Merge tag 'omap-for-v5.0/fixes-rc7-signed' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret;
440         int perf_cpu = sysctl_perf_cpu_time_max_percent;
441         /*
442          * If throttling is disabled don't allow the write:
443          */
444         if (write && (perf_cpu == 100 || perf_cpu == 0))
445                 return -EINVAL;
446
447         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
448         if (ret || !write)
449                 return ret;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         for_each_sibling_event(sibling, leader)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp = cpuctx->cgrp;
728         struct cgroup_subsys_state *css;
729
730         if (cgrp) {
731                 for (css = &cgrp->css; css; css = css->parent) {
732                         cgrp = container_of(css, struct perf_cgroup, css);
733                         __update_cgrp_time(cgrp);
734                 }
735         }
736 }
737
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740         struct perf_cgroup *cgrp;
741
742         /*
743          * ensure we access cgroup data only when needed and
744          * when we know the cgroup is pinned (css_get)
745          */
746         if (!is_cgroup_event(event))
747                 return;
748
749         cgrp = perf_cgroup_from_task(current, event->ctx);
750         /*
751          * Do not update time when cgroup is not active
752          */
753         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754                 __update_cgrp_time(event->cgrp);
755 }
756
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759                           struct perf_event_context *ctx)
760 {
761         struct perf_cgroup *cgrp;
762         struct perf_cgroup_info *info;
763         struct cgroup_subsys_state *css;
764
765         /*
766          * ctx->lock held by caller
767          * ensure we do not access cgroup data
768          * unless we have the cgroup pinned (css_get)
769          */
770         if (!task || !ctx->nr_cgroups)
771                 return;
772
773         cgrp = perf_cgroup_from_task(task, ctx);
774
775         for (css = &cgrp->css; css; css = css->parent) {
776                 cgrp = container_of(css, struct perf_cgroup, css);
777                 info = this_cpu_ptr(cgrp->info);
778                 info->timestamp = ctx->timestamp;
779         }
780 }
781
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
784 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
786
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795         struct perf_cpu_context *cpuctx;
796         struct list_head *list;
797         unsigned long flags;
798
799         /*
800          * Disable interrupts and preemption to avoid this CPU's
801          * cgrp_cpuctx_entry to change under us.
802          */
803         local_irq_save(flags);
804
805         list = this_cpu_ptr(&cgrp_cpuctx_list);
806         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808
809                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810                 perf_pmu_disable(cpuctx->ctx.pmu);
811
812                 if (mode & PERF_CGROUP_SWOUT) {
813                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814                         /*
815                          * must not be done before ctxswout due
816                          * to event_filter_match() in event_sched_out()
817                          */
818                         cpuctx->cgrp = NULL;
819                 }
820
821                 if (mode & PERF_CGROUP_SWIN) {
822                         WARN_ON_ONCE(cpuctx->cgrp);
823                         /*
824                          * set cgrp before ctxsw in to allow
825                          * event_filter_match() to not have to pass
826                          * task around
827                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
828                          * because cgorup events are only per-cpu
829                          */
830                         cpuctx->cgrp = perf_cgroup_from_task(task,
831                                                              &cpuctx->ctx);
832                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833                 }
834                 perf_pmu_enable(cpuctx->ctx.pmu);
835                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836         }
837
838         local_irq_restore(flags);
839 }
840
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842                                          struct task_struct *next)
843 {
844         struct perf_cgroup *cgrp1;
845         struct perf_cgroup *cgrp2 = NULL;
846
847         rcu_read_lock();
848         /*
849          * we come here when we know perf_cgroup_events > 0
850          * we do not need to pass the ctx here because we know
851          * we are holding the rcu lock
852          */
853         cgrp1 = perf_cgroup_from_task(task, NULL);
854         cgrp2 = perf_cgroup_from_task(next, NULL);
855
856         /*
857          * only schedule out current cgroup events if we know
858          * that we are switching to a different cgroup. Otherwise,
859          * do no touch the cgroup events.
860          */
861         if (cgrp1 != cgrp2)
862                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863
864         rcu_read_unlock();
865 }
866
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868                                         struct task_struct *task)
869 {
870         struct perf_cgroup *cgrp1;
871         struct perf_cgroup *cgrp2 = NULL;
872
873         rcu_read_lock();
874         /*
875          * we come here when we know perf_cgroup_events > 0
876          * we do not need to pass the ctx here because we know
877          * we are holding the rcu lock
878          */
879         cgrp1 = perf_cgroup_from_task(task, NULL);
880         cgrp2 = perf_cgroup_from_task(prev, NULL);
881
882         /*
883          * only need to schedule in cgroup events if we are changing
884          * cgroup during ctxsw. Cgroup events were not scheduled
885          * out of ctxsw out if that was not the case.
886          */
887         if (cgrp1 != cgrp2)
888                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889
890         rcu_read_unlock();
891 }
892
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894                                       struct perf_event_attr *attr,
895                                       struct perf_event *group_leader)
896 {
897         struct perf_cgroup *cgrp;
898         struct cgroup_subsys_state *css;
899         struct fd f = fdget(fd);
900         int ret = 0;
901
902         if (!f.file)
903                 return -EBADF;
904
905         css = css_tryget_online_from_dir(f.file->f_path.dentry,
906                                          &perf_event_cgrp_subsys);
907         if (IS_ERR(css)) {
908                 ret = PTR_ERR(css);
909                 goto out;
910         }
911
912         cgrp = container_of(css, struct perf_cgroup, css);
913         event->cgrp = cgrp;
914
915         /*
916          * all events in a group must monitor
917          * the same cgroup because a task belongs
918          * to only one perf cgroup at a time
919          */
920         if (group_leader && group_leader->cgrp != cgrp) {
921                 perf_detach_cgroup(event);
922                 ret = -EINVAL;
923         }
924 out:
925         fdput(f);
926         return ret;
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932         struct perf_cgroup_info *t;
933         t = per_cpu_ptr(event->cgrp->info, event->cpu);
934         event->shadow_ctx_time = now - t->timestamp;
935 }
936
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943                          struct perf_event_context *ctx, bool add)
944 {
945         struct perf_cpu_context *cpuctx;
946         struct list_head *cpuctx_entry;
947
948         if (!is_cgroup_event(event))
949                 return;
950
951         /*
952          * Because cgroup events are always per-cpu events,
953          * this will always be called from the right CPU.
954          */
955         cpuctx = __get_cpu_context(ctx);
956
957         /*
958          * Since setting cpuctx->cgrp is conditional on the current @cgrp
959          * matching the event's cgroup, we must do this for every new event,
960          * because if the first would mismatch, the second would not try again
961          * and we would leave cpuctx->cgrp unset.
962          */
963         if (add && !cpuctx->cgrp) {
964                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
966                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967                         cpuctx->cgrp = cgrp;
968         }
969
970         if (add && ctx->nr_cgroups++)
971                 return;
972         else if (!add && --ctx->nr_cgroups)
973                 return;
974
975         /* no cgroup running */
976         if (!add)
977                 cpuctx->cgrp = NULL;
978
979         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980         if (add)
981                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982         else
983                 list_del(cpuctx_entry);
984 }
985
986 #else /* !CONFIG_CGROUP_PERF */
987
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991         return true;
992 }
993
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999         return 0;
1000 }
1001
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011                                          struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016                                         struct task_struct *task)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                       struct perf_event_attr *attr,
1022                                       struct perf_event *group_leader)
1023 {
1024         return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029                           struct perf_event_context *ctx)
1030 {
1031 }
1032
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045         return 0;
1046 }
1047
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050                          struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053
1054 #endif
1055
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066         struct perf_cpu_context *cpuctx;
1067         bool rotations;
1068
1069         lockdep_assert_irqs_disabled();
1070
1071         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072         rotations = perf_rotate_context(cpuctx);
1073
1074         raw_spin_lock(&cpuctx->hrtimer_lock);
1075         if (rotations)
1076                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077         else
1078                 cpuctx->hrtimer_active = 0;
1079         raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086         struct hrtimer *timer = &cpuctx->hrtimer;
1087         struct pmu *pmu = cpuctx->ctx.pmu;
1088         u64 interval;
1089
1090         /* no multiplexing needed for SW PMU */
1091         if (pmu->task_ctx_nr == perf_sw_context)
1092                 return;
1093
1094         /*
1095          * check default is sane, if not set then force to
1096          * default interval (1/tick)
1097          */
1098         interval = pmu->hrtimer_interval_ms;
1099         if (interval < 1)
1100                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106         timer->function = perf_mux_hrtimer_handler;
1107 }
1108
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111         struct hrtimer *timer = &cpuctx->hrtimer;
1112         struct pmu *pmu = cpuctx->ctx.pmu;
1113         unsigned long flags;
1114
1115         /* not for SW PMU */
1116         if (pmu->task_ctx_nr == perf_sw_context)
1117                 return 0;
1118
1119         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120         if (!cpuctx->hrtimer_active) {
1121                 cpuctx->hrtimer_active = 1;
1122                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124         }
1125         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127         return 0;
1128 }
1129
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133         if (!(*count)++)
1134                 pmu->pmu_disable(pmu);
1135 }
1136
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140         if (!--(*count))
1141                 pmu->pmu_enable(pmu);
1142 }
1143
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156         lockdep_assert_irqs_disabled();
1157
1158         WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160         list_add(&ctx->active_ctx_list, head);
1161 }
1162
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165         lockdep_assert_irqs_disabled();
1166
1167         WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169         list_del_init(&ctx->active_ctx_list);
1170 }
1171
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179         struct perf_event_context *ctx;
1180
1181         ctx = container_of(head, struct perf_event_context, rcu_head);
1182         kfree(ctx->task_ctx_data);
1183         kfree(ctx);
1184 }
1185
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188         if (atomic_dec_and_test(&ctx->refcount)) {
1189                 if (ctx->parent_ctx)
1190                         put_ctx(ctx->parent_ctx);
1191                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192                         put_task_struct(ctx->task);
1193                 call_rcu(&ctx->rcu_head, free_ctx);
1194         }
1195 }
1196
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()    [ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()                   [ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()         [ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event() [ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *      task_struct::perf_event_mutex
1252  *        perf_event_context::mutex
1253  *          perf_event::child_mutex;
1254  *            perf_event_context::lock
1255  *          perf_event::mmap_mutex
1256  *          mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *        cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265         struct perf_event_context *ctx;
1266
1267 again:
1268         rcu_read_lock();
1269         ctx = READ_ONCE(event->ctx);
1270         if (!atomic_inc_not_zero(&ctx->refcount)) {
1271                 rcu_read_unlock();
1272                 goto again;
1273         }
1274         rcu_read_unlock();
1275
1276         mutex_lock_nested(&ctx->mutex, nesting);
1277         if (event->ctx != ctx) {
1278                 mutex_unlock(&ctx->mutex);
1279                 put_ctx(ctx);
1280                 goto again;
1281         }
1282
1283         return ctx;
1284 }
1285
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289         return perf_event_ctx_lock_nested(event, 0);
1290 }
1291
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293                                   struct perf_event_context *ctx)
1294 {
1295         mutex_unlock(&ctx->mutex);
1296         put_ctx(ctx);
1297 }
1298
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309         lockdep_assert_held(&ctx->lock);
1310
1311         if (parent_ctx)
1312                 ctx->parent_ctx = NULL;
1313         ctx->generation++;
1314
1315         return parent_ctx;
1316 }
1317
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319                                 enum pid_type type)
1320 {
1321         u32 nr;
1322         /*
1323          * only top level events have the pid namespace they were created in
1324          */
1325         if (event->parent)
1326                 event = event->parent;
1327
1328         nr = __task_pid_nr_ns(p, type, event->ns);
1329         /* avoid -1 if it is idle thread or runs in another ns */
1330         if (!nr && !pid_alive(p))
1331                 nr = -1;
1332         return nr;
1333 }
1334
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1338 }
1339
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342         return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351         u64 id = event->id;
1352
1353         if (event->parent)
1354                 id = event->parent->id;
1355
1356         return id;
1357 }
1358
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368         struct perf_event_context *ctx;
1369
1370 retry:
1371         /*
1372          * One of the few rules of preemptible RCU is that one cannot do
1373          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374          * part of the read side critical section was irqs-enabled -- see
1375          * rcu_read_unlock_special().
1376          *
1377          * Since ctx->lock nests under rq->lock we must ensure the entire read
1378          * side critical section has interrupts disabled.
1379          */
1380         local_irq_save(*flags);
1381         rcu_read_lock();
1382         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383         if (ctx) {
1384                 /*
1385                  * If this context is a clone of another, it might
1386                  * get swapped for another underneath us by
1387                  * perf_event_task_sched_out, though the
1388                  * rcu_read_lock() protects us from any context
1389                  * getting freed.  Lock the context and check if it
1390                  * got swapped before we could get the lock, and retry
1391                  * if so.  If we locked the right context, then it
1392                  * can't get swapped on us any more.
1393                  */
1394                 raw_spin_lock(&ctx->lock);
1395                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396                         raw_spin_unlock(&ctx->lock);
1397                         rcu_read_unlock();
1398                         local_irq_restore(*flags);
1399                         goto retry;
1400                 }
1401
1402                 if (ctx->task == TASK_TOMBSTONE ||
1403                     !atomic_inc_not_zero(&ctx->refcount)) {
1404                         raw_spin_unlock(&ctx->lock);
1405                         ctx = NULL;
1406                 } else {
1407                         WARN_ON_ONCE(ctx->task != task);
1408                 }
1409         }
1410         rcu_read_unlock();
1411         if (!ctx)
1412                 local_irq_restore(*flags);
1413         return ctx;
1414 }
1415
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424         struct perf_event_context *ctx;
1425         unsigned long flags;
1426
1427         ctx = perf_lock_task_context(task, ctxn, &flags);
1428         if (ctx) {
1429                 ++ctx->pin_count;
1430                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431         }
1432         return ctx;
1433 }
1434
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437         unsigned long flags;
1438
1439         raw_spin_lock_irqsave(&ctx->lock, flags);
1440         --ctx->pin_count;
1441         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449         u64 now = perf_clock();
1450
1451         ctx->time += now - ctx->timestamp;
1452         ctx->timestamp = now;
1453 }
1454
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457         struct perf_event_context *ctx = event->ctx;
1458
1459         if (is_cgroup_event(event))
1460                 return perf_cgroup_event_time(event);
1461
1462         return ctx ? ctx->time : 0;
1463 }
1464
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467         struct perf_event_context *ctx = event->ctx;
1468         enum event_type_t event_type;
1469
1470         lockdep_assert_held(&ctx->lock);
1471
1472         /*
1473          * It's 'group type', really, because if our group leader is
1474          * pinned, so are we.
1475          */
1476         if (event->group_leader != event)
1477                 event = event->group_leader;
1478
1479         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480         if (!ctx->task)
1481                 event_type |= EVENT_CPU;
1482
1483         return event_type;
1484 }
1485
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491         RB_CLEAR_NODE(&event->group_node);
1492         event->group_index = 0;
1493 }
1494
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502         if (event->attr.pinned)
1503                 return &ctx->pinned_groups;
1504         else
1505                 return &ctx->flexible_groups;
1506 }
1507
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513         groups->tree = RB_ROOT;
1514         groups->index = 0;
1515 }
1516
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526         if (left->cpu < right->cpu)
1527                 return true;
1528         if (left->cpu > right->cpu)
1529                 return false;
1530
1531         if (left->group_index < right->group_index)
1532                 return true;
1533         if (left->group_index > right->group_index)
1534                 return false;
1535
1536         return false;
1537 }
1538
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546                          struct perf_event *event)
1547 {
1548         struct perf_event *node_event;
1549         struct rb_node *parent;
1550         struct rb_node **node;
1551
1552         event->group_index = ++groups->index;
1553
1554         node = &groups->tree.rb_node;
1555         parent = *node;
1556
1557         while (*node) {
1558                 parent = *node;
1559                 node_event = container_of(*node, struct perf_event, group_node);
1560
1561                 if (perf_event_groups_less(event, node_event))
1562                         node = &parent->rb_left;
1563                 else
1564                         node = &parent->rb_right;
1565         }
1566
1567         rb_link_node(&event->group_node, parent, node);
1568         rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577         struct perf_event_groups *groups;
1578
1579         groups = get_event_groups(event, ctx);
1580         perf_event_groups_insert(groups, event);
1581 }
1582
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588                          struct perf_event *event)
1589 {
1590         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591                      RB_EMPTY_ROOT(&groups->tree));
1592
1593         rb_erase(&event->group_node, &groups->tree);
1594         init_event_group(event);
1595 }
1596
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603         struct perf_event_groups *groups;
1604
1605         groups = get_event_groups(event, ctx);
1606         perf_event_groups_delete(groups, event);
1607 }
1608
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615         struct perf_event *node_event = NULL, *match = NULL;
1616         struct rb_node *node = groups->tree.rb_node;
1617
1618         while (node) {
1619                 node_event = container_of(node, struct perf_event, group_node);
1620
1621                 if (cpu < node_event->cpu) {
1622                         node = node->rb_left;
1623                 } else if (cpu > node_event->cpu) {
1624                         node = node->rb_right;
1625                 } else {
1626                         match = node_event;
1627                         node = node->rb_left;
1628                 }
1629         }
1630
1631         return match;
1632 }
1633
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640         struct perf_event *next;
1641
1642         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643         if (next && next->cpu == event->cpu)
1644                 return next;
1645
1646         return NULL;
1647 }
1648
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)                       \
1653         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1654                                 typeof(*event), group_node); event;     \
1655                 event = rb_entry_safe(rb_next(&event->group_node),      \
1656                                 typeof(*event), group_node))
1657
1658 /*
1659  * Add an event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         lockdep_assert_held(&ctx->lock);
1666
1667         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668         event->attach_state |= PERF_ATTACH_CONTEXT;
1669
1670         event->tstamp = perf_event_time(event);
1671
1672         /*
1673          * If we're a stand alone event or group leader, we go to the context
1674          * list, group events are kept attached to the group so that
1675          * perf_group_detach can, at all times, locate all siblings.
1676          */
1677         if (event->group_leader == event) {
1678                 event->group_caps = event->event_caps;
1679                 add_event_to_groups(event, ctx);
1680         }
1681
1682         list_update_cgroup_event(event, ctx, true);
1683
1684         list_add_rcu(&event->event_entry, &ctx->event_list);
1685         ctx->nr_events++;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat++;
1688
1689         ctx->generation++;
1690 }
1691
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698                                               PERF_EVENT_STATE_INACTIVE;
1699 }
1700
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703         int entry = sizeof(u64); /* value */
1704         int size = 0;
1705         int nr = 1;
1706
1707         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708                 size += sizeof(u64);
1709
1710         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711                 size += sizeof(u64);
1712
1713         if (event->attr.read_format & PERF_FORMAT_ID)
1714                 entry += sizeof(u64);
1715
1716         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717                 nr += nr_siblings;
1718                 size += sizeof(u64);
1719         }
1720
1721         size += entry * nr;
1722         event->read_size = size;
1723 }
1724
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727         struct perf_sample_data *data;
1728         u16 size = 0;
1729
1730         if (sample_type & PERF_SAMPLE_IP)
1731                 size += sizeof(data->ip);
1732
1733         if (sample_type & PERF_SAMPLE_ADDR)
1734                 size += sizeof(data->addr);
1735
1736         if (sample_type & PERF_SAMPLE_PERIOD)
1737                 size += sizeof(data->period);
1738
1739         if (sample_type & PERF_SAMPLE_WEIGHT)
1740                 size += sizeof(data->weight);
1741
1742         if (sample_type & PERF_SAMPLE_READ)
1743                 size += event->read_size;
1744
1745         if (sample_type & PERF_SAMPLE_DATA_SRC)
1746                 size += sizeof(data->data_src.val);
1747
1748         if (sample_type & PERF_SAMPLE_TRANSACTION)
1749                 size += sizeof(data->txn);
1750
1751         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752                 size += sizeof(data->phys_addr);
1753
1754         event->header_size = size;
1755 }
1756
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763         __perf_event_read_size(event,
1764                                event->group_leader->nr_siblings);
1765         __perf_event_header_size(event, event->attr.sample_type);
1766 }
1767
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770         struct perf_sample_data *data;
1771         u64 sample_type = event->attr.sample_type;
1772         u16 size = 0;
1773
1774         if (sample_type & PERF_SAMPLE_TID)
1775                 size += sizeof(data->tid_entry);
1776
1777         if (sample_type & PERF_SAMPLE_TIME)
1778                 size += sizeof(data->time);
1779
1780         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781                 size += sizeof(data->id);
1782
1783         if (sample_type & PERF_SAMPLE_ID)
1784                 size += sizeof(data->id);
1785
1786         if (sample_type & PERF_SAMPLE_STREAM_ID)
1787                 size += sizeof(data->stream_id);
1788
1789         if (sample_type & PERF_SAMPLE_CPU)
1790                 size += sizeof(data->cpu_entry);
1791
1792         event->id_header_size = size;
1793 }
1794
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797         /*
1798          * The values computed here will be over-written when we actually
1799          * attach the event.
1800          */
1801         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803         perf_event__id_header_size(event);
1804
1805         /*
1806          * Sum the lot; should not exceed the 64k limit we have on records.
1807          * Conservative limit to allow for callchains and other variable fields.
1808          */
1809         if (event->read_size + event->header_size +
1810             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811                 return false;
1812
1813         return true;
1814 }
1815
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818         struct perf_event *group_leader = event->group_leader, *pos;
1819
1820         lockdep_assert_held(&event->ctx->lock);
1821
1822         /*
1823          * We can have double attach due to group movement in perf_event_open.
1824          */
1825         if (event->attach_state & PERF_ATTACH_GROUP)
1826                 return;
1827
1828         event->attach_state |= PERF_ATTACH_GROUP;
1829
1830         if (group_leader == event)
1831                 return;
1832
1833         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
1835         group_leader->group_caps &= event->event_caps;
1836
1837         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838         group_leader->nr_siblings++;
1839
1840         perf_event__header_size(group_leader);
1841
1842         for_each_sibling_event(pos, group_leader)
1843                 perf_event__header_size(pos);
1844 }
1845
1846 /*
1847  * Remove an event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853         WARN_ON_ONCE(event->ctx != ctx);
1854         lockdep_assert_held(&ctx->lock);
1855
1856         /*
1857          * We can have double detach due to exit/hot-unplug + close.
1858          */
1859         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860                 return;
1861
1862         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
1864         list_update_cgroup_event(event, ctx, false);
1865
1866         ctx->nr_events--;
1867         if (event->attr.inherit_stat)
1868                 ctx->nr_stat--;
1869
1870         list_del_rcu(&event->event_entry);
1871
1872         if (event->group_leader == event)
1873                 del_event_from_groups(event, ctx);
1874
1875         /*
1876          * If event was in error state, then keep it
1877          * that way, otherwise bogus counts will be
1878          * returned on read(). The only way to get out
1879          * of error state is by explicit re-enabling
1880          * of the event
1881          */
1882         if (event->state > PERF_EVENT_STATE_OFF)
1883                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884
1885         ctx->generation++;
1886 }
1887
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890         struct perf_event *sibling, *tmp;
1891         struct perf_event_context *ctx = event->ctx;
1892
1893         lockdep_assert_held(&ctx->lock);
1894
1895         /*
1896          * We can have double detach due to exit/hot-unplug + close.
1897          */
1898         if (!(event->attach_state & PERF_ATTACH_GROUP))
1899                 return;
1900
1901         event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903         /*
1904          * If this is a sibling, remove it from its group.
1905          */
1906         if (event->group_leader != event) {
1907                 list_del_init(&event->sibling_list);
1908                 event->group_leader->nr_siblings--;
1909                 goto out;
1910         }
1911
1912         /*
1913          * If this was a group event with sibling events then
1914          * upgrade the siblings to singleton events by adding them
1915          * to whatever list we are on.
1916          */
1917         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918
1919                 sibling->group_leader = sibling;
1920                 list_del_init(&sibling->sibling_list);
1921
1922                 /* Inherit group flags from the previous leader */
1923                 sibling->group_caps = event->group_caps;
1924
1925                 if (!RB_EMPTY_NODE(&event->group_node)) {
1926                         add_event_to_groups(sibling, event->ctx);
1927
1928                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929                                 struct list_head *list = sibling->attr.pinned ?
1930                                         &ctx->pinned_active : &ctx->flexible_active;
1931
1932                                 list_add_tail(&sibling->active_list, list);
1933                         }
1934                 }
1935
1936                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1937         }
1938
1939 out:
1940         perf_event__header_size(event->group_leader);
1941
1942         for_each_sibling_event(tmp, event->group_leader)
1943                 perf_event__header_size(tmp);
1944 }
1945
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948         return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953         struct pmu *pmu = event->pmu;
1954         return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965         struct perf_event *sibling;
1966
1967         if (!__pmu_filter_match(event))
1968                 return 0;
1969
1970         for_each_sibling_event(sibling, event) {
1971                 if (!__pmu_filter_match(sibling))
1972                         return 0;
1973         }
1974
1975         return 1;
1976 }
1977
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982                perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984
1985 static void
1986 event_sched_out(struct perf_event *event,
1987                   struct perf_cpu_context *cpuctx,
1988                   struct perf_event_context *ctx)
1989 {
1990         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991
1992         WARN_ON_ONCE(event->ctx != ctx);
1993         lockdep_assert_held(&ctx->lock);
1994
1995         if (event->state != PERF_EVENT_STATE_ACTIVE)
1996                 return;
1997
1998         /*
1999          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000          * we can schedule events _OUT_ individually through things like
2001          * __perf_remove_from_context().
2002          */
2003         list_del_init(&event->active_list);
2004
2005         perf_pmu_disable(event->pmu);
2006
2007         event->pmu->del(event, 0);
2008         event->oncpu = -1;
2009
2010         if (event->pending_disable) {
2011                 event->pending_disable = 0;
2012                 state = PERF_EVENT_STATE_OFF;
2013         }
2014         perf_event_set_state(event, state);
2015
2016         if (!is_software_event(event))
2017                 cpuctx->active_oncpu--;
2018         if (!--ctx->nr_active)
2019                 perf_event_ctx_deactivate(ctx);
2020         if (event->attr.freq && event->attr.sample_freq)
2021                 ctx->nr_freq--;
2022         if (event->attr.exclusive || !cpuctx->active_oncpu)
2023                 cpuctx->exclusive = 0;
2024
2025         perf_pmu_enable(event->pmu);
2026 }
2027
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030                 struct perf_cpu_context *cpuctx,
2031                 struct perf_event_context *ctx)
2032 {
2033         struct perf_event *event;
2034
2035         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036                 return;
2037
2038         perf_pmu_disable(ctx->pmu);
2039
2040         event_sched_out(group_event, cpuctx, ctx);
2041
2042         /*
2043          * Schedule out siblings (if any):
2044          */
2045         for_each_sibling_event(event, group_event)
2046                 event_sched_out(event, cpuctx, ctx);
2047
2048         perf_pmu_enable(ctx->pmu);
2049
2050         if (group_event->attr.exclusive)
2051                 cpuctx->exclusive = 0;
2052 }
2053
2054 #define DETACH_GROUP    0x01UL
2055
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064                            struct perf_cpu_context *cpuctx,
2065                            struct perf_event_context *ctx,
2066                            void *info)
2067 {
2068         unsigned long flags = (unsigned long)info;
2069
2070         if (ctx->is_active & EVENT_TIME) {
2071                 update_context_time(ctx);
2072                 update_cgrp_time_from_cpuctx(cpuctx);
2073         }
2074
2075         event_sched_out(event, cpuctx, ctx);
2076         if (flags & DETACH_GROUP)
2077                 perf_group_detach(event);
2078         list_del_event(event, ctx);
2079
2080         if (!ctx->nr_events && ctx->is_active) {
2081                 ctx->is_active = 0;
2082                 if (ctx->task) {
2083                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084                         cpuctx->task_ctx = NULL;
2085                 }
2086         }
2087 }
2088
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101         struct perf_event_context *ctx = event->ctx;
2102
2103         lockdep_assert_held(&ctx->mutex);
2104
2105         event_function_call(event, __perf_remove_from_context, (void *)flags);
2106
2107         /*
2108          * The above event_function_call() can NO-OP when it hits
2109          * TASK_TOMBSTONE. In that case we must already have been detached
2110          * from the context (by perf_event_exit_event()) but the grouping
2111          * might still be in-tact.
2112          */
2113         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114         if ((flags & DETACH_GROUP) &&
2115             (event->attach_state & PERF_ATTACH_GROUP)) {
2116                 /*
2117                  * Since in that case we cannot possibly be scheduled, simply
2118                  * detach now.
2119                  */
2120                 raw_spin_lock_irq(&ctx->lock);
2121                 perf_group_detach(event);
2122                 raw_spin_unlock_irq(&ctx->lock);
2123         }
2124 }
2125
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130                                  struct perf_cpu_context *cpuctx,
2131                                  struct perf_event_context *ctx,
2132                                  void *info)
2133 {
2134         if (event->state < PERF_EVENT_STATE_INACTIVE)
2135                 return;
2136
2137         if (ctx->is_active & EVENT_TIME) {
2138                 update_context_time(ctx);
2139                 update_cgrp_time_from_event(event);
2140         }
2141
2142         if (event == event->group_leader)
2143                 group_sched_out(event, cpuctx, ctx);
2144         else
2145                 event_sched_out(event, cpuctx, ctx);
2146
2147         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149
2150 /*
2151  * Disable an event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166         struct perf_event_context *ctx = event->ctx;
2167
2168         raw_spin_lock_irq(&ctx->lock);
2169         if (event->state <= PERF_EVENT_STATE_OFF) {
2170                 raw_spin_unlock_irq(&ctx->lock);
2171                 return;
2172         }
2173         raw_spin_unlock_irq(&ctx->lock);
2174
2175         event_function_call(event, __perf_event_disable, NULL);
2176 }
2177
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180         event_function_local(event, __perf_event_disable, NULL);
2181 }
2182
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189         struct perf_event_context *ctx;
2190
2191         ctx = perf_event_ctx_lock(event);
2192         _perf_event_disable(event);
2193         perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199         event->pending_disable = 1;
2200         irq_work_queue(&event->pending);
2201 }
2202
2203 static void perf_set_shadow_time(struct perf_event *event,
2204                                  struct perf_event_context *ctx)
2205 {
2206         /*
2207          * use the correct time source for the time snapshot
2208          *
2209          * We could get by without this by leveraging the
2210          * fact that to get to this function, the caller
2211          * has most likely already called update_context_time()
2212          * and update_cgrp_time_xx() and thus both timestamp
2213          * are identical (or very close). Given that tstamp is,
2214          * already adjusted for cgroup, we could say that:
2215          *    tstamp - ctx->timestamp
2216          * is equivalent to
2217          *    tstamp - cgrp->timestamp.
2218          *
2219          * Then, in perf_output_read(), the calculation would
2220          * work with no changes because:
2221          * - event is guaranteed scheduled in
2222          * - no scheduled out in between
2223          * - thus the timestamp would be the same
2224          *
2225          * But this is a bit hairy.
2226          *
2227          * So instead, we have an explicit cgroup call to remain
2228          * within the time time source all along. We believe it
2229          * is cleaner and simpler to understand.
2230          */
2231         if (is_cgroup_event(event))
2232                 perf_cgroup_set_shadow_time(event, event->tstamp);
2233         else
2234                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236
2237 #define MAX_INTERRUPTS (~0ULL)
2238
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241
2242 static int
2243 event_sched_in(struct perf_event *event,
2244                  struct perf_cpu_context *cpuctx,
2245                  struct perf_event_context *ctx)
2246 {
2247         int ret = 0;
2248
2249         lockdep_assert_held(&ctx->lock);
2250
2251         if (event->state <= PERF_EVENT_STATE_OFF)
2252                 return 0;
2253
2254         WRITE_ONCE(event->oncpu, smp_processor_id());
2255         /*
2256          * Order event::oncpu write to happen before the ACTIVE state is
2257          * visible. This allows perf_event_{stop,read}() to observe the correct
2258          * ->oncpu if it sees ACTIVE.
2259          */
2260         smp_wmb();
2261         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262
2263         /*
2264          * Unthrottle events, since we scheduled we might have missed several
2265          * ticks already, also for a heavily scheduling task there is little
2266          * guarantee it'll get a tick in a timely manner.
2267          */
2268         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269                 perf_log_throttle(event, 1);
2270                 event->hw.interrupts = 0;
2271         }
2272
2273         perf_pmu_disable(event->pmu);
2274
2275         perf_set_shadow_time(event, ctx);
2276
2277         perf_log_itrace_start(event);
2278
2279         if (event->pmu->add(event, PERF_EF_START)) {
2280                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281                 event->oncpu = -1;
2282                 ret = -EAGAIN;
2283                 goto out;
2284         }
2285
2286         if (!is_software_event(event))
2287                 cpuctx->active_oncpu++;
2288         if (!ctx->nr_active++)
2289                 perf_event_ctx_activate(ctx);
2290         if (event->attr.freq && event->attr.sample_freq)
2291                 ctx->nr_freq++;
2292
2293         if (event->attr.exclusive)
2294                 cpuctx->exclusive = 1;
2295
2296 out:
2297         perf_pmu_enable(event->pmu);
2298
2299         return ret;
2300 }
2301
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304                struct perf_cpu_context *cpuctx,
2305                struct perf_event_context *ctx)
2306 {
2307         struct perf_event *event, *partial_group = NULL;
2308         struct pmu *pmu = ctx->pmu;
2309
2310         if (group_event->state == PERF_EVENT_STATE_OFF)
2311                 return 0;
2312
2313         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314
2315         if (event_sched_in(group_event, cpuctx, ctx)) {
2316                 pmu->cancel_txn(pmu);
2317                 perf_mux_hrtimer_restart(cpuctx);
2318                 return -EAGAIN;
2319         }
2320
2321         /*
2322          * Schedule in siblings as one group (if any):
2323          */
2324         for_each_sibling_event(event, group_event) {
2325                 if (event_sched_in(event, cpuctx, ctx)) {
2326                         partial_group = event;
2327                         goto group_error;
2328                 }
2329         }
2330
2331         if (!pmu->commit_txn(pmu))
2332                 return 0;
2333
2334 group_error:
2335         /*
2336          * Groups can be scheduled in as one unit only, so undo any
2337          * partial group before returning:
2338          * The events up to the failed event are scheduled out normally.
2339          */
2340         for_each_sibling_event(event, group_event) {
2341                 if (event == partial_group)
2342                         break;
2343
2344                 event_sched_out(event, cpuctx, ctx);
2345         }
2346         event_sched_out(group_event, cpuctx, ctx);
2347
2348         pmu->cancel_txn(pmu);
2349
2350         perf_mux_hrtimer_restart(cpuctx);
2351
2352         return -EAGAIN;
2353 }
2354
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359                            struct perf_cpu_context *cpuctx,
2360                            int can_add_hw)
2361 {
2362         /*
2363          * Groups consisting entirely of software events can always go on.
2364          */
2365         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366                 return 1;
2367         /*
2368          * If an exclusive group is already on, no other hardware
2369          * events can go on.
2370          */
2371         if (cpuctx->exclusive)
2372                 return 0;
2373         /*
2374          * If this group is exclusive and there are already
2375          * events on the CPU, it can't go on.
2376          */
2377         if (event->attr.exclusive && cpuctx->active_oncpu)
2378                 return 0;
2379         /*
2380          * Otherwise, try to add it if all previous groups were able
2381          * to go on.
2382          */
2383         return can_add_hw;
2384 }
2385
2386 static void add_event_to_ctx(struct perf_event *event,
2387                                struct perf_event_context *ctx)
2388 {
2389         list_add_event(event, ctx);
2390         perf_group_attach(event);
2391 }
2392
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394                           struct perf_cpu_context *cpuctx,
2395                           enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398              struct perf_cpu_context *cpuctx,
2399              enum event_type_t event_type,
2400              struct task_struct *task);
2401
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403                                struct perf_event_context *ctx,
2404                                enum event_type_t event_type)
2405 {
2406         if (!cpuctx->task_ctx)
2407                 return;
2408
2409         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410                 return;
2411
2412         ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416                                 struct perf_event_context *ctx,
2417                                 struct task_struct *task)
2418 {
2419         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420         if (ctx)
2421                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443                         struct perf_event_context *task_ctx,
2444                         enum event_type_t event_type)
2445 {
2446         enum event_type_t ctx_event_type;
2447         bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449         /*
2450          * If pinned groups are involved, flexible groups also need to be
2451          * scheduled out.
2452          */
2453         if (event_type & EVENT_PINNED)
2454                 event_type |= EVENT_FLEXIBLE;
2455
2456         ctx_event_type = event_type & EVENT_ALL;
2457
2458         perf_pmu_disable(cpuctx->ctx.pmu);
2459         if (task_ctx)
2460                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462         /*
2463          * Decide which cpu ctx groups to schedule out based on the types
2464          * of events that caused rescheduling:
2465          *  - EVENT_CPU: schedule out corresponding groups;
2466          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467          *  - otherwise, do nothing more.
2468          */
2469         if (cpu_event)
2470                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471         else if (ctx_event_type & EVENT_PINNED)
2472                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
2474         perf_event_sched_in(cpuctx, task_ctx, current);
2475         perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486         struct perf_event *event = info;
2487         struct perf_event_context *ctx = event->ctx;
2488         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490         bool reprogram = true;
2491         int ret = 0;
2492
2493         raw_spin_lock(&cpuctx->ctx.lock);
2494         if (ctx->task) {
2495                 raw_spin_lock(&ctx->lock);
2496                 task_ctx = ctx;
2497
2498                 reprogram = (ctx->task == current);
2499
2500                 /*
2501                  * If the task is running, it must be running on this CPU,
2502                  * otherwise we cannot reprogram things.
2503                  *
2504                  * If its not running, we don't care, ctx->lock will
2505                  * serialize against it becoming runnable.
2506                  */
2507                 if (task_curr(ctx->task) && !reprogram) {
2508                         ret = -ESRCH;
2509                         goto unlock;
2510                 }
2511
2512                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513         } else if (task_ctx) {
2514                 raw_spin_lock(&task_ctx->lock);
2515         }
2516
2517 #ifdef CONFIG_CGROUP_PERF
2518         if (is_cgroup_event(event)) {
2519                 /*
2520                  * If the current cgroup doesn't match the event's
2521                  * cgroup, we should not try to schedule it.
2522                  */
2523                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525                                         event->cgrp->css.cgroup);
2526         }
2527 #endif
2528
2529         if (reprogram) {
2530                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531                 add_event_to_ctx(event, ctx);
2532                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533         } else {
2534                 add_event_to_ctx(event, ctx);
2535         }
2536
2537 unlock:
2538         perf_ctx_unlock(cpuctx, task_ctx);
2539
2540         return ret;
2541 }
2542
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550                         struct perf_event *event,
2551                         int cpu)
2552 {
2553         struct task_struct *task = READ_ONCE(ctx->task);
2554
2555         lockdep_assert_held(&ctx->mutex);
2556
2557         if (event->cpu != -1)
2558                 event->cpu = cpu;
2559
2560         /*
2561          * Ensures that if we can observe event->ctx, both the event and ctx
2562          * will be 'complete'. See perf_iterate_sb_cpu().
2563          */
2564         smp_store_release(&event->ctx, ctx);
2565
2566         if (!task) {
2567                 cpu_function_call(cpu, __perf_install_in_context, event);
2568                 return;
2569         }
2570
2571         /*
2572          * Should not happen, we validate the ctx is still alive before calling.
2573          */
2574         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575                 return;
2576
2577         /*
2578          * Installing events is tricky because we cannot rely on ctx->is_active
2579          * to be set in case this is the nr_events 0 -> 1 transition.
2580          *
2581          * Instead we use task_curr(), which tells us if the task is running.
2582          * However, since we use task_curr() outside of rq::lock, we can race
2583          * against the actual state. This means the result can be wrong.
2584          *
2585          * If we get a false positive, we retry, this is harmless.
2586          *
2587          * If we get a false negative, things are complicated. If we are after
2588          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589          * value must be correct. If we're before, it doesn't matter since
2590          * perf_event_context_sched_in() will program the counter.
2591          *
2592          * However, this hinges on the remote context switch having observed
2593          * our task->perf_event_ctxp[] store, such that it will in fact take
2594          * ctx::lock in perf_event_context_sched_in().
2595          *
2596          * We do this by task_function_call(), if the IPI fails to hit the task
2597          * we know any future context switch of task must see the
2598          * perf_event_ctpx[] store.
2599          */
2600
2601         /*
2602          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603          * task_cpu() load, such that if the IPI then does not find the task
2604          * running, a future context switch of that task must observe the
2605          * store.
2606          */
2607         smp_mb();
2608 again:
2609         if (!task_function_call(task, __perf_install_in_context, event))
2610                 return;
2611
2612         raw_spin_lock_irq(&ctx->lock);
2613         task = ctx->task;
2614         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615                 /*
2616                  * Cannot happen because we already checked above (which also
2617                  * cannot happen), and we hold ctx->mutex, which serializes us
2618                  * against perf_event_exit_task_context().
2619                  */
2620                 raw_spin_unlock_irq(&ctx->lock);
2621                 return;
2622         }
2623         /*
2624          * If the task is not running, ctx->lock will avoid it becoming so,
2625          * thus we can safely install the event.
2626          */
2627         if (task_curr(task)) {
2628                 raw_spin_unlock_irq(&ctx->lock);
2629                 goto again;
2630         }
2631         add_event_to_ctx(event, ctx);
2632         raw_spin_unlock_irq(&ctx->lock);
2633 }
2634
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639                                 struct perf_cpu_context *cpuctx,
2640                                 struct perf_event_context *ctx,
2641                                 void *info)
2642 {
2643         struct perf_event *leader = event->group_leader;
2644         struct perf_event_context *task_ctx;
2645
2646         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647             event->state <= PERF_EVENT_STATE_ERROR)
2648                 return;
2649
2650         if (ctx->is_active)
2651                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
2653         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654
2655         if (!ctx->is_active)
2656                 return;
2657
2658         if (!event_filter_match(event)) {
2659                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660                 return;
2661         }
2662
2663         /*
2664          * If the event is in a group and isn't the group leader,
2665          * then don't put it on unless the group is on.
2666          */
2667         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669                 return;
2670         }
2671
2672         task_ctx = cpuctx->task_ctx;
2673         if (ctx->task)
2674                 WARN_ON_ONCE(task_ctx != ctx);
2675
2676         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678
2679 /*
2680  * Enable an event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690         struct perf_event_context *ctx = event->ctx;
2691
2692         raw_spin_lock_irq(&ctx->lock);
2693         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694             event->state <  PERF_EVENT_STATE_ERROR) {
2695                 raw_spin_unlock_irq(&ctx->lock);
2696                 return;
2697         }
2698
2699         /*
2700          * If the event is in error state, clear that first.
2701          *
2702          * That way, if we see the event in error state below, we know that it
2703          * has gone back into error state, as distinct from the task having
2704          * been scheduled away before the cross-call arrived.
2705          */
2706         if (event->state == PERF_EVENT_STATE_ERROR)
2707                 event->state = PERF_EVENT_STATE_OFF;
2708         raw_spin_unlock_irq(&ctx->lock);
2709
2710         event_function_call(event, __perf_event_enable, NULL);
2711 }
2712
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718         struct perf_event_context *ctx;
2719
2720         ctx = perf_event_ctx_lock(event);
2721         _perf_event_enable(event);
2722         perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725
2726 struct stop_event_data {
2727         struct perf_event       *event;
2728         unsigned int            restart;
2729 };
2730
2731 static int __perf_event_stop(void *info)
2732 {
2733         struct stop_event_data *sd = info;
2734         struct perf_event *event = sd->event;
2735
2736         /* if it's already INACTIVE, do nothing */
2737         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738                 return 0;
2739
2740         /* matches smp_wmb() in event_sched_in() */
2741         smp_rmb();
2742
2743         /*
2744          * There is a window with interrupts enabled before we get here,
2745          * so we need to check again lest we try to stop another CPU's event.
2746          */
2747         if (READ_ONCE(event->oncpu) != smp_processor_id())
2748                 return -EAGAIN;
2749
2750         event->pmu->stop(event, PERF_EF_UPDATE);
2751
2752         /*
2753          * May race with the actual stop (through perf_pmu_output_stop()),
2754          * but it is only used for events with AUX ring buffer, and such
2755          * events will refuse to restart because of rb::aux_mmap_count==0,
2756          * see comments in perf_aux_output_begin().
2757          *
2758          * Since this is happening on an event-local CPU, no trace is lost
2759          * while restarting.
2760          */
2761         if (sd->restart)
2762                 event->pmu->start(event, 0);
2763
2764         return 0;
2765 }
2766
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769         struct stop_event_data sd = {
2770                 .event          = event,
2771                 .restart        = restart,
2772         };
2773         int ret = 0;
2774
2775         do {
2776                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777                         return 0;
2778
2779                 /* matches smp_wmb() in event_sched_in() */
2780                 smp_rmb();
2781
2782                 /*
2783                  * We only want to restart ACTIVE events, so if the event goes
2784                  * inactive here (event->oncpu==-1), there's nothing more to do;
2785                  * fall through with ret==-ENXIO.
2786                  */
2787                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788                                         __perf_event_stop, &sd);
2789         } while (ret == -EAGAIN);
2790
2791         return ret;
2792 }
2793
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820         if (!has_addr_filter(event))
2821                 return;
2822
2823         raw_spin_lock(&ifh->lock);
2824         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825                 event->pmu->addr_filters_sync(event);
2826                 event->hw.addr_filters_gen = event->addr_filters_gen;
2827         }
2828         raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834         /*
2835          * not supported on inherited events
2836          */
2837         if (event->attr.inherit || !is_sampling_event(event))
2838                 return -EINVAL;
2839
2840         atomic_add(refresh, &event->event_limit);
2841         _perf_event_enable(event);
2842
2843         return 0;
2844 }
2845
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851         struct perf_event_context *ctx;
2852         int ret;
2853
2854         ctx = perf_event_ctx_lock(event);
2855         ret = _perf_event_refresh(event, refresh);
2856         perf_event_ctx_unlock(event, ctx);
2857
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863                                          struct perf_event_attr *attr)
2864 {
2865         int err;
2866
2867         _perf_event_disable(bp);
2868
2869         err = modify_user_hw_breakpoint_check(bp, attr, true);
2870
2871         if (!bp->attr.disabled)
2872                 _perf_event_enable(bp);
2873
2874         return err;
2875 }
2876
2877 static int perf_event_modify_attr(struct perf_event *event,
2878                                   struct perf_event_attr *attr)
2879 {
2880         if (event->attr.type != attr->type)
2881                 return -EINVAL;
2882
2883         switch (event->attr.type) {
2884         case PERF_TYPE_BREAKPOINT:
2885                 return perf_event_modify_breakpoint(event, attr);
2886         default:
2887                 /* Place holder for future additions. */
2888                 return -EOPNOTSUPP;
2889         }
2890 }
2891
2892 static void ctx_sched_out(struct perf_event_context *ctx,
2893                           struct perf_cpu_context *cpuctx,
2894                           enum event_type_t event_type)
2895 {
2896         struct perf_event *event, *tmp;
2897         int is_active = ctx->is_active;
2898
2899         lockdep_assert_held(&ctx->lock);
2900
2901         if (likely(!ctx->nr_events)) {
2902                 /*
2903                  * See __perf_remove_from_context().
2904                  */
2905                 WARN_ON_ONCE(ctx->is_active);
2906                 if (ctx->task)
2907                         WARN_ON_ONCE(cpuctx->task_ctx);
2908                 return;
2909         }
2910
2911         ctx->is_active &= ~event_type;
2912         if (!(ctx->is_active & EVENT_ALL))
2913                 ctx->is_active = 0;
2914
2915         if (ctx->task) {
2916                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2917                 if (!ctx->is_active)
2918                         cpuctx->task_ctx = NULL;
2919         }
2920
2921         /*
2922          * Always update time if it was set; not only when it changes.
2923          * Otherwise we can 'forget' to update time for any but the last
2924          * context we sched out. For example:
2925          *
2926          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2927          *   ctx_sched_out(.event_type = EVENT_PINNED)
2928          *
2929          * would only update time for the pinned events.
2930          */
2931         if (is_active & EVENT_TIME) {
2932                 /* update (and stop) ctx time */
2933                 update_context_time(ctx);
2934                 update_cgrp_time_from_cpuctx(cpuctx);
2935         }
2936
2937         is_active ^= ctx->is_active; /* changed bits */
2938
2939         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2940                 return;
2941
2942         perf_pmu_disable(ctx->pmu);
2943         if (is_active & EVENT_PINNED) {
2944                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2945                         group_sched_out(event, cpuctx, ctx);
2946         }
2947
2948         if (is_active & EVENT_FLEXIBLE) {
2949                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2950                         group_sched_out(event, cpuctx, ctx);
2951         }
2952         perf_pmu_enable(ctx->pmu);
2953 }
2954
2955 /*
2956  * Test whether two contexts are equivalent, i.e. whether they have both been
2957  * cloned from the same version of the same context.
2958  *
2959  * Equivalence is measured using a generation number in the context that is
2960  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2961  * and list_del_event().
2962  */
2963 static int context_equiv(struct perf_event_context *ctx1,
2964                          struct perf_event_context *ctx2)
2965 {
2966         lockdep_assert_held(&ctx1->lock);
2967         lockdep_assert_held(&ctx2->lock);
2968
2969         /* Pinning disables the swap optimization */
2970         if (ctx1->pin_count || ctx2->pin_count)
2971                 return 0;
2972
2973         /* If ctx1 is the parent of ctx2 */
2974         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2975                 return 1;
2976
2977         /* If ctx2 is the parent of ctx1 */
2978         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2979                 return 1;
2980
2981         /*
2982          * If ctx1 and ctx2 have the same parent; we flatten the parent
2983          * hierarchy, see perf_event_init_context().
2984          */
2985         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2986                         ctx1->parent_gen == ctx2->parent_gen)
2987                 return 1;
2988
2989         /* Unmatched */
2990         return 0;
2991 }
2992
2993 static void __perf_event_sync_stat(struct perf_event *event,
2994                                      struct perf_event *next_event)
2995 {
2996         u64 value;
2997
2998         if (!event->attr.inherit_stat)
2999                 return;
3000
3001         /*
3002          * Update the event value, we cannot use perf_event_read()
3003          * because we're in the middle of a context switch and have IRQs
3004          * disabled, which upsets smp_call_function_single(), however
3005          * we know the event must be on the current CPU, therefore we
3006          * don't need to use it.
3007          */
3008         if (event->state == PERF_EVENT_STATE_ACTIVE)
3009                 event->pmu->read(event);
3010
3011         perf_event_update_time(event);
3012
3013         /*
3014          * In order to keep per-task stats reliable we need to flip the event
3015          * values when we flip the contexts.
3016          */
3017         value = local64_read(&next_event->count);
3018         value = local64_xchg(&event->count, value);
3019         local64_set(&next_event->count, value);
3020
3021         swap(event->total_time_enabled, next_event->total_time_enabled);
3022         swap(event->total_time_running, next_event->total_time_running);
3023
3024         /*
3025          * Since we swizzled the values, update the user visible data too.
3026          */
3027         perf_event_update_userpage(event);
3028         perf_event_update_userpage(next_event);
3029 }
3030
3031 static void perf_event_sync_stat(struct perf_event_context *ctx,
3032                                    struct perf_event_context *next_ctx)
3033 {
3034         struct perf_event *event, *next_event;
3035
3036         if (!ctx->nr_stat)
3037                 return;
3038
3039         update_context_time(ctx);
3040
3041         event = list_first_entry(&ctx->event_list,
3042                                    struct perf_event, event_entry);
3043
3044         next_event = list_first_entry(&next_ctx->event_list,
3045                                         struct perf_event, event_entry);
3046
3047         while (&event->event_entry != &ctx->event_list &&
3048                &next_event->event_entry != &next_ctx->event_list) {
3049
3050                 __perf_event_sync_stat(event, next_event);
3051
3052                 event = list_next_entry(event, event_entry);
3053                 next_event = list_next_entry(next_event, event_entry);
3054         }
3055 }
3056
3057 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3058                                          struct task_struct *next)
3059 {
3060         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3061         struct perf_event_context *next_ctx;
3062         struct perf_event_context *parent, *next_parent;
3063         struct perf_cpu_context *cpuctx;
3064         int do_switch = 1;
3065
3066         if (likely(!ctx))
3067                 return;
3068
3069         cpuctx = __get_cpu_context(ctx);
3070         if (!cpuctx->task_ctx)
3071                 return;
3072
3073         rcu_read_lock();
3074         next_ctx = next->perf_event_ctxp[ctxn];
3075         if (!next_ctx)
3076                 goto unlock;
3077
3078         parent = rcu_dereference(ctx->parent_ctx);
3079         next_parent = rcu_dereference(next_ctx->parent_ctx);
3080
3081         /* If neither context have a parent context; they cannot be clones. */
3082         if (!parent && !next_parent)
3083                 goto unlock;
3084
3085         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3086                 /*
3087                  * Looks like the two contexts are clones, so we might be
3088                  * able to optimize the context switch.  We lock both
3089                  * contexts and check that they are clones under the
3090                  * lock (including re-checking that neither has been
3091                  * uncloned in the meantime).  It doesn't matter which
3092                  * order we take the locks because no other cpu could
3093                  * be trying to lock both of these tasks.
3094                  */
3095                 raw_spin_lock(&ctx->lock);
3096                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3097                 if (context_equiv(ctx, next_ctx)) {
3098                         WRITE_ONCE(ctx->task, next);
3099                         WRITE_ONCE(next_ctx->task, task);
3100
3101                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3102
3103                         /*
3104                          * RCU_INIT_POINTER here is safe because we've not
3105                          * modified the ctx and the above modification of
3106                          * ctx->task and ctx->task_ctx_data are immaterial
3107                          * since those values are always verified under
3108                          * ctx->lock which we're now holding.
3109                          */
3110                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3111                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3112
3113                         do_switch = 0;
3114
3115                         perf_event_sync_stat(ctx, next_ctx);
3116                 }
3117                 raw_spin_unlock(&next_ctx->lock);
3118                 raw_spin_unlock(&ctx->lock);
3119         }
3120 unlock:
3121         rcu_read_unlock();
3122
3123         if (do_switch) {
3124                 raw_spin_lock(&ctx->lock);
3125                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3126                 raw_spin_unlock(&ctx->lock);
3127         }
3128 }
3129
3130 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3131
3132 void perf_sched_cb_dec(struct pmu *pmu)
3133 {
3134         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3135
3136         this_cpu_dec(perf_sched_cb_usages);
3137
3138         if (!--cpuctx->sched_cb_usage)
3139                 list_del(&cpuctx->sched_cb_entry);
3140 }
3141
3142
3143 void perf_sched_cb_inc(struct pmu *pmu)
3144 {
3145         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3146
3147         if (!cpuctx->sched_cb_usage++)
3148                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3149
3150         this_cpu_inc(perf_sched_cb_usages);
3151 }
3152
3153 /*
3154  * This function provides the context switch callback to the lower code
3155  * layer. It is invoked ONLY when the context switch callback is enabled.
3156  *
3157  * This callback is relevant even to per-cpu events; for example multi event
3158  * PEBS requires this to provide PID/TID information. This requires we flush
3159  * all queued PEBS records before we context switch to a new task.
3160  */
3161 static void perf_pmu_sched_task(struct task_struct *prev,
3162                                 struct task_struct *next,
3163                                 bool sched_in)
3164 {
3165         struct perf_cpu_context *cpuctx;
3166         struct pmu *pmu;
3167
3168         if (prev == next)
3169                 return;
3170
3171         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3172                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3173
3174                 if (WARN_ON_ONCE(!pmu->sched_task))
3175                         continue;
3176
3177                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3178                 perf_pmu_disable(pmu);
3179
3180                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3181
3182                 perf_pmu_enable(pmu);
3183                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3184         }
3185 }
3186
3187 static void perf_event_switch(struct task_struct *task,
3188                               struct task_struct *next_prev, bool sched_in);
3189
3190 #define for_each_task_context_nr(ctxn)                                  \
3191         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3192
3193 /*
3194  * Called from scheduler to remove the events of the current task,
3195  * with interrupts disabled.
3196  *
3197  * We stop each event and update the event value in event->count.
3198  *
3199  * This does not protect us against NMI, but disable()
3200  * sets the disabled bit in the control field of event _before_
3201  * accessing the event control register. If a NMI hits, then it will
3202  * not restart the event.
3203  */
3204 void __perf_event_task_sched_out(struct task_struct *task,
3205                                  struct task_struct *next)
3206 {
3207         int ctxn;
3208
3209         if (__this_cpu_read(perf_sched_cb_usages))
3210                 perf_pmu_sched_task(task, next, false);
3211
3212         if (atomic_read(&nr_switch_events))
3213                 perf_event_switch(task, next, false);
3214
3215         for_each_task_context_nr(ctxn)
3216                 perf_event_context_sched_out(task, ctxn, next);
3217
3218         /*
3219          * if cgroup events exist on this CPU, then we need
3220          * to check if we have to switch out PMU state.
3221          * cgroup event are system-wide mode only
3222          */
3223         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3224                 perf_cgroup_sched_out(task, next);
3225 }
3226
3227 /*
3228  * Called with IRQs disabled
3229  */
3230 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3231                               enum event_type_t event_type)
3232 {
3233         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3234 }
3235
3236 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3237                               int (*func)(struct perf_event *, void *), void *data)
3238 {
3239         struct perf_event **evt, *evt1, *evt2;
3240         int ret;
3241
3242         evt1 = perf_event_groups_first(groups, -1);
3243         evt2 = perf_event_groups_first(groups, cpu);
3244
3245         while (evt1 || evt2) {
3246                 if (evt1 && evt2) {
3247                         if (evt1->group_index < evt2->group_index)
3248                                 evt = &evt1;
3249                         else
3250                                 evt = &evt2;
3251                 } else if (evt1) {
3252                         evt = &evt1;
3253                 } else {
3254                         evt = &evt2;
3255                 }
3256
3257                 ret = func(*evt, data);
3258                 if (ret)
3259                         return ret;
3260
3261                 *evt = perf_event_groups_next(*evt);
3262         }
3263
3264         return 0;
3265 }
3266
3267 struct sched_in_data {
3268         struct perf_event_context *ctx;
3269         struct perf_cpu_context *cpuctx;
3270         int can_add_hw;
3271 };
3272
3273 static int pinned_sched_in(struct perf_event *event, void *data)
3274 {
3275         struct sched_in_data *sid = data;
3276
3277         if (event->state <= PERF_EVENT_STATE_OFF)
3278                 return 0;
3279
3280         if (!event_filter_match(event))
3281                 return 0;
3282
3283         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3284                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3285                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3286         }
3287
3288         /*
3289          * If this pinned group hasn't been scheduled,
3290          * put it in error state.
3291          */
3292         if (event->state == PERF_EVENT_STATE_INACTIVE)
3293                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3294
3295         return 0;
3296 }
3297
3298 static int flexible_sched_in(struct perf_event *event, void *data)
3299 {
3300         struct sched_in_data *sid = data;
3301
3302         if (event->state <= PERF_EVENT_STATE_OFF)
3303                 return 0;
3304
3305         if (!event_filter_match(event))
3306                 return 0;
3307
3308         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3309                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3310                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3311                 else
3312                         sid->can_add_hw = 0;
3313         }
3314
3315         return 0;
3316 }
3317
3318 static void
3319 ctx_pinned_sched_in(struct perf_event_context *ctx,
3320                     struct perf_cpu_context *cpuctx)
3321 {
3322         struct sched_in_data sid = {
3323                 .ctx = ctx,
3324                 .cpuctx = cpuctx,
3325                 .can_add_hw = 1,
3326         };
3327
3328         visit_groups_merge(&ctx->pinned_groups,
3329                            smp_processor_id(),
3330                            pinned_sched_in, &sid);
3331 }
3332
3333 static void
3334 ctx_flexible_sched_in(struct perf_event_context *ctx,
3335                       struct perf_cpu_context *cpuctx)
3336 {
3337         struct sched_in_data sid = {
3338                 .ctx = ctx,
3339                 .cpuctx = cpuctx,
3340                 .can_add_hw = 1,
3341         };
3342
3343         visit_groups_merge(&ctx->flexible_groups,
3344                            smp_processor_id(),
3345                            flexible_sched_in, &sid);
3346 }
3347
3348 static void
3349 ctx_sched_in(struct perf_event_context *ctx,
3350              struct perf_cpu_context *cpuctx,
3351              enum event_type_t event_type,
3352              struct task_struct *task)
3353 {
3354         int is_active = ctx->is_active;
3355         u64 now;
3356
3357         lockdep_assert_held(&ctx->lock);
3358
3359         if (likely(!ctx->nr_events))
3360                 return;
3361
3362         ctx->is_active |= (event_type | EVENT_TIME);
3363         if (ctx->task) {
3364                 if (!is_active)
3365                         cpuctx->task_ctx = ctx;
3366                 else
3367                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3368         }
3369
3370         is_active ^= ctx->is_active; /* changed bits */
3371
3372         if (is_active & EVENT_TIME) {
3373                 /* start ctx time */
3374                 now = perf_clock();
3375                 ctx->timestamp = now;
3376                 perf_cgroup_set_timestamp(task, ctx);
3377         }
3378
3379         /*
3380          * First go through the list and put on any pinned groups
3381          * in order to give them the best chance of going on.
3382          */
3383         if (is_active & EVENT_PINNED)
3384                 ctx_pinned_sched_in(ctx, cpuctx);
3385
3386         /* Then walk through the lower prio flexible groups */
3387         if (is_active & EVENT_FLEXIBLE)
3388                 ctx_flexible_sched_in(ctx, cpuctx);
3389 }
3390
3391 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3392                              enum event_type_t event_type,
3393                              struct task_struct *task)
3394 {
3395         struct perf_event_context *ctx = &cpuctx->ctx;
3396
3397         ctx_sched_in(ctx, cpuctx, event_type, task);
3398 }
3399
3400 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3401                                         struct task_struct *task)
3402 {
3403         struct perf_cpu_context *cpuctx;
3404
3405         cpuctx = __get_cpu_context(ctx);
3406         if (cpuctx->task_ctx == ctx)
3407                 return;
3408
3409         perf_ctx_lock(cpuctx, ctx);
3410         /*
3411          * We must check ctx->nr_events while holding ctx->lock, such
3412          * that we serialize against perf_install_in_context().
3413          */
3414         if (!ctx->nr_events)
3415                 goto unlock;
3416
3417         perf_pmu_disable(ctx->pmu);
3418         /*
3419          * We want to keep the following priority order:
3420          * cpu pinned (that don't need to move), task pinned,
3421          * cpu flexible, task flexible.
3422          *
3423          * However, if task's ctx is not carrying any pinned
3424          * events, no need to flip the cpuctx's events around.
3425          */
3426         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3427                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3428         perf_event_sched_in(cpuctx, ctx, task);
3429         perf_pmu_enable(ctx->pmu);
3430
3431 unlock:
3432         perf_ctx_unlock(cpuctx, ctx);
3433 }
3434
3435 /*
3436  * Called from scheduler to add the events of the current task
3437  * with interrupts disabled.
3438  *
3439  * We restore the event value and then enable it.
3440  *
3441  * This does not protect us against NMI, but enable()
3442  * sets the enabled bit in the control field of event _before_
3443  * accessing the event control register. If a NMI hits, then it will
3444  * keep the event running.
3445  */
3446 void __perf_event_task_sched_in(struct task_struct *prev,
3447                                 struct task_struct *task)
3448 {
3449         struct perf_event_context *ctx;
3450         int ctxn;
3451
3452         /*
3453          * If cgroup events exist on this CPU, then we need to check if we have
3454          * to switch in PMU state; cgroup event are system-wide mode only.
3455          *
3456          * Since cgroup events are CPU events, we must schedule these in before
3457          * we schedule in the task events.
3458          */
3459         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3460                 perf_cgroup_sched_in(prev, task);
3461
3462         for_each_task_context_nr(ctxn) {
3463                 ctx = task->perf_event_ctxp[ctxn];
3464                 if (likely(!ctx))
3465                         continue;
3466
3467                 perf_event_context_sched_in(ctx, task);
3468         }
3469
3470         if (atomic_read(&nr_switch_events))
3471                 perf_event_switch(task, prev, true);
3472
3473         if (__this_cpu_read(perf_sched_cb_usages))
3474                 perf_pmu_sched_task(prev, task, true);
3475 }
3476
3477 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3478 {
3479         u64 frequency = event->attr.sample_freq;
3480         u64 sec = NSEC_PER_SEC;
3481         u64 divisor, dividend;
3482
3483         int count_fls, nsec_fls, frequency_fls, sec_fls;
3484
3485         count_fls = fls64(count);
3486         nsec_fls = fls64(nsec);
3487         frequency_fls = fls64(frequency);
3488         sec_fls = 30;
3489
3490         /*
3491          * We got @count in @nsec, with a target of sample_freq HZ
3492          * the target period becomes:
3493          *
3494          *             @count * 10^9
3495          * period = -------------------
3496          *          @nsec * sample_freq
3497          *
3498          */
3499
3500         /*
3501          * Reduce accuracy by one bit such that @a and @b converge
3502          * to a similar magnitude.
3503          */
3504 #define REDUCE_FLS(a, b)                \
3505 do {                                    \
3506         if (a##_fls > b##_fls) {        \
3507                 a >>= 1;                \
3508                 a##_fls--;              \
3509         } else {                        \
3510                 b >>= 1;                \
3511                 b##_fls--;              \
3512         }                               \
3513 } while (0)
3514
3515         /*
3516          * Reduce accuracy until either term fits in a u64, then proceed with
3517          * the other, so that finally we can do a u64/u64 division.
3518          */
3519         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3520                 REDUCE_FLS(nsec, frequency);
3521                 REDUCE_FLS(sec, count);
3522         }
3523
3524         if (count_fls + sec_fls > 64) {
3525                 divisor = nsec * frequency;
3526
3527                 while (count_fls + sec_fls > 64) {
3528                         REDUCE_FLS(count, sec);
3529                         divisor >>= 1;
3530                 }
3531
3532                 dividend = count * sec;
3533         } else {
3534                 dividend = count * sec;
3535
3536                 while (nsec_fls + frequency_fls > 64) {
3537                         REDUCE_FLS(nsec, frequency);
3538                         dividend >>= 1;
3539                 }
3540
3541                 divisor = nsec * frequency;
3542         }
3543
3544         if (!divisor)
3545                 return dividend;
3546
3547         return div64_u64(dividend, divisor);
3548 }
3549
3550 static DEFINE_PER_CPU(int, perf_throttled_count);
3551 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3552
3553 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3554 {
3555         struct hw_perf_event *hwc = &event->hw;
3556         s64 period, sample_period;
3557         s64 delta;
3558
3559         period = perf_calculate_period(event, nsec, count);
3560
3561         delta = (s64)(period - hwc->sample_period);
3562         delta = (delta + 7) / 8; /* low pass filter */
3563
3564         sample_period = hwc->sample_period + delta;
3565
3566         if (!sample_period)
3567                 sample_period = 1;
3568
3569         hwc->sample_period = sample_period;
3570
3571         if (local64_read(&hwc->period_left) > 8*sample_period) {
3572                 if (disable)
3573                         event->pmu->stop(event, PERF_EF_UPDATE);
3574
3575                 local64_set(&hwc->period_left, 0);
3576
3577                 if (disable)
3578                         event->pmu->start(event, PERF_EF_RELOAD);
3579         }
3580 }
3581
3582 /*
3583  * combine freq adjustment with unthrottling to avoid two passes over the
3584  * events. At the same time, make sure, having freq events does not change
3585  * the rate of unthrottling as that would introduce bias.
3586  */
3587 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3588                                            int needs_unthr)
3589 {
3590         struct perf_event *event;
3591         struct hw_perf_event *hwc;
3592         u64 now, period = TICK_NSEC;
3593         s64 delta;
3594
3595         /*
3596          * only need to iterate over all events iff:
3597          * - context have events in frequency mode (needs freq adjust)
3598          * - there are events to unthrottle on this cpu
3599          */
3600         if (!(ctx->nr_freq || needs_unthr))
3601                 return;
3602
3603         raw_spin_lock(&ctx->lock);
3604         perf_pmu_disable(ctx->pmu);
3605
3606         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3607                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3608                         continue;
3609
3610                 if (!event_filter_match(event))
3611                         continue;
3612
3613                 perf_pmu_disable(event->pmu);
3614
3615                 hwc = &event->hw;
3616
3617                 if (hwc->interrupts == MAX_INTERRUPTS) {
3618                         hwc->interrupts = 0;
3619                         perf_log_throttle(event, 1);
3620                         event->pmu->start(event, 0);
3621                 }
3622
3623                 if (!event->attr.freq || !event->attr.sample_freq)
3624                         goto next;
3625
3626                 /*
3627                  * stop the event and update event->count
3628                  */
3629                 event->pmu->stop(event, PERF_EF_UPDATE);
3630
3631                 now = local64_read(&event->count);
3632                 delta = now - hwc->freq_count_stamp;
3633                 hwc->freq_count_stamp = now;
3634
3635                 /*
3636                  * restart the event
3637                  * reload only if value has changed
3638                  * we have stopped the event so tell that
3639                  * to perf_adjust_period() to avoid stopping it
3640                  * twice.
3641                  */
3642                 if (delta > 0)
3643                         perf_adjust_period(event, period, delta, false);
3644
3645                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3646         next:
3647                 perf_pmu_enable(event->pmu);
3648         }
3649
3650         perf_pmu_enable(ctx->pmu);
3651         raw_spin_unlock(&ctx->lock);
3652 }
3653
3654 /*
3655  * Move @event to the tail of the @ctx's elegible events.
3656  */
3657 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3658 {
3659         /*
3660          * Rotate the first entry last of non-pinned groups. Rotation might be
3661          * disabled by the inheritance code.
3662          */
3663         if (ctx->rotate_disable)
3664                 return;
3665
3666         perf_event_groups_delete(&ctx->flexible_groups, event);
3667         perf_event_groups_insert(&ctx->flexible_groups, event);
3668 }
3669
3670 static inline struct perf_event *
3671 ctx_first_active(struct perf_event_context *ctx)
3672 {
3673         return list_first_entry_or_null(&ctx->flexible_active,
3674                                         struct perf_event, active_list);
3675 }
3676
3677 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3678 {
3679         struct perf_event *cpu_event = NULL, *task_event = NULL;
3680         bool cpu_rotate = false, task_rotate = false;
3681         struct perf_event_context *ctx = NULL;
3682
3683         /*
3684          * Since we run this from IRQ context, nobody can install new
3685          * events, thus the event count values are stable.
3686          */
3687
3688         if (cpuctx->ctx.nr_events) {
3689                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3690                         cpu_rotate = true;
3691         }
3692
3693         ctx = cpuctx->task_ctx;
3694         if (ctx && ctx->nr_events) {
3695                 if (ctx->nr_events != ctx->nr_active)
3696                         task_rotate = true;
3697         }
3698
3699         if (!(cpu_rotate || task_rotate))
3700                 return false;
3701
3702         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3703         perf_pmu_disable(cpuctx->ctx.pmu);
3704
3705         if (task_rotate)
3706                 task_event = ctx_first_active(ctx);
3707         if (cpu_rotate)
3708                 cpu_event = ctx_first_active(&cpuctx->ctx);
3709
3710         /*
3711          * As per the order given at ctx_resched() first 'pop' task flexible
3712          * and then, if needed CPU flexible.
3713          */
3714         if (task_event || (ctx && cpu_event))
3715                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3716         if (cpu_event)
3717                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3718
3719         if (task_event)
3720                 rotate_ctx(ctx, task_event);
3721         if (cpu_event)
3722                 rotate_ctx(&cpuctx->ctx, cpu_event);
3723
3724         perf_event_sched_in(cpuctx, ctx, current);
3725
3726         perf_pmu_enable(cpuctx->ctx.pmu);
3727         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3728
3729         return true;
3730 }
3731
3732 void perf_event_task_tick(void)
3733 {
3734         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3735         struct perf_event_context *ctx, *tmp;
3736         int throttled;
3737
3738         lockdep_assert_irqs_disabled();
3739
3740         __this_cpu_inc(perf_throttled_seq);
3741         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3742         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3743
3744         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3745                 perf_adjust_freq_unthr_context(ctx, throttled);
3746 }
3747
3748 static int event_enable_on_exec(struct perf_event *event,
3749                                 struct perf_event_context *ctx)
3750 {
3751         if (!event->attr.enable_on_exec)
3752                 return 0;
3753
3754         event->attr.enable_on_exec = 0;
3755         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3756                 return 0;
3757
3758         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3759
3760         return 1;
3761 }
3762
3763 /*
3764  * Enable all of a task's events that have been marked enable-on-exec.
3765  * This expects task == current.
3766  */
3767 static void perf_event_enable_on_exec(int ctxn)
3768 {
3769         struct perf_event_context *ctx, *clone_ctx = NULL;
3770         enum event_type_t event_type = 0;
3771         struct perf_cpu_context *cpuctx;
3772         struct perf_event *event;
3773         unsigned long flags;
3774         int enabled = 0;
3775
3776         local_irq_save(flags);
3777         ctx = current->perf_event_ctxp[ctxn];
3778         if (!ctx || !ctx->nr_events)
3779                 goto out;
3780
3781         cpuctx = __get_cpu_context(ctx);
3782         perf_ctx_lock(cpuctx, ctx);
3783         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3784         list_for_each_entry(event, &ctx->event_list, event_entry) {
3785                 enabled |= event_enable_on_exec(event, ctx);
3786                 event_type |= get_event_type(event);
3787         }
3788
3789         /*
3790          * Unclone and reschedule this context if we enabled any event.
3791          */
3792         if (enabled) {
3793                 clone_ctx = unclone_ctx(ctx);
3794                 ctx_resched(cpuctx, ctx, event_type);
3795         } else {
3796                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3797         }
3798         perf_ctx_unlock(cpuctx, ctx);
3799
3800 out:
3801         local_irq_restore(flags);
3802
3803         if (clone_ctx)
3804                 put_ctx(clone_ctx);
3805 }
3806
3807 struct perf_read_data {
3808         struct perf_event *event;
3809         bool group;
3810         int ret;
3811 };
3812
3813 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3814 {
3815         u16 local_pkg, event_pkg;
3816
3817         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3818                 int local_cpu = smp_processor_id();
3819
3820                 event_pkg = topology_physical_package_id(event_cpu);
3821                 local_pkg = topology_physical_package_id(local_cpu);
3822
3823                 if (event_pkg == local_pkg)
3824                         return local_cpu;
3825         }
3826
3827         return event_cpu;
3828 }
3829
3830 /*
3831  * Cross CPU call to read the hardware event
3832  */
3833 static void __perf_event_read(void *info)
3834 {
3835         struct perf_read_data *data = info;
3836         struct perf_event *sub, *event = data->event;
3837         struct perf_event_context *ctx = event->ctx;
3838         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3839         struct pmu *pmu = event->pmu;
3840
3841         /*
3842          * If this is a task context, we need to check whether it is
3843          * the current task context of this cpu.  If not it has been
3844          * scheduled out before the smp call arrived.  In that case
3845          * event->count would have been updated to a recent sample
3846          * when the event was scheduled out.
3847          */
3848         if (ctx->task && cpuctx->task_ctx != ctx)
3849                 return;
3850
3851         raw_spin_lock(&ctx->lock);
3852         if (ctx->is_active & EVENT_TIME) {
3853                 update_context_time(ctx);
3854                 update_cgrp_time_from_event(event);
3855         }
3856
3857         perf_event_update_time(event);
3858         if (data->group)
3859                 perf_event_update_sibling_time(event);
3860
3861         if (event->state != PERF_EVENT_STATE_ACTIVE)
3862                 goto unlock;
3863
3864         if (!data->group) {
3865                 pmu->read(event);
3866                 data->ret = 0;
3867                 goto unlock;
3868         }
3869
3870         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3871
3872         pmu->read(event);
3873
3874         for_each_sibling_event(sub, event) {
3875                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3876                         /*
3877                          * Use sibling's PMU rather than @event's since
3878                          * sibling could be on different (eg: software) PMU.
3879                          */
3880                         sub->pmu->read(sub);
3881                 }
3882         }
3883
3884         data->ret = pmu->commit_txn(pmu);
3885
3886 unlock:
3887         raw_spin_unlock(&ctx->lock);
3888 }
3889
3890 static inline u64 perf_event_count(struct perf_event *event)
3891 {
3892         return local64_read(&event->count) + atomic64_read(&event->child_count);
3893 }
3894
3895 /*
3896  * NMI-safe method to read a local event, that is an event that
3897  * is:
3898  *   - either for the current task, or for this CPU
3899  *   - does not have inherit set, for inherited task events
3900  *     will not be local and we cannot read them atomically
3901  *   - must not have a pmu::count method
3902  */
3903 int perf_event_read_local(struct perf_event *event, u64 *value,
3904                           u64 *enabled, u64 *running)
3905 {
3906         unsigned long flags;
3907         int ret = 0;
3908
3909         /*
3910          * Disabling interrupts avoids all counter scheduling (context
3911          * switches, timer based rotation and IPIs).
3912          */
3913         local_irq_save(flags);
3914
3915         /*
3916          * It must not be an event with inherit set, we cannot read
3917          * all child counters from atomic context.
3918          */
3919         if (event->attr.inherit) {
3920                 ret = -EOPNOTSUPP;
3921                 goto out;
3922         }
3923
3924         /* If this is a per-task event, it must be for current */
3925         if ((event->attach_state & PERF_ATTACH_TASK) &&
3926             event->hw.target != current) {
3927                 ret = -EINVAL;
3928                 goto out;
3929         }
3930
3931         /* If this is a per-CPU event, it must be for this CPU */
3932         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3933             event->cpu != smp_processor_id()) {
3934                 ret = -EINVAL;
3935                 goto out;
3936         }
3937
3938         /* If this is a pinned event it must be running on this CPU */
3939         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3940                 ret = -EBUSY;
3941                 goto out;
3942         }
3943
3944         /*
3945          * If the event is currently on this CPU, its either a per-task event,
3946          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3947          * oncpu == -1).
3948          */
3949         if (event->oncpu == smp_processor_id())
3950                 event->pmu->read(event);
3951
3952         *value = local64_read(&event->count);
3953         if (enabled || running) {
3954                 u64 now = event->shadow_ctx_time + perf_clock();
3955                 u64 __enabled, __running;
3956
3957                 __perf_update_times(event, now, &__enabled, &__running);
3958                 if (enabled)
3959                         *enabled = __enabled;
3960                 if (running)
3961                         *running = __running;
3962         }
3963 out:
3964         local_irq_restore(flags);
3965
3966         return ret;
3967 }
3968
3969 static int perf_event_read(struct perf_event *event, bool group)
3970 {
3971         enum perf_event_state state = READ_ONCE(event->state);
3972         int event_cpu, ret = 0;
3973
3974         /*
3975          * If event is enabled and currently active on a CPU, update the
3976          * value in the event structure:
3977          */
3978 again:
3979         if (state == PERF_EVENT_STATE_ACTIVE) {
3980                 struct perf_read_data data;
3981
3982                 /*
3983                  * Orders the ->state and ->oncpu loads such that if we see
3984                  * ACTIVE we must also see the right ->oncpu.
3985                  *
3986                  * Matches the smp_wmb() from event_sched_in().
3987                  */
3988                 smp_rmb();
3989
3990                 event_cpu = READ_ONCE(event->oncpu);
3991                 if ((unsigned)event_cpu >= nr_cpu_ids)
3992                         return 0;
3993
3994                 data = (struct perf_read_data){
3995                         .event = event,
3996                         .group = group,
3997                         .ret = 0,
3998                 };
3999
4000                 preempt_disable();
4001                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4002
4003                 /*
4004                  * Purposely ignore the smp_call_function_single() return
4005                  * value.
4006                  *
4007                  * If event_cpu isn't a valid CPU it means the event got
4008                  * scheduled out and that will have updated the event count.
4009                  *
4010                  * Therefore, either way, we'll have an up-to-date event count
4011                  * after this.
4012                  */
4013                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4014                 preempt_enable();
4015                 ret = data.ret;
4016
4017         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4018                 struct perf_event_context *ctx = event->ctx;
4019                 unsigned long flags;
4020
4021                 raw_spin_lock_irqsave(&ctx->lock, flags);
4022                 state = event->state;
4023                 if (state != PERF_EVENT_STATE_INACTIVE) {
4024                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4025                         goto again;
4026                 }
4027
4028                 /*
4029                  * May read while context is not active (e.g., thread is
4030                  * blocked), in that case we cannot update context time
4031                  */
4032                 if (ctx->is_active & EVENT_TIME) {
4033                         update_context_time(ctx);
4034                         update_cgrp_time_from_event(event);
4035                 }
4036
4037                 perf_event_update_time(event);
4038                 if (group)
4039                         perf_event_update_sibling_time(event);
4040                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4041         }
4042
4043         return ret;
4044 }
4045
4046 /*
4047  * Initialize the perf_event context in a task_struct:
4048  */
4049 static void __perf_event_init_context(struct perf_event_context *ctx)
4050 {
4051         raw_spin_lock_init(&ctx->lock);
4052         mutex_init(&ctx->mutex);
4053         INIT_LIST_HEAD(&ctx->active_ctx_list);
4054         perf_event_groups_init(&ctx->pinned_groups);
4055         perf_event_groups_init(&ctx->flexible_groups);
4056         INIT_LIST_HEAD(&ctx->event_list);
4057         INIT_LIST_HEAD(&ctx->pinned_active);
4058         INIT_LIST_HEAD(&ctx->flexible_active);
4059         atomic_set(&ctx->refcount, 1);
4060 }
4061
4062 static struct perf_event_context *
4063 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4064 {
4065         struct perf_event_context *ctx;
4066
4067         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4068         if (!ctx)
4069                 return NULL;
4070
4071         __perf_event_init_context(ctx);
4072         if (task) {
4073                 ctx->task = task;
4074                 get_task_struct(task);
4075         }
4076         ctx->pmu = pmu;
4077
4078         return ctx;
4079 }
4080
4081 static struct task_struct *
4082 find_lively_task_by_vpid(pid_t vpid)
4083 {
4084         struct task_struct *task;
4085
4086         rcu_read_lock();
4087         if (!vpid)
4088                 task = current;
4089         else
4090                 task = find_task_by_vpid(vpid);
4091         if (task)
4092                 get_task_struct(task);
4093         rcu_read_unlock();
4094
4095         if (!task)
4096                 return ERR_PTR(-ESRCH);
4097
4098         return task;
4099 }
4100
4101 /*
4102  * Returns a matching context with refcount and pincount.
4103  */
4104 static struct perf_event_context *
4105 find_get_context(struct pmu *pmu, struct task_struct *task,
4106                 struct perf_event *event)
4107 {
4108         struct perf_event_context *ctx, *clone_ctx = NULL;
4109         struct perf_cpu_context *cpuctx;
4110         void *task_ctx_data = NULL;
4111         unsigned long flags;
4112         int ctxn, err;
4113         int cpu = event->cpu;
4114
4115         if (!task) {
4116                 /* Must be root to operate on a CPU event: */
4117                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4118                         return ERR_PTR(-EACCES);
4119
4120                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4121                 ctx = &cpuctx->ctx;
4122                 get_ctx(ctx);
4123                 ++ctx->pin_count;
4124
4125                 return ctx;
4126         }
4127
4128         err = -EINVAL;
4129         ctxn = pmu->task_ctx_nr;
4130         if (ctxn < 0)
4131                 goto errout;
4132
4133         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4134                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4135                 if (!task_ctx_data) {
4136                         err = -ENOMEM;
4137                         goto errout;
4138                 }
4139         }
4140
4141 retry:
4142         ctx = perf_lock_task_context(task, ctxn, &flags);
4143         if (ctx) {
4144                 clone_ctx = unclone_ctx(ctx);
4145                 ++ctx->pin_count;
4146
4147                 if (task_ctx_data && !ctx->task_ctx_data) {
4148                         ctx->task_ctx_data = task_ctx_data;
4149                         task_ctx_data = NULL;
4150                 }
4151                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4152
4153                 if (clone_ctx)
4154                         put_ctx(clone_ctx);
4155         } else {
4156                 ctx = alloc_perf_context(pmu, task);
4157                 err = -ENOMEM;
4158                 if (!ctx)
4159                         goto errout;
4160
4161                 if (task_ctx_data) {
4162                         ctx->task_ctx_data = task_ctx_data;
4163                         task_ctx_data = NULL;
4164                 }
4165
4166                 err = 0;
4167                 mutex_lock(&task->perf_event_mutex);
4168                 /*
4169                  * If it has already passed perf_event_exit_task().
4170                  * we must see PF_EXITING, it takes this mutex too.
4171                  */
4172                 if (task->flags & PF_EXITING)
4173                         err = -ESRCH;
4174                 else if (task->perf_event_ctxp[ctxn])
4175                         err = -EAGAIN;
4176                 else {
4177                         get_ctx(ctx);
4178                         ++ctx->pin_count;
4179                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4180                 }
4181                 mutex_unlock(&task->perf_event_mutex);
4182
4183                 if (unlikely(err)) {
4184                         put_ctx(ctx);
4185
4186                         if (err == -EAGAIN)
4187                                 goto retry;
4188                         goto errout;
4189                 }
4190         }
4191
4192         kfree(task_ctx_data);
4193         return ctx;
4194
4195 errout:
4196         kfree(task_ctx_data);
4197         return ERR_PTR(err);
4198 }
4199
4200 static void perf_event_free_filter(struct perf_event *event);
4201 static void perf_event_free_bpf_prog(struct perf_event *event);
4202
4203 static void free_event_rcu(struct rcu_head *head)
4204 {
4205         struct perf_event *event;
4206
4207         event = container_of(head, struct perf_event, rcu_head);
4208         if (event->ns)
4209                 put_pid_ns(event->ns);
4210         perf_event_free_filter(event);
4211         kfree(event);
4212 }
4213
4214 static void ring_buffer_attach(struct perf_event *event,
4215                                struct ring_buffer *rb);
4216
4217 static void detach_sb_event(struct perf_event *event)
4218 {
4219         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4220
4221         raw_spin_lock(&pel->lock);
4222         list_del_rcu(&event->sb_list);
4223         raw_spin_unlock(&pel->lock);
4224 }
4225
4226 static bool is_sb_event(struct perf_event *event)
4227 {
4228         struct perf_event_attr *attr = &event->attr;
4229
4230         if (event->parent)
4231                 return false;
4232
4233         if (event->attach_state & PERF_ATTACH_TASK)
4234                 return false;
4235
4236         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4237             attr->comm || attr->comm_exec ||
4238             attr->task ||
4239             attr->context_switch)
4240                 return true;
4241         return false;
4242 }
4243
4244 static void unaccount_pmu_sb_event(struct perf_event *event)
4245 {
4246         if (is_sb_event(event))
4247                 detach_sb_event(event);
4248 }
4249
4250 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4251 {
4252         if (event->parent)
4253                 return;
4254
4255         if (is_cgroup_event(event))
4256                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4257 }
4258
4259 #ifdef CONFIG_NO_HZ_FULL
4260 static DEFINE_SPINLOCK(nr_freq_lock);
4261 #endif
4262
4263 static void unaccount_freq_event_nohz(void)
4264 {
4265 #ifdef CONFIG_NO_HZ_FULL
4266         spin_lock(&nr_freq_lock);
4267         if (atomic_dec_and_test(&nr_freq_events))
4268                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4269         spin_unlock(&nr_freq_lock);
4270 #endif
4271 }
4272
4273 static void unaccount_freq_event(void)
4274 {
4275         if (tick_nohz_full_enabled())
4276                 unaccount_freq_event_nohz();
4277         else
4278                 atomic_dec(&nr_freq_events);
4279 }
4280
4281 static void unaccount_event(struct perf_event *event)
4282 {
4283         bool dec = false;
4284
4285         if (event->parent)
4286                 return;
4287
4288         if (event->attach_state & PERF_ATTACH_TASK)
4289                 dec = true;
4290         if (event->attr.mmap || event->attr.mmap_data)
4291                 atomic_dec(&nr_mmap_events);
4292         if (event->attr.comm)
4293                 atomic_dec(&nr_comm_events);
4294         if (event->attr.namespaces)
4295                 atomic_dec(&nr_namespaces_events);
4296         if (event->attr.task)
4297                 atomic_dec(&nr_task_events);
4298         if (event->attr.freq)
4299                 unaccount_freq_event();
4300         if (event->attr.context_switch) {
4301                 dec = true;
4302                 atomic_dec(&nr_switch_events);
4303         }
4304         if (is_cgroup_event(event))
4305                 dec = true;
4306         if (has_branch_stack(event))
4307                 dec = true;
4308
4309         if (dec) {
4310                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4311                         schedule_delayed_work(&perf_sched_work, HZ);
4312         }
4313
4314         unaccount_event_cpu(event, event->cpu);
4315
4316         unaccount_pmu_sb_event(event);
4317 }
4318
4319 static void perf_sched_delayed(struct work_struct *work)
4320 {
4321         mutex_lock(&perf_sched_mutex);
4322         if (atomic_dec_and_test(&perf_sched_count))
4323                 static_branch_disable(&perf_sched_events);
4324         mutex_unlock(&perf_sched_mutex);
4325 }
4326
4327 /*
4328  * The following implement mutual exclusion of events on "exclusive" pmus
4329  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4330  * at a time, so we disallow creating events that might conflict, namely:
4331  *
4332  *  1) cpu-wide events in the presence of per-task events,
4333  *  2) per-task events in the presence of cpu-wide events,
4334  *  3) two matching events on the same context.
4335  *
4336  * The former two cases are handled in the allocation path (perf_event_alloc(),
4337  * _free_event()), the latter -- before the first perf_install_in_context().
4338  */
4339 static int exclusive_event_init(struct perf_event *event)
4340 {
4341         struct pmu *pmu = event->pmu;
4342
4343         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4344                 return 0;
4345
4346         /*
4347          * Prevent co-existence of per-task and cpu-wide events on the
4348          * same exclusive pmu.
4349          *
4350          * Negative pmu::exclusive_cnt means there are cpu-wide
4351          * events on this "exclusive" pmu, positive means there are
4352          * per-task events.
4353          *
4354          * Since this is called in perf_event_alloc() path, event::ctx
4355          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4356          * to mean "per-task event", because unlike other attach states it
4357          * never gets cleared.
4358          */
4359         if (event->attach_state & PERF_ATTACH_TASK) {
4360                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4361                         return -EBUSY;
4362         } else {
4363                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4364                         return -EBUSY;
4365         }
4366
4367         return 0;
4368 }
4369
4370 static void exclusive_event_destroy(struct perf_event *event)
4371 {
4372         struct pmu *pmu = event->pmu;
4373
4374         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4375                 return;
4376
4377         /* see comment in exclusive_event_init() */
4378         if (event->attach_state & PERF_ATTACH_TASK)
4379                 atomic_dec(&pmu->exclusive_cnt);
4380         else
4381                 atomic_inc(&pmu->exclusive_cnt);
4382 }
4383
4384 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4385 {
4386         if ((e1->pmu == e2->pmu) &&
4387             (e1->cpu == e2->cpu ||
4388              e1->cpu == -1 ||
4389              e2->cpu == -1))
4390                 return true;
4391         return false;
4392 }
4393
4394 /* Called under the same ctx::mutex as perf_install_in_context() */
4395 static bool exclusive_event_installable(struct perf_event *event,
4396                                         struct perf_event_context *ctx)
4397 {
4398         struct perf_event *iter_event;
4399         struct pmu *pmu = event->pmu;
4400
4401         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4402                 return true;
4403
4404         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4405                 if (exclusive_event_match(iter_event, event))
4406                         return false;
4407         }
4408
4409         return true;
4410 }
4411
4412 static void perf_addr_filters_splice(struct perf_event *event,
4413                                        struct list_head *head);
4414
4415 static void _free_event(struct perf_event *event)
4416 {
4417         irq_work_sync(&event->pending);
4418
4419         unaccount_event(event);
4420
4421         if (event->rb) {
4422                 /*
4423                  * Can happen when we close an event with re-directed output.
4424                  *
4425                  * Since we have a 0 refcount, perf_mmap_close() will skip
4426                  * over us; possibly making our ring_buffer_put() the last.
4427                  */
4428                 mutex_lock(&event->mmap_mutex);
4429                 ring_buffer_attach(event, NULL);
4430                 mutex_unlock(&event->mmap_mutex);
4431         }
4432
4433         if (is_cgroup_event(event))
4434                 perf_detach_cgroup(event);
4435
4436         if (!event->parent) {
4437                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4438                         put_callchain_buffers();
4439         }
4440
4441         perf_event_free_bpf_prog(event);
4442         perf_addr_filters_splice(event, NULL);
4443         kfree(event->addr_filters_offs);
4444
4445         if (event->destroy)
4446                 event->destroy(event);
4447
4448         if (event->ctx)
4449                 put_ctx(event->ctx);
4450
4451         if (event->hw.target)
4452                 put_task_struct(event->hw.target);
4453
4454         exclusive_event_destroy(event);
4455         module_put(event->pmu->module);
4456
4457         call_rcu(&event->rcu_head, free_event_rcu);
4458 }
4459
4460 /*
4461  * Used to free events which have a known refcount of 1, such as in error paths
4462  * where the event isn't exposed yet and inherited events.
4463  */
4464 static void free_event(struct perf_event *event)
4465 {
4466         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4467                                 "unexpected event refcount: %ld; ptr=%p\n",
4468                                 atomic_long_read(&event->refcount), event)) {
4469                 /* leak to avoid use-after-free */
4470                 return;
4471         }
4472
4473         _free_event(event);
4474 }
4475
4476 /*
4477  * Remove user event from the owner task.
4478  */
4479 static void perf_remove_from_owner(struct perf_event *event)
4480 {
4481         struct task_struct *owner;
4482
4483         rcu_read_lock();
4484         /*
4485          * Matches the smp_store_release() in perf_event_exit_task(). If we
4486          * observe !owner it means the list deletion is complete and we can
4487          * indeed free this event, otherwise we need to serialize on
4488          * owner->perf_event_mutex.
4489          */
4490         owner = READ_ONCE(event->owner);
4491         if (owner) {
4492                 /*
4493                  * Since delayed_put_task_struct() also drops the last
4494                  * task reference we can safely take a new reference
4495                  * while holding the rcu_read_lock().
4496                  */
4497                 get_task_struct(owner);
4498         }
4499         rcu_read_unlock();
4500
4501         if (owner) {
4502                 /*
4503                  * If we're here through perf_event_exit_task() we're already
4504                  * holding ctx->mutex which would be an inversion wrt. the
4505                  * normal lock order.
4506                  *
4507                  * However we can safely take this lock because its the child
4508                  * ctx->mutex.
4509                  */
4510                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4511
4512                 /*
4513                  * We have to re-check the event->owner field, if it is cleared
4514                  * we raced with perf_event_exit_task(), acquiring the mutex
4515                  * ensured they're done, and we can proceed with freeing the
4516                  * event.
4517                  */
4518                 if (event->owner) {
4519                         list_del_init(&event->owner_entry);
4520                         smp_store_release(&event->owner, NULL);
4521                 }
4522                 mutex_unlock(&owner->perf_event_mutex);
4523                 put_task_struct(owner);
4524         }
4525 }
4526
4527 static void put_event(struct perf_event *event)
4528 {
4529         if (!atomic_long_dec_and_test(&event->refcount))
4530                 return;
4531
4532         _free_event(event);
4533 }
4534
4535 /*
4536  * Kill an event dead; while event:refcount will preserve the event
4537  * object, it will not preserve its functionality. Once the last 'user'
4538  * gives up the object, we'll destroy the thing.
4539  */
4540 int perf_event_release_kernel(struct perf_event *event)
4541 {
4542         struct perf_event_context *ctx = event->ctx;
4543         struct perf_event *child, *tmp;
4544         LIST_HEAD(free_list);
4545
4546         /*
4547          * If we got here through err_file: fput(event_file); we will not have
4548          * attached to a context yet.
4549          */
4550         if (!ctx) {
4551                 WARN_ON_ONCE(event->attach_state &
4552                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4553                 goto no_ctx;
4554         }
4555
4556         if (!is_kernel_event(event))
4557                 perf_remove_from_owner(event);
4558
4559         ctx = perf_event_ctx_lock(event);
4560         WARN_ON_ONCE(ctx->parent_ctx);
4561         perf_remove_from_context(event, DETACH_GROUP);
4562
4563         raw_spin_lock_irq(&ctx->lock);
4564         /*
4565          * Mark this event as STATE_DEAD, there is no external reference to it
4566          * anymore.
4567          *
4568          * Anybody acquiring event->child_mutex after the below loop _must_
4569          * also see this, most importantly inherit_event() which will avoid
4570          * placing more children on the list.
4571          *
4572          * Thus this guarantees that we will in fact observe and kill _ALL_
4573          * child events.
4574          */
4575         event->state = PERF_EVENT_STATE_DEAD;
4576         raw_spin_unlock_irq(&ctx->lock);
4577
4578         perf_event_ctx_unlock(event, ctx);
4579
4580 again:
4581         mutex_lock(&event->child_mutex);
4582         list_for_each_entry(child, &event->child_list, child_list) {
4583
4584                 /*
4585                  * Cannot change, child events are not migrated, see the
4586                  * comment with perf_event_ctx_lock_nested().
4587                  */
4588                 ctx = READ_ONCE(child->ctx);
4589                 /*
4590                  * Since child_mutex nests inside ctx::mutex, we must jump
4591                  * through hoops. We start by grabbing a reference on the ctx.
4592                  *
4593                  * Since the event cannot get freed while we hold the
4594                  * child_mutex, the context must also exist and have a !0
4595                  * reference count.
4596                  */
4597                 get_ctx(ctx);
4598
4599                 /*
4600                  * Now that we have a ctx ref, we can drop child_mutex, and
4601                  * acquire ctx::mutex without fear of it going away. Then we
4602                  * can re-acquire child_mutex.
4603                  */
4604                 mutex_unlock(&event->child_mutex);
4605                 mutex_lock(&ctx->mutex);
4606                 mutex_lock(&event->child_mutex);
4607
4608                 /*
4609                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4610                  * state, if child is still the first entry, it didn't get freed
4611                  * and we can continue doing so.
4612                  */
4613                 tmp = list_first_entry_or_null(&event->child_list,
4614                                                struct perf_event, child_list);
4615                 if (tmp == child) {
4616                         perf_remove_from_context(child, DETACH_GROUP);
4617                         list_move(&child->child_list, &free_list);
4618                         /*
4619                          * This matches the refcount bump in inherit_event();
4620                          * this can't be the last reference.
4621                          */
4622                         put_event(event);
4623                 }
4624
4625                 mutex_unlock(&event->child_mutex);
4626                 mutex_unlock(&ctx->mutex);
4627                 put_ctx(ctx);
4628                 goto again;
4629         }
4630         mutex_unlock(&event->child_mutex);
4631
4632         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4633                 list_del(&child->child_list);
4634                 free_event(child);
4635         }
4636
4637 no_ctx:
4638         put_event(event); /* Must be the 'last' reference */
4639         return 0;
4640 }
4641 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4642
4643 /*
4644  * Called when the last reference to the file is gone.
4645  */
4646 static int perf_release(struct inode *inode, struct file *file)
4647 {
4648         perf_event_release_kernel(file->private_data);
4649         return 0;
4650 }
4651
4652 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4653 {
4654         struct perf_event *child;
4655         u64 total = 0;
4656
4657         *enabled = 0;
4658         *running = 0;
4659
4660         mutex_lock(&event->child_mutex);
4661
4662         (void)perf_event_read(event, false);
4663         total += perf_event_count(event);
4664
4665         *enabled += event->total_time_enabled +
4666                         atomic64_read(&event->child_total_time_enabled);
4667         *running += event->total_time_running +
4668                         atomic64_read(&event->child_total_time_running);
4669
4670         list_for_each_entry(child, &event->child_list, child_list) {
4671                 (void)perf_event_read(child, false);
4672                 total += perf_event_count(child);
4673                 *enabled += child->total_time_enabled;
4674                 *running += child->total_time_running;
4675         }
4676         mutex_unlock(&event->child_mutex);
4677
4678         return total;
4679 }
4680
4681 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4682 {
4683         struct perf_event_context *ctx;
4684         u64 count;
4685
4686         ctx = perf_event_ctx_lock(event);
4687         count = __perf_event_read_value(event, enabled, running);
4688         perf_event_ctx_unlock(event, ctx);
4689
4690         return count;
4691 }
4692 EXPORT_SYMBOL_GPL(perf_event_read_value);
4693
4694 static int __perf_read_group_add(struct perf_event *leader,
4695                                         u64 read_format, u64 *values)
4696 {
4697         struct perf_event_context *ctx = leader->ctx;
4698         struct perf_event *sub;
4699         unsigned long flags;
4700         int n = 1; /* skip @nr */
4701         int ret;
4702
4703         ret = perf_event_read(leader, true);
4704         if (ret)
4705                 return ret;
4706
4707         raw_spin_lock_irqsave(&ctx->lock, flags);
4708
4709         /*
4710          * Since we co-schedule groups, {enabled,running} times of siblings
4711          * will be identical to those of the leader, so we only publish one
4712          * set.
4713          */
4714         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4715                 values[n++] += leader->total_time_enabled +
4716                         atomic64_read(&leader->child_total_time_enabled);
4717         }
4718
4719         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4720                 values[n++] += leader->total_time_running +
4721                         atomic64_read(&leader->child_total_time_running);
4722         }
4723
4724         /*
4725          * Write {count,id} tuples for every sibling.
4726          */
4727         values[n++] += perf_event_count(leader);
4728         if (read_format & PERF_FORMAT_ID)
4729                 values[n++] = primary_event_id(leader);
4730
4731         for_each_sibling_event(sub, leader) {
4732                 values[n++] += perf_event_count(sub);
4733                 if (read_format & PERF_FORMAT_ID)
4734                         values[n++] = primary_event_id(sub);
4735         }
4736
4737         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4738         return 0;
4739 }
4740
4741 static int perf_read_group(struct perf_event *event,
4742                                    u64 read_format, char __user *buf)
4743 {
4744         struct perf_event *leader = event->group_leader, *child;
4745         struct perf_event_context *ctx = leader->ctx;
4746         int ret;
4747         u64 *values;
4748
4749         lockdep_assert_held(&ctx->mutex);
4750
4751         values = kzalloc(event->read_size, GFP_KERNEL);
4752         if (!values)
4753                 return -ENOMEM;
4754
4755         values[0] = 1 + leader->nr_siblings;
4756
4757         /*
4758          * By locking the child_mutex of the leader we effectively
4759          * lock the child list of all siblings.. XXX explain how.
4760          */
4761         mutex_lock(&leader->child_mutex);
4762
4763         ret = __perf_read_group_add(leader, read_format, values);
4764         if (ret)
4765                 goto unlock;
4766
4767         list_for_each_entry(child, &leader->child_list, child_list) {
4768                 ret = __perf_read_group_add(child, read_format, values);
4769                 if (ret)
4770                         goto unlock;
4771         }
4772
4773         mutex_unlock(&leader->child_mutex);
4774
4775         ret = event->read_size;
4776         if (copy_to_user(buf, values, event->read_size))
4777                 ret = -EFAULT;
4778         goto out;
4779
4780 unlock:
4781         mutex_unlock(&leader->child_mutex);
4782 out:
4783         kfree(values);
4784         return ret;
4785 }
4786
4787 static int perf_read_one(struct perf_event *event,
4788                                  u64 read_format, char __user *buf)
4789 {
4790         u64 enabled, running;
4791         u64 values[4];
4792         int n = 0;
4793
4794         values[n++] = __perf_event_read_value(event, &enabled, &running);
4795         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4796                 values[n++] = enabled;
4797         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4798                 values[n++] = running;
4799         if (read_format & PERF_FORMAT_ID)
4800                 values[n++] = primary_event_id(event);
4801
4802         if (copy_to_user(buf, values, n * sizeof(u64)))
4803                 return -EFAULT;
4804
4805         return n * sizeof(u64);
4806 }
4807
4808 static bool is_event_hup(struct perf_event *event)
4809 {
4810         bool no_children;
4811
4812         if (event->state > PERF_EVENT_STATE_EXIT)
4813                 return false;
4814
4815         mutex_lock(&event->child_mutex);
4816         no_children = list_empty(&event->child_list);
4817         mutex_unlock(&event->child_mutex);
4818         return no_children;
4819 }
4820
4821 /*
4822  * Read the performance event - simple non blocking version for now
4823  */
4824 static ssize_t
4825 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4826 {
4827         u64 read_format = event->attr.read_format;
4828         int ret;
4829
4830         /*
4831          * Return end-of-file for a read on an event that is in
4832          * error state (i.e. because it was pinned but it couldn't be
4833          * scheduled on to the CPU at some point).
4834          */
4835         if (event->state == PERF_EVENT_STATE_ERROR)
4836                 return 0;
4837
4838         if (count < event->read_size)
4839                 return -ENOSPC;
4840
4841         WARN_ON_ONCE(event->ctx->parent_ctx);
4842         if (read_format & PERF_FORMAT_GROUP)
4843                 ret = perf_read_group(event, read_format, buf);
4844         else
4845                 ret = perf_read_one(event, read_format, buf);
4846
4847         return ret;
4848 }
4849
4850 static ssize_t
4851 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4852 {
4853         struct perf_event *event = file->private_data;
4854         struct perf_event_context *ctx;
4855         int ret;
4856
4857         ctx = perf_event_ctx_lock(event);
4858         ret = __perf_read(event, buf, count);
4859         perf_event_ctx_unlock(event, ctx);
4860
4861         return ret;
4862 }
4863
4864 static __poll_t perf_poll(struct file *file, poll_table *wait)
4865 {
4866         struct perf_event *event = file->private_data;
4867         struct ring_buffer *rb;
4868         __poll_t events = EPOLLHUP;
4869
4870         poll_wait(file, &event->waitq, wait);
4871
4872         if (is_event_hup(event))
4873                 return events;
4874
4875         /*
4876          * Pin the event->rb by taking event->mmap_mutex; otherwise
4877          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4878          */
4879         mutex_lock(&event->mmap_mutex);
4880         rb = event->rb;
4881         if (rb)
4882                 events = atomic_xchg(&rb->poll, 0);
4883         mutex_unlock(&event->mmap_mutex);
4884         return events;
4885 }
4886
4887 static void _perf_event_reset(struct perf_event *event)
4888 {
4889         (void)perf_event_read(event, false);
4890         local64_set(&event->count, 0);
4891         perf_event_update_userpage(event);
4892 }
4893
4894 /*
4895  * Holding the top-level event's child_mutex means that any
4896  * descendant process that has inherited this event will block
4897  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4898  * task existence requirements of perf_event_enable/disable.
4899  */
4900 static void perf_event_for_each_child(struct perf_event *event,
4901                                         void (*func)(struct perf_event *))
4902 {
4903         struct perf_event *child;
4904
4905         WARN_ON_ONCE(event->ctx->parent_ctx);
4906
4907         mutex_lock(&event->child_mutex);
4908         func(event);
4909         list_for_each_entry(child, &event->child_list, child_list)
4910                 func(child);
4911         mutex_unlock(&event->child_mutex);
4912 }
4913
4914 static void perf_event_for_each(struct perf_event *event,
4915                                   void (*func)(struct perf_event *))
4916 {
4917         struct perf_event_context *ctx = event->ctx;
4918         struct perf_event *sibling;
4919
4920         lockdep_assert_held(&ctx->mutex);
4921
4922         event = event->group_leader;
4923
4924         perf_event_for_each_child(event, func);
4925         for_each_sibling_event(sibling, event)
4926                 perf_event_for_each_child(sibling, func);
4927 }
4928
4929 static void __perf_event_period(struct perf_event *event,
4930                                 struct perf_cpu_context *cpuctx,
4931                                 struct perf_event_context *ctx,
4932                                 void *info)
4933 {
4934         u64 value = *((u64 *)info);
4935         bool active;
4936
4937         if (event->attr.freq) {
4938                 event->attr.sample_freq = value;
4939         } else {
4940                 event->attr.sample_period = value;
4941                 event->hw.sample_period = value;
4942         }
4943
4944         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4945         if (active) {
4946                 perf_pmu_disable(ctx->pmu);
4947                 /*
4948                  * We could be throttled; unthrottle now to avoid the tick
4949                  * trying to unthrottle while we already re-started the event.
4950                  */
4951                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4952                         event->hw.interrupts = 0;
4953                         perf_log_throttle(event, 1);
4954                 }
4955                 event->pmu->stop(event, PERF_EF_UPDATE);
4956         }
4957
4958         local64_set(&event->hw.period_left, 0);
4959
4960         if (active) {
4961                 event->pmu->start(event, PERF_EF_RELOAD);
4962                 perf_pmu_enable(ctx->pmu);
4963         }
4964 }
4965
4966 static int perf_event_check_period(struct perf_event *event, u64 value)
4967 {
4968         return event->pmu->check_period(event, value);
4969 }
4970
4971 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4972 {
4973         u64 value;
4974
4975         if (!is_sampling_event(event))
4976                 return -EINVAL;
4977
4978         if (copy_from_user(&value, arg, sizeof(value)))
4979                 return -EFAULT;
4980
4981         if (!value)
4982                 return -EINVAL;
4983
4984         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4985                 return -EINVAL;
4986
4987         if (perf_event_check_period(event, value))
4988                 return -EINVAL;
4989
4990         event_function_call(event, __perf_event_period, &value);
4991
4992         return 0;
4993 }
4994
4995 static const struct file_operations perf_fops;
4996
4997 static inline int perf_fget_light(int fd, struct fd *p)
4998 {
4999         struct fd f = fdget(fd);
5000         if (!f.file)
5001                 return -EBADF;
5002
5003         if (f.file->f_op != &perf_fops) {
5004                 fdput(f);
5005                 return -EBADF;
5006         }
5007         *p = f;
5008         return 0;
5009 }
5010
5011 static int perf_event_set_output(struct perf_event *event,
5012                                  struct perf_event *output_event);
5013 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5014 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5015 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5016                           struct perf_event_attr *attr);
5017
5018 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5019 {
5020         void (*func)(struct perf_event *);
5021         u32 flags = arg;
5022
5023         switch (cmd) {
5024         case PERF_EVENT_IOC_ENABLE:
5025                 func = _perf_event_enable;
5026                 break;
5027         case PERF_EVENT_IOC_DISABLE:
5028                 func = _perf_event_disable;
5029                 break;
5030         case PERF_EVENT_IOC_RESET:
5031                 func = _perf_event_reset;
5032                 break;
5033
5034         case PERF_EVENT_IOC_REFRESH:
5035                 return _perf_event_refresh(event, arg);
5036
5037         case PERF_EVENT_IOC_PERIOD:
5038                 return perf_event_period(event, (u64 __user *)arg);
5039
5040         case PERF_EVENT_IOC_ID:
5041         {
5042                 u64 id = primary_event_id(event);
5043
5044                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5045                         return -EFAULT;
5046                 return 0;
5047         }
5048
5049         case PERF_EVENT_IOC_SET_OUTPUT:
5050         {
5051                 int ret;
5052                 if (arg != -1) {
5053                         struct perf_event *output_event;
5054                         struct fd output;
5055                         ret = perf_fget_light(arg, &output);
5056                         if (ret)
5057                                 return ret;
5058                         output_event = output.file->private_data;
5059                         ret = perf_event_set_output(event, output_event);
5060                         fdput(output);
5061                 } else {
5062                         ret = perf_event_set_output(event, NULL);
5063                 }
5064                 return ret;
5065         }
5066
5067         case PERF_EVENT_IOC_SET_FILTER:
5068                 return perf_event_set_filter(event, (void __user *)arg);
5069
5070         case PERF_EVENT_IOC_SET_BPF:
5071                 return perf_event_set_bpf_prog(event, arg);
5072
5073         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5074                 struct ring_buffer *rb;
5075
5076                 rcu_read_lock();
5077                 rb = rcu_dereference(event->rb);
5078                 if (!rb || !rb->nr_pages) {
5079                         rcu_read_unlock();
5080                         return -EINVAL;
5081                 }
5082                 rb_toggle_paused(rb, !!arg);
5083                 rcu_read_unlock();
5084                 return 0;
5085         }
5086
5087         case PERF_EVENT_IOC_QUERY_BPF:
5088                 return perf_event_query_prog_array(event, (void __user *)arg);
5089
5090         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5091                 struct perf_event_attr new_attr;
5092                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5093                                          &new_attr);
5094
5095                 if (err)
5096                         return err;
5097
5098                 return perf_event_modify_attr(event,  &new_attr);
5099         }
5100         default:
5101                 return -ENOTTY;
5102         }
5103
5104         if (flags & PERF_IOC_FLAG_GROUP)
5105                 perf_event_for_each(event, func);
5106         else
5107                 perf_event_for_each_child(event, func);
5108
5109         return 0;
5110 }
5111
5112 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5113 {
5114         struct perf_event *event = file->private_data;
5115         struct perf_event_context *ctx;
5116         long ret;
5117
5118         ctx = perf_event_ctx_lock(event);
5119         ret = _perf_ioctl(event, cmd, arg);
5120         perf_event_ctx_unlock(event, ctx);
5121
5122         return ret;
5123 }
5124
5125 #ifdef CONFIG_COMPAT
5126 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5127                                 unsigned long arg)
5128 {
5129         switch (_IOC_NR(cmd)) {
5130         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5131         case _IOC_NR(PERF_EVENT_IOC_ID):
5132         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5133         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5134                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5135                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5136                         cmd &= ~IOCSIZE_MASK;
5137                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5138                 }
5139                 break;
5140         }
5141         return perf_ioctl(file, cmd, arg);
5142 }
5143 #else
5144 # define perf_compat_ioctl NULL
5145 #endif
5146
5147 int perf_event_task_enable(void)
5148 {
5149         struct perf_event_context *ctx;
5150         struct perf_event *event;
5151
5152         mutex_lock(&current->perf_event_mutex);
5153         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5154                 ctx = perf_event_ctx_lock(event);
5155                 perf_event_for_each_child(event, _perf_event_enable);
5156                 perf_event_ctx_unlock(event, ctx);
5157         }
5158         mutex_unlock(&current->perf_event_mutex);
5159
5160         return 0;
5161 }
5162
5163 int perf_event_task_disable(void)
5164 {
5165         struct perf_event_context *ctx;
5166         struct perf_event *event;
5167
5168         mutex_lock(&current->perf_event_mutex);
5169         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5170                 ctx = perf_event_ctx_lock(event);
5171                 perf_event_for_each_child(event, _perf_event_disable);
5172                 perf_event_ctx_unlock(event, ctx);
5173         }
5174         mutex_unlock(&current->perf_event_mutex);
5175
5176         return 0;
5177 }
5178
5179 static int perf_event_index(struct perf_event *event)
5180 {
5181         if (event->hw.state & PERF_HES_STOPPED)
5182                 return 0;
5183
5184         if (event->state != PERF_EVENT_STATE_ACTIVE)
5185                 return 0;
5186
5187         return event->pmu->event_idx(event);
5188 }
5189
5190 static void calc_timer_values(struct perf_event *event,
5191                                 u64 *now,
5192                                 u64 *enabled,
5193                                 u64 *running)
5194 {
5195         u64 ctx_time;
5196
5197         *now = perf_clock();
5198         ctx_time = event->shadow_ctx_time + *now;
5199         __perf_update_times(event, ctx_time, enabled, running);
5200 }
5201
5202 static void perf_event_init_userpage(struct perf_event *event)
5203 {
5204         struct perf_event_mmap_page *userpg;
5205         struct ring_buffer *rb;
5206
5207         rcu_read_lock();
5208         rb = rcu_dereference(event->rb);
5209         if (!rb)
5210                 goto unlock;
5211
5212         userpg = rb->user_page;
5213
5214         /* Allow new userspace to detect that bit 0 is deprecated */
5215         userpg->cap_bit0_is_deprecated = 1;
5216         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5217         userpg->data_offset = PAGE_SIZE;
5218         userpg->data_size = perf_data_size(rb);
5219
5220 unlock:
5221         rcu_read_unlock();
5222 }
5223
5224 void __weak arch_perf_update_userpage(
5225         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5226 {
5227 }
5228
5229 /*
5230  * Callers need to ensure there can be no nesting of this function, otherwise
5231  * the seqlock logic goes bad. We can not serialize this because the arch
5232  * code calls this from NMI context.
5233  */
5234 void perf_event_update_userpage(struct perf_event *event)
5235 {
5236         struct perf_event_mmap_page *userpg;
5237         struct ring_buffer *rb;
5238         u64 enabled, running, now;
5239
5240         rcu_read_lock();
5241         rb = rcu_dereference(event->rb);
5242         if (!rb)
5243                 goto unlock;
5244
5245         /*
5246          * compute total_time_enabled, total_time_running
5247          * based on snapshot values taken when the event
5248          * was last scheduled in.
5249          *
5250          * we cannot simply called update_context_time()
5251          * because of locking issue as we can be called in
5252          * NMI context
5253          */
5254         calc_timer_values(event, &now, &enabled, &running);
5255
5256         userpg = rb->user_page;
5257         /*
5258          * Disable preemption to guarantee consistent time stamps are stored to
5259          * the user page.
5260          */
5261         preempt_disable();
5262         ++userpg->lock;
5263         barrier();
5264         userpg->index = perf_event_index(event);
5265         userpg->offset = perf_event_count(event);
5266         if (userpg->index)
5267                 userpg->offset -= local64_read(&event->hw.prev_count);
5268
5269         userpg->time_enabled = enabled +
5270                         atomic64_read(&event->child_total_time_enabled);
5271
5272         userpg->time_running = running +
5273                         atomic64_read(&event->child_total_time_running);
5274
5275         arch_perf_update_userpage(event, userpg, now);
5276
5277         barrier();
5278         ++userpg->lock;
5279         preempt_enable();
5280 unlock:
5281         rcu_read_unlock();
5282 }
5283 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5284
5285 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5286 {
5287         struct perf_event *event = vmf->vma->vm_file->private_data;
5288         struct ring_buffer *rb;
5289         vm_fault_t ret = VM_FAULT_SIGBUS;
5290
5291         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5292                 if (vmf->pgoff == 0)
5293                         ret = 0;
5294                 return ret;
5295         }
5296
5297         rcu_read_lock();
5298         rb = rcu_dereference(event->rb);
5299         if (!rb)
5300                 goto unlock;
5301
5302         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5303                 goto unlock;
5304
5305         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5306         if (!vmf->page)
5307                 goto unlock;
5308
5309         get_page(vmf->page);
5310         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5311         vmf->page->index   = vmf->pgoff;
5312
5313         ret = 0;
5314 unlock:
5315         rcu_read_unlock();
5316
5317         return ret;
5318 }
5319
5320 static void ring_buffer_attach(struct perf_event *event,
5321                                struct ring_buffer *rb)
5322 {
5323         struct ring_buffer *old_rb = NULL;
5324         unsigned long flags;
5325
5326         if (event->rb) {
5327                 /*
5328                  * Should be impossible, we set this when removing
5329                  * event->rb_entry and wait/clear when adding event->rb_entry.
5330                  */
5331                 WARN_ON_ONCE(event->rcu_pending);
5332
5333                 old_rb = event->rb;
5334                 spin_lock_irqsave(&old_rb->event_lock, flags);
5335                 list_del_rcu(&event->rb_entry);
5336                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5337
5338                 event->rcu_batches = get_state_synchronize_rcu();
5339                 event->rcu_pending = 1;
5340         }
5341
5342         if (rb) {
5343                 if (event->rcu_pending) {
5344                         cond_synchronize_rcu(event->rcu_batches);
5345                         event->rcu_pending = 0;
5346                 }
5347
5348                 spin_lock_irqsave(&rb->event_lock, flags);
5349                 list_add_rcu(&event->rb_entry, &rb->event_list);
5350                 spin_unlock_irqrestore(&rb->event_lock, flags);
5351         }
5352
5353         /*
5354          * Avoid racing with perf_mmap_close(AUX): stop the event
5355          * before swizzling the event::rb pointer; if it's getting
5356          * unmapped, its aux_mmap_count will be 0 and it won't
5357          * restart. See the comment in __perf_pmu_output_stop().
5358          *
5359          * Data will inevitably be lost when set_output is done in
5360          * mid-air, but then again, whoever does it like this is
5361          * not in for the data anyway.
5362          */
5363         if (has_aux(event))
5364                 perf_event_stop(event, 0);
5365
5366         rcu_assign_pointer(event->rb, rb);
5367
5368         if (old_rb) {
5369                 ring_buffer_put(old_rb);
5370                 /*
5371                  * Since we detached before setting the new rb, so that we
5372                  * could attach the new rb, we could have missed a wakeup.
5373                  * Provide it now.
5374                  */
5375                 wake_up_all(&event->waitq);
5376         }
5377 }
5378
5379 static void ring_buffer_wakeup(struct perf_event *event)
5380 {
5381         struct ring_buffer *rb;
5382
5383         rcu_read_lock();
5384         rb = rcu_dereference(event->rb);
5385         if (rb) {
5386                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5387                         wake_up_all(&event->waitq);
5388         }
5389         rcu_read_unlock();
5390 }
5391
5392 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5393 {
5394         struct ring_buffer *rb;
5395
5396         rcu_read_lock();
5397         rb = rcu_dereference(event->rb);
5398         if (rb) {
5399                 if (!atomic_inc_not_zero(&rb->refcount))
5400                         rb = NULL;
5401         }
5402         rcu_read_unlock();
5403
5404         return rb;
5405 }
5406
5407 void ring_buffer_put(struct ring_buffer *rb)
5408 {
5409         if (!atomic_dec_and_test(&rb->refcount))
5410                 return;
5411
5412         WARN_ON_ONCE(!list_empty(&rb->event_list));
5413
5414         call_rcu(&rb->rcu_head, rb_free_rcu);
5415 }
5416
5417 static void perf_mmap_open(struct vm_area_struct *vma)
5418 {
5419         struct perf_event *event = vma->vm_file->private_data;
5420
5421         atomic_inc(&event->mmap_count);
5422         atomic_inc(&event->rb->mmap_count);
5423
5424         if (vma->vm_pgoff)
5425                 atomic_inc(&event->rb->aux_mmap_count);
5426
5427         if (event->pmu->event_mapped)
5428                 event->pmu->event_mapped(event, vma->vm_mm);
5429 }
5430
5431 static void perf_pmu_output_stop(struct perf_event *event);
5432
5433 /*
5434  * A buffer can be mmap()ed multiple times; either directly through the same
5435  * event, or through other events by use of perf_event_set_output().
5436  *
5437  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5438  * the buffer here, where we still have a VM context. This means we need
5439  * to detach all events redirecting to us.
5440  */
5441 static void perf_mmap_close(struct vm_area_struct *vma)
5442 {
5443         struct perf_event *event = vma->vm_file->private_data;
5444
5445         struct ring_buffer *rb = ring_buffer_get(event);
5446         struct user_struct *mmap_user = rb->mmap_user;
5447         int mmap_locked = rb->mmap_locked;
5448         unsigned long size = perf_data_size(rb);
5449
5450         if (event->pmu->event_unmapped)
5451                 event->pmu->event_unmapped(event, vma->vm_mm);
5452
5453         /*
5454          * rb->aux_mmap_count will always drop before rb->mmap_count and
5455          * event->mmap_count, so it is ok to use event->mmap_mutex to
5456          * serialize with perf_mmap here.
5457          */
5458         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5459             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5460                 /*
5461                  * Stop all AUX events that are writing to this buffer,
5462                  * so that we can free its AUX pages and corresponding PMU
5463                  * data. Note that after rb::aux_mmap_count dropped to zero,
5464                  * they won't start any more (see perf_aux_output_begin()).
5465                  */
5466                 perf_pmu_output_stop(event);
5467
5468                 /* now it's safe to free the pages */
5469                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5470                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5471
5472                 /* this has to be the last one */
5473                 rb_free_aux(rb);
5474                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5475
5476                 mutex_unlock(&event->mmap_mutex);
5477         }
5478
5479         atomic_dec(&rb->mmap_count);
5480
5481         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5482                 goto out_put;
5483
5484         ring_buffer_attach(event, NULL);
5485         mutex_unlock(&event->mmap_mutex);
5486
5487         /* If there's still other mmap()s of this buffer, we're done. */
5488         if (atomic_read(&rb->mmap_count))
5489                 goto out_put;
5490
5491         /*
5492          * No other mmap()s, detach from all other events that might redirect
5493          * into the now unreachable buffer. Somewhat complicated by the
5494          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5495          */
5496 again:
5497         rcu_read_lock();
5498         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5499                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5500                         /*
5501                          * This event is en-route to free_event() which will
5502                          * detach it and remove it from the list.
5503                          */
5504                         continue;
5505                 }
5506                 rcu_read_unlock();
5507
5508                 mutex_lock(&event->mmap_mutex);
5509                 /*
5510                  * Check we didn't race with perf_event_set_output() which can
5511                  * swizzle the rb from under us while we were waiting to
5512                  * acquire mmap_mutex.
5513                  *
5514                  * If we find a different rb; ignore this event, a next
5515                  * iteration will no longer find it on the list. We have to
5516                  * still restart the iteration to make sure we're not now
5517                  * iterating the wrong list.
5518                  */
5519                 if (event->rb == rb)
5520                         ring_buffer_attach(event, NULL);
5521
5522                 mutex_unlock(&event->mmap_mutex);
5523                 put_event(event);
5524
5525                 /*
5526                  * Restart the iteration; either we're on the wrong list or
5527                  * destroyed its integrity by doing a deletion.
5528                  */
5529                 goto again;
5530         }
5531         rcu_read_unlock();
5532
5533         /*
5534          * It could be there's still a few 0-ref events on the list; they'll
5535          * get cleaned up by free_event() -- they'll also still have their
5536          * ref on the rb and will free it whenever they are done with it.
5537          *
5538          * Aside from that, this buffer is 'fully' detached and unmapped,
5539          * undo the VM accounting.
5540          */
5541
5542         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5543         vma->vm_mm->pinned_vm -= mmap_locked;
5544         free_uid(mmap_user);
5545
5546 out_put:
5547         ring_buffer_put(rb); /* could be last */
5548 }
5549
5550 static const struct vm_operations_struct perf_mmap_vmops = {
5551         .open           = perf_mmap_open,
5552         .close          = perf_mmap_close, /* non mergeable */
5553         .fault          = perf_mmap_fault,
5554         .page_mkwrite   = perf_mmap_fault,
5555 };
5556
5557 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5558 {
5559         struct perf_event *event = file->private_data;
5560         unsigned long user_locked, user_lock_limit;
5561         struct user_struct *user = current_user();
5562         unsigned long locked, lock_limit;
5563         struct ring_buffer *rb = NULL;
5564         unsigned long vma_size;
5565         unsigned long nr_pages;
5566         long user_extra = 0, extra = 0;
5567         int ret = 0, flags = 0;
5568
5569         /*
5570          * Don't allow mmap() of inherited per-task counters. This would
5571          * create a performance issue due to all children writing to the
5572          * same rb.
5573          */
5574         if (event->cpu == -1 && event->attr.inherit)
5575                 return -EINVAL;
5576
5577         if (!(vma->vm_flags & VM_SHARED))
5578                 return -EINVAL;
5579
5580         vma_size = vma->vm_end - vma->vm_start;
5581
5582         if (vma->vm_pgoff == 0) {
5583                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5584         } else {
5585                 /*
5586                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5587                  * mapped, all subsequent mappings should have the same size
5588                  * and offset. Must be above the normal perf buffer.
5589                  */
5590                 u64 aux_offset, aux_size;
5591
5592                 if (!event->rb)
5593                         return -EINVAL;
5594
5595                 nr_pages = vma_size / PAGE_SIZE;
5596
5597                 mutex_lock(&event->mmap_mutex);
5598                 ret = -EINVAL;
5599
5600                 rb = event->rb;
5601                 if (!rb)
5602                         goto aux_unlock;
5603
5604                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5605                 aux_size = READ_ONCE(rb->user_page->aux_size);
5606
5607                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5608                         goto aux_unlock;
5609
5610                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5611                         goto aux_unlock;
5612
5613                 /* already mapped with a different offset */
5614                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5615                         goto aux_unlock;
5616
5617                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5618                         goto aux_unlock;
5619
5620                 /* already mapped with a different size */
5621                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5622                         goto aux_unlock;
5623
5624                 if (!is_power_of_2(nr_pages))
5625                         goto aux_unlock;
5626
5627                 if (!atomic_inc_not_zero(&rb->mmap_count))
5628                         goto aux_unlock;
5629
5630                 if (rb_has_aux(rb)) {
5631                         atomic_inc(&rb->aux_mmap_count);
5632                         ret = 0;
5633                         goto unlock;
5634                 }
5635
5636                 atomic_set(&rb->aux_mmap_count, 1);
5637                 user_extra = nr_pages;
5638
5639                 goto accounting;
5640         }
5641
5642         /*
5643          * If we have rb pages ensure they're a power-of-two number, so we
5644          * can do bitmasks instead of modulo.
5645          */
5646         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5647                 return -EINVAL;
5648
5649         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5650                 return -EINVAL;
5651
5652         WARN_ON_ONCE(event->ctx->parent_ctx);
5653 again:
5654         mutex_lock(&event->mmap_mutex);
5655         if (event->rb) {
5656                 if (event->rb->nr_pages != nr_pages) {
5657                         ret = -EINVAL;
5658                         goto unlock;
5659                 }
5660
5661                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5662                         /*
5663                          * Raced against perf_mmap_close() through
5664                          * perf_event_set_output(). Try again, hope for better
5665                          * luck.
5666                          */
5667                         mutex_unlock(&event->mmap_mutex);
5668                         goto again;
5669                 }
5670
5671                 goto unlock;
5672         }
5673
5674         user_extra = nr_pages + 1;
5675
5676 accounting:
5677         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5678
5679         /*
5680          * Increase the limit linearly with more CPUs:
5681          */
5682         user_lock_limit *= num_online_cpus();
5683
5684         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5685
5686         if (user_locked > user_lock_limit)
5687                 extra = user_locked - user_lock_limit;
5688
5689         lock_limit = rlimit(RLIMIT_MEMLOCK);
5690         lock_limit >>= PAGE_SHIFT;
5691         locked = vma->vm_mm->pinned_vm + extra;
5692
5693         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5694                 !capable(CAP_IPC_LOCK)) {
5695                 ret = -EPERM;
5696                 goto unlock;
5697         }
5698
5699         WARN_ON(!rb && event->rb);
5700
5701         if (vma->vm_flags & VM_WRITE)
5702                 flags |= RING_BUFFER_WRITABLE;
5703
5704         if (!rb) {
5705                 rb = rb_alloc(nr_pages,
5706                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5707                               event->cpu, flags);
5708
5709                 if (!rb) {
5710                         ret = -ENOMEM;
5711                         goto unlock;
5712                 }
5713
5714                 atomic_set(&rb->mmap_count, 1);
5715                 rb->mmap_user = get_current_user();
5716                 rb->mmap_locked = extra;
5717
5718                 ring_buffer_attach(event, rb);
5719
5720                 perf_event_init_userpage(event);
5721                 perf_event_update_userpage(event);
5722         } else {
5723                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5724                                    event->attr.aux_watermark, flags);
5725                 if (!ret)
5726                         rb->aux_mmap_locked = extra;
5727         }
5728
5729 unlock:
5730         if (!ret) {
5731                 atomic_long_add(user_extra, &user->locked_vm);
5732                 vma->vm_mm->pinned_vm += extra;
5733
5734                 atomic_inc(&event->mmap_count);
5735         } else if (rb) {
5736                 atomic_dec(&rb->mmap_count);
5737         }
5738 aux_unlock:
5739         mutex_unlock(&event->mmap_mutex);
5740
5741         /*
5742          * Since pinned accounting is per vm we cannot allow fork() to copy our
5743          * vma.
5744          */
5745         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5746         vma->vm_ops = &perf_mmap_vmops;
5747
5748         if (event->pmu->event_mapped)
5749                 event->pmu->event_mapped(event, vma->vm_mm);
5750
5751         return ret;
5752 }
5753
5754 static int perf_fasync(int fd, struct file *filp, int on)
5755 {
5756         struct inode *inode = file_inode(filp);
5757         struct perf_event *event = filp->private_data;
5758         int retval;
5759
5760         inode_lock(inode);
5761         retval = fasync_helper(fd, filp, on, &event->fasync);
5762         inode_unlock(inode);
5763
5764         if (retval < 0)
5765                 return retval;
5766
5767         return 0;
5768 }
5769
5770 static const struct file_operations perf_fops = {
5771         .llseek                 = no_llseek,
5772         .release                = perf_release,
5773         .read                   = perf_read,
5774         .poll                   = perf_poll,
5775         .unlocked_ioctl         = perf_ioctl,
5776         .compat_ioctl           = perf_compat_ioctl,
5777         .mmap                   = perf_mmap,
5778         .fasync                 = perf_fasync,
5779 };
5780
5781 /*
5782  * Perf event wakeup
5783  *
5784  * If there's data, ensure we set the poll() state and publish everything
5785  * to user-space before waking everybody up.
5786  */
5787
5788 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5789 {
5790         /* only the parent has fasync state */
5791         if (event->parent)
5792                 event = event->parent;
5793         return &event->fasync;
5794 }
5795
5796 void perf_event_wakeup(struct perf_event *event)
5797 {
5798         ring_buffer_wakeup(event);
5799
5800         if (event->pending_kill) {
5801                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5802                 event->pending_kill = 0;
5803         }
5804 }
5805
5806 static void perf_pending_event(struct irq_work *entry)
5807 {
5808         struct perf_event *event = container_of(entry,
5809                         struct perf_event, pending);
5810         int rctx;
5811
5812         rctx = perf_swevent_get_recursion_context();
5813         /*
5814          * If we 'fail' here, that's OK, it means recursion is already disabled
5815          * and we won't recurse 'further'.
5816          */
5817
5818         if (event->pending_disable) {
5819                 event->pending_disable = 0;
5820                 perf_event_disable_local(event);
5821         }
5822
5823         if (event->pending_wakeup) {
5824                 event->pending_wakeup = 0;
5825                 perf_event_wakeup(event);
5826         }
5827
5828         if (rctx >= 0)
5829                 perf_swevent_put_recursion_context(rctx);
5830 }
5831
5832 /*
5833  * We assume there is only KVM supporting the callbacks.
5834  * Later on, we might change it to a list if there is
5835  * another virtualization implementation supporting the callbacks.
5836  */
5837 struct perf_guest_info_callbacks *perf_guest_cbs;
5838
5839 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5840 {
5841         perf_guest_cbs = cbs;
5842         return 0;
5843 }
5844 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5845
5846 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5847 {
5848         perf_guest_cbs = NULL;
5849         return 0;
5850 }
5851 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5852
5853 static void
5854 perf_output_sample_regs(struct perf_output_handle *handle,
5855                         struct pt_regs *regs, u64 mask)
5856 {
5857         int bit;
5858         DECLARE_BITMAP(_mask, 64);
5859
5860         bitmap_from_u64(_mask, mask);
5861         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5862                 u64 val;
5863
5864                 val = perf_reg_value(regs, bit);
5865                 perf_output_put(handle, val);
5866         }
5867 }
5868
5869 static void perf_sample_regs_user(struct perf_regs *regs_user,
5870                                   struct pt_regs *regs,
5871                                   struct pt_regs *regs_user_copy)
5872 {
5873         if (user_mode(regs)) {
5874                 regs_user->abi = perf_reg_abi(current);
5875                 regs_user->regs = regs;
5876         } else if (current->mm) {
5877                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5878         } else {
5879                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5880                 regs_user->regs = NULL;
5881         }
5882 }
5883
5884 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5885                                   struct pt_regs *regs)
5886 {
5887         regs_intr->regs = regs;
5888         regs_intr->abi  = perf_reg_abi(current);
5889 }
5890
5891
5892 /*
5893  * Get remaining task size from user stack pointer.
5894  *
5895  * It'd be better to take stack vma map and limit this more
5896  * precisly, but there's no way to get it safely under interrupt,
5897  * so using TASK_SIZE as limit.
5898  */
5899 static u64 perf_ustack_task_size(struct pt_regs *regs)
5900 {
5901         unsigned long addr = perf_user_stack_pointer(regs);
5902
5903         if (!addr || addr >= TASK_SIZE)
5904                 return 0;
5905
5906         return TASK_SIZE - addr;
5907 }
5908
5909 static u16
5910 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5911                         struct pt_regs *regs)
5912 {
5913         u64 task_size;
5914
5915         /* No regs, no stack pointer, no dump. */
5916         if (!regs)
5917                 return 0;
5918
5919         /*
5920          * Check if we fit in with the requested stack size into the:
5921          * - TASK_SIZE
5922          *   If we don't, we limit the size to the TASK_SIZE.
5923          *
5924          * - remaining sample size
5925          *   If we don't, we customize the stack size to
5926          *   fit in to the remaining sample size.
5927          */
5928
5929         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5930         stack_size = min(stack_size, (u16) task_size);
5931
5932         /* Current header size plus static size and dynamic size. */
5933         header_size += 2 * sizeof(u64);
5934
5935         /* Do we fit in with the current stack dump size? */
5936         if ((u16) (header_size + stack_size) < header_size) {
5937                 /*
5938                  * If we overflow the maximum size for the sample,
5939                  * we customize the stack dump size to fit in.
5940                  */
5941                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5942                 stack_size = round_up(stack_size, sizeof(u64));
5943         }
5944
5945         return stack_size;
5946 }
5947
5948 static void
5949 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5950                           struct pt_regs *regs)
5951 {
5952         /* Case of a kernel thread, nothing to dump */
5953         if (!regs) {
5954                 u64 size = 0;
5955                 perf_output_put(handle, size);
5956         } else {
5957                 unsigned long sp;
5958                 unsigned int rem;
5959                 u64 dyn_size;
5960                 mm_segment_t fs;
5961
5962                 /*
5963                  * We dump:
5964                  * static size
5965                  *   - the size requested by user or the best one we can fit
5966                  *     in to the sample max size
5967                  * data
5968                  *   - user stack dump data
5969                  * dynamic size
5970                  *   - the actual dumped size
5971                  */
5972
5973                 /* Static size. */
5974                 perf_output_put(handle, dump_size);
5975
5976                 /* Data. */
5977                 sp = perf_user_stack_pointer(regs);
5978                 fs = get_fs();
5979                 set_fs(USER_DS);
5980                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5981                 set_fs(fs);
5982                 dyn_size = dump_size - rem;
5983
5984                 perf_output_skip(handle, rem);
5985
5986                 /* Dynamic size. */
5987                 perf_output_put(handle, dyn_size);
5988         }
5989 }
5990
5991 static void __perf_event_header__init_id(struct perf_event_header *header,
5992                                          struct perf_sample_data *data,
5993                                          struct perf_event *event)
5994 {
5995         u64 sample_type = event->attr.sample_type;
5996
5997         data->type = sample_type;
5998         header->size += event->id_header_size;
5999
6000         if (sample_type & PERF_SAMPLE_TID) {
6001                 /* namespace issues */
6002                 data->tid_entry.pid = perf_event_pid(event, current);
6003                 data->tid_entry.tid = perf_event_tid(event, current);
6004         }
6005
6006         if (sample_type & PERF_SAMPLE_TIME)
6007                 data->time = perf_event_clock(event);
6008
6009         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6010                 data->id = primary_event_id(event);
6011
6012         if (sample_type & PERF_SAMPLE_STREAM_ID)
6013                 data->stream_id = event->id;
6014
6015         if (sample_type & PERF_SAMPLE_CPU) {
6016                 data->cpu_entry.cpu      = raw_smp_processor_id();
6017                 data->cpu_entry.reserved = 0;
6018         }
6019 }
6020
6021 void perf_event_header__init_id(struct perf_event_header *header,
6022                                 struct perf_sample_data *data,
6023                                 struct perf_event *event)
6024 {
6025         if (event->attr.sample_id_all)
6026                 __perf_event_header__init_id(header, data, event);
6027 }
6028
6029 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6030                                            struct perf_sample_data *data)
6031 {
6032         u64 sample_type = data->type;
6033
6034         if (sample_type & PERF_SAMPLE_TID)
6035                 perf_output_put(handle, data->tid_entry);
6036
6037         if (sample_type & PERF_SAMPLE_TIME)
6038                 perf_output_put(handle, data->time);
6039
6040         if (sample_type & PERF_SAMPLE_ID)
6041                 perf_output_put(handle, data->id);
6042
6043         if (sample_type & PERF_SAMPLE_STREAM_ID)
6044                 perf_output_put(handle, data->stream_id);
6045
6046         if (sample_type & PERF_SAMPLE_CPU)
6047                 perf_output_put(handle, data->cpu_entry);
6048
6049         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6050                 perf_output_put(handle, data->id);
6051 }
6052
6053 void perf_event__output_id_sample(struct perf_event *event,
6054                                   struct perf_output_handle *handle,
6055                                   struct perf_sample_data *sample)
6056 {
6057         if (event->attr.sample_id_all)
6058                 __perf_event__output_id_sample(handle, sample);
6059 }
6060
6061 static void perf_output_read_one(struct perf_output_handle *handle,
6062                                  struct perf_event *event,
6063                                  u64 enabled, u64 running)
6064 {
6065         u64 read_format = event->attr.read_format;
6066         u64 values[4];
6067         int n = 0;
6068
6069         values[n++] = perf_event_count(event);
6070         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6071                 values[n++] = enabled +
6072                         atomic64_read(&event->child_total_time_enabled);
6073         }
6074         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6075                 values[n++] = running +
6076                         atomic64_read(&event->child_total_time_running);
6077         }
6078         if (read_format & PERF_FORMAT_ID)
6079                 values[n++] = primary_event_id(event);
6080
6081         __output_copy(handle, values, n * sizeof(u64));
6082 }
6083
6084 static void perf_output_read_group(struct perf_output_handle *handle,
6085                             struct perf_event *event,
6086                             u64 enabled, u64 running)
6087 {
6088         struct perf_event *leader = event->group_leader, *sub;
6089         u64 read_format = event->attr.read_format;
6090         u64 values[5];
6091         int n = 0;
6092
6093         values[n++] = 1 + leader->nr_siblings;
6094
6095         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6096                 values[n++] = enabled;
6097
6098         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6099                 values[n++] = running;
6100
6101         if ((leader != event) &&
6102             (leader->state == PERF_EVENT_STATE_ACTIVE))
6103                 leader->pmu->read(leader);
6104
6105         values[n++] = perf_event_count(leader);
6106         if (read_format & PERF_FORMAT_ID)
6107                 values[n++] = primary_event_id(leader);
6108
6109         __output_copy(handle, values, n * sizeof(u64));
6110
6111         for_each_sibling_event(sub, leader) {
6112                 n = 0;
6113
6114                 if ((sub != event) &&
6115                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6116                         sub->pmu->read(sub);
6117
6118                 values[n++] = perf_event_count(sub);
6119                 if (read_format & PERF_FORMAT_ID)
6120                         values[n++] = primary_event_id(sub);
6121
6122                 __output_copy(handle, values, n * sizeof(u64));
6123         }
6124 }
6125
6126 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6127                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6128
6129 /*
6130  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6131  *
6132  * The problem is that its both hard and excessively expensive to iterate the
6133  * child list, not to mention that its impossible to IPI the children running
6134  * on another CPU, from interrupt/NMI context.
6135  */
6136 static void perf_output_read(struct perf_output_handle *handle,
6137                              struct perf_event *event)
6138 {
6139         u64 enabled = 0, running = 0, now;
6140         u64 read_format = event->attr.read_format;
6141
6142         /*
6143          * compute total_time_enabled, total_time_running
6144          * based on snapshot values taken when the event
6145          * was last scheduled in.
6146          *
6147          * we cannot simply called update_context_time()
6148          * because of locking issue as we are called in
6149          * NMI context
6150          */
6151         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6152                 calc_timer_values(event, &now, &enabled, &running);
6153
6154         if (event->attr.read_format & PERF_FORMAT_GROUP)
6155                 perf_output_read_group(handle, event, enabled, running);
6156         else
6157                 perf_output_read_one(handle, event, enabled, running);
6158 }
6159
6160 void perf_output_sample(struct perf_output_handle *handle,
6161                         struct perf_event_header *header,
6162                         struct perf_sample_data *data,
6163                         struct perf_event *event)
6164 {
6165         u64 sample_type = data->type;
6166
6167         perf_output_put(handle, *header);
6168
6169         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6170                 perf_output_put(handle, data->id);
6171
6172         if (sample_type & PERF_SAMPLE_IP)
6173                 perf_output_put(handle, data->ip);
6174
6175         if (sample_type & PERF_SAMPLE_TID)
6176                 perf_output_put(handle, data->tid_entry);
6177
6178         if (sample_type & PERF_SAMPLE_TIME)
6179                 perf_output_put(handle, data->time);
6180
6181         if (sample_type & PERF_SAMPLE_ADDR)
6182                 perf_output_put(handle, data->addr);
6183
6184         if (sample_type & PERF_SAMPLE_ID)
6185                 perf_output_put(handle, data->id);
6186
6187         if (sample_type & PERF_SAMPLE_STREAM_ID)
6188                 perf_output_put(handle, data->stream_id);
6189
6190         if (sample_type & PERF_SAMPLE_CPU)
6191                 perf_output_put(handle, data->cpu_entry);
6192
6193         if (sample_type & PERF_SAMPLE_PERIOD)
6194                 perf_output_put(handle, data->period);
6195
6196         if (sample_type & PERF_SAMPLE_READ)
6197                 perf_output_read(handle, event);
6198
6199         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6200                 int size = 1;
6201
6202                 size += data->callchain->nr;
6203                 size *= sizeof(u64);
6204                 __output_copy(handle, data->callchain, size);
6205         }
6206
6207         if (sample_type & PERF_SAMPLE_RAW) {
6208                 struct perf_raw_record *raw = data->raw;
6209
6210                 if (raw) {
6211                         struct perf_raw_frag *frag = &raw->frag;
6212
6213                         perf_output_put(handle, raw->size);
6214                         do {
6215                                 if (frag->copy) {
6216                                         __output_custom(handle, frag->copy,
6217                                                         frag->data, frag->size);
6218                                 } else {
6219                                         __output_copy(handle, frag->data,
6220                                                       frag->size);
6221                                 }
6222                                 if (perf_raw_frag_last(frag))
6223                                         break;
6224                                 frag = frag->next;
6225                         } while (1);
6226                         if (frag->pad)
6227                                 __output_skip(handle, NULL, frag->pad);
6228                 } else {
6229                         struct {
6230                                 u32     size;
6231                                 u32     data;
6232                         } raw = {
6233                                 .size = sizeof(u32),
6234                                 .data = 0,
6235                         };
6236                         perf_output_put(handle, raw);
6237                 }
6238         }
6239
6240         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6241                 if (data->br_stack) {
6242                         size_t size;
6243
6244                         size = data->br_stack->nr
6245                              * sizeof(struct perf_branch_entry);
6246
6247                         perf_output_put(handle, data->br_stack->nr);
6248                         perf_output_copy(handle, data->br_stack->entries, size);
6249                 } else {
6250                         /*
6251                          * we always store at least the value of nr
6252                          */
6253                         u64 nr = 0;
6254                         perf_output_put(handle, nr);
6255                 }
6256         }
6257
6258         if (sample_type & PERF_SAMPLE_REGS_USER) {
6259                 u64 abi = data->regs_user.abi;
6260
6261                 /*
6262                  * If there are no regs to dump, notice it through
6263                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6264                  */
6265                 perf_output_put(handle, abi);
6266
6267                 if (abi) {
6268                         u64 mask = event->attr.sample_regs_user;
6269                         perf_output_sample_regs(handle,
6270                                                 data->regs_user.regs,
6271                                                 mask);
6272                 }
6273         }
6274
6275         if (sample_type & PERF_SAMPLE_STACK_USER) {
6276                 perf_output_sample_ustack(handle,
6277                                           data->stack_user_size,
6278                                           data->regs_user.regs);
6279         }
6280
6281         if (sample_type & PERF_SAMPLE_WEIGHT)
6282                 perf_output_put(handle, data->weight);
6283
6284         if (sample_type & PERF_SAMPLE_DATA_SRC)
6285                 perf_output_put(handle, data->data_src.val);
6286
6287         if (sample_type & PERF_SAMPLE_TRANSACTION)
6288                 perf_output_put(handle, data->txn);
6289
6290         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6291                 u64 abi = data->regs_intr.abi;
6292                 /*
6293                  * If there are no regs to dump, notice it through
6294                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6295                  */
6296                 perf_output_put(handle, abi);
6297
6298                 if (abi) {
6299                         u64 mask = event->attr.sample_regs_intr;
6300
6301                         perf_output_sample_regs(handle,
6302                                                 data->regs_intr.regs,
6303                                                 mask);
6304                 }
6305         }
6306
6307         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6308                 perf_output_put(handle, data->phys_addr);
6309
6310         if (!event->attr.watermark) {
6311                 int wakeup_events = event->attr.wakeup_events;
6312
6313                 if (wakeup_events) {
6314                         struct ring_buffer *rb = handle->rb;
6315                         int events = local_inc_return(&rb->events);
6316
6317                         if (events >= wakeup_events) {
6318                                 local_sub(wakeup_events, &rb->events);
6319                                 local_inc(&rb->wakeup);
6320                         }
6321                 }
6322         }
6323 }
6324
6325 static u64 perf_virt_to_phys(u64 virt)
6326 {
6327         u64 phys_addr = 0;
6328         struct page *p = NULL;
6329
6330         if (!virt)
6331                 return 0;
6332
6333         if (virt >= TASK_SIZE) {
6334                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6335                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6336                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6337                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6338         } else {
6339                 /*
6340                  * Walking the pages tables for user address.
6341                  * Interrupts are disabled, so it prevents any tear down
6342                  * of the page tables.
6343                  * Try IRQ-safe __get_user_pages_fast first.
6344                  * If failed, leave phys_addr as 0.
6345                  */
6346                 if ((current->mm != NULL) &&
6347                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6348                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6349
6350                 if (p)
6351                         put_page(p);
6352         }
6353
6354         return phys_addr;
6355 }
6356
6357 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6358
6359 struct perf_callchain_entry *
6360 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6361 {
6362         bool kernel = !event->attr.exclude_callchain_kernel;
6363         bool user   = !event->attr.exclude_callchain_user;
6364         /* Disallow cross-task user callchains. */
6365         bool crosstask = event->ctx->task && event->ctx->task != current;
6366         const u32 max_stack = event->attr.sample_max_stack;
6367         struct perf_callchain_entry *callchain;
6368
6369         if (!kernel && !user)
6370                 return &__empty_callchain;
6371
6372         callchain = get_perf_callchain(regs, 0, kernel, user,
6373                                        max_stack, crosstask, true);
6374         return callchain ?: &__empty_callchain;
6375 }
6376
6377 void perf_prepare_sample(struct perf_event_header *header,
6378                          struct perf_sample_data *data,
6379                          struct perf_event *event,
6380                          struct pt_regs *regs)
6381 {
6382         u64 sample_type = event->attr.sample_type;
6383
6384         header->type = PERF_RECORD_SAMPLE;
6385         header->size = sizeof(*header) + event->header_size;
6386
6387         header->misc = 0;
6388         header->misc |= perf_misc_flags(regs);
6389
6390         __perf_event_header__init_id(header, data, event);
6391
6392         if (sample_type & PERF_SAMPLE_IP)
6393                 data->ip = perf_instruction_pointer(regs);
6394
6395         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6396                 int size = 1;
6397
6398                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6399                         data->callchain = perf_callchain(event, regs);
6400
6401                 size += data->callchain->nr;
6402
6403                 header->size += size * sizeof(u64);
6404         }
6405
6406         if (sample_type & PERF_SAMPLE_RAW) {
6407                 struct perf_raw_record *raw = data->raw;
6408                 int size;
6409
6410                 if (raw) {
6411                         struct perf_raw_frag *frag = &raw->frag;
6412                         u32 sum = 0;
6413
6414                         do {
6415                                 sum += frag->size;
6416                                 if (perf_raw_frag_last(frag))
6417                                         break;
6418                                 frag = frag->next;
6419                         } while (1);
6420
6421                         size = round_up(sum + sizeof(u32), sizeof(u64));
6422                         raw->size = size - sizeof(u32);
6423                         frag->pad = raw->size - sum;
6424                 } else {
6425                         size = sizeof(u64);
6426                 }
6427
6428                 header->size += size;
6429         }
6430
6431         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6432                 int size = sizeof(u64); /* nr */
6433                 if (data->br_stack) {
6434                         size += data->br_stack->nr
6435                               * sizeof(struct perf_branch_entry);
6436                 }
6437                 header->size += size;
6438         }
6439
6440         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6441                 perf_sample_regs_user(&data->regs_user, regs,
6442                                       &data->regs_user_copy);
6443
6444         if (sample_type & PERF_SAMPLE_REGS_USER) {
6445                 /* regs dump ABI info */
6446                 int size = sizeof(u64);
6447
6448                 if (data->regs_user.regs) {
6449                         u64 mask = event->attr.sample_regs_user;
6450                         size += hweight64(mask) * sizeof(u64);
6451                 }
6452
6453                 header->size += size;
6454         }
6455
6456         if (sample_type & PERF_SAMPLE_STACK_USER) {
6457                 /*
6458                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6459                  * processed as the last one or have additional check added
6460                  * in case new sample type is added, because we could eat
6461                  * up the rest of the sample size.
6462                  */
6463                 u16 stack_size = event->attr.sample_stack_user;
6464                 u16 size = sizeof(u64);
6465
6466                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6467                                                      data->regs_user.regs);
6468
6469                 /*
6470                  * If there is something to dump, add space for the dump
6471                  * itself and for the field that tells the dynamic size,
6472                  * which is how many have been actually dumped.
6473                  */
6474                 if (stack_size)
6475                         size += sizeof(u64) + stack_size;
6476
6477                 data->stack_user_size = stack_size;
6478                 header->size += size;
6479         }
6480
6481         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6482                 /* regs dump ABI info */
6483                 int size = sizeof(u64);
6484
6485                 perf_sample_regs_intr(&data->regs_intr, regs);
6486
6487                 if (data->regs_intr.regs) {
6488                         u64 mask = event->attr.sample_regs_intr;
6489
6490                         size += hweight64(mask) * sizeof(u64);
6491                 }
6492
6493                 header->size += size;
6494         }
6495
6496         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6497                 data->phys_addr = perf_virt_to_phys(data->addr);
6498 }
6499
6500 static __always_inline void
6501 __perf_event_output(struct perf_event *event,
6502                     struct perf_sample_data *data,
6503                     struct pt_regs *regs,
6504                     int (*output_begin)(struct perf_output_handle *,
6505                                         struct perf_event *,
6506                                         unsigned int))
6507 {
6508         struct perf_output_handle handle;
6509         struct perf_event_header header;
6510
6511         /* protect the callchain buffers */
6512         rcu_read_lock();
6513
6514         perf_prepare_sample(&header, data, event, regs);
6515
6516         if (output_begin(&handle, event, header.size))
6517                 goto exit;
6518
6519         perf_output_sample(&handle, &header, data, event);
6520
6521         perf_output_end(&handle);
6522
6523 exit:
6524         rcu_read_unlock();
6525 }
6526
6527 void
6528 perf_event_output_forward(struct perf_event *event,
6529                          struct perf_sample_data *data,
6530                          struct pt_regs *regs)
6531 {
6532         __perf_event_output(event, data, regs, perf_output_begin_forward);
6533 }
6534
6535 void
6536 perf_event_output_backward(struct perf_event *event,
6537                            struct perf_sample_data *data,
6538                            struct pt_regs *regs)
6539 {
6540         __perf_event_output(event, data, regs, perf_output_begin_backward);
6541 }
6542
6543 void
6544 perf_event_output(struct perf_event *event,
6545                   struct perf_sample_data *data,
6546                   struct pt_regs *regs)
6547 {
6548         __perf_event_output(event, data, regs, perf_output_begin);
6549 }
6550
6551 /*
6552  * read event_id
6553  */
6554
6555 struct perf_read_event {
6556         struct perf_event_header        header;
6557
6558         u32                             pid;
6559         u32                             tid;
6560 };
6561
6562 static void
6563 perf_event_read_event(struct perf_event *event,
6564                         struct task_struct *task)
6565 {
6566         struct perf_output_handle handle;
6567         struct perf_sample_data sample;
6568         struct perf_read_event read_event = {
6569                 .header = {
6570                         .type = PERF_RECORD_READ,
6571                         .misc = 0,
6572                         .size = sizeof(read_event) + event->read_size,
6573                 },
6574                 .pid = perf_event_pid(event, task),
6575                 .tid = perf_event_tid(event, task),
6576         };
6577         int ret;
6578
6579         perf_event_header__init_id(&read_event.header, &sample, event);
6580         ret = perf_output_begin(&handle, event, read_event.header.size);
6581         if (ret)
6582                 return;
6583
6584         perf_output_put(&handle, read_event);
6585         perf_output_read(&handle, event);
6586         perf_event__output_id_sample(event, &handle, &sample);
6587
6588         perf_output_end(&handle);
6589 }
6590
6591 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6592
6593 static void
6594 perf_iterate_ctx(struct perf_event_context *ctx,
6595                    perf_iterate_f output,
6596                    void *data, bool all)
6597 {
6598         struct perf_event *event;
6599
6600         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6601                 if (!all) {
6602                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6603                                 continue;
6604                         if (!event_filter_match(event))
6605                                 continue;
6606                 }
6607
6608                 output(event, data);
6609         }
6610 }
6611
6612 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6613 {
6614         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6615         struct perf_event *event;
6616
6617         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6618                 /*
6619                  * Skip events that are not fully formed yet; ensure that
6620                  * if we observe event->ctx, both event and ctx will be
6621                  * complete enough. See perf_install_in_context().
6622                  */
6623                 if (!smp_load_acquire(&event->ctx))
6624                         continue;
6625
6626                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6627                         continue;
6628                 if (!event_filter_match(event))
6629                         continue;
6630                 output(event, data);
6631         }
6632 }
6633
6634 /*
6635  * Iterate all events that need to receive side-band events.
6636  *
6637  * For new callers; ensure that account_pmu_sb_event() includes
6638  * your event, otherwise it might not get delivered.
6639  */
6640 static void
6641 perf_iterate_sb(perf_iterate_f output, void *data,
6642                struct perf_event_context *task_ctx)
6643 {
6644         struct perf_event_context *ctx;
6645         int ctxn;
6646
6647         rcu_read_lock();
6648         preempt_disable();
6649
6650         /*
6651          * If we have task_ctx != NULL we only notify the task context itself.
6652          * The task_ctx is set only for EXIT events before releasing task
6653          * context.
6654          */
6655         if (task_ctx) {
6656                 perf_iterate_ctx(task_ctx, output, data, false);
6657                 goto done;
6658         }
6659
6660         perf_iterate_sb_cpu(output, data);
6661
6662         for_each_task_context_nr(ctxn) {
6663                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6664                 if (ctx)
6665                         perf_iterate_ctx(ctx, output, data, false);
6666         }
6667 done:
6668         preempt_enable();
6669         rcu_read_unlock();
6670 }
6671
6672 /*
6673  * Clear all file-based filters at exec, they'll have to be
6674  * re-instated when/if these objects are mmapped again.
6675  */
6676 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6677 {
6678         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6679         struct perf_addr_filter *filter;
6680         unsigned int restart = 0, count = 0;
6681         unsigned long flags;
6682
6683         if (!has_addr_filter(event))
6684                 return;
6685
6686         raw_spin_lock_irqsave(&ifh->lock, flags);
6687         list_for_each_entry(filter, &ifh->list, entry) {
6688                 if (filter->path.dentry) {
6689                         event->addr_filters_offs[count] = 0;
6690                         restart++;
6691                 }
6692
6693                 count++;
6694         }
6695
6696         if (restart)
6697                 event->addr_filters_gen++;
6698         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6699
6700         if (restart)
6701                 perf_event_stop(event, 1);
6702 }
6703
6704 void perf_event_exec(void)
6705 {
6706         struct perf_event_context *ctx;
6707         int ctxn;
6708
6709         rcu_read_lock();
6710         for_each_task_context_nr(ctxn) {
6711                 ctx = current->perf_event_ctxp[ctxn];
6712                 if (!ctx)
6713                         continue;
6714
6715                 perf_event_enable_on_exec(ctxn);
6716
6717                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6718                                    true);
6719         }
6720         rcu_read_unlock();
6721 }
6722
6723 struct remote_output {
6724         struct ring_buffer      *rb;
6725         int                     err;
6726 };
6727
6728 static void __perf_event_output_stop(struct perf_event *event, void *data)
6729 {
6730         struct perf_event *parent = event->parent;
6731         struct remote_output *ro = data;
6732         struct ring_buffer *rb = ro->rb;
6733         struct stop_event_data sd = {
6734                 .event  = event,
6735         };
6736
6737         if (!has_aux(event))
6738                 return;
6739
6740         if (!parent)
6741                 parent = event;
6742
6743         /*
6744          * In case of inheritance, it will be the parent that links to the
6745          * ring-buffer, but it will be the child that's actually using it.
6746          *
6747          * We are using event::rb to determine if the event should be stopped,
6748          * however this may race with ring_buffer_attach() (through set_output),
6749          * which will make us skip the event that actually needs to be stopped.
6750          * So ring_buffer_attach() has to stop an aux event before re-assigning
6751          * its rb pointer.
6752          */
6753         if (rcu_dereference(parent->rb) == rb)
6754                 ro->err = __perf_event_stop(&sd);
6755 }
6756
6757 static int __perf_pmu_output_stop(void *info)
6758 {
6759         struct perf_event *event = info;
6760         struct pmu *pmu = event->pmu;
6761         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6762         struct remote_output ro = {
6763                 .rb     = event->rb,
6764         };
6765
6766         rcu_read_lock();
6767         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6768         if (cpuctx->task_ctx)
6769                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6770                                    &ro, false);
6771         rcu_read_unlock();
6772
6773         return ro.err;
6774 }
6775
6776 static void perf_pmu_output_stop(struct perf_event *event)
6777 {
6778         struct perf_event *iter;
6779         int err, cpu;
6780
6781 restart:
6782         rcu_read_lock();
6783         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6784                 /*
6785                  * For per-CPU events, we need to make sure that neither they
6786                  * nor their children are running; for cpu==-1 events it's
6787                  * sufficient to stop the event itself if it's active, since
6788                  * it can't have children.
6789                  */
6790                 cpu = iter->cpu;
6791                 if (cpu == -1)
6792                         cpu = READ_ONCE(iter->oncpu);
6793
6794                 if (cpu == -1)
6795                         continue;
6796
6797                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6798                 if (err == -EAGAIN) {
6799                         rcu_read_unlock();
6800                         goto restart;
6801                 }
6802         }
6803         rcu_read_unlock();
6804 }
6805
6806 /*
6807  * task tracking -- fork/exit
6808  *
6809  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6810  */
6811
6812 struct perf_task_event {
6813         struct task_struct              *task;
6814         struct perf_event_context       *task_ctx;
6815
6816         struct {
6817                 struct perf_event_header        header;
6818
6819                 u32                             pid;
6820                 u32                             ppid;
6821                 u32                             tid;
6822                 u32                             ptid;
6823                 u64                             time;
6824         } event_id;
6825 };
6826
6827 static int perf_event_task_match(struct perf_event *event)
6828 {
6829         return event->attr.comm  || event->attr.mmap ||
6830                event->attr.mmap2 || event->attr.mmap_data ||
6831                event->attr.task;
6832 }
6833
6834 static void perf_event_task_output(struct perf_event *event,
6835                                    void *data)
6836 {
6837         struct perf_task_event *task_event = data;
6838         struct perf_output_handle handle;
6839         struct perf_sample_data sample;
6840         struct task_struct *task = task_event->task;
6841         int ret, size = task_event->event_id.header.size;
6842
6843         if (!perf_event_task_match(event))
6844                 return;
6845
6846         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6847
6848         ret = perf_output_begin(&handle, event,
6849                                 task_event->event_id.header.size);
6850         if (ret)
6851                 goto out;
6852
6853         task_event->event_id.pid = perf_event_pid(event, task);
6854         task_event->event_id.ppid = perf_event_pid(event, current);
6855
6856         task_event->event_id.tid = perf_event_tid(event, task);
6857         task_event->event_id.ptid = perf_event_tid(event, current);
6858
6859         task_event->event_id.time = perf_event_clock(event);
6860
6861         perf_output_put(&handle, task_event->event_id);
6862
6863         perf_event__output_id_sample(event, &handle, &sample);
6864
6865         perf_output_end(&handle);
6866 out:
6867         task_event->event_id.header.size = size;
6868 }
6869
6870 static void perf_event_task(struct task_struct *task,
6871                               struct perf_event_context *task_ctx,
6872                               int new)
6873 {
6874         struct perf_task_event task_event;
6875
6876         if (!atomic_read(&nr_comm_events) &&
6877             !atomic_read(&nr_mmap_events) &&
6878             !atomic_read(&nr_task_events))
6879                 return;
6880
6881         task_event = (struct perf_task_event){
6882                 .task     = task,
6883                 .task_ctx = task_ctx,
6884                 .event_id    = {
6885                         .header = {
6886                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6887                                 .misc = 0,
6888                                 .size = sizeof(task_event.event_id),
6889                         },
6890                         /* .pid  */
6891                         /* .ppid */
6892                         /* .tid  */
6893                         /* .ptid */
6894                         /* .time */
6895                 },
6896         };
6897
6898         perf_iterate_sb(perf_event_task_output,
6899                        &task_event,
6900                        task_ctx);
6901 }
6902
6903 void perf_event_fork(struct task_struct *task)
6904 {
6905         perf_event_task(task, NULL, 1);
6906         perf_event_namespaces(task);
6907 }
6908
6909 /*
6910  * comm tracking
6911  */
6912
6913 struct perf_comm_event {
6914         struct task_struct      *task;
6915         char                    *comm;
6916         int                     comm_size;
6917
6918         struct {
6919                 struct perf_event_header        header;
6920
6921                 u32                             pid;
6922                 u32                             tid;
6923         } event_id;
6924 };
6925
6926 static int perf_event_comm_match(struct perf_event *event)
6927 {
6928         return event->attr.comm;
6929 }
6930
6931 static void perf_event_comm_output(struct perf_event *event,
6932                                    void *data)
6933 {
6934         struct perf_comm_event *comm_event = data;
6935         struct perf_output_handle handle;
6936         struct perf_sample_data sample;
6937         int size = comm_event->event_id.header.size;
6938         int ret;
6939
6940         if (!perf_event_comm_match(event))
6941                 return;
6942
6943         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6944         ret = perf_output_begin(&handle, event,
6945                                 comm_event->event_id.header.size);
6946
6947         if (ret)
6948                 goto out;
6949
6950         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6951         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6952
6953         perf_output_put(&handle, comm_event->event_id);
6954         __output_copy(&handle, comm_event->comm,
6955                                    comm_event->comm_size);
6956
6957         perf_event__output_id_sample(event, &handle, &sample);
6958
6959         perf_output_end(&handle);
6960 out:
6961         comm_event->event_id.header.size = size;
6962 }
6963
6964 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6965 {
6966         char comm[TASK_COMM_LEN];
6967         unsigned int size;
6968
6969         memset(comm, 0, sizeof(comm));
6970         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6971         size = ALIGN(strlen(comm)+1, sizeof(u64));
6972
6973         comm_event->comm = comm;
6974         comm_event->comm_size = size;
6975
6976         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6977
6978         perf_iterate_sb(perf_event_comm_output,
6979                        comm_event,
6980                        NULL);
6981 }
6982
6983 void perf_event_comm(struct task_struct *task, bool exec)
6984 {
6985         struct perf_comm_event comm_event;
6986
6987         if (!atomic_read(&nr_comm_events))
6988                 return;
6989
6990         comm_event = (struct perf_comm_event){
6991                 .task   = task,
6992                 /* .comm      */
6993                 /* .comm_size */
6994                 .event_id  = {
6995                         .header = {
6996                                 .type = PERF_RECORD_COMM,
6997                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6998                                 /* .size */
6999                         },
7000                         /* .pid */
7001                         /* .tid */
7002                 },
7003         };
7004
7005         perf_event_comm_event(&comm_event);
7006 }
7007
7008 /*
7009  * namespaces tracking
7010  */
7011
7012 struct perf_namespaces_event {
7013         struct task_struct              *task;
7014
7015         struct {
7016                 struct perf_event_header        header;
7017
7018                 u32                             pid;
7019                 u32                             tid;
7020                 u64                             nr_namespaces;
7021                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7022         } event_id;
7023 };
7024
7025 static int perf_event_namespaces_match(struct perf_event *event)
7026 {
7027         return event->attr.namespaces;
7028 }
7029
7030 static void perf_event_namespaces_output(struct perf_event *event,
7031                                          void *data)
7032 {
7033         struct perf_namespaces_event *namespaces_event = data;
7034         struct perf_output_handle handle;
7035         struct perf_sample_data sample;
7036         u16 header_size = namespaces_event->event_id.header.size;
7037         int ret;
7038
7039         if (!perf_event_namespaces_match(event))
7040                 return;
7041
7042         perf_event_header__init_id(&namespaces_event->event_id.header,
7043                                    &sample, event);
7044         ret = perf_output_begin(&handle, event,
7045                                 namespaces_event->event_id.header.size);
7046         if (ret)
7047                 goto out;
7048
7049         namespaces_event->event_id.pid = perf_event_pid(event,
7050                                                         namespaces_event->task);
7051         namespaces_event->event_id.tid = perf_event_tid(event,
7052                                                         namespaces_event->task);
7053
7054         perf_output_put(&handle, namespaces_event->event_id);
7055
7056         perf_event__output_id_sample(event, &handle, &sample);
7057
7058         perf_output_end(&handle);
7059 out:
7060         namespaces_event->event_id.header.size = header_size;
7061 }
7062
7063 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7064                                    struct task_struct *task,
7065                                    const struct proc_ns_operations *ns_ops)
7066 {
7067         struct path ns_path;
7068         struct inode *ns_inode;
7069         void *error;
7070
7071         error = ns_get_path(&ns_path, task, ns_ops);
7072         if (!error) {
7073                 ns_inode = ns_path.dentry->d_inode;
7074                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7075                 ns_link_info->ino = ns_inode->i_ino;
7076                 path_put(&ns_path);
7077         }
7078 }
7079
7080 void perf_event_namespaces(struct task_struct *task)
7081 {
7082         struct perf_namespaces_event namespaces_event;
7083         struct perf_ns_link_info *ns_link_info;
7084
7085         if (!atomic_read(&nr_namespaces_events))
7086                 return;
7087
7088         namespaces_event = (struct perf_namespaces_event){
7089                 .task   = task,
7090                 .event_id  = {
7091                         .header = {
7092                                 .type = PERF_RECORD_NAMESPACES,
7093                                 .misc = 0,
7094                                 .size = sizeof(namespaces_event.event_id),
7095                         },
7096                         /* .pid */
7097                         /* .tid */
7098                         .nr_namespaces = NR_NAMESPACES,
7099                         /* .link_info[NR_NAMESPACES] */
7100                 },
7101         };
7102
7103         ns_link_info = namespaces_event.event_id.link_info;
7104
7105         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7106                                task, &mntns_operations);
7107
7108 #ifdef CONFIG_USER_NS
7109         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7110                                task, &userns_operations);
7111 #endif
7112 #ifdef CONFIG_NET_NS
7113         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7114                                task, &netns_operations);
7115 #endif
7116 #ifdef CONFIG_UTS_NS
7117         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7118                                task, &utsns_operations);
7119 #endif
7120 #ifdef CONFIG_IPC_NS
7121         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7122                                task, &ipcns_operations);
7123 #endif
7124 #ifdef CONFIG_PID_NS
7125         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7126                                task, &pidns_operations);
7127 #endif
7128 #ifdef CONFIG_CGROUPS
7129         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7130                                task, &cgroupns_operations);
7131 #endif
7132
7133         perf_iterate_sb(perf_event_namespaces_output,
7134                         &namespaces_event,
7135                         NULL);
7136 }
7137
7138 /*
7139  * mmap tracking
7140  */
7141
7142 struct perf_mmap_event {
7143         struct vm_area_struct   *vma;
7144
7145         const char              *file_name;
7146         int                     file_size;
7147         int                     maj, min;
7148         u64                     ino;
7149         u64                     ino_generation;
7150         u32                     prot, flags;
7151
7152         struct {
7153                 struct perf_event_header        header;
7154
7155                 u32                             pid;
7156                 u32                             tid;
7157                 u64                             start;
7158                 u64                             len;
7159                 u64                             pgoff;
7160         } event_id;
7161 };
7162
7163 static int perf_event_mmap_match(struct perf_event *event,
7164                                  void *data)
7165 {
7166         struct perf_mmap_event *mmap_event = data;
7167         struct vm_area_struct *vma = mmap_event->vma;
7168         int executable = vma->vm_flags & VM_EXEC;
7169
7170         return (!executable && event->attr.mmap_data) ||
7171                (executable && (event->attr.mmap || event->attr.mmap2));
7172 }
7173
7174 static void perf_event_mmap_output(struct perf_event *event,
7175                                    void *data)
7176 {
7177         struct perf_mmap_event *mmap_event = data;
7178         struct perf_output_handle handle;
7179         struct perf_sample_data sample;
7180         int size = mmap_event->event_id.header.size;
7181         int ret;
7182
7183         if (!perf_event_mmap_match(event, data))
7184                 return;
7185
7186         if (event->attr.mmap2) {
7187                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7188                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7189                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7190                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7191                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7192                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7193                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7194         }
7195
7196         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7197         ret = perf_output_begin(&handle, event,
7198                                 mmap_event->event_id.header.size);
7199         if (ret)
7200                 goto out;
7201
7202         mmap_event->event_id.pid = perf_event_pid(event, current);
7203         mmap_event->event_id.tid = perf_event_tid(event, current);
7204
7205         perf_output_put(&handle, mmap_event->event_id);
7206
7207         if (event->attr.mmap2) {
7208                 perf_output_put(&handle, mmap_event->maj);
7209                 perf_output_put(&handle, mmap_event->min);
7210                 perf_output_put(&handle, mmap_event->ino);
7211                 perf_output_put(&handle, mmap_event->ino_generation);
7212                 perf_output_put(&handle, mmap_event->prot);
7213                 perf_output_put(&handle, mmap_event->flags);
7214         }
7215
7216         __output_copy(&handle, mmap_event->file_name,
7217                                    mmap_event->file_size);
7218
7219         perf_event__output_id_sample(event, &handle, &sample);
7220
7221         perf_output_end(&handle);
7222 out:
7223         mmap_event->event_id.header.size = size;
7224 }
7225
7226 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7227 {
7228         struct vm_area_struct *vma = mmap_event->vma;
7229         struct file *file = vma->vm_file;
7230         int maj = 0, min = 0;
7231         u64 ino = 0, gen = 0;
7232         u32 prot = 0, flags = 0;
7233         unsigned int size;
7234         char tmp[16];
7235         char *buf = NULL;
7236         char *name;
7237
7238         if (vma->vm_flags & VM_READ)
7239                 prot |= PROT_READ;
7240         if (vma->vm_flags & VM_WRITE)
7241                 prot |= PROT_WRITE;
7242         if (vma->vm_flags & VM_EXEC)
7243                 prot |= PROT_EXEC;
7244
7245         if (vma->vm_flags & VM_MAYSHARE)
7246                 flags = MAP_SHARED;
7247         else
7248                 flags = MAP_PRIVATE;
7249
7250         if (vma->vm_flags & VM_DENYWRITE)
7251                 flags |= MAP_DENYWRITE;
7252         if (vma->vm_flags & VM_MAYEXEC)
7253                 flags |= MAP_EXECUTABLE;
7254         if (vma->vm_flags & VM_LOCKED)
7255                 flags |= MAP_LOCKED;
7256         if (vma->vm_flags & VM_HUGETLB)
7257                 flags |= MAP_HUGETLB;
7258
7259         if (file) {
7260                 struct inode *inode;
7261                 dev_t dev;
7262
7263                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7264                 if (!buf) {
7265                         name = "//enomem";
7266                         goto cpy_name;
7267                 }
7268                 /*
7269                  * d_path() works from the end of the rb backwards, so we
7270                  * need to add enough zero bytes after the string to handle
7271                  * the 64bit alignment we do later.
7272                  */
7273                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7274                 if (IS_ERR(name)) {
7275                         name = "//toolong";
7276                         goto cpy_name;
7277                 }
7278                 inode = file_inode(vma->vm_file);
7279                 dev = inode->i_sb->s_dev;
7280                 ino = inode->i_ino;
7281                 gen = inode->i_generation;
7282                 maj = MAJOR(dev);
7283                 min = MINOR(dev);
7284
7285                 goto got_name;
7286         } else {
7287                 if (vma->vm_ops && vma->vm_ops->name) {
7288                         name = (char *) vma->vm_ops->name(vma);
7289                         if (name)
7290                                 goto cpy_name;
7291                 }
7292
7293                 name = (char *)arch_vma_name(vma);
7294                 if (name)
7295                         goto cpy_name;
7296
7297                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7298                                 vma->vm_end >= vma->vm_mm->brk) {
7299                         name = "[heap]";
7300                         goto cpy_name;
7301                 }
7302                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7303                                 vma->vm_end >= vma->vm_mm->start_stack) {
7304                         name = "[stack]";
7305                         goto cpy_name;
7306                 }
7307
7308                 name = "//anon";
7309                 goto cpy_name;
7310         }
7311
7312 cpy_name:
7313         strlcpy(tmp, name, sizeof(tmp));
7314         name = tmp;
7315 got_name:
7316         /*
7317          * Since our buffer works in 8 byte units we need to align our string
7318          * size to a multiple of 8. However, we must guarantee the tail end is
7319          * zero'd out to avoid leaking random bits to userspace.
7320          */
7321         size = strlen(name)+1;
7322         while (!IS_ALIGNED(size, sizeof(u64)))
7323                 name[size++] = '\0';
7324
7325         mmap_event->file_name = name;
7326         mmap_event->file_size = size;
7327         mmap_event->maj = maj;
7328         mmap_event->min = min;
7329         mmap_event->ino = ino;
7330         mmap_event->ino_generation = gen;
7331         mmap_event->prot = prot;
7332         mmap_event->flags = flags;
7333
7334         if (!(vma->vm_flags & VM_EXEC))
7335                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7336
7337         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7338
7339         perf_iterate_sb(perf_event_mmap_output,
7340                        mmap_event,
7341                        NULL);
7342
7343         kfree(buf);
7344 }
7345
7346 /*
7347  * Check whether inode and address range match filter criteria.
7348  */
7349 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7350                                      struct file *file, unsigned long offset,
7351                                      unsigned long size)
7352 {
7353         /* d_inode(NULL) won't be equal to any mapped user-space file */
7354         if (!filter->path.dentry)
7355                 return false;
7356
7357         if (d_inode(filter->path.dentry) != file_inode(file))
7358                 return false;
7359
7360         if (filter->offset > offset + size)
7361                 return false;
7362
7363         if (filter->offset + filter->size < offset)
7364                 return false;
7365
7366         return true;
7367 }
7368
7369 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7370 {
7371         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7372         struct vm_area_struct *vma = data;
7373         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7374         struct file *file = vma->vm_file;
7375         struct perf_addr_filter *filter;
7376         unsigned int restart = 0, count = 0;
7377
7378         if (!has_addr_filter(event))
7379                 return;
7380
7381         if (!file)
7382                 return;
7383
7384         raw_spin_lock_irqsave(&ifh->lock, flags);
7385         list_for_each_entry(filter, &ifh->list, entry) {
7386                 if (perf_addr_filter_match(filter, file, off,
7387                                              vma->vm_end - vma->vm_start)) {
7388                         event->addr_filters_offs[count] = vma->vm_start;
7389                         restart++;
7390                 }
7391
7392                 count++;
7393         }
7394
7395         if (restart)
7396                 event->addr_filters_gen++;
7397         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7398
7399         if (restart)
7400                 perf_event_stop(event, 1);
7401 }
7402
7403 /*
7404  * Adjust all task's events' filters to the new vma
7405  */
7406 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7407 {
7408         struct perf_event_context *ctx;
7409         int ctxn;
7410
7411         /*
7412          * Data tracing isn't supported yet and as such there is no need
7413          * to keep track of anything that isn't related to executable code:
7414          */
7415         if (!(vma->vm_flags & VM_EXEC))
7416                 return;
7417
7418         rcu_read_lock();
7419         for_each_task_context_nr(ctxn) {
7420                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7421                 if (!ctx)
7422                         continue;
7423
7424                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7425         }
7426         rcu_read_unlock();
7427 }
7428
7429 void perf_event_mmap(struct vm_area_struct *vma)
7430 {
7431         struct perf_mmap_event mmap_event;
7432
7433         if (!atomic_read(&nr_mmap_events))
7434                 return;
7435
7436         mmap_event = (struct perf_mmap_event){
7437                 .vma    = vma,
7438                 /* .file_name */
7439                 /* .file_size */
7440                 .event_id  = {
7441                         .header = {
7442                                 .type = PERF_RECORD_MMAP,
7443                                 .misc = PERF_RECORD_MISC_USER,
7444                                 /* .size */
7445                         },
7446                         /* .pid */
7447                         /* .tid */
7448                         .start  = vma->vm_start,
7449                         .len    = vma->vm_end - vma->vm_start,
7450                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7451                 },
7452                 /* .maj (attr_mmap2 only) */
7453                 /* .min (attr_mmap2 only) */
7454                 /* .ino (attr_mmap2 only) */
7455                 /* .ino_generation (attr_mmap2 only) */
7456                 /* .prot (attr_mmap2 only) */
7457                 /* .flags (attr_mmap2 only) */
7458         };
7459
7460         perf_addr_filters_adjust(vma);
7461         perf_event_mmap_event(&mmap_event);
7462 }
7463
7464 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7465                           unsigned long size, u64 flags)
7466 {
7467         struct perf_output_handle handle;
7468         struct perf_sample_data sample;
7469         struct perf_aux_event {
7470                 struct perf_event_header        header;
7471                 u64                             offset;
7472                 u64                             size;
7473                 u64                             flags;
7474         } rec = {
7475                 .header = {
7476                         .type = PERF_RECORD_AUX,
7477                         .misc = 0,
7478                         .size = sizeof(rec),
7479                 },
7480                 .offset         = head,
7481                 .size           = size,
7482                 .flags          = flags,
7483         };
7484         int ret;
7485
7486         perf_event_header__init_id(&rec.header, &sample, event);
7487         ret = perf_output_begin(&handle, event, rec.header.size);
7488
7489         if (ret)
7490                 return;
7491
7492         perf_output_put(&handle, rec);
7493         perf_event__output_id_sample(event, &handle, &sample);
7494
7495         perf_output_end(&handle);
7496 }
7497
7498 /*
7499  * Lost/dropped samples logging
7500  */
7501 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7502 {
7503         struct perf_output_handle handle;
7504         struct perf_sample_data sample;
7505         int ret;
7506
7507         struct {
7508                 struct perf_event_header        header;
7509                 u64                             lost;
7510         } lost_samples_event = {
7511                 .header = {
7512                         .type = PERF_RECORD_LOST_SAMPLES,
7513                         .misc = 0,
7514                         .size = sizeof(lost_samples_event),
7515                 },
7516                 .lost           = lost,
7517         };
7518
7519         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7520
7521         ret = perf_output_begin(&handle, event,
7522                                 lost_samples_event.header.size);
7523         if (ret)
7524                 return;
7525
7526         perf_output_put(&handle, lost_samples_event);
7527         perf_event__output_id_sample(event, &handle, &sample);
7528         perf_output_end(&handle);
7529 }
7530
7531 /*
7532  * context_switch tracking
7533  */
7534
7535 struct perf_switch_event {
7536         struct task_struct      *task;
7537         struct task_struct      *next_prev;
7538
7539         struct {
7540                 struct perf_event_header        header;
7541                 u32                             next_prev_pid;
7542                 u32                             next_prev_tid;
7543         } event_id;
7544 };
7545
7546 static int perf_event_switch_match(struct perf_event *event)
7547 {
7548         return event->attr.context_switch;
7549 }
7550
7551 static void perf_event_switch_output(struct perf_event *event, void *data)
7552 {
7553         struct perf_switch_event *se = data;
7554         struct perf_output_handle handle;
7555         struct perf_sample_data sample;
7556         int ret;
7557
7558         if (!perf_event_switch_match(event))
7559                 return;
7560
7561         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7562         if (event->ctx->task) {
7563                 se->event_id.header.type = PERF_RECORD_SWITCH;
7564                 se->event_id.header.size = sizeof(se->event_id.header);
7565         } else {
7566                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7567                 se->event_id.header.size = sizeof(se->event_id);
7568                 se->event_id.next_prev_pid =
7569                                         perf_event_pid(event, se->next_prev);
7570                 se->event_id.next_prev_tid =
7571                                         perf_event_tid(event, se->next_prev);
7572         }
7573
7574         perf_event_header__init_id(&se->event_id.header, &sample, event);
7575
7576         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7577         if (ret)
7578                 return;
7579
7580         if (event->ctx->task)
7581                 perf_output_put(&handle, se->event_id.header);
7582         else
7583                 perf_output_put(&handle, se->event_id);
7584
7585         perf_event__output_id_sample(event, &handle, &sample);
7586
7587         perf_output_end(&handle);
7588 }
7589
7590 static void perf_event_switch(struct task_struct *task,
7591                               struct task_struct *next_prev, bool sched_in)
7592 {
7593         struct perf_switch_event switch_event;
7594
7595         /* N.B. caller checks nr_switch_events != 0 */
7596
7597         switch_event = (struct perf_switch_event){
7598                 .task           = task,
7599                 .next_prev      = next_prev,
7600                 .event_id       = {
7601                         .header = {
7602                                 /* .type */
7603                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7604                                 /* .size */
7605                         },
7606                         /* .next_prev_pid */
7607                         /* .next_prev_tid */
7608                 },
7609         };
7610
7611         if (!sched_in && task->state == TASK_RUNNING)
7612                 switch_event.event_id.header.misc |=
7613                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7614
7615         perf_iterate_sb(perf_event_switch_output,
7616                        &switch_event,
7617                        NULL);
7618 }
7619
7620 /*
7621  * IRQ throttle logging
7622  */
7623
7624 static void perf_log_throttle(struct perf_event *event, int enable)
7625 {
7626         struct perf_output_handle handle;
7627         struct perf_sample_data sample;
7628         int ret;
7629
7630         struct {
7631                 struct perf_event_header        header;
7632                 u64                             time;
7633                 u64                             id;
7634                 u64                             stream_id;
7635         } throttle_event = {
7636                 .header = {
7637                         .type = PERF_RECORD_THROTTLE,
7638                         .misc = 0,
7639                         .size = sizeof(throttle_event),
7640                 },
7641                 .time           = perf_event_clock(event),
7642                 .id             = primary_event_id(event),
7643                 .stream_id      = event->id,
7644         };
7645
7646         if (enable)
7647                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7648
7649         perf_event_header__init_id(&throttle_event.header, &sample, event);
7650
7651         ret = perf_output_begin(&handle, event,
7652                                 throttle_event.header.size);
7653         if (ret)
7654                 return;
7655
7656         perf_output_put(&handle, throttle_event);
7657         perf_event__output_id_sample(event, &handle, &sample);
7658         perf_output_end(&handle);
7659 }
7660
7661 void perf_event_itrace_started(struct perf_event *event)
7662 {
7663         event->attach_state |= PERF_ATTACH_ITRACE;
7664 }
7665
7666 static void perf_log_itrace_start(struct perf_event *event)
7667 {
7668         struct perf_output_handle handle;
7669         struct perf_sample_data sample;
7670         struct perf_aux_event {
7671                 struct perf_event_header        header;
7672                 u32                             pid;
7673                 u32                             tid;
7674         } rec;
7675         int ret;
7676
7677         if (event->parent)
7678                 event = event->parent;
7679
7680         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7681             event->attach_state & PERF_ATTACH_ITRACE)
7682                 return;
7683
7684         rec.header.type = PERF_RECORD_ITRACE_START;
7685         rec.header.misc = 0;
7686         rec.header.size = sizeof(rec);
7687         rec.pid = perf_event_pid(event, current);
7688         rec.tid = perf_event_tid(event, current);
7689
7690         perf_event_header__init_id(&rec.header, &sample, event);
7691         ret = perf_output_begin(&handle, event, rec.header.size);
7692
7693         if (ret)
7694                 return;
7695
7696         perf_output_put(&handle, rec);
7697         perf_event__output_id_sample(event, &handle, &sample);
7698
7699         perf_output_end(&handle);
7700 }
7701
7702 static int
7703 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7704 {
7705         struct hw_perf_event *hwc = &event->hw;
7706         int ret = 0;
7707         u64 seq;
7708
7709         seq = __this_cpu_read(perf_throttled_seq);
7710         if (seq != hwc->interrupts_seq) {
7711                 hwc->interrupts_seq = seq;
7712                 hwc->interrupts = 1;
7713         } else {
7714                 hwc->interrupts++;
7715                 if (unlikely(throttle
7716                              && hwc->interrupts >= max_samples_per_tick)) {
7717                         __this_cpu_inc(perf_throttled_count);
7718                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7719                         hwc->interrupts = MAX_INTERRUPTS;
7720                         perf_log_throttle(event, 0);
7721                         ret = 1;
7722                 }
7723         }
7724
7725         if (event->attr.freq) {
7726                 u64 now = perf_clock();
7727                 s64 delta = now - hwc->freq_time_stamp;
7728
7729                 hwc->freq_time_stamp = now;
7730
7731                 if (delta > 0 && delta < 2*TICK_NSEC)
7732                         perf_adjust_period(event, delta, hwc->last_period, true);
7733         }
7734
7735         return ret;
7736 }
7737
7738 int perf_event_account_interrupt(struct perf_event *event)
7739 {
7740         return __perf_event_account_interrupt(event, 1);
7741 }
7742
7743 /*
7744  * Generic event overflow handling, sampling.
7745  */
7746
7747 static int __perf_event_overflow(struct perf_event *event,
7748                                    int throttle, struct perf_sample_data *data,
7749                                    struct pt_regs *regs)
7750 {
7751         int events = atomic_read(&event->event_limit);
7752         int ret = 0;
7753
7754         /*
7755          * Non-sampling counters might still use the PMI to fold short
7756          * hardware counters, ignore those.
7757          */
7758         if (unlikely(!is_sampling_event(event)))
7759                 return 0;
7760
7761         ret = __perf_event_account_interrupt(event, throttle);
7762
7763         /*
7764          * XXX event_limit might not quite work as expected on inherited
7765          * events
7766          */
7767
7768         event->pending_kill = POLL_IN;
7769         if (events && atomic_dec_and_test(&event->event_limit)) {
7770                 ret = 1;
7771                 event->pending_kill = POLL_HUP;
7772
7773                 perf_event_disable_inatomic(event);
7774         }
7775
7776         READ_ONCE(event->overflow_handler)(event, data, regs);
7777
7778         if (*perf_event_fasync(event) && event->pending_kill) {
7779                 event->pending_wakeup = 1;
7780                 irq_work_queue(&event->pending);
7781         }
7782
7783         return ret;
7784 }
7785
7786 int perf_event_overflow(struct perf_event *event,
7787                           struct perf_sample_data *data,
7788                           struct pt_regs *regs)
7789 {
7790         return __perf_event_overflow(event, 1, data, regs);
7791 }
7792
7793 /*
7794  * Generic software event infrastructure
7795  */
7796
7797 struct swevent_htable {
7798         struct swevent_hlist            *swevent_hlist;
7799         struct mutex                    hlist_mutex;
7800         int                             hlist_refcount;
7801
7802         /* Recursion avoidance in each contexts */
7803         int                             recursion[PERF_NR_CONTEXTS];
7804 };
7805
7806 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7807
7808 /*
7809  * We directly increment event->count and keep a second value in
7810  * event->hw.period_left to count intervals. This period event
7811  * is kept in the range [-sample_period, 0] so that we can use the
7812  * sign as trigger.
7813  */
7814
7815 u64 perf_swevent_set_period(struct perf_event *event)
7816 {
7817         struct hw_perf_event *hwc = &event->hw;
7818         u64 period = hwc->last_period;
7819         u64 nr, offset;
7820         s64 old, val;
7821
7822         hwc->last_period = hwc->sample_period;
7823
7824 again:
7825         old = val = local64_read(&hwc->period_left);
7826         if (val < 0)
7827                 return 0;
7828
7829         nr = div64_u64(period + val, period);
7830         offset = nr * period;
7831         val -= offset;
7832         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7833                 goto again;
7834
7835         return nr;
7836 }
7837
7838 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7839                                     struct perf_sample_data *data,
7840                                     struct pt_regs *regs)
7841 {
7842         struct hw_perf_event *hwc = &event->hw;
7843         int throttle = 0;
7844
7845         if (!overflow)
7846                 overflow = perf_swevent_set_period(event);
7847
7848         if (hwc->interrupts == MAX_INTERRUPTS)
7849                 return;
7850
7851         for (; overflow; overflow--) {
7852                 if (__perf_event_overflow(event, throttle,
7853                                             data, regs)) {
7854                         /*
7855                          * We inhibit the overflow from happening when
7856                          * hwc->interrupts == MAX_INTERRUPTS.
7857                          */
7858                         break;
7859                 }
7860                 throttle = 1;
7861         }
7862 }
7863
7864 static void perf_swevent_event(struct perf_event *event, u64 nr,
7865                                struct perf_sample_data *data,
7866                                struct pt_regs *regs)
7867 {
7868         struct hw_perf_event *hwc = &event->hw;
7869
7870         local64_add(nr, &event->count);
7871
7872         if (!regs)
7873                 return;
7874
7875         if (!is_sampling_event(event))
7876                 return;
7877
7878         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7879                 data->period = nr;
7880                 return perf_swevent_overflow(event, 1, data, regs);
7881         } else
7882                 data->period = event->hw.last_period;
7883
7884         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7885                 return perf_swevent_overflow(event, 1, data, regs);
7886
7887         if (local64_add_negative(nr, &hwc->period_left))
7888                 return;
7889
7890         perf_swevent_overflow(event, 0, data, regs);
7891 }
7892
7893 static int perf_exclude_event(struct perf_event *event,
7894                               struct pt_regs *regs)
7895 {
7896         if (event->hw.state & PERF_HES_STOPPED)
7897                 return 1;
7898
7899         if (regs) {
7900                 if (event->attr.exclude_user && user_mode(regs))
7901                         return 1;
7902
7903                 if (event->attr.exclude_kernel && !user_mode(regs))
7904                         return 1;
7905         }
7906
7907         return 0;
7908 }
7909
7910 static int perf_swevent_match(struct perf_event *event,
7911                                 enum perf_type_id type,
7912                                 u32 event_id,
7913                                 struct perf_sample_data *data,
7914                                 struct pt_regs *regs)
7915 {
7916         if (event->attr.type != type)
7917                 return 0;
7918
7919         if (event->attr.config != event_id)
7920                 return 0;
7921
7922         if (perf_exclude_event(event, regs))
7923                 return 0;
7924
7925         return 1;
7926 }
7927
7928 static inline u64 swevent_hash(u64 type, u32 event_id)
7929 {
7930         u64 val = event_id | (type << 32);
7931
7932         return hash_64(val, SWEVENT_HLIST_BITS);
7933 }
7934
7935 static inline struct hlist_head *
7936 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7937 {
7938         u64 hash = swevent_hash(type, event_id);
7939
7940         return &hlist->heads[hash];
7941 }
7942
7943 /* For the read side: events when they trigger */
7944 static inline struct hlist_head *
7945 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7946 {
7947         struct swevent_hlist *hlist;
7948
7949         hlist = rcu_dereference(swhash->swevent_hlist);
7950         if (!hlist)
7951                 return NULL;
7952
7953         return __find_swevent_head(hlist, type, event_id);
7954 }
7955
7956 /* For the event head insertion and removal in the hlist */
7957 static inline struct hlist_head *
7958 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7959 {
7960         struct swevent_hlist *hlist;
7961         u32 event_id = event->attr.config;
7962         u64 type = event->attr.type;
7963
7964         /*
7965          * Event scheduling is always serialized against hlist allocation
7966          * and release. Which makes the protected version suitable here.
7967          * The context lock guarantees that.
7968          */
7969         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7970                                           lockdep_is_held(&event->ctx->lock));
7971         if (!hlist)
7972                 return NULL;
7973
7974         return __find_swevent_head(hlist, type, event_id);
7975 }
7976
7977 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7978                                     u64 nr,
7979                                     struct perf_sample_data *data,
7980                                     struct pt_regs *regs)
7981 {
7982         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7983         struct perf_event *event;
7984         struct hlist_head *head;
7985
7986         rcu_read_lock();
7987         head = find_swevent_head_rcu(swhash, type, event_id);
7988         if (!head)
7989                 goto end;
7990
7991         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7992                 if (perf_swevent_match(event, type, event_id, data, regs))
7993                         perf_swevent_event(event, nr, data, regs);
7994         }
7995 end:
7996         rcu_read_unlock();
7997 }
7998
7999 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
8000
8001 int perf_swevent_get_recursion_context(void)
8002 {
8003         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8004
8005         return get_recursion_context(swhash->recursion);
8006 }
8007 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
8008
8009 void perf_swevent_put_recursion_context(int rctx)
8010 {
8011         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8012
8013         put_recursion_context(swhash->recursion, rctx);
8014 }
8015
8016 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8017 {
8018         struct perf_sample_data data;
8019
8020         if (WARN_ON_ONCE(!regs))
8021                 return;
8022
8023         perf_sample_data_init(&data, addr, 0);
8024         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8025 }
8026
8027 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8028 {
8029         int rctx;
8030
8031         preempt_disable_notrace();
8032         rctx = perf_swevent_get_recursion_context();
8033         if (unlikely(rctx < 0))
8034                 goto fail;
8035
8036         ___perf_sw_event(event_id, nr, regs, addr);
8037
8038         perf_swevent_put_recursion_context(rctx);
8039 fail:
8040         preempt_enable_notrace();
8041 }
8042
8043 static void perf_swevent_read(struct perf_event *event)
8044 {
8045 }
8046
8047 static int perf_swevent_add(struct perf_event *event, int flags)
8048 {
8049         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8050         struct hw_perf_event *hwc = &event->hw;
8051         struct hlist_head *head;
8052
8053         if (is_sampling_event(event)) {
8054                 hwc->last_period = hwc->sample_period;
8055                 perf_swevent_set_period(event);
8056         }
8057
8058         hwc->state = !(flags & PERF_EF_START);
8059
8060         head = find_swevent_head(swhash, event);
8061         if (WARN_ON_ONCE(!head))
8062                 return -EINVAL;
8063
8064         hlist_add_head_rcu(&event->hlist_entry, head);
8065         perf_event_update_userpage(event);
8066
8067         return 0;
8068 }
8069
8070 static void perf_swevent_del(struct perf_event *event, int flags)
8071 {
8072         hlist_del_rcu(&event->hlist_entry);
8073 }
8074
8075 static void perf_swevent_start(struct perf_event *event, int flags)
8076 {
8077         event->hw.state = 0;
8078 }
8079
8080 static void perf_swevent_stop(struct perf_event *event, int flags)
8081 {
8082         event->hw.state = PERF_HES_STOPPED;
8083 }
8084
8085 /* Deref the hlist from the update side */
8086 static inline struct swevent_hlist *
8087 swevent_hlist_deref(struct swevent_htable *swhash)
8088 {
8089         return rcu_dereference_protected(swhash->swevent_hlist,
8090                                          lockdep_is_held(&swhash->hlist_mutex));
8091 }
8092
8093 static void swevent_hlist_release(struct swevent_htable *swhash)
8094 {
8095         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8096
8097         if (!hlist)
8098                 return;
8099
8100         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8101         kfree_rcu(hlist, rcu_head);
8102 }
8103
8104 static void swevent_hlist_put_cpu(int cpu)
8105 {
8106         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8107
8108         mutex_lock(&swhash->hlist_mutex);
8109
8110         if (!--swhash->hlist_refcount)
8111                 swevent_hlist_release(swhash);
8112
8113         mutex_unlock(&swhash->hlist_mutex);
8114 }
8115
8116 static void swevent_hlist_put(void)
8117 {
8118         int cpu;
8119
8120         for_each_possible_cpu(cpu)
8121                 swevent_hlist_put_cpu(cpu);
8122 }
8123
8124 static int swevent_hlist_get_cpu(int cpu)
8125 {
8126         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8127         int err = 0;
8128
8129         mutex_lock(&swhash->hlist_mutex);
8130         if (!swevent_hlist_deref(swhash) &&
8131             cpumask_test_cpu(cpu, perf_online_mask)) {
8132                 struct swevent_hlist *hlist;
8133
8134                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8135                 if (!hlist) {
8136                         err = -ENOMEM;
8137                         goto exit;
8138                 }
8139                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8140         }
8141         swhash->hlist_refcount++;
8142 exit:
8143         mutex_unlock(&swhash->hlist_mutex);
8144
8145         return err;
8146 }
8147
8148 static int swevent_hlist_get(void)
8149 {
8150         int err, cpu, failed_cpu;
8151
8152         mutex_lock(&pmus_lock);
8153         for_each_possible_cpu(cpu) {
8154                 err = swevent_hlist_get_cpu(cpu);
8155                 if (err) {
8156                         failed_cpu = cpu;
8157                         goto fail;
8158                 }
8159         }
8160         mutex_unlock(&pmus_lock);
8161         return 0;
8162 fail:
8163         for_each_possible_cpu(cpu) {
8164                 if (cpu == failed_cpu)
8165                         break;
8166                 swevent_hlist_put_cpu(cpu);
8167         }
8168         mutex_unlock(&pmus_lock);
8169         return err;
8170 }
8171
8172 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8173
8174 static void sw_perf_event_destroy(struct perf_event *event)
8175 {
8176         u64 event_id = event->attr.config;
8177
8178         WARN_ON(event->parent);
8179
8180         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8181         swevent_hlist_put();
8182 }
8183
8184 static int perf_swevent_init(struct perf_event *event)
8185 {
8186         u64 event_id = event->attr.config;
8187
8188         if (event->attr.type != PERF_TYPE_SOFTWARE)
8189                 return -ENOENT;
8190
8191         /*
8192          * no branch sampling for software events
8193          */
8194         if (has_branch_stack(event))
8195                 return -EOPNOTSUPP;
8196
8197         switch (event_id) {
8198         case PERF_COUNT_SW_CPU_CLOCK:
8199         case PERF_COUNT_SW_TASK_CLOCK:
8200                 return -ENOENT;
8201
8202         default:
8203                 break;
8204         }
8205
8206         if (event_id >= PERF_COUNT_SW_MAX)
8207                 return -ENOENT;
8208
8209         if (!event->parent) {
8210                 int err;
8211
8212                 err = swevent_hlist_get();
8213                 if (err)
8214                         return err;
8215
8216                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8217                 event->destroy = sw_perf_event_destroy;
8218         }
8219
8220         return 0;
8221 }
8222
8223 static struct pmu perf_swevent = {
8224         .task_ctx_nr    = perf_sw_context,
8225
8226         .capabilities   = PERF_PMU_CAP_NO_NMI,
8227
8228         .event_init     = perf_swevent_init,
8229         .add            = perf_swevent_add,
8230         .del            = perf_swevent_del,
8231         .start          = perf_swevent_start,
8232         .stop           = perf_swevent_stop,
8233         .read           = perf_swevent_read,
8234 };
8235
8236 #ifdef CONFIG_EVENT_TRACING
8237
8238 static int perf_tp_filter_match(struct perf_event *event,
8239                                 struct perf_sample_data *data)
8240 {
8241         void *record = data->raw->frag.data;
8242
8243         /* only top level events have filters set */
8244         if (event->parent)
8245                 event = event->parent;
8246
8247         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8248                 return 1;
8249         return 0;
8250 }
8251
8252 static int perf_tp_event_match(struct perf_event *event,
8253                                 struct perf_sample_data *data,
8254                                 struct pt_regs *regs)
8255 {
8256         if (event->hw.state & PERF_HES_STOPPED)
8257                 return 0;
8258         /*
8259          * All tracepoints are from kernel-space.
8260          */
8261         if (event->attr.exclude_kernel)
8262                 return 0;
8263
8264         if (!perf_tp_filter_match(event, data))
8265                 return 0;
8266
8267         return 1;
8268 }
8269
8270 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8271                                struct trace_event_call *call, u64 count,
8272                                struct pt_regs *regs, struct hlist_head *head,
8273                                struct task_struct *task)
8274 {
8275         if (bpf_prog_array_valid(call)) {
8276                 *(struct pt_regs **)raw_data = regs;
8277                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8278                         perf_swevent_put_recursion_context(rctx);
8279                         return;
8280                 }
8281         }
8282         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8283                       rctx, task);
8284 }
8285 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8286
8287 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8288                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8289                    struct task_struct *task)
8290 {
8291         struct perf_sample_data data;
8292         struct perf_event *event;
8293
8294         struct perf_raw_record raw = {
8295                 .frag = {
8296                         .size = entry_size,
8297                         .data = record,
8298                 },
8299         };
8300
8301         perf_sample_data_init(&data, 0, 0);
8302         data.raw = &raw;
8303
8304         perf_trace_buf_update(record, event_type);
8305
8306         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8307                 if (perf_tp_event_match(event, &data, regs))
8308                         perf_swevent_event(event, count, &data, regs);
8309         }
8310
8311         /*
8312          * If we got specified a target task, also iterate its context and
8313          * deliver this event there too.
8314          */
8315         if (task && task != current) {
8316                 struct perf_event_context *ctx;
8317                 struct trace_entry *entry = record;
8318
8319                 rcu_read_lock();
8320                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8321                 if (!ctx)
8322                         goto unlock;
8323
8324                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8325                         if (event->cpu != smp_processor_id())
8326                                 continue;
8327                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8328                                 continue;
8329                         if (event->attr.config != entry->type)
8330                                 continue;
8331                         if (perf_tp_event_match(event, &data, regs))
8332                                 perf_swevent_event(event, count, &data, regs);
8333                 }
8334 unlock:
8335                 rcu_read_unlock();
8336         }
8337
8338         perf_swevent_put_recursion_context(rctx);
8339 }
8340 EXPORT_SYMBOL_GPL(perf_tp_event);
8341
8342 static void tp_perf_event_destroy(struct perf_event *event)
8343 {
8344         perf_trace_destroy(event);
8345 }
8346
8347 static int perf_tp_event_init(struct perf_event *event)
8348 {
8349         int err;
8350
8351         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8352                 return -ENOENT;
8353
8354         /*
8355          * no branch sampling for tracepoint events
8356          */
8357         if (has_branch_stack(event))
8358                 return -EOPNOTSUPP;
8359
8360         err = perf_trace_init(event);
8361         if (err)
8362                 return err;
8363
8364         event->destroy = tp_perf_event_destroy;
8365
8366         return 0;
8367 }
8368
8369 static struct pmu perf_tracepoint = {
8370         .task_ctx_nr    = perf_sw_context,
8371
8372         .event_init     = perf_tp_event_init,
8373         .add            = perf_trace_add,
8374         .del            = perf_trace_del,
8375         .start          = perf_swevent_start,
8376         .stop           = perf_swevent_stop,
8377         .read           = perf_swevent_read,
8378 };
8379
8380 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8381 /*
8382  * Flags in config, used by dynamic PMU kprobe and uprobe
8383  * The flags should match following PMU_FORMAT_ATTR().
8384  *
8385  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8386  *                               if not set, create kprobe/uprobe
8387  *
8388  * The following values specify a reference counter (or semaphore in the
8389  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
8390  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
8391  *
8392  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
8393  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
8394  */
8395 enum perf_probe_config {
8396         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8397         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
8398         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
8399 };
8400
8401 PMU_FORMAT_ATTR(retprobe, "config:0");
8402 #endif
8403
8404 #ifdef CONFIG_KPROBE_EVENTS
8405 static struct attribute *kprobe_attrs[] = {
8406         &format_attr_retprobe.attr,
8407         NULL,
8408 };
8409
8410 static struct attribute_group kprobe_format_group = {
8411         .name = "format",
8412         .attrs = kprobe_attrs,
8413 };
8414
8415 static const struct attribute_group *kprobe_attr_groups[] = {
8416         &kprobe_format_group,
8417         NULL,
8418 };
8419
8420 static int perf_kprobe_event_init(struct perf_event *event);
8421 static struct pmu perf_kprobe = {
8422         .task_ctx_nr    = perf_sw_context,
8423         .event_init     = perf_kprobe_event_init,
8424         .add            = perf_trace_add,
8425         .del            = perf_trace_del,
8426         .start          = perf_swevent_start,
8427         .stop           = perf_swevent_stop,
8428         .read           = perf_swevent_read,
8429         .attr_groups    = kprobe_attr_groups,
8430 };
8431
8432 static int perf_kprobe_event_init(struct perf_event *event)
8433 {
8434         int err;
8435         bool is_retprobe;
8436
8437         if (event->attr.type != perf_kprobe.type)
8438                 return -ENOENT;
8439
8440         if (!capable(CAP_SYS_ADMIN))
8441                 return -EACCES;
8442
8443         /*
8444          * no branch sampling for probe events
8445          */
8446         if (has_branch_stack(event))
8447                 return -EOPNOTSUPP;
8448
8449         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8450         err = perf_kprobe_init(event, is_retprobe);
8451         if (err)
8452                 return err;
8453
8454         event->destroy = perf_kprobe_destroy;
8455
8456         return 0;
8457 }
8458 #endif /* CONFIG_KPROBE_EVENTS */
8459
8460 #ifdef CONFIG_UPROBE_EVENTS
8461 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
8462
8463 static struct attribute *uprobe_attrs[] = {
8464         &format_attr_retprobe.attr,
8465         &format_attr_ref_ctr_offset.attr,
8466         NULL,
8467 };
8468
8469 static struct attribute_group uprobe_format_group = {
8470         .name = "format",
8471         .attrs = uprobe_attrs,
8472 };
8473
8474 static const struct attribute_group *uprobe_attr_groups[] = {
8475         &uprobe_format_group,
8476         NULL,
8477 };
8478
8479 static int perf_uprobe_event_init(struct perf_event *event);
8480 static struct pmu perf_uprobe = {
8481         .task_ctx_nr    = perf_sw_context,
8482         .event_init     = perf_uprobe_event_init,
8483         .add            = perf_trace_add,
8484         .del            = perf_trace_del,
8485         .start          = perf_swevent_start,
8486         .stop           = perf_swevent_stop,
8487         .read           = perf_swevent_read,
8488         .attr_groups    = uprobe_attr_groups,
8489 };
8490
8491 static int perf_uprobe_event_init(struct perf_event *event)
8492 {
8493         int err;
8494         unsigned long ref_ctr_offset;
8495         bool is_retprobe;
8496
8497         if (event->attr.type != perf_uprobe.type)
8498                 return -ENOENT;
8499
8500         if (!capable(CAP_SYS_ADMIN))
8501                 return -EACCES;
8502
8503         /*
8504          * no branch sampling for probe events
8505          */
8506         if (has_branch_stack(event))
8507                 return -EOPNOTSUPP;
8508
8509         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8510         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
8511         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
8512         if (err)
8513                 return err;
8514
8515         event->destroy = perf_uprobe_destroy;
8516
8517         return 0;
8518 }
8519 #endif /* CONFIG_UPROBE_EVENTS */
8520
8521 static inline void perf_tp_register(void)
8522 {
8523         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8524 #ifdef CONFIG_KPROBE_EVENTS
8525         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8526 #endif
8527 #ifdef CONFIG_UPROBE_EVENTS
8528         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8529 #endif
8530 }
8531
8532 static void perf_event_free_filter(struct perf_event *event)
8533 {
8534         ftrace_profile_free_filter(event);
8535 }
8536
8537 #ifdef CONFIG_BPF_SYSCALL
8538 static void bpf_overflow_handler(struct perf_event *event,
8539                                  struct perf_sample_data *data,
8540                                  struct pt_regs *regs)
8541 {
8542         struct bpf_perf_event_data_kern ctx = {
8543                 .data = data,
8544                 .event = event,
8545         };
8546         int ret = 0;
8547
8548         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8549         preempt_disable();
8550         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8551                 goto out;
8552         rcu_read_lock();
8553         ret = BPF_PROG_RUN(event->prog, &ctx);
8554         rcu_read_unlock();
8555 out:
8556         __this_cpu_dec(bpf_prog_active);
8557         preempt_enable();
8558         if (!ret)
8559                 return;
8560
8561         event->orig_overflow_handler(event, data, regs);
8562 }
8563
8564 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8565 {
8566         struct bpf_prog *prog;
8567
8568         if (event->overflow_handler_context)
8569                 /* hw breakpoint or kernel counter */
8570                 return -EINVAL;
8571
8572         if (event->prog)
8573                 return -EEXIST;
8574
8575         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8576         if (IS_ERR(prog))
8577                 return PTR_ERR(prog);
8578
8579         event->prog = prog;
8580         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8581         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8582         return 0;
8583 }
8584
8585 static void perf_event_free_bpf_handler(struct perf_event *event)
8586 {
8587         struct bpf_prog *prog = event->prog;
8588
8589         if (!prog)
8590                 return;
8591
8592         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8593         event->prog = NULL;
8594         bpf_prog_put(prog);
8595 }
8596 #else
8597 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8598 {
8599         return -EOPNOTSUPP;
8600 }
8601 static void perf_event_free_bpf_handler(struct perf_event *event)
8602 {
8603 }
8604 #endif
8605
8606 /*
8607  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8608  * with perf_event_open()
8609  */
8610 static inline bool perf_event_is_tracing(struct perf_event *event)
8611 {
8612         if (event->pmu == &perf_tracepoint)
8613                 return true;
8614 #ifdef CONFIG_KPROBE_EVENTS
8615         if (event->pmu == &perf_kprobe)
8616                 return true;
8617 #endif
8618 #ifdef CONFIG_UPROBE_EVENTS
8619         if (event->pmu == &perf_uprobe)
8620                 return true;
8621 #endif
8622         return false;
8623 }
8624
8625 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8626 {
8627         bool is_kprobe, is_tracepoint, is_syscall_tp;
8628         struct bpf_prog *prog;
8629         int ret;
8630
8631         if (!perf_event_is_tracing(event))
8632                 return perf_event_set_bpf_handler(event, prog_fd);
8633
8634         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8635         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8636         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8637         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8638                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8639                 return -EINVAL;
8640
8641         prog = bpf_prog_get(prog_fd);
8642         if (IS_ERR(prog))
8643                 return PTR_ERR(prog);
8644
8645         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8646             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8647             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8648                 /* valid fd, but invalid bpf program type */
8649                 bpf_prog_put(prog);
8650                 return -EINVAL;
8651         }
8652
8653         /* Kprobe override only works for kprobes, not uprobes. */
8654         if (prog->kprobe_override &&
8655             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8656                 bpf_prog_put(prog);
8657                 return -EINVAL;
8658         }
8659
8660         if (is_tracepoint || is_syscall_tp) {
8661                 int off = trace_event_get_offsets(event->tp_event);
8662
8663                 if (prog->aux->max_ctx_offset > off) {
8664                         bpf_prog_put(prog);
8665                         return -EACCES;
8666                 }
8667         }
8668
8669         ret = perf_event_attach_bpf_prog(event, prog);
8670         if (ret)
8671                 bpf_prog_put(prog);
8672         return ret;
8673 }
8674
8675 static void perf_event_free_bpf_prog(struct perf_event *event)
8676 {
8677         if (!perf_event_is_tracing(event)) {
8678                 perf_event_free_bpf_handler(event);
8679                 return;
8680         }
8681         perf_event_detach_bpf_prog(event);
8682 }
8683
8684 #else
8685
8686 static inline void perf_tp_register(void)
8687 {
8688 }
8689
8690 static void perf_event_free_filter(struct perf_event *event)
8691 {
8692 }
8693
8694 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8695 {
8696         return -ENOENT;
8697 }
8698
8699 static void perf_event_free_bpf_prog(struct perf_event *event)
8700 {
8701 }
8702 #endif /* CONFIG_EVENT_TRACING */
8703
8704 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8705 void perf_bp_event(struct perf_event *bp, void *data)
8706 {
8707         struct perf_sample_data sample;
8708         struct pt_regs *regs = data;
8709
8710         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8711
8712         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8713                 perf_swevent_event(bp, 1, &sample, regs);
8714 }
8715 #endif
8716
8717 /*
8718  * Allocate a new address filter
8719  */
8720 static struct perf_addr_filter *
8721 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8722 {
8723         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8724         struct perf_addr_filter *filter;
8725
8726         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8727         if (!filter)
8728                 return NULL;
8729
8730         INIT_LIST_HEAD(&filter->entry);
8731         list_add_tail(&filter->entry, filters);
8732
8733         return filter;
8734 }
8735
8736 static void free_filters_list(struct list_head *filters)
8737 {
8738         struct perf_addr_filter *filter, *iter;
8739
8740         list_for_each_entry_safe(filter, iter, filters, entry) {
8741                 path_put(&filter->path);
8742                 list_del(&filter->entry);
8743                 kfree(filter);
8744         }
8745 }
8746
8747 /*
8748  * Free existing address filters and optionally install new ones
8749  */
8750 static void perf_addr_filters_splice(struct perf_event *event,
8751                                      struct list_head *head)
8752 {
8753         unsigned long flags;
8754         LIST_HEAD(list);
8755
8756         if (!has_addr_filter(event))
8757                 return;
8758
8759         /* don't bother with children, they don't have their own filters */
8760         if (event->parent)
8761                 return;
8762
8763         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8764
8765         list_splice_init(&event->addr_filters.list, &list);
8766         if (head)
8767                 list_splice(head, &event->addr_filters.list);
8768
8769         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8770
8771         free_filters_list(&list);
8772 }
8773
8774 /*
8775  * Scan through mm's vmas and see if one of them matches the
8776  * @filter; if so, adjust filter's address range.
8777  * Called with mm::mmap_sem down for reading.
8778  */
8779 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8780                                             struct mm_struct *mm)
8781 {
8782         struct vm_area_struct *vma;
8783
8784         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8785                 struct file *file = vma->vm_file;
8786                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8787                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8788
8789                 if (!file)
8790                         continue;
8791
8792                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8793                         continue;
8794
8795                 return vma->vm_start;
8796         }
8797
8798         return 0;
8799 }
8800
8801 /*
8802  * Update event's address range filters based on the
8803  * task's existing mappings, if any.
8804  */
8805 static void perf_event_addr_filters_apply(struct perf_event *event)
8806 {
8807         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8808         struct task_struct *task = READ_ONCE(event->ctx->task);
8809         struct perf_addr_filter *filter;
8810         struct mm_struct *mm = NULL;
8811         unsigned int count = 0;
8812         unsigned long flags;
8813
8814         /*
8815          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8816          * will stop on the parent's child_mutex that our caller is also holding
8817          */
8818         if (task == TASK_TOMBSTONE)
8819                 return;
8820
8821         if (!ifh->nr_file_filters)
8822                 return;
8823
8824         mm = get_task_mm(event->ctx->task);
8825         if (!mm)
8826                 goto restart;
8827
8828         down_read(&mm->mmap_sem);
8829
8830         raw_spin_lock_irqsave(&ifh->lock, flags);
8831         list_for_each_entry(filter, &ifh->list, entry) {
8832                 event->addr_filters_offs[count] = 0;
8833
8834                 /*
8835                  * Adjust base offset if the filter is associated to a binary
8836                  * that needs to be mapped:
8837                  */
8838                 if (filter->path.dentry)
8839                         event->addr_filters_offs[count] =
8840                                 perf_addr_filter_apply(filter, mm);
8841
8842                 count++;
8843         }
8844
8845         event->addr_filters_gen++;
8846         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8847
8848         up_read(&mm->mmap_sem);
8849
8850         mmput(mm);
8851
8852 restart:
8853         perf_event_stop(event, 1);
8854 }
8855
8856 /*
8857  * Address range filtering: limiting the data to certain
8858  * instruction address ranges. Filters are ioctl()ed to us from
8859  * userspace as ascii strings.
8860  *
8861  * Filter string format:
8862  *
8863  * ACTION RANGE_SPEC
8864  * where ACTION is one of the
8865  *  * "filter": limit the trace to this region
8866  *  * "start": start tracing from this address
8867  *  * "stop": stop tracing at this address/region;
8868  * RANGE_SPEC is
8869  *  * for kernel addresses: <start address>[/<size>]
8870  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8871  *
8872  * if <size> is not specified or is zero, the range is treated as a single
8873  * address; not valid for ACTION=="filter".
8874  */
8875 enum {
8876         IF_ACT_NONE = -1,
8877         IF_ACT_FILTER,
8878         IF_ACT_START,
8879         IF_ACT_STOP,
8880         IF_SRC_FILE,
8881         IF_SRC_KERNEL,
8882         IF_SRC_FILEADDR,
8883         IF_SRC_KERNELADDR,
8884 };
8885
8886 enum {
8887         IF_STATE_ACTION = 0,
8888         IF_STATE_SOURCE,
8889         IF_STATE_END,
8890 };
8891
8892 static const match_table_t if_tokens = {
8893         { IF_ACT_FILTER,        "filter" },
8894         { IF_ACT_START,         "start" },
8895         { IF_ACT_STOP,          "stop" },
8896         { IF_SRC_FILE,          "%u/%u@%s" },
8897         { IF_SRC_KERNEL,        "%u/%u" },
8898         { IF_SRC_FILEADDR,      "%u@%s" },
8899         { IF_SRC_KERNELADDR,    "%u" },
8900         { IF_ACT_NONE,          NULL },
8901 };
8902
8903 /*
8904  * Address filter string parser
8905  */
8906 static int
8907 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8908                              struct list_head *filters)
8909 {
8910         struct perf_addr_filter *filter = NULL;
8911         char *start, *orig, *filename = NULL;
8912         substring_t args[MAX_OPT_ARGS];
8913         int state = IF_STATE_ACTION, token;
8914         unsigned int kernel = 0;
8915         int ret = -EINVAL;
8916
8917         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8918         if (!fstr)
8919                 return -ENOMEM;
8920
8921         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8922                 static const enum perf_addr_filter_action_t actions[] = {
8923                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8924                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
8925                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
8926                 };
8927                 ret = -EINVAL;
8928
8929                 if (!*start)
8930                         continue;
8931
8932                 /* filter definition begins */
8933                 if (state == IF_STATE_ACTION) {
8934                         filter = perf_addr_filter_new(event, filters);
8935                         if (!filter)
8936                                 goto fail;
8937                 }
8938
8939                 token = match_token(start, if_tokens, args);
8940                 switch (token) {
8941                 case IF_ACT_FILTER:
8942                 case IF_ACT_START:
8943                 case IF_ACT_STOP:
8944                         if (state != IF_STATE_ACTION)
8945                                 goto fail;
8946
8947                         filter->action = actions[token];
8948                         state = IF_STATE_SOURCE;
8949                         break;
8950
8951                 case IF_SRC_KERNELADDR:
8952                 case IF_SRC_KERNEL:
8953                         kernel = 1;
8954
8955                 case IF_SRC_FILEADDR:
8956                 case IF_SRC_FILE:
8957                         if (state != IF_STATE_SOURCE)
8958                                 goto fail;
8959
8960                         *args[0].to = 0;
8961                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8962                         if (ret)
8963                                 goto fail;
8964
8965                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8966                                 *args[1].to = 0;
8967                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8968                                 if (ret)
8969                                         goto fail;
8970                         }
8971
8972                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8973                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
8974
8975                                 filename = match_strdup(&args[fpos]);
8976                                 if (!filename) {
8977                                         ret = -ENOMEM;
8978                                         goto fail;
8979                                 }
8980                         }
8981
8982                         state = IF_STATE_END;
8983                         break;
8984
8985                 default:
8986                         goto fail;
8987                 }
8988
8989                 /*
8990                  * Filter definition is fully parsed, validate and install it.
8991                  * Make sure that it doesn't contradict itself or the event's
8992                  * attribute.
8993                  */
8994                 if (state == IF_STATE_END) {
8995                         ret = -EINVAL;
8996                         if (kernel && event->attr.exclude_kernel)
8997                                 goto fail;
8998
8999                         /*
9000                          * ACTION "filter" must have a non-zero length region
9001                          * specified.
9002                          */
9003                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
9004                             !filter->size)
9005                                 goto fail;
9006
9007                         if (!kernel) {
9008                                 if (!filename)
9009                                         goto fail;
9010
9011                                 /*
9012                                  * For now, we only support file-based filters
9013                                  * in per-task events; doing so for CPU-wide
9014                                  * events requires additional context switching
9015                                  * trickery, since same object code will be
9016                                  * mapped at different virtual addresses in
9017                                  * different processes.
9018                                  */
9019                                 ret = -EOPNOTSUPP;
9020                                 if (!event->ctx->task)
9021                                         goto fail_free_name;
9022
9023                                 /* look up the path and grab its inode */
9024                                 ret = kern_path(filename, LOOKUP_FOLLOW,
9025                                                 &filter->path);
9026                                 if (ret)
9027                                         goto fail_free_name;
9028
9029                                 kfree(filename);
9030                                 filename = NULL;
9031
9032                                 ret = -EINVAL;
9033                                 if (!filter->path.dentry ||
9034                                     !S_ISREG(d_inode(filter->path.dentry)
9035                                              ->i_mode))
9036                                         goto fail;
9037
9038                                 event->addr_filters.nr_file_filters++;
9039                         }
9040
9041                         /* ready to consume more filters */
9042                         state = IF_STATE_ACTION;
9043                         filter = NULL;
9044                 }
9045         }
9046
9047         if (state != IF_STATE_ACTION)
9048                 goto fail;
9049
9050         kfree(orig);
9051
9052         return 0;
9053
9054 fail_free_name:
9055         kfree(filename);
9056 fail:
9057         free_filters_list(filters);
9058         kfree(orig);
9059
9060         return ret;
9061 }
9062
9063 static int
9064 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9065 {
9066         LIST_HEAD(filters);
9067         int ret;
9068
9069         /*
9070          * Since this is called in perf_ioctl() path, we're already holding
9071          * ctx::mutex.
9072          */
9073         lockdep_assert_held(&event->ctx->mutex);
9074
9075         if (WARN_ON_ONCE(event->parent))
9076                 return -EINVAL;
9077
9078         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9079         if (ret)
9080                 goto fail_clear_files;
9081
9082         ret = event->pmu->addr_filters_validate(&filters);
9083         if (ret)
9084                 goto fail_free_filters;
9085
9086         /* remove existing filters, if any */
9087         perf_addr_filters_splice(event, &filters);
9088
9089         /* install new filters */
9090         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9091
9092         return ret;
9093
9094 fail_free_filters:
9095         free_filters_list(&filters);
9096
9097 fail_clear_files:
9098         event->addr_filters.nr_file_filters = 0;
9099
9100         return ret;
9101 }
9102
9103 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9104 {
9105         int ret = -EINVAL;
9106         char *filter_str;
9107
9108         filter_str = strndup_user(arg, PAGE_SIZE);
9109         if (IS_ERR(filter_str))
9110                 return PTR_ERR(filter_str);
9111
9112 #ifdef CONFIG_EVENT_TRACING
9113         if (perf_event_is_tracing(event)) {
9114                 struct perf_event_context *ctx = event->ctx;
9115
9116                 /*
9117                  * Beware, here be dragons!!
9118                  *
9119                  * the tracepoint muck will deadlock against ctx->mutex, but
9120                  * the tracepoint stuff does not actually need it. So
9121                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9122                  * already have a reference on ctx.
9123                  *
9124                  * This can result in event getting moved to a different ctx,
9125                  * but that does not affect the tracepoint state.
9126                  */
9127                 mutex_unlock(&ctx->mutex);
9128                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9129                 mutex_lock(&ctx->mutex);
9130         } else
9131 #endif
9132         if (has_addr_filter(event))
9133                 ret = perf_event_set_addr_filter(event, filter_str);
9134
9135         kfree(filter_str);
9136         return ret;
9137 }
9138
9139 /*
9140  * hrtimer based swevent callback
9141  */
9142
9143 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9144 {
9145         enum hrtimer_restart ret = HRTIMER_RESTART;
9146         struct perf_sample_data data;
9147         struct pt_regs *regs;
9148         struct perf_event *event;
9149         u64 period;
9150
9151         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9152
9153         if (event->state != PERF_EVENT_STATE_ACTIVE)
9154                 return HRTIMER_NORESTART;
9155
9156         event->pmu->read(event);
9157
9158         perf_sample_data_init(&data, 0, event->hw.last_period);
9159         regs = get_irq_regs();
9160
9161         if (regs && !perf_exclude_event(event, regs)) {
9162                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9163                         if (__perf_event_overflow(event, 1, &data, regs))
9164                                 ret = HRTIMER_NORESTART;
9165         }
9166
9167         period = max_t(u64, 10000, event->hw.sample_period);
9168         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9169
9170         return ret;
9171 }
9172
9173 static void perf_swevent_start_hrtimer(struct perf_event *event)
9174 {
9175         struct hw_perf_event *hwc = &event->hw;
9176         s64 period;
9177
9178         if (!is_sampling_event(event))
9179                 return;
9180
9181         period = local64_read(&hwc->period_left);
9182         if (period) {
9183                 if (period < 0)
9184                         period = 10000;
9185
9186                 local64_set(&hwc->period_left, 0);
9187         } else {
9188                 period = max_t(u64, 10000, hwc->sample_period);
9189         }
9190         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9191                       HRTIMER_MODE_REL_PINNED);
9192 }
9193
9194 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9195 {
9196         struct hw_perf_event *hwc = &event->hw;
9197
9198         if (is_sampling_event(event)) {
9199                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9200                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9201
9202                 hrtimer_cancel(&hwc->hrtimer);
9203         }
9204 }
9205
9206 static void perf_swevent_init_hrtimer(struct perf_event *event)
9207 {
9208         struct hw_perf_event *hwc = &event->hw;
9209
9210         if (!is_sampling_event(event))
9211                 return;
9212
9213         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9214         hwc->hrtimer.function = perf_swevent_hrtimer;
9215
9216         /*
9217          * Since hrtimers have a fixed rate, we can do a static freq->period
9218          * mapping and avoid the whole period adjust feedback stuff.
9219          */
9220         if (event->attr.freq) {
9221                 long freq = event->attr.sample_freq;
9222
9223                 event->attr.sample_period = NSEC_PER_SEC / freq;
9224                 hwc->sample_period = event->attr.sample_period;
9225                 local64_set(&hwc->period_left, hwc->sample_period);
9226                 hwc->last_period = hwc->sample_period;
9227                 event->attr.freq = 0;
9228         }
9229 }
9230
9231 /*
9232  * Software event: cpu wall time clock
9233  */
9234
9235 static void cpu_clock_event_update(struct perf_event *event)
9236 {
9237         s64 prev;
9238         u64 now;
9239
9240         now = local_clock();
9241         prev = local64_xchg(&event->hw.prev_count, now);
9242         local64_add(now - prev, &event->count);
9243 }
9244
9245 static void cpu_clock_event_start(struct perf_event *event, int flags)
9246 {
9247         local64_set(&event->hw.prev_count, local_clock());
9248         perf_swevent_start_hrtimer(event);
9249 }
9250
9251 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9252 {
9253         perf_swevent_cancel_hrtimer(event);
9254         cpu_clock_event_update(event);
9255 }
9256
9257 static int cpu_clock_event_add(struct perf_event *event, int flags)
9258 {
9259         if (flags & PERF_EF_START)
9260                 cpu_clock_event_start(event, flags);
9261         perf_event_update_userpage(event);
9262
9263         return 0;
9264 }
9265
9266 static void cpu_clock_event_del(struct perf_event *event, int flags)
9267 {
9268         cpu_clock_event_stop(event, flags);
9269 }
9270
9271 static void cpu_clock_event_read(struct perf_event *event)
9272 {
9273         cpu_clock_event_update(event);
9274 }
9275
9276 static int cpu_clock_event_init(struct perf_event *event)
9277 {
9278         if (event->attr.type != PERF_TYPE_SOFTWARE)
9279                 return -ENOENT;
9280
9281         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9282                 return -ENOENT;
9283
9284         /*
9285          * no branch sampling for software events
9286          */
9287         if (has_branch_stack(event))
9288                 return -EOPNOTSUPP;
9289
9290         perf_swevent_init_hrtimer(event);
9291
9292         return 0;
9293 }
9294
9295 static struct pmu perf_cpu_clock = {
9296         .task_ctx_nr    = perf_sw_context,
9297
9298         .capabilities   = PERF_PMU_CAP_NO_NMI,
9299
9300         .event_init     = cpu_clock_event_init,
9301         .add            = cpu_clock_event_add,
9302         .del            = cpu_clock_event_del,
9303         .start          = cpu_clock_event_start,
9304         .stop           = cpu_clock_event_stop,
9305         .read           = cpu_clock_event_read,
9306 };
9307
9308 /*
9309  * Software event: task time clock
9310  */
9311
9312 static void task_clock_event_update(struct perf_event *event, u64 now)
9313 {
9314         u64 prev;
9315         s64 delta;
9316
9317         prev = local64_xchg(&event->hw.prev_count, now);
9318         delta = now - prev;
9319         local64_add(delta, &event->count);
9320 }
9321
9322 static void task_clock_event_start(struct perf_event *event, int flags)
9323 {
9324         local64_set(&event->hw.prev_count, event->ctx->time);
9325         perf_swevent_start_hrtimer(event);
9326 }
9327
9328 static void task_clock_event_stop(struct perf_event *event, int flags)
9329 {
9330         perf_swevent_cancel_hrtimer(event);
9331         task_clock_event_update(event, event->ctx->time);
9332 }
9333
9334 static int task_clock_event_add(struct perf_event *event, int flags)
9335 {
9336         if (flags & PERF_EF_START)
9337                 task_clock_event_start(event, flags);
9338         perf_event_update_userpage(event);
9339
9340         return 0;
9341 }
9342
9343 static void task_clock_event_del(struct perf_event *event, int flags)
9344 {
9345         task_clock_event_stop(event, PERF_EF_UPDATE);
9346 }
9347
9348 static void task_clock_event_read(struct perf_event *event)
9349 {
9350         u64 now = perf_clock();
9351         u64 delta = now - event->ctx->timestamp;
9352         u64 time = event->ctx->time + delta;
9353
9354         task_clock_event_update(event, time);
9355 }
9356
9357 static int task_clock_event_init(struct perf_event *event)
9358 {
9359         if (event->attr.type != PERF_TYPE_SOFTWARE)
9360                 return -ENOENT;
9361
9362         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9363                 return -ENOENT;
9364
9365         /*
9366          * no branch sampling for software events
9367          */
9368         if (has_branch_stack(event))
9369                 return -EOPNOTSUPP;
9370
9371         perf_swevent_init_hrtimer(event);
9372
9373         return 0;
9374 }
9375
9376 static struct pmu perf_task_clock = {
9377         .task_ctx_nr    = perf_sw_context,
9378
9379         .capabilities   = PERF_PMU_CAP_NO_NMI,
9380
9381         .event_init     = task_clock_event_init,
9382         .add            = task_clock_event_add,
9383         .del            = task_clock_event_del,
9384         .start          = task_clock_event_start,
9385         .stop           = task_clock_event_stop,
9386         .read           = task_clock_event_read,
9387 };
9388
9389 static void perf_pmu_nop_void(struct pmu *pmu)
9390 {
9391 }
9392
9393 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9394 {
9395 }
9396
9397 static int perf_pmu_nop_int(struct pmu *pmu)
9398 {
9399         return 0;
9400 }
9401
9402 static int perf_event_nop_int(struct perf_event *event, u64 value)
9403 {
9404         return 0;
9405 }
9406
9407 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9408
9409 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9410 {
9411         __this_cpu_write(nop_txn_flags, flags);
9412
9413         if (flags & ~PERF_PMU_TXN_ADD)
9414                 return;
9415
9416         perf_pmu_disable(pmu);
9417 }
9418
9419 static int perf_pmu_commit_txn(struct pmu *pmu)
9420 {
9421         unsigned int flags = __this_cpu_read(nop_txn_flags);
9422
9423         __this_cpu_write(nop_txn_flags, 0);
9424
9425         if (flags & ~PERF_PMU_TXN_ADD)
9426                 return 0;
9427
9428         perf_pmu_enable(pmu);
9429         return 0;
9430 }
9431
9432 static void perf_pmu_cancel_txn(struct pmu *pmu)
9433 {
9434         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9435
9436         __this_cpu_write(nop_txn_flags, 0);
9437
9438         if (flags & ~PERF_PMU_TXN_ADD)
9439                 return;
9440
9441         perf_pmu_enable(pmu);
9442 }
9443
9444 static int perf_event_idx_default(struct perf_event *event)
9445 {
9446         return 0;
9447 }
9448
9449 /*
9450  * Ensures all contexts with the same task_ctx_nr have the same
9451  * pmu_cpu_context too.
9452  */
9453 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9454 {
9455         struct pmu *pmu;
9456
9457         if (ctxn < 0)
9458                 return NULL;
9459
9460         list_for_each_entry(pmu, &pmus, entry) {
9461                 if (pmu->task_ctx_nr == ctxn)
9462                         return pmu->pmu_cpu_context;
9463         }
9464
9465         return NULL;
9466 }
9467
9468 static void free_pmu_context(struct pmu *pmu)
9469 {
9470         /*
9471          * Static contexts such as perf_sw_context have a global lifetime
9472          * and may be shared between different PMUs. Avoid freeing them
9473          * when a single PMU is going away.
9474          */
9475         if (pmu->task_ctx_nr > perf_invalid_context)
9476                 return;
9477
9478         free_percpu(pmu->pmu_cpu_context);
9479 }
9480
9481 /*
9482  * Let userspace know that this PMU supports address range filtering:
9483  */
9484 static ssize_t nr_addr_filters_show(struct device *dev,
9485                                     struct device_attribute *attr,
9486                                     char *page)
9487 {
9488         struct pmu *pmu = dev_get_drvdata(dev);
9489
9490         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9491 }
9492 DEVICE_ATTR_RO(nr_addr_filters);
9493
9494 static struct idr pmu_idr;
9495
9496 static ssize_t
9497 type_show(struct device *dev, struct device_attribute *attr, char *page)
9498 {
9499         struct pmu *pmu = dev_get_drvdata(dev);
9500
9501         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9502 }
9503 static DEVICE_ATTR_RO(type);
9504
9505 static ssize_t
9506 perf_event_mux_interval_ms_show(struct device *dev,
9507                                 struct device_attribute *attr,
9508                                 char *page)
9509 {
9510         struct pmu *pmu = dev_get_drvdata(dev);
9511
9512         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9513 }
9514
9515 static DEFINE_MUTEX(mux_interval_mutex);
9516
9517 static ssize_t
9518 perf_event_mux_interval_ms_store(struct device *dev,
9519                                  struct device_attribute *attr,
9520                                  const char *buf, size_t count)
9521 {
9522         struct pmu *pmu = dev_get_drvdata(dev);
9523         int timer, cpu, ret;
9524
9525         ret = kstrtoint(buf, 0, &timer);
9526         if (ret)
9527                 return ret;
9528
9529         if (timer < 1)
9530                 return -EINVAL;
9531
9532         /* same value, noting to do */
9533         if (timer == pmu->hrtimer_interval_ms)
9534                 return count;
9535
9536         mutex_lock(&mux_interval_mutex);
9537         pmu->hrtimer_interval_ms = timer;
9538
9539         /* update all cpuctx for this PMU */
9540         cpus_read_lock();
9541         for_each_online_cpu(cpu) {
9542                 struct perf_cpu_context *cpuctx;
9543                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9544                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9545
9546                 cpu_function_call(cpu,
9547                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9548         }
9549         cpus_read_unlock();
9550         mutex_unlock(&mux_interval_mutex);
9551
9552         return count;
9553 }
9554 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9555
9556 static struct attribute *pmu_dev_attrs[] = {
9557         &dev_attr_type.attr,
9558         &dev_attr_perf_event_mux_interval_ms.attr,
9559         NULL,
9560 };
9561 ATTRIBUTE_GROUPS(pmu_dev);
9562
9563 static int pmu_bus_running;
9564 static struct bus_type pmu_bus = {
9565         .name           = "event_source",
9566         .dev_groups     = pmu_dev_groups,
9567 };
9568
9569 static void pmu_dev_release(struct device *dev)
9570 {
9571         kfree(dev);
9572 }
9573
9574 static int pmu_dev_alloc(struct pmu *pmu)
9575 {
9576         int ret = -ENOMEM;
9577
9578         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9579         if (!pmu->dev)
9580                 goto out;
9581
9582         pmu->dev->groups = pmu->attr_groups;
9583         device_initialize(pmu->dev);
9584         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9585         if (ret)
9586                 goto free_dev;
9587
9588         dev_set_drvdata(pmu->dev, pmu);
9589         pmu->dev->bus = &pmu_bus;
9590         pmu->dev->release = pmu_dev_release;
9591         ret = device_add(pmu->dev);
9592         if (ret)
9593                 goto free_dev;
9594
9595         /* For PMUs with address filters, throw in an extra attribute: */
9596         if (pmu->nr_addr_filters)
9597                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9598
9599         if (ret)
9600                 goto del_dev;
9601
9602 out:
9603         return ret;
9604
9605 del_dev:
9606         device_del(pmu->dev);
9607
9608 free_dev:
9609         put_device(pmu->dev);
9610         goto out;
9611 }
9612
9613 static struct lock_class_key cpuctx_mutex;
9614 static struct lock_class_key cpuctx_lock;
9615
9616 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9617 {
9618         int cpu, ret;
9619
9620         mutex_lock(&pmus_lock);
9621         ret = -ENOMEM;
9622         pmu->pmu_disable_count = alloc_percpu(int);
9623         if (!pmu->pmu_disable_count)
9624                 goto unlock;
9625
9626         pmu->type = -1;
9627         if (!name)
9628                 goto skip_type;
9629         pmu->name = name;
9630
9631         if (type < 0) {
9632                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9633                 if (type < 0) {
9634                         ret = type;
9635                         goto free_pdc;
9636                 }
9637         }
9638         pmu->type = type;
9639
9640         if (pmu_bus_running) {
9641                 ret = pmu_dev_alloc(pmu);
9642                 if (ret)
9643                         goto free_idr;
9644         }
9645
9646 skip_type:
9647         if (pmu->task_ctx_nr == perf_hw_context) {
9648                 static int hw_context_taken = 0;
9649
9650                 /*
9651                  * Other than systems with heterogeneous CPUs, it never makes
9652                  * sense for two PMUs to share perf_hw_context. PMUs which are
9653                  * uncore must use perf_invalid_context.
9654                  */
9655                 if (WARN_ON_ONCE(hw_context_taken &&
9656                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9657                         pmu->task_ctx_nr = perf_invalid_context;
9658
9659                 hw_context_taken = 1;
9660         }
9661
9662         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9663         if (pmu->pmu_cpu_context)
9664                 goto got_cpu_context;
9665
9666         ret = -ENOMEM;
9667         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9668         if (!pmu->pmu_cpu_context)
9669                 goto free_dev;
9670
9671         for_each_possible_cpu(cpu) {
9672                 struct perf_cpu_context *cpuctx;
9673
9674                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9675                 __perf_event_init_context(&cpuctx->ctx);
9676                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9677                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9678                 cpuctx->ctx.pmu = pmu;
9679                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9680
9681                 __perf_mux_hrtimer_init(cpuctx, cpu);
9682         }
9683
9684 got_cpu_context:
9685         if (!pmu->start_txn) {
9686                 if (pmu->pmu_enable) {
9687                         /*
9688                          * If we have pmu_enable/pmu_disable calls, install
9689                          * transaction stubs that use that to try and batch
9690                          * hardware accesses.
9691                          */
9692                         pmu->start_txn  = perf_pmu_start_txn;
9693                         pmu->commit_txn = perf_pmu_commit_txn;
9694                         pmu->cancel_txn = perf_pmu_cancel_txn;
9695                 } else {
9696                         pmu->start_txn  = perf_pmu_nop_txn;
9697                         pmu->commit_txn = perf_pmu_nop_int;
9698                         pmu->cancel_txn = perf_pmu_nop_void;
9699                 }
9700         }
9701
9702         if (!pmu->pmu_enable) {
9703                 pmu->pmu_enable  = perf_pmu_nop_void;
9704                 pmu->pmu_disable = perf_pmu_nop_void;
9705         }
9706
9707         if (!pmu->check_period)
9708                 pmu->check_period = perf_event_nop_int;
9709
9710         if (!pmu->event_idx)
9711                 pmu->event_idx = perf_event_idx_default;
9712
9713         list_add_rcu(&pmu->entry, &pmus);
9714         atomic_set(&pmu->exclusive_cnt, 0);
9715         ret = 0;
9716 unlock:
9717         mutex_unlock(&pmus_lock);
9718
9719         return ret;
9720
9721 free_dev:
9722         device_del(pmu->dev);
9723         put_device(pmu->dev);
9724
9725 free_idr:
9726         if (pmu->type >= PERF_TYPE_MAX)
9727                 idr_remove(&pmu_idr, pmu->type);
9728
9729 free_pdc:
9730         free_percpu(pmu->pmu_disable_count);
9731         goto unlock;
9732 }
9733 EXPORT_SYMBOL_GPL(perf_pmu_register);
9734
9735 void perf_pmu_unregister(struct pmu *pmu)
9736 {
9737         mutex_lock(&pmus_lock);
9738         list_del_rcu(&pmu->entry);
9739
9740         /*
9741          * We dereference the pmu list under both SRCU and regular RCU, so
9742          * synchronize against both of those.
9743          */
9744         synchronize_srcu(&pmus_srcu);
9745         synchronize_rcu();
9746
9747         free_percpu(pmu->pmu_disable_count);
9748         if (pmu->type >= PERF_TYPE_MAX)
9749                 idr_remove(&pmu_idr, pmu->type);
9750         if (pmu_bus_running) {
9751                 if (pmu->nr_addr_filters)
9752                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9753                 device_del(pmu->dev);
9754                 put_device(pmu->dev);
9755         }
9756         free_pmu_context(pmu);
9757         mutex_unlock(&pmus_lock);
9758 }
9759 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9760
9761 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9762 {
9763         struct perf_event_context *ctx = NULL;
9764         int ret;
9765
9766         if (!try_module_get(pmu->module))
9767                 return -ENODEV;
9768
9769         /*
9770          * A number of pmu->event_init() methods iterate the sibling_list to,
9771          * for example, validate if the group fits on the PMU. Therefore,
9772          * if this is a sibling event, acquire the ctx->mutex to protect
9773          * the sibling_list.
9774          */
9775         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9776                 /*
9777                  * This ctx->mutex can nest when we're called through
9778                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9779                  */
9780                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9781                                                  SINGLE_DEPTH_NESTING);
9782                 BUG_ON(!ctx);
9783         }
9784
9785         event->pmu = pmu;
9786         ret = pmu->event_init(event);
9787
9788         if (ctx)
9789                 perf_event_ctx_unlock(event->group_leader, ctx);
9790
9791         if (ret)
9792                 module_put(pmu->module);
9793
9794         return ret;
9795 }
9796
9797 static struct pmu *perf_init_event(struct perf_event *event)
9798 {
9799         struct pmu *pmu;
9800         int idx;
9801         int ret;
9802
9803         idx = srcu_read_lock(&pmus_srcu);
9804
9805         /* Try parent's PMU first: */
9806         if (event->parent && event->parent->pmu) {
9807                 pmu = event->parent->pmu;
9808                 ret = perf_try_init_event(pmu, event);
9809                 if (!ret)
9810                         goto unlock;
9811         }
9812
9813         rcu_read_lock();
9814         pmu = idr_find(&pmu_idr, event->attr.type);
9815         rcu_read_unlock();
9816         if (pmu) {
9817                 ret = perf_try_init_event(pmu, event);
9818                 if (ret)
9819                         pmu = ERR_PTR(ret);
9820                 goto unlock;
9821         }
9822
9823         list_for_each_entry_rcu(pmu, &pmus, entry) {
9824                 ret = perf_try_init_event(pmu, event);
9825                 if (!ret)
9826                         goto unlock;
9827
9828                 if (ret != -ENOENT) {
9829                         pmu = ERR_PTR(ret);
9830                         goto unlock;
9831                 }
9832         }
9833         pmu = ERR_PTR(-ENOENT);
9834 unlock:
9835         srcu_read_unlock(&pmus_srcu, idx);
9836
9837         return pmu;
9838 }
9839
9840 static void attach_sb_event(struct perf_event *event)
9841 {
9842         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9843
9844         raw_spin_lock(&pel->lock);
9845         list_add_rcu(&event->sb_list, &pel->list);
9846         raw_spin_unlock(&pel->lock);
9847 }
9848
9849 /*
9850  * We keep a list of all !task (and therefore per-cpu) events
9851  * that need to receive side-band records.
9852  *
9853  * This avoids having to scan all the various PMU per-cpu contexts
9854  * looking for them.
9855  */
9856 static void account_pmu_sb_event(struct perf_event *event)
9857 {
9858         if (is_sb_event(event))
9859                 attach_sb_event(event);
9860 }
9861
9862 static void account_event_cpu(struct perf_event *event, int cpu)
9863 {
9864         if (event->parent)
9865                 return;
9866
9867         if (is_cgroup_event(event))
9868                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9869 }
9870
9871 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9872 static void account_freq_event_nohz(void)
9873 {
9874 #ifdef CONFIG_NO_HZ_FULL
9875         /* Lock so we don't race with concurrent unaccount */
9876         spin_lock(&nr_freq_lock);
9877         if (atomic_inc_return(&nr_freq_events) == 1)
9878                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9879         spin_unlock(&nr_freq_lock);
9880 #endif
9881 }
9882
9883 static void account_freq_event(void)
9884 {
9885         if (tick_nohz_full_enabled())
9886                 account_freq_event_nohz();
9887         else
9888                 atomic_inc(&nr_freq_events);
9889 }
9890
9891
9892 static void account_event(struct perf_event *event)
9893 {
9894         bool inc = false;
9895
9896         if (event->parent)
9897                 return;
9898
9899         if (event->attach_state & PERF_ATTACH_TASK)
9900                 inc = true;
9901         if (event->attr.mmap || event->attr.mmap_data)
9902                 atomic_inc(&nr_mmap_events);
9903         if (event->attr.comm)
9904                 atomic_inc(&nr_comm_events);
9905         if (event->attr.namespaces)
9906                 atomic_inc(&nr_namespaces_events);
9907         if (event->attr.task)
9908                 atomic_inc(&nr_task_events);
9909         if (event->attr.freq)
9910                 account_freq_event();
9911         if (event->attr.context_switch) {
9912                 atomic_inc(&nr_switch_events);
9913                 inc = true;
9914         }
9915         if (has_branch_stack(event))
9916                 inc = true;
9917         if (is_cgroup_event(event))
9918                 inc = true;
9919
9920         if (inc) {
9921                 /*
9922                  * We need the mutex here because static_branch_enable()
9923                  * must complete *before* the perf_sched_count increment
9924                  * becomes visible.
9925                  */
9926                 if (atomic_inc_not_zero(&perf_sched_count))
9927                         goto enabled;
9928
9929                 mutex_lock(&perf_sched_mutex);
9930                 if (!atomic_read(&perf_sched_count)) {
9931                         static_branch_enable(&perf_sched_events);
9932                         /*
9933                          * Guarantee that all CPUs observe they key change and
9934                          * call the perf scheduling hooks before proceeding to
9935                          * install events that need them.
9936                          */
9937                         synchronize_rcu();
9938                 }
9939                 /*
9940                  * Now that we have waited for the sync_sched(), allow further
9941                  * increments to by-pass the mutex.
9942                  */
9943                 atomic_inc(&perf_sched_count);
9944                 mutex_unlock(&perf_sched_mutex);
9945         }
9946 enabled:
9947
9948         account_event_cpu(event, event->cpu);
9949
9950         account_pmu_sb_event(event);
9951 }
9952
9953 /*
9954  * Allocate and initialize an event structure
9955  */
9956 static struct perf_event *
9957 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9958                  struct task_struct *task,
9959                  struct perf_event *group_leader,
9960                  struct perf_event *parent_event,
9961                  perf_overflow_handler_t overflow_handler,
9962                  void *context, int cgroup_fd)
9963 {
9964         struct pmu *pmu;
9965         struct perf_event *event;
9966         struct hw_perf_event *hwc;
9967         long err = -EINVAL;
9968
9969         if ((unsigned)cpu >= nr_cpu_ids) {
9970                 if (!task || cpu != -1)
9971                         return ERR_PTR(-EINVAL);
9972         }
9973
9974         event = kzalloc(sizeof(*event), GFP_KERNEL);
9975         if (!event)
9976                 return ERR_PTR(-ENOMEM);
9977
9978         /*
9979          * Single events are their own group leaders, with an
9980          * empty sibling list:
9981          */
9982         if (!group_leader)
9983                 group_leader = event;
9984
9985         mutex_init(&event->child_mutex);
9986         INIT_LIST_HEAD(&event->child_list);
9987
9988         INIT_LIST_HEAD(&event->event_entry);
9989         INIT_LIST_HEAD(&event->sibling_list);
9990         INIT_LIST_HEAD(&event->active_list);
9991         init_event_group(event);
9992         INIT_LIST_HEAD(&event->rb_entry);
9993         INIT_LIST_HEAD(&event->active_entry);
9994         INIT_LIST_HEAD(&event->addr_filters.list);
9995         INIT_HLIST_NODE(&event->hlist_entry);
9996
9997
9998         init_waitqueue_head(&event->waitq);
9999         init_irq_work(&event->pending, perf_pending_event);
10000
10001         mutex_init(&event->mmap_mutex);
10002         raw_spin_lock_init(&event->addr_filters.lock);
10003
10004         atomic_long_set(&event->refcount, 1);
10005         event->cpu              = cpu;
10006         event->attr             = *attr;
10007         event->group_leader     = group_leader;
10008         event->pmu              = NULL;
10009         event->oncpu            = -1;
10010
10011         event->parent           = parent_event;
10012
10013         event->ns               = get_pid_ns(task_active_pid_ns(current));
10014         event->id               = atomic64_inc_return(&perf_event_id);
10015
10016         event->state            = PERF_EVENT_STATE_INACTIVE;
10017
10018         if (task) {
10019                 event->attach_state = PERF_ATTACH_TASK;
10020                 /*
10021                  * XXX pmu::event_init needs to know what task to account to
10022                  * and we cannot use the ctx information because we need the
10023                  * pmu before we get a ctx.
10024                  */
10025                 get_task_struct(task);
10026                 event->hw.target = task;
10027         }
10028
10029         event->clock = &local_clock;
10030         if (parent_event)
10031                 event->clock = parent_event->clock;
10032
10033         if (!overflow_handler && parent_event) {
10034                 overflow_handler = parent_event->overflow_handler;
10035                 context = parent_event->overflow_handler_context;
10036 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
10037                 if (overflow_handler == bpf_overflow_handler) {
10038                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
10039
10040                         if (IS_ERR(prog)) {
10041                                 err = PTR_ERR(prog);
10042                                 goto err_ns;
10043                         }
10044                         event->prog = prog;
10045                         event->orig_overflow_handler =
10046                                 parent_event->orig_overflow_handler;
10047                 }
10048 #endif
10049         }
10050
10051         if (overflow_handler) {
10052                 event->overflow_handler = overflow_handler;
10053                 event->overflow_handler_context = context;
10054         } else if (is_write_backward(event)){
10055                 event->overflow_handler = perf_event_output_backward;
10056                 event->overflow_handler_context = NULL;
10057         } else {
10058                 event->overflow_handler = perf_event_output_forward;
10059                 event->overflow_handler_context = NULL;
10060         }
10061
10062         perf_event__state_init(event);
10063
10064         pmu = NULL;
10065
10066         hwc = &event->hw;
10067         hwc->sample_period = attr->sample_period;
10068         if (attr->freq && attr->sample_freq)
10069                 hwc->sample_period = 1;
10070         hwc->last_period = hwc->sample_period;
10071
10072         local64_set(&hwc->period_left, hwc->sample_period);
10073
10074         /*
10075          * We currently do not support PERF_SAMPLE_READ on inherited events.
10076          * See perf_output_read().
10077          */
10078         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10079                 goto err_ns;
10080
10081         if (!has_branch_stack(event))
10082                 event->attr.branch_sample_type = 0;
10083
10084         if (cgroup_fd != -1) {
10085                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10086                 if (err)
10087                         goto err_ns;
10088         }
10089
10090         pmu = perf_init_event(event);
10091         if (IS_ERR(pmu)) {
10092                 err = PTR_ERR(pmu);
10093                 goto err_ns;
10094         }
10095
10096         err = exclusive_event_init(event);
10097         if (err)
10098                 goto err_pmu;
10099
10100         if (has_addr_filter(event)) {
10101                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10102                                                    sizeof(unsigned long),
10103                                                    GFP_KERNEL);
10104                 if (!event->addr_filters_offs) {
10105                         err = -ENOMEM;
10106                         goto err_per_task;
10107                 }
10108
10109                 /* force hw sync on the address filters */
10110                 event->addr_filters_gen = 1;
10111         }
10112
10113         if (!event->parent) {
10114                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10115                         err = get_callchain_buffers(attr->sample_max_stack);
10116                         if (err)
10117                                 goto err_addr_filters;
10118                 }
10119         }
10120
10121         /* symmetric to unaccount_event() in _free_event() */
10122         account_event(event);
10123
10124         return event;
10125
10126 err_addr_filters:
10127         kfree(event->addr_filters_offs);
10128
10129 err_per_task:
10130         exclusive_event_destroy(event);
10131
10132 err_pmu:
10133         if (event->destroy)
10134                 event->destroy(event);
10135         module_put(pmu->module);
10136 err_ns:
10137         if (is_cgroup_event(event))
10138                 perf_detach_cgroup(event);
10139         if (event->ns)
10140                 put_pid_ns(event->ns);
10141         if (event->hw.target)
10142                 put_task_struct(event->hw.target);
10143         kfree(event);
10144
10145         return ERR_PTR(err);
10146 }
10147
10148 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10149                           struct perf_event_attr *attr)
10150 {
10151         u32 size;
10152         int ret;
10153
10154         if (!access_ok(uattr, PERF_ATTR_SIZE_VER0))
10155                 return -EFAULT;
10156
10157         /*
10158          * zero the full structure, so that a short copy will be nice.
10159          */
10160         memset(attr, 0, sizeof(*attr));
10161
10162         ret = get_user(size, &uattr->size);
10163         if (ret)
10164                 return ret;
10165
10166         if (size > PAGE_SIZE)   /* silly large */
10167                 goto err_size;
10168
10169         if (!size)              /* abi compat */
10170                 size = PERF_ATTR_SIZE_VER0;
10171
10172         if (size < PERF_ATTR_SIZE_VER0)
10173                 goto err_size;
10174
10175         /*
10176          * If we're handed a bigger struct than we know of,
10177          * ensure all the unknown bits are 0 - i.e. new
10178          * user-space does not rely on any kernel feature
10179          * extensions we dont know about yet.
10180          */
10181         if (size > sizeof(*attr)) {
10182                 unsigned char __user *addr;
10183                 unsigned char __user *end;
10184                 unsigned char val;
10185
10186                 addr = (void __user *)uattr + sizeof(*attr);
10187                 end  = (void __user *)uattr + size;
10188
10189                 for (; addr < end; addr++) {
10190                         ret = get_user(val, addr);
10191                         if (ret)
10192                                 return ret;
10193                         if (val)
10194                                 goto err_size;
10195                 }
10196                 size = sizeof(*attr);
10197         }
10198
10199         ret = copy_from_user(attr, uattr, size);
10200         if (ret)
10201                 return -EFAULT;
10202
10203         attr->size = size;
10204
10205         if (attr->__reserved_1)
10206                 return -EINVAL;
10207
10208         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10209                 return -EINVAL;
10210
10211         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10212                 return -EINVAL;
10213
10214         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10215                 u64 mask = attr->branch_sample_type;
10216
10217                 /* only using defined bits */
10218                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10219                         return -EINVAL;
10220
10221                 /* at least one branch bit must be set */
10222                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10223                         return -EINVAL;
10224
10225                 /* propagate priv level, when not set for branch */
10226                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10227
10228                         /* exclude_kernel checked on syscall entry */
10229                         if (!attr->exclude_kernel)
10230                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10231
10232                         if (!attr->exclude_user)
10233                                 mask |= PERF_SAMPLE_BRANCH_USER;
10234
10235                         if (!attr->exclude_hv)
10236                                 mask |= PERF_SAMPLE_BRANCH_HV;
10237                         /*
10238                          * adjust user setting (for HW filter setup)
10239                          */
10240                         attr->branch_sample_type = mask;
10241                 }
10242                 /* privileged levels capture (kernel, hv): check permissions */
10243                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10244                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10245                         return -EACCES;
10246         }
10247
10248         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10249                 ret = perf_reg_validate(attr->sample_regs_user);
10250                 if (ret)
10251                         return ret;
10252         }
10253
10254         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10255                 if (!arch_perf_have_user_stack_dump())
10256                         return -ENOSYS;
10257
10258                 /*
10259                  * We have __u32 type for the size, but so far
10260                  * we can only use __u16 as maximum due to the
10261                  * __u16 sample size limit.
10262                  */
10263                 if (attr->sample_stack_user >= USHRT_MAX)
10264                         return -EINVAL;
10265                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10266                         return -EINVAL;
10267         }
10268
10269         if (!attr->sample_max_stack)
10270                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10271
10272         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10273                 ret = perf_reg_validate(attr->sample_regs_intr);
10274 out:
10275         return ret;
10276
10277 err_size:
10278         put_user(sizeof(*attr), &uattr->size);
10279         ret = -E2BIG;
10280         goto out;
10281 }
10282
10283 static int
10284 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10285 {
10286         struct ring_buffer *rb = NULL;
10287         int ret = -EINVAL;
10288
10289         if (!output_event)
10290                 goto set;
10291
10292         /* don't allow circular references */
10293         if (event == output_event)
10294                 goto out;
10295
10296         /*
10297          * Don't allow cross-cpu buffers
10298          */
10299         if (output_event->cpu != event->cpu)
10300                 goto out;
10301
10302         /*
10303          * If its not a per-cpu rb, it must be the same task.
10304          */
10305         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10306                 goto out;
10307
10308         /*
10309          * Mixing clocks in the same buffer is trouble you don't need.
10310          */
10311         if (output_event->clock != event->clock)
10312                 goto out;
10313
10314         /*
10315          * Either writing ring buffer from beginning or from end.
10316          * Mixing is not allowed.
10317          */
10318         if (is_write_backward(output_event) != is_write_backward(event))
10319                 goto out;
10320
10321         /*
10322          * If both events generate aux data, they must be on the same PMU
10323          */
10324         if (has_aux(event) && has_aux(output_event) &&
10325             event->pmu != output_event->pmu)
10326                 goto out;
10327
10328 set:
10329         mutex_lock(&event->mmap_mutex);
10330         /* Can't redirect output if we've got an active mmap() */
10331         if (atomic_read(&event->mmap_count))
10332                 goto unlock;
10333
10334         if (output_event) {
10335                 /* get the rb we want to redirect to */
10336                 rb = ring_buffer_get(output_event);
10337                 if (!rb)
10338                         goto unlock;
10339         }
10340
10341         ring_buffer_attach(event, rb);
10342
10343         ret = 0;
10344 unlock:
10345         mutex_unlock(&event->mmap_mutex);
10346
10347 out:
10348         return ret;
10349 }
10350
10351 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10352 {
10353         if (b < a)
10354                 swap(a, b);
10355
10356         mutex_lock(a);
10357         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10358 }
10359
10360 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10361 {
10362         bool nmi_safe = false;
10363
10364         switch (clk_id) {
10365         case CLOCK_MONOTONIC:
10366                 event->clock = &ktime_get_mono_fast_ns;
10367                 nmi_safe = true;
10368                 break;
10369
10370         case CLOCK_MONOTONIC_RAW:
10371                 event->clock = &ktime_get_raw_fast_ns;
10372                 nmi_safe = true;
10373                 break;
10374
10375         case CLOCK_REALTIME:
10376                 event->clock = &ktime_get_real_ns;
10377                 break;
10378
10379         case CLOCK_BOOTTIME:
10380                 event->clock = &ktime_get_boot_ns;
10381                 break;
10382
10383         case CLOCK_TAI:
10384                 event->clock = &ktime_get_tai_ns;
10385                 break;
10386
10387         default:
10388                 return -EINVAL;
10389         }
10390
10391         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10392                 return -EINVAL;
10393
10394         return 0;
10395 }
10396
10397 /*
10398  * Variation on perf_event_ctx_lock_nested(), except we take two context
10399  * mutexes.
10400  */
10401 static struct perf_event_context *
10402 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10403                              struct perf_event_context *ctx)
10404 {
10405         struct perf_event_context *gctx;
10406
10407 again:
10408         rcu_read_lock();
10409         gctx = READ_ONCE(group_leader->ctx);
10410         if (!atomic_inc_not_zero(&gctx->refcount)) {
10411                 rcu_read_unlock();
10412                 goto again;
10413         }
10414         rcu_read_unlock();
10415
10416         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10417
10418         if (group_leader->ctx != gctx) {
10419                 mutex_unlock(&ctx->mutex);
10420                 mutex_unlock(&gctx->mutex);
10421                 put_ctx(gctx);
10422                 goto again;
10423         }
10424
10425         return gctx;
10426 }
10427
10428 /**
10429  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10430  *
10431  * @attr_uptr:  event_id type attributes for monitoring/sampling
10432  * @pid:                target pid
10433  * @cpu:                target cpu
10434  * @group_fd:           group leader event fd
10435  */
10436 SYSCALL_DEFINE5(perf_event_open,
10437                 struct perf_event_attr __user *, attr_uptr,
10438                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10439 {
10440         struct perf_event *group_leader = NULL, *output_event = NULL;
10441         struct perf_event *event, *sibling;
10442         struct perf_event_attr attr;
10443         struct perf_event_context *ctx, *uninitialized_var(gctx);
10444         struct file *event_file = NULL;
10445         struct fd group = {NULL, 0};
10446         struct task_struct *task = NULL;
10447         struct pmu *pmu;
10448         int event_fd;
10449         int move_group = 0;
10450         int err;
10451         int f_flags = O_RDWR;
10452         int cgroup_fd = -1;
10453
10454         /* for future expandability... */
10455         if (flags & ~PERF_FLAG_ALL)
10456                 return -EINVAL;
10457
10458         err = perf_copy_attr(attr_uptr, &attr);
10459         if (err)
10460                 return err;
10461
10462         if (!attr.exclude_kernel) {
10463                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10464                         return -EACCES;
10465         }
10466
10467         if (attr.namespaces) {
10468                 if (!capable(CAP_SYS_ADMIN))
10469                         return -EACCES;
10470         }
10471
10472         if (attr.freq) {
10473                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10474                         return -EINVAL;
10475         } else {
10476                 if (attr.sample_period & (1ULL << 63))
10477                         return -EINVAL;
10478         }
10479
10480         /* Only privileged users can get physical addresses */
10481         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10482             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10483                 return -EACCES;
10484
10485         /*
10486          * In cgroup mode, the pid argument is used to pass the fd
10487          * opened to the cgroup directory in cgroupfs. The cpu argument
10488          * designates the cpu on which to monitor threads from that
10489          * cgroup.
10490          */
10491         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10492                 return -EINVAL;
10493
10494         if (flags & PERF_FLAG_FD_CLOEXEC)
10495                 f_flags |= O_CLOEXEC;
10496
10497         event_fd = get_unused_fd_flags(f_flags);
10498         if (event_fd < 0)
10499                 return event_fd;
10500
10501         if (group_fd != -1) {
10502                 err = perf_fget_light(group_fd, &group);
10503                 if (err)
10504                         goto err_fd;
10505                 group_leader = group.file->private_data;
10506                 if (flags & PERF_FLAG_FD_OUTPUT)
10507                         output_event = group_leader;
10508                 if (flags & PERF_FLAG_FD_NO_GROUP)
10509                         group_leader = NULL;
10510         }
10511
10512         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10513                 task = find_lively_task_by_vpid(pid);
10514                 if (IS_ERR(task)) {
10515                         err = PTR_ERR(task);
10516                         goto err_group_fd;
10517                 }
10518         }
10519
10520         if (task && group_leader &&
10521             group_leader->attr.inherit != attr.inherit) {
10522                 err = -EINVAL;
10523                 goto err_task;
10524         }
10525
10526         if (task) {
10527                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10528                 if (err)
10529                         goto err_task;
10530
10531                 /*
10532                  * Reuse ptrace permission checks for now.
10533                  *
10534                  * We must hold cred_guard_mutex across this and any potential
10535                  * perf_install_in_context() call for this new event to
10536                  * serialize against exec() altering our credentials (and the
10537                  * perf_event_exit_task() that could imply).
10538                  */
10539                 err = -EACCES;
10540                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10541                         goto err_cred;
10542         }
10543
10544         if (flags & PERF_FLAG_PID_CGROUP)
10545                 cgroup_fd = pid;
10546
10547         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10548                                  NULL, NULL, cgroup_fd);
10549         if (IS_ERR(event)) {
10550                 err = PTR_ERR(event);
10551                 goto err_cred;
10552         }
10553
10554         if (is_sampling_event(event)) {
10555                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10556                         err = -EOPNOTSUPP;
10557                         goto err_alloc;
10558                 }
10559         }
10560
10561         /*
10562          * Special case software events and allow them to be part of
10563          * any hardware group.
10564          */
10565         pmu = event->pmu;
10566
10567         if (attr.use_clockid) {
10568                 err = perf_event_set_clock(event, attr.clockid);
10569                 if (err)
10570                         goto err_alloc;
10571         }
10572
10573         if (pmu->task_ctx_nr == perf_sw_context)
10574                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10575
10576         if (group_leader) {
10577                 if (is_software_event(event) &&
10578                     !in_software_context(group_leader)) {
10579                         /*
10580                          * If the event is a sw event, but the group_leader
10581                          * is on hw context.
10582                          *
10583                          * Allow the addition of software events to hw
10584                          * groups, this is safe because software events
10585                          * never fail to schedule.
10586                          */
10587                         pmu = group_leader->ctx->pmu;
10588                 } else if (!is_software_event(event) &&
10589                            is_software_event(group_leader) &&
10590                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10591                         /*
10592                          * In case the group is a pure software group, and we
10593                          * try to add a hardware event, move the whole group to
10594                          * the hardware context.
10595                          */
10596                         move_group = 1;
10597                 }
10598         }
10599
10600         /*
10601          * Get the target context (task or percpu):
10602          */
10603         ctx = find_get_context(pmu, task, event);
10604         if (IS_ERR(ctx)) {
10605                 err = PTR_ERR(ctx);
10606                 goto err_alloc;
10607         }
10608
10609         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10610                 err = -EBUSY;
10611                 goto err_context;
10612         }
10613
10614         /*
10615          * Look up the group leader (we will attach this event to it):
10616          */
10617         if (group_leader) {
10618                 err = -EINVAL;
10619
10620                 /*
10621                  * Do not allow a recursive hierarchy (this new sibling
10622                  * becoming part of another group-sibling):
10623                  */
10624                 if (group_leader->group_leader != group_leader)
10625                         goto err_context;
10626
10627                 /* All events in a group should have the same clock */
10628                 if (group_leader->clock != event->clock)
10629                         goto err_context;
10630
10631                 /*
10632                  * Make sure we're both events for the same CPU;
10633                  * grouping events for different CPUs is broken; since
10634                  * you can never concurrently schedule them anyhow.
10635                  */
10636                 if (group_leader->cpu != event->cpu)
10637                         goto err_context;
10638
10639                 /*
10640                  * Make sure we're both on the same task, or both
10641                  * per-CPU events.
10642                  */
10643                 if (group_leader->ctx->task != ctx->task)
10644                         goto err_context;
10645
10646                 /*
10647                  * Do not allow to attach to a group in a different task
10648                  * or CPU context. If we're moving SW events, we'll fix
10649                  * this up later, so allow that.
10650                  */
10651                 if (!move_group && group_leader->ctx != ctx)
10652                         goto err_context;
10653
10654                 /*
10655                  * Only a group leader can be exclusive or pinned
10656                  */
10657                 if (attr.exclusive || attr.pinned)
10658                         goto err_context;
10659         }
10660
10661         if (output_event) {
10662                 err = perf_event_set_output(event, output_event);
10663                 if (err)
10664                         goto err_context;
10665         }
10666
10667         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10668                                         f_flags);
10669         if (IS_ERR(event_file)) {
10670                 err = PTR_ERR(event_file);
10671                 event_file = NULL;
10672                 goto err_context;
10673         }
10674
10675         if (move_group) {
10676                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10677
10678                 if (gctx->task == TASK_TOMBSTONE) {
10679                         err = -ESRCH;
10680                         goto err_locked;
10681                 }
10682
10683                 /*
10684                  * Check if we raced against another sys_perf_event_open() call
10685                  * moving the software group underneath us.
10686                  */
10687                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10688                         /*
10689                          * If someone moved the group out from under us, check
10690                          * if this new event wound up on the same ctx, if so
10691                          * its the regular !move_group case, otherwise fail.
10692                          */
10693                         if (gctx != ctx) {
10694                                 err = -EINVAL;
10695                                 goto err_locked;
10696                         } else {
10697                                 perf_event_ctx_unlock(group_leader, gctx);
10698                                 move_group = 0;
10699                         }
10700                 }
10701         } else {
10702                 mutex_lock(&ctx->mutex);
10703         }
10704
10705         if (ctx->task == TASK_TOMBSTONE) {
10706                 err = -ESRCH;
10707                 goto err_locked;
10708         }
10709
10710         if (!perf_event_validate_size(event)) {
10711                 err = -E2BIG;
10712                 goto err_locked;
10713         }
10714
10715         if (!task) {
10716                 /*
10717                  * Check if the @cpu we're creating an event for is online.
10718                  *
10719                  * We use the perf_cpu_context::ctx::mutex to serialize against
10720                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10721                  */
10722                 struct perf_cpu_context *cpuctx =
10723                         container_of(ctx, struct perf_cpu_context, ctx);
10724
10725                 if (!cpuctx->online) {
10726                         err = -ENODEV;
10727                         goto err_locked;
10728                 }
10729         }
10730
10731
10732         /*
10733          * Must be under the same ctx::mutex as perf_install_in_context(),
10734          * because we need to serialize with concurrent event creation.
10735          */
10736         if (!exclusive_event_installable(event, ctx)) {
10737                 /* exclusive and group stuff are assumed mutually exclusive */
10738                 WARN_ON_ONCE(move_group);
10739
10740                 err = -EBUSY;
10741                 goto err_locked;
10742         }
10743
10744         WARN_ON_ONCE(ctx->parent_ctx);
10745
10746         /*
10747          * This is the point on no return; we cannot fail hereafter. This is
10748          * where we start modifying current state.
10749          */
10750
10751         if (move_group) {
10752                 /*
10753                  * See perf_event_ctx_lock() for comments on the details
10754                  * of swizzling perf_event::ctx.
10755                  */
10756                 perf_remove_from_context(group_leader, 0);
10757                 put_ctx(gctx);
10758
10759                 for_each_sibling_event(sibling, group_leader) {
10760                         perf_remove_from_context(sibling, 0);
10761                         put_ctx(gctx);
10762                 }
10763
10764                 /*
10765                  * Wait for everybody to stop referencing the events through
10766                  * the old lists, before installing it on new lists.
10767                  */
10768                 synchronize_rcu();
10769
10770                 /*
10771                  * Install the group siblings before the group leader.
10772                  *
10773                  * Because a group leader will try and install the entire group
10774                  * (through the sibling list, which is still in-tact), we can
10775                  * end up with siblings installed in the wrong context.
10776                  *
10777                  * By installing siblings first we NO-OP because they're not
10778                  * reachable through the group lists.
10779                  */
10780                 for_each_sibling_event(sibling, group_leader) {
10781                         perf_event__state_init(sibling);
10782                         perf_install_in_context(ctx, sibling, sibling->cpu);
10783                         get_ctx(ctx);
10784                 }
10785
10786                 /*
10787                  * Removing from the context ends up with disabled
10788                  * event. What we want here is event in the initial
10789                  * startup state, ready to be add into new context.
10790                  */
10791                 perf_event__state_init(group_leader);
10792                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10793                 get_ctx(ctx);
10794         }
10795
10796         /*
10797          * Precalculate sample_data sizes; do while holding ctx::mutex such
10798          * that we're serialized against further additions and before
10799          * perf_install_in_context() which is the point the event is active and
10800          * can use these values.
10801          */
10802         perf_event__header_size(event);
10803         perf_event__id_header_size(event);
10804
10805         event->owner = current;
10806
10807         perf_install_in_context(ctx, event, event->cpu);
10808         perf_unpin_context(ctx);
10809
10810         if (move_group)
10811                 perf_event_ctx_unlock(group_leader, gctx);
10812         mutex_unlock(&ctx->mutex);
10813
10814         if (task) {
10815                 mutex_unlock(&task->signal->cred_guard_mutex);
10816                 put_task_struct(task);
10817         }
10818
10819         mutex_lock(&current->perf_event_mutex);
10820         list_add_tail(&event->owner_entry, &current->perf_event_list);
10821         mutex_unlock(&current->perf_event_mutex);
10822
10823         /*
10824          * Drop the reference on the group_event after placing the
10825          * new event on the sibling_list. This ensures destruction
10826          * of the group leader will find the pointer to itself in
10827          * perf_group_detach().
10828          */
10829         fdput(group);
10830         fd_install(event_fd, event_file);
10831         return event_fd;
10832
10833 err_locked:
10834         if (move_group)
10835                 perf_event_ctx_unlock(group_leader, gctx);
10836         mutex_unlock(&ctx->mutex);
10837 /* err_file: */
10838         fput(event_file);
10839 err_context:
10840         perf_unpin_context(ctx);
10841         put_ctx(ctx);
10842 err_alloc:
10843         /*
10844          * If event_file is set, the fput() above will have called ->release()
10845          * and that will take care of freeing the event.
10846          */
10847         if (!event_file)
10848                 free_event(event);
10849 err_cred:
10850         if (task)
10851                 mutex_unlock(&task->signal->cred_guard_mutex);
10852 err_task:
10853         if (task)
10854                 put_task_struct(task);
10855 err_group_fd:
10856         fdput(group);
10857 err_fd:
10858         put_unused_fd(event_fd);
10859         return err;
10860 }
10861
10862 /**
10863  * perf_event_create_kernel_counter
10864  *
10865  * @attr: attributes of the counter to create
10866  * @cpu: cpu in which the counter is bound
10867  * @task: task to profile (NULL for percpu)
10868  */
10869 struct perf_event *
10870 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10871                                  struct task_struct *task,
10872                                  perf_overflow_handler_t overflow_handler,
10873                                  void *context)
10874 {
10875         struct perf_event_context *ctx;
10876         struct perf_event *event;
10877         int err;
10878
10879         /*
10880          * Get the target context (task or percpu):
10881          */
10882
10883         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10884                                  overflow_handler, context, -1);
10885         if (IS_ERR(event)) {
10886                 err = PTR_ERR(event);
10887                 goto err;
10888         }
10889
10890         /* Mark owner so we could distinguish it from user events. */
10891         event->owner = TASK_TOMBSTONE;
10892
10893         ctx = find_get_context(event->pmu, task, event);
10894         if (IS_ERR(ctx)) {
10895                 err = PTR_ERR(ctx);
10896                 goto err_free;
10897         }
10898
10899         WARN_ON_ONCE(ctx->parent_ctx);
10900         mutex_lock(&ctx->mutex);
10901         if (ctx->task == TASK_TOMBSTONE) {
10902                 err = -ESRCH;
10903                 goto err_unlock;
10904         }
10905
10906         if (!task) {
10907                 /*
10908                  * Check if the @cpu we're creating an event for is online.
10909                  *
10910                  * We use the perf_cpu_context::ctx::mutex to serialize against
10911                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10912                  */
10913                 struct perf_cpu_context *cpuctx =
10914                         container_of(ctx, struct perf_cpu_context, ctx);
10915                 if (!cpuctx->online) {
10916                         err = -ENODEV;
10917                         goto err_unlock;
10918                 }
10919         }
10920
10921         if (!exclusive_event_installable(event, ctx)) {
10922                 err = -EBUSY;
10923                 goto err_unlock;
10924         }
10925
10926         perf_install_in_context(ctx, event, cpu);
10927         perf_unpin_context(ctx);
10928         mutex_unlock(&ctx->mutex);
10929
10930         return event;
10931
10932 err_unlock:
10933         mutex_unlock(&ctx->mutex);
10934         perf_unpin_context(ctx);
10935         put_ctx(ctx);
10936 err_free:
10937         free_event(event);
10938 err:
10939         return ERR_PTR(err);
10940 }
10941 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10942
10943 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10944 {
10945         struct perf_event_context *src_ctx;
10946         struct perf_event_context *dst_ctx;
10947         struct perf_event *event, *tmp;
10948         LIST_HEAD(events);
10949
10950         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10951         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10952
10953         /*
10954          * See perf_event_ctx_lock() for comments on the details
10955          * of swizzling perf_event::ctx.
10956          */
10957         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10958         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10959                                  event_entry) {
10960                 perf_remove_from_context(event, 0);
10961                 unaccount_event_cpu(event, src_cpu);
10962                 put_ctx(src_ctx);
10963                 list_add(&event->migrate_entry, &events);
10964         }
10965
10966         /*
10967          * Wait for the events to quiesce before re-instating them.
10968          */
10969         synchronize_rcu();
10970
10971         /*
10972          * Re-instate events in 2 passes.
10973          *
10974          * Skip over group leaders and only install siblings on this first
10975          * pass, siblings will not get enabled without a leader, however a
10976          * leader will enable its siblings, even if those are still on the old
10977          * context.
10978          */
10979         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10980                 if (event->group_leader == event)
10981                         continue;
10982
10983                 list_del(&event->migrate_entry);
10984                 if (event->state >= PERF_EVENT_STATE_OFF)
10985                         event->state = PERF_EVENT_STATE_INACTIVE;
10986                 account_event_cpu(event, dst_cpu);
10987                 perf_install_in_context(dst_ctx, event, dst_cpu);
10988                 get_ctx(dst_ctx);
10989         }
10990
10991         /*
10992          * Once all the siblings are setup properly, install the group leaders
10993          * to make it go.
10994          */
10995         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10996                 list_del(&event->migrate_entry);
10997                 if (event->state >= PERF_EVENT_STATE_OFF)
10998                         event->state = PERF_EVENT_STATE_INACTIVE;
10999                 account_event_cpu(event, dst_cpu);
11000                 perf_install_in_context(dst_ctx, event, dst_cpu);
11001                 get_ctx(dst_ctx);
11002         }
11003         mutex_unlock(&dst_ctx->mutex);
11004         mutex_unlock(&src_ctx->mutex);
11005 }
11006 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
11007
11008 static void sync_child_event(struct perf_event *child_event,
11009                                struct task_struct *child)
11010 {
11011         struct perf_event *parent_event = child_event->parent;
11012         u64 child_val;
11013
11014         if (child_event->attr.inherit_stat)
11015                 perf_event_read_event(child_event, child);
11016
11017         child_val = perf_event_count(child_event);
11018
11019         /*
11020          * Add back the child's count to the parent's count:
11021          */
11022         atomic64_add(child_val, &parent_event->child_count);
11023         atomic64_add(child_event->total_time_enabled,
11024                      &parent_event->child_total_time_enabled);
11025         atomic64_add(child_event->total_time_running,
11026                      &parent_event->child_total_time_running);
11027 }
11028
11029 static void
11030 perf_event_exit_event(struct perf_event *child_event,
11031                       struct perf_event_context *child_ctx,
11032                       struct task_struct *child)
11033 {
11034         struct perf_event *parent_event = child_event->parent;
11035
11036         /*
11037          * Do not destroy the 'original' grouping; because of the context
11038          * switch optimization the original events could've ended up in a
11039          * random child task.
11040          *
11041          * If we were to destroy the original group, all group related
11042          * operations would cease to function properly after this random
11043          * child dies.
11044          *
11045          * Do destroy all inherited groups, we don't care about those
11046          * and being thorough is better.
11047          */
11048         raw_spin_lock_irq(&child_ctx->lock);
11049         WARN_ON_ONCE(child_ctx->is_active);
11050
11051         if (parent_event)
11052                 perf_group_detach(child_event);
11053         list_del_event(child_event, child_ctx);
11054         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11055         raw_spin_unlock_irq(&child_ctx->lock);
11056
11057         /*
11058          * Parent events are governed by their filedesc, retain them.
11059          */
11060         if (!parent_event) {
11061                 perf_event_wakeup(child_event);
11062                 return;
11063         }
11064         /*
11065          * Child events can be cleaned up.
11066          */
11067
11068         sync_child_event(child_event, child);
11069
11070         /*
11071          * Remove this event from the parent's list
11072          */
11073         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11074         mutex_lock(&parent_event->child_mutex);
11075         list_del_init(&child_event->child_list);
11076         mutex_unlock(&parent_event->child_mutex);
11077
11078         /*
11079          * Kick perf_poll() for is_event_hup().
11080          */
11081         perf_event_wakeup(parent_event);
11082         free_event(child_event);
11083         put_event(parent_event);
11084 }
11085
11086 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11087 {
11088         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11089         struct perf_event *child_event, *next;
11090
11091         WARN_ON_ONCE(child != current);
11092
11093         child_ctx = perf_pin_task_context(child, ctxn);
11094         if (!child_ctx)
11095                 return;
11096
11097         /*
11098          * In order to reduce the amount of tricky in ctx tear-down, we hold
11099          * ctx::mutex over the entire thing. This serializes against almost
11100          * everything that wants to access the ctx.
11101          *
11102          * The exception is sys_perf_event_open() /
11103          * perf_event_create_kernel_count() which does find_get_context()
11104          * without ctx::mutex (it cannot because of the move_group double mutex
11105          * lock thing). See the comments in perf_install_in_context().
11106          */
11107         mutex_lock(&child_ctx->mutex);
11108
11109         /*
11110          * In a single ctx::lock section, de-schedule the events and detach the
11111          * context from the task such that we cannot ever get it scheduled back
11112          * in.
11113          */
11114         raw_spin_lock_irq(&child_ctx->lock);
11115         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11116
11117         /*
11118          * Now that the context is inactive, destroy the task <-> ctx relation
11119          * and mark the context dead.
11120          */
11121         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11122         put_ctx(child_ctx); /* cannot be last */
11123         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11124         put_task_struct(current); /* cannot be last */
11125
11126         clone_ctx = unclone_ctx(child_ctx);
11127         raw_spin_unlock_irq(&child_ctx->lock);
11128
11129         if (clone_ctx)
11130                 put_ctx(clone_ctx);
11131
11132         /*
11133          * Report the task dead after unscheduling the events so that we
11134          * won't get any samples after PERF_RECORD_EXIT. We can however still
11135          * get a few PERF_RECORD_READ events.
11136          */
11137         perf_event_task(child, child_ctx, 0);
11138
11139         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11140                 perf_event_exit_event(child_event, child_ctx, child);
11141
11142         mutex_unlock(&child_ctx->mutex);
11143
11144         put_ctx(child_ctx);
11145 }
11146
11147 /*
11148  * When a child task exits, feed back event values to parent events.
11149  *
11150  * Can be called with cred_guard_mutex held when called from
11151  * install_exec_creds().
11152  */
11153 void perf_event_exit_task(struct task_struct *child)
11154 {
11155         struct perf_event *event, *tmp;
11156         int ctxn;
11157
11158         mutex_lock(&child->perf_event_mutex);
11159         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11160                                  owner_entry) {
11161                 list_del_init(&event->owner_entry);
11162
11163                 /*
11164                  * Ensure the list deletion is visible before we clear
11165                  * the owner, closes a race against perf_release() where
11166                  * we need to serialize on the owner->perf_event_mutex.
11167                  */
11168                 smp_store_release(&event->owner, NULL);
11169         }
11170         mutex_unlock(&child->perf_event_mutex);
11171
11172         for_each_task_context_nr(ctxn)
11173                 perf_event_exit_task_context(child, ctxn);
11174
11175         /*
11176          * The perf_event_exit_task_context calls perf_event_task
11177          * with child's task_ctx, which generates EXIT events for
11178          * child contexts and sets child->perf_event_ctxp[] to NULL.
11179          * At this point we need to send EXIT events to cpu contexts.
11180          */
11181         perf_event_task(child, NULL, 0);
11182 }
11183
11184 static void perf_free_event(struct perf_event *event,
11185                             struct perf_event_context *ctx)
11186 {
11187         struct perf_event *parent = event->parent;
11188
11189         if (WARN_ON_ONCE(!parent))
11190                 return;
11191
11192         mutex_lock(&parent->child_mutex);
11193         list_del_init(&event->child_list);
11194         mutex_unlock(&parent->child_mutex);
11195
11196         put_event(parent);
11197
11198         raw_spin_lock_irq(&ctx->lock);
11199         perf_group_detach(event);
11200         list_del_event(event, ctx);
11201         raw_spin_unlock_irq(&ctx->lock);
11202         free_event(event);
11203 }
11204
11205 /*
11206  * Free an unexposed, unused context as created by inheritance by
11207  * perf_event_init_task below, used by fork() in case of fail.
11208  *
11209  * Not all locks are strictly required, but take them anyway to be nice and
11210  * help out with the lockdep assertions.
11211  */
11212 void perf_event_free_task(struct task_struct *task)
11213 {
11214         struct perf_event_context *ctx;
11215         struct perf_event *event, *tmp;
11216         int ctxn;
11217
11218         for_each_task_context_nr(ctxn) {
11219                 ctx = task->perf_event_ctxp[ctxn];
11220                 if (!ctx)
11221                         continue;
11222
11223                 mutex_lock(&ctx->mutex);
11224                 raw_spin_lock_irq(&ctx->lock);
11225                 /*
11226                  * Destroy the task <-> ctx relation and mark the context dead.
11227                  *
11228                  * This is important because even though the task hasn't been
11229                  * exposed yet the context has been (through child_list).
11230                  */
11231                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11232                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11233                 put_task_struct(task); /* cannot be last */
11234                 raw_spin_unlock_irq(&ctx->lock);
11235
11236                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11237                         perf_free_event(event, ctx);
11238
11239                 mutex_unlock(&ctx->mutex);
11240                 put_ctx(ctx);
11241         }
11242 }
11243
11244 void perf_event_delayed_put(struct task_struct *task)
11245 {
11246         int ctxn;
11247
11248         for_each_task_context_nr(ctxn)
11249                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11250 }
11251
11252 struct file *perf_event_get(unsigned int fd)
11253 {
11254         struct file *file;
11255
11256         file = fget_raw(fd);
11257         if (!file)
11258                 return ERR_PTR(-EBADF);
11259
11260         if (file->f_op != &perf_fops) {
11261                 fput(file);
11262                 return ERR_PTR(-EBADF);
11263         }
11264
11265         return file;
11266 }
11267
11268 const struct perf_event *perf_get_event(struct file *file)
11269 {
11270         if (file->f_op != &perf_fops)
11271                 return ERR_PTR(-EINVAL);
11272
11273         return file->private_data;
11274 }
11275
11276 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11277 {
11278         if (!event)
11279                 return ERR_PTR(-EINVAL);
11280
11281         return &event->attr;
11282 }
11283
11284 /*
11285  * Inherit an event from parent task to child task.
11286  *
11287  * Returns:
11288  *  - valid pointer on success
11289  *  - NULL for orphaned events
11290  *  - IS_ERR() on error
11291  */
11292 static struct perf_event *
11293 inherit_event(struct perf_event *parent_event,
11294               struct task_struct *parent,
11295               struct perf_event_context *parent_ctx,
11296               struct task_struct *child,
11297               struct perf_event *group_leader,
11298               struct perf_event_context *child_ctx)
11299 {
11300         enum perf_event_state parent_state = parent_event->state;
11301         struct perf_event *child_event;
11302         unsigned long flags;
11303
11304         /*
11305          * Instead of creating recursive hierarchies of events,
11306          * we link inherited events back to the original parent,
11307          * which has a filp for sure, which we use as the reference
11308          * count:
11309          */
11310         if (parent_event->parent)
11311                 parent_event = parent_event->parent;
11312
11313         child_event = perf_event_alloc(&parent_event->attr,
11314                                            parent_event->cpu,
11315                                            child,
11316                                            group_leader, parent_event,
11317                                            NULL, NULL, -1);
11318         if (IS_ERR(child_event))
11319                 return child_event;
11320
11321
11322         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11323             !child_ctx->task_ctx_data) {
11324                 struct pmu *pmu = child_event->pmu;
11325
11326                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11327                                                    GFP_KERNEL);
11328                 if (!child_ctx->task_ctx_data) {
11329                         free_event(child_event);
11330                         return NULL;
11331                 }
11332         }
11333
11334         /*
11335          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11336          * must be under the same lock in order to serialize against
11337          * perf_event_release_kernel(), such that either we must observe
11338          * is_orphaned_event() or they will observe us on the child_list.
11339          */
11340         mutex_lock(&parent_event->child_mutex);
11341         if (is_orphaned_event(parent_event) ||
11342             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11343                 mutex_unlock(&parent_event->child_mutex);
11344                 /* task_ctx_data is freed with child_ctx */
11345                 free_event(child_event);
11346                 return NULL;
11347         }
11348
11349         get_ctx(child_ctx);
11350
11351         /*
11352          * Make the child state follow the state of the parent event,
11353          * not its attr.disabled bit.  We hold the parent's mutex,
11354          * so we won't race with perf_event_{en, dis}able_family.
11355          */
11356         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11357                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11358         else
11359                 child_event->state = PERF_EVENT_STATE_OFF;
11360
11361         if (parent_event->attr.freq) {
11362                 u64 sample_period = parent_event->hw.sample_period;
11363                 struct hw_perf_event *hwc = &child_event->hw;
11364
11365                 hwc->sample_period = sample_period;
11366                 hwc->last_period   = sample_period;
11367
11368                 local64_set(&hwc->period_left, sample_period);
11369         }
11370
11371         child_event->ctx = child_ctx;
11372         child_event->overflow_handler = parent_event->overflow_handler;
11373         child_event->overflow_handler_context
11374                 = parent_event->overflow_handler_context;
11375
11376         /*
11377          * Precalculate sample_data sizes
11378          */
11379         perf_event__header_size(child_event);
11380         perf_event__id_header_size(child_event);
11381
11382         /*
11383          * Link it up in the child's context:
11384          */
11385         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11386         add_event_to_ctx(child_event, child_ctx);
11387         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11388
11389         /*
11390          * Link this into the parent event's child list
11391          */
11392         list_add_tail(&child_event->child_list, &parent_event->child_list);
11393         mutex_unlock(&parent_event->child_mutex);
11394
11395         return child_event;
11396 }
11397
11398 /*
11399  * Inherits an event group.
11400  *
11401  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11402  * This matches with perf_event_release_kernel() removing all child events.
11403  *
11404  * Returns:
11405  *  - 0 on success
11406  *  - <0 on error
11407  */
11408 static int inherit_group(struct perf_event *parent_event,
11409               struct task_struct *parent,
11410               struct perf_event_context *parent_ctx,
11411               struct task_struct *child,
11412               struct perf_event_context *child_ctx)
11413 {
11414         struct perf_event *leader;
11415         struct perf_event *sub;
11416         struct perf_event *child_ctr;
11417
11418         leader = inherit_event(parent_event, parent, parent_ctx,
11419                                  child, NULL, child_ctx);
11420         if (IS_ERR(leader))
11421                 return PTR_ERR(leader);
11422         /*
11423          * @leader can be NULL here because of is_orphaned_event(). In this
11424          * case inherit_event() will create individual events, similar to what
11425          * perf_group_detach() would do anyway.
11426          */
11427         for_each_sibling_event(sub, parent_event) {
11428                 child_ctr = inherit_event(sub, parent, parent_ctx,
11429                                             child, leader, child_ctx);
11430                 if (IS_ERR(child_ctr))
11431                         return PTR_ERR(child_ctr);
11432         }
11433         return 0;
11434 }
11435
11436 /*
11437  * Creates the child task context and tries to inherit the event-group.
11438  *
11439  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11440  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11441  * consistent with perf_event_release_kernel() removing all child events.
11442  *
11443  * Returns:
11444  *  - 0 on success
11445  *  - <0 on error
11446  */
11447 static int
11448 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11449                    struct perf_event_context *parent_ctx,
11450                    struct task_struct *child, int ctxn,
11451                    int *inherited_all)
11452 {
11453         int ret;
11454         struct perf_event_context *child_ctx;
11455
11456         if (!event->attr.inherit) {
11457                 *inherited_all = 0;
11458                 return 0;
11459         }
11460
11461         child_ctx = child->perf_event_ctxp[ctxn];
11462         if (!child_ctx) {
11463                 /*
11464                  * This is executed from the parent task context, so
11465                  * inherit events that have been marked for cloning.
11466                  * First allocate and initialize a context for the
11467                  * child.
11468                  */
11469                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11470                 if (!child_ctx)
11471                         return -ENOMEM;
11472
11473                 child->perf_event_ctxp[ctxn] = child_ctx;
11474         }
11475
11476         ret = inherit_group(event, parent, parent_ctx,
11477                             child, child_ctx);
11478
11479         if (ret)
11480                 *inherited_all = 0;
11481
11482         return ret;
11483 }
11484
11485 /*
11486  * Initialize the perf_event context in task_struct
11487  */
11488 static int perf_event_init_context(struct task_struct *child, int ctxn)
11489 {
11490         struct perf_event_context *child_ctx, *parent_ctx;
11491         struct perf_event_context *cloned_ctx;
11492         struct perf_event *event;
11493         struct task_struct *parent = current;
11494         int inherited_all = 1;
11495         unsigned long flags;
11496         int ret = 0;
11497
11498         if (likely(!parent->perf_event_ctxp[ctxn]))
11499                 return 0;
11500
11501         /*
11502          * If the parent's context is a clone, pin it so it won't get
11503          * swapped under us.
11504          */
11505         parent_ctx = perf_pin_task_context(parent, ctxn);
11506         if (!parent_ctx)
11507                 return 0;
11508
11509         /*
11510          * No need to check if parent_ctx != NULL here; since we saw
11511          * it non-NULL earlier, the only reason for it to become NULL
11512          * is if we exit, and since we're currently in the middle of
11513          * a fork we can't be exiting at the same time.
11514          */
11515
11516         /*
11517          * Lock the parent list. No need to lock the child - not PID
11518          * hashed yet and not running, so nobody can access it.
11519          */
11520         mutex_lock(&parent_ctx->mutex);
11521
11522         /*
11523          * We dont have to disable NMIs - we are only looking at
11524          * the list, not manipulating it:
11525          */
11526         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11527                 ret = inherit_task_group(event, parent, parent_ctx,
11528                                          child, ctxn, &inherited_all);
11529                 if (ret)
11530                         goto out_unlock;
11531         }
11532
11533         /*
11534          * We can't hold ctx->lock when iterating the ->flexible_group list due
11535          * to allocations, but we need to prevent rotation because
11536          * rotate_ctx() will change the list from interrupt context.
11537          */
11538         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11539         parent_ctx->rotate_disable = 1;
11540         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11541
11542         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11543                 ret = inherit_task_group(event, parent, parent_ctx,
11544                                          child, ctxn, &inherited_all);
11545                 if (ret)
11546                         goto out_unlock;
11547         }
11548
11549         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11550         parent_ctx->rotate_disable = 0;
11551
11552         child_ctx = child->perf_event_ctxp[ctxn];
11553
11554         if (child_ctx && inherited_all) {
11555                 /*
11556                  * Mark the child context as a clone of the parent
11557                  * context, or of whatever the parent is a clone of.
11558                  *
11559                  * Note that if the parent is a clone, the holding of
11560                  * parent_ctx->lock avoids it from being uncloned.
11561                  */
11562                 cloned_ctx = parent_ctx->parent_ctx;
11563                 if (cloned_ctx) {
11564                         child_ctx->parent_ctx = cloned_ctx;
11565                         child_ctx->parent_gen = parent_ctx->parent_gen;
11566                 } else {
11567                         child_ctx->parent_ctx = parent_ctx;
11568                         child_ctx->parent_gen = parent_ctx->generation;
11569                 }
11570                 get_ctx(child_ctx->parent_ctx);
11571         }
11572
11573         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11574 out_unlock:
11575         mutex_unlock(&parent_ctx->mutex);
11576
11577         perf_unpin_context(parent_ctx);
11578         put_ctx(parent_ctx);
11579
11580         return ret;
11581 }
11582
11583 /*
11584  * Initialize the perf_event context in task_struct
11585  */
11586 int perf_event_init_task(struct task_struct *child)
11587 {
11588         int ctxn, ret;
11589
11590         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11591         mutex_init(&child->perf_event_mutex);
11592         INIT_LIST_HEAD(&child->perf_event_list);
11593
11594         for_each_task_context_nr(ctxn) {
11595                 ret = perf_event_init_context(child, ctxn);
11596                 if (ret) {
11597                         perf_event_free_task(child);
11598                         return ret;
11599                 }
11600         }
11601
11602         return 0;
11603 }
11604
11605 static void __init perf_event_init_all_cpus(void)
11606 {
11607         struct swevent_htable *swhash;
11608         int cpu;
11609
11610         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11611
11612         for_each_possible_cpu(cpu) {
11613                 swhash = &per_cpu(swevent_htable, cpu);
11614                 mutex_init(&swhash->hlist_mutex);
11615                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11616
11617                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11618                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11619
11620 #ifdef CONFIG_CGROUP_PERF
11621                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11622 #endif
11623                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11624         }
11625 }
11626
11627 void perf_swevent_init_cpu(unsigned int cpu)
11628 {
11629         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11630
11631         mutex_lock(&swhash->hlist_mutex);
11632         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11633                 struct swevent_hlist *hlist;
11634
11635                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11636                 WARN_ON(!hlist);
11637                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11638         }
11639         mutex_unlock(&swhash->hlist_mutex);
11640 }
11641
11642 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11643 static void __perf_event_exit_context(void *__info)
11644 {
11645         struct perf_event_context *ctx = __info;
11646         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11647         struct perf_event *event;
11648
11649         raw_spin_lock(&ctx->lock);
11650         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11651         list_for_each_entry(event, &ctx->event_list, event_entry)
11652                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11653         raw_spin_unlock(&ctx->lock);
11654 }
11655
11656 static void perf_event_exit_cpu_context(int cpu)
11657 {
11658         struct perf_cpu_context *cpuctx;
11659         struct perf_event_context *ctx;
11660         struct pmu *pmu;
11661
11662         mutex_lock(&pmus_lock);
11663         list_for_each_entry(pmu, &pmus, entry) {
11664                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11665                 ctx = &cpuctx->ctx;
11666
11667                 mutex_lock(&ctx->mutex);
11668                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11669                 cpuctx->online = 0;
11670                 mutex_unlock(&ctx->mutex);
11671         }
11672         cpumask_clear_cpu(cpu, perf_online_mask);
11673         mutex_unlock(&pmus_lock);
11674 }
11675 #else
11676
11677 static void perf_event_exit_cpu_context(int cpu) { }
11678
11679 #endif
11680
11681 int perf_event_init_cpu(unsigned int cpu)
11682 {
11683         struct perf_cpu_context *cpuctx;
11684         struct perf_event_context *ctx;
11685         struct pmu *pmu;
11686
11687         perf_swevent_init_cpu(cpu);
11688
11689         mutex_lock(&pmus_lock);
11690         cpumask_set_cpu(cpu, perf_online_mask);
11691         list_for_each_entry(pmu, &pmus, entry) {
11692                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11693                 ctx = &cpuctx->ctx;
11694
11695                 mutex_lock(&ctx->mutex);
11696                 cpuctx->online = 1;
11697                 mutex_unlock(&ctx->mutex);
11698         }
11699         mutex_unlock(&pmus_lock);
11700
11701         return 0;
11702 }
11703
11704 int perf_event_exit_cpu(unsigned int cpu)
11705 {
11706         perf_event_exit_cpu_context(cpu);
11707         return 0;
11708 }
11709
11710 static int
11711 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11712 {
11713         int cpu;
11714
11715         for_each_online_cpu(cpu)
11716                 perf_event_exit_cpu(cpu);
11717
11718         return NOTIFY_OK;
11719 }
11720
11721 /*
11722  * Run the perf reboot notifier at the very last possible moment so that
11723  * the generic watchdog code runs as long as possible.
11724  */
11725 static struct notifier_block perf_reboot_notifier = {
11726         .notifier_call = perf_reboot,
11727         .priority = INT_MIN,
11728 };
11729
11730 void __init perf_event_init(void)
11731 {
11732         int ret;
11733
11734         idr_init(&pmu_idr);
11735
11736         perf_event_init_all_cpus();
11737         init_srcu_struct(&pmus_srcu);
11738         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11739         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11740         perf_pmu_register(&perf_task_clock, NULL, -1);
11741         perf_tp_register();
11742         perf_event_init_cpu(smp_processor_id());
11743         register_reboot_notifier(&perf_reboot_notifier);
11744
11745         ret = init_hw_breakpoint();
11746         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11747
11748         /*
11749          * Build time assertion that we keep the data_head at the intended
11750          * location.  IOW, validation we got the __reserved[] size right.
11751          */
11752         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11753                      != 1024);
11754 }
11755
11756 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11757                               char *page)
11758 {
11759         struct perf_pmu_events_attr *pmu_attr =
11760                 container_of(attr, struct perf_pmu_events_attr, attr);
11761
11762         if (pmu_attr->event_str)
11763                 return sprintf(page, "%s\n", pmu_attr->event_str);
11764
11765         return 0;
11766 }
11767 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11768
11769 static int __init perf_event_sysfs_init(void)
11770 {
11771         struct pmu *pmu;
11772         int ret;
11773
11774         mutex_lock(&pmus_lock);
11775
11776         ret = bus_register(&pmu_bus);
11777         if (ret)
11778                 goto unlock;
11779
11780         list_for_each_entry(pmu, &pmus, entry) {
11781                 if (!pmu->name || pmu->type < 0)
11782                         continue;
11783
11784                 ret = pmu_dev_alloc(pmu);
11785                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11786         }
11787         pmu_bus_running = 1;
11788         ret = 0;
11789
11790 unlock:
11791         mutex_unlock(&pmus_lock);
11792
11793         return ret;
11794 }
11795 device_initcall(perf_event_sysfs_init);
11796
11797 #ifdef CONFIG_CGROUP_PERF
11798 static struct cgroup_subsys_state *
11799 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11800 {
11801         struct perf_cgroup *jc;
11802
11803         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11804         if (!jc)
11805                 return ERR_PTR(-ENOMEM);
11806
11807         jc->info = alloc_percpu(struct perf_cgroup_info);
11808         if (!jc->info) {
11809                 kfree(jc);
11810                 return ERR_PTR(-ENOMEM);
11811         }
11812
11813         return &jc->css;
11814 }
11815
11816 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11817 {
11818         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11819
11820         free_percpu(jc->info);
11821         kfree(jc);
11822 }
11823
11824 static int __perf_cgroup_move(void *info)
11825 {
11826         struct task_struct *task = info;
11827         rcu_read_lock();
11828         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11829         rcu_read_unlock();
11830         return 0;
11831 }
11832
11833 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11834 {
11835         struct task_struct *task;
11836         struct cgroup_subsys_state *css;
11837
11838         cgroup_taskset_for_each(task, css, tset)
11839                 task_function_call(task, __perf_cgroup_move, task);
11840 }
11841
11842 struct cgroup_subsys perf_event_cgrp_subsys = {
11843         .css_alloc      = perf_cgroup_css_alloc,
11844         .css_free       = perf_cgroup_css_free,
11845         .attach         = perf_cgroup_attach,
11846         /*
11847          * Implicitly enable on dfl hierarchy so that perf events can
11848          * always be filtered by cgroup2 path as long as perf_event
11849          * controller is not mounted on a legacy hierarchy.
11850          */
11851         .implicit_on_dfl = true,
11852         .threaded       = true,
11853 };
11854 #endif /* CONFIG_CGROUP_PERF */