
2278                 return;
2279
2280         /*
2281          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2282          * we can schedule events _OUT_ individually through things like
2283          * __perf_remove_from_context().
2284          */
2285         list_del_init(&event->active_list);
2286
2287         perf_pmu_disable(event->pmu);
2288
2289         event->pmu->del(event, 0);
2290         event->oncpu = -1;
2291
2292         if (READ_ONCE(event->pending_disable) >= 0) {
2293                 WRITE_ONCE(event->pending_disable, -1);
2294                 perf_cgroup_event_disable(event, ctx);
2295                 state = PERF_EVENT_STATE_OFF;
2296         }
2297         perf_event_set_state(event, state);
2298
2299         if (!is_software_event(event))
2300                 cpuctx->active_oncpu--;
2301         if (!--ctx->nr_active)
2302                 perf_event_ctx_deactivate(ctx);
2303         if (event->attr.freq && event->attr.sample_freq)
2304                 ctx->nr_freq--;
2305         if (event->attr.exclusive || !cpuctx->active_oncpu)
2306                 cpuctx->exclusive = 0;
2307
2308         perf_pmu_enable(event->pmu);
2309 }
2310
2311 static void
2312 group_sched_out(struct perf_event *group_event,
2313                 struct perf_cpu_context *cpuctx,
2314                 struct perf_event_context *ctx)
2315 {
2316         struct perf_event *event;
2317
2318         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2319                 return;
2320
2321         perf_pmu_disable(ctx->pmu);
2322
2323         event_sched_out(group_event, cpuctx, ctx);
2324
2325         /*
2326          * Schedule out siblings (if any):
2327          */
2328         for_each_sibling_event(event, group_event)
2329                 event_sched_out(event, cpuctx, ctx);
2330
2331         perf_pmu_enable(ctx->pmu);
2332 }
2333
2334 #define DETACH_GROUP    0x01UL
2335 #define DETACH_CHILD    0x02UL
2336
2337 /*
2338  * Cross CPU call to remove a performance event
2339  *
2340  * We disable the event on the hardware level first. After that we
2341  * remove it from the context list.
2342  */
2343 static void
2344 __perf_remove_from_context(struct perf_event *event,
2345                            struct perf_cpu_context *cpuctx,
2346                            struct perf_event_context *ctx,
2347                            void *info)
2348 {
2349         unsigned long flags = (unsigned long)info;
2350
2351         if (ctx->is_active & EVENT_TIME) {
2352                 update_context_time(ctx);
2353                 update_cgrp_time_from_cpuctx(cpuctx);
2354         }
2355
2356         event_sched_out(event, cpuctx, ctx);
2357         if (flags & DETACH_GROUP)
2358                 perf_group_detach(event);
2359         if (flags & DETACH_CHILD)
2360                 perf_child_detach(event);
2361         list_del_event(event, ctx);
2362
2363         if (!ctx->nr_events && ctx->is_active) {
2364                 ctx->is_active = 0;
2365                 ctx->rotate_necessary = 0;
2366                 if (ctx->task) {
2367                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2368                         cpuctx->task_ctx = NULL;
2369                 }
2370         }
2371 }
2372
2373 /*
2374  * Remove the event from a task's (or a CPU's) list of events.
2375  *
2376  * If event->ctx is a cloned context, callers must make sure that
2377  * every task struct that event->ctx->task could possibly point to
2378  * remains valid.  This is OK when called from perf_release since
2379  * that only calls us on the top-level context, which can't be a clone.
2380  * When called from perf_event_exit_task, it's OK because the
2381  * context has been detached from its task.
2382  */
2383 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2384 {
2385         struct perf_event_context *ctx = event->ctx;
2386
2387         lockdep_assert_held(&ctx->mutex);
2388
2389         /*
2390          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2391          * to work in the face of TASK_TOMBSTONE, unlike every other
2392          * event_function_call() user.
2393          */
2394         raw_spin_lock_irq(&ctx->lock);
2395         if (!ctx->is_active) {
2396                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2397                                            ctx, (void *)flags);
2398                 raw_spin_unlock_irq(&ctx->lock);
2399                 return;
2400         }
2401         raw_spin_unlock_irq(&ctx->lock);
2402
2403         event_function_call(event, __perf_remove_from_context, (void *)flags);
2404 }
2405
2406 /*
2407  * Cross CPU call to disable a performance event
2408  */
2409 static void __perf_event_disable(struct perf_event *event,
2410                                  struct perf_cpu_context *cpuctx,
2411                                  struct perf_event_context *ctx,
2412                                  void *info)
2413 {
2414         if (event->state < PERF_EVENT_STATE_INACTIVE)
2415                 return;
2416
2417         if (ctx->is_active & EVENT_TIME) {
2418                 update_context_time(ctx);
2419                 update_cgrp_time_from_event(event);
2420         }
2421
2422         if (event == event->group_leader)
2423                 group_sched_out(event, cpuctx, ctx);
2424         else
2425                 event_sched_out(event, cpuctx, ctx);
2426
2427         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2428         perf_cgroup_event_disable(event, ctx);
2429 }
2430
2431 /*
2432  * Disable an event.
2433  *
2434  * If event->ctx is a cloned context, callers must make sure that
2435  * every task struct that event->ctx->task could possibly point to
2436  * remains valid.  This condition is satisfied when called through
2437  * perf_event_for_each_child or perf_event_for_each because they
2438  * hold the top-level event's child_mutex, so any descendant that
2439  * goes to exit will block in perf_event_exit_event().
2440  *
2441  * When called from perf_pending_event it's OK because event->ctx
2442  * is the current context on this CPU and preemption is disabled,
2443  * hence we can't get into perf_event_task_sched_out for this context.
2444  */
2445 static void _perf_event_disable(struct perf_event *event)
2446 {
2447         struct perf_event_context *ctx = event->ctx;
2448
2449         raw_spin_lock_irq(&ctx->lock);
2450         if (event->state <= PERF_EVENT_STATE_OFF) {
2451                 raw_spin_unlock_irq(&ctx->lock);
2452                 return;
2453         }
2454         raw_spin_unlock_irq(&ctx->lock);
2455
2456         event_function_call(event, __perf_event_disable, NULL);
2457 }
2458
2459 void perf_event_disable_local(struct perf_event *event)
2460 {
2461         event_function_local(event, __perf_event_disable, NULL);
2462 }
2463
2464 /*
2465  * Strictly speaking kernel users cannot create groups and therefore this
2466  * interface does not need the perf_event_ctx_lock() magic.
2467  */
2468 void perf_event_disable(struct perf_event *event)
2469 {
2470         struct perf_event_context *ctx;
2471
2472         ctx = perf_event_ctx_lock(event);
2473         _perf_event_disable(event);
2474         perf_event_ctx_unlock(event, ctx);
2475 }
2476 EXPORT_SYMBOL_GPL(perf_event_disable);
2477
2478 void perf_event_disable_inatomic(struct perf_event *event)
2479 {
2480         WRITE_ONCE(event->pending_disable, smp_processor_id());
2481         /* can fail, see perf_pending_event_disable() */
2482         irq_work_queue(&event->pending);
2483 }
2484
2485 static void perf_set_shadow_time(struct perf_event *event,
2486                                  struct perf_event_context *ctx)
2487 {
2488         /*
2489          * use the correct time source for the time snapshot
2490          *
2491          * We could get by without this by leveraging the
2492          * fact that to get to this function, the caller
2493          * has most likely already called update_context_time()
2494          * and update_cgrp_time_xx() and thus both timestamp
2495          * are identical (or very close). Given that tstamp is,
2496          * already adjusted for cgroup, we could say that:
2497          *    tstamp - ctx->timestamp
2498          * is equivalent to
2499          *    tstamp - cgrp->timestamp.
2500          *
2501          * Then, in perf_output_read(), the calculation would
2502          * work with no changes because:
2503          * - event is guaranteed scheduled in
2504          * - no scheduled out in between
2505          * - thus the timestamp would be the same
2506          *
2507          * But this is a bit hairy.
2508          *
2509          * So instead, we have an explicit cgroup call to remain
2510          * within the time source all along. We believe it
2511          * is cleaner and simpler to understand.
2512          */
2513         if (is_cgroup_event(event))
2514                 perf_cgroup_set_shadow_time(event, event->tstamp);
2515         else
2516                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2517 }
2518
2519 #define MAX_INTERRUPTS (~0ULL)
2520
2521 static void perf_log_throttle(struct perf_event *event, int enable);
2522 static void perf_log_itrace_start(struct perf_event *event);
2523
2524 static int
2525 event_sched_in(struct perf_event *event,
2526                  struct perf_cpu_context *cpuctx,
2527                  struct perf_event_context *ctx)
2528 {
2529         int ret = 0;
2530
2531         WARN_ON_ONCE(event->ctx != ctx);
2532
2533         lockdep_assert_held(&ctx->lock);
2534
2535         if (event->state <= PERF_EVENT_STATE_OFF)
2536                 return 0;
2537
2538         WRITE_ONCE(event->oncpu, smp_processor_id());
2539         /*
2540          * Order event::oncpu write to happen before the ACTIVE state is
2541          * visible. This allows perf_event_{stop,read}() to observe the correct
2542          * ->oncpu if it sees ACTIVE.
2543          */
2544         smp_wmb();
2545         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2546
2547         /*
2548          * Unthrottle events, since we scheduled we might have missed several
2549          * ticks already, also for a heavily scheduling task there is little
2550          * guarantee it'll get a tick in a timely manner.
2551          */
2552         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2553                 perf_log_throttle(event, 1);
2554                 event->hw.interrupts = 0;
2555         }
2556
2557         perf_pmu_disable(event->pmu);
2558
2559         perf_set_shadow_time(event, ctx);
2560
2561         perf_log_itrace_start(event);
2562
2563         if (event->pmu->add(event, PERF_EF_START)) {
2564                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2565                 event->oncpu = -1;
2566                 ret = -EAGAIN;
2567                 goto out;
2568         }
2569
2570         if (!is_software_event(event))
2571                 cpuctx->active_oncpu++;
2572         if (!ctx->nr_active++)
2573                 perf_event_ctx_activate(ctx);
2574         if (event->attr.freq && event->attr.sample_freq)
2575                 ctx->nr_freq++;
2576
2577         if (event->attr.exclusive)
2578                 cpuctx->exclusive = 1;
2579
2580 out:
2581         perf_pmu_enable(event->pmu);
2582
2583         return ret;
2584 }
2585
2586 static int
2587 group_sched_in(struct perf_event *group_event,
2588                struct perf_cpu_context *cpuctx,
2589                struct perf_event_context *ctx)
2590 {
2591         struct perf_event *event, *partial_group = NULL;
2592         struct pmu *pmu = ctx->pmu;
2593
2594         if (group_event->state == PERF_EVENT_STATE_OFF)
2595                 return 0;
2596
2597         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2598
2599         if (event_sched_in(group_event, cpuctx, ctx))
2600                 goto error;
2601
2602         /*
2603          * Schedule in siblings as one group (if any):
2604          */
2605         for_each_sibling_event(event, group_event) {
2606                 if (event_sched_in(event, cpuctx, ctx)) {
2607                         partial_group = event;
2608                         goto group_error;
2609                 }
2610         }
2611
2612         if (!pmu->commit_txn(pmu))
2613                 return 0;
2614
2615 group_error:
2616         /*
2617          * Groups can be scheduled in as one unit only, so undo any
2618          * partial group before returning:
2619          * The events up to the failed event are scheduled out normally.
2620          */
2621         for_each_sibling_event(event, group_event) {
2622                 if (event == partial_group)
2623                         break;
2624
2625                 event_sched_out(event, cpuctx, ctx);
2626         }
2627         event_sched_out(group_event, cpuctx, ctx);
2628
2629 error:
2630         pmu->cancel_txn(pmu);
2631         return -EAGAIN;
2632 }
2633
2634 /*
2635  * Work out whether we can put this event group on the CPU now.
2636  */
2637 static int group_can_go_on(struct perf_event *event,
2638                            struct perf_cpu_context *cpuctx,
2639                            int can_add_hw)
2640 {
2641         /*
2642          * Groups consisting entirely of software events can always go on.
2643          */
2644         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2645                 return 1;
2646         /*
2647          * If an exclusive group is already on, no other hardware
2648          * events can go on.
2649          */
2650         if (cpuctx->exclusive)
2651                 return 0;
2652         /*
2653          * If this group is exclusive and there are already
2654          * events on the CPU, it can't go on.
2655          */
2656         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2657                 return 0;
2658         /*
2659          * Otherwise, try to add it if all previous groups were able
2660          * to go on.
2661          */
2662         return can_add_hw;
2663 }
2664
2665 static void add_event_to_ctx(struct perf_event *event,
2666                                struct perf_event_context *ctx)
2667 {
2668         list_add_event(event, ctx);
2669         perf_group_attach(event);
2670 }
2671
2672 static void ctx_sched_out(struct perf_event_context *ctx,
2673                           struct perf_cpu_context *cpuctx,
2674                           enum event_type_t event_type);
2675 static void
2676 ctx_sched_in(struct perf_event_context *ctx,
2677              struct perf_cpu_context *cpuctx,
2678              enum event_type_t event_type,
2679              struct task_struct *task);
2680
2681 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2682                                struct perf_event_context *ctx,
2683                                enum event_type_t event_type)
2684 {
2685         if (!cpuctx->task_ctx)
2686                 return;
2687
2688         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2689                 return;
2690
2691         ctx_sched_out(ctx, cpuctx, event_type);
2692 }
2693
2694 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2695                                 struct perf_event_context *ctx,
2696                                 struct task_struct *task)
2697 {
2698         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2699         if (ctx)
2700                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2701         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2702         if (ctx)
2703                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2704 }
2705
2706 /*
2707  * We want to maintain the following priority of scheduling:
2708  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2709  *  - task pinned (EVENT_PINNED)
2710  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2711  *  - task flexible (EVENT_FLEXIBLE).
2712  *
2713  * In order to avoid unscheduling and scheduling back in everything every
2714  * time an event is added, only do it for the groups of equal priority and
2715  * below.
2716  *
2717  * This can be called after a batch operation on task events, in which case
2718  * event_type is a bit mask of the types of events involved. For CPU events,
2719  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2720  */
2721 static void ctx_resched(struct perf_cpu_context *cpuctx,
2722                         struct perf_event_context *task_ctx,
2723                         enum event_type_t event_type)
2724 {
2725         enum event_type_t ctx_event_type;
2726         bool cpu_event = !!(event_type & EVENT_CPU);
2727
2728         /*
2729          * If pinned groups are involved, flexible groups also need to be
2730          * scheduled out.
2731          */
2732         if (event_type & EVENT_PINNED)
2733                 event_type |= EVENT_FLEXIBLE;
2734
2735         ctx_event_type = event_type & EVENT_ALL;
2736
2737         perf_pmu_disable(cpuctx->ctx.pmu);
2738         if (task_ctx)
2739                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2740
2741         /*
2742          * Decide which cpu ctx groups to schedule out based on the types
2743          * of events that caused rescheduling:
2744          *  - EVENT_CPU: schedule out corresponding groups;
2745          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2746          *  - otherwise, do nothing more.
2747          */
2748         if (cpu_event)
2749                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2750         else if (ctx_event_type & EVENT_PINNED)
2751                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2752
2753         perf_event_sched_in(cpuctx, task_ctx, current);
2754         perf_pmu_enable(cpuctx->ctx.pmu);
2755 }
2756
2757 void perf_pmu_resched(struct pmu *pmu)
2758 {
2759         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2760         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2761
2762         perf_ctx_lock(cpuctx, task_ctx);
2763         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2764         perf_ctx_unlock(cpuctx, task_ctx);
2765 }
2766
2767 /*
2768  * Cross CPU call to install and enable a performance event
2769  *
2770  * Very similar to remote_function() + event_function() but cannot assume that
2771  * things like ctx->is_active and cpuctx->task_ctx are set.
2772  */
2773 static int  __perf_install_in_context(void *info)
2774 {
2775         struct perf_event *event = info;
2776         struct perf_event_context *ctx = event->ctx;
2777         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2778         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2779         bool reprogram = true;
2780         int ret = 0;
2781
2782         raw_spin_lock(&cpuctx->ctx.lock);
2783         if (ctx->task) {
2784                 raw_spin_lock(&ctx->lock);
2785                 task_ctx = ctx;
2786
2787                 reprogram = (ctx->task == current);
2788
2789                 /*
2790                  * If the task is running, it must be running on this CPU,
2791                  * otherwise we cannot reprogram things.
2792                  *
2793                  * If its not running, we don't care, ctx->lock will
2794                  * serialize against it becoming runnable.
2795                  */
2796                 if (task_curr(ctx->task) && !reprogram) {
2797                         ret = -ESRCH;
2798                         goto unlock;
2799                 }
2800
2801                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2802         } else if (task_ctx) {
2803                 raw_spin_lock(&task_ctx->lock);
2804         }
2805
2806 #ifdef CONFIG_CGROUP_PERF
2807         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2808                 /*
2809                  * If the current cgroup doesn't match the event's
2810                  * cgroup, we should not try to schedule it.
2811                  */
2812                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2813                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2814                                         event->cgrp->css.cgroup);
2815         }
2816 #endif
2817
2818         if (reprogram) {
2819                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2820                 add_event_to_ctx(event, ctx);
2821                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2822         } else {
2823                 add_event_to_ctx(event, ctx);
2824         }
2825
2826 unlock:
2827         perf_ctx_unlock(cpuctx, task_ctx);
2828
2829         return ret;
2830 }
2831
2832 static bool exclusive_event_installable(struct perf_event *event,
2833                                         struct perf_event_context *ctx);
2834
2835 /*
2836  * Attach a performance event to a context.
2837  *
2838  * Very similar to event_function_call, see comment there.
2839  */
2840 static void
2841 perf_install_in_context(struct perf_event_context *ctx,
2842                         struct perf_event *event,
2843                         int cpu)
2844 {
2845         struct task_struct *task = READ_ONCE(ctx->task);
2846
2847         lockdep_assert_held(&ctx->mutex);
2848
2849         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2850
2851         if (event->cpu != -1)
2852                 event->cpu = cpu;
2853
2854         /*
2855          * Ensures that if we can observe event->ctx, both the event and ctx
2856          * will be 'complete'. See perf_iterate_sb_cpu().
2857          */
2858         smp_store_release(&event->ctx, ctx);
2859
2860         /*
2861          * perf_event_attr::disabled events will not run and can be initialized
2862          * without IPI. Except when this is the first event for the context, in
2863          * that case we need the magic of the IPI to set ctx->is_active.
2864          *
2865          * The IOC_ENABLE that is sure to follow the creation of a disabled
2866          * event will issue the IPI and reprogram the hardware.
2867          */
2868         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2869                 raw_spin_lock_irq(&ctx->lock);
2870                 if (ctx->task == TASK_TOMBSTONE) {
2871                         raw_spin_unlock_irq(&ctx->lock);
2872                         return;
2873                 }
2874                 add_event_to_ctx(event, ctx);
2875                 raw_spin_unlock_irq(&ctx->lock);
2876                 return;
2877         }
2878
2879         if (!task) {
2880                 cpu_function_call(cpu, __perf_install_in_context, event);
2881                 return;
2882         }
2883
2884         /*
2885          * Should not happen, we validate the ctx is still alive before calling.
2886          */
2887         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2888                 return;
2889
2890         /*
2891          * Installing events is tricky because we cannot rely on ctx->is_active
2892          * to be set in case this is the nr_events 0 -> 1 transition.
2893          *
2894          * Instead we use task_curr(), which tells us if the task is running.
2895          * However, since we use task_curr() outside of rq::lock, we can race
2896          * against the actual state. This means the result can be wrong.
2897          *
2898          * If we get a false positive, we retry, this is harmless.
2899          *
2900          * If we get a false negative, things are complicated. If we are after
2901          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2902          * value must be correct. If we're before, it doesn't matter since
2903          * perf_event_context_sched_in() will program the counter.
2904          *
2905          * However, this hinges on the remote context switch having observed
2906          * our task->perf_event_ctxp[] store, such that it will in fact take
2907          * ctx::lock in perf_event_context_sched_in().
2908          *
2909          * We do this by task_function_call(), if the IPI fails to hit the task
2910          * we know any future context switch of task must see the
2911          * perf_event_ctpx[] store.
2912          */
2913
2914         /*
2915          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2916          * task_cpu() load, such that if the IPI then does not find the task
2917          * running, a future context switch of that task must observe the
2918          * store.
2919          */
2920         smp_mb();
2921 again:
2922         if (!task_function_call(task, __perf_install_in_context, event))
2923                 return;
2924
2925         raw_spin_lock_irq(&ctx->lock);
2926         task = ctx->task;
2927         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2928                 /*
2929                  * Cannot happen because we already checked above (which also
2930                  * cannot happen), and we hold ctx->mutex, which serializes us
2931                  * against perf_event_exit_task_context().
2932                  */
2933                 raw_spin_unlock_irq(&ctx->lock);
2934                 return;
2935         }
2936         /*
2937          * If the task is not running, ctx->lock will avoid it becoming so,
2938          * thus we can safely install the event.
2939          */
2940         if (task_curr(task)) {
2941                 raw_spin_unlock_irq(&ctx->lock);
2942                 goto again;
2943         }
2944         add_event_to_ctx(event, ctx);
2945         raw_spin_unlock_irq(&ctx->lock);
2946 }
2947
2948 /*
2949  * Cross CPU call to enable a performance event
2950  */
2951 static void __perf_event_enable(struct perf_event *event,
2952                                 struct perf_cpu_context *cpuctx,
2953                                 struct perf_event_context *ctx,
2954                                 void *info)
2955 {
2956         struct perf_event *leader = event->group_leader;
2957         struct perf_event_context *task_ctx;
2958
2959         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2960             event->state <= PERF_EVENT_STATE_ERROR)
2961                 return;
2962
2963         if (ctx->is_active)
2964                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2965
2966         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2967         perf_cgroup_event_enable(event, ctx);
2968
2969         if (!ctx->is_active)
2970                 return;
2971
2972         if (!event_filter_match(event)) {
2973                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2974                 return;
2975         }
2976
2977         /*
2978          * If the event is in a group and isn't the group leader,
2979          * then don't put it on unless the group is on.
2980          */
2981         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2982                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2983                 return;
2984         }
2985
2986         task_ctx = cpuctx->task_ctx;
2987         if (ctx->task)
2988                 WARN_ON_ONCE(task_ctx != ctx);
2989
2990         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2991 }
2992
2993 /*
2994  * Enable an event.
2995  *
2996  * If event->ctx is a cloned context, callers must make sure that
2997  * every task struct that event->ctx->task could possibly point to
2998  * remains valid.  This condition is satisfied when called through
2999  * perf_event_for_each_child or perf_event_for_each as described
3000  * for perf_event_disable.
3001  */
3002 static void _perf_event_enable(struct perf_event *event)
3003 {
3004         struct perf_event_context *ctx = event->ctx;
3005
3006         raw_spin_lock_irq(&ctx->lock);
3007         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3008             event->state <  PERF_EVENT_STATE_ERROR) {
3009 out:
3010                 raw_spin_unlock_irq(&ctx->lock);
3011                 return;
3012         }
3013
3014         /*
3015          * If the event is in error state, clear that first.
3016          *
3017          * That way, if we see the event in error state below, we know that it
3018          * has gone back into error state, as distinct from the task having
3019          * been scheduled away before the cross-call arrived.
3020          */
3021         if (event->state == PERF_EVENT_STATE_ERROR) {
3022                 /*
3023                  * Detached SIBLING events cannot leave ERROR state.
3024                  */
3025                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3026                     event->group_leader == event)
3027                         goto out;
3028
3029                 event->state = PERF_EVENT_STATE_OFF;
3030         }
3031         raw_spin_unlock_irq(&ctx->lock);
3032
3033         event_function_call(event, __perf_event_enable, NULL);
3034 }
3035
3036 /*
3037  * See perf_event_disable();
3038  */
3039 void perf_event_enable(struct perf_event *event)
3040 {
3041         struct perf_event_context *ctx;
3042
3043         ctx = perf_event_ctx_lock(event);
3044         _perf_event_enable(event);
3045         perf_event_ctx_unlock(event, ctx);
3046 }
3047 EXPORT_SYMBOL_GPL(perf_event_enable);
3048
3049 struct stop_event_data {
3050         struct perf_event       *event;
3051         unsigned int            restart;
3052 };
3053
3054 static int __perf_event_stop(void *info)
3055 {
3056         struct stop_event_data *sd = info;
3057         struct perf_event *event = sd->event;
3058
3059         /* if it's already INACTIVE, do nothing */
3060         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3061                 return 0;
3062
3063         /* matches smp_wmb() in event_sched_in() */
3064         smp_rmb();
3065
3066         /*
3067          * There is a window with interrupts enabled before we get here,
3068          * so we need to check again lest we try to stop another CPU's event.
3069          */
3070         if (READ_ONCE(event->oncpu) != smp_processor_id())
3071                 return -EAGAIN;
3072
3073         event->pmu->stop(event, PERF_EF_UPDATE);
3074
3075         /*
3076          * May race with the actual stop (through perf_pmu_output_stop()),
3077          * but it is only used for events with AUX ring buffer, and such
3078          * events will refuse to restart because of rb::aux_mmap_count==0,
3079          * see comments in perf_aux_output_begin().
3080          *
3081          * Since this is happening on an event-local CPU, no trace is lost
3082          * while restarting.
3083          */
3084         if (sd->restart)
3085                 event->pmu->start(event, 0);
3086
3087         return 0;
3088 }
3089
3090 static int perf_event_stop(struct perf_event *event, int restart)
3091 {
3092         struct stop_event_data sd = {
3093                 .event          = event,
3094                 .restart        = restart,
3095         };
3096         int ret = 0;
3097
3098         do {
3099                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3100                         return 0;
3101
3102                 /* matches smp_wmb() in event_sched_in() */
3103                 smp_rmb();
3104
3105                 /*
3106                  * We only want to restart ACTIVE events, so if the event goes
3107                  * inactive here (event->oncpu==-1), there's nothing more to do;
3108                  * fall through with ret==-ENXIO.
3109                  */
3110                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3111                                         __perf_event_stop, &sd);
3112         } while (ret == -EAGAIN);
3113
3114         return ret;
3115 }
3116
3117 /*
3118  * In order to contain the amount of racy and tricky in the address filter
3119  * configuration management, it is a two part process:
3120  *
3121  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3122  *      we update the addresses of corresponding vmas in
3123  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3124  * (p2) when an event is scheduled in (pmu::add), it calls
3125  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3126  *      if the generation has changed since the previous call.
3127  *
3128  * If (p1) happens while the event is active, we restart it to force (p2).
3129  *
3130  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3131  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3132  *     ioctl;
3133  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3134  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3135  *     for reading;
3136  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3137  *     of exec.
3138  */
3139 void perf_event_addr_filters_sync(struct perf_event *event)
3140 {
3141         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3142
3143         if (!has_addr_filter(event))
3144                 return;
3145
3146         raw_spin_lock(&ifh->lock);
3147         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3148                 event->pmu->addr_filters_sync(event);
3149                 event->hw.addr_filters_gen = event->addr_filters_gen;
3150         }
3151         raw_spin_unlock(&ifh->lock);
3152 }
3153 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3154
3155 static int _perf_event_refresh(struct perf_event *event, int refresh)
3156 {
3157         /*
3158          * not supported on inherited events
3159          */
3160         if (event->attr.inherit || !is_sampling_event(event))
3161                 return -EINVAL;
3162
3163         atomic_add(refresh, &event->event_limit);
3164         _perf_event_enable(event);
3165
3166         return 0;
3167 }
3168
3169 /*
3170  * See perf_event_disable()
3171  */
3172 int perf_event_refresh(struct perf_event *event, int refresh)
3173 {
3174         struct perf_event_context *ctx;
3175         int ret;
3176
3177         ctx = perf_event_ctx_lock(event);
3178         ret = _perf_event_refresh(event, refresh);
3179         perf_event_ctx_unlock(event, ctx);
3180
3181         return ret;
3182 }
3183 EXPORT_SYMBOL_GPL(perf_event_refresh);
3184
3185 static int perf_event_modify_breakpoint(struct perf_event *bp,
3186                                          struct perf_event_attr *attr)
3187 {
3188         int err;
3189
3190         _perf_event_disable(bp);
3191
3192         err = modify_user_hw_breakpoint_check(bp, attr, true);
3193
3194         if (!bp->attr.disabled)
3195                 _perf_event_enable(bp);
3196
3197         return err;
3198 }
3199
3200 static int perf_event_modify_attr(struct perf_event *event,
3201                                   struct perf_event_attr *attr)
3202 {
3203         int (*func)(struct perf_event *, struct perf_event_attr *);
3204         struct perf_event *child;
3205         int err;
3206
3207         if (event->attr.type != attr->type)
3208                 return -EINVAL;
3209
3210         switch (event->attr.type) {
3211         case PERF_TYPE_BREAKPOINT:
3212                 func = perf_event_modify_breakpoint;
3213                 break;
3214         default:
3215                 /* Place holder for future additions. */
3216                 return -EOPNOTSUPP;
3217         }
3218
3219         WARN_ON_ONCE(event->ctx->parent_ctx);
3220
3221         mutex_lock(&event->child_mutex);
3222         err = func(event, attr);
3223         if (err)
3224                 goto out;
3225         list_for_each_entry(child, &event->child_list, child_list) {
3226                 err = func(child, attr);
3227                 if (err)
3228                         goto out;
3229         }
3230 out:
3231         mutex_unlock(&event->child_mutex);
3232         return err;
3233 }
3234
3235 static void ctx_sched_out(struct perf_event_context *ctx,
3236                           struct perf_cpu_context *cpuctx,
3237                           enum event_type_t event_type)
3238 {
3239         struct perf_event *event, *tmp;
3240         int is_active = ctx->is_active;
3241
3242         lockdep_assert_held(&ctx->lock);
3243
3244         if (likely(!ctx->nr_events)) {
3245                 /*
3246                  * See __perf_remove_from_context().
3247                  */
3248                 WARN_ON_ONCE(ctx->is_active);
3249                 if (ctx->task)
3250                         WARN_ON_ONCE(cpuctx->task_ctx);
3251                 return;
3252         }
3253
3254         ctx->is_active &= ~event_type;
3255         if (!(ctx->is_active & EVENT_ALL))
3256                 ctx->is_active = 0;
3257
3258         if (ctx->task) {
3259                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3260                 if (!ctx->is_active)
3261                         cpuctx->task_ctx = NULL;
3262         }
3263
3264         /*
3265          * Always update time if it was set; not only when it changes.
3266          * Otherwise we can 'forget' to update time for any but the last
3267          * context we sched out. For example:
3268          *
3269          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3270          *   ctx_sched_out(.event_type = EVENT_PINNED)
3271          *
3272          * would only update time for the pinned events.
3273          */
3274         if (is_active & EVENT_TIME) {
3275                 /* update (and stop) ctx time */
3276                 update_context_time(ctx);
3277                 update_cgrp_time_from_cpuctx(cpuctx);
3278         }
3279
3280         is_active ^= ctx->is_active; /* changed bits */
3281
3282         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3283                 return;
3284
3285         perf_pmu_disable(ctx->pmu);
3286         if (is_active & EVENT_PINNED) {
3287                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3288                         group_sched_out(event, cpuctx, ctx);
3289         }
3290
3291         if (is_active & EVENT_FLEXIBLE) {
3292                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3293                         group_sched_out(event, cpuctx, ctx);
3294
3295                 /*
3296                  * Since we cleared EVENT_FLEXIBLE, also clear
3297                  * rotate_necessary, is will be reset by
3298                  * ctx_flexible_sched_in() when needed.
3299                  */
3300                 ctx->rotate_necessary = 0;
3301         }
3302         perf_pmu_enable(ctx->pmu);
3303 }
3304
3305 /*
3306  * Test whether two contexts are equivalent, i.e. whether they have both been
3307  * cloned from the same version of the same context.
3308  *
3309  * Equivalence is measured using a generation number in the context that is
3310  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3311  * and list_del_event().
3312  */
3313 static int context_equiv(struct perf_event_context *ctx1,
3314                          struct perf_event_context *ctx2)
3315 {
3316         lockdep_assert_held(&ctx1->lock);
3317         lockdep_assert_held(&ctx2->lock);
3318
3319         /* Pinning disables the swap optimization */
3320         if (ctx1->pin_count || ctx2->pin_count)
3321                 return 0;
3322
3323         /* If ctx1 is the parent of ctx2 */
3324         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3325                 return 1;
3326
3327         /* If ctx2 is the parent of ctx1 */
3328         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3329                 return 1;
3330
3331         /*
3332          * If ctx1 and ctx2 have the same parent; we flatten the parent
3333          * hierarchy, see perf_event_init_context().
3334          */
3335         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3336                         ctx1->parent_gen == ctx2->parent_gen)
3337                 return 1;
3338
3339         /* Unmatched */
3340         return 0;
3341 }
3342
3343 static void __perf_event_sync_stat(struct perf_event *event,
3344                                      struct perf_event *next_event)
3345 {
3346         u64 value;
3347
3348         if (!event->attr.inherit_stat)
3349                 return;
3350
3351         /*
3352          * Update the event value, we cannot use perf_event_read()
3353          * because we're in the middle of a context switch and have IRQs
3354          * disabled, which upsets smp_call_function_single(), however
3355          * we know the event must be on the current CPU, therefore we
3356          * don't need to use it.
3357          */
3358         if (event->state == PERF_EVENT_STATE_ACTIVE)
3359                 event->pmu->read(event);
3360
3361         perf_event_update_time(event);
3362
3363         /*
3364          * In order to keep per-task stats reliable we need to flip the event
3365          * values when we flip the contexts.
3366          */
3367         value = local64_read(&next_event->count);
3368         value = local64_xchg(&event->count, value);
3369         local64_set(&next_event->count, value);
3370
3371         swap(event->total_time_enabled, next_event->total_time_enabled);
3372         swap(event->total_time_running, next_event->total_time_running);
3373
3374         /*
3375          * Since we swizzled the values, update the user visible data too.
3376          */
3377         perf_event_update_userpage(event);
3378         perf_event_update_userpage(next_event);
3379 }
3380
3381 static void perf_event_sync_stat(struct perf_event_context *ctx,
3382                                    struct perf_event_context *next_ctx)
3383 {
3384         struct perf_event *event, *next_event;
3385
3386         if (!ctx->nr_stat)
3387                 return;
3388
3389         update_context_time(ctx);
3390
3391         event = list_first_entry(&ctx->event_list,
3392                                    struct perf_event, event_entry);
3393
3394         next_event = list_first_entry(&next_ctx->event_list,
3395                                         struct perf_event, event_entry);
3396
3397         while (&event->event_entry != &ctx->event_list &&
3398                &next_event->event_entry != &next_ctx->event_list) {
3399
3400                 __perf_event_sync_stat(event, next_event);
3401
3402                 event = list_next_entry(event, event_entry);
3403                 next_event = list_next_entry(next_event, event_entry);
3404         }
3405 }
3406
3407 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3408                                          struct task_struct *next)
3409 {
3410         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3411         struct perf_event_context *next_ctx;
3412         struct perf_event_context *parent, *next_parent;
3413         struct perf_cpu_context *cpuctx;
3414         int do_switch = 1;
3415         struct pmu *pmu;
3416
3417         if (likely(!ctx))
3418                 return;
3419
3420         pmu = ctx->pmu;
3421         cpuctx = __get_cpu_context(ctx);
3422         if (!cpuctx->task_ctx)
3423                 return;
3424
3425         rcu_read_lock();
3426         next_ctx = next->perf_event_ctxp[ctxn];
3427         if (!next_ctx)
3428                 goto unlock;
3429
3430         parent = rcu_dereference(ctx->parent_ctx);
3431         next_parent = rcu_dereference(next_ctx->parent_ctx);
3432
3433         /* If neither context have a parent context; they cannot be clones. */
3434         if (!parent && !next_parent)
3435                 goto unlock;
3436
3437         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3438                 /*
3439                  * Looks like the two contexts are clones, so we might be
3440                  * able to optimize the context switch.  We lock both
3441                  * contexts and check that they are clones under the
3442                  * lock (including re-checking that neither has been
3443                  * uncloned in the meantime).  It doesn't matter which
3444                  * order we take the locks because no other cpu could
3445                  * be trying to lock both of these tasks.
3446                  */
3447                 raw_spin_lock(&ctx->lock);
3448                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3449                 if (context_equiv(ctx, next_ctx)) {
3450
3451                         WRITE_ONCE(ctx->task, next);
3452                         WRITE_ONCE(next_ctx->task, task);
3453
3454                         perf_pmu_disable(pmu);
3455
3456                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3457                                 pmu->sched_task(ctx, false);
3458
3459                         /*
3460                          * PMU specific parts of task perf context can require
3461                          * additional synchronization. As an example of such
3462                          * synchronization see implementation details of Intel
3463                          * LBR call stack data profiling;
3464                          */
3465                         if (pmu->swap_task_ctx)
3466                                 pmu->swap_task_ctx(ctx, next_ctx);
3467                         else
3468                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3469
3470                         perf_pmu_enable(pmu);
3471
3472                         /*
3473                          * RCU_INIT_POINTER here is safe because we've not
3474                          * modified the ctx and the above modification of
3475                          * ctx->task and ctx->task_ctx_data are immaterial
3476                          * since those values are always verified under
3477                          * ctx->lock which we're now holding.
3478                          */
3479                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3480                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3481
3482                         do_switch = 0;
3483
3484                         perf_event_sync_stat(ctx, next_ctx);
3485                 }
3486                 raw_spin_unlock(&next_ctx->lock);
3487                 raw_spin_unlock(&ctx->lock);
3488         }
3489 unlock:
3490         rcu_read_unlock();
3491
3492         if (do_switch) {
3493                 raw_spin_lock(&ctx->lock);
3494                 perf_pmu_disable(pmu);
3495
3496                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3497                         pmu->sched_task(ctx, false);
3498                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3499
3500                 perf_pmu_enable(pmu);
3501                 raw_spin_unlock(&ctx->lock);
3502         }
3503 }
3504
3505 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3506
3507 void perf_sched_cb_dec(struct pmu *pmu)
3508 {
3509         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3510
3511         this_cpu_dec(perf_sched_cb_usages);
3512
3513         if (!--cpuctx->sched_cb_usage)
3514                 list_del(&cpuctx->sched_cb_entry);
3515 }
3516
3517
3518 void perf_sched_cb_inc(struct pmu *pmu)
3519 {
3520         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3521
3522         if (!cpuctx->sched_cb_usage++)
3523                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3524
3525         this_cpu_inc(perf_sched_cb_usages);
3526 }
3527
3528 /*
3529  * This function provides the context switch callback to the lower code
3530  * layer. It is invoked ONLY when the context switch callback is enabled.
3531  *
3532  * This callback is relevant even to per-cpu events; for example multi event
3533  * PEBS requires this to provide PID/TID information. This requires we flush
3534  * all queued PEBS records before we context switch to a new task.
3535  */
3536 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3537 {
3538         struct pmu *pmu;
3539
3540         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3541
3542         if (WARN_ON_ONCE(!pmu->sched_task))
3543                 return;
3544
3545         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3546         perf_pmu_disable(pmu);
3547
3548         pmu->sched_task(cpuctx->task_ctx, sched_in);
3549
3550         perf_pmu_enable(pmu);
3551         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3552 }
3553
3554 static void perf_pmu_sched_task(struct task_struct *prev,
3555                                 struct task_struct *next,
3556                                 bool sched_in)
3557 {
3558         struct perf_cpu_context *cpuctx;
3559
3560         if (prev == next)
3561                 return;
3562
3563         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3564                 /* will be handled in perf_event_context_sched_in/out */
3565                 if (cpuctx->task_ctx)
3566                         continue;
3567
3568                 __perf_pmu_sched_task(cpuctx, sched_in);
3569         }
3570 }
3571
3572 static void perf_event_switch(struct task_struct *task,
3573                               struct task_struct *next_prev, bool sched_in);
3574
3575 #define for_each_task_context_nr(ctxn)                                  \
3576         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3577
3578 /*
3579  * Called from scheduler to remove the events of the current task,
3580  * with interrupts disabled.
3581  *
3582  * We stop each event and update the event value in event->count.
3583  *
3584  * This does not protect us against NMI, but disable()
3585  * sets the disabled bit in the control field of event _before_
3586  * accessing the event control register. If a NMI hits, then it will
3587  * not restart the event.
3588  */
3589 void __perf_event_task_sched_out(struct task_struct *task,
3590                                  struct task_struct *next)
3591 {
3592         int ctxn;
3593
3594         if (__this_cpu_read(perf_sched_cb_usages))
3595                 perf_pmu_sched_task(task, next, false);
3596
3597         if (atomic_read(&nr_switch_events))
3598                 perf_event_switch(task, next, false);
3599
3600         for_each_task_context_nr(ctxn)
3601                 perf_event_context_sched_out(task, ctxn, next);
3602
3603         /*
3604          * if cgroup events exist on this CPU, then we need
3605          * to check if we have to switch out PMU state.
3606          * cgroup event are system-wide mode only
3607          */
3608         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3609                 perf_cgroup_sched_out(task, next);
3610 }
3611
3612 /*
3613  * Called with IRQs disabled
3614  */
3615 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3616                               enum event_type_t event_type)
3617 {
3618         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3619 }
3620
3621 static bool perf_less_group_idx(const void *l, const void *r)
3622 {
3623         const struct perf_event *le = *(const struct perf_event **)l;
3624         const struct perf_event *re = *(const struct perf_event **)r;
3625
3626         return le->group_index < re->group_index;
3627 }
3628
3629 static void swap_ptr(void *l, void *r)
3630 {
3631         void **lp = l, **rp = r;
3632
3633         swap(*lp, *rp);
3634 }
3635
3636 static const struct min_heap_callbacks perf_min_heap = {
3637         .elem_size = sizeof(struct perf_event *),
3638         .less = perf_less_group_idx,
3639         .swp = swap_ptr,
3640 };
3641
3642 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3643 {
3644         struct perf_event **itrs = heap->data;
3645
3646         if (event) {
3647                 itrs[heap->nr] = event;
3648                 heap->nr++;
3649         }
3650 }
3651
3652 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3653                                 struct perf_event_groups *groups, int cpu,
3654                                 int (*func)(struct perf_event *, void *),
3655                                 void *data)
3656 {
3657 #ifdef CONFIG_CGROUP_PERF
3658         struct cgroup_subsys_state *css = NULL;
3659 #endif
3660         /* Space for per CPU and/or any CPU event iterators. */
3661         struct perf_event *itrs[2];
3662         struct min_heap event_heap;
3663         struct perf_event **evt;
3664         int ret;
3665
3666         if (cpuctx) {
3667                 event_heap = (struct min_heap){
3668                         .data = cpuctx->heap,
3669                         .nr = 0,
3670                         .size = cpuctx->heap_size,
3671                 };
3672
3673                 lockdep_assert_held(&cpuctx->ctx.lock);
3674
3675 #ifdef CONFIG_CGROUP_PERF
3676                 if (cpuctx->cgrp)
3677                         css = &cpuctx->cgrp->css;
3678 #endif
3679         } else {
3680                 event_heap = (struct min_heap){
3681                         .data = itrs,
3682                         .nr = 0,
3683                         .size = ARRAY_SIZE(itrs),
3684                 };
3685                 /* Events not within a CPU context may be on any CPU. */
3686                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3687         }
3688         evt = event_heap.data;
3689
3690         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3691
3692 #ifdef CONFIG_CGROUP_PERF
3693         for (; css; css = css->parent)
3694                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3695 #endif
3696
3697         min_heapify_all(&event_heap, &perf_min_heap);
3698
3699         while (event_heap.nr) {
3700                 ret = func(*evt, data);
3701                 if (ret)
3702                         return ret;
3703
3704                 *evt = perf_event_groups_next(*evt);
3705                 if (*evt)
3706                         min_heapify(&event_heap, 0, &perf_min_heap);
3707                 else
3708                         min_heap_pop(&event_heap, &perf_min_heap);
3709         }
3710
3711         return 0;
3712 }
3713
3714 static inline bool event_update_userpage(struct perf_event *event)
3715 {
3716         if (likely(!atomic_read(&event->mmap_count)))
3717                 return false;
3718
3719         perf_event_update_time(event);
3720         perf_set_shadow_time(event, event->ctx);
3721         perf_event_update_userpage(event);
3722
3723         return true;
3724 }
3725
3726 static inline void group_update_userpage(struct perf_event *group_event)
3727 {
3728         struct perf_event *event;
3729
3730         if (!event_update_userpage(group_event))
3731                 return;
3732
3733         for_each_sibling_event(event, group_event)
3734                 event_update_userpage(event);
3735 }
3736
3737 static int merge_sched_in(struct perf_event *event, void *data)
3738 {
3739         struct perf_event_context *ctx = event->ctx;
3740         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3741         int *can_add_hw = data;
3742
3743         if (event->state <= PERF_EVENT_STATE_OFF)
3744                 return 0;
3745
3746         if (!event_filter_match(event))
3747                 return 0;
3748
3749         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3750                 if (!group_sched_in(event, cpuctx, ctx))
3751                         list_add_tail(&event->active_list, get_event_list(event));
3752         }
3753
3754         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3755                 *can_add_hw = 0;
3756                 if (event->attr.pinned) {
3757                         perf_cgroup_event_disable(event, ctx);
3758                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3759                 } else {
3760                         ctx->rotate_necessary = 1;
3761                         perf_mux_hrtimer_restart(cpuctx);
3762                         group_update_userpage(event);
3763                 }
3764         }
3765
3766         return 0;
3767 }
3768
3769 static void
3770 ctx_pinned_sched_in(struct perf_event_context *ctx,
3771                     struct perf_cpu_context *cpuctx)
3772 {
3773         int can_add_hw = 1;
3774
3775         if (ctx != &cpuctx->ctx)
3776                 cpuctx = NULL;
3777
3778         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3779                            smp_processor_id(),
3780                            merge_sched_in, &can_add_hw);
3781 }
3782
3783 static void
3784 ctx_flexible_sched_in(struct perf_event_context *ctx,
3785                       struct perf_cpu_context *cpuctx)
3786 {
3787         int can_add_hw = 1;
3788
3789         if (ctx != &cpuctx->ctx)
3790                 cpuctx = NULL;
3791
3792         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3793                            smp_processor_id(),
3794                            merge_sched_in, &can_add_hw);
3795 }
3796
3797 static void
3798 ctx_sched_in(struct perf_event_context *ctx,
3799              struct perf_cpu_context *cpuctx,
3800              enum event_type_t event_type,
3801              struct task_struct *task)
3802 {
3803         int is_active = ctx->is_active;
3804         u64 now;
3805
3806         lockdep_assert_held(&ctx->lock);
3807
3808         if (likely(!ctx->nr_events))
3809                 return;
3810
3811         ctx->is_active |= (event_type | EVENT_TIME);
3812         if (ctx->task) {
3813                 if (!is_active)
3814                         cpuctx->task_ctx = ctx;
3815                 else
3816                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3817         }
3818
3819         is_active ^= ctx->is_active; /* changed bits */
3820
3821         if (is_active & EVENT_TIME) {
3822                 /* start ctx time */
3823                 now = perf_clock();
3824                 ctx->timestamp = now;
3825                 perf_cgroup_set_timestamp(task, ctx);
3826         }
3827
3828         /*
3829          * First go through the list and put on any pinned groups
3830          * in order to give them the best chance of going on.
3831          */
3832         if (is_active & EVENT_PINNED)
3833                 ctx_pinned_sched_in(ctx, cpuctx);
3834
3835         /* Then walk through the lower prio flexible groups */
3836         if (is_active & EVENT_FLEXIBLE)
3837                 ctx_flexible_sched_in(ctx, cpuctx);
3838 }
3839
3840 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3841                              enum event_type_t event_type,
3842                              struct task_struct *task)
3843 {
3844         struct perf_event_context *ctx = &cpuctx->ctx;
3845
3846         ctx_sched_in(ctx, cpuctx, event_type, task);
3847 }
3848
3849 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3850                                         struct task_struct *task)
3851 {
3852         struct perf_cpu_context *cpuctx;
3853         struct pmu *pmu;
3854
3855         cpuctx = __get_cpu_context(ctx);
3856
3857         /*
3858          * HACK: for HETEROGENEOUS the task context might have switched to a
3859          * different PMU, force (re)set the context,
3860          */
3861         pmu = ctx->pmu = cpuctx->ctx.pmu;
3862
3863         if (cpuctx->task_ctx == ctx) {
3864                 if (cpuctx->sched_cb_usage)
3865                         __perf_pmu_sched_task(cpuctx, true);
3866                 return;
3867         }
3868
3869         perf_ctx_lock(cpuctx, ctx);
3870         /*
3871          * We must check ctx->nr_events while holding ctx->lock, such
3872          * that we serialize against perf_install_in_context().
3873          */
3874         if (!ctx->nr_events)
3875                 goto unlock;
3876
3877         perf_pmu_disable(pmu);
3878         /*
3879          * We want to keep the following priority order:
3880          * cpu pinned (that don't need to move), task pinned,
3881          * cpu flexible, task flexible.
3882          *
3883          * However, if task's ctx is not carrying any pinned
3884          * events, no need to flip the cpuctx's events around.
3885          */
3886         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3887                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3888         perf_event_sched_in(cpuctx, ctx, task);
3889
3890         if (cpuctx->sched_cb_usage && pmu->sched_task)
3891                 pmu->sched_task(cpuctx->task_ctx, true);
3892
3893         perf_pmu_enable(pmu);
3894
3895 unlock:
3896         perf_ctx_unlock(cpuctx, ctx);
3897 }
3898
3899 /*
3900  * Called from scheduler to add the events of the current task
3901  * with interrupts disabled.
3902  *
3903  * We restore the event value and then enable it.
3904  *
3905  * This does not protect us against NMI, but enable()
3906  * sets the enabled bit in the control field of event _before_
3907  * accessing the event control register. If a NMI hits, then it will
3908  * keep the event running.
3909  */
3910 void __perf_event_task_sched_in(struct task_struct *prev,
3911                                 struct task_struct *task)
3912 {
3913         struct perf_event_context *ctx;
3914         int ctxn;
3915
3916         /*
3917          * If cgroup events exist on this CPU, then we need to check if we have
3918          * to switch in PMU state; cgroup event are system-wide mode only.
3919          *
3920          * Since cgroup events are CPU events, we must schedule these in before
3921          * we schedule in the task events.
3922          */
3923         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3924                 perf_cgroup_sched_in(prev, task);
3925
3926         for_each_task_context_nr(ctxn) {
3927                 ctx = task->perf_event_ctxp[ctxn];
3928                 if (likely(!ctx))
3929                         continue;
3930
3931                 perf_event_context_sched_in(ctx, task);
3932         }
3933
3934         if (atomic_read(&nr_switch_events))
3935                 perf_event_switch(task, prev, true);
3936
3937         if (__this_cpu_read(perf_sched_cb_usages))
3938                 perf_pmu_sched_task(prev, task, true);
3939 }
3940
3941 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3942 {
3943         u64 frequency = event->attr.sample_freq;
3944         u64 sec = NSEC_PER_SEC;
3945         u64 divisor, dividend;
3946
3947         int count_fls, nsec_fls, frequency_fls, sec_fls;
3948
3949         count_fls = fls64(count);
3950         nsec_fls = fls64(nsec);
3951         frequency_fls = fls64(frequency);
3952         sec_fls = 30;
3953
3954         /*
3955          * We got @count in @nsec, with a target of sample_freq HZ
3956          * the target period becomes:
3957          *
3958          *             @count * 10^9
3959          * period = -------------------
3960          *          @nsec * sample_freq
3961          *
3962          */
3963
3964         /*
3965          * Reduce accuracy by one bit such that @a and @b converge
3966          * to a similar magnitude.
3967          */
3968 #define REDUCE_FLS(a, b)                \
3969 do {                                    \
3970         if (a##_fls > b##_fls) {        \
3971                 a >>= 1;                \
3972                 a##_fls--;              \
3973         } else {                        \
3974                 b >>= 1;                \
3975                 b##_fls--;              \
3976         }                               \
3977 } while (0)
3978
3979         /*
3980          * Reduce accuracy until either term fits in a u64, then proceed with
3981          * the other, so that finally we can do a u64/u64 division.
3982          */
3983         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3984                 REDUCE_FLS(nsec, frequency);
3985                 REDUCE_FLS(sec, count);
3986         }
3987
3988         if (count_fls + sec_fls > 64) {
3989                 divisor = nsec * frequency;
3990
3991                 while (count_fls + sec_fls > 64) {
3992                         REDUCE_FLS(count, sec);
3993                         divisor >>= 1;
3994                 }
3995
3996                 dividend = count * sec;
3997         } else {
3998                 dividend = count * sec;
3999
4000                 while (nsec_fls + frequency_fls > 64) {
4001                         REDUCE_FLS(nsec, frequency);
4002                         dividend >>= 1;
4003                 }
4004
4005                 divisor = nsec * frequency;
4006         }
4007
4008         if (!divisor)
4009                 return dividend;
4010
4011         return div64_u64(dividend, divisor);
4012 }
4013
4014 static DEFINE_PER_CPU(int, perf_throttled_count);
4015 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4016
4017 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4018 {
4019         struct hw_perf_event *hwc = &event->hw;
4020         s64 period, sample_period;
4021         s64 delta;
4022
4023         period = perf_calculate_period(event, nsec, count);
4024
4025         delta = (s64)(period - hwc->sample_period);
4026         delta = (delta + 7) / 8; /* low pass filter */
4027
4028         sample_period = hwc->sample_period + delta;
4029
4030         if (!sample_period)
4031                 sample_period = 1;
4032
4033         hwc->sample_period = sample_period;
4034
4035         if (local64_read(&hwc->period_left) > 8*sample_period) {
4036                 if (disable)
4037                         event->pmu->stop(event, PERF_EF_UPDATE);
4038
4039                 local64_set(&hwc->period_left, 0);
4040
4041                 if (disable)
4042                         event->pmu->start(event, PERF_EF_RELOAD);
4043         }
4044 }
4045
4046 /*
4047  * combine freq adjustment with unthrottling to avoid two passes over the
4048  * events. At the same time, make sure, having freq events does not change
4049  * the rate of unthrottling as that would introduce bias.
4050  */
4051 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4052                                            int needs_unthr)
4053 {
4054         struct perf_event *event;
4055         struct hw_perf_event *hwc;
4056         u64 now, period = TICK_NSEC;
4057         s64 delta;
4058
4059         /*
4060          * only need to iterate over all events iff:
4061          * - context have events in frequency mode (needs freq adjust)
4062          * - there are events to unthrottle on this cpu
4063          */
4064         if (!(ctx->nr_freq || needs_unthr))
4065                 return;
4066
4067         raw_spin_lock(&ctx->lock);
4068         perf_pmu_disable(ctx->pmu);
4069
4070         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4071                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4072                         continue;
4073
4074                 if (!event_filter_match(event))
4075                         continue;
4076
4077                 perf_pmu_disable(event->pmu);
4078
4079                 hwc = &event->hw;
4080
4081                 if (hwc->interrupts == MAX_INTERRUPTS) {
4082                         hwc->interrupts = 0;
4083                         perf_log_throttle(event, 1);
4084                         event->pmu->start(event, 0);
4085                 }
4086
4087                 if (!event->attr.freq || !event->attr.sample_freq)
4088                         goto next;
4089
4090                 /*
4091                  * stop the event and update event->count
4092                  */
4093                 event->pmu->stop(event, PERF_EF_UPDATE);
4094
4095                 now = local64_read(&event->count);
4096                 delta = now - hwc->freq_count_stamp;
4097                 hwc->freq_count_stamp = now;
4098
4099                 /*
4100                  * restart the event
4101                  * reload only if value has changed
4102                  * we have stopped the event so tell that
4103                  * to perf_adjust_period() to avoid stopping it
4104                  * twice.
4105                  */
4106                 if (delta > 0)
4107                         perf_adjust_period(event, period, delta, false);
4108
4109                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4110         next:
4111                 perf_pmu_enable(event->pmu);
4112         }
4113
4114         perf_pmu_enable(ctx->pmu);
4115         raw_spin_unlock(&ctx->lock);
4116 }
4117
4118 /*
4119  * Move @event to the tail of the @ctx's elegible events.
4120  */
4121 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4122 {
4123         /*
4124          * Rotate the first entry last of non-pinned groups. Rotation might be
4125          * disabled by the inheritance code.
4126          */
4127         if (ctx->rotate_disable)
4128                 return;
4129
4130         perf_event_groups_delete(&ctx->flexible_groups, event);
4131         perf_event_groups_insert(&ctx->flexible_groups, event);
4132 }
4133
4134 /* pick an event from the flexible_groups to rotate */
4135 static inline struct perf_event *
4136 ctx_event_to_rotate(struct perf_event_context *ctx)
4137 {
4138         struct perf_event *event;
4139
4140         /* pick the first active flexible event */
4141         event = list_first_entry_or_null(&ctx->flexible_active,
4142                                          struct perf_event, active_list);
4143
4144         /* if no active flexible event, pick the first event */
4145         if (!event) {
4146                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4147                                       typeof(*event), group_node);
4148         }
4149
4150         /*
4151          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4152          * finds there are unschedulable events, it will set it again.
4153          */
4154         ctx->rotate_necessary = 0;
4155
4156         return event;
4157 }
4158
4159 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4160 {
4161         struct perf_event *cpu_event = NULL, *task_event = NULL;
4162         struct perf_event_context *task_ctx = NULL;
4163         int cpu_rotate, task_rotate;
4164
4165         /*
4166          * Since we run this from IRQ context, nobody can install new
4167          * events, thus the event count values are stable.
4168          */
4169
4170         cpu_rotate = cpuctx->ctx.rotate_necessary;
4171         task_ctx = cpuctx->task_ctx;
4172         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4173
4174         if (!(cpu_rotate || task_rotate))
4175                 return false;
4176
4177         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4178         perf_pmu_disable(cpuctx->ctx.pmu);
4179
4180         if (task_rotate)
4181                 task_event = ctx_event_to_rotate(task_ctx);
4182         if (cpu_rotate)
4183                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4184
4185         /*
4186          * As per the order given at ctx_resched() first 'pop' task flexible
4187          * and then, if needed CPU flexible.
4188          */
4189         if (task_event || (task_ctx && cpu_event))
4190                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4191         if (cpu_event)
4192                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4193
4194         if (task_event)
4195                 rotate_ctx(task_ctx, task_event);
4196         if (cpu_event)
4197                 rotate_ctx(&cpuctx->ctx, cpu_event);
4198
4199         perf_event_sched_in(cpuctx, task_ctx, current);
4200
4201         perf_pmu_enable(cpuctx->ctx.pmu);
4202         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4203
4204         return true;
4205 }
4206
4207 void perf_event_task_tick(void)
4208 {
4209         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4210         struct perf_event_context *ctx, *tmp;
4211         int throttled;
4212
4213         lockdep_assert_irqs_disabled();
4214
4215         __this_cpu_inc(perf_throttled_seq);
4216         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4217         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4218
4219         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4220                 perf_adjust_freq_unthr_context(ctx, throttled);
4221 }
4222
4223 static int event_enable_on_exec(struct perf_event *event,
4224                                 struct perf_event_context *ctx)
4225 {
4226         if (!event->attr.enable_on_exec)
4227                 return 0;
4228
4229         event->attr.enable_on_exec = 0;
4230         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4231                 return 0;
4232
4233         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4234
4235         return 1;
4236 }
4237
4238 /*
4239  * Enable all of a task's events that have been marked enable-on-exec.
4240  * This expects task == current.
4241  */
4242 static void perf_event_enable_on_exec(int ctxn)
4243 {
4244         struct perf_event_context *ctx, *clone_ctx = NULL;
4245         enum event_type_t event_type = 0;
4246         struct perf_cpu_context *cpuctx;
4247         struct perf_event *event;
4248         unsigned long flags;
4249         int enabled = 0;
4250
4251         local_irq_save(flags);
4252         ctx = current->perf_event_ctxp[ctxn];
4253         if (!ctx || !ctx->nr_events)
4254                 goto out;
4255
4256         cpuctx = __get_cpu_context(ctx);
4257         perf_ctx_lock(cpuctx, ctx);
4258         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4259         list_for_each_entry(event, &ctx->event_list, event_entry) {
4260                 enabled |= event_enable_on_exec(event, ctx);
4261                 event_type |= get_event_type(event);
4262         }
4263
4264         /*
4265          * Unclone and reschedule this context if we enabled any event.
4266          */
4267         if (enabled) {
4268                 clone_ctx = unclone_ctx(ctx);
4269                 ctx_resched(cpuctx, ctx, event_type);
4270         } else {
4271                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4272         }
4273         perf_ctx_unlock(cpuctx, ctx);
4274
4275 out:
4276         local_irq_restore(flags);
4277
4278         if (clone_ctx)
4279                 put_ctx(clone_ctx);
4280 }
4281
4282 static void perf_remove_from_owner(struct perf_event *event);
4283 static void perf_event_exit_event(struct perf_event *event,
4284                                   struct perf_event_context *ctx);
4285
4286 /*
4287  * Removes all events from the current task that have been marked
4288  * remove-on-exec, and feeds their values back to parent events.
4289  */
4290 static void perf_event_remove_on_exec(int ctxn)
4291 {
4292         struct perf_event_context *ctx, *clone_ctx = NULL;
4293         struct perf_event *event, *next;
4294         LIST_HEAD(free_list);
4295         unsigned long flags;
4296         bool modified = false;
4297
4298         ctx = perf_pin_task_context(current, ctxn);
4299         if (!ctx)
4300                 return;
4301
4302         mutex_lock(&ctx->mutex);
4303
4304         if (WARN_ON_ONCE(ctx->task != current))
4305                 goto unlock;
4306
4307         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4308                 if (!event->attr.remove_on_exec)
4309                         continue;
4310
4311                 if (!is_kernel_event(event))
4312                         perf_remove_from_owner(event);
4313
4314                 modified = true;
4315
4316                 perf_event_exit_event(event, ctx);
4317         }
4318
4319         raw_spin_lock_irqsave(&ctx->lock, flags);
4320         if (modified)
4321                 clone_ctx = unclone_ctx(ctx);
4322         --ctx->pin_count;
4323         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4324
4325 unlock:
4326         mutex_unlock(&ctx->mutex);
4327
4328         put_ctx(ctx);
4329         if (clone_ctx)
4330                 put_ctx(clone_ctx);
4331 }
4332
4333 struct perf_read_data {
4334         struct perf_event *event;
4335         bool group;
4336         int ret;
4337 };
4338
4339 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4340 {
4341         u16 local_pkg, event_pkg;
4342
4343         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4344                 int local_cpu = smp_processor_id();
4345
4346                 event_pkg = topology_physical_package_id(event_cpu);
4347                 local_pkg = topology_physical_package_id(local_cpu);
4348
4349                 if (event_pkg == local_pkg)
4350                         return local_cpu;
4351         }
4352
4353         return event_cpu;
4354 }
4355
4356 /*
4357  * Cross CPU call to read the hardware event
4358  */
4359 static void __perf_event_read(void *info)
4360 {
4361         struct perf_read_data *data = info;
4362         struct perf_event *sub, *event = data->event;
4363         struct perf_event_context *ctx = event->ctx;
4364         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4365         struct pmu *pmu = event->pmu;
4366
4367         /*
4368          * If this is a task context, we need to check whether it is
4369          * the current task context of this cpu.  If not it has been
4370          * scheduled out before the smp call arrived.  In that case
4371          * event->count would have been updated to a recent sample
4372          * when the event was scheduled out.
4373          */
4374         if (ctx->task && cpuctx->task_ctx != ctx)
4375                 return;
4376
4377         raw_spin_lock(&ctx->lock);
4378         if (ctx->is_active & EVENT_TIME) {
4379                 update_context_time(ctx);
4380                 update_cgrp_time_from_event(event);
4381         }
4382
4383         perf_event_update_time(event);
4384         if (data->group)
4385                 perf_event_update_sibling_time(event);
4386
4387         if (event->state != PERF_EVENT_STATE_ACTIVE)
4388                 goto unlock;
4389
4390         if (!data->group) {
4391                 pmu->read(event);
4392                 data->ret = 0;
4393                 goto unlock;
4394         }
4395
4396         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4397
4398         pmu->read(event);
4399
4400         for_each_sibling_event(sub, event) {
4401                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4402                         /*
4403                          * Use sibling's PMU rather than @event's since
4404                          * sibling could be on different (eg: software) PMU.
4405                          */
4406                         sub->pmu->read(sub);
4407                 }
4408         }
4409
4410         data->ret = pmu->commit_txn(pmu);
4411
4412 unlock:
4413         raw_spin_unlock(&ctx->lock);
4414 }
4415
4416 static inline u64 perf_event_count(struct perf_event *event)
4417 {
4418         return local64_read(&event->count) + atomic64_read(&event->child_count);
4419 }
4420
4421 /*
4422  * NMI-safe method to read a local event, that is an event that
4423  * is:
4424  *   - either for the current task, or for this CPU
4425  *   - does not have inherit set, for inherited task events
4426  *     will not be local and we cannot read them atomically
4427  *   - must not have a pmu::count method
4428  */
4429 int perf_event_read_local(struct perf_event *event, u64 *value,
4430                           u64 *enabled, u64 *running)
4431 {
4432         unsigned long flags;
4433         int ret = 0;
4434
4435         /*
4436          * Disabling interrupts avoids all counter scheduling (context
4437          * switches, timer based rotation and IPIs).
4438          */
4439         local_irq_save(flags);
4440
4441         /*
4442          * It must not be an event with inherit set, we cannot read
4443          * all child counters from atomic context.
4444          */
4445         if (event->attr.inherit) {
4446                 ret = -EOPNOTSUPP;
4447                 goto out;
4448         }
4449
4450         /* If this is a per-task event, it must be for current */
4451         if ((event->attach_state & PERF_ATTACH_TASK) &&
4452             event->hw.target != current) {
4453                 ret = -EINVAL;
4454                 goto out;
4455         }
4456
4457         /* If this is a per-CPU event, it must be for this CPU */
4458         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4459             event->cpu != smp_processor_id()) {
4460                 ret = -EINVAL;
4461                 goto out;
4462         }
4463
4464         /* If this is a pinned event it must be running on this CPU */
4465         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4466                 ret = -EBUSY;
4467                 goto out;
4468         }
4469
4470         /*
4471          * If the event is currently on this CPU, its either a per-task event,
4472          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4473          * oncpu == -1).
4474          */
4475         if (event->oncpu == smp_processor_id())
4476                 event->pmu->read(event);
4477
4478         *value = local64_read(&event->count);
4479         if (enabled || running) {
4480                 u64 now = event->shadow_ctx_time + perf_clock();
4481                 u64 __enabled, __running;
4482
4483                 __perf_update_times(event, now, &__enabled, &__running);
4484                 if (enabled)
4485                         *enabled = __enabled;
4486                 if (running)
4487                         *running = __running;
4488         }
4489 out:
4490         local_irq_restore(flags);
4491
4492         return ret;
4493 }
4494
4495 static int perf_event_read(struct perf_event *event, bool group)
4496 {
4497         enum perf_event_state state = READ_ONCE(event->state);
4498         int event_cpu, ret = 0;
4499
4500         /*
4501          * If event is enabled and currently active on a CPU, update the
4502          * value in the event structure:
4503          */
4504 again:
4505         if (state == PERF_EVENT_STATE_ACTIVE) {
4506                 struct perf_read_data data;
4507
4508                 /*
4509                  * Orders the ->state and ->oncpu loads such that if we see
4510                  * ACTIVE we must also see the right ->oncpu.
4511                  *
4512                  * Matches the smp_wmb() from event_sched_in().
4513                  */
4514                 smp_rmb();
4515
4516                 event_cpu = READ_ONCE(event->oncpu);
4517                 if ((unsigned)event_cpu >= nr_cpu_ids)
4518                         return 0;
4519
4520                 data = (struct perf_read_data){
4521                         .event = event,
4522                         .group = group,
4523                         .ret = 0,
4524                 };
4525
4526                 preempt_disable();
4527                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4528
4529                 /*
4530                  * Purposely ignore the smp_call_function_single() return
4531                  * value.
4532                  *
4533                  * If event_cpu isn't a valid CPU it means the event got
4534                  * scheduled out and that will have updated the event count.
4535                  *
4536                  * Therefore, either way, we'll have an up-to-date event count
4537                  * after this.
4538                  */
4539                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4540                 preempt_enable();
4541                 ret = data.ret;
4542
4543         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4544                 struct perf_event_context *ctx = event->ctx;
4545                 unsigned long flags;
4546
4547                 raw_spin_lock_irqsave(&ctx->lock, flags);
4548                 state = event->state;
4549                 if (state != PERF_EVENT_STATE_INACTIVE) {
4550                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4551                         goto again;
4552                 }
4553
4554                 /*
4555                  * May read while context is not active (e.g., thread is
4556                  * blocked), in that case we cannot update context time
4557                  */
4558                 if (ctx->is_active & EVENT_TIME) {
4559                         update_context_time(ctx);
4560                         update_cgrp_time_from_event(event);
4561                 }
4562
4563                 perf_event_update_time(event);
4564                 if (group)
4565                         perf_event_update_sibling_time(event);
4566                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4567         }
4568
4569         return ret;
4570 }
4571
4572 /*
4573  * Initialize the perf_event context in a task_struct:
4574  */
4575 static void __perf_event_init_context(struct perf_event_context *ctx)
4576 {
4577         raw_spin_lock_init(&ctx->lock);
4578         mutex_init(&ctx->mutex);
4579         INIT_LIST_HEAD(&ctx->active_ctx_list);
4580         perf_event_groups_init(&ctx->pinned_groups);
4581         perf_event_groups_init(&ctx->flexible_groups);
4582         INIT_LIST_HEAD(&ctx->event_list);
4583         INIT_LIST_HEAD(&ctx->pinned_active);
4584         INIT_LIST_HEAD(&ctx->flexible_active);
4585         refcount_set(&ctx->refcount, 1);
4586 }
4587
4588 static struct perf_event_context *
4589 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4590 {
4591         struct perf_event_context *ctx;
4592
4593         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4594         if (!ctx)
4595                 return NULL;
4596
4597         __perf_event_init_context(ctx);
4598         if (task)
4599                 ctx->task = get_task_struct(task);
4600         ctx->pmu = pmu;
4601
4602         return ctx;
4603 }
4604
4605 static struct task_struct *
4606 find_lively_task_by_vpid(pid_t vpid)
4607 {
4608         struct task_struct *task;
4609
4610         rcu_read_lock();
4611         if (!vpid)
4612                 task = current;
4613         else
4614                 task = find_task_by_vpid(vpid);
4615         if (task)
4616                 get_task_struct(task);
4617         rcu_read_unlock();
4618
4619         if (!task)
4620                 return ERR_PTR(-ESRCH);
4621
4622         return task;
4623 }
4624
4625 /*
4626  * Returns a matching context with refcount and pincount.
4627  */
4628 static struct perf_event_context *
4629 find_get_context(struct pmu *pmu, struct task_struct *task,
4630                 struct perf_event *event)
4631 {
4632         struct perf_event_context *ctx, *clone_ctx = NULL;
4633         struct perf_cpu_context *cpuctx;
4634         void *task_ctx_data = NULL;
4635         unsigned long flags;
4636         int ctxn, err;
4637         int cpu = event->cpu;
4638
4639         if (!task) {
4640                 /* Must be root to operate on a CPU event: */
4641                 err = perf_allow_cpu(&event->attr);
4642                 if (err)
4643                         return ERR_PTR(err);
4644
4645                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4646                 ctx = &cpuctx->ctx;
4647                 get_ctx(ctx);
4648                 raw_spin_lock_irqsave(&ctx->lock, flags);
4649                 ++ctx->pin_count;
4650                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4651
4652                 return ctx;
4653         }
4654
4655         err = -EINVAL;
4656         ctxn = pmu->task_ctx_nr;
4657         if (ctxn < 0)
4658                 goto errout;
4659
4660         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4661                 task_ctx_data = alloc_task_ctx_data(pmu);
4662                 if (!task_ctx_data) {
4663                         err = -ENOMEM;
4664                         goto errout;
4665                 }
4666         }
4667
4668 retry:
4669         ctx = perf_lock_task_context(task, ctxn, &flags);
4670         if (ctx) {
4671                 clone_ctx = unclone_ctx(ctx);
4672                 ++ctx->pin_count;
4673
4674                 if (task_ctx_data && !ctx->task_ctx_data) {
4675                         ctx->task_ctx_data = task_ctx_data;
4676                         task_ctx_data = NULL;
4677                 }
4678                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4679
4680                 if (clone_ctx)
4681                         put_ctx(clone_ctx);
4682         } else {
4683                 ctx = alloc_perf_context(pmu, task);
4684                 err = -ENOMEM;
4685                 if (!ctx)
4686                         goto errout;
4687
4688                 if (task_ctx_data) {
4689                         ctx->task_ctx_data = task_ctx_data;
4690                         task_ctx_data = NULL;
4691                 }
4692
4693                 err = 0;
4694                 mutex_lock(&task->perf_event_mutex);
4695                 /*
4696                  * If it has already passed perf_event_exit_task().
4697                  * we must see PF_EXITING, it takes this mutex too.
4698                  */
4699                 if (task->flags & PF_EXITING)
4700                         err = -ESRCH;
4701                 else if (task->perf_event_ctxp[ctxn])
4702                         err = -EAGAIN;
4703                 else {
4704                         get_ctx(ctx);
4705                         ++ctx->pin_count;
4706                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4707                 }
4708                 mutex_unlock(&task->perf_event_mutex);
4709
4710                 if (unlikely(err)) {
4711                         put_ctx(ctx);
4712
4713                         if (err == -EAGAIN)
4714                                 goto retry;
4715                         goto errout;
4716                 }
4717         }
4718
4719         free_task_ctx_data(pmu, task_ctx_data);
4720         return ctx;
4721
4722 errout:
4723         free_task_ctx_data(pmu, task_ctx_data);
4724         return ERR_PTR(err);
4725 }
4726
4727 static void perf_event_free_filter(struct perf_event *event);
4728
4729 static void free_event_rcu(struct rcu_head *head)
4730 {
4731         struct perf_event *event;
4732
4733         event = container_of(head, struct perf_event, rcu_head);
4734         if (event->ns)
4735                 put_pid_ns(event->ns);
4736         perf_event_free_filter(event);
4737         kmem_cache_free(perf_event_cache, event);
4738 }
4739
4740 static void ring_buffer_attach(struct perf_event *event,
4741                                struct perf_buffer *rb);
4742
4743 static void detach_sb_event(struct perf_event *event)
4744 {
4745         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4746
4747         raw_spin_lock(&pel->lock);
4748         list_del_rcu(&event->sb_list);
4749         raw_spin_unlock(&pel->lock);
4750 }
4751
4752 static bool is_sb_event(struct perf_event *event)
4753 {
4754         struct perf_event_attr *attr = &event->attr;
4755
4756         if (event->parent)
4757                 return false;
4758
4759         if (event->attach_state & PERF_ATTACH_TASK)
4760                 return false;
4761
4762         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4763             attr->comm || attr->comm_exec ||
4764             attr->task || attr->ksymbol ||
4765             attr->context_switch || attr->text_poke ||
4766             attr->bpf_event)
4767                 return true;
4768         return false;
4769 }
4770
4771 static void unaccount_pmu_sb_event(struct perf_event *event)
4772 {
4773         if (is_sb_event(event))
4774                 detach_sb_event(event);
4775 }
4776
4777 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4778 {
4779         if (event->parent)
4780                 return;
4781
4782         if (is_cgroup_event(event))
4783                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4784 }
4785
4786 #ifdef CONFIG_NO_HZ_FULL
4787 static DEFINE_SPINLOCK(nr_freq_lock);
4788 #endif
4789
4790 static void unaccount_freq_event_nohz(void)
4791 {
4792 #ifdef CONFIG_NO_HZ_FULL
4793         spin_lock(&nr_freq_lock);
4794         if (atomic_dec_and_test(&nr_freq_events))
4795                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4796         spin_unlock(&nr_freq_lock);
4797 #endif
4798 }
4799
4800 static void unaccount_freq_event(void)
4801 {
4802         if (tick_nohz_full_enabled())
4803                 unaccount_freq_event_nohz();
4804         else
4805                 atomic_dec(&nr_freq_events);
4806 }
4807
4808 static void unaccount_event(struct perf_event *event)
4809 {
4810         bool dec = false;
4811
4812         if (event->parent)
4813                 return;
4814
4815         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4816                 dec = true;
4817         if (event->attr.mmap || event->attr.mmap_data)
4818                 atomic_dec(&nr_mmap_events);
4819         if (event->attr.build_id)
4820                 atomic_dec(&nr_build_id_events);
4821         if (event->attr.comm)
4822                 atomic_dec(&nr_comm_events);
4823         if (event->attr.namespaces)
4824                 atomic_dec(&nr_namespaces_events);
4825         if (event->attr.cgroup)
4826                 atomic_dec(&nr_cgroup_events);
4827         if (event->attr.task)
4828                 atomic_dec(&nr_task_events);
4829         if (event->attr.freq)
4830                 unaccount_freq_event();
4831         if (event->attr.context_switch) {
4832                 dec = true;
4833                 atomic_dec(&nr_switch_events);
4834         }
4835         if (is_cgroup_event(event))
4836                 dec = true;
4837         if (has_branch_stack(event))
4838                 dec = true;
4839         if (event->attr.ksymbol)
4840                 atomic_dec(&nr_ksymbol_events);
4841         if (event->attr.bpf_event)
4842                 atomic_dec(&nr_bpf_events);
4843         if (event->attr.text_poke)
4844                 atomic_dec(&nr_text_poke_events);
4845
4846         if (dec) {
4847                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4848                         schedule_delayed_work(&perf_sched_work, HZ);
4849         }
4850
4851         unaccount_event_cpu(event, event->cpu);
4852
4853         unaccount_pmu_sb_event(event);
4854 }
4855
4856 static void perf_sched_delayed(struct work_struct *work)
4857 {
4858         mutex_lock(&perf_sched_mutex);
4859         if (atomic_dec_and_test(&perf_sched_count))
4860                 static_branch_disable(&perf_sched_events);
4861         mutex_unlock(&perf_sched_mutex);
4862 }
4863
4864 /*
4865  * The following implement mutual exclusion of events on "exclusive" pmus
4866  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4867  * at a time, so we disallow creating events that might conflict, namely:
4868  *
4869  *  1) cpu-wide events in the presence of per-task events,
4870  *  2) per-task events in the presence of cpu-wide events,
4871  *  3) two matching events on the same context.
4872  *
4873  * The former two cases are handled in the allocation path (perf_event_alloc(),
4874  * _free_event()), the latter -- before the first perf_install_in_context().
4875  */
4876 static int exclusive_event_init(struct perf_event *event)
4877 {
4878         struct pmu *pmu = event->pmu;
4879
4880         if (!is_exclusive_pmu(pmu))
4881                 return 0;
4882
4883         /*
4884          * Prevent co-existence of per-task and cpu-wide events on the
4885          * same exclusive pmu.
4886          *
4887          * Negative pmu::exclusive_cnt means there are cpu-wide
4888          * events on this "exclusive" pmu, positive means there are
4889          * per-task events.
4890          *
4891          * Since this is called in perf_event_alloc() path, event::ctx
4892          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4893          * to mean "per-task event", because unlike other attach states it
4894          * never gets cleared.
4895          */
4896         if (event->attach_state & PERF_ATTACH_TASK) {
4897                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4898                         return -EBUSY;
4899         } else {
4900                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4901                         return -EBUSY;
4902         }
4903
4904         return 0;
4905 }
4906
4907 static void exclusive_event_destroy(struct perf_event *event)
4908 {
4909         struct pmu *pmu = event->pmu;
4910
4911         if (!is_exclusive_pmu(pmu))
4912                 return;
4913
4914         /* see comment in exclusive_event_init() */
4915         if (event->attach_state & PERF_ATTACH_TASK)
4916                 atomic_dec(&pmu->exclusive_cnt);
4917         else
4918                 atomic_inc(&pmu->exclusive_cnt);
4919 }
4920
4921 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4922 {
4923         if ((e1->pmu == e2->pmu) &&
4924             (e1->cpu == e2->cpu ||
4925              e1->cpu == -1 ||
4926              e2->cpu == -1))
4927                 return true;
4928         return false;
4929 }
4930
4931 static bool exclusive_event_installable(struct perf_event *event,
4932                                         struct perf_event_context *ctx)
4933 {
4934         struct perf_event *iter_event;
4935         struct pmu *pmu = event->pmu;
4936
4937         lockdep_assert_held(&ctx->mutex);
4938
4939         if (!is_exclusive_pmu(pmu))
4940                 return true;
4941
4942         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4943                 if (exclusive_event_match(iter_event, event))
4944                         return false;
4945         }
4946
4947         return true;
4948 }
4949
4950 static void perf_addr_filters_splice(struct perf_event *event,
4951                                        struct list_head *head);
4952
4953 static void _free_event(struct perf_event *event)
4954 {
4955         irq_work_sync(&event->pending);
4956
4957         unaccount_event(event);
4958
4959         security_perf_event_free(event);
4960
4961         if (event->rb) {
4962                 /*
4963                  * Can happen when we close an event with re-directed output.
4964                  *
4965                  * Since we have a 0 refcount, perf_mmap_close() will skip
4966                  * over us; possibly making our ring_buffer_put() the last.
4967                  */
4968                 mutex_lock(&event->mmap_mutex);
4969                 ring_buffer_attach(event, NULL);
4970                 mutex_unlock(&event->mmap_mutex);
4971         }
4972
4973         if (is_cgroup_event(event))
4974                 perf_detach_cgroup(event);
4975
4976         if (!event->parent) {
4977                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4978                         put_callchain_buffers();
4979         }
4980
4981         perf_event_free_bpf_prog(event);
4982         perf_addr_filters_splice(event, NULL);
4983         kfree(event->addr_filter_ranges);
4984
4985         if (event->destroy)
4986                 event->destroy(event);
4987
4988         /*
4989          * Must be after ->destroy(), due to uprobe_perf_close() using
4990          * hw.target.
4991          */
4992         if (event->hw.target)
4993                 put_task_struct(event->hw.target);
4994
4995         /*
4996          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4997          * all task references must be cleaned up.
4998          */
4999         if (event->ctx)
5000                 put_ctx(event->ctx);
5001
5002         exclusive_event_destroy(event);
5003         module_put(event->pmu->module);
5004
5005         call_rcu(&event->rcu_head, free_event_rcu);
5006 }
5007
5008 /*
5009  * Used to free events which have a known refcount of 1, such as in error paths
5010  * where the event isn't exposed yet and inherited events.
5011  */
5012 static void free_event(struct perf_event *event)
5013 {
5014         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5015                                 "unexpected event refcount: %ld; ptr=%p\n",
5016                                 atomic_long_read(&event->refcount), event)) {
5017                 /* leak to avoid use-after-free */
5018                 return;
5019         }
5020
5021         _free_event(event);
5022 }
5023
5024 /*
5025  * Remove user event from the owner task.
5026  */
5027 static void perf_remove_from_owner(struct perf_event *event)
5028 {
5029         struct task_struct *owner;
5030
5031         rcu_read_lock();
5032         /*
5033          * Matches the smp_store_release() in perf_event_exit_task(). If we
5034          * observe !owner it means the list deletion is complete and we can
5035          * indeed free this event, otherwise we need to serialize on
5036          * owner->perf_event_mutex.
5037          */
5038         owner = READ_ONCE(event->owner);
5039         if (owner) {
5040                 /*
5041                  * Since delayed_put_task_struct() also drops the last
5042                  * task reference we can safely take a new reference
5043                  * while holding the rcu_read_lock().
5044                  */
5045                 get_task_struct(owner);
5046         }
5047         rcu_read_unlock();
5048
5049         if (owner) {
5050                 /*
5051                  * If we're here through perf_event_exit_task() we're already
5052                  * holding ctx->mutex which would be an inversion wrt. the
5053                  * normal lock order.
5054                  *
5055                  * However we can safely take this lock because its the child
5056                  * ctx->mutex.
5057                  */
5058                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5059
5060                 /*
5061                  * We have to re-check the event->owner field, if it is cleared
5062                  * we raced with perf_event_exit_task(), acquiring the mutex
5063                  * ensured they're done, and we can proceed with freeing the
5064                  * event.
5065                  */
5066                 if (event->owner) {
5067                         list_del_init(&event->owner_entry);
5068                         smp_store_release(&event->owner, NULL);
5069                 }
5070                 mutex_unlock(&owner->perf_event_mutex);
5071                 put_task_struct(owner);
5072         }
5073 }
5074
5075 static void put_event(struct perf_event *event)
5076 {
5077         if (!atomic_long_dec_and_test(&event->refcount))
5078                 return;
5079
5080         _free_event(event);
5081 }
5082
5083 /*
5084  * Kill an event dead; while event:refcount will preserve the event
5085  * object, it will not preserve its functionality. Once the last 'user'
5086  * gives up the object, we'll destroy the thing.
5087  */
5088 int perf_event_release_kernel(struct perf_event *event)
5089 {
5090         struct perf_event_context *ctx = event->ctx;
5091         struct perf_event *child, *tmp;
5092         LIST_HEAD(free_list);
5093
5094         /*
5095          * If we got here through err_file: fput(event_file); we will not have
5096          * attached to a context yet.
5097          */
5098         if (!ctx) {
5099                 WARN_ON_ONCE(event->attach_state &
5100                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5101                 goto no_ctx;
5102         }
5103
5104         if (!is_kernel_event(event))
5105                 perf_remove_from_owner(event);
5106
5107         ctx = perf_event_ctx_lock(event);
5108         WARN_ON_ONCE(ctx->parent_ctx);
5109         perf_remove_from_context(event, DETACH_GROUP);
5110
5111         raw_spin_lock_irq(&ctx->lock);
5112         /*
5113          * Mark this event as STATE_DEAD, there is no external reference to it
5114          * anymore.
5115          *
5116          * Anybody acquiring event->child_mutex after the below loop _must_
5117          * also see this, most importantly inherit_event() which will avoid
5118          * placing more children on the list.
5119          *
5120          * Thus this guarantees that we will in fact observe and kill _ALL_
5121          * child events.
5122          */
5123         event->state = PERF_EVENT_STATE_DEAD;
5124         raw_spin_unlock_irq(&ctx->lock);
5125
5126         perf_event_ctx_unlock(event, ctx);
5127
5128 again:
5129         mutex_lock(&event->child_mutex);
5130         list_for_each_entry(child, &event->child_list, child_list) {
5131
5132                 /*
5133                  * Cannot change, child events are not migrated, see the
5134                  * comment with perf_event_ctx_lock_nested().
5135                  */
5136                 ctx = READ_ONCE(child->ctx);
5137                 /*
5138                  * Since child_mutex nests inside ctx::mutex, we must jump
5139                  * through hoops. We start by grabbing a reference on the ctx.
5140                  *
5141                  * Since the event cannot get freed while we hold the
5142                  * child_mutex, the context must also exist and have a !0
5143                  * reference count.
5144                  */
5145                 get_ctx(ctx);
5146
5147                 /*
5148                  * Now that we have a ctx ref, we can drop child_mutex, and
5149                  * acquire ctx::mutex without fear of it going away. Then we
5150                  * can re-acquire child_mutex.
5151                  */
5152                 mutex_unlock(&event->child_mutex);
5153                 mutex_lock(&ctx->mutex);
5154                 mutex_lock(&event->child_mutex);
5155
5156                 /*
5157                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5158                  * state, if child is still the first entry, it didn't get freed
5159                  * and we can continue doing so.
5160                  */
5161                 tmp = list_first_entry_or_null(&event->child_list,
5162                                                struct perf_event, child_list);
5163                 if (tmp == child) {
5164                         perf_remove_from_context(child, DETACH_GROUP);
5165                         list_move(&child->child_list, &free_list);
5166                         /*
5167                          * This matches the refcount bump in inherit_event();
5168                          * this can't be the last reference.
5169                          */
5170                         put_event(event);
5171                 }
5172
5173                 mutex_unlock(&event->child_mutex);
5174                 mutex_unlock(&ctx->mutex);
5175                 put_ctx(ctx);
5176                 goto again;
5177         }
5178         mutex_unlock(&event->child_mutex);
5179
5180         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5181                 void *var = &child->ctx->refcount;
5182
5183                 list_del(&child->child_list);
5184                 free_event(child);
5185
5186                 /*
5187                  * Wake any perf_event_free_task() waiting for this event to be
5188                  * freed.
5189                  */
5190                 smp_mb(); /* pairs with wait_var_event() */
5191                 wake_up_var(var);
5192         }
5193
5194 no_ctx:
5195         put_event(event); /* Must be the 'last' reference */
5196         return 0;
5197 }
5198 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5199
5200 /*
5201  * Called when the last reference to the file is gone.
5202  */
5203 static int perf_release(struct inode *inode, struct file *file)
5204 {
5205         perf_event_release_kernel(file->private_data);
5206         return 0;
5207 }
5208
5209 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5210 {
5211         struct perf_event *child;
5212         u64 total = 0;
5213
5214         *enabled = 0;
5215         *running = 0;
5216
5217         mutex_lock(&event->child_mutex);
5218
5219         (void)perf_event_read(event, false);
5220         total += perf_event_count(event);
5221
5222         *enabled += event->total_time_enabled +
5223                         atomic64_read(&event->child_total_time_enabled);
5224         *running += event->total_time_running +
5225                         atomic64_read(&event->child_total_time_running);
5226
5227         list_for_each_entry(child, &event->child_list, child_list) {
5228                 (void)perf_event_read(child, false);
5229                 total += perf_event_count(child);
5230                 *enabled += child->total_time_enabled;
5231                 *running += child->total_time_running;
5232         }
5233         mutex_unlock(&event->child_mutex);
5234
5235         return total;
5236 }
5237
5238 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5239 {
5240         struct perf_event_context *ctx;
5241         u64 count;
5242
5243         ctx = perf_event_ctx_lock(event);
5244         count = __perf_event_read_value(event, enabled, running);
5245         perf_event_ctx_unlock(event, ctx);
5246
5247         return count;
5248 }
5249 EXPORT_SYMBOL_GPL(perf_event_read_value);
5250
5251 static int __perf_read_group_add(struct perf_event *leader,
5252                                         u64 read_format, u64 *values)
5253 {
5254         struct perf_event_context *ctx = leader->ctx;
5255         struct perf_event *sub;
5256         unsigned long flags;
5257         int n = 1; /* skip @nr */
5258         int ret;
5259
5260         ret = perf_event_read(leader, true);
5261         if (ret)
5262                 return ret;
5263
5264         raw_spin_lock_irqsave(&ctx->lock, flags);
5265
5266         /*
5267          * Since we co-schedule groups, {enabled,running} times of siblings
5268          * will be identical to those of the leader, so we only publish one
5269          * set.
5270          */
5271         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5272                 values[n++] += leader->total_time_enabled +
5273                         atomic64_read(&leader->child_total_time_enabled);
5274         }
5275
5276         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5277                 values[n++] += leader->total_time_running +
5278                         atomic64_read(&leader->child_total_time_running);
5279         }
5280
5281         /*
5282          * Write {count,id} tuples for every sibling.
5283          */
5284         values[n++] += perf_event_count(leader);
5285         if (read_format & PERF_FORMAT_ID)
5286                 values[n++] = primary_event_id(leader);
5287
5288         for_each_sibling_event(sub, leader) {
5289                 values[n++] += perf_event_count(sub);
5290                 if (read_format & PERF_FORMAT_ID)
5291                         values[n++] = primary_event_id(sub);
5292         }
5293
5294         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5295         return 0;
5296 }
5297
5298 static int perf_read_group(struct perf_event *event,
5299                                    u64 read_format, char __user *buf)
5300 {
5301         struct perf_event *leader = event->group_leader, *child;
5302         struct perf_event_context *ctx = leader->ctx;
5303         int ret;
5304         u64 *values;
5305
5306         lockdep_assert_held(&ctx->mutex);
5307
5308         values = kzalloc(event->read_size, GFP_KERNEL);
5309         if (!values)
5310                 return -ENOMEM;
5311
5312         values[0] = 1 + leader->nr_siblings;
5313
5314         /*
5315          * By locking the child_mutex of the leader we effectively
5316          * lock the child list of all siblings.. XXX explain how.
5317          */
5318         mutex_lock(&leader->child_mutex);
5319
5320         ret = __perf_read_group_add(leader, read_format, values);
5321         if (ret)
5322                 goto unlock;
5323
5324         list_for_each_entry(child, &leader->child_list, child_list) {
5325                 ret = __perf_read_group_add(child, read_format, values);
5326                 if (ret)
5327                         goto unlock;
5328         }
5329
5330         mutex_unlock(&leader->child_mutex);
5331
5332         ret = event->read_size;
5333         if (copy_to_user(buf, values, event->read_size))
5334                 ret = -EFAULT;
5335         goto out;
5336
5337 unlock:
5338         mutex_unlock(&leader->child_mutex);
5339 out:
5340         kfree(values);
5341         return ret;
5342 }
5343
5344 static int perf_read_one(struct perf_event *event,
5345                                  u64 read_format, char __user *buf)
5346 {
5347         u64 enabled, running;
5348         u64 values[4];
5349         int n = 0;
5350
5351         values[n++] = __perf_event_read_value(event, &enabled, &running);
5352         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5353                 values[n++] = enabled;
5354         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5355                 values[n++] = running;
5356         if (read_format & PERF_FORMAT_ID)
5357                 values[n++] = primary_event_id(event);
5358
5359         if (copy_to_user(buf, values, n * sizeof(u64)))
5360                 return -EFAULT;
5361
5362         return n * sizeof(u64);
5363 }
5364
5365 static bool is_event_hup(struct perf_event *event)
5366 {
5367         bool no_children;
5368
5369         if (event->state > PERF_EVENT_STATE_EXIT)
5370                 return false;
5371
5372         mutex_lock(&event->child_mutex);
5373         no_children = list_empty(&event->child_list);
5374         mutex_unlock(&event->child_mutex);
5375         return no_children;
5376 }
5377
5378 /*
5379  * Read the performance event - simple non blocking version for now
5380  */
5381 static ssize_t
5382 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5383 {
5384         u64 read_format = event->attr.read_format;
5385         int ret;
5386
5387         /*
5388          * Return end-of-file for a read on an event that is in
5389          * error state (i.e. because it was pinned but it couldn't be
5390          * scheduled on to the CPU at some point).
5391          */
5392         if (event->state == PERF_EVENT_STATE_ERROR)
5393                 return 0;
5394
5395         if (count < event->read_size)
5396                 return -ENOSPC;
5397
5398         WARN_ON_ONCE(event->ctx->parent_ctx);
5399         if (read_format & PERF_FORMAT_GROUP)
5400                 ret = perf_read_group(event, read_format, buf);
5401         else
5402                 ret = perf_read_one(event, read_format, buf);
5403
5404         return ret;
5405 }
5406
5407 static ssize_t
5408 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5409 {
5410         struct perf_event *event = file->private_data;
5411         struct perf_event_context *ctx;
5412         int ret;
5413
5414         ret = security_perf_event_read(event);
5415         if (ret)
5416                 return ret;
5417
5418         ctx = perf_event_ctx_lock(event);
5419         ret = __perf_read(event, buf, count);
5420         perf_event_ctx_unlock(event, ctx);
5421
5422         return ret;
5423 }
5424
5425 static __poll_t perf_poll(struct file *file, poll_table *wait)
5426 {
5427         struct perf_event *event = file->private_data;
5428         struct perf_buffer *rb;
5429         __poll_t events = EPOLLHUP;
5430
5431         poll_wait(file, &event->waitq, wait);
5432
5433         if (is_event_hup(event))
5434                 return events;
5435
5436         /*
5437          * Pin the event->rb by taking event->mmap_mutex; otherwise
5438          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5439          */
5440         mutex_lock(&event->mmap_mutex);
5441         rb = event->rb;
5442         if (rb)
5443                 events = atomic_xchg(&rb->poll, 0);
5444         mutex_unlock(&event->mmap_mutex);
5445         return events;
5446 }
5447
5448 static void _perf_event_reset(struct perf_event *event)
5449 {
5450         (void)perf_event_read(event, false);
5451         local64_set(&event->count, 0);
5452         perf_event_update_userpage(event);
5453 }
5454
5455 /* Assume it's not an event with inherit set. */
5456 u64 perf_event_pause(struct perf_event *event, bool reset)
5457 {
5458         struct perf_event_context *ctx;
5459         u64 count;
5460
5461         ctx = perf_event_ctx_lock(event);
5462         WARN_ON_ONCE(event->attr.inherit);
5463         _perf_event_disable(event);
5464         count = local64_read(&event->count);
5465         if (reset)
5466                 local64_set(&event->count, 0);
5467         perf_event_ctx_unlock(event, ctx);
5468
5469         return count;
5470 }
5471 EXPORT_SYMBOL_GPL(perf_event_pause);
5472
5473 /*
5474  * Holding the top-level event's child_mutex means that any
5475  * descendant process that has inherited this event will block
5476  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5477  * task existence requirements of perf_event_enable/disable.
5478  */
5479 static void perf_event_for_each_child(struct perf_event *event,
5480                                         void (*func)(struct perf_event *))
5481 {
5482         struct perf_event *child;
5483
5484         WARN_ON_ONCE(event->ctx->parent_ctx);
5485
5486         mutex_lock(&event->child_mutex);
5487         func(event);
5488         list_for_each_entry(child, &event->child_list, child_list)
5489                 func(child);
5490         mutex_unlock(&event->child_mutex);
5491 }
5492
5493 static void perf_event_for_each(struct perf_event *event,
5494                                   void (*func)(struct perf_event *))
5495 {
5496         struct perf_event_context *ctx = event->ctx;
5497         struct perf_event *sibling;
5498
5499         lockdep_assert_held(&ctx->mutex);
5500
5501         event = event->group_leader;
5502
5503         perf_event_for_each_child(event, func);
5504         for_each_sibling_event(sibling, event)
5505                 perf_event_for_each_child(sibling, func);
5506 }
5507
5508 static void __perf_event_period(struct perf_event *event,
5509                                 struct perf_cpu_context *cpuctx,
5510                                 struct perf_event_context *ctx,
5511                                 void *info)
5512 {
5513         u64 value = *((u64 *)info);
5514         bool active;
5515
5516         if (event->attr.freq) {
5517                 event->attr.sample_freq = value;
5518         } else {
5519                 event->attr.sample_period = value;
5520                 event->hw.sample_period = value;
5521         }
5522
5523         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5524         if (active) {
5525                 perf_pmu_disable(ctx->pmu);
5526                 /*
5527                  * We could be throttled; unthrottle now to avoid the tick
5528                  * trying to unthrottle while we already re-started the event.
5529                  */
5530                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5531                         event->hw.interrupts = 0;
5532                         perf_log_throttle(event, 1);
5533                 }
5534                 event->pmu->stop(event, PERF_EF_UPDATE);
5535         }
5536
5537         local64_set(&event->hw.period_left, 0);
5538
5539         if (active) {
5540                 event->pmu->start(event, PERF_EF_RELOAD);
5541                 perf_pmu_enable(ctx->pmu);
5542         }
5543 }
5544
5545 static int perf_event_check_period(struct perf_event *event, u64 value)
5546 {
5547         return event->pmu->check_period(event, value);
5548 }
5549
5550 static int _perf_event_period(struct perf_event *event, u64 value)
5551 {
5552         if (!is_sampling_event(event))
5553                 return -EINVAL;
5554
5555         if (!value)
5556                 return -EINVAL;
5557
5558         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5559                 return -EINVAL;
5560
5561         if (perf_event_check_period(event, value))
5562                 return -EINVAL;
5563
5564         if (!event->attr.freq && (value & (1ULL << 63)))
5565                 return -EINVAL;
5566
5567         event_function_call(event, __perf_event_period, &value);
5568
5569         return 0;
5570 }
5571
5572 int perf_event_period(struct perf_event *event, u64 value)
5573 {
5574         struct perf_event_context *ctx;
5575         int ret;
5576
5577         ctx = perf_event_ctx_lock(event);
5578         ret = _perf_event_period(event, value);
5579         perf_event_ctx_unlock(event, ctx);
5580
5581         return ret;
5582 }
5583 EXPORT_SYMBOL_GPL(perf_event_period);
5584
5585 static const struct file_operations perf_fops;
5586
5587 static inline int perf_fget_light(int fd, struct fd *p)
5588 {
5589         struct fd f = fdget(fd);
5590         if (!f.file)
5591                 return -EBADF;
5592
5593         if (f.file->f_op != &perf_fops) {
5594                 fdput(f);
5595                 return -EBADF;
5596         }
5597         *p = f;
5598         return 0;
5599 }
5600
5601 static int perf_event_set_output(struct perf_event *event,
5602                                  struct perf_event *output_event);
5603 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5604 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5605                           struct perf_event_attr *attr);
5606
5607 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5608 {
5609         void (*func)(struct perf_event *);
5610         u32 flags = arg;
5611
5612         switch (cmd) {
5613         case PERF_EVENT_IOC_ENABLE:
5614                 func = _perf_event_enable;
5615                 break;
5616         case PERF_EVENT_IOC_DISABLE:
5617                 func = _perf_event_disable;
5618                 break;
5619         case PERF_EVENT_IOC_RESET:
5620                 func = _perf_event_reset;
5621                 break;
5622
5623         case PERF_EVENT_IOC_REFRESH:
5624                 return _perf_event_refresh(event, arg);
5625
5626         case PERF_EVENT_IOC_PERIOD:
5627         {
5628                 u64 value;
5629
5630                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5631                         return -EFAULT;
5632
5633                 return _perf_event_period(event, value);
5634         }
5635         case PERF_EVENT_IOC_ID:
5636         {
5637                 u64 id = primary_event_id(event);
5638
5639                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5640                         return -EFAULT;
5641                 return 0;
5642         }
5643
5644         case PERF_EVENT_IOC_SET_OUTPUT:
5645         {
5646                 int ret;
5647                 if (arg != -1) {
5648                         struct perf_event *output_event;
5649                         struct fd output;
5650                         ret = perf_fget_light(arg, &output);
5651                         if (ret)
5652                                 return ret;
5653                         output_event = output.file->private_data;
5654                         ret = perf_event_set_output(event, output_event);
5655                         fdput(output);
5656                 } else {
5657                         ret = perf_event_set_output(event, NULL);
5658                 }
5659                 return ret;
5660         }
5661
5662         case PERF_EVENT_IOC_SET_FILTER:
5663                 return perf_event_set_filter(event, (void __user *)arg);
5664
5665         case PERF_EVENT_IOC_SET_BPF:
5666         {
5667                 struct bpf_prog *prog;
5668                 int err;
5669
5670                 prog = bpf_prog_get(arg);
5671                 if (IS_ERR(prog))
5672                         return PTR_ERR(prog);
5673
5674                 err = perf_event_set_bpf_prog(event, prog, 0);
5675                 if (err) {
5676                         bpf_prog_put(prog);
5677                         return err;
5678                 }
5679
5680                 return 0;
5681         }
5682
5683         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5684                 struct perf_buffer *rb;
5685
5686                 rcu_read_lock();
5687                 rb = rcu_dereference(event->rb);
5688                 if (!rb || !rb->nr_pages) {
5689                         rcu_read_unlock();
5690                         return -EINVAL;
5691                 }
5692                 rb_toggle_paused(rb, !!arg);
5693                 rcu_read_unlock();
5694                 return 0;
5695         }
5696
5697         case PERF_EVENT_IOC_QUERY_BPF:
5698                 return perf_event_query_prog_array(event, (void __user *)arg);
5699
5700         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5701                 struct perf_event_attr new_attr;
5702                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5703                                          &new_attr);
5704
5705                 if (err)
5706                         return err;
5707
5708                 return perf_event_modify_attr(event,  &new_attr);
5709         }
5710         default:
5711                 return -ENOTTY;
5712         }
5713
5714         if (flags & PERF_IOC_FLAG_GROUP)
5715                 perf_event_for_each(event, func);
5716         else
5717                 perf_event_for_each_child(event, func);
5718
5719         return 0;
5720 }
5721
5722 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5723 {
5724         struct perf_event *event = file->private_data;
5725         struct perf_event_context *ctx;
5726         long ret;
5727
5728         /* Treat ioctl like writes as it is likely a mutating operation. */
5729         ret = security_perf_event_write(event);
5730         if (ret)
5731                 return ret;
5732
5733         ctx = perf_event_ctx_lock(event);
5734         ret = _perf_ioctl(event, cmd, arg);
5735         perf_event_ctx_unlock(event, ctx);
5736
5737         return ret;
5738 }
5739
5740 #ifdef CONFIG_COMPAT
5741 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5742                                 unsigned long arg)
5743 {
5744         switch (_IOC_NR(cmd)) {
5745         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5746         case _IOC_NR(PERF_EVENT_IOC_ID):
5747         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5748         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5749                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5750                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5751                         cmd &= ~IOCSIZE_MASK;
5752                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5753                 }
5754                 break;
5755         }
5756         return perf_ioctl(file, cmd, arg);
5757 }
5758 #else
5759 # define perf_compat_ioctl NULL
5760 #endif
5761
5762 int perf_event_task_enable(void)
5763 {
5764         struct perf_event_context *ctx;
5765         struct perf_event *event;
5766
5767         mutex_lock(&current->perf_event_mutex);
5768         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5769                 ctx = perf_event_ctx_lock(event);
5770                 perf_event_for_each_child(event, _perf_event_enable);
5771                 perf_event_ctx_unlock(event, ctx);
5772         }
5773         mutex_unlock(&current->perf_event_mutex);
5774
5775         return 0;
5776 }
5777
5778 int perf_event_task_disable(void)
5779 {
5780         struct perf_event_context *ctx;
5781         struct perf_event *event;
5782
5783         mutex_lock(&current->perf_event_mutex);
5784         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5785                 ctx = perf_event_ctx_lock(event);
5786                 perf_event_for_each_child(event, _perf_event_disable);
5787                 perf_event_ctx_unlock(event, ctx);
5788         }
5789         mutex_unlock(&current->perf_event_mutex);
5790
5791         return 0;
5792 }
5793
5794 static int perf_event_index(struct perf_event *event)
5795 {
5796         if (event->hw.state & PERF_HES_STOPPED)
5797                 return 0;
5798
5799         if (event->state != PERF_EVENT_STATE_ACTIVE)
5800                 return 0;
5801
5802         return event->pmu->event_idx(event);
5803 }
5804
5805 static void calc_timer_values(struct perf_event *event,
5806                                 u64 *now,
5807                                 u64 *enabled,
5808                                 u64 *running)
5809 {
5810         u64 ctx_time;
5811
5812         *now = perf_clock();
5813         ctx_time = event->shadow_ctx_time + *now;
5814         __perf_update_times(event, ctx_time, enabled, running);
5815 }
5816
5817 static void perf_event_init_userpage(struct perf_event *event)
5818 {
5819         struct perf_event_mmap_page *userpg;
5820         struct perf_buffer *rb;
5821
5822         rcu_read_lock();
5823         rb = rcu_dereference(event->rb);
5824         if (!rb)
5825                 goto unlock;
5826
5827         userpg = rb->user_page;
5828
5829         /* Allow new userspace to detect that bit 0 is deprecated */
5830         userpg->cap_bit0_is_deprecated = 1;
5831         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5832         userpg->data_offset = PAGE_SIZE;
5833         userpg->data_size = perf_data_size(rb);
5834
5835 unlock:
5836         rcu_read_unlock();
5837 }
5838
5839 void __weak arch_perf_update_userpage(
5840         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5841 {
5842 }
5843
5844 /*
5845  * Callers need to ensure there can be no nesting of this function, otherwise
5846  * the seqlock logic goes bad. We can not serialize this because the arch
5847  * code calls this from NMI context.
5848  */
5849 void perf_event_update_userpage(struct perf_event *event)
5850 {
5851         struct perf_event_mmap_page *userpg;
5852         struct perf_buffer *rb;
5853         u64 enabled, running, now;
5854
5855         rcu_read_lock();
5856         rb = rcu_dereference(event->rb);
5857         if (!rb)
5858                 goto unlock;
5859
5860         /*
5861          * compute total_time_enabled, total_time_running
5862          * based on snapshot values taken when the event
5863          * was last scheduled in.
5864          *
5865          * we cannot simply called update_context_time()
5866          * because of locking issue as we can be called in
5867          * NMI context
5868          */
5869         calc_timer_values(event, &now, &enabled, &running);
5870
5871         userpg = rb->user_page;
5872         /*
5873          * Disable preemption to guarantee consistent time stamps are stored to
5874          * the user page.
5875          */
5876         preempt_disable();
5877         ++userpg->lock;
5878         barrier();
5879         userpg->index = perf_event_index(event);
5880         userpg->offset = perf_event_count(event);
5881         if (userpg->index)
5882                 userpg->offset -= local64_read(&event->hw.prev_count);
5883
5884         userpg->time_enabled = enabled +
5885                         atomic64_read(&event->child_total_time_enabled);
5886
5887         userpg->time_running = running +
5888                         atomic64_read(&event->child_total_time_running);
5889
5890         arch_perf_update_userpage(event, userpg, now);
5891
5892         barrier();
5893         ++userpg->lock;
5894         preempt_enable();
5895 unlock:
5896         rcu_read_unlock();
5897 }
5898 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5899
5900 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5901 {
5902         struct perf_event *event = vmf->vma->vm_file->private_data;
5903         struct perf_buffer *rb;
5904         vm_fault_t ret = VM_FAULT_SIGBUS;
5905
5906         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5907                 if (vmf->pgoff == 0)
5908                         ret = 0;
5909                 return ret;
5910         }
5911
5912         rcu_read_lock();
5913         rb = rcu_dereference(event->rb);
5914         if (!rb)
5915                 goto unlock;
5916
5917         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5918                 goto unlock;
5919
5920         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5921         if (!vmf->page)
5922                 goto unlock;
5923
5924         get_page(vmf->page);
5925         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5926         vmf->page->index   = vmf->pgoff;
5927
5928         ret = 0;
5929 unlock:
5930         rcu_read_unlock();
5931
5932         return ret;
5933 }
5934
5935 static void ring_buffer_attach(struct perf_event *event,
5936                                struct perf_buffer *rb)
5937 {
5938         struct perf_buffer *old_rb = NULL;
5939         unsigned long flags;
5940
5941         if (event->rb) {
5942                 /*
5943                  * Should be impossible, we set this when removing
5944                  * event->rb_entry and wait/clear when adding event->rb_entry.
5945                  */
5946                 WARN_ON_ONCE(event->rcu_pending);
5947
5948                 old_rb = event->rb;
5949                 spin_lock_irqsave(&old_rb->event_lock, flags);
5950                 list_del_rcu(&event->rb_entry);
5951                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5952
5953                 event->rcu_batches = get_state_synchronize_rcu();
5954                 event->rcu_pending = 1;
5955         }
5956
5957         if (rb) {
5958                 if (event->rcu_pending) {
5959                         cond_synchronize_rcu(event->rcu_batches);
5960                         event->rcu_pending = 0;
5961                 }
5962
5963                 spin_lock_irqsave(&rb->event_lock, flags);
5964                 list_add_rcu(&event->rb_entry, &rb->event_list);
5965                 spin_unlock_irqrestore(&rb->event_lock, flags);
5966         }
5967
5968         /*
5969          * Avoid racing with perf_mmap_close(AUX): stop the event
5970          * before swizzling the event::rb pointer; if it's getting
5971          * unmapped, its aux_mmap_count will be 0 and it won't
5972          * restart. See the comment in __perf_pmu_output_stop().
5973          *
5974          * Data will inevitably be lost when set_output is done in
5975          * mid-air, but then again, whoever does it like this is
5976          * not in for the data anyway.
5977          */
5978         if (has_aux(event))
5979                 perf_event_stop(event, 0);
5980
5981         rcu_assign_pointer(event->rb, rb);
5982
5983         if (old_rb) {
5984                 ring_buffer_put(old_rb);
5985                 /*
5986                  * Since we detached before setting the new rb, so that we
5987                  * could attach the new rb, we could have missed a wakeup.
5988                  * Provide it now.
5989                  */
5990                 wake_up_all(&event->waitq);
5991         }
5992 }
5993
5994 static void ring_buffer_wakeup(struct perf_event *event)
5995 {
5996         struct perf_buffer *rb;
5997
5998         rcu_read_lock();
5999         rb = rcu_dereference(event->rb);
6000         if (rb) {
6001                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6002                         wake_up_all(&event->waitq);
6003         }
6004         rcu_read_unlock();
6005 }
6006
6007 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6008 {
6009         struct perf_buffer *rb;
6010
6011         rcu_read_lock();
6012         rb = rcu_dereference(event->rb);
6013         if (rb) {
6014                 if (!refcount_inc_not_zero(&rb->refcount))
6015                         rb = NULL;
6016         }
6017         rcu_read_unlock();
6018
6019         return rb;
6020 }
6021
6022 void ring_buffer_put(struct perf_buffer *rb)
6023 {
6024         if (!refcount_dec_and_test(&rb->refcount))
6025                 return;
6026
6027         WARN_ON_ONCE(!list_empty(&rb->event_list));
6028
6029         call_rcu(&rb->rcu_head, rb_free_rcu);
6030 }
6031
6032 static void perf_mmap_open(struct vm_area_struct *vma)
6033 {
6034         struct perf_event *event = vma->vm_file->private_data;
6035
6036         atomic_inc(&event->mmap_count);
6037         atomic_inc(&event->rb->mmap_count);
6038
6039         if (vma->vm_pgoff)
6040                 atomic_inc(&event->rb->aux_mmap_count);
6041
6042         if (event->pmu->event_mapped)
6043                 event->pmu->event_mapped(event, vma->vm_mm);
6044 }
6045
6046 static void perf_pmu_output_stop(struct perf_event *event);
6047
6048 /*
6049  * A buffer can be mmap()ed multiple times; either directly through the same
6050  * event, or through other events by use of perf_event_set_output().
6051  *
6052  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6053  * the buffer here, where we still have a VM context. This means we need
6054  * to detach all events redirecting to us.
6055  */
6056 static void perf_mmap_close(struct vm_area_struct *vma)
6057 {
6058         struct perf_event *event = vma->vm_file->private_data;
6059         struct perf_buffer *rb = ring_buffer_get(event);
6060         struct user_struct *mmap_user = rb->mmap_user;
6061         int mmap_locked = rb->mmap_locked;
6062         unsigned long size = perf_data_size(rb);
6063         bool detach_rest = false;
6064
6065         if (event->pmu->event_unmapped)
6066                 event->pmu->event_unmapped(event, vma->vm_mm);
6067
6068         /*
6069          * rb->aux_mmap_count will always drop before rb->mmap_count and
6070          * event->mmap_count, so it is ok to use event->mmap_mutex to
6071          * serialize with perf_mmap here.
6072          */
6073         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6074             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6075                 /*
6076                  * Stop all AUX events that are writing to this buffer,
6077                  * so that we can free its AUX pages and corresponding PMU
6078                  * data. Note that after rb::aux_mmap_count dropped to zero,
6079                  * they won't start any more (see perf_aux_output_begin()).
6080                  */
6081                 perf_pmu_output_stop(event);
6082
6083                 /* now it's safe to free the pages */
6084                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6085                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6086
6087                 /* this has to be the last one */
6088                 rb_free_aux(rb);
6089                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6090
6091                 mutex_unlock(&event->mmap_mutex);
6092         }
6093
6094         if (atomic_dec_and_test(&rb->mmap_count))
6095                 detach_rest = true;
6096
6097         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6098                 goto out_put;
6099
6100         ring_buffer_attach(event, NULL);
6101         mutex_unlock(&event->mmap_mutex);
6102
6103         /* If there's still other mmap()s of this buffer, we're done. */
6104         if (!detach_rest)
6105                 goto out_put;
6106
6107         /*
6108          * No other mmap()s, detach from all other events that might redirect
6109          * into the now unreachable buffer. Somewhat complicated by the
6110          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6111          */
6112 again:
6113         rcu_read_lock();
6114         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6115                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6116                         /*
6117                          * This event is en-route to free_event() which will
6118                          * detach it and remove it from the list.
6119                          */
6120                         continue;
6121                 }
6122                 rcu_read_unlock();
6123
6124                 mutex_lock(&event->mmap_mutex);
6125                 /*
6126                  * Check we didn't race with perf_event_set_output() which can
6127                  * swizzle the rb from under us while we were waiting to
6128                  * acquire mmap_mutex.
6129                  *
6130                  * If we find a different rb; ignore this event, a next
6131                  * iteration will no longer find it on the list. We have to
6132                  * still restart the iteration to make sure we're not now
6133                  * iterating the wrong list.
6134                  */
6135                 if (event->rb == rb)
6136                         ring_buffer_attach(event, NULL);
6137
6138                 mutex_unlock(&event->mmap_mutex);
6139                 put_event(event);
6140
6141                 /*
6142                  * Restart the iteration; either we're on the wrong list or
6143                  * destroyed its integrity by doing a deletion.
6144                  */
6145                 goto again;
6146         }
6147         rcu_read_unlock();
6148
6149         /*
6150          * It could be there's still a few 0-ref events on the list; they'll
6151          * get cleaned up by free_event() -- they'll also still have their
6152          * ref on the rb and will free it whenever they are done with it.
6153          *
6154          * Aside from that, this buffer is 'fully' detached and unmapped,
6155          * undo the VM accounting.
6156          */
6157
6158         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6159                         &mmap_user->locked_vm);
6160         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6161         free_uid(mmap_user);
6162
6163 out_put:
6164         ring_buffer_put(rb); /* could be last */
6165 }
6166
6167 static const struct vm_operations_struct perf_mmap_vmops = {
6168         .open           = perf_mmap_open,
6169         .close          = perf_mmap_close, /* non mergeable */
6170         .fault          = perf_mmap_fault,
6171         .page_mkwrite   = perf_mmap_fault,
6172 };
6173
6174 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6175 {
6176         struct perf_event *event = file->private_data;
6177         unsigned long user_locked, user_lock_limit;
6178         struct user_struct *user = current_user();
6179         struct perf_buffer *rb = NULL;
6180         unsigned long locked, lock_limit;
6181         unsigned long vma_size;
6182         unsigned long nr_pages;
6183         long user_extra = 0, extra = 0;
6184         int ret = 0, flags = 0;
6185
6186         /*
6187          * Don't allow mmap() of inherited per-task counters. This would
6188          * create a performance issue due to all children writing to the
6189          * same rb.
6190          */
6191         if (event->cpu == -1 && event->attr.inherit)
6192                 return -EINVAL;
6193
6194         if (!(vma->vm_flags & VM_SHARED))
6195                 return -EINVAL;
6196
6197         ret = security_perf_event_read(event);
6198         if (ret)
6199                 return ret;
6200
6201         vma_size = vma->vm_end - vma->vm_start;
6202
6203         if (vma->vm_pgoff == 0) {
6204                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6205         } else {
6206                 /*
6207                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6208                  * mapped, all subsequent mappings should have the same size
6209                  * and offset. Must be above the normal perf buffer.
6210                  */
6211                 u64 aux_offset, aux_size;
6212
6213                 if (!event->rb)
6214                         return -EINVAL;
6215
6216                 nr_pages = vma_size / PAGE_SIZE;
6217
6218                 mutex_lock(&event->mmap_mutex);
6219                 ret = -EINVAL;
6220
6221                 rb = event->rb;
6222                 if (!rb)
6223                         goto aux_unlock;
6224
6225                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6226                 aux_size = READ_ONCE(rb->user_page->aux_size);
6227
6228                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6229                         goto aux_unlock;
6230
6231                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6232                         goto aux_unlock;
6233
6234                 /* already mapped with a different offset */
6235                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6236                         goto aux_unlock;
6237
6238                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6239                         goto aux_unlock;
6240
6241                 /* already mapped with a different size */
6242                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6243                         goto aux_unlock;
6244
6245                 if (!is_power_of_2(nr_pages))
6246                         goto aux_unlock;
6247
6248                 if (!atomic_inc_not_zero(&rb->mmap_count))
6249                         goto aux_unlock;
6250
6251                 if (rb_has_aux(rb)) {
6252                         atomic_inc(&rb->aux_mmap_count);
6253                         ret = 0;
6254                         goto unlock;
6255                 }
6256
6257                 atomic_set(&rb->aux_mmap_count, 1);
6258                 user_extra = nr_pages;
6259
6260                 goto accounting;
6261         }
6262
6263         /*
6264          * If we have rb pages ensure they're a power-of-two number, so we
6265          * can do bitmasks instead of modulo.
6266          */
6267         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6268                 return -EINVAL;
6269
6270         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6271                 return -EINVAL;
6272
6273         WARN_ON_ONCE(event->ctx->parent_ctx);
6274 again:
6275         mutex_lock(&event->mmap_mutex);
6276         if (event->rb) {
6277                 if (event->rb->nr_pages != nr_pages) {
6278                         ret = -EINVAL;
6279                         goto unlock;
6280                 }
6281
6282                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6283                         /*
6284                          * Raced against perf_mmap_close() through
6285                          * perf_event_set_output(). Try again, hope for better
6286                          * luck.
6287                          */
6288                         mutex_unlock(&event->mmap_mutex);
6289                         goto again;
6290                 }
6291
6292                 goto unlock;
6293         }
6294
6295         user_extra = nr_pages + 1;
6296
6297 accounting:
6298         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6299
6300         /*
6301          * Increase the limit linearly with more CPUs:
6302          */
6303         user_lock_limit *= num_online_cpus();
6304
6305         user_locked = atomic_long_read(&user->locked_vm);
6306
6307         /*
6308          * sysctl_perf_event_mlock may have changed, so that
6309          *     user->locked_vm > user_lock_limit
6310          */
6311         if (user_locked > user_lock_limit)
6312                 user_locked = user_lock_limit;
6313         user_locked += user_extra;
6314
6315         if (user_locked > user_lock_limit) {
6316                 /*
6317                  * charge locked_vm until it hits user_lock_limit;
6318                  * charge the rest from pinned_vm
6319                  */
6320                 extra = user_locked - user_lock_limit;
6321                 user_extra -= extra;
6322         }
6323
6324         lock_limit = rlimit(RLIMIT_MEMLOCK);
6325         lock_limit >>= PAGE_SHIFT;
6326         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6327
6328         if ((locked > lock_limit) && perf_is_paranoid() &&
6329                 !capable(CAP_IPC_LOCK)) {
6330                 ret = -EPERM;
6331                 goto unlock;
6332         }
6333
6334         WARN_ON(!rb && event->rb);
6335
6336         if (vma->vm_flags & VM_WRITE)
6337                 flags |= RING_BUFFER_WRITABLE;
6338
6339         if (!rb) {
6340                 rb = rb_alloc(nr_pages,
6341                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6342                               event->cpu, flags);
6343
6344                 if (!rb) {
6345                         ret = -ENOMEM;
6346                         goto unlock;
6347                 }
6348
6349                 atomic_set(&rb->mmap_count, 1);
6350                 rb->mmap_user = get_current_user();
6351                 rb->mmap_locked = extra;
6352
6353                 ring_buffer_attach(event, rb);
6354
6355                 perf_event_update_time(event);
6356                 perf_set_shadow_time(event, event->ctx);
6357                 perf_event_init_userpage(event);
6358                 perf_event_update_userpage(event);
6359         } else {
6360                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6361                                    event->attr.aux_watermark, flags);
6362                 if (!ret)
6363                         rb->aux_mmap_locked = extra;
6364         }
6365
6366 unlock:
6367         if (!ret) {
6368                 atomic_long_add(user_extra, &user->locked_vm);
6369                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6370
6371                 atomic_inc(&event->mmap_count);
6372         } else if (rb) {
6373                 atomic_dec(&rb->mmap_count);
6374         }
6375 aux_unlock:
6376         mutex_unlock(&event->mmap_mutex);
6377
6378         /*
6379          * Since pinned accounting is per vm we cannot allow fork() to copy our
6380          * vma.
6381          */
6382         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6383         vma->vm_ops = &perf_mmap_vmops;
6384
6385         if (event->pmu->event_mapped)
6386                 event->pmu->event_mapped(event, vma->vm_mm);
6387
6388         return ret;
6389 }
6390
6391 static int perf_fasync(int fd, struct file *filp, int on)
6392 {
6393         struct inode *inode = file_inode(filp);
6394         struct perf_event *event = filp->private_data;
6395         int retval;
6396
6397         inode_lock(inode);
6398         retval = fasync_helper(fd, filp, on, &event->fasync);
6399         inode_unlock(inode);
6400
6401         if (retval < 0)
6402                 return retval;
6403
6404         return 0;
6405 }
6406
6407 static const struct file_operations perf_fops = {
6408         .llseek                 = no_llseek,
6409         .release                = perf_release,
6410         .read                   = perf_read,
6411         .poll                   = perf_poll,
6412         .unlocked_ioctl         = perf_ioctl,
6413         .compat_ioctl           = perf_compat_ioctl,
6414         .mmap                   = perf_mmap,
6415         .fasync                 = perf_fasync,
6416 };
6417
6418 /*
6419  * Perf event wakeup
6420  *
6421  * If there's data, ensure we set the poll() state and publish everything
6422  * to user-space before waking everybody up.
6423  */
6424
6425 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6426 {
6427         /* only the parent has fasync state */
6428         if (event->parent)
6429                 event = event->parent;
6430         return &event->fasync;
6431 }
6432
6433 void perf_event_wakeup(struct perf_event *event)
6434 {
6435         ring_buffer_wakeup(event);
6436
6437         if (event->pending_kill) {
6438                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6439                 event->pending_kill = 0;
6440         }
6441 }
6442
6443 static void perf_sigtrap(struct perf_event *event)
6444 {
6445         /*
6446          * We'd expect this to only occur if the irq_work is delayed and either
6447          * ctx->task or current has changed in the meantime. This can be the
6448          * case on architectures that do not implement arch_irq_work_raise().
6449          */
6450         if (WARN_ON_ONCE(event->ctx->task != current))
6451                 return;
6452
6453         /*
6454          * perf_pending_event() can race with the task exiting.
6455          */
6456         if (current->flags & PF_EXITING)
6457                 return;
6458
6459         force_sig_perf((void __user *)event->pending_addr,
6460                        event->attr.type, event->attr.sig_data);
6461 }
6462
6463 static void perf_pending_event_disable(struct perf_event *event)
6464 {
6465         int cpu = READ_ONCE(event->pending_disable);
6466
6467         if (cpu < 0)
6468                 return;
6469
6470         if (cpu == smp_processor_id()) {
6471                 WRITE_ONCE(event->pending_disable, -1);
6472
6473                 if (event->attr.sigtrap) {
6474                         perf_sigtrap(event);
6475                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6476                         return;
6477                 }
6478
6479                 perf_event_disable_local(event);
6480                 return;
6481         }
6482
6483         /*
6484          *  CPU-A                       CPU-B
6485          *
6486          *  perf_event_disable_inatomic()
6487          *    @pending_disable = CPU-A;
6488          *    irq_work_queue();
6489          *
6490          *  sched-out
6491          *    @pending_disable = -1;
6492          *
6493          *                              sched-in
6494          *                              perf_event_disable_inatomic()
6495          *                                @pending_disable = CPU-B;
6496          *                                irq_work_queue(); // FAILS
6497          *
6498          *  irq_work_run()
6499          *    perf_pending_event()
6500          *
6501          * But the event runs on CPU-B and wants disabling there.
6502          */
6503         irq_work_queue_on(&event->pending, cpu);
6504 }
6505
6506 static void perf_pending_event(struct irq_work *entry)
6507 {
6508         struct perf_event *event = container_of(entry, struct perf_event, pending);
6509         int rctx;
6510
6511         rctx = perf_swevent_get_recursion_context();
6512         /*
6513          * If we 'fail' here, that's OK, it means recursion is already disabled
6514          * and we won't recurse 'further'.
6515          */
6516
6517         perf_pending_event_disable(event);
6518
6519         if (event->pending_wakeup) {
6520                 event->pending_wakeup = 0;
6521                 perf_event_wakeup(event);
6522         }
6523
6524         if (rctx >= 0)
6525                 perf_swevent_put_recursion_context(rctx);
6526 }
6527
6528 #ifdef CONFIG_GUEST_PERF_EVENTS
6529 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6530
6531 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6532 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6533 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6534
6535 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6536 {
6537         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6538                 return;
6539
6540         rcu_assign_pointer(perf_guest_cbs, cbs);
6541         static_call_update(__perf_guest_state, cbs->state);
6542         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6543
6544         /* Implementing ->handle_intel_pt_intr is optional. */
6545         if (cbs->handle_intel_pt_intr)
6546                 static_call_update(__perf_guest_handle_intel_pt_intr,
6547                                    cbs->handle_intel_pt_intr);
6548 }
6549 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6550
6551 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6552 {
6553         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6554                 return;
6555
6556         rcu_assign_pointer(perf_guest_cbs, NULL);
6557         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6558         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6559         static_call_update(__perf_guest_handle_intel_pt_intr,
6560                            (void *)&__static_call_return0);
6561         synchronize_rcu();
6562 }
6563 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6564 #endif
6565
6566 static void
6567 perf_output_sample_regs(struct perf_output_handle *handle,
6568                         struct pt_regs *regs, u64 mask)
6569 {
6570         int bit;
6571         DECLARE_BITMAP(_mask, 64);
6572
6573         bitmap_from_u64(_mask, mask);
6574         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6575                 u64 val;
6576
6577                 val = perf_reg_value(regs, bit);
6578                 perf_output_put(handle, val);
6579         }
6580 }
6581
6582 static void perf_sample_regs_user(struct perf_regs *regs_user,
6583                                   struct pt_regs *regs)
6584 {
6585         if (user_mode(regs)) {
6586                 regs_user->abi = perf_reg_abi(current);
6587                 regs_user->regs = regs;
6588         } else if (!(current->flags & PF_KTHREAD)) {
6589                 perf_get_regs_user(regs_user, regs);
6590         } else {
6591                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6592                 regs_user->regs = NULL;
6593         }
6594 }
6595
6596 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6597                                   struct pt_regs *regs)
6598 {
6599         regs_intr->regs = regs;
6600         regs_intr->abi  = perf_reg_abi(current);
6601 }
6602
6603
6604 /*
6605  * Get remaining task size from user stack pointer.
6606  *
6607  * It'd be better to take stack vma map and limit this more
6608  * precisely, but there's no way to get it safely under interrupt,
6609  * so using TASK_SIZE as limit.
6610  */
6611 static u64 perf_ustack_task_size(struct pt_regs *regs)
6612 {
6613         unsigned long addr = perf_user_stack_pointer(regs);
6614
6615         if (!addr || addr >= TASK_SIZE)
6616                 return 0;
6617
6618         return TASK_SIZE - addr;
6619 }
6620
6621 static u16
6622 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6623                         struct pt_regs *regs)
6624 {
6625         u64 task_size;
6626
6627         /* No regs, no stack pointer, no dump. */
6628         if (!regs)
6629                 return 0;
6630
6631         /*
6632          * Check if we fit in with the requested stack size into the:
6633          * - TASK_SIZE
6634          *   If we don't, we limit the size to the TASK_SIZE.
6635          *
6636          * - remaining sample size
6637          *   If we don't, we customize the stack size to
6638          *   fit in to the remaining sample size.
6639          */
6640
6641         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6642         stack_size = min(stack_size, (u16) task_size);
6643
6644         /* Current header size plus static size and dynamic size. */
6645         header_size += 2 * sizeof(u64);
6646
6647         /* Do we fit in with the current stack dump size? */
6648         if ((u16) (header_size + stack_size) < header_size) {
6649                 /*
6650                  * If we overflow the maximum size for the sample,
6651                  * we customize the stack dump size to fit in.
6652                  */
6653                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6654                 stack_size = round_up(stack_size, sizeof(u64));
6655         }
6656
6657         return stack_size;
6658 }
6659
6660 static void
6661 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6662                           struct pt_regs *regs)
6663 {
6664         /* Case of a kernel thread, nothing to dump */
6665         if (!regs) {
6666                 u64 size = 0;
6667                 perf_output_put(handle, size);
6668         } else {
6669                 unsigned long sp;
6670                 unsigned int rem;
6671                 u64 dyn_size;
6672                 mm_segment_t fs;
6673
6674                 /*
6675                  * We dump:
6676                  * static size
6677                  *   - the size requested by user or the best one we can fit
6678                  *     in to the sample max size
6679                  * data
6680                  *   - user stack dump data
6681                  * dynamic size
6682                  *   - the actual dumped size
6683                  */
6684
6685                 /* Static size. */
6686                 perf_output_put(handle, dump_size);
6687
6688                 /* Data. */
6689                 sp = perf_user_stack_pointer(regs);
6690                 fs = force_uaccess_begin();
6691                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6692                 force_uaccess_end(fs);
6693                 dyn_size = dump_size - rem;
6694
6695                 perf_output_skip(handle, rem);
6696
6697                 /* Dynamic size. */
6698                 perf_output_put(handle, dyn_size);
6699         }
6700 }
6701
6702 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6703                                           struct perf_sample_data *data,
6704                                           size_t size)
6705 {
6706         struct perf_event *sampler = event->aux_event;
6707         struct perf_buffer *rb;
6708
6709         data->aux_size = 0;
6710
6711         if (!sampler)
6712                 goto out;
6713
6714         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6715                 goto out;
6716
6717         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6718                 goto out;
6719
6720         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6721         if (!rb)
6722                 goto out;
6723
6724         /*
6725          * If this is an NMI hit inside sampling code, don't take
6726          * the sample. See also perf_aux_sample_output().
6727          */
6728         if (READ_ONCE(rb->aux_in_sampling)) {
6729                 data->aux_size = 0;
6730         } else {
6731                 size = min_t(size_t, size, perf_aux_size(rb));
6732                 data->aux_size = ALIGN(size, sizeof(u64));
6733         }
6734         ring_buffer_put(rb);
6735
6736 out:
6737         return data->aux_size;
6738 }
6739
6740 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6741                                  struct perf_event *event,
6742                                  struct perf_output_handle *handle,
6743                                  unsigned long size)
6744 {
6745         unsigned long flags;
6746         long ret;
6747
6748         /*
6749          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6750          * paths. If we start calling them in NMI context, they may race with
6751          * the IRQ ones, that is, for example, re-starting an event that's just
6752          * been stopped, which is why we're using a separate callback that
6753          * doesn't change the event state.
6754          *
6755          * IRQs need to be disabled to prevent IPIs from racing with us.
6756          */
6757         local_irq_save(flags);
6758         /*
6759          * Guard against NMI hits inside the critical section;
6760          * see also perf_prepare_sample_aux().
6761          */
6762         WRITE_ONCE(rb->aux_in_sampling, 1);
6763         barrier();
6764
6765         ret = event->pmu->snapshot_aux(event, handle, size);
6766
6767         barrier();
6768         WRITE_ONCE(rb->aux_in_sampling, 0);
6769         local_irq_restore(flags);
6770
6771         return ret;
6772 }
6773
6774 static void perf_aux_sample_output(struct perf_event *event,
6775                                    struct perf_output_handle *handle,
6776                                    struct perf_sample_data *data)
6777 {
6778         struct perf_event *sampler = event->aux_event;
6779         struct perf_buffer *rb;
6780         unsigned long pad;
6781         long size;
6782
6783         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6784                 return;
6785
6786         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6787         if (!rb)
6788                 return;
6789
6790         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6791
6792         /*
6793          * An error here means that perf_output_copy() failed (returned a
6794          * non-zero surplus that it didn't copy), which in its current
6795          * enlightened implementation is not possible. If that changes, we'd
6796          * like to know.
6797          */
6798         if (WARN_ON_ONCE(size < 0))
6799                 goto out_put;
6800
6801         /*
6802          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6803          * perf_prepare_sample_aux(), so should not be more than that.
6804          */
6805         pad = data->aux_size - size;
6806         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6807                 pad = 8;
6808
6809         if (pad) {
6810                 u64 zero = 0;
6811                 perf_output_copy(handle, &zero, pad);
6812         }
6813
6814 out_put:
6815         ring_buffer_put(rb);
6816 }
6817
6818 static void __perf_event_header__init_id(struct perf_event_header *header,
6819                                          struct perf_sample_data *data,
6820                                          struct perf_event *event)
6821 {
6822         u64 sample_type = event->attr.sample_type;
6823
6824         data->type = sample_type;
6825         header->size += event->id_header_size;
6826
6827         if (sample_type & PERF_SAMPLE_TID) {
6828                 /* namespace issues */
6829                 data->tid_entry.pid = perf_event_pid(event, current);
6830                 data->tid_entry.tid = perf_event_tid(event, current);
6831         }
6832
6833         if (sample_type & PERF_SAMPLE_TIME)
6834                 data->time = perf_event_clock(event);
6835
6836         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6837                 data->id = primary_event_id(event);
6838
6839         if (sample_type & PERF_SAMPLE_STREAM_ID)
6840                 data->stream_id = event->id;
6841
6842         if (sample_type & PERF_SAMPLE_CPU) {
6843                 data->cpu_entry.cpu      = raw_smp_processor_id();
6844                 data->cpu_entry.reserved = 0;
6845         }
6846 }
6847
6848 void perf_event_header__init_id(struct perf_event_header *header,
6849                                 struct perf_sample_data *data,
6850                                 struct perf_event *event)
6851 {
6852         if (event->attr.sample_id_all)
6853                 __perf_event_header__init_id(header, data, event);
6854 }
6855
6856 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6857                                            struct perf_sample_data *data)
6858 {
6859         u64 sample_type = data->type;
6860
6861         if (sample_type & PERF_SAMPLE_TID)
6862                 perf_output_put(handle, data->tid_entry);
6863
6864         if (sample_type & PERF_SAMPLE_TIME)
6865                 perf_output_put(handle, data->time);
6866
6867         if (sample_type & PERF_SAMPLE_ID)
6868                 perf_output_put(handle, data->id);
6869
6870         if (sample_type & PERF_SAMPLE_STREAM_ID)
6871                 perf_output_put(handle, data->stream_id);
6872
6873         if (sample_type & PERF_SAMPLE_CPU)
6874                 perf_output_put(handle, data->cpu_entry);
6875
6876         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6877                 perf_output_put(handle, data->id);
6878 }
6879
6880 void perf_event__output_id_sample(struct perf_event *event,
6881                                   struct perf_output_handle *handle,
6882                                   struct perf_sample_data *sample)
6883 {
6884         if (event->attr.sample_id_all)
6885                 __perf_event__output_id_sample(handle, sample);
6886 }
6887
6888 static void perf_output_read_one(struct perf_output_handle *handle,
6889                                  struct perf_event *event,
6890                                  u64 enabled, u64 running)
6891 {
6892         u64 read_format = event->attr.read_format;
6893         u64 values[4];
6894         int n = 0;
6895
6896         values[n++] = perf_event_count(event);
6897         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6898                 values[n++] = enabled +
6899                         atomic64_read(&event->child_total_time_enabled);
6900         }
6901         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6902                 values[n++] = running +
6903                         atomic64_read(&event->child_total_time_running);
6904         }
6905         if (read_format & PERF_FORMAT_ID)
6906                 values[n++] = primary_event_id(event);
6907
6908         __output_copy(handle, values, n * sizeof(u64));
6909 }
6910
6911 static void perf_output_read_group(struct perf_output_handle *handle,
6912                             struct perf_event *event,
6913                             u64 enabled, u64 running)
6914 {
6915         struct perf_event *leader = event->group_leader, *sub;
6916         u64 read_format = event->attr.read_format;
6917         u64 values[5];
6918         int n = 0;
6919
6920         values[n++] = 1 + leader->nr_siblings;
6921
6922         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6923                 values[n++] = enabled;
6924
6925         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6926                 values[n++] = running;
6927
6928         if ((leader != event) &&
6929             (leader->state == PERF_EVENT_STATE_ACTIVE))
6930                 leader->pmu->read(leader);
6931
6932         values[n++] = perf_event_count(leader);
6933         if (read_format & PERF_FORMAT_ID)
6934                 values[n++] = primary_event_id(leader);
6935
6936         __output_copy(handle, values, n * sizeof(u64));
6937
6938         for_each_sibling_event(sub, leader) {
6939                 n = 0;
6940
6941                 if ((sub != event) &&
6942                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6943                         sub->pmu->read(sub);
6944
6945                 values[n++] = perf_event_count(sub);
6946                 if (read_format & PERF_FORMAT_ID)
6947                         values[n++] = primary_event_id(sub);
6948
6949                 __output_copy(handle, values, n * sizeof(u64));
6950         }
6951 }
6952
6953 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6954                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6955
6956 /*
6957  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6958  *
6959  * The problem is that its both hard and excessively expensive to iterate the
6960  * child list, not to mention that its impossible to IPI the children running
6961  * on another CPU, from interrupt/NMI context.
6962  */
6963 static void perf_output_read(struct perf_output_handle *handle,
6964                              struct perf_event *event)
6965 {
6966         u64 enabled = 0, running = 0, now;
6967         u64 read_format = event->attr.read_format;
6968
6969         /*
6970          * compute total_time_enabled, total_time_running
6971          * based on snapshot values taken when the event
6972          * was last scheduled in.
6973          *
6974          * we cannot simply called update_context_time()
6975          * because of locking issue as we are called in
6976          * NMI context
6977          */
6978         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6979                 calc_timer_values(event, &now, &enabled, &running);
6980
6981         if (event->attr.read_format & PERF_FORMAT_GROUP)
6982                 perf_output_read_group(handle, event, enabled, running);
6983         else
6984                 perf_output_read_one(handle, event, enabled, running);
6985 }
6986
6987 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6988 {
6989         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6990 }
6991
6992 void perf_output_sample(struct perf_output_handle *handle,
6993                         struct perf_event_header *header,
6994                         struct perf_sample_data *data,
6995                         struct perf_event *event)
6996 {
6997         u64 sample_type = data->type;
6998
6999         perf_output_put(handle, *header);
7000
7001         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7002                 perf_output_put(handle, data->id);
7003
7004         if (sample_type & PERF_SAMPLE_IP)
7005                 perf_output_put(handle, data->ip);
7006
7007         if (sample_type & PERF_SAMPLE_TID)
7008                 perf_output_put(handle, data->tid_entry);
7009
7010         if (sample_type & PERF_SAMPLE_TIME)
7011                 perf_output_put(handle, data->time);
7012
7013         if (sample_type & PERF_SAMPLE_ADDR)
7014                 perf_output_put(handle, data->addr);
7015
7016         if (sample_type & PERF_SAMPLE_ID)
7017                 perf_output_put(handle, data->id);
7018
7019         if (sample_type & PERF_SAMPLE_STREAM_ID)
7020                 perf_output_put(handle, data->stream_id);
7021
7022         if (sample_type & PERF_SAMPLE_CPU)
7023                 perf_output_put(handle, data->cpu_entry);
7024
7025         if (sample_type & PERF_SAMPLE_PERIOD)
7026                 perf_output_put(handle, data->period);
7027
7028         if (sample_type & PERF_SAMPLE_READ)
7029                 perf_output_read(handle, event);
7030
7031         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7032                 int size = 1;
7033
7034                 size += data->callchain->nr;
7035                 size *= sizeof(u64);
7036                 __output_copy(handle, data->callchain, size);
7037         }
7038
7039         if (sample_type & PERF_SAMPLE_RAW) {
7040                 struct perf_raw_record *raw = data->raw;
7041
7042                 if (raw) {
7043                         struct perf_raw_frag *frag = &raw->frag;
7044
7045                         perf_output_put(handle, raw->size);
7046                         do {
7047                                 if (frag->copy) {
7048                                         __output_custom(handle, frag->copy,
7049                                                         frag->data, frag->size);
7050                                 } else {
7051                                         __output_copy(handle, frag->data,
7052                                                       frag->size);
7053                                 }
7054                                 if (perf_raw_frag_last(frag))
7055                                         break;
7056                                 frag = frag->next;
7057                         } while (1);
7058                         if (frag->pad)
7059                                 __output_skip(handle, NULL, frag->pad);
7060                 } else {
7061                         struct {
7062                                 u32     size;
7063                                 u32     data;
7064                         } raw = {
7065                                 .size = sizeof(u32),
7066                                 .data = 0,
7067                         };
7068                         perf_output_put(handle, raw);
7069                 }
7070         }
7071
7072         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7073                 if (data->br_stack) {
7074                         size_t size;
7075
7076                         size = data->br_stack->nr
7077                              * sizeof(struct perf_branch_entry);
7078
7079                         perf_output_put(handle, data->br_stack->nr);
7080                         if (perf_sample_save_hw_index(event))
7081                                 perf_output_put(handle, data->br_stack->hw_idx);
7082                         perf_output_copy(handle, data->br_stack->entries, size);
7083                 } else {
7084                         /*
7085                          * we always store at least the value of nr
7086                          */
7087                         u64 nr = 0;
7088                         perf_output_put(handle, nr);
7089                 }
7090         }
7091
7092         if (sample_type & PERF_SAMPLE_REGS_USER) {
7093                 u64 abi = data->regs_user.abi;
7094
7095                 /*
7096                  * If there are no regs to dump, notice it through
7097                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7098                  */
7099                 perf_output_put(handle, abi);
7100
7101                 if (abi) {
7102                         u64 mask = event->attr.sample_regs_user;
7103                         perf_output_sample_regs(handle,
7104                                                 data->regs_user.regs,
7105                                                 mask);
7106                 }
7107         }
7108
7109         if (sample_type & PERF_SAMPLE_STACK_USER) {
7110                 perf_output_sample_ustack(handle,
7111                                           data->stack_user_size,
7112                                           data->regs_user.regs);
7113         }
7114
7115         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7116                 perf_output_put(handle, data->weight.full);
7117
7118         if (sample_type & PERF_SAMPLE_DATA_SRC)
7119                 perf_output_put(handle, data->data_src.val);
7120
7121         if (sample_type & PERF_SAMPLE_TRANSACTION)
7122                 perf_output_put(handle, data->txn);
7123
7124         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7125                 u64 abi = data->regs_intr.abi;
7126                 /*
7127                  * If there are no regs to dump, notice it through
7128                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7129                  */
7130                 perf_output_put(handle, abi);
7131
7132                 if (abi) {
7133                         u64 mask = event->attr.sample_regs_intr;
7134
7135                         perf_output_sample_regs(handle,
7136                                                 data->regs_intr.regs,
7137                                                 mask);
7138                 }
7139         }
7140
7141         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7142                 perf_output_put(handle, data->phys_addr);
7143
7144         if (sample_type & PERF_SAMPLE_CGROUP)
7145                 perf_output_put(handle, data->cgroup);
7146
7147         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7148                 perf_output_put(handle, data->data_page_size);
7149
7150         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7151                 perf_output_put(handle, data->code_page_size);
7152
7153         if (sample_type & PERF_SAMPLE_AUX) {
7154                 perf_output_put(handle, data->aux_size);
7155
7156                 if (data->aux_size)
7157                         perf_aux_sample_output(event, handle, data);
7158         }
7159
7160         if (!event->attr.watermark) {
7161                 int wakeup_events = event->attr.wakeup_events;
7162
7163                 if (wakeup_events) {
7164                         struct perf_buffer *rb = handle->rb;
7165                         int events = local_inc_return(&rb->events);
7166
7167                         if (events >= wakeup_events) {
7168                                 local_sub(wakeup_events, &rb->events);
7169                                 local_inc(&rb->wakeup);
7170                         }
7171                 }
7172         }
7173 }
7174
7175 static u64 perf_virt_to_phys(u64 virt)
7176 {
7177         u64 phys_addr = 0;
7178
7179         if (!virt)
7180                 return 0;
7181
7182         if (virt >= TASK_SIZE) {
7183                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7184                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7185                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7186                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7187         } else {
7188                 /*
7189                  * Walking the pages tables for user address.
7190                  * Interrupts are disabled, so it prevents any tear down
7191                  * of the page tables.
7192                  * Try IRQ-safe get_user_page_fast_only first.
7193                  * If failed, leave phys_addr as 0.
7194                  */
7195                 if (current->mm != NULL) {
7196                         struct page *p;
7197
7198                         pagefault_disable();
7199                         if (get_user_page_fast_only(virt, 0, &p)) {
7200                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7201                                 put_page(p);
7202                         }
7203                         pagefault_enable();
7204                 }
7205         }
7206
7207         return phys_addr;
7208 }
7209
7210 /*
7211  * Return the pagetable size of a given virtual address.
7212  */
7213 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7214 {
7215         u64 size = 0;
7216
7217 #ifdef CONFIG_HAVE_FAST_GUP
7218         pgd_t *pgdp, pgd;
7219         p4d_t *p4dp, p4d;
7220         pud_t *pudp, pud;
7221         pmd_t *pmdp, pmd;
7222         pte_t *ptep, pte;
7223
7224         pgdp = pgd_offset(mm, addr);
7225         pgd = READ_ONCE(*pgdp);
7226         if (pgd_none(pgd))
7227                 return 0;
7228
7229         if (pgd_leaf(pgd))
7230                 return pgd_leaf_size(pgd);
7231
7232         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7233         p4d = READ_ONCE(*p4dp);
7234         if (!p4d_present(p4d))
7235                 return 0;
7236
7237         if (p4d_leaf(p4d))
7238                 return p4d_leaf_size(p4d);
7239
7240         pudp = pud_offset_lockless(p4dp, p4d, addr);
7241         pud = READ_ONCE(*pudp);
7242         if (!pud_present(pud))
7243                 return 0;
7244
7245         if (pud_leaf(pud))
7246                 return pud_leaf_size(pud);
7247
7248         pmdp = pmd_offset_lockless(pudp, pud, addr);
7249         pmd = READ_ONCE(*pmdp);
7250         if (!pmd_present(pmd))
7251                 return 0;
7252
7253         if (pmd_leaf(pmd))
7254                 return pmd_leaf_size(pmd);
7255
7256         ptep = pte_offset_map(&pmd, addr);
7257         pte = ptep_get_lockless(ptep);
7258         if (pte_present(pte))
7259                 size = pte_leaf_size(pte);
7260         pte_unmap(ptep);
7261 #endif /* CONFIG_HAVE_FAST_GUP */
7262
7263         return size;
7264 }
7265
7266 static u64 perf_get_page_size(unsigned long addr)
7267 {
7268         struct mm_struct *mm;
7269         unsigned long flags;
7270         u64 size;
7271
7272         if (!addr)
7273                 return 0;
7274
7275         /*
7276          * Software page-table walkers must disable IRQs,
7277          * which prevents any tear down of the page tables.
7278          */
7279         local_irq_save(flags);
7280
7281         mm = current->mm;
7282         if (!mm) {
7283                 /*
7284                  * For kernel threads and the like, use init_mm so that
7285                  * we can find kernel memory.
7286                  */
7287                 mm = &init_mm;
7288         }
7289
7290         size = perf_get_pgtable_size(mm, addr);
7291
7292         local_irq_restore(flags);
7293
7294         return size;
7295 }
7296
7297 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7298
7299 struct perf_callchain_entry *
7300 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7301 {
7302         bool kernel = !event->attr.exclude_callchain_kernel;
7303         bool user   = !event->attr.exclude_callchain_user;
7304         /* Disallow cross-task user callchains. */
7305         bool crosstask = event->ctx->task && event->ctx->task != current;
7306         const u32 max_stack = event->attr.sample_max_stack;
7307         struct perf_callchain_entry *callchain;
7308
7309         if (!kernel && !user)
7310                 return &__empty_callchain;
7311
7312         callchain = get_perf_callchain(regs, 0, kernel, user,
7313                                        max_stack, crosstask, true);
7314         return callchain ?: &__empty_callchain;
7315 }
7316
7317 void perf_prepare_sample(struct perf_event_header *header,
7318                          struct perf_sample_data *data,
7319                          struct perf_event *event,
7320                          struct pt_regs *regs)
7321 {
7322         u64 sample_type = event->attr.sample_type;
7323
7324         header->type = PERF_RECORD_SAMPLE;
7325         header->size = sizeof(*header) + event->header_size;
7326
7327         header->misc = 0;
7328         header->misc |= perf_misc_flags(regs);
7329
7330         __perf_event_header__init_id(header, data, event);
7331
7332         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7333                 data->ip = perf_instruction_pointer(regs);
7334
7335         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7336                 int size = 1;
7337
7338                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7339                         data->callchain = perf_callchain(event, regs);
7340
7341                 size += data->callchain->nr;
7342
7343                 header->size += size * sizeof(u64);
7344         }
7345
7346         if (sample_type & PERF_SAMPLE_RAW) {
7347                 struct perf_raw_record *raw = data->raw;
7348                 int size;
7349
7350                 if (raw) {
7351                         struct perf_raw_frag *frag = &raw->frag;
7352                         u32 sum = 0;
7353
7354                         do {
7355                                 sum += frag->size;
7356                                 if (perf_raw_frag_last(frag))
7357                                         break;
7358                                 frag = frag->next;
7359                         } while (1);
7360
7361                         size = round_up(sum + sizeof(u32), sizeof(u64));
7362                         raw->size = size - sizeof(u32);
7363                         frag->pad = raw->size - sum;
7364                 } else {
7365                         size = sizeof(u64);
7366                 }
7367
7368                 header->size += size;
7369         }
7370
7371         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7372                 int size = sizeof(u64); /* nr */
7373                 if (data->br_stack) {
7374                         if (perf_sample_save_hw_index(event))
7375                                 size += sizeof(u64);
7376
7377                         size += data->br_stack->nr
7378                               * sizeof(struct perf_branch_entry);
7379                 }
7380                 header->size += size;
7381         }
7382
7383         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7384                 perf_sample_regs_user(&data->regs_user, regs);
7385
7386         if (sample_type & PERF_SAMPLE_REGS_USER) {
7387                 /* regs dump ABI info */
7388                 int size = sizeof(u64);
7389
7390                 if (data->regs_user.regs) {
7391                         u64 mask = event->attr.sample_regs_user;
7392                         size += hweight64(mask) * sizeof(u64);
7393                 }
7394
7395                 header->size += size;
7396         }
7397
7398         if (sample_type & PERF_SAMPLE_STACK_USER) {
7399                 /*
7400                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7401                  * processed as the last one or have additional check added
7402                  * in case new sample type is added, because we could eat
7403                  * up the rest of the sample size.
7404                  */
7405                 u16 stack_size = event->attr.sample_stack_user;
7406                 u16 size = sizeof(u64);
7407
7408                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7409                                                      data->regs_user.regs);
7410
7411                 /*
7412                  * If there is something to dump, add space for the dump
7413                  * itself and for the field that tells the dynamic size,
7414                  * which is how many have been actually dumped.
7415                  */
7416                 if (stack_size)
7417                         size += sizeof(u64) + stack_size;
7418
7419                 data->stack_user_size = stack_size;
7420                 header->size += size;
7421         }
7422
7423         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7424                 /* regs dump ABI info */
7425                 int size = sizeof(u64);
7426
7427                 perf_sample_regs_intr(&data->regs_intr, regs);
7428
7429                 if (data->regs_intr.regs) {
7430                         u64 mask = event->attr.sample_regs_intr;
7431
7432                         size += hweight64(mask) * sizeof(u64);
7433                 }
7434
7435                 header->size += size;
7436         }
7437
7438         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7439                 data->phys_addr = perf_virt_to_phys(data->addr);
7440
7441 #ifdef CONFIG_CGROUP_PERF
7442         if (sample_type & PERF_SAMPLE_CGROUP) {
7443                 struct cgroup *cgrp;
7444
7445                 /* protected by RCU */
7446                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7447                 data->cgroup = cgroup_id(cgrp);
7448         }
7449 #endif
7450
7451         /*
7452          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7453          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7454          * but the value will not dump to the userspace.
7455          */
7456         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7457                 data->data_page_size = perf_get_page_size(data->addr);
7458
7459         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7460                 data->code_page_size = perf_get_page_size(data->ip);
7461
7462         if (sample_type & PERF_SAMPLE_AUX) {
7463                 u64 size;
7464
7465                 header->size += sizeof(u64); /* size */
7466
7467                 /*
7468                  * Given the 16bit nature of header::size, an AUX sample can
7469                  * easily overflow it, what with all the preceding sample bits.
7470                  * Make sure this doesn't happen by using up to U16_MAX bytes
7471                  * per sample in total (rounded down to 8 byte boundary).
7472                  */
7473                 size = min_t(size_t, U16_MAX - header->size,
7474                              event->attr.aux_sample_size);
7475                 size = rounddown(size, 8);
7476                 size = perf_prepare_sample_aux(event, data, size);
7477
7478                 WARN_ON_ONCE(size + header->size > U16_MAX);
7479                 header->size += size;
7480         }
7481         /*
7482          * If you're adding more sample types here, you likely need to do
7483          * something about the overflowing header::size, like repurpose the
7484          * lowest 3 bits of size, which should be always zero at the moment.
7485          * This raises a more important question, do we really need 512k sized
7486          * samples and why, so good argumentation is in order for whatever you
7487          * do here next.
7488          */
7489         WARN_ON_ONCE(header->size & 7);
7490 }
7491
7492 static __always_inline int
7493 __perf_event_output(struct perf_event *event,
7494                     struct perf_sample_data *data,
7495                     struct pt_regs *regs,
7496                     int (*output_begin)(struct perf_output_handle *,
7497                                         struct perf_sample_data *,
7498                                         struct perf_event *,
7499                                         unsigned int))
7500 {
7501         struct perf_output_handle handle;
7502         struct perf_event_header header;
7503         int err;
7504
7505         /* protect the callchain buffers */
7506         rcu_read_lock();
7507
7508         perf_prepare_sample(&header, data, event, regs);
7509
7510         err = output_begin(&handle, data, event, header.size);
7511         if (err)
7512                 goto exit;
7513
7514         perf_output_sample(&handle, &header, data, event);
7515
7516         perf_output_end(&handle);
7517
7518 exit:
7519         rcu_read_unlock();
7520         return err;
7521 }
7522
7523 void
7524 perf_event_output_forward(struct perf_event *event,
7525                          struct perf_sample_data *data,
7526                          struct pt_regs *regs)
7527 {
7528         __perf_event_output(event, data, regs, perf_output_begin_forward);
7529 }
7530
7531 void
7532 perf_event_output_backward(struct perf_event *event,
7533                            struct perf_sample_data *data,
7534                            struct pt_regs *regs)
7535 {
7536         __perf_event_output(event, data, regs, perf_output_begin_backward);
7537 }
7538
7539 int
7540 perf_event_output(struct perf_event *event,
7541                   struct perf_sample_data *data,
7542                   struct pt_regs *regs)
7543 {
7544         return __perf_event_output(event, data, regs, perf_output_begin);
7545 }
7546
7547 /*
7548  * read event_id
7549  */
7550
7551 struct perf_read_event {
7552         struct perf_event_header        header;
7553
7554         u32                             pid;
7555         u32                             tid;
7556 };
7557
7558 static void
7559 perf_event_read_event(struct perf_event *event,
7560                         struct task_struct *task)
7561 {
7562         struct perf_output_handle handle;
7563         struct perf_sample_data sample;
7564         struct perf_read_event read_event = {
7565                 .header = {
7566                         .type = PERF_RECORD_READ,
7567                         .misc = 0,
7568                         .size = sizeof(read_event) + event->read_size,
7569                 },
7570                 .pid = perf_event_pid(event, task),
7571                 .tid = perf_event_tid(event, task),
7572         };
7573         int ret;
7574
7575         perf_event_header__init_id(&read_event.header, &sample, event);
7576         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7577         if (ret)
7578                 return;
7579
7580         perf_output_put(&handle, read_event);
7581         perf_output_read(&handle, event);
7582         perf_event__output_id_sample(event, &handle, &sample);
7583
7584         perf_output_end(&handle);
7585 }
7586
7587 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7588
7589 static void
7590 perf_iterate_ctx(struct perf_event_context *ctx,
7591                    perf_iterate_f output,
7592                    void *data, bool all)
7593 {
7594         struct perf_event *event;
7595
7596         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7597                 if (!all) {
7598                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7599                                 continue;
7600                         if (!event_filter_match(event))
7601                                 continue;
7602                 }
7603
7604                 output(event, data);
7605         }
7606 }
7607
7608 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7609 {
7610         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7611         struct perf_event *event;
7612
7613         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7614                 /*
7615                  * Skip events that are not fully formed yet; ensure that
7616                  * if we observe event->ctx, both event and ctx will be
7617                  * complete enough. See perf_install_in_context().
7618                  */
7619                 if (!smp_load_acquire(&event->ctx))
7620                         continue;
7621
7622                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7623                         continue;
7624                 if (!event_filter_match(event))
7625                         continue;
7626                 output(event, data);
7627         }
7628 }
7629
7630 /*
7631  * Iterate all events that need to receive side-band events.
7632  *
7633  * For new callers; ensure that account_pmu_sb_event() includes
7634  * your event, otherwise it might not get delivered.
7635  */
7636 static void
7637 perf_iterate_sb(perf_iterate_f output, void *data,
7638                struct perf_event_context *task_ctx)
7639 {
7640         struct perf_event_context *ctx;
7641         int ctxn;
7642
7643         rcu_read_lock();
7644         preempt_disable();
7645
7646         /*
7647          * If we have task_ctx != NULL we only notify the task context itself.
7648          * The task_ctx is set only for EXIT events before releasing task
7649          * context.
7650          */
7651         if (task_ctx) {
7652                 perf_iterate_ctx(task_ctx, output, data, false);
7653                 goto done;
7654         }
7655
7656         perf_iterate_sb_cpu(output, data);
7657
7658         for_each_task_context_nr(ctxn) {
7659                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7660                 if (ctx)
7661                         perf_iterate_ctx(ctx, output, data, false);
7662         }
7663 done:
7664         preempt_enable();
7665         rcu_read_unlock();
7666 }
7667
7668 /*
7669  * Clear all file-based filters at exec, they'll have to be
7670  * re-instated when/if these objects are mmapped again.
7671  */
7672 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7673 {
7674         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7675         struct perf_addr_filter *filter;
7676         unsigned int restart = 0, count = 0;
7677         unsigned long flags;
7678
7679         if (!has_addr_filter(event))
7680                 return;
7681
7682         raw_spin_lock_irqsave(&ifh->lock, flags);
7683         list_for_each_entry(filter, &ifh->list, entry) {
7684                 if (filter->path.dentry) {
7685                         event->addr_filter_ranges[count].start = 0;
7686                         event->addr_filter_ranges[count].size = 0;
7687                         restart++;
7688                 }
7689
7690                 count++;
7691         }
7692
7693         if (restart)
7694                 event->addr_filters_gen++;
7695         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7696
7697         if (restart)
7698                 perf_event_stop(event, 1);
7699 }
7700
7701 void perf_event_exec(void)
7702 {
7703         struct perf_event_context *ctx;
7704         int ctxn;
7705
7706         for_each_task_context_nr(ctxn) {
7707                 perf_event_enable_on_exec(ctxn);
7708                 perf_event_remove_on_exec(ctxn);
7709
7710                 rcu_read_lock();
7711                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7712                 if (ctx) {
7713                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7714                                          NULL, true);
7715                 }
7716                 rcu_read_unlock();
7717         }
7718 }
7719
7720 struct remote_output {
7721         struct perf_buffer      *rb;
7722         int                     err;
7723 };
7724
7725 static void __perf_event_output_stop(struct perf_event *event, void *data)
7726 {
7727         struct perf_event *parent = event->parent;
7728         struct remote_output *ro = data;
7729         struct perf_buffer *rb = ro->rb;
7730         struct stop_event_data sd = {
7731                 .event  = event,
7732         };
7733
7734         if (!has_aux(event))
7735                 return;
7736
7737         if (!parent)
7738                 parent = event;
7739
7740         /*
7741          * In case of inheritance, it will be the parent that links to the
7742          * ring-buffer, but it will be the child that's actually using it.
7743          *
7744          * We are using event::rb to determine if the event should be stopped,
7745          * however this may race with ring_buffer_attach() (through set_output),
7746          * which will make us skip the event that actually needs to be stopped.
7747          * So ring_buffer_attach() has to stop an aux event before re-assigning
7748          * its rb pointer.
7749          */
7750         if (rcu_dereference(parent->rb) == rb)
7751                 ro->err = __perf_event_stop(&sd);
7752 }
7753
7754 static int __perf_pmu_output_stop(void *info)
7755 {
7756         struct perf_event *event = info;
7757         struct pmu *pmu = event->ctx->pmu;
7758         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7759         struct remote_output ro = {
7760                 .rb     = event->rb,
7761         };
7762
7763         rcu_read_lock();
7764         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7765         if (cpuctx->task_ctx)
7766                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7767                                    &ro, false);
7768         rcu_read_unlock();
7769
7770         return ro.err;
7771 }
7772
7773 static void perf_pmu_output_stop(struct perf_event *event)
7774 {
7775         struct perf_event *iter;
7776         int err, cpu;
7777
7778 restart:
7779         rcu_read_lock();
7780         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7781                 /*
7782                  * For per-CPU events, we need to make sure that neither they
7783                  * nor their children are running; for cpu==-1 events it's
7784                  * sufficient to stop the event itself if it's active, since
7785                  * it can't have children.
7786                  */
7787                 cpu = iter->cpu;
7788                 if (cpu == -1)
7789                         cpu = READ_ONCE(iter->oncpu);
7790
7791                 if (cpu == -1)
7792                         continue;
7793
7794                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7795                 if (err == -EAGAIN) {
7796                         rcu_read_unlock();
7797                         goto restart;
7798                 }
7799         }
7800         rcu_read_unlock();
7801 }
7802
7803 /*
7804  * task tracking -- fork/exit
7805  *
7806  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7807  */
7808
7809 struct perf_task_event {
7810         struct task_struct              *task;
7811         struct perf_event_context       *task_ctx;
7812
7813         struct {
7814                 struct perf_event_header        header;
7815
7816                 u32                             pid;
7817                 u32                             ppid;
7818                 u32                             tid;
7819                 u32                             ptid;
7820                 u64                             time;
7821         } event_id;
7822 };
7823
7824 static int perf_event_task_match(struct perf_event *event)
7825 {
7826         return event->attr.comm  || event->attr.mmap ||
7827                event->attr.mmap2 || event->attr.mmap_data ||
7828                event->attr.task;
7829 }
7830
7831 static void perf_event_task_output(struct perf_event *event,
7832                                    void *data)
7833 {
7834         struct perf_task_event *task_event = data;
7835         struct perf_output_handle handle;
7836         struct perf_sample_data sample;
7837         struct task_struct *task = task_event->task;
7838         int ret, size = task_event->event_id.header.size;
7839
7840         if (!perf_event_task_match(event))
7841                 return;
7842
7843         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7844
7845         ret = perf_output_begin(&handle, &sample, event,
7846                                 task_event->event_id.header.size);
7847         if (ret)
7848                 goto out;
7849
7850         task_event->event_id.pid = perf_event_pid(event, task);
7851         task_event->event_id.tid = perf_event_tid(event, task);
7852
7853         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7854                 task_event->event_id.ppid = perf_event_pid(event,
7855                                                         task->real_parent);
7856                 task_event->event_id.ptid = perf_event_pid(event,
7857                                                         task->real_parent);
7858         } else {  /* PERF_RECORD_FORK */
7859                 task_event->event_id.ppid = perf_event_pid(event, current);
7860                 task_event->event_id.ptid = perf_event_tid(event, current);
7861         }
7862
7863         task_event->event_id.time = perf_event_clock(event);
7864
7865         perf_output_put(&handle, task_event->event_id);
7866
7867         perf_event__output_id_sample(event, &handle, &sample);
7868
7869         perf_output_end(&handle);
7870 out:
7871         task_event->event_id.header.size = size;
7872 }
7873
7874 static void perf_event_task(struct task_struct *task,
7875                               struct perf_event_context *task_ctx,
7876                               int new)
7877 {
7878         struct perf_task_event task_event;
7879
7880         if (!atomic_read(&nr_comm_events) &&
7881             !atomic_read(&nr_mmap_events) &&
7882             !atomic_read(&nr_task_events))
7883                 return;
7884
7885         task_event = (struct perf_task_event){
7886                 .task     = task,
7887                 .task_ctx = task_ctx,
7888                 .event_id    = {
7889                         .header = {
7890                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7891                                 .misc = 0,
7892                                 .size = sizeof(task_event.event_id),
7893                         },
7894                         /* .pid  */
7895                         /* .ppid */
7896                         /* .tid  */
7897                         /* .ptid */
7898                         /* .time */
7899                 },
7900         };
7901
7902         perf_iterate_sb(perf_event_task_output,
7903                        &task_event,
7904                        task_ctx);
7905 }
7906
7907 void perf_event_fork(struct task_struct *task)
7908 {
7909         perf_event_task(task, NULL, 1);
7910         perf_event_namespaces(task);
7911 }
7912
7913 /*
7914  * comm tracking
7915  */
7916
7917 struct perf_comm_event {
7918         struct task_struct      *task;
7919         char                    *comm;
7920         int                     comm_size;
7921
7922         struct {
7923                 struct perf_event_header        header;
7924
7925                 u32                             pid;
7926                 u32                             tid;
7927         } event_id;
7928 };
7929
7930 static int perf_event_comm_match(struct perf_event *event)
7931 {
7932         return event->attr.comm;
7933 }
7934
7935 static void perf_event_comm_output(struct perf_event *event,
7936                                    void *data)
7937 {
7938         struct perf_comm_event *comm_event = data;
7939         struct perf_output_handle handle;
7940         struct perf_sample_data sample;
7941         int size = comm_event->event_id.header.size;
7942         int ret;
7943
7944         if (!perf_event_comm_match(event))
7945                 return;
7946
7947         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7948         ret = perf_output_begin(&handle, &sample, event,
7949                                 comm_event->event_id.header.size);
7950
7951         if (ret)
7952                 goto out;
7953
7954         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7955         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7956
7957         perf_output_put(&handle, comm_event->event_id);
7958         __output_copy(&handle, comm_event->comm,
7959                                    comm_event->comm_size);
7960
7961         perf_event__output_id_sample(event, &handle, &sample);
7962
7963         perf_output_end(&handle);
7964 out:
7965         comm_event->event_id.header.size = size;
7966 }
7967
7968 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7969 {
7970         char comm[TASK_COMM_LEN];
7971         unsigned int size;
7972
7973         memset(comm, 0, sizeof(comm));
7974         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7975         size = ALIGN(strlen(comm)+1, sizeof(u64));
7976
7977         comm_event->comm = comm;
7978         comm_event->comm_size = size;
7979
7980         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7981
7982         perf_iterate_sb(perf_event_comm_output,
7983                        comm_event,
7984                        NULL);
7985 }
7986
7987 void perf_event_comm(struct task_struct *task, bool exec)
7988 {
7989         struct perf_comm_event comm_event;
7990
7991         if (!atomic_read(&nr_comm_events))
7992                 return;
7993
7994         comm_event = (struct perf_comm_event){
7995                 .task   = task,
7996                 /* .comm      */
7997                 /* .comm_size */
7998                 .event_id  = {
7999                         .header = {
8000                                 .type = PERF_RECORD_COMM,
8001                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8002                                 /* .size */
8003                         },
8004                         /* .pid */
8005                         /* .tid */
8006                 },
8007         };
8008
8009         perf_event_comm_event(&comm_event);
8010 }
8011
8012 /*
8013  * namespaces tracking
8014  */
8015
8016 struct perf_namespaces_event {
8017         struct task_struct              *task;
8018
8019         struct {
8020                 struct perf_event_header        header;
8021
8022                 u32                             pid;
8023                 u32                             tid;
8024                 u64                             nr_namespaces;
8025                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8026         } event_id;
8027 };
8028
8029 static int perf_event_namespaces_match(struct perf_event *event)
8030 {
8031         return event->attr.namespaces;
8032 }
8033
8034 static void perf_event_namespaces_output(struct perf_event *event,
8035                                          void *data)
8036 {
8037         struct perf_namespaces_event *namespaces_event = data;
8038         struct perf_output_handle handle;
8039         struct perf_sample_data sample;
8040         u16 header_size = namespaces_event->event_id.header.size;
8041         int ret;
8042
8043         if (!perf_event_namespaces_match(event))
8044                 return;
8045
8046         perf_event_header__init_id(&namespaces_event->event_id.header,
8047                                    &sample, event);
8048         ret = perf_output_begin(&handle, &sample, event,
8049                                 namespaces_event->event_id.header.size);
8050         if (ret)
8051                 goto out;
8052
8053         namespaces_event->event_id.pid = perf_event_pid(event,
8054                                                         namespaces_event->task);
8055         namespaces_event->event_id.tid = perf_event_tid(event,
8056                                                         namespaces_event->task);
8057
8058         perf_output_put(&handle, namespaces_event->event_id);
8059
8060         perf_event__output_id_sample(event, &handle, &sample);
8061
8062         perf_output_end(&handle);
8063 out:
8064         namespaces_event->event_id.header.size = header_size;
8065 }
8066
8067 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8068                                    struct task_struct *task,
8069                                    const struct proc_ns_operations *ns_ops)
8070 {
8071         struct path ns_path;
8072         struct inode *ns_inode;
8073         int error;
8074
8075         error = ns_get_path(&ns_path, task, ns_ops);
8076         if (!error) {
8077                 ns_inode = ns_path.dentry->d_inode;
8078                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8079                 ns_link_info->ino = ns_inode->i_ino;
8080                 path_put(&ns_path);
8081         }
8082 }
8083
8084 void perf_event_namespaces(struct task_struct *task)
8085 {
8086         struct perf_namespaces_event namespaces_event;
8087         struct perf_ns_link_info *ns_link_info;
8088
8089         if (!atomic_read(&nr_namespaces_events))
8090                 return;
8091
8092         namespaces_event = (struct perf_namespaces_event){
8093                 .task   = task,
8094                 .event_id  = {
8095                         .header = {
8096                                 .type = PERF_RECORD_NAMESPACES,
8097                                 .misc = 0,
8098                                 .size = sizeof(namespaces_event.event_id),
8099                         },
8100                         /* .pid */
8101                         /* .tid */
8102                         .nr_namespaces = NR_NAMESPACES,
8103                         /* .link_info[NR_NAMESPACES] */
8104                 },
8105         };
8106
8107         ns_link_info = namespaces_event.event_id.link_info;
8108
8109         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8110                                task, &mntns_operations);
8111
8112 #ifdef CONFIG_USER_NS
8113         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8114                                task, &userns_operations);
8115 #endif
8116 #ifdef CONFIG_NET_NS
8117         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8118                                task, &netns_operations);
8119 #endif
8120 #ifdef CONFIG_UTS_NS
8121         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8122                                task, &utsns_operations);
8123 #endif
8124 #ifdef CONFIG_IPC_NS
8125         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8126                                task, &ipcns_operations);
8127 #endif
8128 #ifdef CONFIG_PID_NS
8129         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8130                                task, &pidns_operations);
8131 #endif
8132 #ifdef CONFIG_CGROUPS
8133         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8134                                task, &cgroupns_operations);
8135 #endif
8136
8137         perf_iterate_sb(perf_event_namespaces_output,
8138                         &namespaces_event,
8139                         NULL);
8140 }
8141
8142 /*
8143  * cgroup tracking
8144  */
8145 #ifdef CONFIG_CGROUP_PERF
8146
8147 struct perf_cgroup_event {
8148         char                            *path;
8149         int                             path_size;
8150         struct {
8151                 struct perf_event_header        header;
8152                 u64                             id;
8153                 char                            path[];
8154         } event_id;
8155 };
8156
8157 static int perf_event_cgroup_match(struct perf_event *event)
8158 {
8159         return event->attr.cgroup;
8160 }
8161
8162 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8163 {
8164         struct perf_cgroup_event *cgroup_event = data;
8165         struct perf_output_handle handle;
8166         struct perf_sample_data sample;
8167         u16 header_size = cgroup_event->event_id.header.size;
8168         int ret;
8169
8170         if (!perf_event_cgroup_match(event))
8171                 return;
8172
8173         perf_event_header__init_id(&cgroup_event->event_id.header,
8174                                    &sample, event);
8175         ret = perf_output_begin(&handle, &sample, event,
8176                                 cgroup_event->event_id.header.size);
8177         if (ret)
8178                 goto out;
8179
8180         perf_output_put(&handle, cgroup_event->event_id);
8181         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8182
8183         perf_event__output_id_sample(event, &handle, &sample);
8184
8185         perf_output_end(&handle);
8186 out:
8187         cgroup_event->event_id.header.size = header_size;
8188 }
8189
8190 static void perf_event_cgroup(struct cgroup *cgrp)
8191 {
8192         struct perf_cgroup_event cgroup_event;
8193         char path_enomem[16] = "//enomem";
8194         char *pathname;
8195         size_t size;
8196
8197         if (!atomic_read(&nr_cgroup_events))
8198                 return;
8199
8200         cgroup_event = (struct perf_cgroup_event){
8201                 .event_id  = {
8202                         .header = {
8203                                 .type = PERF_RECORD_CGROUP,
8204                                 .misc = 0,
8205                                 .size = sizeof(cgroup_event.event_id),
8206                         },
8207                         .id = cgroup_id(cgrp),
8208                 },
8209         };
8210
8211         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8212         if (pathname == NULL) {
8213                 cgroup_event.path = path_enomem;
8214         } else {
8215                 /* just to be sure to have enough space for alignment */
8216                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8217                 cgroup_event.path = pathname;
8218         }
8219
8220         /*
8221          * Since our buffer works in 8 byte units we need to align our string
8222          * size to a multiple of 8. However, we must guarantee the tail end is
8223          * zero'd out to avoid leaking random bits to userspace.
8224          */
8225         size = strlen(cgroup_event.path) + 1;
8226         while (!IS_ALIGNED(size, sizeof(u64)))
8227                 cgroup_event.path[size++] = '\0';
8228
8229         cgroup_event.event_id.header.size += size;
8230         cgroup_event.path_size = size;
8231
8232         perf_iterate_sb(perf_event_cgroup_output,
8233                         &cgroup_event,
8234                         NULL);
8235
8236         kfree(pathname);
8237 }
8238
8239 #endif
8240
8241 /*
8242  * mmap tracking
8243  */
8244
8245 struct perf_mmap_event {
8246         struct vm_area_struct   *vma;
8247
8248         const char              *file_name;
8249         int                     file_size;
8250         int                     maj, min;
8251         u64                     ino;
8252         u64                     ino_generation;
8253         u32                     prot, flags;
8254         u8                      build_id[BUILD_ID_SIZE_MAX];
8255         u32                     build_id_size;
8256
8257         struct {
8258                 struct perf_event_header        header;
8259
8260                 u32                             pid;
8261                 u32                             tid;
8262                 u64                             start;
8263                 u64                             len;
8264                 u64                             pgoff;
8265         } event_id;
8266 };
8267
8268 static int perf_event_mmap_match(struct perf_event *event,
8269                                  void *data)
8270 {
8271         struct perf_mmap_event *mmap_event = data;
8272         struct vm_area_struct *vma = mmap_event->vma;
8273         int executable = vma->vm_flags & VM_EXEC;
8274
8275         return (!executable && event->attr.mmap_data) ||
8276                (executable && (event->attr.mmap || event->attr.mmap2));
8277 }
8278
8279 static void perf_event_mmap_output(struct perf_event *event,
8280                                    void *data)
8281 {
8282         struct perf_mmap_event *mmap_event = data;
8283         struct perf_output_handle handle;
8284         struct perf_sample_data sample;
8285         int size = mmap_event->event_id.header.size;
8286         u32 type = mmap_event->event_id.header.type;
8287         bool use_build_id;
8288         int ret;
8289
8290         if (!perf_event_mmap_match(event, data))
8291                 return;
8292
8293         if (event->attr.mmap2) {
8294                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8295                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8296                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8297                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8298                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8299                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8300                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8301         }
8302
8303         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8304         ret = perf_output_begin(&handle, &sample, event,
8305                                 mmap_event->event_id.header.size);
8306         if (ret)
8307                 goto out;
8308
8309         mmap_event->event_id.pid = perf_event_pid(event, current);
8310         mmap_event->event_id.tid = perf_event_tid(event, current);
8311
8312         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8313
8314         if (event->attr.mmap2 && use_build_id)
8315                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8316
8317         perf_output_put(&handle, mmap_event->event_id);
8318
8319         if (event->attr.mmap2) {
8320                 if (use_build_id) {
8321                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8322
8323                         __output_copy(&handle, size, 4);
8324                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8325                 } else {
8326                         perf_output_put(&handle, mmap_event->maj);
8327                         perf_output_put(&handle, mmap_event->min);
8328                         perf_output_put(&handle, mmap_event->ino);
8329                         perf_output_put(&handle, mmap_event->ino_generation);
8330                 }
8331                 perf_output_put(&handle, mmap_event->prot);
8332                 perf_output_put(&handle, mmap_event->flags);
8333         }
8334
8335         __output_copy(&handle, mmap_event->file_name,
8336                                    mmap_event->file_size);
8337
8338         perf_event__output_id_sample(event, &handle, &sample);
8339
8340         perf_output_end(&handle);
8341 out:
8342         mmap_event->event_id.header.size = size;
8343         mmap_event->event_id.header.type = type;
8344 }
8345
8346 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8347 {
8348         struct vm_area_struct *vma = mmap_event->vma;
8349         struct file *file = vma->vm_file;
8350         int maj = 0, min = 0;
8351         u64 ino = 0, gen = 0;
8352         u32 prot = 0, flags = 0;
8353         unsigned int size;
8354         char tmp[16];
8355         char *buf = NULL;
8356         char *name;
8357
8358         if (vma->vm_flags & VM_READ)
8359                 prot |= PROT_READ;
8360         if (vma->vm_flags & VM_WRITE)
8361                 prot |= PROT_WRITE;
8362         if (vma->vm_flags & VM_EXEC)
8363                 prot |= PROT_EXEC;
8364
8365         if (vma->vm_flags & VM_MAYSHARE)
8366                 flags = MAP_SHARED;
8367         else
8368                 flags = MAP_PRIVATE;
8369
8370         if (vma->vm_flags & VM_LOCKED)
8371                 flags |= MAP_LOCKED;
8372         if (is_vm_hugetlb_page(vma))
8373                 flags |= MAP_HUGETLB;
8374
8375         if (file) {
8376                 struct inode *inode;
8377                 dev_t dev;
8378
8379                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8380                 if (!buf) {
8381                         name = "//enomem";
8382                         goto cpy_name;
8383                 }
8384                 /*
8385                  * d_path() works from the end of the rb backwards, so we
8386                  * need to add enough zero bytes after the string to handle
8387                  * the 64bit alignment we do later.
8388                  */
8389                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8390                 if (IS_ERR(name)) {
8391                         name = "//toolong";
8392                         goto cpy_name;
8393                 }
8394                 inode = file_inode(vma->vm_file);
8395                 dev = inode->i_sb->s_dev;
8396                 ino = inode->i_ino;
8397                 gen = inode->i_generation;
8398                 maj = MAJOR(dev);
8399                 min = MINOR(dev);
8400
8401                 goto got_name;
8402         } else {
8403                 if (vma->vm_ops && vma->vm_ops->name) {
8404                         name = (char *) vma->vm_ops->name(vma);
8405                         if (name)
8406                                 goto cpy_name;
8407                 }
8408
8409                 name = (char *)arch_vma_name(vma);
8410                 if (name)
8411                         goto cpy_name;
8412
8413                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8414                                 vma->vm_end >= vma->vm_mm->brk) {
8415                         name = "[heap]";
8416                         goto cpy_name;
8417                 }
8418                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8419                                 vma->vm_end >= vma->vm_mm->start_stack) {
8420                         name = "[stack]";
8421                         goto cpy_name;
8422                 }
8423
8424                 name = "//anon";
8425                 goto cpy_name;
8426         }
8427
8428 cpy_name:
8429         strlcpy(tmp, name, sizeof(tmp));
8430         name = tmp;
8431 got_name:
8432         /*
8433          * Since our buffer works in 8 byte units we need to align our string
8434          * size to a multiple of 8. However, we must guarantee the tail end is
8435          * zero'd out to avoid leaking random bits to userspace.
8436          */
8437         size = strlen(name)+1;
8438         while (!IS_ALIGNED(size, sizeof(u64)))
8439                 name[size++] = '\0';
8440
8441         mmap_event->file_name = name;
8442         mmap_event->file_size = size;
8443         mmap_event->maj = maj;
8444         mmap_event->min = min;
8445         mmap_event->ino = ino;
8446         mmap_event->ino_generation = gen;
8447         mmap_event->prot = prot;
8448         mmap_event->flags = flags;
8449
8450         if (!(vma->vm_flags & VM_EXEC))
8451                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8452
8453         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8454
8455         if (atomic_read(&nr_build_id_events))
8456                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8457
8458         perf_iterate_sb(perf_event_mmap_output,
8459                        mmap_event,
8460                        NULL);
8461
8462         kfree(buf);
8463 }
8464
8465 /*
8466  * Check whether inode and address range match filter criteria.
8467  */
8468 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8469                                      struct file *file, unsigned long offset,
8470                                      unsigned long size)
8471 {
8472         /* d_inode(NULL) won't be equal to any mapped user-space file */
8473         if (!filter->path.dentry)
8474                 return false;
8475
8476         if (d_inode(filter->path.dentry) != file_inode(file))
8477                 return false;
8478
8479         if (filter->offset > offset + size)
8480                 return false;
8481
8482         if (filter->offset + filter->size < offset)
8483                 return false;
8484
8485         return true;
8486 }
8487
8488 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8489                                         struct vm_area_struct *vma,
8490                                         struct perf_addr_filter_range *fr)
8491 {
8492         unsigned long vma_size = vma->vm_end - vma->vm_start;
8493         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8494         struct file *file = vma->vm_file;
8495
8496         if (!perf_addr_filter_match(filter, file, off, vma_size))
8497                 return false;
8498
8499         if (filter->offset < off) {
8500                 fr->start = vma->vm_start;
8501                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8502         } else {
8503                 fr->start = vma->vm_start + filter->offset - off;
8504                 fr->size = min(vma->vm_end - fr->start, filter->size);
8505         }
8506
8507         return true;
8508 }
8509
8510 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8511 {
8512         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8513         struct vm_area_struct *vma = data;
8514         struct perf_addr_filter *filter;
8515         unsigned int restart = 0, count = 0;
8516         unsigned long flags;
8517
8518         if (!has_addr_filter(event))
8519                 return;
8520
8521         if (!vma->vm_file)
8522                 return;
8523
8524         raw_spin_lock_irqsave(&ifh->lock, flags);
8525         list_for_each_entry(filter, &ifh->list, entry) {
8526                 if (perf_addr_filter_vma_adjust(filter, vma,
8527                                                 &event->addr_filter_ranges[count]))
8528                         restart++;
8529
8530                 count++;
8531         }
8532
8533         if (restart)
8534                 event->addr_filters_gen++;
8535         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8536
8537         if (restart)
8538                 perf_event_stop(event, 1);
8539 }
8540
8541 /*
8542  * Adjust all task's events' filters to the new vma
8543  */
8544 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8545 {
8546         struct perf_event_context *ctx;
8547         int ctxn;
8548
8549         /*
8550          * Data tracing isn't supported yet and as such there is no need
8551          * to keep track of anything that isn't related to executable code:
8552          */
8553         if (!(vma->vm_flags & VM_EXEC))
8554                 return;
8555
8556         rcu_read_lock();
8557         for_each_task_context_nr(ctxn) {
8558                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8559                 if (!ctx)
8560                         continue;
8561
8562                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8563         }
8564         rcu_read_unlock();
8565 }
8566
8567 void perf_event_mmap(struct vm_area_struct *vma)
8568 {
8569         struct perf_mmap_event mmap_event;
8570
8571         if (!atomic_read(&nr_mmap_events))
8572                 return;
8573
8574         mmap_event = (struct perf_mmap_event){
8575                 .vma    = vma,
8576                 /* .file_name */
8577                 /* .file_size */
8578                 .event_id  = {
8579                         .header = {
8580                                 .type = PERF_RECORD_MMAP,
8581                                 .misc = PERF_RECORD_MISC_USER,
8582                                 /* .size */
8583                         },
8584                         /* .pid */
8585                         /* .tid */
8586                         .start  = vma->vm_start,
8587                         .len    = vma->vm_end - vma->vm_start,
8588                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8589                 },
8590                 /* .maj (attr_mmap2 only) */
8591                 /* .min (attr_mmap2 only) */
8592                 /* .ino (attr_mmap2 only) */
8593                 /* .ino_generation (attr_mmap2 only) */
8594                 /* .prot (attr_mmap2 only) */
8595                 /* .flags (attr_mmap2 only) */
8596         };
8597
8598         perf_addr_filters_adjust(vma);
8599         perf_event_mmap_event(&mmap_event);
8600 }
8601
8602 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8603                           unsigned long size, u64 flags)
8604 {
8605         struct perf_output_handle handle;
8606         struct perf_sample_data sample;
8607         struct perf_aux_event {
8608                 struct perf_event_header        header;
8609                 u64                             offset;
8610                 u64                             size;
8611                 u64                             flags;
8612         } rec = {
8613                 .header = {
8614                         .type = PERF_RECORD_AUX,
8615                         .misc = 0,
8616                         .size = sizeof(rec),
8617                 },
8618                 .offset         = head,
8619                 .size           = size,
8620                 .flags          = flags,
8621         };
8622         int ret;
8623
8624         perf_event_header__init_id(&rec.header, &sample, event);
8625         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8626
8627         if (ret)
8628                 return;
8629
8630         perf_output_put(&handle, rec);
8631         perf_event__output_id_sample(event, &handle, &sample);
8632
8633         perf_output_end(&handle);
8634 }
8635
8636 /*
8637  * Lost/dropped samples logging
8638  */
8639 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8640 {
8641         struct perf_output_handle handle;
8642         struct perf_sample_data sample;
8643         int ret;
8644
8645         struct {
8646                 struct perf_event_header        header;
8647                 u64                             lost;
8648         } lost_samples_event = {
8649                 .header = {
8650                         .type = PERF_RECORD_LOST_SAMPLES,
8651                         .misc = 0,
8652                         .size = sizeof(lost_samples_event),
8653                 },
8654                 .lost           = lost,
8655         };
8656
8657         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8658
8659         ret = perf_output_begin(&handle, &sample, event,
8660                                 lost_samples_event.header.size);
8661         if (ret)
8662                 return;
8663
8664         perf_output_put(&handle, lost_samples_event);
8665         perf_event__output_id_sample(event, &handle, &sample);
8666         perf_output_end(&handle);
8667 }
8668
8669 /*
8670  * context_switch tracking
8671  */
8672
8673 struct perf_switch_event {
8674         struct task_struct      *task;
8675         struct task_struct      *next_prev;
8676
8677         struct {
8678                 struct perf_event_header        header;
8679                 u32                             next_prev_pid;
8680                 u32                             next_prev_tid;
8681         } event_id;
8682 };
8683
8684 static int perf_event_switch_match(struct perf_event *event)
8685 {
8686         return event->attr.context_switch;
8687 }
8688
8689 static void perf_event_switch_output(struct perf_event *event, void *data)
8690 {
8691         struct perf_switch_event *se = data;
8692         struct perf_output_handle handle;
8693         struct perf_sample_data sample;
8694         int ret;
8695
8696         if (!perf_event_switch_match(event))
8697                 return;
8698
8699         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8700         if (event->ctx->task) {
8701                 se->event_id.header.type = PERF_RECORD_SWITCH;
8702                 se->event_id.header.size = sizeof(se->event_id.header);
8703         } else {
8704                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8705                 se->event_id.header.size = sizeof(se->event_id);
8706                 se->event_id.next_prev_pid =
8707                                         perf_event_pid(event, se->next_prev);
8708                 se->event_id.next_prev_tid =
8709                                         perf_event_tid(event, se->next_prev);
8710         }
8711
8712         perf_event_header__init_id(&se->event_id.header, &sample, event);
8713
8714         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8715         if (ret)
8716                 return;
8717
8718         if (event->ctx->task)
8719                 perf_output_put(&handle, se->event_id.header);
8720         else
8721                 perf_output_put(&handle, se->event_id);
8722
8723         perf_event__output_id_sample(event, &handle, &sample);
8724
8725         perf_output_end(&handle);
8726 }
8727
8728 static void perf_event_switch(struct task_struct *task,
8729                               struct task_struct *next_prev, bool sched_in)
8730 {
8731         struct perf_switch_event switch_event;
8732
8733         /* N.B. caller checks nr_switch_events != 0 */
8734
8735         switch_event = (struct perf_switch_event){
8736                 .task           = task,
8737                 .next_prev      = next_prev,
8738                 .event_id       = {
8739                         .header = {
8740                                 /* .type */
8741                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8742                                 /* .size */
8743                         },
8744                         /* .next_prev_pid */
8745                         /* .next_prev_tid */
8746                 },
8747         };
8748
8749         if (!sched_in && task->on_rq) {
8750                 switch_event.event_id.header.misc |=
8751                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8752         }
8753
8754         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8755 }
8756
8757 /*
8758  * IRQ throttle logging
8759  */
8760
8761 static void perf_log_throttle(struct perf_event *event, int enable)
8762 {
8763         struct perf_output_handle handle;
8764         struct perf_sample_data sample;
8765         int ret;
8766
8767         struct {
8768                 struct perf_event_header        header;
8769                 u64                             time;
8770                 u64                             id;
8771                 u64                             stream_id;
8772         } throttle_event = {
8773                 .header = {
8774                         .type = PERF_RECORD_THROTTLE,
8775                         .misc = 0,
8776                         .size = sizeof(throttle_event),
8777                 },
8778                 .time           = perf_event_clock(event),
8779                 .id             = primary_event_id(event),
8780                 .stream_id      = event->id,
8781         };
8782
8783         if (enable)
8784                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8785
8786         perf_event_header__init_id(&throttle_event.header, &sample, event);
8787
8788         ret = perf_output_begin(&handle, &sample, event,
8789                                 throttle_event.header.size);
8790         if (ret)
8791                 return;
8792
8793         perf_output_put(&handle, throttle_event);
8794         perf_event__output_id_sample(event, &handle, &sample);
8795         perf_output_end(&handle);
8796 }
8797
8798 /*
8799  * ksymbol register/unregister tracking
8800  */
8801
8802 struct perf_ksymbol_event {
8803         const char      *name;
8804         int             name_len;
8805         struct {
8806                 struct perf_event_header        header;
8807                 u64                             addr;
8808                 u32                             len;
8809                 u16                             ksym_type;
8810                 u16                             flags;
8811         } event_id;
8812 };
8813
8814 static int perf_event_ksymbol_match(struct perf_event *event)
8815 {
8816         return event->attr.ksymbol;
8817 }
8818
8819 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8820 {
8821         struct perf_ksymbol_event *ksymbol_event = data;
8822         struct perf_output_handle handle;
8823         struct perf_sample_data sample;
8824         int ret;
8825
8826         if (!perf_event_ksymbol_match(event))
8827                 return;
8828
8829         perf_event_header__init_id(&ksymbol_event->event_id.header,
8830                                    &sample, event);
8831         ret = perf_output_begin(&handle, &sample, event,
8832                                 ksymbol_event->event_id.header.size);
8833         if (ret)
8834                 return;
8835
8836         perf_output_put(&handle, ksymbol_event->event_id);
8837         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8838         perf_event__output_id_sample(event, &handle, &sample);
8839
8840         perf_output_end(&handle);
8841 }
8842
8843 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8844                         const char *sym)
8845 {
8846         struct perf_ksymbol_event ksymbol_event;
8847         char name[KSYM_NAME_LEN];
8848         u16 flags = 0;
8849         int name_len;
8850
8851         if (!atomic_read(&nr_ksymbol_events))
8852                 return;
8853
8854         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8855             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8856                 goto err;
8857
8858         strlcpy(name, sym, KSYM_NAME_LEN);
8859         name_len = strlen(name) + 1;
8860         while (!IS_ALIGNED(name_len, sizeof(u64)))
8861                 name[name_len++] = '\0';
8862         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8863
8864         if (unregister)
8865                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8866
8867         ksymbol_event = (struct perf_ksymbol_event){
8868                 .name = name,
8869                 .name_len = name_len,
8870                 .event_id = {
8871                         .header = {
8872                                 .type = PERF_RECORD_KSYMBOL,
8873                                 .size = sizeof(ksymbol_event.event_id) +
8874                                         name_len,
8875                         },
8876                         .addr = addr,
8877                         .len = len,
8878                         .ksym_type = ksym_type,
8879                         .flags = flags,
8880                 },
8881         };
8882
8883         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8884         return;
8885 err:
8886         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8887 }
8888
8889 /*
8890  * bpf program load/unload tracking
8891  */
8892
8893 struct perf_bpf_event {
8894         struct bpf_prog *prog;
8895         struct {
8896                 struct perf_event_header        header;
8897                 u16                             type;
8898                 u16                             flags;
8899                 u32                             id;
8900                 u8                              tag[BPF_TAG_SIZE];
8901         } event_id;
8902 };
8903
8904 static int perf_event_bpf_match(struct perf_event *event)
8905 {
8906         return event->attr.bpf_event;
8907 }
8908
8909 static void perf_event_bpf_output(struct perf_event *event, void *data)
8910 {
8911         struct perf_bpf_event *bpf_event = data;
8912         struct perf_output_handle handle;
8913         struct perf_sample_data sample;
8914         int ret;
8915
8916         if (!perf_event_bpf_match(event))
8917                 return;
8918
8919         perf_event_header__init_id(&bpf_event->event_id.header,
8920                                    &sample, event);
8921         ret = perf_output_begin(&handle, data, event,
8922                                 bpf_event->event_id.header.size);
8923         if (ret)
8924                 return;
8925
8926         perf_output_put(&handle, bpf_event->event_id);
8927         perf_event__output_id_sample(event, &handle, &sample);
8928
8929         perf_output_end(&handle);
8930 }
8931
8932 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8933                                          enum perf_bpf_event_type type)
8934 {
8935         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8936         int i;
8937
8938         if (prog->aux->func_cnt == 0) {
8939                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8940                                    (u64)(unsigned long)prog->bpf_func,
8941                                    prog->jited_len, unregister,
8942                                    prog->aux->ksym.name);
8943         } else {
8944                 for (i = 0; i < prog->aux->func_cnt; i++) {
8945                         struct bpf_prog *subprog = prog->aux->func[i];
8946
8947                         perf_event_ksymbol(
8948                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8949                                 (u64)(unsigned long)subprog->bpf_func,
8950                                 subprog->jited_len, unregister,
8951                                 prog->aux->ksym.name);
8952                 }
8953         }
8954 }
8955
8956 void perf_event_bpf_event(struct bpf_prog *prog,
8957                           enum perf_bpf_event_type type,
8958                           u16 flags)
8959 {
8960         struct perf_bpf_event bpf_event;
8961
8962         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8963             type >= PERF_BPF_EVENT_MAX)
8964                 return;
8965
8966         switch (type) {
8967         case PERF_BPF_EVENT_PROG_LOAD:
8968         case PERF_BPF_EVENT_PROG_UNLOAD:
8969                 if (atomic_read(&nr_ksymbol_events))
8970                         perf_event_bpf_emit_ksymbols(prog, type);
8971                 break;
8972         default:
8973                 break;
8974         }
8975
8976         if (!atomic_read(&nr_bpf_events))
8977                 return;
8978
8979         bpf_event = (struct perf_bpf_event){
8980                 .prog = prog,
8981                 .event_id = {
8982                         .header = {
8983                                 .type = PERF_RECORD_BPF_EVENT,
8984                                 .size = sizeof(bpf_event.event_id),
8985                         },
8986                         .type = type,
8987                         .flags = flags,
8988                         .id = prog->aux->id,
8989                 },
8990         };
8991
8992         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8993
8994         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8995         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8996 }
8997
8998 struct perf_text_poke_event {
8999         const void              *old_bytes;
9000         const void              *new_bytes;
9001         size_t                  pad;
9002         u16                     old_len;
9003         u16                     new_len;
9004
9005         struct {
9006                 struct perf_event_header        header;
9007
9008                 u64                             addr;
9009         } event_id;
9010 };
9011
9012 static int perf_event_text_poke_match(struct perf_event *event)
9013 {
9014         return event->attr.text_poke;
9015 }
9016
9017 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9018 {
9019         struct perf_text_poke_event *text_poke_event = data;
9020         struct perf_output_handle handle;
9021         struct perf_sample_data sample;
9022         u64 padding = 0;
9023         int ret;
9024
9025         if (!perf_event_text_poke_match(event))
9026                 return;
9027
9028         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9029
9030         ret = perf_output_begin(&handle, &sample, event,
9031                                 text_poke_event->event_id.header.size);
9032         if (ret)
9033                 return;
9034
9035         perf_output_put(&handle, text_poke_event->event_id);
9036         perf_output_put(&handle, text_poke_event->old_len);
9037         perf_output_put(&handle, text_poke_event->new_len);
9038
9039         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9040         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9041
9042         if (text_poke_event->pad)
9043                 __output_copy(&handle, &padding, text_poke_event->pad);
9044
9045         perf_event__output_id_sample(event, &handle, &sample);
9046
9047         perf_output_end(&handle);
9048 }
9049
9050 void perf_event_text_poke(const void *addr, const void *old_bytes,
9051                           size_t old_len, const void *new_bytes, size_t new_len)
9052 {
9053         struct perf_text_poke_event text_poke_event;
9054         size_t tot, pad;
9055
9056         if (!atomic_read(&nr_text_poke_events))
9057                 return;
9058
9059         tot  = sizeof(text_poke_event.old_len) + old_len;
9060         tot += sizeof(text_poke_event.new_len) + new_len;
9061         pad  = ALIGN(tot, sizeof(u64)) - tot;
9062
9063         text_poke_event = (struct perf_text_poke_event){
9064                 .old_bytes    = old_bytes,
9065                 .new_bytes    = new_bytes,
9066                 .pad          = pad,
9067                 .old_len      = old_len,
9068                 .new_len      = new_len,
9069                 .event_id  = {
9070                         .header = {
9071                                 .type = PERF_RECORD_TEXT_POKE,
9072                                 .misc = PERF_RECORD_MISC_KERNEL,
9073                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9074                         },
9075                         .addr = (unsigned long)addr,
9076                 },
9077         };
9078
9079         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9080 }
9081
9082 void perf_event_itrace_started(struct perf_event *event)
9083 {
9084         event->attach_state |= PERF_ATTACH_ITRACE;
9085 }
9086
9087 static void perf_log_itrace_start(struct perf_event *event)
9088 {
9089         struct perf_output_handle handle;
9090         struct perf_sample_data sample;
9091         struct perf_aux_event {
9092                 struct perf_event_header        header;
9093                 u32                             pid;
9094                 u32                             tid;
9095         } rec;
9096         int ret;
9097
9098         if (event->parent)
9099                 event = event->parent;
9100
9101         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9102             event->attach_state & PERF_ATTACH_ITRACE)
9103                 return;
9104
9105         rec.header.type = PERF_RECORD_ITRACE_START;
9106         rec.header.misc = 0;
9107         rec.header.size = sizeof(rec);
9108         rec.pid = perf_event_pid(event, current);
9109         rec.tid = perf_event_tid(event, current);
9110
9111         perf_event_header__init_id(&rec.header, &sample, event);
9112         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9113
9114         if (ret)
9115                 return;
9116
9117         perf_output_put(&handle, rec);
9118         perf_event__output_id_sample(event, &handle, &sample);
9119
9120         perf_output_end(&handle);
9121 }
9122
9123 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9124 {
9125         struct perf_output_handle handle;
9126         struct perf_sample_data sample;
9127         struct perf_aux_event {
9128                 struct perf_event_header        header;
9129                 u64                             hw_id;
9130         } rec;
9131         int ret;
9132
9133         if (event->parent)
9134                 event = event->parent;
9135
9136         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9137         rec.header.misc = 0;
9138         rec.header.size = sizeof(rec);
9139         rec.hw_id       = hw_id;
9140
9141         perf_event_header__init_id(&rec.header, &sample, event);
9142         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9143
9144         if (ret)
9145                 return;
9146
9147         perf_output_put(&handle, rec);
9148         perf_event__output_id_sample(event, &handle, &sample);
9149
9150         perf_output_end(&handle);
9151 }
9152
9153 static int
9154 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9155 {
9156         struct hw_perf_event *hwc = &event->hw;
9157         int ret = 0;
9158         u64 seq;
9159
9160         seq = __this_cpu_read(perf_throttled_seq);
9161         if (seq != hwc->interrupts_seq) {
9162                 hwc->interrupts_seq = seq;
9163                 hwc->interrupts = 1;
9164         } else {
9165                 hwc->interrupts++;
9166                 if (unlikely(throttle
9167                              && hwc->interrupts >= max_samples_per_tick)) {
9168                         __this_cpu_inc(perf_throttled_count);
9169                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9170                         hwc->interrupts = MAX_INTERRUPTS;
9171                         perf_log_throttle(event, 0);
9172                         ret = 1;
9173                 }
9174         }
9175
9176         if (event->attr.freq) {
9177                 u64 now = perf_clock();
9178                 s64 delta = now - hwc->freq_time_stamp;
9179
9180                 hwc->freq_time_stamp = now;
9181
9182                 if (delta > 0 && delta < 2*TICK_NSEC)
9183                         perf_adjust_period(event, delta, hwc->last_period, true);
9184         }
9185
9186         return ret;
9187 }
9188
9189 int perf_event_account_interrupt(struct perf_event *event)
9190 {
9191         return __perf_event_account_interrupt(event, 1);
9192 }
9193
9194 /*
9195  * Generic event overflow handling, sampling.
9196  */
9197
9198 static int __perf_event_overflow(struct perf_event *event,
9199                                    int throttle, struct perf_sample_data *data,
9200                                    struct pt_regs *regs)
9201 {
9202         int events = atomic_read(&event->event_limit);
9203         int ret = 0;
9204
9205         /*
9206          * Non-sampling counters might still use the PMI to fold short
9207          * hardware counters, ignore those.
9208          */
9209         if (unlikely(!is_sampling_event(event)))
9210                 return 0;
9211
9212         ret = __perf_event_account_interrupt(event, throttle);
9213
9214         /*
9215          * XXX event_limit might not quite work as expected on inherited
9216          * events
9217          */
9218
9219         event->pending_kill = POLL_IN;
9220         if (events && atomic_dec_and_test(&event->event_limit)) {
9221                 ret = 1;
9222                 event->pending_kill = POLL_HUP;
9223                 event->pending_addr = data->addr;
9224
9225                 perf_event_disable_inatomic(event);
9226         }
9227
9228         READ_ONCE(event->overflow_handler)(event, data, regs);
9229
9230         if (*perf_event_fasync(event) && event->pending_kill) {
9231                 event->pending_wakeup = 1;
9232                 irq_work_queue(&event->pending);
9233         }
9234
9235         return ret;
9236 }
9237
9238 int perf_event_overflow(struct perf_event *event,
9239                           struct perf_sample_data *data,
9240                           struct pt_regs *regs)
9241 {
9242         return __perf_event_overflow(event, 1, data, regs);
9243 }
9244
9245 /*
9246  * Generic software event infrastructure
9247  */
9248
9249 struct swevent_htable {
9250         struct swevent_hlist            *swevent_hlist;
9251         struct mutex                    hlist_mutex;
9252         int                             hlist_refcount;
9253
9254         /* Recursion avoidance in each contexts */
9255         int                             recursion[PERF_NR_CONTEXTS];
9256 };
9257
9258 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9259
9260 /*
9261  * We directly increment event->count and keep a second value in
9262  * event->hw.period_left to count intervals. This period event
9263  * is kept in the range [-sample_period, 0] so that we can use the
9264  * sign as trigger.
9265  */
9266
9267 u64 perf_swevent_set_period(struct perf_event *event)
9268 {
9269         struct hw_perf_event *hwc = &event->hw;
9270         u64 period = hwc->last_period;
9271         u64 nr, offset;
9272         s64 old, val;
9273
9274         hwc->last_period = hwc->sample_period;
9275
9276 again:
9277         old = val = local64_read(&hwc->period_left);
9278         if (val < 0)
9279                 return 0;
9280
9281         nr = div64_u64(period + val, period);
9282         offset = nr * period;
9283         val -= offset;
9284         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9285                 goto again;
9286
9287         return nr;
9288 }
9289
9290 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9291                                     struct perf_sample_data *data,
9292                                     struct pt_regs *regs)
9293 {
9294         struct hw_perf_event *hwc = &event->hw;
9295         int throttle = 0;
9296
9297         if (!overflow)
9298                 overflow = perf_swevent_set_period(event);
9299
9300         if (hwc->interrupts == MAX_INTERRUPTS)
9301                 return;
9302
9303         for (; overflow; overflow--) {
9304                 if (__perf_event_overflow(event, throttle,
9305                                             data, regs)) {
9306                         /*
9307                          * We inhibit the overflow from happening when
9308                          * hwc->interrupts == MAX_INTERRUPTS.
9309                          */
9310                         break;
9311                 }
9312                 throttle = 1;
9313         }
9314 }
9315
9316 static void perf_swevent_event(struct perf_event *event, u64 nr,
9317                                struct perf_sample_data *data,
9318                                struct pt_regs *regs)
9319 {
9320         struct hw_perf_event *hwc = &event->hw;
9321
9322         local64_add(nr, &event->count);
9323
9324         if (!regs)
9325                 return;
9326
9327         if (!is_sampling_event(event))
9328                 return;
9329
9330         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9331                 data->period = nr;
9332                 return perf_swevent_overflow(event, 1, data, regs);
9333         } else
9334                 data->period = event->hw.last_period;
9335
9336         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9337                 return perf_swevent_overflow(event, 1, data, regs);
9338
9339         if (local64_add_negative(nr, &hwc->period_left))
9340                 return;
9341
9342         perf_swevent_overflow(event, 0, data, regs);
9343 }
9344
9345 static int perf_exclude_event(struct perf_event *event,
9346                               struct pt_regs *regs)
9347 {
9348         if (event->hw.state & PERF_HES_STOPPED)
9349                 return 1;
9350
9351         if (regs) {
9352                 if (event->attr.exclude_user && user_mode(regs))
9353                         return 1;
9354
9355                 if (event->attr.exclude_kernel && !user_mode(regs))
9356                         return 1;
9357         }
9358
9359         return 0;
9360 }
9361
9362 static int perf_swevent_match(struct perf_event *event,
9363                                 enum perf_type_id type,
9364                                 u32 event_id,
9365                                 struct perf_sample_data *data,
9366                                 struct pt_regs *regs)
9367 {
9368         if (event->attr.type != type)
9369                 return 0;
9370
9371         if (event->attr.config != event_id)
9372                 return 0;
9373
9374         if (perf_exclude_event(event, regs))
9375                 return 0;
9376
9377         return 1;
9378 }
9379
9380 static inline u64 swevent_hash(u64 type, u32 event_id)
9381 {
9382         u64 val = event_id | (type << 32);
9383
9384         return hash_64(val, SWEVENT_HLIST_BITS);
9385 }
9386
9387 static inline struct hlist_head *
9388 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9389 {
9390         u64 hash = swevent_hash(type, event_id);
9391
9392         return &hlist->heads[hash];
9393 }
9394
9395 /* For the read side: events when they trigger */
9396 static inline struct hlist_head *
9397 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9398 {
9399         struct swevent_hlist *hlist;
9400
9401         hlist = rcu_dereference(swhash->swevent_hlist);
9402         if (!hlist)
9403                 return NULL;
9404
9405         return __find_swevent_head(hlist, type, event_id);
9406 }
9407
9408 /* For the event head insertion and removal in the hlist */
9409 static inline struct hlist_head *
9410 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9411 {
9412         struct swevent_hlist *hlist;
9413         u32 event_id = event->attr.config;
9414         u64 type = event->attr.type;
9415
9416         /*
9417          * Event scheduling is always serialized against hlist allocation
9418          * and release. Which makes the protected version suitable here.
9419          * The context lock guarantees that.
9420          */
9421         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9422                                           lockdep_is_held(&event->ctx->lock));
9423         if (!hlist)
9424                 return NULL;
9425
9426         return __find_swevent_head(hlist, type, event_id);
9427 }
9428
9429 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9430                                     u64 nr,
9431                                     struct perf_sample_data *data,
9432                                     struct pt_regs *regs)
9433 {
9434         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9435         struct perf_event *event;
9436         struct hlist_head *head;
9437
9438         rcu_read_lock();
9439         head = find_swevent_head_rcu(swhash, type, event_id);
9440         if (!head)
9441                 goto end;
9442
9443         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9444                 if (perf_swevent_match(event, type, event_id, data, regs))
9445                         perf_swevent_event(event, nr, data, regs);
9446         }
9447 end:
9448         rcu_read_unlock();
9449 }
9450
9451 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9452
9453 int perf_swevent_get_recursion_context(void)
9454 {
9455         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9456
9457         return get_recursion_context(swhash->recursion);
9458 }
9459 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9460
9461 void perf_swevent_put_recursion_context(int rctx)
9462 {
9463         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9464
9465         put_recursion_context(swhash->recursion, rctx);
9466 }
9467
9468 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9469 {
9470         struct perf_sample_data data;
9471
9472         if (WARN_ON_ONCE(!regs))
9473                 return;
9474
9475         perf_sample_data_init(&data, addr, 0);
9476         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9477 }
9478
9479 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9480 {
9481         int rctx;
9482
9483         preempt_disable_notrace();
9484         rctx = perf_swevent_get_recursion_context();
9485         if (unlikely(rctx < 0))
9486                 goto fail;
9487
9488         ___perf_sw_event(event_id, nr, regs, addr);
9489
9490         perf_swevent_put_recursion_context(rctx);
9491 fail:
9492         preempt_enable_notrace();
9493 }
9494
9495 static void perf_swevent_read(struct perf_event *event)
9496 {
9497 }
9498
9499 static int perf_swevent_add(struct perf_event *event, int flags)
9500 {
9501         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9502         struct hw_perf_event *hwc = &event->hw;
9503         struct hlist_head *head;
9504
9505         if (is_sampling_event(event)) {
9506                 hwc->last_period = hwc->sample_period;
9507                 perf_swevent_set_period(event);
9508         }
9509
9510         hwc->state = !(flags & PERF_EF_START);
9511
9512         head = find_swevent_head(swhash, event);
9513         if (WARN_ON_ONCE(!head))
9514                 return -EINVAL;
9515
9516         hlist_add_head_rcu(&event->hlist_entry, head);
9517         perf_event_update_userpage(event);
9518
9519         return 0;
9520 }
9521
9522 static void perf_swevent_del(struct perf_event *event, int flags)
9523 {
9524         hlist_del_rcu(&event->hlist_entry);
9525 }
9526
9527 static void perf_swevent_start(struct perf_event *event, int flags)
9528 {
9529         event->hw.state = 0;
9530 }
9531
9532 static void perf_swevent_stop(struct perf_event *event, int flags)
9533 {
9534         event->hw.state = PERF_HES_STOPPED;
9535 }
9536
9537 /* Deref the hlist from the update side */
9538 static inline struct swevent_hlist *
9539 swevent_hlist_deref(struct swevent_htable *swhash)
9540 {
9541         return rcu_dereference_protected(swhash->swevent_hlist,
9542                                          lockdep_is_held(&swhash->hlist_mutex));
9543 }
9544
9545 static void swevent_hlist_release(struct swevent_htable *swhash)
9546 {
9547         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9548
9549         if (!hlist)
9550                 return;
9551
9552         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9553         kfree_rcu(hlist, rcu_head);
9554 }
9555
9556 static void swevent_hlist_put_cpu(int cpu)
9557 {
9558         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9559
9560         mutex_lock(&swhash->hlist_mutex);
9561
9562         if (!--swhash->hlist_refcount)
9563                 swevent_hlist_release(swhash);
9564
9565         mutex_unlock(&swhash->hlist_mutex);
9566 }
9567
9568 static void swevent_hlist_put(void)
9569 {
9570         int cpu;
9571
9572         for_each_possible_cpu(cpu)
9573                 swevent_hlist_put_cpu(cpu);
9574 }
9575
9576 static int swevent_hlist_get_cpu(int cpu)
9577 {
9578         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9579         int err = 0;
9580
9581         mutex_lock(&swhash->hlist_mutex);
9582         if (!swevent_hlist_deref(swhash) &&
9583             cpumask_test_cpu(cpu, perf_online_mask)) {
9584                 struct swevent_hlist *hlist;
9585
9586                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9587                 if (!hlist) {
9588                         err = -ENOMEM;
9589                         goto exit;
9590                 }
9591                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9592         }
9593         swhash->hlist_refcount++;
9594 exit:
9595         mutex_unlock(&swhash->hlist_mutex);
9596
9597         return err;
9598 }
9599
9600 static int swevent_hlist_get(void)
9601 {
9602         int err, cpu, failed_cpu;
9603
9604         mutex_lock(&pmus_lock);
9605         for_each_possible_cpu(cpu) {
9606                 err = swevent_hlist_get_cpu(cpu);
9607                 if (err) {
9608                         failed_cpu = cpu;
9609                         goto fail;
9610                 }
9611         }
9612         mutex_unlock(&pmus_lock);
9613         return 0;
9614 fail:
9615         for_each_possible_cpu(cpu) {
9616                 if (cpu == failed_cpu)
9617                         break;
9618                 swevent_hlist_put_cpu(cpu);
9619         }
9620         mutex_unlock(&pmus_lock);
9621         return err;
9622 }
9623
9624 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9625
9626 static void sw_perf_event_destroy(struct perf_event *event)
9627 {
9628         u64 event_id = event->attr.config;
9629
9630         WARN_ON(event->parent);
9631
9632         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9633         swevent_hlist_put();
9634 }
9635
9636 static int perf_swevent_init(struct perf_event *event)
9637 {
9638         u64 event_id = event->attr.config;
9639
9640         if (event->attr.type != PERF_TYPE_SOFTWARE)
9641                 return -ENOENT;
9642
9643         /*
9644          * no branch sampling for software events
9645          */
9646         if (has_branch_stack(event))
9647                 return -EOPNOTSUPP;
9648
9649         switch (event_id) {
9650         case PERF_COUNT_SW_CPU_CLOCK:
9651         case PERF_COUNT_SW_TASK_CLOCK:
9652                 return -ENOENT;
9653
9654         default:
9655                 break;
9656         }
9657
9658         if (event_id >= PERF_COUNT_SW_MAX)
9659                 return -ENOENT;
9660
9661         if (!event->parent) {
9662                 int err;
9663
9664                 err = swevent_hlist_get();
9665                 if (err)
9666                         return err;
9667
9668                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9669                 event->destroy = sw_perf_event_destroy;
9670         }
9671
9672         return 0;
9673 }
9674
9675 static struct pmu perf_swevent = {
9676         .task_ctx_nr    = perf_sw_context,
9677
9678         .capabilities   = PERF_PMU_CAP_NO_NMI,
9679
9680         .event_init     = perf_swevent_init,
9681         .add            = perf_swevent_add,
9682         .del            = perf_swevent_del,
9683         .start          = perf_swevent_start,
9684         .stop           = perf_swevent_stop,
9685         .read           = perf_swevent_read,
9686 };
9687
9688 #ifdef CONFIG_EVENT_TRACING
9689
9690 static int perf_tp_filter_match(struct perf_event *event,
9691                                 struct perf_sample_data *data)
9692 {
9693         void *record = data->raw->frag.data;
9694
9695         /* only top level events have filters set */
9696         if (event->parent)
9697                 event = event->parent;
9698
9699         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9700                 return 1;
9701         return 0;
9702 }
9703
9704 static int perf_tp_event_match(struct perf_event *event,
9705                                 struct perf_sample_data *data,
9706                                 struct pt_regs *regs)
9707 {
9708         if (event->hw.state & PERF_HES_STOPPED)
9709                 return 0;
9710         /*
9711          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9712          */
9713         if (event->attr.exclude_kernel && !user_mode(regs))
9714                 return 0;
9715
9716         if (!perf_tp_filter_match(event, data))
9717                 return 0;
9718
9719         return 1;
9720 }
9721
9722 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9723                                struct trace_event_call *call, u64 count,
9724                                struct pt_regs *regs, struct hlist_head *head,
9725                                struct task_struct *task)
9726 {
9727         if (bpf_prog_array_valid(call)) {
9728                 *(struct pt_regs **)raw_data = regs;
9729                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9730                         perf_swevent_put_recursion_context(rctx);
9731                         return;
9732                 }
9733         }
9734         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9735                       rctx, task);
9736 }
9737 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9738
9739 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9740                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9741                    struct task_struct *task)
9742 {
9743         struct perf_sample_data data;
9744         struct perf_event *event;
9745
9746         struct perf_raw_record raw = {
9747                 .frag = {
9748                         .size = entry_size,
9749                         .data = record,
9750                 },
9751         };
9752
9753         perf_sample_data_init(&data, 0, 0);
9754         data.raw = &raw;
9755
9756         perf_trace_buf_update(record, event_type);
9757
9758         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9759                 if (perf_tp_event_match(event, &data, regs))
9760                         perf_swevent_event(event, count, &data, regs);
9761         }
9762
9763         /*
9764          * If we got specified a target task, also iterate its context and
9765          * deliver this event there too.
9766          */
9767         if (task && task != current) {
9768                 struct perf_event_context *ctx;
9769                 struct trace_entry *entry = record;
9770
9771                 rcu_read_lock();
9772                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9773                 if (!ctx)
9774                         goto unlock;
9775
9776                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9777                         if (event->cpu != smp_processor_id())
9778                                 continue;
9779                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9780                                 continue;
9781                         if (event->attr.config != entry->type)
9782                                 continue;
9783                         /* Cannot deliver synchronous signal to other task. */
9784                         if (event->attr.sigtrap)
9785                                 continue;
9786                         if (perf_tp_event_match(event, &data, regs))
9787                                 perf_swevent_event(event, count, &data, regs);
9788                 }
9789 unlock:
9790                 rcu_read_unlock();
9791         }
9792
9793         perf_swevent_put_recursion_context(rctx);
9794 }
9795 EXPORT_SYMBOL_GPL(perf_tp_event);
9796
9797 static void tp_perf_event_destroy(struct perf_event *event)
9798 {
9799         perf_trace_destroy(event);
9800 }
9801
9802 static int perf_tp_event_init(struct perf_event *event)
9803 {
9804         int err;
9805
9806         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9807                 return -ENOENT;
9808
9809         /*
9810          * no branch sampling for tracepoint events
9811          */
9812         if (has_branch_stack(event))
9813                 return -EOPNOTSUPP;
9814
9815         err = perf_trace_init(event);
9816         if (err)
9817                 return err;
9818
9819         event->destroy = tp_perf_event_destroy;
9820
9821         return 0;
9822 }
9823
9824 static struct pmu perf_tracepoint = {
9825         .task_ctx_nr    = perf_sw_context,
9826
9827         .event_init     = perf_tp_event_init,
9828         .add            = perf_trace_add,
9829         .del            = perf_trace_del,
9830         .start          = perf_swevent_start,
9831         .stop           = perf_swevent_stop,
9832         .read           = perf_swevent_read,
9833 };
9834
9835 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9836 /*
9837  * Flags in config, used by dynamic PMU kprobe and uprobe
9838  * The flags should match following PMU_FORMAT_ATTR().
9839  *
9840  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9841  *                               if not set, create kprobe/uprobe
9842  *
9843  * The following values specify a reference counter (or semaphore in the
9844  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9845  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9846  *
9847  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9848  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9849  */
9850 enum perf_probe_config {
9851         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9852         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9853         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9854 };
9855
9856 PMU_FORMAT_ATTR(retprobe, "config:0");
9857 #endif
9858
9859 #ifdef CONFIG_KPROBE_EVENTS
9860 static struct attribute *kprobe_attrs[] = {
9861         &format_attr_retprobe.attr,
9862         NULL,
9863 };
9864
9865 static struct attribute_group kprobe_format_group = {
9866         .name = "format",
9867         .attrs = kprobe_attrs,
9868 };
9869
9870 static const struct attribute_group *kprobe_attr_groups[] = {
9871         &kprobe_format_group,
9872         NULL,
9873 };
9874
9875 static int perf_kprobe_event_init(struct perf_event *event);
9876 static struct pmu perf_kprobe = {
9877         .task_ctx_nr    = perf_sw_context,
9878         .event_init     = perf_kprobe_event_init,
9879         .add            = perf_trace_add,
9880         .del            = perf_trace_del,
9881         .start          = perf_swevent_start,
9882         .stop           = perf_swevent_stop,
9883         .read           = perf_swevent_read,
9884         .attr_groups    = kprobe_attr_groups,
9885 };
9886
9887 static int perf_kprobe_event_init(struct perf_event *event)
9888 {
9889         int err;
9890         bool is_retprobe;
9891
9892         if (event->attr.type != perf_kprobe.type)
9893                 return -ENOENT;
9894
9895         if (!perfmon_capable())
9896                 return -EACCES;
9897
9898         /*
9899          * no branch sampling for probe events
9900          */
9901         if (has_branch_stack(event))
9902                 return -EOPNOTSUPP;
9903
9904         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9905         err = perf_kprobe_init(event, is_retprobe);
9906         if (err)
9907                 return err;
9908
9909         event->destroy = perf_kprobe_destroy;
9910
9911         return 0;
9912 }
9913 #endif /* CONFIG_KPROBE_EVENTS */
9914
9915 #ifdef CONFIG_UPROBE_EVENTS
9916 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9917
9918 static struct attribute *uprobe_attrs[] = {
9919         &format_attr_retprobe.attr,
9920         &format_attr_ref_ctr_offset.attr,
9921         NULL,
9922 };
9923
9924 static struct attribute_group uprobe_format_group = {
9925         .name = "format",
9926         .attrs = uprobe_attrs,
9927 };
9928
9929 static const struct attribute_group *uprobe_attr_groups[] = {
9930         &uprobe_format_group,
9931         NULL,
9932 };
9933
9934 static int perf_uprobe_event_init(struct perf_event *event);
9935 static struct pmu perf_uprobe = {
9936         .task_ctx_nr    = perf_sw_context,
9937         .event_init     = perf_uprobe_event_init,
9938         .add            = perf_trace_add,
9939         .del            = perf_trace_del,
9940         .start          = perf_swevent_start,
9941         .stop           = perf_swevent_stop,
9942         .read           = perf_swevent_read,
9943         .attr_groups    = uprobe_attr_groups,
9944 };
9945
9946 static int perf_uprobe_event_init(struct perf_event *event)
9947 {
9948         int err;
9949         unsigned long ref_ctr_offset;
9950         bool is_retprobe;
9951
9952         if (event->attr.type != perf_uprobe.type)
9953                 return -ENOENT;
9954
9955         if (!perfmon_capable())
9956                 return -EACCES;
9957
9958         /*
9959          * no branch sampling for probe events
9960          */
9961         if (has_branch_stack(event))
9962                 return -EOPNOTSUPP;
9963
9964         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9965         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9966         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9967         if (err)
9968                 return err;
9969
9970         event->destroy = perf_uprobe_destroy;
9971
9972         return 0;
9973 }
9974 #endif /* CONFIG_UPROBE_EVENTS */
9975
9976 static inline void perf_tp_register(void)
9977 {
9978         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9979 #ifdef CONFIG_KPROBE_EVENTS
9980         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9981 #endif
9982 #ifdef CONFIG_UPROBE_EVENTS
9983         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9984 #endif
9985 }
9986
9987 static void perf_event_free_filter(struct perf_event *event)
9988 {
9989         ftrace_profile_free_filter(event);
9990 }
9991
9992 #ifdef CONFIG_BPF_SYSCALL
9993 static void bpf_overflow_handler(struct perf_event *event,
9994                                  struct perf_sample_data *data,
9995                                  struct pt_regs *regs)
9996 {
9997         struct bpf_perf_event_data_kern ctx = {
9998                 .data = data,
9999                 .event = event,
10000         };
10001         struct bpf_prog *prog;
10002         int ret = 0;
10003
10004         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
10005         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
10006                 goto out;
10007         rcu_read_lock();
10008         prog = READ_ONCE(event->prog);
10009         if (prog)
10010                 ret = bpf_prog_run(prog, &ctx);
10011         rcu_read_unlock();
10012 out:
10013         __this_cpu_dec(bpf_prog_active);
10014         if (!ret)
10015                 return;
10016
10017         event->orig_overflow_handler(event, data, regs);
10018 }
10019
10020 static int perf_event_set_bpf_handler(struct perf_event *event,
10021                                       struct bpf_prog *prog,
10022                                       u64 bpf_cookie)
10023 {
10024         if (event->overflow_handler_context)
10025                 /* hw breakpoint or kernel counter */
10026                 return -EINVAL;
10027
10028         if (event->prog)
10029                 return -EEXIST;
10030
10031         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10032                 return -EINVAL;
10033
10034         if (event->attr.precise_ip &&
10035             prog->call_get_stack &&
10036             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10037              event->attr.exclude_callchain_kernel ||
10038              event->attr.exclude_callchain_user)) {
10039                 /*
10040                  * On perf_event with precise_ip, calling bpf_get_stack()
10041                  * may trigger unwinder warnings and occasional crashes.
10042                  * bpf_get_[stack|stackid] works around this issue by using
10043                  * callchain attached to perf_sample_data. If the
10044                  * perf_event does not full (kernel and user) callchain
10045                  * attached to perf_sample_data, do not allow attaching BPF
10046                  * program that calls bpf_get_[stack|stackid].
10047                  */
10048                 return -EPROTO;
10049         }
10050
10051         event->prog = prog;
10052         event->bpf_cookie = bpf_cookie;
10053         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10054         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10055         return 0;
10056 }
10057
10058 static void perf_event_free_bpf_handler(struct perf_event *event)
10059 {
10060         struct bpf_prog *prog = event->prog;
10061
10062         if (!prog)
10063                 return;
10064
10065         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10066         event->prog = NULL;
10067         bpf_prog_put(prog);
10068 }
10069 #else
10070 static int perf_event_set_bpf_handler(struct perf_event *event,
10071                                       struct bpf_prog *prog,
10072                                       u64 bpf_cookie)
10073 {
10074         return -EOPNOTSUPP;
10075 }
10076 static void perf_event_free_bpf_handler(struct perf_event *event)
10077 {
10078 }
10079 #endif
10080
10081 /*
10082  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10083  * with perf_event_open()
10084  */
10085 static inline bool perf_event_is_tracing(struct perf_event *event)
10086 {
10087         if (event->pmu == &perf_tracepoint)
10088                 return true;
10089 #ifdef CONFIG_KPROBE_EVENTS
10090         if (event->pmu == &perf_kprobe)
10091                 return true;
10092 #endif
10093 #ifdef CONFIG_UPROBE_EVENTS
10094         if (event->pmu == &perf_uprobe)
10095                 return true;
10096 #endif
10097         return false;
10098 }
10099
10100 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10101                             u64 bpf_cookie)
10102 {
10103         bool is_kprobe, is_tracepoint, is_syscall_tp;
10104
10105         if (!perf_event_is_tracing(event))
10106                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10107
10108         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10109         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10110         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10111         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10112                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10113                 return -EINVAL;
10114
10115         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10116             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10117             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10118                 return -EINVAL;
10119
10120         /* Kprobe override only works for kprobes, not uprobes. */
10121         if (prog->kprobe_override &&
10122             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10123                 return -EINVAL;
10124
10125         if (is_tracepoint || is_syscall_tp) {
10126                 int off = trace_event_get_offsets(event->tp_event);
10127
10128                 if (prog->aux->max_ctx_offset > off)
10129                         return -EACCES;
10130         }
10131
10132         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10133 }
10134
10135 void perf_event_free_bpf_prog(struct perf_event *event)
10136 {
10137         if (!perf_event_is_tracing(event)) {
10138                 perf_event_free_bpf_handler(event);
10139                 return;
10140         }
10141         perf_event_detach_bpf_prog(event);
10142 }
10143
10144 #else
10145
10146 static inline void perf_tp_register(void)
10147 {
10148 }
10149
10150 static void perf_event_free_filter(struct perf_event *event)
10151 {
10152 }
10153
10154 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10155                             u64 bpf_cookie)
10156 {
10157         return -ENOENT;
10158 }
10159
10160 void perf_event_free_bpf_prog(struct perf_event *event)
10161 {
10162 }
10163 #endif /* CONFIG_EVENT_TRACING */
10164
10165 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10166 void perf_bp_event(struct perf_event *bp, void *data)
10167 {
10168         struct perf_sample_data sample;
10169         struct pt_regs *regs = data;
10170
10171         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10172
10173         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10174                 perf_swevent_event(bp, 1, &sample, regs);
10175 }
10176 #endif
10177
10178 /*
10179  * Allocate a new address filter
10180  */
10181 static struct perf_addr_filter *
10182 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10183 {
10184         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10185         struct perf_addr_filter *filter;
10186
10187         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10188         if (!filter)
10189                 return NULL;
10190
10191         INIT_LIST_HEAD(&filter->entry);
10192         list_add_tail(&filter->entry, filters);
10193
10194         return filter;
10195 }
10196
10197 static void free_filters_list(struct list_head *filters)
10198 {
10199         struct perf_addr_filter *filter, *iter;
10200
10201         list_for_each_entry_safe(filter, iter, filters, entry) {
10202                 path_put(&filter->path);
10203                 list_del(&filter->entry);
10204                 kfree(filter);
10205         }
10206 }
10207
10208 /*
10209  * Free existing address filters and optionally install new ones
10210  */
10211 static void perf_addr_filters_splice(struct perf_event *event,
10212                                      struct list_head *head)
10213 {
10214         unsigned long flags;
10215         LIST_HEAD(list);
10216
10217         if (!has_addr_filter(event))
10218                 return;
10219
10220         /* don't bother with children, they don't have their own filters */
10221         if (event->parent)
10222                 return;
10223
10224         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10225
10226         list_splice_init(&event->addr_filters.list, &list);
10227         if (head)
10228                 list_splice(head, &event->addr_filters.list);
10229
10230         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10231
10232         free_filters_list(&list);
10233 }
10234
10235 /*
10236  * Scan through mm's vmas and see if one of them matches the
10237  * @filter; if so, adjust filter's address range.
10238  * Called with mm::mmap_lock down for reading.
10239  */
10240 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10241                                    struct mm_struct *mm,
10242                                    struct perf_addr_filter_range *fr)
10243 {
10244         struct vm_area_struct *vma;
10245
10246         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10247                 if (!vma->vm_file)
10248                         continue;
10249
10250                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10251                         return;
10252         }
10253 }
10254
10255 /*
10256  * Update event's address range filters based on the
10257  * task's existing mappings, if any.
10258  */
10259 static void perf_event_addr_filters_apply(struct perf_event *event)
10260 {
10261         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10262         struct task_struct *task = READ_ONCE(event->ctx->task);
10263         struct perf_addr_filter *filter;
10264         struct mm_struct *mm = NULL;
10265         unsigned int count = 0;
10266         unsigned long flags;
10267
10268         /*
10269          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10270          * will stop on the parent's child_mutex that our caller is also holding
10271          */
10272         if (task == TASK_TOMBSTONE)
10273                 return;
10274
10275         if (ifh->nr_file_filters) {
10276                 mm = get_task_mm(task);
10277                 if (!mm)
10278                         goto restart;
10279
10280                 mmap_read_lock(mm);
10281         }
10282
10283         raw_spin_lock_irqsave(&ifh->lock, flags);
10284         list_for_each_entry(filter, &ifh->list, entry) {
10285                 if (filter->path.dentry) {
10286                         /*
10287                          * Adjust base offset if the filter is associated to a
10288                          * binary that needs to be mapped:
10289                          */
10290                         event->addr_filter_ranges[count].start = 0;
10291                         event->addr_filter_ranges[count].size = 0;
10292
10293                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10294                 } else {
10295                         event->addr_filter_ranges[count].start = filter->offset;
10296                         event->addr_filter_ranges[count].size  = filter->size;
10297                 }
10298
10299                 count++;
10300         }
10301
10302         event->addr_filters_gen++;
10303         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10304
10305         if (ifh->nr_file_filters) {
10306                 mmap_read_unlock(mm);
10307
10308                 mmput(mm);
10309         }
10310
10311 restart:
10312         perf_event_stop(event, 1);
10313 }
10314
10315 /*
10316  * Address range filtering: limiting the data to certain
10317  * instruction address ranges. Filters are ioctl()ed to us from
10318  * userspace as ascii strings.
10319  *
10320  * Filter string format:
10321  *
10322  * ACTION RANGE_SPEC
10323  * where ACTION is one of the
10324  *  * "filter": limit the trace to this region
10325  *  * "start": start tracing from this address
10326  *  * "stop": stop tracing at this address/region;
10327  * RANGE_SPEC is
10328  *  * for kernel addresses: <start address>[/<size>]
10329  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10330  *
10331  * if <size> is not specified or is zero, the range is treated as a single
10332  * address; not valid for ACTION=="filter".
10333  */
10334 enum {
10335         IF_ACT_NONE = -1,
10336         IF_ACT_FILTER,
10337         IF_ACT_START,
10338         IF_ACT_STOP,
10339         IF_SRC_FILE,
10340         IF_SRC_KERNEL,
10341         IF_SRC_FILEADDR,
10342         IF_SRC_KERNELADDR,
10343 };
10344
10345 enum {
10346         IF_STATE_ACTION = 0,
10347         IF_STATE_SOURCE,
10348         IF_STATE_END,
10349 };
10350
10351 static const match_table_t if_tokens = {
10352         { IF_ACT_FILTER,        "filter" },
10353         { IF_ACT_START,         "start" },
10354         { IF_ACT_STOP,          "stop" },
10355         { IF_SRC_FILE,          "%u/%u@%s" },
10356         { IF_SRC_KERNEL,        "%u/%u" },
10357         { IF_SRC_FILEADDR,      "%u@%s" },
10358         { IF_SRC_KERNELADDR,    "%u" },
10359         { IF_ACT_NONE,          NULL },
10360 };
10361
10362 /*
10363  * Address filter string parser
10364  */
10365 static int
10366 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10367                              struct list_head *filters)
10368 {
10369         struct perf_addr_filter *filter = NULL;
10370         char *start, *orig, *filename = NULL;
10371         substring_t args[MAX_OPT_ARGS];
10372         int state = IF_STATE_ACTION, token;
10373         unsigned int kernel = 0;
10374         int ret = -EINVAL;
10375
10376         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10377         if (!fstr)
10378                 return -ENOMEM;
10379
10380         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10381                 static const enum perf_addr_filter_action_t actions[] = {
10382                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10383                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10384                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10385                 };
10386                 ret = -EINVAL;
10387
10388                 if (!*start)
10389                         continue;
10390
10391                 /* filter definition begins */
10392                 if (state == IF_STATE_ACTION) {
10393                         filter = perf_addr_filter_new(event, filters);
10394                         if (!filter)
10395                                 goto fail;
10396                 }
10397
10398                 token = match_token(start, if_tokens, args);
10399                 switch (token) {
10400                 case IF_ACT_FILTER:
10401                 case IF_ACT_START:
10402                 case IF_ACT_STOP:
10403                         if (state != IF_STATE_ACTION)
10404                                 goto fail;
10405
10406                         filter->action = actions[token];
10407                         state = IF_STATE_SOURCE;
10408                         break;
10409
10410                 case IF_SRC_KERNELADDR:
10411                 case IF_SRC_KERNEL:
10412                         kernel = 1;
10413                         fallthrough;
10414
10415                 case IF_SRC_FILEADDR:
10416                 case IF_SRC_FILE:
10417                         if (state != IF_STATE_SOURCE)
10418                                 goto fail;
10419
10420                         *args[0].to = 0;
10421                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10422                         if (ret)
10423                                 goto fail;
10424
10425                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10426                                 *args[1].to = 0;
10427                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10428                                 if (ret)
10429                                         goto fail;
10430                         }
10431
10432                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10433                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10434
10435                                 kfree(filename);
10436                                 filename = match_strdup(&args[fpos]);
10437                                 if (!filename) {
10438                                         ret = -ENOMEM;
10439                                         goto fail;
10440                                 }
10441                         }
10442
10443                         state = IF_STATE_END;
10444                         break;
10445
10446                 default:
10447                         goto fail;
10448                 }
10449
10450                 /*
10451                  * Filter definition is fully parsed, validate and install it.
10452                  * Make sure that it doesn't contradict itself or the event's
10453                  * attribute.
10454                  */
10455                 if (state == IF_STATE_END) {
10456                         ret = -EINVAL;
10457                         if (kernel && event->attr.exclude_kernel)
10458                                 goto fail;
10459
10460                         /*
10461                          * ACTION "filter" must have a non-zero length region
10462                          * specified.
10463                          */
10464                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10465                             !filter->size)
10466                                 goto fail;
10467
10468                         if (!kernel) {
10469                                 if (!filename)
10470                                         goto fail;
10471
10472                                 /*
10473                                  * For now, we only support file-based filters
10474                                  * in per-task events; doing so for CPU-wide
10475                                  * events requires additional context switching
10476                                  * trickery, since same object code will be
10477                                  * mapped at different virtual addresses in
10478                                  * different processes.
10479                                  */
10480                                 ret = -EOPNOTSUPP;
10481                                 if (!event->ctx->task)
10482                                         goto fail;
10483
10484                                 /* look up the path and grab its inode */
10485                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10486                                                 &filter->path);
10487                                 if (ret)
10488                                         goto fail;
10489
10490                                 ret = -EINVAL;
10491                                 if (!filter->path.dentry ||
10492                                     !S_ISREG(d_inode(filter->path.dentry)
10493                                              ->i_mode))
10494                                         goto fail;
10495
10496                                 event->addr_filters.nr_file_filters++;
10497                         }
10498
10499                         /* ready to consume more filters */
10500                         state = IF_STATE_ACTION;
10501                         filter = NULL;
10502                 }
10503         }
10504
10505         if (state != IF_STATE_ACTION)
10506                 goto fail;
10507
10508         kfree(filename);
10509         kfree(orig);
10510
10511         return 0;
10512
10513 fail:
10514         kfree(filename);
10515         free_filters_list(filters);
10516         kfree(orig);
10517
10518         return ret;
10519 }
10520
10521 static int
10522 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10523 {
10524         LIST_HEAD(filters);
10525         int ret;
10526
10527         /*
10528          * Since this is called in perf_ioctl() path, we're already holding
10529          * ctx::mutex.
10530          */
10531         lockdep_assert_held(&event->ctx->mutex);
10532
10533         if (WARN_ON_ONCE(event->parent))
10534                 return -EINVAL;
10535
10536         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10537         if (ret)
10538                 goto fail_clear_files;
10539
10540         ret = event->pmu->addr_filters_validate(&filters);
10541         if (ret)
10542                 goto fail_free_filters;
10543
10544         /* remove existing filters, if any */
10545         perf_addr_filters_splice(event, &filters);
10546
10547         /* install new filters */
10548         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10549
10550         return ret;
10551
10552 fail_free_filters:
10553         free_filters_list(&filters);
10554
10555 fail_clear_files:
10556         event->addr_filters.nr_file_filters = 0;
10557
10558         return ret;
10559 }
10560
10561 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10562 {
10563         int ret = -EINVAL;
10564         char *filter_str;
10565
10566         filter_str = strndup_user(arg, PAGE_SIZE);
10567         if (IS_ERR(filter_str))
10568                 return PTR_ERR(filter_str);
10569
10570 #ifdef CONFIG_EVENT_TRACING
10571         if (perf_event_is_tracing(event)) {
10572                 struct perf_event_context *ctx = event->ctx;
10573
10574                 /*
10575                  * Beware, here be dragons!!
10576                  *
10577                  * the tracepoint muck will deadlock against ctx->mutex, but
10578                  * the tracepoint stuff does not actually need it. So
10579                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10580                  * already have a reference on ctx.
10581                  *
10582                  * This can result in event getting moved to a different ctx,
10583                  * but that does not affect the tracepoint state.
10584                  */
10585                 mutex_unlock(&ctx->mutex);
10586                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10587                 mutex_lock(&ctx->mutex);
10588         } else
10589 #endif
10590         if (has_addr_filter(event))
10591                 ret = perf_event_set_addr_filter(event, filter_str);
10592
10593         kfree(filter_str);
10594         return ret;
10595 }
10596
10597 /*
10598  * hrtimer based swevent callback
10599  */
10600
10601 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10602 {
10603         enum hrtimer_restart ret = HRTIMER_RESTART;
10604         struct perf_sample_data data;
10605         struct pt_regs *regs;
10606         struct perf_event *event;
10607         u64 period;
10608
10609         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10610
10611         if (event->state != PERF_EVENT_STATE_ACTIVE)
10612                 return HRTIMER_NORESTART;
10613
10614         event->pmu->read(event);
10615
10616         perf_sample_data_init(&data, 0, event->hw.last_period);
10617         regs = get_irq_regs();
10618
10619         if (regs && !perf_exclude_event(event, regs)) {
10620                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10621                         if (__perf_event_overflow(event, 1, &data, regs))
10622                                 ret = HRTIMER_NORESTART;
10623         }
10624
10625         period = max_t(u64, 10000, event->hw.sample_period);
10626         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10627
10628         return ret;
10629 }
10630
10631 static void perf_swevent_start_hrtimer(struct perf_event *event)
10632 {
10633         struct hw_perf_event *hwc = &event->hw;
10634         s64 period;
10635
10636         if (!is_sampling_event(event))
10637                 return;
10638
10639         period = local64_read(&hwc->period_left);
10640         if (period) {
10641                 if (period < 0)
10642                         period = 10000;
10643
10644                 local64_set(&hwc->period_left, 0);
10645         } else {
10646                 period = max_t(u64, 10000, hwc->sample_period);
10647         }
10648         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10649                       HRTIMER_MODE_REL_PINNED_HARD);
10650 }
10651
10652 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10653 {
10654         struct hw_perf_event *hwc = &event->hw;
10655
10656         if (is_sampling_event(event)) {
10657                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10658                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10659
10660                 hrtimer_cancel(&hwc->hrtimer);
10661         }
10662 }
10663
10664 static void perf_swevent_init_hrtimer(struct perf_event *event)
10665 {
10666         struct hw_perf_event *hwc = &event->hw;
10667
10668         if (!is_sampling_event(event))
10669                 return;
10670
10671         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10672         hwc->hrtimer.function = perf_swevent_hrtimer;
10673
10674         /*
10675          * Since hrtimers have a fixed rate, we can do a static freq->period
10676          * mapping and avoid the whole period adjust feedback stuff.
10677          */
10678         if (event->attr.freq) {
10679                 long freq = event->attr.sample_freq;
10680
10681                 event->attr.sample_period = NSEC_PER_SEC / freq;
10682                 hwc->sample_period = event->attr.sample_period;
10683                 local64_set(&hwc->period_left, hwc->sample_period);
10684                 hwc->last_period = hwc->sample_period;
10685                 event->attr.freq = 0;
10686         }
10687 }
10688
10689 /*
10690  * Software event: cpu wall time clock
10691  */
10692
10693 static void cpu_clock_event_update(struct perf_event *event)
10694 {
10695         s64 prev;
10696         u64 now;
10697
10698         now = local_clock();
10699         prev = local64_xchg(&event->hw.prev_count, now);
10700         local64_add(now - prev, &event->count);
10701 }
10702
10703 static void cpu_clock_event_start(struct perf_event *event, int flags)
10704 {
10705         local64_set(&event->hw.prev_count, local_clock());
10706         perf_swevent_start_hrtimer(event);
10707 }
10708
10709 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10710 {
10711         perf_swevent_cancel_hrtimer(event);
10712         cpu_clock_event_update(event);
10713 }
10714
10715 static int cpu_clock_event_add(struct perf_event *event, int flags)
10716 {
10717         if (flags & PERF_EF_START)
10718                 cpu_clock_event_start(event, flags);
10719         perf_event_update_userpage(event);
10720
10721         return 0;
10722 }
10723
10724 static void cpu_clock_event_del(struct perf_event *event, int flags)
10725 {
10726         cpu_clock_event_stop(event, flags);
10727 }
10728
10729 static void cpu_clock_event_read(struct perf_event *event)
10730 {
10731         cpu_clock_event_update(event);
10732 }
10733
10734 static int cpu_clock_event_init(struct perf_event *event)
10735 {
10736         if (event->attr.type != PERF_TYPE_SOFTWARE)
10737                 return -ENOENT;
10738
10739         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10740                 return -ENOENT;
10741
10742         /*
10743          * no branch sampling for software events
10744          */
10745         if (has_branch_stack(event))
10746                 return -EOPNOTSUPP;
10747
10748         perf_swevent_init_hrtimer(event);
10749
10750         return 0;
10751 }
10752
10753 static struct pmu perf_cpu_clock = {
10754         .task_ctx_nr    = perf_sw_context,
10755
10756         .capabilities   = PERF_PMU_CAP_NO_NMI,
10757
10758         .event_init     = cpu_clock_event_init,
10759         .add            = cpu_clock_event_add,
10760         .del            = cpu_clock_event_del,
10761         .start          = cpu_clock_event_start,
10762         .stop           = cpu_clock_event_stop,
10763         .read           = cpu_clock_event_read,
10764 };
10765
10766 /*
10767  * Software event: task time clock
10768  */
10769
10770 static void task_clock_event_update(struct perf_event *event, u64 now)
10771 {
10772         u64 prev;
10773         s64 delta;
10774
10775         prev = local64_xchg(&event->hw.prev_count, now);
10776         delta = now - prev;
10777         local64_add(delta, &event->count);
10778 }
10779
10780 static void task_clock_event_start(struct perf_event *event, int flags)
10781 {
10782         local64_set(&event->hw.prev_count, event->ctx->time);
10783         perf_swevent_start_hrtimer(event);
10784 }
10785
10786 static void task_clock_event_stop(struct perf_event *event, int flags)
10787 {
10788         perf_swevent_cancel_hrtimer(event);
10789         task_clock_event_update(event, event->ctx->time);
10790 }
10791
10792 static int task_clock_event_add(struct perf_event *event, int flags)
10793 {
10794         if (flags & PERF_EF_START)
10795                 task_clock_event_start(event, flags);
10796         perf_event_update_userpage(event);
10797
10798         return 0;
10799 }
10800
10801 static void task_clock_event_del(struct perf_event *event, int flags)
10802 {
10803         task_clock_event_stop(event, PERF_EF_UPDATE);
10804 }
10805
10806 static void task_clock_event_read(struct perf_event *event)
10807 {
10808         u64 now = perf_clock();
10809         u64 delta = now - event->ctx->timestamp;
10810         u64 time = event->ctx->time + delta;
10811
10812         task_clock_event_update(event, time);
10813 }
10814
10815 static int task_clock_event_init(struct perf_event *event)
10816 {
10817         if (event->attr.type != PERF_TYPE_SOFTWARE)
10818                 return -ENOENT;
10819
10820         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10821                 return -ENOENT;
10822
10823         /*
10824          * no branch sampling for software events
10825          */
10826         if (has_branch_stack(event))
10827                 return -EOPNOTSUPP;
10828
10829         perf_swevent_init_hrtimer(event);
10830
10831         return 0;
10832 }
10833
10834 static struct pmu perf_task_clock = {
10835         .task_ctx_nr    = perf_sw_context,
10836
10837         .capabilities   = PERF_PMU_CAP_NO_NMI,
10838
10839         .event_init     = task_clock_event_init,
10840         .add            = task_clock_event_add,
10841         .del            = task_clock_event_del,
10842         .start          = task_clock_event_start,
10843         .stop           = task_clock_event_stop,
10844         .read           = task_clock_event_read,
10845 };
10846
10847 static void perf_pmu_nop_void(struct pmu *pmu)
10848 {
10849 }
10850
10851 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10852 {
10853 }
10854
10855 static int perf_pmu_nop_int(struct pmu *pmu)
10856 {
10857         return 0;
10858 }
10859
10860 static int perf_event_nop_int(struct perf_event *event, u64 value)
10861 {
10862         return 0;
10863 }
10864
10865 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10866
10867 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10868 {
10869         __this_cpu_write(nop_txn_flags, flags);
10870
10871         if (flags & ~PERF_PMU_TXN_ADD)
10872                 return;
10873
10874         perf_pmu_disable(pmu);
10875 }
10876
10877 static int perf_pmu_commit_txn(struct pmu *pmu)
10878 {
10879         unsigned int flags = __this_cpu_read(nop_txn_flags);
10880
10881         __this_cpu_write(nop_txn_flags, 0);
10882
10883         if (flags & ~PERF_PMU_TXN_ADD)
10884                 return 0;
10885
10886         perf_pmu_enable(pmu);
10887         return 0;
10888 }
10889
10890 static void perf_pmu_cancel_txn(struct pmu *pmu)
10891 {
10892         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10893
10894         __this_cpu_write(nop_txn_flags, 0);
10895
10896         if (flags & ~PERF_PMU_TXN_ADD)
10897                 return;
10898
10899         perf_pmu_enable(pmu);
10900 }
10901
10902 static int perf_event_idx_default(struct perf_event *event)
10903 {
10904         return 0;
10905 }
10906
10907 /*
10908  * Ensures all contexts with the same task_ctx_nr have the same
10909  * pmu_cpu_context too.
10910  */
10911 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10912 {
10913         struct pmu *pmu;
10914
10915         if (ctxn < 0)
10916                 return NULL;
10917
10918         list_for_each_entry(pmu, &pmus, entry) {
10919                 if (pmu->task_ctx_nr == ctxn)
10920                         return pmu->pmu_cpu_context;
10921         }
10922
10923         return NULL;
10924 }
10925
10926 static void free_pmu_context(struct pmu *pmu)
10927 {
10928         /*
10929          * Static contexts such as perf_sw_context have a global lifetime
10930          * and may be shared between different PMUs. Avoid freeing them
10931          * when a single PMU is going away.
10932          */
10933         if (pmu->task_ctx_nr > perf_invalid_context)
10934                 return;
10935
10936         free_percpu(pmu->pmu_cpu_context);
10937 }
10938
10939 /*
10940  * Let userspace know that this PMU supports address range filtering:
10941  */
10942 static ssize_t nr_addr_filters_show(struct device *dev,
10943                                     struct device_attribute *attr,
10944                                     char *page)
10945 {
10946         struct pmu *pmu = dev_get_drvdata(dev);
10947
10948         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10949 }
10950 DEVICE_ATTR_RO(nr_addr_filters);
10951
10952 static struct idr pmu_idr;
10953
10954 static ssize_t
10955 type_show(struct device *dev, struct device_attribute *attr, char *page)
10956 {
10957         struct pmu *pmu = dev_get_drvdata(dev);
10958
10959         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10960 }
10961 static DEVICE_ATTR_RO(type);
10962
10963 static ssize_t
10964 perf_event_mux_interval_ms_show(struct device *dev,
10965                                 struct device_attribute *attr,
10966                                 char *page)
10967 {
10968         struct pmu *pmu = dev_get_drvdata(dev);
10969
10970         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10971 }
10972
10973 static DEFINE_MUTEX(mux_interval_mutex);
10974
10975 static ssize_t
10976 perf_event_mux_interval_ms_store(struct device *dev,
10977                                  struct device_attribute *attr,
10978                                  const char *buf, size_t count)
10979 {
10980         struct pmu *pmu = dev_get_drvdata(dev);
10981         int timer, cpu, ret;
10982
10983         ret = kstrtoint(buf, 0, &timer);
10984         if (ret)
10985                 return ret;
10986
10987         if (timer < 1)
10988                 return -EINVAL;
10989
10990         /* same value, noting to do */
10991         if (timer == pmu->hrtimer_interval_ms)
10992                 return count;
10993
10994         mutex_lock(&mux_interval_mutex);
10995         pmu->hrtimer_interval_ms = timer;
10996
10997         /* update all cpuctx for this PMU */
10998         cpus_read_lock();
10999         for_each_online_cpu(cpu) {
11000                 struct perf_cpu_context *cpuctx;
11001                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11002                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11003
11004                 cpu_function_call(cpu,
11005                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
11006         }
11007         cpus_read_unlock();
11008         mutex_unlock(&mux_interval_mutex);
11009
11010         return count;
11011 }
11012 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11013
11014 static struct attribute *pmu_dev_attrs[] = {
11015         &dev_attr_type.attr,
11016         &dev_attr_perf_event_mux_interval_ms.attr,
11017         NULL,
11018 };
11019 ATTRIBUTE_GROUPS(pmu_dev);
11020
11021 static int pmu_bus_running;
11022 static struct bus_type pmu_bus = {
11023         .name           = "event_source",
11024         .dev_groups     = pmu_dev_groups,
11025 };
11026
11027 static void pmu_dev_release(struct device *dev)
11028 {
11029         kfree(dev);
11030 }
11031
11032 static int pmu_dev_alloc(struct pmu *pmu)
11033 {
11034         int ret = -ENOMEM;
11035
11036         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11037         if (!pmu->dev)
11038                 goto out;
11039
11040         pmu->dev->groups = pmu->attr_groups;
11041         device_initialize(pmu->dev);
11042         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11043         if (ret)
11044                 goto free_dev;
11045
11046         dev_set_drvdata(pmu->dev, pmu);
11047         pmu->dev->bus = &pmu_bus;
11048         pmu->dev->release = pmu_dev_release;
11049         ret = device_add(pmu->dev);
11050         if (ret)
11051                 goto free_dev;
11052
11053         /* For PMUs with address filters, throw in an extra attribute: */
11054         if (pmu->nr_addr_filters)
11055                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11056
11057         if (ret)
11058                 goto del_dev;
11059
11060         if (pmu->attr_update)
11061                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11062
11063         if (ret)
11064                 goto del_dev;
11065
11066 out:
11067         return ret;
11068
11069 del_dev:
11070         device_del(pmu->dev);
11071
11072 free_dev:
11073         put_device(pmu->dev);
11074         goto out;
11075 }
11076
11077 static struct lock_class_key cpuctx_mutex;
11078 static struct lock_class_key cpuctx_lock;
11079
11080 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11081 {
11082         int cpu, ret, max = PERF_TYPE_MAX;
11083
11084         mutex_lock(&pmus_lock);
11085         ret = -ENOMEM;
11086         pmu->pmu_disable_count = alloc_percpu(int);
11087         if (!pmu->pmu_disable_count)
11088                 goto unlock;
11089
11090         pmu->type = -1;
11091         if (!name)
11092                 goto skip_type;
11093         pmu->name = name;
11094
11095         if (type != PERF_TYPE_SOFTWARE) {
11096                 if (type >= 0)
11097                         max = type;
11098
11099                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11100                 if (ret < 0)
11101                         goto free_pdc;
11102
11103                 WARN_ON(type >= 0 && ret != type);
11104
11105                 type = ret;
11106         }
11107         pmu->type = type;
11108
11109         if (pmu_bus_running) {
11110                 ret = pmu_dev_alloc(pmu);
11111                 if (ret)
11112                         goto free_idr;
11113         }
11114
11115 skip_type:
11116         if (pmu->task_ctx_nr == perf_hw_context) {
11117                 static int hw_context_taken = 0;
11118
11119                 /*
11120                  * Other than systems with heterogeneous CPUs, it never makes
11121                  * sense for two PMUs to share perf_hw_context. PMUs which are
11122                  * uncore must use perf_invalid_context.
11123                  */
11124                 if (WARN_ON_ONCE(hw_context_taken &&
11125                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11126                         pmu->task_ctx_nr = perf_invalid_context;
11127
11128                 hw_context_taken = 1;
11129         }
11130
11131         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11132         if (pmu->pmu_cpu_context)
11133                 goto got_cpu_context;
11134
11135         ret = -ENOMEM;
11136         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11137         if (!pmu->pmu_cpu_context)
11138                 goto free_dev;
11139
11140         for_each_possible_cpu(cpu) {
11141                 struct perf_cpu_context *cpuctx;
11142
11143                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11144                 __perf_event_init_context(&cpuctx->ctx);
11145                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11146                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11147                 cpuctx->ctx.pmu = pmu;
11148                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11149
11150                 __perf_mux_hrtimer_init(cpuctx, cpu);
11151
11152                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11153                 cpuctx->heap = cpuctx->heap_default;
11154         }
11155
11156 got_cpu_context:
11157         if (!pmu->start_txn) {
11158                 if (pmu->pmu_enable) {
11159                         /*
11160                          * If we have pmu_enable/pmu_disable calls, install
11161                          * transaction stubs that use that to try and batch
11162                          * hardware accesses.
11163                          */
11164                         pmu->start_txn  = perf_pmu_start_txn;
11165                         pmu->commit_txn = perf_pmu_commit_txn;
11166                         pmu->cancel_txn = perf_pmu_cancel_txn;
11167                 } else {
11168                         pmu->start_txn  = perf_pmu_nop_txn;
11169                         pmu->commit_txn = perf_pmu_nop_int;
11170                         pmu->cancel_txn = perf_pmu_nop_void;
11171                 }
11172         }
11173
11174         if (!pmu->pmu_enable) {
11175                 pmu->pmu_enable  = perf_pmu_nop_void;
11176                 pmu->pmu_disable = perf_pmu_nop_void;
11177         }
11178
11179         if (!pmu->check_period)
11180                 pmu->check_period = perf_event_nop_int;
11181
11182         if (!pmu->event_idx)
11183                 pmu->event_idx = perf_event_idx_default;
11184
11185         /*
11186          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11187          * since these cannot be in the IDR. This way the linear search
11188          * is fast, provided a valid software event is provided.
11189          */
11190         if (type == PERF_TYPE_SOFTWARE || !name)
11191                 list_add_rcu(&pmu->entry, &pmus);
11192         else
11193                 list_add_tail_rcu(&pmu->entry, &pmus);
11194
11195         atomic_set(&pmu->exclusive_cnt, 0);
11196         ret = 0;
11197 unlock:
11198         mutex_unlock(&pmus_lock);
11199
11200         return ret;
11201
11202 free_dev:
11203         device_del(pmu->dev);
11204         put_device(pmu->dev);
11205
11206 free_idr:
11207         if (pmu->type != PERF_TYPE_SOFTWARE)
11208                 idr_remove(&pmu_idr, pmu->type);
11209
11210 free_pdc:
11211         free_percpu(pmu->pmu_disable_count);
11212         goto unlock;
11213 }
11214 EXPORT_SYMBOL_GPL(perf_pmu_register);
11215
11216 void perf_pmu_unregister(struct pmu *pmu)
11217 {
11218         mutex_lock(&pmus_lock);
11219         list_del_rcu(&pmu->entry);
11220
11221         /*
11222          * We dereference the pmu list under both SRCU and regular RCU, so
11223          * synchronize against both of those.
11224          */
11225         synchronize_srcu(&pmus_srcu);
11226         synchronize_rcu();
11227
11228         free_percpu(pmu->pmu_disable_count);
11229         if (pmu->type != PERF_TYPE_SOFTWARE)
11230                 idr_remove(&pmu_idr, pmu->type);
11231         if (pmu_bus_running) {
11232                 if (pmu->nr_addr_filters)
11233                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11234                 device_del(pmu->dev);
11235                 put_device(pmu->dev);
11236         }
11237         free_pmu_context(pmu);
11238         mutex_unlock(&pmus_lock);
11239 }
11240 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11241
11242 static inline bool has_extended_regs(struct perf_event *event)
11243 {
11244         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11245                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11246 }
11247
11248 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11249 {
11250         struct perf_event_context *ctx = NULL;
11251         int ret;
11252
11253         if (!try_module_get(pmu->module))
11254                 return -ENODEV;
11255
11256         /*
11257          * A number of pmu->event_init() methods iterate the sibling_list to,
11258          * for example, validate if the group fits on the PMU. Therefore,
11259          * if this is a sibling event, acquire the ctx->mutex to protect
11260          * the sibling_list.
11261          */
11262         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11263                 /*
11264                  * This ctx->mutex can nest when we're called through
11265                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11266                  */
11267                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11268                                                  SINGLE_DEPTH_NESTING);
11269                 BUG_ON(!ctx);
11270         }
11271
11272         event->pmu = pmu;
11273         ret = pmu->event_init(event);
11274
11275         if (ctx)
11276                 perf_event_ctx_unlock(event->group_leader, ctx);
11277
11278         if (!ret) {
11279                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11280                     has_extended_regs(event))
11281                         ret = -EOPNOTSUPP;
11282
11283                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11284                     event_has_any_exclude_flag(event))
11285                         ret = -EINVAL;
11286
11287                 if (ret && event->destroy)
11288                         event->destroy(event);
11289         }
11290
11291         if (ret)
11292                 module_put(pmu->module);
11293
11294         return ret;
11295 }
11296
11297 static struct pmu *perf_init_event(struct perf_event *event)
11298 {
11299         bool extended_type = false;
11300         int idx, type, ret;
11301         struct pmu *pmu;
11302
11303         idx = srcu_read_lock(&pmus_srcu);
11304
11305         /* Try parent's PMU first: */
11306         if (event->parent && event->parent->pmu) {
11307                 pmu = event->parent->pmu;
11308                 ret = perf_try_init_event(pmu, event);
11309                 if (!ret)
11310                         goto unlock;
11311         }
11312
11313         /*
11314          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11315          * are often aliases for PERF_TYPE_RAW.
11316          */
11317         type = event->attr.type;
11318         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11319                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11320                 if (!type) {
11321                         type = PERF_TYPE_RAW;
11322                 } else {
11323                         extended_type = true;
11324                         event->attr.config &= PERF_HW_EVENT_MASK;
11325                 }
11326         }
11327
11328 again:
11329         rcu_read_lock();
11330         pmu = idr_find(&pmu_idr, type);
11331         rcu_read_unlock();
11332         if (pmu) {
11333                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11334                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11335                         goto fail;
11336
11337                 ret = perf_try_init_event(pmu, event);
11338                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11339                         type = event->attr.type;
11340                         goto again;
11341                 }
11342
11343                 if (ret)
11344                         pmu = ERR_PTR(ret);
11345
11346                 goto unlock;
11347         }
11348
11349         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11350                 ret = perf_try_init_event(pmu, event);
11351                 if (!ret)
11352                         goto unlock;
11353
11354                 if (ret != -ENOENT) {
11355                         pmu = ERR_PTR(ret);
11356                         goto unlock;
11357                 }
11358         }
11359 fail:
11360         pmu = ERR_PTR(-ENOENT);
11361 unlock:
11362         srcu_read_unlock(&pmus_srcu, idx);
11363
11364         return pmu;
11365 }
11366
11367 static void attach_sb_event(struct perf_event *event)
11368 {
11369         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11370
11371         raw_spin_lock(&pel->lock);
11372         list_add_rcu(&event->sb_list, &pel->list);
11373         raw_spin_unlock(&pel->lock);
11374 }
11375
11376 /*
11377  * We keep a list of all !task (and therefore per-cpu) events
11378  * that need to receive side-band records.
11379  *
11380  * This avoids having to scan all the various PMU per-cpu contexts
11381  * looking for them.
11382  */
11383 static void account_pmu_sb_event(struct perf_event *event)
11384 {
11385         if (is_sb_event(event))
11386                 attach_sb_event(event);
11387 }
11388
11389 static void account_event_cpu(struct perf_event *event, int cpu)
11390 {
11391         if (event->parent)
11392                 return;
11393
11394         if (is_cgroup_event(event))
11395                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11396 }
11397
11398 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11399 static void account_freq_event_nohz(void)
11400 {
11401 #ifdef CONFIG_NO_HZ_FULL
11402         /* Lock so we don't race with concurrent unaccount */
11403         spin_lock(&nr_freq_lock);
11404         if (atomic_inc_return(&nr_freq_events) == 1)
11405                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11406         spin_unlock(&nr_freq_lock);
11407 #endif
11408 }
11409
11410 static void account_freq_event(void)
11411 {
11412         if (tick_nohz_full_enabled())
11413                 account_freq_event_nohz();
11414         else
11415                 atomic_inc(&nr_freq_events);
11416 }
11417
11418
11419 static void account_event(struct perf_event *event)
11420 {
11421         bool inc = false;
11422
11423         if (event->parent)
11424                 return;
11425
11426         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11427                 inc = true;
11428         if (event->attr.mmap || event->attr.mmap_data)
11429                 atomic_inc(&nr_mmap_events);
11430         if (event->attr.build_id)
11431                 atomic_inc(&nr_build_id_events);
11432         if (event->attr.comm)
11433                 atomic_inc(&nr_comm_events);
11434         if (event->attr.namespaces)
11435                 atomic_inc(&nr_namespaces_events);
11436         if (event->attr.cgroup)
11437                 atomic_inc(&nr_cgroup_events);
11438         if (event->attr.task)
11439                 atomic_inc(&nr_task_events);
11440         if (event->attr.freq)
11441                 account_freq_event();
11442         if (event->attr.context_switch) {
11443                 atomic_inc(&nr_switch_events);
11444                 inc = true;
11445         }
11446         if (has_branch_stack(event))
11447                 inc = true;
11448         if (is_cgroup_event(event))
11449                 inc = true;
11450         if (event->attr.ksymbol)
11451                 atomic_inc(&nr_ksymbol_events);
11452         if (event->attr.bpf_event)
11453                 atomic_inc(&nr_bpf_events);
11454         if (event->attr.text_poke)
11455                 atomic_inc(&nr_text_poke_events);
11456
11457         if (inc) {
11458                 /*
11459                  * We need the mutex here because static_branch_enable()
11460                  * must complete *before* the perf_sched_count increment
11461                  * becomes visible.
11462                  */
11463                 if (atomic_inc_not_zero(&perf_sched_count))
11464                         goto enabled;
11465
11466                 mutex_lock(&perf_sched_mutex);
11467                 if (!atomic_read(&perf_sched_count)) {
11468                         static_branch_enable(&perf_sched_events);
11469                         /*
11470                          * Guarantee that all CPUs observe they key change and
11471                          * call the perf scheduling hooks before proceeding to
11472                          * install events that need them.
11473                          */
11474                         synchronize_rcu();
11475                 }
11476                 /*
11477                  * Now that we have waited for the sync_sched(), allow further
11478                  * increments to by-pass the mutex.
11479                  */
11480                 atomic_inc(&perf_sched_count);
11481                 mutex_unlock(&perf_sched_mutex);
11482         }
11483 enabled:
11484
11485         account_event_cpu(event, event->cpu);
11486
11487         account_pmu_sb_event(event);
11488 }
11489
11490 /*
11491  * Allocate and initialize an event structure
11492  */
11493 static struct perf_event *
11494 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11495                  struct task_struct *task,
11496                  struct perf_event *group_leader,
11497                  struct perf_event *parent_event,
11498                  perf_overflow_handler_t overflow_handler,
11499                  void *context, int cgroup_fd)
11500 {
11501         struct pmu *pmu;
11502         struct perf_event *event;
11503         struct hw_perf_event *hwc;
11504         long err = -EINVAL;
11505         int node;
11506
11507         if ((unsigned)cpu >= nr_cpu_ids) {
11508                 if (!task || cpu != -1)
11509                         return ERR_PTR(-EINVAL);
11510         }
11511         if (attr->sigtrap && !task) {
11512                 /* Requires a task: avoid signalling random tasks. */
11513                 return ERR_PTR(-EINVAL);
11514         }
11515
11516         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11517         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11518                                       node);
11519         if (!event)
11520                 return ERR_PTR(-ENOMEM);
11521
11522         /*
11523          * Single events are their own group leaders, with an
11524          * empty sibling list:
11525          */
11526         if (!group_leader)
11527                 group_leader = event;
11528
11529         mutex_init(&event->child_mutex);
11530         INIT_LIST_HEAD(&event->child_list);
11531
11532         INIT_LIST_HEAD(&event->event_entry);
11533         INIT_LIST_HEAD(&event->sibling_list);
11534         INIT_LIST_HEAD(&event->active_list);
11535         init_event_group(event);
11536         INIT_LIST_HEAD(&event->rb_entry);
11537         INIT_LIST_HEAD(&event->active_entry);
11538         INIT_LIST_HEAD(&event->addr_filters.list);
11539         INIT_HLIST_NODE(&event->hlist_entry);
11540
11541
11542         init_waitqueue_head(&event->waitq);
11543         event->pending_disable = -1;
11544         init_irq_work(&event->pending, perf_pending_event);
11545
11546         mutex_init(&event->mmap_mutex);
11547         raw_spin_lock_init(&event->addr_filters.lock);
11548
11549         atomic_long_set(&event->refcount, 1);
11550         event->cpu              = cpu;
11551         event->attr             = *attr;
11552         event->group_leader     = group_leader;
11553         event->pmu              = NULL;
11554         event->oncpu            = -1;
11555
11556         event->parent           = parent_event;
11557
11558         event->ns               = get_pid_ns(task_active_pid_ns(current));
11559         event->id               = atomic64_inc_return(&perf_event_id);
11560
11561         event->state            = PERF_EVENT_STATE_INACTIVE;
11562
11563         if (event->attr.sigtrap)
11564                 atomic_set(&event->event_limit, 1);
11565
11566         if (task) {
11567                 event->attach_state = PERF_ATTACH_TASK;
11568                 /*
11569                  * XXX pmu::event_init needs to know what task to account to
11570                  * and we cannot use the ctx information because we need the
11571                  * pmu before we get a ctx.
11572                  */
11573                 event->hw.target = get_task_struct(task);
11574         }
11575
11576         event->clock = &local_clock;
11577         if (parent_event)
11578                 event->clock = parent_event->clock;
11579
11580         if (!overflow_handler && parent_event) {
11581                 overflow_handler = parent_event->overflow_handler;
11582                 context = parent_event->overflow_handler_context;
11583 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11584                 if (overflow_handler == bpf_overflow_handler) {
11585                         struct bpf_prog *prog = parent_event->prog;
11586
11587                         bpf_prog_inc(prog);
11588                         event->prog = prog;
11589                         event->orig_overflow_handler =
11590                                 parent_event->orig_overflow_handler;
11591                 }
11592 #endif
11593         }
11594
11595         if (overflow_handler) {
11596                 event->overflow_handler = overflow_handler;
11597                 event->overflow_handler_context = context;
11598         } else if (is_write_backward(event)){
11599                 event->overflow_handler = perf_event_output_backward;
11600                 event->overflow_handler_context = NULL;
11601         } else {
11602                 event->overflow_handler = perf_event_output_forward;
11603                 event->overflow_handler_context = NULL;
11604         }
11605
11606         perf_event__state_init(event);
11607
11608         pmu = NULL;
11609
11610         hwc = &event->hw;
11611         hwc->sample_period = attr->sample_period;
11612         if (attr->freq && attr->sample_freq)
11613                 hwc->sample_period = 1;
11614         hwc->last_period = hwc->sample_period;
11615
11616         local64_set(&hwc->period_left, hwc->sample_period);
11617
11618         /*
11619          * We currently do not support PERF_SAMPLE_READ on inherited events.
11620          * See perf_output_read().
11621          */
11622         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11623                 goto err_ns;
11624
11625         if (!has_branch_stack(event))
11626                 event->attr.branch_sample_type = 0;
11627
11628         pmu = perf_init_event(event);
11629         if (IS_ERR(pmu)) {
11630                 err = PTR_ERR(pmu);
11631                 goto err_ns;
11632         }
11633
11634         /*
11635          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11636          * be different on other CPUs in the uncore mask.
11637          */
11638         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11639                 err = -EINVAL;
11640                 goto err_pmu;
11641         }
11642
11643         if (event->attr.aux_output &&
11644             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11645                 err = -EOPNOTSUPP;
11646                 goto err_pmu;
11647         }
11648
11649         if (cgroup_fd != -1) {
11650                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11651                 if (err)
11652                         goto err_pmu;
11653         }
11654
11655         err = exclusive_event_init(event);
11656         if (err)
11657                 goto err_pmu;
11658
11659         if (has_addr_filter(event)) {
11660                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11661                                                     sizeof(struct perf_addr_filter_range),
11662                                                     GFP_KERNEL);
11663                 if (!event->addr_filter_ranges) {
11664                         err = -ENOMEM;
11665                         goto err_per_task;
11666                 }
11667
11668                 /*
11669                  * Clone the parent's vma offsets: they are valid until exec()
11670                  * even if the mm is not shared with the parent.
11671                  */
11672                 if (event->parent) {
11673                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11674
11675                         raw_spin_lock_irq(&ifh->lock);
11676                         memcpy(event->addr_filter_ranges,
11677                                event->parent->addr_filter_ranges,
11678                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11679                         raw_spin_unlock_irq(&ifh->lock);
11680                 }
11681
11682                 /* force hw sync on the address filters */
11683                 event->addr_filters_gen = 1;
11684         }
11685
11686         if (!event->parent) {
11687                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11688                         err = get_callchain_buffers(attr->sample_max_stack);
11689                         if (err)
11690                                 goto err_addr_filters;
11691                 }
11692         }
11693
11694         err = security_perf_event_alloc(event);
11695         if (err)
11696                 goto err_callchain_buffer;
11697
11698         /* symmetric to unaccount_event() in _free_event() */
11699         account_event(event);
11700
11701         return event;
11702
11703 err_callchain_buffer:
11704         if (!event->parent) {
11705                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11706                         put_callchain_buffers();
11707         }
11708 err_addr_filters:
11709         kfree(event->addr_filter_ranges);
11710
11711 err_per_task:
11712         exclusive_event_destroy(event);
11713
11714 err_pmu:
11715         if (is_cgroup_event(event))
11716                 perf_detach_cgroup(event);
11717         if (event->destroy)
11718                 event->destroy(event);
11719         module_put(pmu->module);
11720 err_ns:
11721         if (event->ns)
11722                 put_pid_ns(event->ns);
11723         if (event->hw.target)
11724                 put_task_struct(event->hw.target);
11725         kmem_cache_free(perf_event_cache, event);
11726
11727         return ERR_PTR(err);
11728 }
11729
11730 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11731                           struct perf_event_attr *attr)
11732 {
11733         u32 size;
11734         int ret;
11735
11736         /* Zero the full structure, so that a short copy will be nice. */
11737         memset(attr, 0, sizeof(*attr));
11738
11739         ret = get_user(size, &uattr->size);
11740         if (ret)
11741                 return ret;
11742
11743         /* ABI compatibility quirk: */
11744         if (!size)
11745                 size = PERF_ATTR_SIZE_VER0;
11746         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11747                 goto err_size;
11748
11749         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11750         if (ret) {
11751                 if (ret == -E2BIG)
11752                         goto err_size;
11753                 return ret;
11754         }
11755
11756         attr->size = size;
11757
11758         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11759                 return -EINVAL;
11760
11761         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11762                 return -EINVAL;
11763
11764         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11765                 return -EINVAL;
11766
11767         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11768                 u64 mask = attr->branch_sample_type;
11769
11770                 /* only using defined bits */
11771                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11772                         return -EINVAL;
11773
11774                 /* at least one branch bit must be set */
11775                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11776                         return -EINVAL;
11777
11778                 /* propagate priv level, when not set for branch */
11779                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11780
11781                         /* exclude_kernel checked on syscall entry */
11782                         if (!attr->exclude_kernel)
11783                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11784
11785                         if (!attr->exclude_user)
11786                                 mask |= PERF_SAMPLE_BRANCH_USER;
11787
11788                         if (!attr->exclude_hv)
11789                                 mask |= PERF_SAMPLE_BRANCH_HV;
11790                         /*
11791                          * adjust user setting (for HW filter setup)
11792                          */
11793                         attr->branch_sample_type = mask;
11794                 }
11795                 /* privileged levels capture (kernel, hv): check permissions */
11796                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11797                         ret = perf_allow_kernel(attr);
11798                         if (ret)
11799                                 return ret;
11800                 }
11801         }
11802
11803         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11804                 ret = perf_reg_validate(attr->sample_regs_user);
11805                 if (ret)
11806                         return ret;
11807         }
11808
11809         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11810                 if (!arch_perf_have_user_stack_dump())
11811                         return -ENOSYS;
11812
11813                 /*
11814                  * We have __u32 type for the size, but so far
11815                  * we can only use __u16 as maximum due to the
11816                  * __u16 sample size limit.
11817                  */
11818                 if (attr->sample_stack_user >= USHRT_MAX)
11819                         return -EINVAL;
11820                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11821                         return -EINVAL;
11822         }
11823
11824         if (!attr->sample_max_stack)
11825                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11826
11827         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11828                 ret = perf_reg_validate(attr->sample_regs_intr);
11829
11830 #ifndef CONFIG_CGROUP_PERF
11831         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11832                 return -EINVAL;
11833 #endif
11834         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11835             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11836                 return -EINVAL;
11837
11838         if (!attr->inherit && attr->inherit_thread)
11839                 return -EINVAL;
11840
11841         if (attr->remove_on_exec && attr->enable_on_exec)
11842                 return -EINVAL;
11843
11844         if (attr->sigtrap && !attr->remove_on_exec)
11845                 return -EINVAL;
11846
11847 out:
11848         return ret;
11849
11850 err_size:
11851         put_user(sizeof(*attr), &uattr->size);
11852         ret = -E2BIG;
11853         goto out;
11854 }
11855
11856 static int
11857 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11858 {
11859         struct perf_buffer *rb = NULL;
11860         int ret = -EINVAL;
11861
11862         if (!output_event)
11863                 goto set;
11864
11865         /* don't allow circular references */
11866         if (event == output_event)
11867                 goto out;
11868
11869         /*
11870          * Don't allow cross-cpu buffers
11871          */
11872         if (output_event->cpu != event->cpu)
11873                 goto out;
11874
11875         /*
11876          * If its not a per-cpu rb, it must be the same task.
11877          */
11878         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11879                 goto out;
11880
11881         /*
11882          * Mixing clocks in the same buffer is trouble you don't need.
11883          */
11884         if (output_event->clock != event->clock)
11885                 goto out;
11886
11887         /*
11888          * Either writing ring buffer from beginning or from end.
11889          * Mixing is not allowed.
11890          */
11891         if (is_write_backward(output_event) != is_write_backward(event))
11892                 goto out;
11893
11894         /*
11895          * If both events generate aux data, they must be on the same PMU
11896          */
11897         if (has_aux(event) && has_aux(output_event) &&
11898             event->pmu != output_event->pmu)
11899                 goto out;
11900
11901 set:
11902         mutex_lock(&event->mmap_mutex);
11903         /* Can't redirect output if we've got an active mmap() */
11904         if (atomic_read(&event->mmap_count))
11905                 goto unlock;
11906
11907         if (output_event) {
11908                 /* get the rb we want to redirect to */
11909                 rb = ring_buffer_get(output_event);
11910                 if (!rb)
11911                         goto unlock;
11912         }
11913
11914         ring_buffer_attach(event, rb);
11915
11916         ret = 0;
11917 unlock:
11918         mutex_unlock(&event->mmap_mutex);
11919
11920 out:
11921         return ret;
11922 }
11923
11924 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11925 {
11926         if (b < a)
11927                 swap(a, b);
11928
11929         mutex_lock(a);
11930         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11931 }
11932
11933 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11934 {
11935         bool nmi_safe = false;
11936
11937         switch (clk_id) {
11938         case CLOCK_MONOTONIC:
11939                 event->clock = &ktime_get_mono_fast_ns;
11940                 nmi_safe = true;
11941                 break;
11942
11943         case CLOCK_MONOTONIC_RAW:
11944                 event->clock = &ktime_get_raw_fast_ns;
11945                 nmi_safe = true;
11946                 break;
11947
11948         case CLOCK_REALTIME:
11949                 event->clock = &ktime_get_real_ns;
11950                 break;
11951
11952         case CLOCK_BOOTTIME:
11953                 event->clock = &ktime_get_boottime_ns;
11954                 break;
11955
11956         case CLOCK_TAI:
11957                 event->clock = &ktime_get_clocktai_ns;
11958                 break;
11959
11960         default:
11961                 return -EINVAL;
11962         }
11963
11964         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11965                 return -EINVAL;
11966
11967         return 0;
11968 }
11969
11970 /*
11971  * Variation on perf_event_ctx_lock_nested(), except we take two context
11972  * mutexes.
11973  */
11974 static struct perf_event_context *
11975 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11976                              struct perf_event_context *ctx)
11977 {
11978         struct perf_event_context *gctx;
11979
11980 again:
11981         rcu_read_lock();
11982         gctx = READ_ONCE(group_leader->ctx);
11983         if (!refcount_inc_not_zero(&gctx->refcount)) {
11984                 rcu_read_unlock();
11985                 goto again;
11986         }
11987         rcu_read_unlock();
11988
11989         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11990
11991         if (group_leader->ctx != gctx) {
11992                 mutex_unlock(&ctx->mutex);
11993                 mutex_unlock(&gctx->mutex);
11994                 put_ctx(gctx);
11995                 goto again;
11996         }
11997
11998         return gctx;
11999 }
12000
12001 static bool
12002 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12003 {
12004         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12005         bool is_capable = perfmon_capable();
12006
12007         if (attr->sigtrap) {
12008                 /*
12009                  * perf_event_attr::sigtrap sends signals to the other task.
12010                  * Require the current task to also have CAP_KILL.
12011                  */
12012                 rcu_read_lock();
12013                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12014                 rcu_read_unlock();
12015
12016                 /*
12017                  * If the required capabilities aren't available, checks for
12018                  * ptrace permissions: upgrade to ATTACH, since sending signals
12019                  * can effectively change the target task.
12020                  */
12021                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12022         }
12023
12024         /*
12025          * Preserve ptrace permission check for backwards compatibility. The
12026          * ptrace check also includes checks that the current task and other
12027          * task have matching uids, and is therefore not done here explicitly.
12028          */
12029         return is_capable || ptrace_may_access(task, ptrace_mode);
12030 }
12031
12032 /**
12033  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12034  *
12035  * @attr_uptr:  event_id type attributes for monitoring/sampling
12036  * @pid:                target pid
12037  * @cpu:                target cpu
12038  * @group_fd:           group leader event fd
12039  * @flags:              perf event open flags
12040  */
12041 SYSCALL_DEFINE5(perf_event_open,
12042                 struct perf_event_attr __user *, attr_uptr,
12043                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12044 {
12045         struct perf_event *group_leader = NULL, *output_event = NULL;
12046         struct perf_event *event, *sibling;
12047         struct perf_event_attr attr;
12048         struct perf_event_context *ctx, *gctx;
12049         struct file *event_file = NULL;
12050         struct fd group = {NULL, 0};
12051         struct task_struct *task = NULL;
12052         struct pmu *pmu;
12053         int event_fd;
12054         int move_group = 0;
12055         int err;
12056         int f_flags = O_RDWR;
12057         int cgroup_fd = -1;
12058
12059         /* for future expandability... */
12060         if (flags & ~PERF_FLAG_ALL)
12061                 return -EINVAL;
12062
12063         /* Do we allow access to perf_event_open(2) ? */
12064         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12065         if (err)
12066                 return err;
12067
12068         err = perf_copy_attr(attr_uptr, &attr);
12069         if (err)
12070                 return err;
12071
12072         if (!attr.exclude_kernel) {
12073                 err = perf_allow_kernel(&attr);
12074                 if (err)
12075                         return err;
12076         }
12077
12078         if (attr.namespaces) {
12079                 if (!perfmon_capable())
12080                         return -EACCES;
12081         }
12082
12083         if (attr.freq) {
12084                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12085                         return -EINVAL;
12086         } else {
12087                 if (attr.sample_period & (1ULL << 63))
12088                         return -EINVAL;
12089         }
12090
12091         /* Only privileged users can get physical addresses */
12092         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12093                 err = perf_allow_kernel(&attr);
12094                 if (err)
12095                         return err;
12096         }
12097
12098         /* REGS_INTR can leak data, lockdown must prevent this */
12099         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12100                 err = security_locked_down(LOCKDOWN_PERF);
12101                 if (err)
12102                         return err;
12103         }
12104
12105         /*
12106          * In cgroup mode, the pid argument is used to pass the fd
12107          * opened to the cgroup directory in cgroupfs. The cpu argument
12108          * designates the cpu on which to monitor threads from that
12109          * cgroup.
12110          */
12111         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12112                 return -EINVAL;
12113
12114         if (flags & PERF_FLAG_FD_CLOEXEC)
12115                 f_flags |= O_CLOEXEC;
12116
12117         event_fd = get_unused_fd_flags(f_flags);
12118         if (event_fd < 0)
12119                 return event_fd;
12120
12121         if (group_fd != -1) {
12122                 err = perf_fget_light(group_fd, &group);
12123                 if (err)
12124                         goto err_fd;
12125                 group_leader = group.file->private_data;
12126                 if (flags & PERF_FLAG_FD_OUTPUT)
12127                         output_event = group_leader;
12128                 if (flags & PERF_FLAG_FD_NO_GROUP)
12129                         group_leader = NULL;
12130         }
12131
12132         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12133                 task = find_lively_task_by_vpid(pid);
12134                 if (IS_ERR(task)) {
12135                         err = PTR_ERR(task);
12136                         goto err_group_fd;
12137                 }
12138         }
12139
12140         if (task && group_leader &&
12141             group_leader->attr.inherit != attr.inherit) {
12142                 err = -EINVAL;
12143                 goto err_task;
12144         }
12145
12146         if (flags & PERF_FLAG_PID_CGROUP)
12147                 cgroup_fd = pid;
12148
12149         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12150                                  NULL, NULL, cgroup_fd);
12151         if (IS_ERR(event)) {
12152                 err = PTR_ERR(event);
12153                 goto err_task;
12154         }
12155
12156         if (is_sampling_event(event)) {
12157                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12158                         err = -EOPNOTSUPP;
12159                         goto err_alloc;
12160                 }
12161         }
12162
12163         /*
12164          * Special case software events and allow them to be part of
12165          * any hardware group.
12166          */
12167         pmu = event->pmu;
12168
12169         if (attr.use_clockid) {
12170                 err = perf_event_set_clock(event, attr.clockid);
12171                 if (err)
12172                         goto err_alloc;
12173         }
12174
12175         if (pmu->task_ctx_nr == perf_sw_context)
12176                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12177
12178         if (group_leader) {
12179                 if (is_software_event(event) &&
12180                     !in_software_context(group_leader)) {
12181                         /*
12182                          * If the event is a sw event, but the group_leader
12183                          * is on hw context.
12184                          *
12185                          * Allow the addition of software events to hw
12186                          * groups, this is safe because software events
12187                          * never fail to schedule.
12188                          */
12189                         pmu = group_leader->ctx->pmu;
12190                 } else if (!is_software_event(event) &&
12191                            is_software_event(group_leader) &&
12192                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12193                         /*
12194                          * In case the group is a pure software group, and we
12195                          * try to add a hardware event, move the whole group to
12196                          * the hardware context.
12197                          */
12198                         move_group = 1;
12199                 }
12200         }
12201
12202         /*
12203          * Get the target context (task or percpu):
12204          */
12205         ctx = find_get_context(pmu, task, event);
12206         if (IS_ERR(ctx)) {
12207                 err = PTR_ERR(ctx);
12208                 goto err_alloc;
12209         }
12210
12211         /*
12212          * Look up the group leader (we will attach this event to it):
12213          */
12214         if (group_leader) {
12215                 err = -EINVAL;
12216
12217                 /*
12218                  * Do not allow a recursive hierarchy (this new sibling
12219                  * becoming part of another group-sibling):
12220                  */
12221                 if (group_leader->group_leader != group_leader)
12222                         goto err_context;
12223
12224                 /* All events in a group should have the same clock */
12225                 if (group_leader->clock != event->clock)
12226                         goto err_context;
12227
12228                 /*
12229                  * Make sure we're both events for the same CPU;
12230                  * grouping events for different CPUs is broken; since
12231                  * you can never concurrently schedule them anyhow.
12232                  */
12233                 if (group_leader->cpu != event->cpu)
12234                         goto err_context;
12235
12236                 /*
12237                  * Make sure we're both on the same task, or both
12238                  * per-CPU events.
12239                  */
12240                 if (group_leader->ctx->task != ctx->task)
12241                         goto err_context;
12242
12243                 /*
12244                  * Do not allow to attach to a group in a different task
12245                  * or CPU context. If we're moving SW events, we'll fix
12246                  * this up later, so allow that.
12247                  */
12248                 if (!move_group && group_leader->ctx != ctx)
12249                         goto err_context;
12250
12251                 /*
12252                  * Only a group leader can be exclusive or pinned
12253                  */
12254                 if (attr.exclusive || attr.pinned)
12255                         goto err_context;
12256         }
12257
12258         if (output_event) {
12259                 err = perf_event_set_output(event, output_event);
12260                 if (err)
12261                         goto err_context;
12262         }
12263
12264         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12265                                         f_flags);
12266         if (IS_ERR(event_file)) {
12267                 err = PTR_ERR(event_file);
12268                 event_file = NULL;
12269                 goto err_context;
12270         }
12271
12272         if (task) {
12273                 err = down_read_interruptible(&task->signal->exec_update_lock);
12274                 if (err)
12275                         goto err_file;
12276
12277                 /*
12278                  * We must hold exec_update_lock across this and any potential
12279                  * perf_install_in_context() call for this new event to
12280                  * serialize against exec() altering our credentials (and the
12281                  * perf_event_exit_task() that could imply).
12282                  */
12283                 err = -EACCES;
12284                 if (!perf_check_permission(&attr, task))
12285                         goto err_cred;
12286         }
12287
12288         if (move_group) {
12289                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12290
12291                 if (gctx->task == TASK_TOMBSTONE) {
12292                         err = -ESRCH;
12293                         goto err_locked;
12294                 }
12295
12296                 /*
12297                  * Check if we raced against another sys_perf_event_open() call
12298                  * moving the software group underneath us.
12299                  */
12300                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12301                         /*
12302                          * If someone moved the group out from under us, check
12303                          * if this new event wound up on the same ctx, if so
12304                          * its the regular !move_group case, otherwise fail.
12305                          */
12306                         if (gctx != ctx) {
12307                                 err = -EINVAL;
12308                                 goto err_locked;
12309                         } else {
12310                                 perf_event_ctx_unlock(group_leader, gctx);
12311                                 move_group = 0;
12312                         }
12313                 }
12314
12315                 /*
12316                  * Failure to create exclusive events returns -EBUSY.
12317                  */
12318                 err = -EBUSY;
12319                 if (!exclusive_event_installable(group_leader, ctx))
12320                         goto err_locked;
12321
12322                 for_each_sibling_event(sibling, group_leader) {
12323                         if (!exclusive_event_installable(sibling, ctx))
12324                                 goto err_locked;
12325                 }
12326         } else {
12327                 mutex_lock(&ctx->mutex);
12328         }
12329
12330         if (ctx->task == TASK_TOMBSTONE) {
12331                 err = -ESRCH;
12332                 goto err_locked;
12333         }
12334
12335         if (!perf_event_validate_size(event)) {
12336                 err = -E2BIG;
12337                 goto err_locked;
12338         }
12339
12340         if (!task) {
12341                 /*
12342                  * Check if the @cpu we're creating an event for is online.
12343                  *
12344                  * We use the perf_cpu_context::ctx::mutex to serialize against
12345                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12346                  */
12347                 struct perf_cpu_context *cpuctx =
12348                         container_of(ctx, struct perf_cpu_context, ctx);
12349
12350                 if (!cpuctx->online) {
12351                         err = -ENODEV;
12352                         goto err_locked;
12353                 }
12354         }
12355
12356         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12357                 err = -EINVAL;
12358                 goto err_locked;
12359         }
12360
12361         /*
12362          * Must be under the same ctx::mutex as perf_install_in_context(),
12363          * because we need to serialize with concurrent event creation.
12364          */
12365         if (!exclusive_event_installable(event, ctx)) {
12366                 err = -EBUSY;
12367                 goto err_locked;
12368         }
12369
12370         WARN_ON_ONCE(ctx->parent_ctx);
12371
12372         /*
12373          * This is the point on no return; we cannot fail hereafter. This is
12374          * where we start modifying current state.
12375          */
12376
12377         if (move_group) {
12378                 /*
12379                  * See perf_event_ctx_lock() for comments on the details
12380                  * of swizzling perf_event::ctx.
12381                  */
12382                 perf_remove_from_context(group_leader, 0);
12383                 put_ctx(gctx);
12384
12385                 for_each_sibling_event(sibling, group_leader) {
12386                         perf_remove_from_context(sibling, 0);
12387                         put_ctx(gctx);
12388                 }
12389
12390                 /*
12391                  * Wait for everybody to stop referencing the events through
12392                  * the old lists, before installing it on new lists.
12393                  */
12394                 synchronize_rcu();
12395
12396                 /*
12397                  * Install the group siblings before the group leader.
12398                  *
12399                  * Because a group leader will try and install the entire group
12400                  * (through the sibling list, which is still in-tact), we can
12401                  * end up with siblings installed in the wrong context.
12402                  *
12403                  * By installing siblings first we NO-OP because they're not
12404                  * reachable through the group lists.
12405                  */
12406                 for_each_sibling_event(sibling, group_leader) {
12407                         perf_event__state_init(sibling);
12408                         perf_install_in_context(ctx, sibling, sibling->cpu);
12409                         get_ctx(ctx);
12410                 }
12411
12412                 /*
12413                  * Removing from the context ends up with disabled
12414                  * event. What we want here is event in the initial
12415                  * startup state, ready to be add into new context.
12416                  */
12417                 perf_event__state_init(group_leader);
12418                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12419                 get_ctx(ctx);
12420         }
12421
12422         /*
12423          * Precalculate sample_data sizes; do while holding ctx::mutex such
12424          * that we're serialized against further additions and before
12425          * perf_install_in_context() which is the point the event is active and
12426          * can use these values.
12427          */
12428         perf_event__header_size(event);
12429         perf_event__id_header_size(event);
12430
12431         event->owner = current;
12432
12433         perf_install_in_context(ctx, event, event->cpu);
12434         perf_unpin_context(ctx);
12435
12436         if (move_group)
12437                 perf_event_ctx_unlock(group_leader, gctx);
12438         mutex_unlock(&ctx->mutex);
12439
12440         if (task) {
12441                 up_read(&task->signal->exec_update_lock);
12442                 put_task_struct(task);
12443         }
12444
12445         mutex_lock(&current->perf_event_mutex);
12446         list_add_tail(&event->owner_entry, &current->perf_event_list);
12447         mutex_unlock(&current->perf_event_mutex);
12448
12449         /*
12450          * Drop the reference on the group_event after placing the
12451          * new event on the sibling_list. This ensures destruction
12452          * of the group leader will find the pointer to itself in
12453          * perf_group_detach().
12454          */
12455         fdput(group);
12456         fd_install(event_fd, event_file);
12457         return event_fd;
12458
12459 err_locked:
12460         if (move_group)
12461                 perf_event_ctx_unlock(group_leader, gctx);
12462         mutex_unlock(&ctx->mutex);
12463 err_cred:
12464         if (task)
12465                 up_read(&task->signal->exec_update_lock);
12466 err_file:
12467         fput(event_file);
12468 err_context:
12469         perf_unpin_context(ctx);
12470         put_ctx(ctx);
12471 err_alloc:
12472         /*
12473          * If event_file is set, the fput() above will have called ->release()
12474          * and that will take care of freeing the event.
12475          */
12476         if (!event_file)
12477                 free_event(event);
12478 err_task:
12479         if (task)
12480                 put_task_struct(task);
12481 err_group_fd:
12482         fdput(group);
12483 err_fd:
12484         put_unused_fd(event_fd);
12485         return err;
12486 }
12487
12488 /**
12489  * perf_event_create_kernel_counter
12490  *
12491  * @attr: attributes of the counter to create
12492  * @cpu: cpu in which the counter is bound
12493  * @task: task to profile (NULL for percpu)
12494  * @overflow_handler: callback to trigger when we hit the event
12495  * @context: context data could be used in overflow_handler callback
12496  */
12497 struct perf_event *
12498 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12499                                  struct task_struct *task,
12500                                  perf_overflow_handler_t overflow_handler,
12501                                  void *context)
12502 {
12503         struct perf_event_context *ctx;
12504         struct perf_event *event;
12505         int err;
12506
12507         /*
12508          * Grouping is not supported for kernel events, neither is 'AUX',
12509          * make sure the caller's intentions are adjusted.
12510          */
12511         if (attr->aux_output)
12512                 return ERR_PTR(-EINVAL);
12513
12514         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12515                                  overflow_handler, context, -1);
12516         if (IS_ERR(event)) {
12517                 err = PTR_ERR(event);
12518                 goto err;
12519         }
12520
12521         /* Mark owner so we could distinguish it from user events. */
12522         event->owner = TASK_TOMBSTONE;
12523
12524         /*
12525          * Get the target context (task or percpu):
12526          */
12527         ctx = find_get_context(event->pmu, task, event);
12528         if (IS_ERR(ctx)) {
12529                 err = PTR_ERR(ctx);
12530                 goto err_free;
12531         }
12532
12533         WARN_ON_ONCE(ctx->parent_ctx);
12534         mutex_lock(&ctx->mutex);
12535         if (ctx->task == TASK_TOMBSTONE) {
12536                 err = -ESRCH;
12537                 goto err_unlock;
12538         }
12539
12540         if (!task) {
12541                 /*
12542                  * Check if the @cpu we're creating an event for is online.
12543                  *
12544                  * We use the perf_cpu_context::ctx::mutex to serialize against
12545                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12546                  */
12547                 struct perf_cpu_context *cpuctx =
12548                         container_of(ctx, struct perf_cpu_context, ctx);
12549                 if (!cpuctx->online) {
12550                         err = -ENODEV;
12551                         goto err_unlock;
12552                 }
12553         }
12554
12555         if (!exclusive_event_installable(event, ctx)) {
12556                 err = -EBUSY;
12557                 goto err_unlock;
12558         }
12559
12560         perf_install_in_context(ctx, event, event->cpu);
12561         perf_unpin_context(ctx);
12562         mutex_unlock(&ctx->mutex);
12563
12564         return event;
12565
12566 err_unlock:
12567         mutex_unlock(&ctx->mutex);
12568         perf_unpin_context(ctx);
12569         put_ctx(ctx);
12570 err_free:
12571         free_event(event);
12572 err:
12573         return ERR_PTR(err);
12574 }
12575 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12576
12577 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12578 {
12579         struct perf_event_context *src_ctx;
12580         struct perf_event_context *dst_ctx;
12581         struct perf_event *event, *tmp;
12582         LIST_HEAD(events);
12583
12584         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12585         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12586
12587         /*
12588          * See perf_event_ctx_lock() for comments on the details
12589          * of swizzling perf_event::ctx.
12590          */
12591         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12592         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12593                                  event_entry) {
12594                 perf_remove_from_context(event, 0);
12595                 unaccount_event_cpu(event, src_cpu);
12596                 put_ctx(src_ctx);
12597                 list_add(&event->migrate_entry, &events);
12598         }
12599
12600         /*
12601          * Wait for the events to quiesce before re-instating them.
12602          */
12603         synchronize_rcu();
12604
12605         /*
12606          * Re-instate events in 2 passes.
12607          *
12608          * Skip over group leaders and only install siblings on this first
12609          * pass, siblings will not get enabled without a leader, however a
12610          * leader will enable its siblings, even if those are still on the old
12611          * context.
12612          */
12613         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12614                 if (event->group_leader == event)
12615                         continue;
12616
12617                 list_del(&event->migrate_entry);
12618                 if (event->state >= PERF_EVENT_STATE_OFF)
12619                         event->state = PERF_EVENT_STATE_INACTIVE;
12620                 account_event_cpu(event, dst_cpu);
12621                 perf_install_in_context(dst_ctx, event, dst_cpu);
12622                 get_ctx(dst_ctx);
12623         }
12624
12625         /*
12626          * Once all the siblings are setup properly, install the group leaders
12627          * to make it go.
12628          */
12629         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12630                 list_del(&event->migrate_entry);
12631                 if (event->state >= PERF_EVENT_STATE_OFF)
12632                         event->state = PERF_EVENT_STATE_INACTIVE;
12633                 account_event_cpu(event, dst_cpu);
12634                 perf_install_in_context(dst_ctx, event, dst_cpu);
12635                 get_ctx(dst_ctx);
12636         }
12637         mutex_unlock(&dst_ctx->mutex);
12638         mutex_unlock(&src_ctx->mutex);
12639 }
12640 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12641
12642 static void sync_child_event(struct perf_event *child_event)
12643 {
12644         struct perf_event *parent_event = child_event->parent;
12645         u64 child_val;
12646
12647         if (child_event->attr.inherit_stat) {
12648                 struct task_struct *task = child_event->ctx->task;
12649
12650                 if (task && task != TASK_TOMBSTONE)
12651                         perf_event_read_event(child_event, task);
12652         }
12653
12654         child_val = perf_event_count(child_event);
12655
12656         /*
12657          * Add back the child's count to the parent's count:
12658          */
12659         atomic64_add(child_val, &parent_event->child_count);
12660         atomic64_add(child_event->total_time_enabled,
12661                      &parent_event->child_total_time_enabled);
12662         atomic64_add(child_event->total_time_running,
12663                      &parent_event->child_total_time_running);
12664 }
12665
12666 static void
12667 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12668 {
12669         struct perf_event *parent_event = event->parent;
12670         unsigned long detach_flags = 0;
12671
12672         if (parent_event) {
12673                 /*
12674                  * Do not destroy the 'original' grouping; because of the
12675                  * context switch optimization the original events could've
12676                  * ended up in a random child task.
12677                  *
12678                  * If we were to destroy the original group, all group related
12679                  * operations would cease to function properly after this
12680                  * random child dies.
12681                  *
12682                  * Do destroy all inherited groups, we don't care about those
12683                  * and being thorough is better.
12684                  */
12685                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12686                 mutex_lock(&parent_event->child_mutex);
12687         }
12688
12689         perf_remove_from_context(event, detach_flags);
12690
12691         raw_spin_lock_irq(&ctx->lock);
12692         if (event->state > PERF_EVENT_STATE_EXIT)
12693                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12694         raw_spin_unlock_irq(&ctx->lock);
12695
12696         /*
12697          * Child events can be freed.
12698          */
12699         if (parent_event) {
12700                 mutex_unlock(&parent_event->child_mutex);
12701                 /*
12702                  * Kick perf_poll() for is_event_hup();
12703                  */
12704                 perf_event_wakeup(parent_event);
12705                 free_event(event);
12706                 put_event(parent_event);
12707                 return;
12708         }
12709
12710         /*
12711          * Parent events are governed by their filedesc, retain them.
12712          */
12713         perf_event_wakeup(event);
12714 }
12715
12716 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12717 {
12718         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12719         struct perf_event *child_event, *next;
12720
12721         WARN_ON_ONCE(child != current);
12722
12723         child_ctx = perf_pin_task_context(child, ctxn);
12724         if (!child_ctx)
12725                 return;
12726
12727         /*
12728          * In order to reduce the amount of tricky in ctx tear-down, we hold
12729          * ctx::mutex over the entire thing. This serializes against almost
12730          * everything that wants to access the ctx.
12731          *
12732          * The exception is sys_perf_event_open() /
12733          * perf_event_create_kernel_count() which does find_get_context()
12734          * without ctx::mutex (it cannot because of the move_group double mutex
12735          * lock thing). See the comments in perf_install_in_context().
12736          */
12737         mutex_lock(&child_ctx->mutex);
12738
12739         /*
12740          * In a single ctx::lock section, de-schedule the events and detach the
12741          * context from the task such that we cannot ever get it scheduled back
12742          * in.
12743          */
12744         raw_spin_lock_irq(&child_ctx->lock);
12745         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12746
12747         /*
12748          * Now that the context is inactive, destroy the task <-> ctx relation
12749          * and mark the context dead.
12750          */
12751         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12752         put_ctx(child_ctx); /* cannot be last */
12753         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12754         put_task_struct(current); /* cannot be last */
12755
12756         clone_ctx = unclone_ctx(child_ctx);
12757         raw_spin_unlock_irq(&child_ctx->lock);
12758
12759         if (clone_ctx)
12760                 put_ctx(clone_ctx);
12761
12762         /*
12763          * Report the task dead after unscheduling the events so that we
12764          * won't get any samples after PERF_RECORD_EXIT. We can however still
12765          * get a few PERF_RECORD_READ events.
12766          */
12767         perf_event_task(child, child_ctx, 0);
12768
12769         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12770                 perf_event_exit_event(child_event, child_ctx);
12771
12772         mutex_unlock(&child_ctx->mutex);
12773
12774         put_ctx(child_ctx);
12775 }
12776
12777 /*
12778  * When a child task exits, feed back event values to parent events.
12779  *
12780  * Can be called with exec_update_lock held when called from
12781  * setup_new_exec().
12782  */
12783 void perf_event_exit_task(struct task_struct *child)
12784 {
12785         struct perf_event *event, *tmp;
12786         int ctxn;
12787
12788         mutex_lock(&child->perf_event_mutex);
12789         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12790                                  owner_entry) {
12791                 list_del_init(&event->owner_entry);
12792
12793                 /*
12794                  * Ensure the list deletion is visible before we clear
12795                  * the owner, closes a race against perf_release() where
12796                  * we need to serialize on the owner->perf_event_mutex.
12797                  */
12798                 smp_store_release(&event->owner, NULL);
12799         }
12800         mutex_unlock(&child->perf_event_mutex);
12801
12802         for_each_task_context_nr(ctxn)
12803                 perf_event_exit_task_context(child, ctxn);
12804
12805         /*
12806          * The perf_event_exit_task_context calls perf_event_task
12807          * with child's task_ctx, which generates EXIT events for
12808          * child contexts and sets child->perf_event_ctxp[] to NULL.
12809          * At this point we need to send EXIT events to cpu contexts.
12810          */
12811         perf_event_task(child, NULL, 0);
12812 }
12813
12814 static void perf_free_event(struct perf_event *event,
12815                             struct perf_event_context *ctx)
12816 {
12817         struct perf_event *parent = event->parent;
12818
12819         if (WARN_ON_ONCE(!parent))
12820                 return;
12821
12822         mutex_lock(&parent->child_mutex);
12823         list_del_init(&event->child_list);
12824         mutex_unlock(&parent->child_mutex);
12825
12826         put_event(parent);
12827
12828         raw_spin_lock_irq(&ctx->lock);
12829         perf_group_detach(event);
12830         list_del_event(event, ctx);
12831         raw_spin_unlock_irq(&ctx->lock);
12832         free_event(event);
12833 }
12834
12835 /*
12836  * Free a context as created by inheritance by perf_event_init_task() below,
12837  * used by fork() in case of fail.
12838  *
12839  * Even though the task has never lived, the context and events have been
12840  * exposed through the child_list, so we must take care tearing it all down.
12841  */
12842 void perf_event_free_task(struct task_struct *task)
12843 {
12844         struct perf_event_context *ctx;
12845         struct perf_event *event, *tmp;
12846         int ctxn;
12847
12848         for_each_task_context_nr(ctxn) {
12849                 ctx = task->perf_event_ctxp[ctxn];
12850                 if (!ctx)
12851                         continue;
12852
12853                 mutex_lock(&ctx->mutex);
12854                 raw_spin_lock_irq(&ctx->lock);
12855                 /*
12856                  * Destroy the task <-> ctx relation and mark the context dead.
12857                  *
12858                  * This is important because even though the task hasn't been
12859                  * exposed yet the context has been (through child_list).
12860                  */
12861                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12862                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12863                 put_task_struct(task); /* cannot be last */
12864                 raw_spin_unlock_irq(&ctx->lock);
12865
12866                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12867                         perf_free_event(event, ctx);
12868
12869                 mutex_unlock(&ctx->mutex);
12870
12871                 /*
12872                  * perf_event_release_kernel() could've stolen some of our
12873                  * child events and still have them on its free_list. In that
12874                  * case we must wait for these events to have been freed (in
12875                  * particular all their references to this task must've been
12876                  * dropped).
12877                  *
12878                  * Without this copy_process() will unconditionally free this
12879                  * task (irrespective of its reference count) and
12880                  * _free_event()'s put_task_struct(event->hw.target) will be a
12881                  * use-after-free.
12882                  *
12883                  * Wait for all events to drop their context reference.
12884                  */
12885                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12886                 put_ctx(ctx); /* must be last */
12887         }
12888 }
12889
12890 void perf_event_delayed_put(struct task_struct *task)
12891 {
12892         int ctxn;
12893
12894         for_each_task_context_nr(ctxn)
12895                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12896 }
12897
12898 struct file *perf_event_get(unsigned int fd)
12899 {
12900         struct file *file = fget(fd);
12901         if (!file)
12902                 return ERR_PTR(-EBADF);
12903
12904         if (file->f_op != &perf_fops) {
12905                 fput(file);
12906                 return ERR_PTR(-EBADF);
12907         }
12908
12909         return file;
12910 }
12911
12912 const struct perf_event *perf_get_event(struct file *file)
12913 {
12914         if (file->f_op != &perf_fops)
12915                 return ERR_PTR(-EINVAL);
12916
12917         return file->private_data;
12918 }
12919
12920 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12921 {
12922         if (!event)
12923                 return ERR_PTR(-EINVAL);
12924
12925         return &event->attr;
12926 }
12927
12928 /*
12929  * Inherit an event from parent task to child task.
12930  *
12931  * Returns:
12932  *  - valid pointer on success
12933  *  - NULL for orphaned events
12934  *  - IS_ERR() on error
12935  */
12936 static struct perf_event *
12937 inherit_event(struct perf_event *parent_event,
12938               struct task_struct *parent,
12939               struct perf_event_context *parent_ctx,
12940               struct task_struct *child,
12941               struct perf_event *group_leader,
12942               struct perf_event_context *child_ctx)
12943 {
12944         enum perf_event_state parent_state = parent_event->state;
12945         struct perf_event *child_event;
12946         unsigned long flags;
12947
12948         /*
12949          * Instead of creating recursive hierarchies of events,
12950          * we link inherited events back to the original parent,
12951          * which has a filp for sure, which we use as the reference
12952          * count:
12953          */
12954         if (parent_event->parent)
12955                 parent_event = parent_event->parent;
12956
12957         child_event = perf_event_alloc(&parent_event->attr,
12958                                            parent_event->cpu,
12959                                            child,
12960                                            group_leader, parent_event,
12961                                            NULL, NULL, -1);
12962         if (IS_ERR(child_event))
12963                 return child_event;
12964
12965
12966         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12967             !child_ctx->task_ctx_data) {
12968                 struct pmu *pmu = child_event->pmu;
12969
12970                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12971                 if (!child_ctx->task_ctx_data) {
12972                         free_event(child_event);
12973                         return ERR_PTR(-ENOMEM);
12974                 }
12975         }
12976
12977         /*
12978          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12979          * must be under the same lock in order to serialize against
12980          * perf_event_release_kernel(), such that either we must observe
12981          * is_orphaned_event() or they will observe us on the child_list.
12982          */
12983         mutex_lock(&parent_event->child_mutex);
12984         if (is_orphaned_event(parent_event) ||
12985             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12986                 mutex_unlock(&parent_event->child_mutex);
12987                 /* task_ctx_data is freed with child_ctx */
12988                 free_event(child_event);
12989                 return NULL;
12990         }
12991
12992         get_ctx(child_ctx);
12993
12994         /*
12995          * Make the child state follow the state of the parent event,
12996          * not its attr.disabled bit.  We hold the parent's mutex,
12997          * so we won't race with perf_event_{en, dis}able_family.
12998          */
12999         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13000                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13001         else
13002                 child_event->state = PERF_EVENT_STATE_OFF;
13003
13004         if (parent_event->attr.freq) {
13005                 u64 sample_period = parent_event->hw.sample_period;
13006                 struct hw_perf_event *hwc = &child_event->hw;
13007
13008                 hwc->sample_period = sample_period;
13009                 hwc->last_period   = sample_period;
13010
13011                 local64_set(&hwc->period_left, sample_period);
13012         }
13013
13014         child_event->ctx = child_ctx;
13015         child_event->overflow_handler = parent_event->overflow_handler;
13016         child_event->overflow_handler_context
13017                 = parent_event->overflow_handler_context;
13018
13019         /*
13020          * Precalculate sample_data sizes
13021          */
13022         perf_event__header_size(child_event);
13023         perf_event__id_header_size(child_event);
13024
13025         /*
13026          * Link it up in the child's context:
13027          */
13028         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13029         add_event_to_ctx(child_event, child_ctx);
13030         child_event->attach_state |= PERF_ATTACH_CHILD;
13031         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13032
13033         /*
13034          * Link this into the parent event's child list
13035          */
13036         list_add_tail(&child_event->child_list, &parent_event->child_list);
13037         mutex_unlock(&parent_event->child_mutex);
13038
13039         return child_event;
13040 }
13041
13042 /*
13043  * Inherits an event group.
13044  *
13045  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13046  * This matches with perf_event_release_kernel() removing all child events.
13047  *
13048  * Returns:
13049  *  - 0 on success
13050  *  - <0 on error
13051  */
13052 static int inherit_group(struct perf_event *parent_event,
13053               struct task_struct *parent,
13054               struct perf_event_context *parent_ctx,
13055               struct task_struct *child,
13056               struct perf_event_context *child_ctx)
13057 {
13058         struct perf_event *leader;
13059         struct perf_event *sub;
13060         struct perf_event *child_ctr;
13061
13062         leader = inherit_event(parent_event, parent, parent_ctx,
13063                                  child, NULL, child_ctx);
13064         if (IS_ERR(leader))
13065                 return PTR_ERR(leader);
13066         /*
13067          * @leader can be NULL here because of is_orphaned_event(). In this
13068          * case inherit_event() will create individual events, similar to what
13069          * perf_group_detach() would do anyway.
13070          */
13071         for_each_sibling_event(sub, parent_event) {
13072                 child_ctr = inherit_event(sub, parent, parent_ctx,
13073                                             child, leader, child_ctx);
13074                 if (IS_ERR(child_ctr))
13075                         return PTR_ERR(child_ctr);
13076
13077                 if (sub->aux_event == parent_event && child_ctr &&
13078                     !perf_get_aux_event(child_ctr, leader))
13079                         return -EINVAL;
13080         }
13081         return 0;
13082 }
13083
13084 /*
13085  * Creates the child task context and tries to inherit the event-group.
13086  *
13087  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13088  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13089  * consistent with perf_event_release_kernel() removing all child events.
13090  *
13091  * Returns:
13092  *  - 0 on success
13093  *  - <0 on error
13094  */
13095 static int
13096 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13097                    struct perf_event_context *parent_ctx,
13098                    struct task_struct *child, int ctxn,
13099                    u64 clone_flags, int *inherited_all)
13100 {
13101         int ret;
13102         struct perf_event_context *child_ctx;
13103
13104         if (!event->attr.inherit ||
13105             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13106             /* Do not inherit if sigtrap and signal handlers were cleared. */
13107             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13108                 *inherited_all = 0;
13109                 return 0;
13110         }
13111
13112         child_ctx = child->perf_event_ctxp[ctxn];
13113         if (!child_ctx) {
13114                 /*
13115                  * This is executed from the parent task context, so
13116                  * inherit events that have been marked for cloning.
13117                  * First allocate and initialize a context for the
13118                  * child.
13119                  */
13120                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13121                 if (!child_ctx)
13122                         return -ENOMEM;
13123
13124                 child->perf_event_ctxp[ctxn] = child_ctx;
13125         }
13126
13127         ret = inherit_group(event, parent, parent_ctx,
13128                             child, child_ctx);
13129
13130         if (ret)
13131                 *inherited_all = 0;
13132
13133         return ret;
13134 }
13135
13136 /*
13137  * Initialize the perf_event context in task_struct
13138  */
13139 static int perf_event_init_context(struct task_struct *child, int ctxn,
13140                                    u64 clone_flags)
13141 {
13142         struct perf_event_context *child_ctx, *parent_ctx;
13143         struct perf_event_context *cloned_ctx;
13144         struct perf_event *event;
13145         struct task_struct *parent = current;
13146         int inherited_all = 1;
13147         unsigned long flags;
13148         int ret = 0;
13149
13150         if (likely(!parent->perf_event_ctxp[ctxn]))
13151                 return 0;
13152
13153         /*
13154          * If the parent's context is a clone, pin it so it won't get
13155          * swapped under us.
13156          */
13157         parent_ctx = perf_pin_task_context(parent, ctxn);
13158         if (!parent_ctx)
13159                 return 0;
13160
13161         /*
13162          * No need to check if parent_ctx != NULL here; since we saw
13163          * it non-NULL earlier, the only reason for it to become NULL
13164          * is if we exit, and since we're currently in the middle of
13165          * a fork we can't be exiting at the same time.
13166          */
13167
13168         /*
13169          * Lock the parent list. No need to lock the child - not PID
13170          * hashed yet and not running, so nobody can access it.
13171          */
13172         mutex_lock(&parent_ctx->mutex);
13173
13174         /*
13175          * We dont have to disable NMIs - we are only looking at
13176          * the list, not manipulating it:
13177          */
13178         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13179                 ret = inherit_task_group(event, parent, parent_ctx,
13180                                          child, ctxn, clone_flags,
13181                                          &inherited_all);
13182                 if (ret)
13183                         goto out_unlock;
13184         }
13185
13186         /*
13187          * We can't hold ctx->lock when iterating the ->flexible_group list due
13188          * to allocations, but we need to prevent rotation because
13189          * rotate_ctx() will change the list from interrupt context.
13190          */
13191         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13192         parent_ctx->rotate_disable = 1;
13193         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13194
13195         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13196                 ret = inherit_task_group(event, parent, parent_ctx,
13197                                          child, ctxn, clone_flags,
13198                                          &inherited_all);
13199                 if (ret)
13200                         goto out_unlock;
13201         }
13202
13203         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13204         parent_ctx->rotate_disable = 0;
13205
13206         child_ctx = child->perf_event_ctxp[ctxn];
13207
13208         if (child_ctx && inherited_all) {
13209                 /*
13210                  * Mark the child context as a clone of the parent
13211                  * context, or of whatever the parent is a clone of.
13212                  *
13213                  * Note that if the parent is a clone, the holding of
13214                  * parent_ctx->lock avoids it from being uncloned.
13215                  */
13216                 cloned_ctx = parent_ctx->parent_ctx;
13217                 if (cloned_ctx) {
13218                         child_ctx->parent_ctx = cloned_ctx;
13219                         child_ctx->parent_gen = parent_ctx->parent_gen;
13220                 } else {
13221                         child_ctx->parent_ctx = parent_ctx;
13222                         child_ctx->parent_gen = parent_ctx->generation;
13223                 }
13224                 get_ctx(child_ctx->parent_ctx);
13225         }
13226
13227         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13228 out_unlock:
13229         mutex_unlock(&parent_ctx->mutex);
13230
13231         perf_unpin_context(parent_ctx);
13232         put_ctx(parent_ctx);
13233
13234         return ret;
13235 }
13236
13237 /*
13238  * Initialize the perf_event context in task_struct
13239  */
13240 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13241 {
13242         int ctxn, ret;
13243
13244         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13245         mutex_init(&child->perf_event_mutex);
13246         INIT_LIST_HEAD(&child->perf_event_list);
13247
13248         for_each_task_context_nr(ctxn) {
13249                 ret = perf_event_init_context(child, ctxn, clone_flags);
13250                 if (ret) {
13251                         perf_event_free_task(child);
13252                         return ret;
13253                 }
13254         }
13255
13256         return 0;
13257 }
13258
13259 static void __init perf_event_init_all_cpus(void)
13260 {
13261         struct swevent_htable *swhash;
13262         int cpu;
13263
13264         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13265
13266         for_each_possible_cpu(cpu) {
13267                 swhash = &per_cpu(swevent_htable, cpu);
13268                 mutex_init(&swhash->hlist_mutex);
13269                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13270
13271                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13272                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13273
13274 #ifdef CONFIG_CGROUP_PERF
13275                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13276 #endif
13277                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13278         }
13279 }
13280
13281 static void perf_swevent_init_cpu(unsigned int cpu)
13282 {
13283         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13284
13285         mutex_lock(&swhash->hlist_mutex);
13286         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13287                 struct swevent_hlist *hlist;
13288
13289                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13290                 WARN_ON(!hlist);
13291                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13292         }
13293         mutex_unlock(&swhash->hlist_mutex);
13294 }
13295
13296 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13297 static void __perf_event_exit_context(void *__info)
13298 {
13299         struct perf_event_context *ctx = __info;
13300         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13301         struct perf_event *event;
13302
13303         raw_spin_lock(&ctx->lock);
13304         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13305         list_for_each_entry(event, &ctx->event_list, event_entry)
13306                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13307         raw_spin_unlock(&ctx->lock);
13308 }
13309
13310 static void perf_event_exit_cpu_context(int cpu)
13311 {
13312         struct perf_cpu_context *cpuctx;
13313         struct perf_event_context *ctx;
13314         struct pmu *pmu;
13315
13316         mutex_lock(&pmus_lock);
13317         list_for_each_entry(pmu, &pmus, entry) {
13318                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13319                 ctx = &cpuctx->ctx;
13320
13321                 mutex_lock(&ctx->mutex);
13322                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13323                 cpuctx->online = 0;
13324                 mutex_unlock(&ctx->mutex);
13325         }
13326         cpumask_clear_cpu(cpu, perf_online_mask);
13327         mutex_unlock(&pmus_lock);
13328 }
13329 #else
13330
13331 static void perf_event_exit_cpu_context(int cpu) { }
13332
13333 #endif
13334
13335 int perf_event_init_cpu(unsigned int cpu)
13336 {
13337         struct perf_cpu_context *cpuctx;
13338         struct perf_event_context *ctx;
13339         struct pmu *pmu;
13340
13341         perf_swevent_init_cpu(cpu);
13342
13343         mutex_lock(&pmus_lock);
13344         cpumask_set_cpu(cpu, perf_online_mask);
13345         list_for_each_entry(pmu, &pmus, entry) {
13346                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13347                 ctx = &cpuctx->ctx;
13348
13349                 mutex_lock(&ctx->mutex);
13350                 cpuctx->online = 1;
13351                 mutex_unlock(&ctx->mutex);
13352         }
13353         mutex_unlock(&pmus_lock);
13354
13355         return 0;
13356 }
13357
13358 int perf_event_exit_cpu(unsigned int cpu)
13359 {
13360         perf_event_exit_cpu_context(cpu);
13361         return 0;
13362 }
13363
13364 static int
13365 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13366 {
13367         int cpu;
13368
13369         for_each_online_cpu(cpu)
13370                 perf_event_exit_cpu(cpu);
13371
13372         return NOTIFY_OK;
13373 }
13374
13375 /*
13376  * Run the perf reboot notifier at the very last possible moment so that
13377  * the generic watchdog code runs as long as possible.
13378  */
13379 static struct notifier_block perf_reboot_notifier = {
13380         .notifier_call = perf_reboot,
13381         .priority = INT_MIN,
13382 };
13383
13384 void __init perf_event_init(void)
13385 {
13386         int ret;
13387
13388         idr_init(&pmu_idr);
13389
13390         perf_event_init_all_cpus();
13391         init_srcu_struct(&pmus_srcu);
13392         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13393         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13394         perf_pmu_register(&perf_task_clock, NULL, -1);
13395         perf_tp_register();
13396         perf_event_init_cpu(smp_processor_id());
13397         register_reboot_notifier(&perf_reboot_notifier);
13398
13399         ret = init_hw_breakpoint();
13400         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13401
13402         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13403
13404         /*
13405          * Build time assertion that we keep the data_head at the intended
13406          * location.  IOW, validation we got the __reserved[] size right.
13407          */
13408         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13409                      != 1024);
13410 }
13411
13412 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13413                               char *page)
13414 {
13415         struct perf_pmu_events_attr *pmu_attr =
13416                 container_of(attr, struct perf_pmu_events_attr, attr);
13417
13418         if (pmu_attr->event_str)
13419                 return sprintf(page, "%s\n", pmu_attr->event_str);
13420
13421         return 0;
13422 }
13423 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13424
13425 static int __init perf_event_sysfs_init(void)
13426 {
13427         struct pmu *pmu;
13428         int ret;
13429
13430         mutex_lock(&pmus_lock);
13431
13432         ret = bus_register(&pmu_bus);
13433         if (ret)
13434                 goto unlock;
13435
13436         list_for_each_entry(pmu, &pmus, entry) {
13437                 if (!pmu->name || pmu->type < 0)
13438                         continue;
13439
13440                 ret = pmu_dev_alloc(pmu);
13441                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13442         }
13443         pmu_bus_running = 1;
13444         ret = 0;
13445
13446 unlock:
13447         mutex_unlock(&pmus_lock);
13448
13449         return ret;
13450 }
13451 device_initcall(perf_event_sysfs_init);
13452
13453 #ifdef CONFIG_CGROUP_PERF
13454 static struct cgroup_subsys_state *
13455 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13456 {
13457         struct perf_cgroup *jc;
13458
13459         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13460         if (!jc)
13461                 return ERR_PTR(-ENOMEM);
13462
13463         jc->info = alloc_percpu(struct perf_cgroup_info);
13464         if (!jc->info) {
13465                 kfree(jc);
13466                 return ERR_PTR(-ENOMEM);
13467         }
13468
13469         return &jc->css;
13470 }
13471
13472 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13473 {
13474         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13475
13476         free_percpu(jc->info);
13477         kfree(jc);
13478 }
13479
13480 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13481 {
13482         perf_event_cgroup(css->cgroup);
13483         return 0;
13484 }
13485
13486 static int __perf_cgroup_move(void *info)
13487 {
13488         struct task_struct *task = info;
13489         rcu_read_lock();
13490         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13491         rcu_read_unlock();
13492         return 0;
13493 }
13494
13495 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13496 {
13497         struct task_struct *task;
13498         struct cgroup_subsys_state *css;
13499
13500         cgroup_taskset_for_each(task, css, tset)
13501                 task_function_call(task, __perf_cgroup_move, task);
13502 }
13503
13504 struct cgroup_subsys perf_event_cgrp_subsys = {
13505         .css_alloc      = perf_cgroup_css_alloc,
13506         .css_free       = perf_cgroup_css_free,
13507         .css_online     = perf_cgroup_css_online,
13508         .attach         = perf_cgroup_attach,
13509         /*
13510          * Implicitly enable on dfl hierarchy so that perf events can
13511          * always be filtered by cgroup2 path as long as perf_event
13512          * controller is not mounted on a legacy hierarchy.
13513          */
13514         .implicit_on_dfl = true,
13515         .threaded       = true,
13516 };
13517 #endif /* CONFIG_CGROUP_PERF */
13518
13519 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);