Merge SCSI_IOCTL_SEND_COMMAND cleanup branch.
[linux-2.6-microblaze.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         for_each_sibling_event(sibling, leader)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp = cpuctx->cgrp;
728         struct cgroup_subsys_state *css;
729
730         if (cgrp) {
731                 for (css = &cgrp->css; css; css = css->parent) {
732                         cgrp = container_of(css, struct perf_cgroup, css);
733                         __update_cgrp_time(cgrp);
734                 }
735         }
736 }
737
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740         struct perf_cgroup *cgrp;
741
742         /*
743          * ensure we access cgroup data only when needed and
744          * when we know the cgroup is pinned (css_get)
745          */
746         if (!is_cgroup_event(event))
747                 return;
748
749         cgrp = perf_cgroup_from_task(current, event->ctx);
750         /*
751          * Do not update time when cgroup is not active
752          */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754                 __update_cgrp_time(event->cgrp);
755 }
756
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759                           struct perf_event_context *ctx)
760 {
761         struct perf_cgroup *cgrp;
762         struct perf_cgroup_info *info;
763         struct cgroup_subsys_state *css;
764
765         /*
766          * ctx->lock held by caller
767          * ensure we do not access cgroup data
768          * unless we have the cgroup pinned (css_get)
769          */
770         if (!task || !ctx->nr_cgroups)
771                 return;
772
773         cgrp = perf_cgroup_from_task(task, ctx);
774
775         for (css = &cgrp->css; css; css = css->parent) {
776                 cgrp = container_of(css, struct perf_cgroup, css);
777                 info = this_cpu_ptr(cgrp->info);
778                 info->timestamp = ctx->timestamp;
779         }
780 }
781
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
784 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
786
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795         struct perf_cpu_context *cpuctx;
796         struct list_head *list;
797         unsigned long flags;
798
799         /*
800          * Disable interrupts and preemption to avoid this CPU's
801          * cgrp_cpuctx_entry to change under us.
802          */
803         local_irq_save(flags);
804
805         list = this_cpu_ptr(&cgrp_cpuctx_list);
806         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808
809                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810                 perf_pmu_disable(cpuctx->ctx.pmu);
811
812                 if (mode & PERF_CGROUP_SWOUT) {
813                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814                         /*
815                          * must not be done before ctxswout due
816                          * to event_filter_match() in event_sched_out()
817                          */
818                         cpuctx->cgrp = NULL;
819                 }
820
821                 if (mode & PERF_CGROUP_SWIN) {
822                         WARN_ON_ONCE(cpuctx->cgrp);
823                         /*
824                          * set cgrp before ctxsw in to allow
825                          * event_filter_match() to not have to pass
826                          * task around
827                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
828                          * because cgorup events are only per-cpu
829                          */
830                         cpuctx->cgrp = perf_cgroup_from_task(task,
831                                                              &cpuctx->ctx);
832                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833                 }
834                 perf_pmu_enable(cpuctx->ctx.pmu);
835                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836         }
837
838         local_irq_restore(flags);
839 }
840
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842                                          struct task_struct *next)
843 {
844         struct perf_cgroup *cgrp1;
845         struct perf_cgroup *cgrp2 = NULL;
846
847         rcu_read_lock();
848         /*
849          * we come here when we know perf_cgroup_events > 0
850          * we do not need to pass the ctx here because we know
851          * we are holding the rcu lock
852          */
853         cgrp1 = perf_cgroup_from_task(task, NULL);
854         cgrp2 = perf_cgroup_from_task(next, NULL);
855
856         /*
857          * only schedule out current cgroup events if we know
858          * that we are switching to a different cgroup. Otherwise,
859          * do no touch the cgroup events.
860          */
861         if (cgrp1 != cgrp2)
862                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863
864         rcu_read_unlock();
865 }
866
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868                                         struct task_struct *task)
869 {
870         struct perf_cgroup *cgrp1;
871         struct perf_cgroup *cgrp2 = NULL;
872
873         rcu_read_lock();
874         /*
875          * we come here when we know perf_cgroup_events > 0
876          * we do not need to pass the ctx here because we know
877          * we are holding the rcu lock
878          */
879         cgrp1 = perf_cgroup_from_task(task, NULL);
880         cgrp2 = perf_cgroup_from_task(prev, NULL);
881
882         /*
883          * only need to schedule in cgroup events if we are changing
884          * cgroup during ctxsw. Cgroup events were not scheduled
885          * out of ctxsw out if that was not the case.
886          */
887         if (cgrp1 != cgrp2)
888                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889
890         rcu_read_unlock();
891 }
892
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894                                       struct perf_event_attr *attr,
895                                       struct perf_event *group_leader)
896 {
897         struct perf_cgroup *cgrp;
898         struct cgroup_subsys_state *css;
899         struct fd f = fdget(fd);
900         int ret = 0;
901
902         if (!f.file)
903                 return -EBADF;
904
905         css = css_tryget_online_from_dir(f.file->f_path.dentry,
906                                          &perf_event_cgrp_subsys);
907         if (IS_ERR(css)) {
908                 ret = PTR_ERR(css);
909                 goto out;
910         }
911
912         cgrp = container_of(css, struct perf_cgroup, css);
913         event->cgrp = cgrp;
914
915         /*
916          * all events in a group must monitor
917          * the same cgroup because a task belongs
918          * to only one perf cgroup at a time
919          */
920         if (group_leader && group_leader->cgrp != cgrp) {
921                 perf_detach_cgroup(event);
922                 ret = -EINVAL;
923         }
924 out:
925         fdput(f);
926         return ret;
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932         struct perf_cgroup_info *t;
933         t = per_cpu_ptr(event->cgrp->info, event->cpu);
934         event->shadow_ctx_time = now - t->timestamp;
935 }
936
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943                          struct perf_event_context *ctx, bool add)
944 {
945         struct perf_cpu_context *cpuctx;
946         struct list_head *cpuctx_entry;
947
948         if (!is_cgroup_event(event))
949                 return;
950
951         /*
952          * Because cgroup events are always per-cpu events,
953          * this will always be called from the right CPU.
954          */
955         cpuctx = __get_cpu_context(ctx);
956
957         /*
958          * Since setting cpuctx->cgrp is conditional on the current @cgrp
959          * matching the event's cgroup, we must do this for every new event,
960          * because if the first would mismatch, the second would not try again
961          * and we would leave cpuctx->cgrp unset.
962          */
963         if (add && !cpuctx->cgrp) {
964                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
966                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967                         cpuctx->cgrp = cgrp;
968         }
969
970         if (add && ctx->nr_cgroups++)
971                 return;
972         else if (!add && --ctx->nr_cgroups)
973                 return;
974
975         /* no cgroup running */
976         if (!add)
977                 cpuctx->cgrp = NULL;
978
979         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980         if (add)
981                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982         else
983                 list_del(cpuctx_entry);
984 }
985
986 #else /* !CONFIG_CGROUP_PERF */
987
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991         return true;
992 }
993
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999         return 0;
1000 }
1001
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011                                          struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016                                         struct task_struct *task)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                       struct perf_event_attr *attr,
1022                                       struct perf_event *group_leader)
1023 {
1024         return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029                           struct perf_event_context *ctx)
1030 {
1031 }
1032
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045         return 0;
1046 }
1047
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050                          struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053
1054 #endif
1055
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066         struct perf_cpu_context *cpuctx;
1067         bool rotations;
1068
1069         lockdep_assert_irqs_disabled();
1070
1071         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072         rotations = perf_rotate_context(cpuctx);
1073
1074         raw_spin_lock(&cpuctx->hrtimer_lock);
1075         if (rotations)
1076                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077         else
1078                 cpuctx->hrtimer_active = 0;
1079         raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086         struct hrtimer *timer = &cpuctx->hrtimer;
1087         struct pmu *pmu = cpuctx->ctx.pmu;
1088         u64 interval;
1089
1090         /* no multiplexing needed for SW PMU */
1091         if (pmu->task_ctx_nr == perf_sw_context)
1092                 return;
1093
1094         /*
1095          * check default is sane, if not set then force to
1096          * default interval (1/tick)
1097          */
1098         interval = pmu->hrtimer_interval_ms;
1099         if (interval < 1)
1100                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106         timer->function = perf_mux_hrtimer_handler;
1107 }
1108
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111         struct hrtimer *timer = &cpuctx->hrtimer;
1112         struct pmu *pmu = cpuctx->ctx.pmu;
1113         unsigned long flags;
1114
1115         /* not for SW PMU */
1116         if (pmu->task_ctx_nr == perf_sw_context)
1117                 return 0;
1118
1119         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120         if (!cpuctx->hrtimer_active) {
1121                 cpuctx->hrtimer_active = 1;
1122                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124         }
1125         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127         return 0;
1128 }
1129
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133         if (!(*count)++)
1134                 pmu->pmu_disable(pmu);
1135 }
1136
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140         if (!--(*count))
1141                 pmu->pmu_enable(pmu);
1142 }
1143
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156         lockdep_assert_irqs_disabled();
1157
1158         WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160         list_add(&ctx->active_ctx_list, head);
1161 }
1162
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165         lockdep_assert_irqs_disabled();
1166
1167         WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169         list_del_init(&ctx->active_ctx_list);
1170 }
1171
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179         struct perf_event_context *ctx;
1180
1181         ctx = container_of(head, struct perf_event_context, rcu_head);
1182         kfree(ctx->task_ctx_data);
1183         kfree(ctx);
1184 }
1185
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188         if (atomic_dec_and_test(&ctx->refcount)) {
1189                 if (ctx->parent_ctx)
1190                         put_ctx(ctx->parent_ctx);
1191                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192                         put_task_struct(ctx->task);
1193                 call_rcu(&ctx->rcu_head, free_ctx);
1194         }
1195 }
1196
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()    [ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()                   [ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()         [ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event() [ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *      task_struct::perf_event_mutex
1252  *        perf_event_context::mutex
1253  *          perf_event::child_mutex;
1254  *            perf_event_context::lock
1255  *          perf_event::mmap_mutex
1256  *          mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *        cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265         struct perf_event_context *ctx;
1266
1267 again:
1268         rcu_read_lock();
1269         ctx = READ_ONCE(event->ctx);
1270         if (!atomic_inc_not_zero(&ctx->refcount)) {
1271                 rcu_read_unlock();
1272                 goto again;
1273         }
1274         rcu_read_unlock();
1275
1276         mutex_lock_nested(&ctx->mutex, nesting);
1277         if (event->ctx != ctx) {
1278                 mutex_unlock(&ctx->mutex);
1279                 put_ctx(ctx);
1280                 goto again;
1281         }
1282
1283         return ctx;
1284 }
1285
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289         return perf_event_ctx_lock_nested(event, 0);
1290 }
1291
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293                                   struct perf_event_context *ctx)
1294 {
1295         mutex_unlock(&ctx->mutex);
1296         put_ctx(ctx);
1297 }
1298
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309         lockdep_assert_held(&ctx->lock);
1310
1311         if (parent_ctx)
1312                 ctx->parent_ctx = NULL;
1313         ctx->generation++;
1314
1315         return parent_ctx;
1316 }
1317
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319                                 enum pid_type type)
1320 {
1321         u32 nr;
1322         /*
1323          * only top level events have the pid namespace they were created in
1324          */
1325         if (event->parent)
1326                 event = event->parent;
1327
1328         nr = __task_pid_nr_ns(p, type, event->ns);
1329         /* avoid -1 if it is idle thread or runs in another ns */
1330         if (!nr && !pid_alive(p))
1331                 nr = -1;
1332         return nr;
1333 }
1334
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1338 }
1339
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342         return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351         u64 id = event->id;
1352
1353         if (event->parent)
1354                 id = event->parent->id;
1355
1356         return id;
1357 }
1358
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368         struct perf_event_context *ctx;
1369
1370 retry:
1371         /*
1372          * One of the few rules of preemptible RCU is that one cannot do
1373          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374          * part of the read side critical section was irqs-enabled -- see
1375          * rcu_read_unlock_special().
1376          *
1377          * Since ctx->lock nests under rq->lock we must ensure the entire read
1378          * side critical section has interrupts disabled.
1379          */
1380         local_irq_save(*flags);
1381         rcu_read_lock();
1382         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383         if (ctx) {
1384                 /*
1385                  * If this context is a clone of another, it might
1386                  * get swapped for another underneath us by
1387                  * perf_event_task_sched_out, though the
1388                  * rcu_read_lock() protects us from any context
1389                  * getting freed.  Lock the context and check if it
1390                  * got swapped before we could get the lock, and retry
1391                  * if so.  If we locked the right context, then it
1392                  * can't get swapped on us any more.
1393                  */
1394                 raw_spin_lock(&ctx->lock);
1395                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396                         raw_spin_unlock(&ctx->lock);
1397                         rcu_read_unlock();
1398                         local_irq_restore(*flags);
1399                         goto retry;
1400                 }
1401
1402                 if (ctx->task == TASK_TOMBSTONE ||
1403                     !atomic_inc_not_zero(&ctx->refcount)) {
1404                         raw_spin_unlock(&ctx->lock);
1405                         ctx = NULL;
1406                 } else {
1407                         WARN_ON_ONCE(ctx->task != task);
1408                 }
1409         }
1410         rcu_read_unlock();
1411         if (!ctx)
1412                 local_irq_restore(*flags);
1413         return ctx;
1414 }
1415
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424         struct perf_event_context *ctx;
1425         unsigned long flags;
1426
1427         ctx = perf_lock_task_context(task, ctxn, &flags);
1428         if (ctx) {
1429                 ++ctx->pin_count;
1430                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431         }
1432         return ctx;
1433 }
1434
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437         unsigned long flags;
1438
1439         raw_spin_lock_irqsave(&ctx->lock, flags);
1440         --ctx->pin_count;
1441         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449         u64 now = perf_clock();
1450
1451         ctx->time += now - ctx->timestamp;
1452         ctx->timestamp = now;
1453 }
1454
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457         struct perf_event_context *ctx = event->ctx;
1458
1459         if (is_cgroup_event(event))
1460                 return perf_cgroup_event_time(event);
1461
1462         return ctx ? ctx->time : 0;
1463 }
1464
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467         struct perf_event_context *ctx = event->ctx;
1468         enum event_type_t event_type;
1469
1470         lockdep_assert_held(&ctx->lock);
1471
1472         /*
1473          * It's 'group type', really, because if our group leader is
1474          * pinned, so are we.
1475          */
1476         if (event->group_leader != event)
1477                 event = event->group_leader;
1478
1479         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480         if (!ctx->task)
1481                 event_type |= EVENT_CPU;
1482
1483         return event_type;
1484 }
1485
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491         RB_CLEAR_NODE(&event->group_node);
1492         event->group_index = 0;
1493 }
1494
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502         if (event->attr.pinned)
1503                 return &ctx->pinned_groups;
1504         else
1505                 return &ctx->flexible_groups;
1506 }
1507
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513         groups->tree = RB_ROOT;
1514         groups->index = 0;
1515 }
1516
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526         if (left->cpu < right->cpu)
1527                 return true;
1528         if (left->cpu > right->cpu)
1529                 return false;
1530
1531         if (left->group_index < right->group_index)
1532                 return true;
1533         if (left->group_index > right->group_index)
1534                 return false;
1535
1536         return false;
1537 }
1538
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546                          struct perf_event *event)
1547 {
1548         struct perf_event *node_event;
1549         struct rb_node *parent;
1550         struct rb_node **node;
1551
1552         event->group_index = ++groups->index;
1553
1554         node = &groups->tree.rb_node;
1555         parent = *node;
1556
1557         while (*node) {
1558                 parent = *node;
1559                 node_event = container_of(*node, struct perf_event, group_node);
1560
1561                 if (perf_event_groups_less(event, node_event))
1562                         node = &parent->rb_left;
1563                 else
1564                         node = &parent->rb_right;
1565         }
1566
1567         rb_link_node(&event->group_node, parent, node);
1568         rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577         struct perf_event_groups *groups;
1578
1579         groups = get_event_groups(event, ctx);
1580         perf_event_groups_insert(groups, event);
1581 }
1582
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588                          struct perf_event *event)
1589 {
1590         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591                      RB_EMPTY_ROOT(&groups->tree));
1592
1593         rb_erase(&event->group_node, &groups->tree);
1594         init_event_group(event);
1595 }
1596
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603         struct perf_event_groups *groups;
1604
1605         groups = get_event_groups(event, ctx);
1606         perf_event_groups_delete(groups, event);
1607 }
1608
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615         struct perf_event *node_event = NULL, *match = NULL;
1616         struct rb_node *node = groups->tree.rb_node;
1617
1618         while (node) {
1619                 node_event = container_of(node, struct perf_event, group_node);
1620
1621                 if (cpu < node_event->cpu) {
1622                         node = node->rb_left;
1623                 } else if (cpu > node_event->cpu) {
1624                         node = node->rb_right;
1625                 } else {
1626                         match = node_event;
1627                         node = node->rb_left;
1628                 }
1629         }
1630
1631         return match;
1632 }
1633
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640         struct perf_event *next;
1641
1642         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643         if (next && next->cpu == event->cpu)
1644                 return next;
1645
1646         return NULL;
1647 }
1648
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)                       \
1653         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1654                                 typeof(*event), group_node); event;     \
1655                 event = rb_entry_safe(rb_next(&event->group_node),      \
1656                                 typeof(*event), group_node))
1657
1658 /*
1659  * Add an event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         lockdep_assert_held(&ctx->lock);
1666
1667         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668         event->attach_state |= PERF_ATTACH_CONTEXT;
1669
1670         event->tstamp = perf_event_time(event);
1671
1672         /*
1673          * If we're a stand alone event or group leader, we go to the context
1674          * list, group events are kept attached to the group so that
1675          * perf_group_detach can, at all times, locate all siblings.
1676          */
1677         if (event->group_leader == event) {
1678                 event->group_caps = event->event_caps;
1679                 add_event_to_groups(event, ctx);
1680         }
1681
1682         list_update_cgroup_event(event, ctx, true);
1683
1684         list_add_rcu(&event->event_entry, &ctx->event_list);
1685         ctx->nr_events++;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat++;
1688
1689         ctx->generation++;
1690 }
1691
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698                                               PERF_EVENT_STATE_INACTIVE;
1699 }
1700
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703         int entry = sizeof(u64); /* value */
1704         int size = 0;
1705         int nr = 1;
1706
1707         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708                 size += sizeof(u64);
1709
1710         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711                 size += sizeof(u64);
1712
1713         if (event->attr.read_format & PERF_FORMAT_ID)
1714                 entry += sizeof(u64);
1715
1716         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717                 nr += nr_siblings;
1718                 size += sizeof(u64);
1719         }
1720
1721         size += entry * nr;
1722         event->read_size = size;
1723 }
1724
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727         struct perf_sample_data *data;
1728         u16 size = 0;
1729
1730         if (sample_type & PERF_SAMPLE_IP)
1731                 size += sizeof(data->ip);
1732
1733         if (sample_type & PERF_SAMPLE_ADDR)
1734                 size += sizeof(data->addr);
1735
1736         if (sample_type & PERF_SAMPLE_PERIOD)
1737                 size += sizeof(data->period);
1738
1739         if (sample_type & PERF_SAMPLE_WEIGHT)
1740                 size += sizeof(data->weight);
1741
1742         if (sample_type & PERF_SAMPLE_READ)
1743                 size += event->read_size;
1744
1745         if (sample_type & PERF_SAMPLE_DATA_SRC)
1746                 size += sizeof(data->data_src.val);
1747
1748         if (sample_type & PERF_SAMPLE_TRANSACTION)
1749                 size += sizeof(data->txn);
1750
1751         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752                 size += sizeof(data->phys_addr);
1753
1754         event->header_size = size;
1755 }
1756
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763         __perf_event_read_size(event,
1764                                event->group_leader->nr_siblings);
1765         __perf_event_header_size(event, event->attr.sample_type);
1766 }
1767
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770         struct perf_sample_data *data;
1771         u64 sample_type = event->attr.sample_type;
1772         u16 size = 0;
1773
1774         if (sample_type & PERF_SAMPLE_TID)
1775                 size += sizeof(data->tid_entry);
1776
1777         if (sample_type & PERF_SAMPLE_TIME)
1778                 size += sizeof(data->time);
1779
1780         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781                 size += sizeof(data->id);
1782
1783         if (sample_type & PERF_SAMPLE_ID)
1784                 size += sizeof(data->id);
1785
1786         if (sample_type & PERF_SAMPLE_STREAM_ID)
1787                 size += sizeof(data->stream_id);
1788
1789         if (sample_type & PERF_SAMPLE_CPU)
1790                 size += sizeof(data->cpu_entry);
1791
1792         event->id_header_size = size;
1793 }
1794
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797         /*
1798          * The values computed here will be over-written when we actually
1799          * attach the event.
1800          */
1801         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803         perf_event__id_header_size(event);
1804
1805         /*
1806          * Sum the lot; should not exceed the 64k limit we have on records.
1807          * Conservative limit to allow for callchains and other variable fields.
1808          */
1809         if (event->read_size + event->header_size +
1810             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811                 return false;
1812
1813         return true;
1814 }
1815
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818         struct perf_event *group_leader = event->group_leader, *pos;
1819
1820         lockdep_assert_held(&event->ctx->lock);
1821
1822         /*
1823          * We can have double attach due to group movement in perf_event_open.
1824          */
1825         if (event->attach_state & PERF_ATTACH_GROUP)
1826                 return;
1827
1828         event->attach_state |= PERF_ATTACH_GROUP;
1829
1830         if (group_leader == event)
1831                 return;
1832
1833         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
1835         group_leader->group_caps &= event->event_caps;
1836
1837         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838         group_leader->nr_siblings++;
1839
1840         perf_event__header_size(group_leader);
1841
1842         for_each_sibling_event(pos, group_leader)
1843                 perf_event__header_size(pos);
1844 }
1845
1846 /*
1847  * Remove an event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853         WARN_ON_ONCE(event->ctx != ctx);
1854         lockdep_assert_held(&ctx->lock);
1855
1856         /*
1857          * We can have double detach due to exit/hot-unplug + close.
1858          */
1859         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860                 return;
1861
1862         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
1864         list_update_cgroup_event(event, ctx, false);
1865
1866         ctx->nr_events--;
1867         if (event->attr.inherit_stat)
1868                 ctx->nr_stat--;
1869
1870         list_del_rcu(&event->event_entry);
1871
1872         if (event->group_leader == event)
1873                 del_event_from_groups(event, ctx);
1874
1875         /*
1876          * If event was in error state, then keep it
1877          * that way, otherwise bogus counts will be
1878          * returned on read(). The only way to get out
1879          * of error state is by explicit re-enabling
1880          * of the event
1881          */
1882         if (event->state > PERF_EVENT_STATE_OFF)
1883                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884
1885         ctx->generation++;
1886 }
1887
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890         struct perf_event *sibling, *tmp;
1891         struct perf_event_context *ctx = event->ctx;
1892
1893         lockdep_assert_held(&ctx->lock);
1894
1895         /*
1896          * We can have double detach due to exit/hot-unplug + close.
1897          */
1898         if (!(event->attach_state & PERF_ATTACH_GROUP))
1899                 return;
1900
1901         event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903         /*
1904          * If this is a sibling, remove it from its group.
1905          */
1906         if (event->group_leader != event) {
1907                 list_del_init(&event->sibling_list);
1908                 event->group_leader->nr_siblings--;
1909                 goto out;
1910         }
1911
1912         /*
1913          * If this was a group event with sibling events then
1914          * upgrade the siblings to singleton events by adding them
1915          * to whatever list we are on.
1916          */
1917         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918
1919                 sibling->group_leader = sibling;
1920                 list_del_init(&sibling->sibling_list);
1921
1922                 /* Inherit group flags from the previous leader */
1923                 sibling->group_caps = event->group_caps;
1924
1925                 if (!RB_EMPTY_NODE(&event->group_node)) {
1926                         add_event_to_groups(sibling, event->ctx);
1927
1928                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929                                 struct list_head *list = sibling->attr.pinned ?
1930                                         &ctx->pinned_active : &ctx->flexible_active;
1931
1932                                 list_add_tail(&sibling->active_list, list);
1933                         }
1934                 }
1935
1936                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1937         }
1938
1939 out:
1940         perf_event__header_size(event->group_leader);
1941
1942         for_each_sibling_event(tmp, event->group_leader)
1943                 perf_event__header_size(tmp);
1944 }
1945
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948         return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953         struct pmu *pmu = event->pmu;
1954         return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965         struct perf_event *sibling;
1966
1967         if (!__pmu_filter_match(event))
1968                 return 0;
1969
1970         for_each_sibling_event(sibling, event) {
1971                 if (!__pmu_filter_match(sibling))
1972                         return 0;
1973         }
1974
1975         return 1;
1976 }
1977
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982                perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984
1985 static void
1986 event_sched_out(struct perf_event *event,
1987                   struct perf_cpu_context *cpuctx,
1988                   struct perf_event_context *ctx)
1989 {
1990         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991
1992         WARN_ON_ONCE(event->ctx != ctx);
1993         lockdep_assert_held(&ctx->lock);
1994
1995         if (event->state != PERF_EVENT_STATE_ACTIVE)
1996                 return;
1997
1998         /*
1999          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000          * we can schedule events _OUT_ individually through things like
2001          * __perf_remove_from_context().
2002          */
2003         list_del_init(&event->active_list);
2004
2005         perf_pmu_disable(event->pmu);
2006
2007         event->pmu->del(event, 0);
2008         event->oncpu = -1;
2009
2010         if (event->pending_disable) {
2011                 event->pending_disable = 0;
2012                 state = PERF_EVENT_STATE_OFF;
2013         }
2014         perf_event_set_state(event, state);
2015
2016         if (!is_software_event(event))
2017                 cpuctx->active_oncpu--;
2018         if (!--ctx->nr_active)
2019                 perf_event_ctx_deactivate(ctx);
2020         if (event->attr.freq && event->attr.sample_freq)
2021                 ctx->nr_freq--;
2022         if (event->attr.exclusive || !cpuctx->active_oncpu)
2023                 cpuctx->exclusive = 0;
2024
2025         perf_pmu_enable(event->pmu);
2026 }
2027
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030                 struct perf_cpu_context *cpuctx,
2031                 struct perf_event_context *ctx)
2032 {
2033         struct perf_event *event;
2034
2035         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036                 return;
2037
2038         perf_pmu_disable(ctx->pmu);
2039
2040         event_sched_out(group_event, cpuctx, ctx);
2041
2042         /*
2043          * Schedule out siblings (if any):
2044          */
2045         for_each_sibling_event(event, group_event)
2046                 event_sched_out(event, cpuctx, ctx);
2047
2048         perf_pmu_enable(ctx->pmu);
2049
2050         if (group_event->attr.exclusive)
2051                 cpuctx->exclusive = 0;
2052 }
2053
2054 #define DETACH_GROUP    0x01UL
2055
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064                            struct perf_cpu_context *cpuctx,
2065                            struct perf_event_context *ctx,
2066                            void *info)
2067 {
2068         unsigned long flags = (unsigned long)info;
2069
2070         if (ctx->is_active & EVENT_TIME) {
2071                 update_context_time(ctx);
2072                 update_cgrp_time_from_cpuctx(cpuctx);
2073         }
2074
2075         event_sched_out(event, cpuctx, ctx);
2076         if (flags & DETACH_GROUP)
2077                 perf_group_detach(event);
2078         list_del_event(event, ctx);
2079
2080         if (!ctx->nr_events && ctx->is_active) {
2081                 ctx->is_active = 0;
2082                 if (ctx->task) {
2083                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084                         cpuctx->task_ctx = NULL;
2085                 }
2086         }
2087 }
2088
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101         struct perf_event_context *ctx = event->ctx;
2102
2103         lockdep_assert_held(&ctx->mutex);
2104
2105         event_function_call(event, __perf_remove_from_context, (void *)flags);
2106
2107         /*
2108          * The above event_function_call() can NO-OP when it hits
2109          * TASK_TOMBSTONE. In that case we must already have been detached
2110          * from the context (by perf_event_exit_event()) but the grouping
2111          * might still be in-tact.
2112          */
2113         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114         if ((flags & DETACH_GROUP) &&
2115             (event->attach_state & PERF_ATTACH_GROUP)) {
2116                 /*
2117                  * Since in that case we cannot possibly be scheduled, simply
2118                  * detach now.
2119                  */
2120                 raw_spin_lock_irq(&ctx->lock);
2121                 perf_group_detach(event);
2122                 raw_spin_unlock_irq(&ctx->lock);
2123         }
2124 }
2125
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130                                  struct perf_cpu_context *cpuctx,
2131                                  struct perf_event_context *ctx,
2132                                  void *info)
2133 {
2134         if (event->state < PERF_EVENT_STATE_INACTIVE)
2135                 return;
2136
2137         if (ctx->is_active & EVENT_TIME) {
2138                 update_context_time(ctx);
2139                 update_cgrp_time_from_event(event);
2140         }
2141
2142         if (event == event->group_leader)
2143                 group_sched_out(event, cpuctx, ctx);
2144         else
2145                 event_sched_out(event, cpuctx, ctx);
2146
2147         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149
2150 /*
2151  * Disable an event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166         struct perf_event_context *ctx = event->ctx;
2167
2168         raw_spin_lock_irq(&ctx->lock);
2169         if (event->state <= PERF_EVENT_STATE_OFF) {
2170                 raw_spin_unlock_irq(&ctx->lock);
2171                 return;
2172         }
2173         raw_spin_unlock_irq(&ctx->lock);
2174
2175         event_function_call(event, __perf_event_disable, NULL);
2176 }
2177
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180         event_function_local(event, __perf_event_disable, NULL);
2181 }
2182
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189         struct perf_event_context *ctx;
2190
2191         ctx = perf_event_ctx_lock(event);
2192         _perf_event_disable(event);
2193         perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199         event->pending_disable = 1;
2200         irq_work_queue(&event->pending);
2201 }
2202
2203 static void perf_set_shadow_time(struct perf_event *event,
2204                                  struct perf_event_context *ctx)
2205 {
2206         /*
2207          * use the correct time source for the time snapshot
2208          *
2209          * We could get by without this by leveraging the
2210          * fact that to get to this function, the caller
2211          * has most likely already called update_context_time()
2212          * and update_cgrp_time_xx() and thus both timestamp
2213          * are identical (or very close). Given that tstamp is,
2214          * already adjusted for cgroup, we could say that:
2215          *    tstamp - ctx->timestamp
2216          * is equivalent to
2217          *    tstamp - cgrp->timestamp.
2218          *
2219          * Then, in perf_output_read(), the calculation would
2220          * work with no changes because:
2221          * - event is guaranteed scheduled in
2222          * - no scheduled out in between
2223          * - thus the timestamp would be the same
2224          *
2225          * But this is a bit hairy.
2226          *
2227          * So instead, we have an explicit cgroup call to remain
2228          * within the time time source all along. We believe it
2229          * is cleaner and simpler to understand.
2230          */
2231         if (is_cgroup_event(event))
2232                 perf_cgroup_set_shadow_time(event, event->tstamp);
2233         else
2234                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236
2237 #define MAX_INTERRUPTS (~0ULL)
2238
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241
2242 static int
2243 event_sched_in(struct perf_event *event,
2244                  struct perf_cpu_context *cpuctx,
2245                  struct perf_event_context *ctx)
2246 {
2247         int ret = 0;
2248
2249         lockdep_assert_held(&ctx->lock);
2250
2251         if (event->state <= PERF_EVENT_STATE_OFF)
2252                 return 0;
2253
2254         WRITE_ONCE(event->oncpu, smp_processor_id());
2255         /*
2256          * Order event::oncpu write to happen before the ACTIVE state is
2257          * visible. This allows perf_event_{stop,read}() to observe the correct
2258          * ->oncpu if it sees ACTIVE.
2259          */
2260         smp_wmb();
2261         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262
2263         /*
2264          * Unthrottle events, since we scheduled we might have missed several
2265          * ticks already, also for a heavily scheduling task there is little
2266          * guarantee it'll get a tick in a timely manner.
2267          */
2268         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269                 perf_log_throttle(event, 1);
2270                 event->hw.interrupts = 0;
2271         }
2272
2273         perf_pmu_disable(event->pmu);
2274
2275         perf_set_shadow_time(event, ctx);
2276
2277         perf_log_itrace_start(event);
2278
2279         if (event->pmu->add(event, PERF_EF_START)) {
2280                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281                 event->oncpu = -1;
2282                 ret = -EAGAIN;
2283                 goto out;
2284         }
2285
2286         if (!is_software_event(event))
2287                 cpuctx->active_oncpu++;
2288         if (!ctx->nr_active++)
2289                 perf_event_ctx_activate(ctx);
2290         if (event->attr.freq && event->attr.sample_freq)
2291                 ctx->nr_freq++;
2292
2293         if (event->attr.exclusive)
2294                 cpuctx->exclusive = 1;
2295
2296 out:
2297         perf_pmu_enable(event->pmu);
2298
2299         return ret;
2300 }
2301
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304                struct perf_cpu_context *cpuctx,
2305                struct perf_event_context *ctx)
2306 {
2307         struct perf_event *event, *partial_group = NULL;
2308         struct pmu *pmu = ctx->pmu;
2309
2310         if (group_event->state == PERF_EVENT_STATE_OFF)
2311                 return 0;
2312
2313         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314
2315         if (event_sched_in(group_event, cpuctx, ctx)) {
2316                 pmu->cancel_txn(pmu);
2317                 perf_mux_hrtimer_restart(cpuctx);
2318                 return -EAGAIN;
2319         }
2320
2321         /*
2322          * Schedule in siblings as one group (if any):
2323          */
2324         for_each_sibling_event(event, group_event) {
2325                 if (event_sched_in(event, cpuctx, ctx)) {
2326                         partial_group = event;
2327                         goto group_error;
2328                 }
2329         }
2330
2331         if (!pmu->commit_txn(pmu))
2332                 return 0;
2333
2334 group_error:
2335         /*
2336          * Groups can be scheduled in as one unit only, so undo any
2337          * partial group before returning:
2338          * The events up to the failed event are scheduled out normally.
2339          */
2340         for_each_sibling_event(event, group_event) {
2341                 if (event == partial_group)
2342                         break;
2343
2344                 event_sched_out(event, cpuctx, ctx);
2345         }
2346         event_sched_out(group_event, cpuctx, ctx);
2347
2348         pmu->cancel_txn(pmu);
2349
2350         perf_mux_hrtimer_restart(cpuctx);
2351
2352         return -EAGAIN;
2353 }
2354
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359                            struct perf_cpu_context *cpuctx,
2360                            int can_add_hw)
2361 {
2362         /*
2363          * Groups consisting entirely of software events can always go on.
2364          */
2365         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366                 return 1;
2367         /*
2368          * If an exclusive group is already on, no other hardware
2369          * events can go on.
2370          */
2371         if (cpuctx->exclusive)
2372                 return 0;
2373         /*
2374          * If this group is exclusive and there are already
2375          * events on the CPU, it can't go on.
2376          */
2377         if (event->attr.exclusive && cpuctx->active_oncpu)
2378                 return 0;
2379         /*
2380          * Otherwise, try to add it if all previous groups were able
2381          * to go on.
2382          */
2383         return can_add_hw;
2384 }
2385
2386 static void add_event_to_ctx(struct perf_event *event,
2387                                struct perf_event_context *ctx)
2388 {
2389         list_add_event(event, ctx);
2390         perf_group_attach(event);
2391 }
2392
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394                           struct perf_cpu_context *cpuctx,
2395                           enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398              struct perf_cpu_context *cpuctx,
2399              enum event_type_t event_type,
2400              struct task_struct *task);
2401
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403                                struct perf_event_context *ctx,
2404                                enum event_type_t event_type)
2405 {
2406         if (!cpuctx->task_ctx)
2407                 return;
2408
2409         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410                 return;
2411
2412         ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416                                 struct perf_event_context *ctx,
2417                                 struct task_struct *task)
2418 {
2419         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420         if (ctx)
2421                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443                         struct perf_event_context *task_ctx,
2444                         enum event_type_t event_type)
2445 {
2446         enum event_type_t ctx_event_type;
2447         bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449         /*
2450          * If pinned groups are involved, flexible groups also need to be
2451          * scheduled out.
2452          */
2453         if (event_type & EVENT_PINNED)
2454                 event_type |= EVENT_FLEXIBLE;
2455
2456         ctx_event_type = event_type & EVENT_ALL;
2457
2458         perf_pmu_disable(cpuctx->ctx.pmu);
2459         if (task_ctx)
2460                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462         /*
2463          * Decide which cpu ctx groups to schedule out based on the types
2464          * of events that caused rescheduling:
2465          *  - EVENT_CPU: schedule out corresponding groups;
2466          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467          *  - otherwise, do nothing more.
2468          */
2469         if (cpu_event)
2470                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471         else if (ctx_event_type & EVENT_PINNED)
2472                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
2474         perf_event_sched_in(cpuctx, task_ctx, current);
2475         perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486         struct perf_event *event = info;
2487         struct perf_event_context *ctx = event->ctx;
2488         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490         bool reprogram = true;
2491         int ret = 0;
2492
2493         raw_spin_lock(&cpuctx->ctx.lock);
2494         if (ctx->task) {
2495                 raw_spin_lock(&ctx->lock);
2496                 task_ctx = ctx;
2497
2498                 reprogram = (ctx->task == current);
2499
2500                 /*
2501                  * If the task is running, it must be running on this CPU,
2502                  * otherwise we cannot reprogram things.
2503                  *
2504                  * If its not running, we don't care, ctx->lock will
2505                  * serialize against it becoming runnable.
2506                  */
2507                 if (task_curr(ctx->task) && !reprogram) {
2508                         ret = -ESRCH;
2509                         goto unlock;
2510                 }
2511
2512                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513         } else if (task_ctx) {
2514                 raw_spin_lock(&task_ctx->lock);
2515         }
2516
2517 #ifdef CONFIG_CGROUP_PERF
2518         if (is_cgroup_event(event)) {
2519                 /*
2520                  * If the current cgroup doesn't match the event's
2521                  * cgroup, we should not try to schedule it.
2522                  */
2523                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525                                         event->cgrp->css.cgroup);
2526         }
2527 #endif
2528
2529         if (reprogram) {
2530                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531                 add_event_to_ctx(event, ctx);
2532                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533         } else {
2534                 add_event_to_ctx(event, ctx);
2535         }
2536
2537 unlock:
2538         perf_ctx_unlock(cpuctx, task_ctx);
2539
2540         return ret;
2541 }
2542
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550                         struct perf_event *event,
2551                         int cpu)
2552 {
2553         struct task_struct *task = READ_ONCE(ctx->task);
2554
2555         lockdep_assert_held(&ctx->mutex);
2556
2557         if (event->cpu != -1)
2558                 event->cpu = cpu;
2559
2560         /*
2561          * Ensures that if we can observe event->ctx, both the event and ctx
2562          * will be 'complete'. See perf_iterate_sb_cpu().
2563          */
2564         smp_store_release(&event->ctx, ctx);
2565
2566         if (!task) {
2567                 cpu_function_call(cpu, __perf_install_in_context, event);
2568                 return;
2569         }
2570
2571         /*
2572          * Should not happen, we validate the ctx is still alive before calling.
2573          */
2574         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575                 return;
2576
2577         /*
2578          * Installing events is tricky because we cannot rely on ctx->is_active
2579          * to be set in case this is the nr_events 0 -> 1 transition.
2580          *
2581          * Instead we use task_curr(), which tells us if the task is running.
2582          * However, since we use task_curr() outside of rq::lock, we can race
2583          * against the actual state. This means the result can be wrong.
2584          *
2585          * If we get a false positive, we retry, this is harmless.
2586          *
2587          * If we get a false negative, things are complicated. If we are after
2588          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589          * value must be correct. If we're before, it doesn't matter since
2590          * perf_event_context_sched_in() will program the counter.
2591          *
2592          * However, this hinges on the remote context switch having observed
2593          * our task->perf_event_ctxp[] store, such that it will in fact take
2594          * ctx::lock in perf_event_context_sched_in().
2595          *
2596          * We do this by task_function_call(), if the IPI fails to hit the task
2597          * we know any future context switch of task must see the
2598          * perf_event_ctpx[] store.
2599          */
2600
2601         /*
2602          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603          * task_cpu() load, such that if the IPI then does not find the task
2604          * running, a future context switch of that task must observe the
2605          * store.
2606          */
2607         smp_mb();
2608 again:
2609         if (!task_function_call(task, __perf_install_in_context, event))
2610                 return;
2611
2612         raw_spin_lock_irq(&ctx->lock);
2613         task = ctx->task;
2614         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615                 /*
2616                  * Cannot happen because we already checked above (which also
2617                  * cannot happen), and we hold ctx->mutex, which serializes us
2618                  * against perf_event_exit_task_context().
2619                  */
2620                 raw_spin_unlock_irq(&ctx->lock);
2621                 return;
2622         }
2623         /*
2624          * If the task is not running, ctx->lock will avoid it becoming so,
2625          * thus we can safely install the event.
2626          */
2627         if (task_curr(task)) {
2628                 raw_spin_unlock_irq(&ctx->lock);
2629                 goto again;
2630         }
2631         add_event_to_ctx(event, ctx);
2632         raw_spin_unlock_irq(&ctx->lock);
2633 }
2634
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639                                 struct perf_cpu_context *cpuctx,
2640                                 struct perf_event_context *ctx,
2641                                 void *info)
2642 {
2643         struct perf_event *leader = event->group_leader;
2644         struct perf_event_context *task_ctx;
2645
2646         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647             event->state <= PERF_EVENT_STATE_ERROR)
2648                 return;
2649
2650         if (ctx->is_active)
2651                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
2653         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654
2655         if (!ctx->is_active)
2656                 return;
2657
2658         if (!event_filter_match(event)) {
2659                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660                 return;
2661         }
2662
2663         /*
2664          * If the event is in a group and isn't the group leader,
2665          * then don't put it on unless the group is on.
2666          */
2667         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669                 return;
2670         }
2671
2672         task_ctx = cpuctx->task_ctx;
2673         if (ctx->task)
2674                 WARN_ON_ONCE(task_ctx != ctx);
2675
2676         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678
2679 /*
2680  * Enable an event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690         struct perf_event_context *ctx = event->ctx;
2691
2692         raw_spin_lock_irq(&ctx->lock);
2693         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694             event->state <  PERF_EVENT_STATE_ERROR) {
2695                 raw_spin_unlock_irq(&ctx->lock);
2696                 return;
2697         }
2698
2699         /*
2700          * If the event is in error state, clear that first.
2701          *
2702          * That way, if we see the event in error state below, we know that it
2703          * has gone back into error state, as distinct from the task having
2704          * been scheduled away before the cross-call arrived.
2705          */
2706         if (event->state == PERF_EVENT_STATE_ERROR)
2707                 event->state = PERF_EVENT_STATE_OFF;
2708         raw_spin_unlock_irq(&ctx->lock);
2709
2710         event_function_call(event, __perf_event_enable, NULL);
2711 }
2712
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718         struct perf_event_context *ctx;
2719
2720         ctx = perf_event_ctx_lock(event);
2721         _perf_event_enable(event);
2722         perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725
2726 struct stop_event_data {
2727         struct perf_event       *event;
2728         unsigned int            restart;
2729 };
2730
2731 static int __perf_event_stop(void *info)
2732 {
2733         struct stop_event_data *sd = info;
2734         struct perf_event *event = sd->event;
2735
2736         /* if it's already INACTIVE, do nothing */
2737         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738                 return 0;
2739
2740         /* matches smp_wmb() in event_sched_in() */
2741         smp_rmb();
2742
2743         /*
2744          * There is a window with interrupts enabled before we get here,
2745          * so we need to check again lest we try to stop another CPU's event.
2746          */
2747         if (READ_ONCE(event->oncpu) != smp_processor_id())
2748                 return -EAGAIN;
2749
2750         event->pmu->stop(event, PERF_EF_UPDATE);
2751
2752         /*
2753          * May race with the actual stop (through perf_pmu_output_stop()),
2754          * but it is only used for events with AUX ring buffer, and such
2755          * events will refuse to restart because of rb::aux_mmap_count==0,
2756          * see comments in perf_aux_output_begin().
2757          *
2758          * Since this is happening on an event-local CPU, no trace is lost
2759          * while restarting.
2760          */
2761         if (sd->restart)
2762                 event->pmu->start(event, 0);
2763
2764         return 0;
2765 }
2766
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769         struct stop_event_data sd = {
2770                 .event          = event,
2771                 .restart        = restart,
2772         };
2773         int ret = 0;
2774
2775         do {
2776                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777                         return 0;
2778
2779                 /* matches smp_wmb() in event_sched_in() */
2780                 smp_rmb();
2781
2782                 /*
2783                  * We only want to restart ACTIVE events, so if the event goes
2784                  * inactive here (event->oncpu==-1), there's nothing more to do;
2785                  * fall through with ret==-ENXIO.
2786                  */
2787                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788                                         __perf_event_stop, &sd);
2789         } while (ret == -EAGAIN);
2790
2791         return ret;
2792 }
2793
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820         if (!has_addr_filter(event))
2821                 return;
2822
2823         raw_spin_lock(&ifh->lock);
2824         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825                 event->pmu->addr_filters_sync(event);
2826                 event->hw.addr_filters_gen = event->addr_filters_gen;
2827         }
2828         raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834         /*
2835          * not supported on inherited events
2836          */
2837         if (event->attr.inherit || !is_sampling_event(event))
2838                 return -EINVAL;
2839
2840         atomic_add(refresh, &event->event_limit);
2841         _perf_event_enable(event);
2842
2843         return 0;
2844 }
2845
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851         struct perf_event_context *ctx;
2852         int ret;
2853
2854         ctx = perf_event_ctx_lock(event);
2855         ret = _perf_event_refresh(event, refresh);
2856         perf_event_ctx_unlock(event, ctx);
2857
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863                                          struct perf_event_attr *attr)
2864 {
2865         int err;
2866
2867         _perf_event_disable(bp);
2868
2869         err = modify_user_hw_breakpoint_check(bp, attr, true);
2870         if (err) {
2871                 if (!bp->attr.disabled)
2872                         _perf_event_enable(bp);
2873
2874                 return err;
2875         }
2876
2877         if (!attr->disabled)
2878                 _perf_event_enable(bp);
2879         return 0;
2880 }
2881
2882 static int perf_event_modify_attr(struct perf_event *event,
2883                                   struct perf_event_attr *attr)
2884 {
2885         if (event->attr.type != attr->type)
2886                 return -EINVAL;
2887
2888         switch (event->attr.type) {
2889         case PERF_TYPE_BREAKPOINT:
2890                 return perf_event_modify_breakpoint(event, attr);
2891         default:
2892                 /* Place holder for future additions. */
2893                 return -EOPNOTSUPP;
2894         }
2895 }
2896
2897 static void ctx_sched_out(struct perf_event_context *ctx,
2898                           struct perf_cpu_context *cpuctx,
2899                           enum event_type_t event_type)
2900 {
2901         struct perf_event *event, *tmp;
2902         int is_active = ctx->is_active;
2903
2904         lockdep_assert_held(&ctx->lock);
2905
2906         if (likely(!ctx->nr_events)) {
2907                 /*
2908                  * See __perf_remove_from_context().
2909                  */
2910                 WARN_ON_ONCE(ctx->is_active);
2911                 if (ctx->task)
2912                         WARN_ON_ONCE(cpuctx->task_ctx);
2913                 return;
2914         }
2915
2916         ctx->is_active &= ~event_type;
2917         if (!(ctx->is_active & EVENT_ALL))
2918                 ctx->is_active = 0;
2919
2920         if (ctx->task) {
2921                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2922                 if (!ctx->is_active)
2923                         cpuctx->task_ctx = NULL;
2924         }
2925
2926         /*
2927          * Always update time if it was set; not only when it changes.
2928          * Otherwise we can 'forget' to update time for any but the last
2929          * context we sched out. For example:
2930          *
2931          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932          *   ctx_sched_out(.event_type = EVENT_PINNED)
2933          *
2934          * would only update time for the pinned events.
2935          */
2936         if (is_active & EVENT_TIME) {
2937                 /* update (and stop) ctx time */
2938                 update_context_time(ctx);
2939                 update_cgrp_time_from_cpuctx(cpuctx);
2940         }
2941
2942         is_active ^= ctx->is_active; /* changed bits */
2943
2944         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2945                 return;
2946
2947         perf_pmu_disable(ctx->pmu);
2948         if (is_active & EVENT_PINNED) {
2949                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2950                         group_sched_out(event, cpuctx, ctx);
2951         }
2952
2953         if (is_active & EVENT_FLEXIBLE) {
2954                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2955                         group_sched_out(event, cpuctx, ctx);
2956         }
2957         perf_pmu_enable(ctx->pmu);
2958 }
2959
2960 /*
2961  * Test whether two contexts are equivalent, i.e. whether they have both been
2962  * cloned from the same version of the same context.
2963  *
2964  * Equivalence is measured using a generation number in the context that is
2965  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966  * and list_del_event().
2967  */
2968 static int context_equiv(struct perf_event_context *ctx1,
2969                          struct perf_event_context *ctx2)
2970 {
2971         lockdep_assert_held(&ctx1->lock);
2972         lockdep_assert_held(&ctx2->lock);
2973
2974         /* Pinning disables the swap optimization */
2975         if (ctx1->pin_count || ctx2->pin_count)
2976                 return 0;
2977
2978         /* If ctx1 is the parent of ctx2 */
2979         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2980                 return 1;
2981
2982         /* If ctx2 is the parent of ctx1 */
2983         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2984                 return 1;
2985
2986         /*
2987          * If ctx1 and ctx2 have the same parent; we flatten the parent
2988          * hierarchy, see perf_event_init_context().
2989          */
2990         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2991                         ctx1->parent_gen == ctx2->parent_gen)
2992                 return 1;
2993
2994         /* Unmatched */
2995         return 0;
2996 }
2997
2998 static void __perf_event_sync_stat(struct perf_event *event,
2999                                      struct perf_event *next_event)
3000 {
3001         u64 value;
3002
3003         if (!event->attr.inherit_stat)
3004                 return;
3005
3006         /*
3007          * Update the event value, we cannot use perf_event_read()
3008          * because we're in the middle of a context switch and have IRQs
3009          * disabled, which upsets smp_call_function_single(), however
3010          * we know the event must be on the current CPU, therefore we
3011          * don't need to use it.
3012          */
3013         if (event->state == PERF_EVENT_STATE_ACTIVE)
3014                 event->pmu->read(event);
3015
3016         perf_event_update_time(event);
3017
3018         /*
3019          * In order to keep per-task stats reliable we need to flip the event
3020          * values when we flip the contexts.
3021          */
3022         value = local64_read(&next_event->count);
3023         value = local64_xchg(&event->count, value);
3024         local64_set(&next_event->count, value);
3025
3026         swap(event->total_time_enabled, next_event->total_time_enabled);
3027         swap(event->total_time_running, next_event->total_time_running);
3028
3029         /*
3030          * Since we swizzled the values, update the user visible data too.
3031          */
3032         perf_event_update_userpage(event);
3033         perf_event_update_userpage(next_event);
3034 }
3035
3036 static void perf_event_sync_stat(struct perf_event_context *ctx,
3037                                    struct perf_event_context *next_ctx)
3038 {
3039         struct perf_event *event, *next_event;
3040
3041         if (!ctx->nr_stat)
3042                 return;
3043
3044         update_context_time(ctx);
3045
3046         event = list_first_entry(&ctx->event_list,
3047                                    struct perf_event, event_entry);
3048
3049         next_event = list_first_entry(&next_ctx->event_list,
3050                                         struct perf_event, event_entry);
3051
3052         while (&event->event_entry != &ctx->event_list &&
3053                &next_event->event_entry != &next_ctx->event_list) {
3054
3055                 __perf_event_sync_stat(event, next_event);
3056
3057                 event = list_next_entry(event, event_entry);
3058                 next_event = list_next_entry(next_event, event_entry);
3059         }
3060 }
3061
3062 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3063                                          struct task_struct *next)
3064 {
3065         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3066         struct perf_event_context *next_ctx;
3067         struct perf_event_context *parent, *next_parent;
3068         struct perf_cpu_context *cpuctx;
3069         int do_switch = 1;
3070
3071         if (likely(!ctx))
3072                 return;
3073
3074         cpuctx = __get_cpu_context(ctx);
3075         if (!cpuctx->task_ctx)
3076                 return;
3077
3078         rcu_read_lock();
3079         next_ctx = next->perf_event_ctxp[ctxn];
3080         if (!next_ctx)
3081                 goto unlock;
3082
3083         parent = rcu_dereference(ctx->parent_ctx);
3084         next_parent = rcu_dereference(next_ctx->parent_ctx);
3085
3086         /* If neither context have a parent context; they cannot be clones. */
3087         if (!parent && !next_parent)
3088                 goto unlock;
3089
3090         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3091                 /*
3092                  * Looks like the two contexts are clones, so we might be
3093                  * able to optimize the context switch.  We lock both
3094                  * contexts and check that they are clones under the
3095                  * lock (including re-checking that neither has been
3096                  * uncloned in the meantime).  It doesn't matter which
3097                  * order we take the locks because no other cpu could
3098                  * be trying to lock both of these tasks.
3099                  */
3100                 raw_spin_lock(&ctx->lock);
3101                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3102                 if (context_equiv(ctx, next_ctx)) {
3103                         WRITE_ONCE(ctx->task, next);
3104                         WRITE_ONCE(next_ctx->task, task);
3105
3106                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3107
3108                         /*
3109                          * RCU_INIT_POINTER here is safe because we've not
3110                          * modified the ctx and the above modification of
3111                          * ctx->task and ctx->task_ctx_data are immaterial
3112                          * since those values are always verified under
3113                          * ctx->lock which we're now holding.
3114                          */
3115                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3116                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3117
3118                         do_switch = 0;
3119
3120                         perf_event_sync_stat(ctx, next_ctx);
3121                 }
3122                 raw_spin_unlock(&next_ctx->lock);
3123                 raw_spin_unlock(&ctx->lock);
3124         }
3125 unlock:
3126         rcu_read_unlock();
3127
3128         if (do_switch) {
3129                 raw_spin_lock(&ctx->lock);
3130                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3131                 raw_spin_unlock(&ctx->lock);
3132         }
3133 }
3134
3135 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3136
3137 void perf_sched_cb_dec(struct pmu *pmu)
3138 {
3139         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3140
3141         this_cpu_dec(perf_sched_cb_usages);
3142
3143         if (!--cpuctx->sched_cb_usage)
3144                 list_del(&cpuctx->sched_cb_entry);
3145 }
3146
3147
3148 void perf_sched_cb_inc(struct pmu *pmu)
3149 {
3150         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3151
3152         if (!cpuctx->sched_cb_usage++)
3153                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3154
3155         this_cpu_inc(perf_sched_cb_usages);
3156 }
3157
3158 /*
3159  * This function provides the context switch callback to the lower code
3160  * layer. It is invoked ONLY when the context switch callback is enabled.
3161  *
3162  * This callback is relevant even to per-cpu events; for example multi event
3163  * PEBS requires this to provide PID/TID information. This requires we flush
3164  * all queued PEBS records before we context switch to a new task.
3165  */
3166 static void perf_pmu_sched_task(struct task_struct *prev,
3167                                 struct task_struct *next,
3168                                 bool sched_in)
3169 {
3170         struct perf_cpu_context *cpuctx;
3171         struct pmu *pmu;
3172
3173         if (prev == next)
3174                 return;
3175
3176         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3177                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3178
3179                 if (WARN_ON_ONCE(!pmu->sched_task))
3180                         continue;
3181
3182                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3183                 perf_pmu_disable(pmu);
3184
3185                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3186
3187                 perf_pmu_enable(pmu);
3188                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3189         }
3190 }
3191
3192 static void perf_event_switch(struct task_struct *task,
3193                               struct task_struct *next_prev, bool sched_in);
3194
3195 #define for_each_task_context_nr(ctxn)                                  \
3196         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3197
3198 /*
3199  * Called from scheduler to remove the events of the current task,
3200  * with interrupts disabled.
3201  *
3202  * We stop each event and update the event value in event->count.
3203  *
3204  * This does not protect us against NMI, but disable()
3205  * sets the disabled bit in the control field of event _before_
3206  * accessing the event control register. If a NMI hits, then it will
3207  * not restart the event.
3208  */
3209 void __perf_event_task_sched_out(struct task_struct *task,
3210                                  struct task_struct *next)
3211 {
3212         int ctxn;
3213
3214         if (__this_cpu_read(perf_sched_cb_usages))
3215                 perf_pmu_sched_task(task, next, false);
3216
3217         if (atomic_read(&nr_switch_events))
3218                 perf_event_switch(task, next, false);
3219
3220         for_each_task_context_nr(ctxn)
3221                 perf_event_context_sched_out(task, ctxn, next);
3222
3223         /*
3224          * if cgroup events exist on this CPU, then we need
3225          * to check if we have to switch out PMU state.
3226          * cgroup event are system-wide mode only
3227          */
3228         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3229                 perf_cgroup_sched_out(task, next);
3230 }
3231
3232 /*
3233  * Called with IRQs disabled
3234  */
3235 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3236                               enum event_type_t event_type)
3237 {
3238         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3239 }
3240
3241 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3242                               int (*func)(struct perf_event *, void *), void *data)
3243 {
3244         struct perf_event **evt, *evt1, *evt2;
3245         int ret;
3246
3247         evt1 = perf_event_groups_first(groups, -1);
3248         evt2 = perf_event_groups_first(groups, cpu);
3249
3250         while (evt1 || evt2) {
3251                 if (evt1 && evt2) {
3252                         if (evt1->group_index < evt2->group_index)
3253                                 evt = &evt1;
3254                         else
3255                                 evt = &evt2;
3256                 } else if (evt1) {
3257                         evt = &evt1;
3258                 } else {
3259                         evt = &evt2;
3260                 }
3261
3262                 ret = func(*evt, data);
3263                 if (ret)
3264                         return ret;
3265
3266                 *evt = perf_event_groups_next(*evt);
3267         }
3268
3269         return 0;
3270 }
3271
3272 struct sched_in_data {
3273         struct perf_event_context *ctx;
3274         struct perf_cpu_context *cpuctx;
3275         int can_add_hw;
3276 };
3277
3278 static int pinned_sched_in(struct perf_event *event, void *data)
3279 {
3280         struct sched_in_data *sid = data;
3281
3282         if (event->state <= PERF_EVENT_STATE_OFF)
3283                 return 0;
3284
3285         if (!event_filter_match(event))
3286                 return 0;
3287
3288         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3289                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3290                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3291         }
3292
3293         /*
3294          * If this pinned group hasn't been scheduled,
3295          * put it in error state.
3296          */
3297         if (event->state == PERF_EVENT_STATE_INACTIVE)
3298                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3299
3300         return 0;
3301 }
3302
3303 static int flexible_sched_in(struct perf_event *event, void *data)
3304 {
3305         struct sched_in_data *sid = data;
3306
3307         if (event->state <= PERF_EVENT_STATE_OFF)
3308                 return 0;
3309
3310         if (!event_filter_match(event))
3311                 return 0;
3312
3313         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3314                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3315                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3316                 else
3317                         sid->can_add_hw = 0;
3318         }
3319
3320         return 0;
3321 }
3322
3323 static void
3324 ctx_pinned_sched_in(struct perf_event_context *ctx,
3325                     struct perf_cpu_context *cpuctx)
3326 {
3327         struct sched_in_data sid = {
3328                 .ctx = ctx,
3329                 .cpuctx = cpuctx,
3330                 .can_add_hw = 1,
3331         };
3332
3333         visit_groups_merge(&ctx->pinned_groups,
3334                            smp_processor_id(),
3335                            pinned_sched_in, &sid);
3336 }
3337
3338 static void
3339 ctx_flexible_sched_in(struct perf_event_context *ctx,
3340                       struct perf_cpu_context *cpuctx)
3341 {
3342         struct sched_in_data sid = {
3343                 .ctx = ctx,
3344                 .cpuctx = cpuctx,
3345                 .can_add_hw = 1,
3346         };
3347
3348         visit_groups_merge(&ctx->flexible_groups,
3349                            smp_processor_id(),
3350                            flexible_sched_in, &sid);
3351 }
3352
3353 static void
3354 ctx_sched_in(struct perf_event_context *ctx,
3355              struct perf_cpu_context *cpuctx,
3356              enum event_type_t event_type,
3357              struct task_struct *task)
3358 {
3359         int is_active = ctx->is_active;
3360         u64 now;
3361
3362         lockdep_assert_held(&ctx->lock);
3363
3364         if (likely(!ctx->nr_events))
3365                 return;
3366
3367         ctx->is_active |= (event_type | EVENT_TIME);
3368         if (ctx->task) {
3369                 if (!is_active)
3370                         cpuctx->task_ctx = ctx;
3371                 else
3372                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3373         }
3374
3375         is_active ^= ctx->is_active; /* changed bits */
3376
3377         if (is_active & EVENT_TIME) {
3378                 /* start ctx time */
3379                 now = perf_clock();
3380                 ctx->timestamp = now;
3381                 perf_cgroup_set_timestamp(task, ctx);
3382         }
3383
3384         /*
3385          * First go through the list and put on any pinned groups
3386          * in order to give them the best chance of going on.
3387          */
3388         if (is_active & EVENT_PINNED)
3389                 ctx_pinned_sched_in(ctx, cpuctx);
3390
3391         /* Then walk through the lower prio flexible groups */
3392         if (is_active & EVENT_FLEXIBLE)
3393                 ctx_flexible_sched_in(ctx, cpuctx);
3394 }
3395
3396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3397                              enum event_type_t event_type,
3398                              struct task_struct *task)
3399 {
3400         struct perf_event_context *ctx = &cpuctx->ctx;
3401
3402         ctx_sched_in(ctx, cpuctx, event_type, task);
3403 }
3404
3405 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3406                                         struct task_struct *task)
3407 {
3408         struct perf_cpu_context *cpuctx;
3409
3410         cpuctx = __get_cpu_context(ctx);
3411         if (cpuctx->task_ctx == ctx)
3412                 return;
3413
3414         perf_ctx_lock(cpuctx, ctx);
3415         /*
3416          * We must check ctx->nr_events while holding ctx->lock, such
3417          * that we serialize against perf_install_in_context().
3418          */
3419         if (!ctx->nr_events)
3420                 goto unlock;
3421
3422         perf_pmu_disable(ctx->pmu);
3423         /*
3424          * We want to keep the following priority order:
3425          * cpu pinned (that don't need to move), task pinned,
3426          * cpu flexible, task flexible.
3427          *
3428          * However, if task's ctx is not carrying any pinned
3429          * events, no need to flip the cpuctx's events around.
3430          */
3431         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3432                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3433         perf_event_sched_in(cpuctx, ctx, task);
3434         perf_pmu_enable(ctx->pmu);
3435
3436 unlock:
3437         perf_ctx_unlock(cpuctx, ctx);
3438 }
3439
3440 /*
3441  * Called from scheduler to add the events of the current task
3442  * with interrupts disabled.
3443  *
3444  * We restore the event value and then enable it.
3445  *
3446  * This does not protect us against NMI, but enable()
3447  * sets the enabled bit in the control field of event _before_
3448  * accessing the event control register. If a NMI hits, then it will
3449  * keep the event running.
3450  */
3451 void __perf_event_task_sched_in(struct task_struct *prev,
3452                                 struct task_struct *task)
3453 {
3454         struct perf_event_context *ctx;
3455         int ctxn;
3456
3457         /*
3458          * If cgroup events exist on this CPU, then we need to check if we have
3459          * to switch in PMU state; cgroup event are system-wide mode only.
3460          *
3461          * Since cgroup events are CPU events, we must schedule these in before
3462          * we schedule in the task events.
3463          */
3464         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3465                 perf_cgroup_sched_in(prev, task);
3466
3467         for_each_task_context_nr(ctxn) {
3468                 ctx = task->perf_event_ctxp[ctxn];
3469                 if (likely(!ctx))
3470                         continue;
3471
3472                 perf_event_context_sched_in(ctx, task);
3473         }
3474
3475         if (atomic_read(&nr_switch_events))
3476                 perf_event_switch(task, prev, true);
3477
3478         if (__this_cpu_read(perf_sched_cb_usages))
3479                 perf_pmu_sched_task(prev, task, true);
3480 }
3481
3482 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3483 {
3484         u64 frequency = event->attr.sample_freq;
3485         u64 sec = NSEC_PER_SEC;
3486         u64 divisor, dividend;
3487
3488         int count_fls, nsec_fls, frequency_fls, sec_fls;
3489
3490         count_fls = fls64(count);
3491         nsec_fls = fls64(nsec);
3492         frequency_fls = fls64(frequency);
3493         sec_fls = 30;
3494
3495         /*
3496          * We got @count in @nsec, with a target of sample_freq HZ
3497          * the target period becomes:
3498          *
3499          *             @count * 10^9
3500          * period = -------------------
3501          *          @nsec * sample_freq
3502          *
3503          */
3504
3505         /*
3506          * Reduce accuracy by one bit such that @a and @b converge
3507          * to a similar magnitude.
3508          */
3509 #define REDUCE_FLS(a, b)                \
3510 do {                                    \
3511         if (a##_fls > b##_fls) {        \
3512                 a >>= 1;                \
3513                 a##_fls--;              \
3514         } else {                        \
3515                 b >>= 1;                \
3516                 b##_fls--;              \
3517         }                               \
3518 } while (0)
3519
3520         /*
3521          * Reduce accuracy until either term fits in a u64, then proceed with
3522          * the other, so that finally we can do a u64/u64 division.
3523          */
3524         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3525                 REDUCE_FLS(nsec, frequency);
3526                 REDUCE_FLS(sec, count);
3527         }
3528
3529         if (count_fls + sec_fls > 64) {
3530                 divisor = nsec * frequency;
3531
3532                 while (count_fls + sec_fls > 64) {
3533                         REDUCE_FLS(count, sec);
3534                         divisor >>= 1;
3535                 }
3536
3537                 dividend = count * sec;
3538         } else {
3539                 dividend = count * sec;
3540
3541                 while (nsec_fls + frequency_fls > 64) {
3542                         REDUCE_FLS(nsec, frequency);
3543                         dividend >>= 1;
3544                 }
3545
3546                 divisor = nsec * frequency;
3547         }
3548
3549         if (!divisor)
3550                 return dividend;
3551
3552         return div64_u64(dividend, divisor);
3553 }
3554
3555 static DEFINE_PER_CPU(int, perf_throttled_count);
3556 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3557
3558 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3559 {
3560         struct hw_perf_event *hwc = &event->hw;
3561         s64 period, sample_period;
3562         s64 delta;
3563
3564         period = perf_calculate_period(event, nsec, count);
3565
3566         delta = (s64)(period - hwc->sample_period);
3567         delta = (delta + 7) / 8; /* low pass filter */
3568
3569         sample_period = hwc->sample_period + delta;
3570
3571         if (!sample_period)
3572                 sample_period = 1;
3573
3574         hwc->sample_period = sample_period;
3575
3576         if (local64_read(&hwc->period_left) > 8*sample_period) {
3577                 if (disable)
3578                         event->pmu->stop(event, PERF_EF_UPDATE);
3579
3580                 local64_set(&hwc->period_left, 0);
3581
3582                 if (disable)
3583                         event->pmu->start(event, PERF_EF_RELOAD);
3584         }
3585 }
3586
3587 /*
3588  * combine freq adjustment with unthrottling to avoid two passes over the
3589  * events. At the same time, make sure, having freq events does not change
3590  * the rate of unthrottling as that would introduce bias.
3591  */
3592 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3593                                            int needs_unthr)
3594 {
3595         struct perf_event *event;
3596         struct hw_perf_event *hwc;
3597         u64 now, period = TICK_NSEC;
3598         s64 delta;
3599
3600         /*
3601          * only need to iterate over all events iff:
3602          * - context have events in frequency mode (needs freq adjust)
3603          * - there are events to unthrottle on this cpu
3604          */
3605         if (!(ctx->nr_freq || needs_unthr))
3606                 return;
3607
3608         raw_spin_lock(&ctx->lock);
3609         perf_pmu_disable(ctx->pmu);
3610
3611         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3612                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3613                         continue;
3614
3615                 if (!event_filter_match(event))
3616                         continue;
3617
3618                 perf_pmu_disable(event->pmu);
3619
3620                 hwc = &event->hw;
3621
3622                 if (hwc->interrupts == MAX_INTERRUPTS) {
3623                         hwc->interrupts = 0;
3624                         perf_log_throttle(event, 1);
3625                         event->pmu->start(event, 0);
3626                 }
3627
3628                 if (!event->attr.freq || !event->attr.sample_freq)
3629                         goto next;
3630
3631                 /*
3632                  * stop the event and update event->count
3633                  */
3634                 event->pmu->stop(event, PERF_EF_UPDATE);
3635
3636                 now = local64_read(&event->count);
3637                 delta = now - hwc->freq_count_stamp;
3638                 hwc->freq_count_stamp = now;
3639
3640                 /*
3641                  * restart the event
3642                  * reload only if value has changed
3643                  * we have stopped the event so tell that
3644                  * to perf_adjust_period() to avoid stopping it
3645                  * twice.
3646                  */
3647                 if (delta > 0)
3648                         perf_adjust_period(event, period, delta, false);
3649
3650                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3651         next:
3652                 perf_pmu_enable(event->pmu);
3653         }
3654
3655         perf_pmu_enable(ctx->pmu);
3656         raw_spin_unlock(&ctx->lock);
3657 }
3658
3659 /*
3660  * Move @event to the tail of the @ctx's elegible events.
3661  */
3662 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3663 {
3664         /*
3665          * Rotate the first entry last of non-pinned groups. Rotation might be
3666          * disabled by the inheritance code.
3667          */
3668         if (ctx->rotate_disable)
3669                 return;
3670
3671         perf_event_groups_delete(&ctx->flexible_groups, event);
3672         perf_event_groups_insert(&ctx->flexible_groups, event);
3673 }
3674
3675 static inline struct perf_event *
3676 ctx_first_active(struct perf_event_context *ctx)
3677 {
3678         return list_first_entry_or_null(&ctx->flexible_active,
3679                                         struct perf_event, active_list);
3680 }
3681
3682 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3683 {
3684         struct perf_event *cpu_event = NULL, *task_event = NULL;
3685         bool cpu_rotate = false, task_rotate = false;
3686         struct perf_event_context *ctx = NULL;
3687
3688         /*
3689          * Since we run this from IRQ context, nobody can install new
3690          * events, thus the event count values are stable.
3691          */
3692
3693         if (cpuctx->ctx.nr_events) {
3694                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3695                         cpu_rotate = true;
3696         }
3697
3698         ctx = cpuctx->task_ctx;
3699         if (ctx && ctx->nr_events) {
3700                 if (ctx->nr_events != ctx->nr_active)
3701                         task_rotate = true;
3702         }
3703
3704         if (!(cpu_rotate || task_rotate))
3705                 return false;
3706
3707         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3708         perf_pmu_disable(cpuctx->ctx.pmu);
3709
3710         if (task_rotate)
3711                 task_event = ctx_first_active(ctx);
3712         if (cpu_rotate)
3713                 cpu_event = ctx_first_active(&cpuctx->ctx);
3714
3715         /*
3716          * As per the order given at ctx_resched() first 'pop' task flexible
3717          * and then, if needed CPU flexible.
3718          */
3719         if (task_event || (ctx && cpu_event))
3720                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3721         if (cpu_event)
3722                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3723
3724         if (task_event)
3725                 rotate_ctx(ctx, task_event);
3726         if (cpu_event)
3727                 rotate_ctx(&cpuctx->ctx, cpu_event);
3728
3729         perf_event_sched_in(cpuctx, ctx, current);
3730
3731         perf_pmu_enable(cpuctx->ctx.pmu);
3732         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3733
3734         return true;
3735 }
3736
3737 void perf_event_task_tick(void)
3738 {
3739         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3740         struct perf_event_context *ctx, *tmp;
3741         int throttled;
3742
3743         lockdep_assert_irqs_disabled();
3744
3745         __this_cpu_inc(perf_throttled_seq);
3746         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3747         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3748
3749         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3750                 perf_adjust_freq_unthr_context(ctx, throttled);
3751 }
3752
3753 static int event_enable_on_exec(struct perf_event *event,
3754                                 struct perf_event_context *ctx)
3755 {
3756         if (!event->attr.enable_on_exec)
3757                 return 0;
3758
3759         event->attr.enable_on_exec = 0;
3760         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3761                 return 0;
3762
3763         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3764
3765         return 1;
3766 }
3767
3768 /*
3769  * Enable all of a task's events that have been marked enable-on-exec.
3770  * This expects task == current.
3771  */
3772 static void perf_event_enable_on_exec(int ctxn)
3773 {
3774         struct perf_event_context *ctx, *clone_ctx = NULL;
3775         enum event_type_t event_type = 0;
3776         struct perf_cpu_context *cpuctx;
3777         struct perf_event *event;
3778         unsigned long flags;
3779         int enabled = 0;
3780
3781         local_irq_save(flags);
3782         ctx = current->perf_event_ctxp[ctxn];
3783         if (!ctx || !ctx->nr_events)
3784                 goto out;
3785
3786         cpuctx = __get_cpu_context(ctx);
3787         perf_ctx_lock(cpuctx, ctx);
3788         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3789         list_for_each_entry(event, &ctx->event_list, event_entry) {
3790                 enabled |= event_enable_on_exec(event, ctx);
3791                 event_type |= get_event_type(event);
3792         }
3793
3794         /*
3795          * Unclone and reschedule this context if we enabled any event.
3796          */
3797         if (enabled) {
3798                 clone_ctx = unclone_ctx(ctx);
3799                 ctx_resched(cpuctx, ctx, event_type);
3800         } else {
3801                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3802         }
3803         perf_ctx_unlock(cpuctx, ctx);
3804
3805 out:
3806         local_irq_restore(flags);
3807
3808         if (clone_ctx)
3809                 put_ctx(clone_ctx);
3810 }
3811
3812 struct perf_read_data {
3813         struct perf_event *event;
3814         bool group;
3815         int ret;
3816 };
3817
3818 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3819 {
3820         u16 local_pkg, event_pkg;
3821
3822         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3823                 int local_cpu = smp_processor_id();
3824
3825                 event_pkg = topology_physical_package_id(event_cpu);
3826                 local_pkg = topology_physical_package_id(local_cpu);
3827
3828                 if (event_pkg == local_pkg)
3829                         return local_cpu;
3830         }
3831
3832         return event_cpu;
3833 }
3834
3835 /*
3836  * Cross CPU call to read the hardware event
3837  */
3838 static void __perf_event_read(void *info)
3839 {
3840         struct perf_read_data *data = info;
3841         struct perf_event *sub, *event = data->event;
3842         struct perf_event_context *ctx = event->ctx;
3843         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3844         struct pmu *pmu = event->pmu;
3845
3846         /*
3847          * If this is a task context, we need to check whether it is
3848          * the current task context of this cpu.  If not it has been
3849          * scheduled out before the smp call arrived.  In that case
3850          * event->count would have been updated to a recent sample
3851          * when the event was scheduled out.
3852          */
3853         if (ctx->task && cpuctx->task_ctx != ctx)
3854                 return;
3855
3856         raw_spin_lock(&ctx->lock);
3857         if (ctx->is_active & EVENT_TIME) {
3858                 update_context_time(ctx);
3859                 update_cgrp_time_from_event(event);
3860         }
3861
3862         perf_event_update_time(event);
3863         if (data->group)
3864                 perf_event_update_sibling_time(event);
3865
3866         if (event->state != PERF_EVENT_STATE_ACTIVE)
3867                 goto unlock;
3868
3869         if (!data->group) {
3870                 pmu->read(event);
3871                 data->ret = 0;
3872                 goto unlock;
3873         }
3874
3875         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3876
3877         pmu->read(event);
3878
3879         for_each_sibling_event(sub, event) {
3880                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3881                         /*
3882                          * Use sibling's PMU rather than @event's since
3883                          * sibling could be on different (eg: software) PMU.
3884                          */
3885                         sub->pmu->read(sub);
3886                 }
3887         }
3888
3889         data->ret = pmu->commit_txn(pmu);
3890
3891 unlock:
3892         raw_spin_unlock(&ctx->lock);
3893 }
3894
3895 static inline u64 perf_event_count(struct perf_event *event)
3896 {
3897         return local64_read(&event->count) + atomic64_read(&event->child_count);
3898 }
3899
3900 /*
3901  * NMI-safe method to read a local event, that is an event that
3902  * is:
3903  *   - either for the current task, or for this CPU
3904  *   - does not have inherit set, for inherited task events
3905  *     will not be local and we cannot read them atomically
3906  *   - must not have a pmu::count method
3907  */
3908 int perf_event_read_local(struct perf_event *event, u64 *value,
3909                           u64 *enabled, u64 *running)
3910 {
3911         unsigned long flags;
3912         int ret = 0;
3913
3914         /*
3915          * Disabling interrupts avoids all counter scheduling (context
3916          * switches, timer based rotation and IPIs).
3917          */
3918         local_irq_save(flags);
3919
3920         /*
3921          * It must not be an event with inherit set, we cannot read
3922          * all child counters from atomic context.
3923          */
3924         if (event->attr.inherit) {
3925                 ret = -EOPNOTSUPP;
3926                 goto out;
3927         }
3928
3929         /* If this is a per-task event, it must be for current */
3930         if ((event->attach_state & PERF_ATTACH_TASK) &&
3931             event->hw.target != current) {
3932                 ret = -EINVAL;
3933                 goto out;
3934         }
3935
3936         /* If this is a per-CPU event, it must be for this CPU */
3937         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3938             event->cpu != smp_processor_id()) {
3939                 ret = -EINVAL;
3940                 goto out;
3941         }
3942
3943         /*
3944          * If the event is currently on this CPU, its either a per-task event,
3945          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3946          * oncpu == -1).
3947          */
3948         if (event->oncpu == smp_processor_id())
3949                 event->pmu->read(event);
3950
3951         *value = local64_read(&event->count);
3952         if (enabled || running) {
3953                 u64 now = event->shadow_ctx_time + perf_clock();
3954                 u64 __enabled, __running;
3955
3956                 __perf_update_times(event, now, &__enabled, &__running);
3957                 if (enabled)
3958                         *enabled = __enabled;
3959                 if (running)
3960                         *running = __running;
3961         }
3962 out:
3963         local_irq_restore(flags);
3964
3965         return ret;
3966 }
3967
3968 static int perf_event_read(struct perf_event *event, bool group)
3969 {
3970         enum perf_event_state state = READ_ONCE(event->state);
3971         int event_cpu, ret = 0;
3972
3973         /*
3974          * If event is enabled and currently active on a CPU, update the
3975          * value in the event structure:
3976          */
3977 again:
3978         if (state == PERF_EVENT_STATE_ACTIVE) {
3979                 struct perf_read_data data;
3980
3981                 /*
3982                  * Orders the ->state and ->oncpu loads such that if we see
3983                  * ACTIVE we must also see the right ->oncpu.
3984                  *
3985                  * Matches the smp_wmb() from event_sched_in().
3986                  */
3987                 smp_rmb();
3988
3989                 event_cpu = READ_ONCE(event->oncpu);
3990                 if ((unsigned)event_cpu >= nr_cpu_ids)
3991                         return 0;
3992
3993                 data = (struct perf_read_data){
3994                         .event = event,
3995                         .group = group,
3996                         .ret = 0,
3997                 };
3998
3999                 preempt_disable();
4000                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4001
4002                 /*
4003                  * Purposely ignore the smp_call_function_single() return
4004                  * value.
4005                  *
4006                  * If event_cpu isn't a valid CPU it means the event got
4007                  * scheduled out and that will have updated the event count.
4008                  *
4009                  * Therefore, either way, we'll have an up-to-date event count
4010                  * after this.
4011                  */
4012                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4013                 preempt_enable();
4014                 ret = data.ret;
4015
4016         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4017                 struct perf_event_context *ctx = event->ctx;
4018                 unsigned long flags;
4019
4020                 raw_spin_lock_irqsave(&ctx->lock, flags);
4021                 state = event->state;
4022                 if (state != PERF_EVENT_STATE_INACTIVE) {
4023                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4024                         goto again;
4025                 }
4026
4027                 /*
4028                  * May read while context is not active (e.g., thread is
4029                  * blocked), in that case we cannot update context time
4030                  */
4031                 if (ctx->is_active & EVENT_TIME) {
4032                         update_context_time(ctx);
4033                         update_cgrp_time_from_event(event);
4034                 }
4035
4036                 perf_event_update_time(event);
4037                 if (group)
4038                         perf_event_update_sibling_time(event);
4039                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040         }
4041
4042         return ret;
4043 }
4044
4045 /*
4046  * Initialize the perf_event context in a task_struct:
4047  */
4048 static void __perf_event_init_context(struct perf_event_context *ctx)
4049 {
4050         raw_spin_lock_init(&ctx->lock);
4051         mutex_init(&ctx->mutex);
4052         INIT_LIST_HEAD(&ctx->active_ctx_list);
4053         perf_event_groups_init(&ctx->pinned_groups);
4054         perf_event_groups_init(&ctx->flexible_groups);
4055         INIT_LIST_HEAD(&ctx->event_list);
4056         INIT_LIST_HEAD(&ctx->pinned_active);
4057         INIT_LIST_HEAD(&ctx->flexible_active);
4058         atomic_set(&ctx->refcount, 1);
4059 }
4060
4061 static struct perf_event_context *
4062 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4063 {
4064         struct perf_event_context *ctx;
4065
4066         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4067         if (!ctx)
4068                 return NULL;
4069
4070         __perf_event_init_context(ctx);
4071         if (task) {
4072                 ctx->task = task;
4073                 get_task_struct(task);
4074         }
4075         ctx->pmu = pmu;
4076
4077         return ctx;
4078 }
4079
4080 static struct task_struct *
4081 find_lively_task_by_vpid(pid_t vpid)
4082 {
4083         struct task_struct *task;
4084
4085         rcu_read_lock();
4086         if (!vpid)
4087                 task = current;
4088         else
4089                 task = find_task_by_vpid(vpid);
4090         if (task)
4091                 get_task_struct(task);
4092         rcu_read_unlock();
4093
4094         if (!task)
4095                 return ERR_PTR(-ESRCH);
4096
4097         return task;
4098 }
4099
4100 /*
4101  * Returns a matching context with refcount and pincount.
4102  */
4103 static struct perf_event_context *
4104 find_get_context(struct pmu *pmu, struct task_struct *task,
4105                 struct perf_event *event)
4106 {
4107         struct perf_event_context *ctx, *clone_ctx = NULL;
4108         struct perf_cpu_context *cpuctx;
4109         void *task_ctx_data = NULL;
4110         unsigned long flags;
4111         int ctxn, err;
4112         int cpu = event->cpu;
4113
4114         if (!task) {
4115                 /* Must be root to operate on a CPU event: */
4116                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4117                         return ERR_PTR(-EACCES);
4118
4119                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4120                 ctx = &cpuctx->ctx;
4121                 get_ctx(ctx);
4122                 ++ctx->pin_count;
4123
4124                 return ctx;
4125         }
4126
4127         err = -EINVAL;
4128         ctxn = pmu->task_ctx_nr;
4129         if (ctxn < 0)
4130                 goto errout;
4131
4132         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4133                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4134                 if (!task_ctx_data) {
4135                         err = -ENOMEM;
4136                         goto errout;
4137                 }
4138         }
4139
4140 retry:
4141         ctx = perf_lock_task_context(task, ctxn, &flags);
4142         if (ctx) {
4143                 clone_ctx = unclone_ctx(ctx);
4144                 ++ctx->pin_count;
4145
4146                 if (task_ctx_data && !ctx->task_ctx_data) {
4147                         ctx->task_ctx_data = task_ctx_data;
4148                         task_ctx_data = NULL;
4149                 }
4150                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4151
4152                 if (clone_ctx)
4153                         put_ctx(clone_ctx);
4154         } else {
4155                 ctx = alloc_perf_context(pmu, task);
4156                 err = -ENOMEM;
4157                 if (!ctx)
4158                         goto errout;
4159
4160                 if (task_ctx_data) {
4161                         ctx->task_ctx_data = task_ctx_data;
4162                         task_ctx_data = NULL;
4163                 }
4164
4165                 err = 0;
4166                 mutex_lock(&task->perf_event_mutex);
4167                 /*
4168                  * If it has already passed perf_event_exit_task().
4169                  * we must see PF_EXITING, it takes this mutex too.
4170                  */
4171                 if (task->flags & PF_EXITING)
4172                         err = -ESRCH;
4173                 else if (task->perf_event_ctxp[ctxn])
4174                         err = -EAGAIN;
4175                 else {
4176                         get_ctx(ctx);
4177                         ++ctx->pin_count;
4178                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4179                 }
4180                 mutex_unlock(&task->perf_event_mutex);
4181
4182                 if (unlikely(err)) {
4183                         put_ctx(ctx);
4184
4185                         if (err == -EAGAIN)
4186                                 goto retry;
4187                         goto errout;
4188                 }
4189         }
4190
4191         kfree(task_ctx_data);
4192         return ctx;
4193
4194 errout:
4195         kfree(task_ctx_data);
4196         return ERR_PTR(err);
4197 }
4198
4199 static void perf_event_free_filter(struct perf_event *event);
4200 static void perf_event_free_bpf_prog(struct perf_event *event);
4201
4202 static void free_event_rcu(struct rcu_head *head)
4203 {
4204         struct perf_event *event;
4205
4206         event = container_of(head, struct perf_event, rcu_head);
4207         if (event->ns)
4208                 put_pid_ns(event->ns);
4209         perf_event_free_filter(event);
4210         kfree(event);
4211 }
4212
4213 static void ring_buffer_attach(struct perf_event *event,
4214                                struct ring_buffer *rb);
4215
4216 static void detach_sb_event(struct perf_event *event)
4217 {
4218         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4219
4220         raw_spin_lock(&pel->lock);
4221         list_del_rcu(&event->sb_list);
4222         raw_spin_unlock(&pel->lock);
4223 }
4224
4225 static bool is_sb_event(struct perf_event *event)
4226 {
4227         struct perf_event_attr *attr = &event->attr;
4228
4229         if (event->parent)
4230                 return false;
4231
4232         if (event->attach_state & PERF_ATTACH_TASK)
4233                 return false;
4234
4235         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4236             attr->comm || attr->comm_exec ||
4237             attr->task ||
4238             attr->context_switch)
4239                 return true;
4240         return false;
4241 }
4242
4243 static void unaccount_pmu_sb_event(struct perf_event *event)
4244 {
4245         if (is_sb_event(event))
4246                 detach_sb_event(event);
4247 }
4248
4249 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4250 {
4251         if (event->parent)
4252                 return;
4253
4254         if (is_cgroup_event(event))
4255                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4256 }
4257
4258 #ifdef CONFIG_NO_HZ_FULL
4259 static DEFINE_SPINLOCK(nr_freq_lock);
4260 #endif
4261
4262 static void unaccount_freq_event_nohz(void)
4263 {
4264 #ifdef CONFIG_NO_HZ_FULL
4265         spin_lock(&nr_freq_lock);
4266         if (atomic_dec_and_test(&nr_freq_events))
4267                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4268         spin_unlock(&nr_freq_lock);
4269 #endif
4270 }
4271
4272 static void unaccount_freq_event(void)
4273 {
4274         if (tick_nohz_full_enabled())
4275                 unaccount_freq_event_nohz();
4276         else
4277                 atomic_dec(&nr_freq_events);
4278 }
4279
4280 static void unaccount_event(struct perf_event *event)
4281 {
4282         bool dec = false;
4283
4284         if (event->parent)
4285                 return;
4286
4287         if (event->attach_state & PERF_ATTACH_TASK)
4288                 dec = true;
4289         if (event->attr.mmap || event->attr.mmap_data)
4290                 atomic_dec(&nr_mmap_events);
4291         if (event->attr.comm)
4292                 atomic_dec(&nr_comm_events);
4293         if (event->attr.namespaces)
4294                 atomic_dec(&nr_namespaces_events);
4295         if (event->attr.task)
4296                 atomic_dec(&nr_task_events);
4297         if (event->attr.freq)
4298                 unaccount_freq_event();
4299         if (event->attr.context_switch) {
4300                 dec = true;
4301                 atomic_dec(&nr_switch_events);
4302         }
4303         if (is_cgroup_event(event))
4304                 dec = true;
4305         if (has_branch_stack(event))
4306                 dec = true;
4307
4308         if (dec) {
4309                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4310                         schedule_delayed_work(&perf_sched_work, HZ);
4311         }
4312
4313         unaccount_event_cpu(event, event->cpu);
4314
4315         unaccount_pmu_sb_event(event);
4316 }
4317
4318 static void perf_sched_delayed(struct work_struct *work)
4319 {
4320         mutex_lock(&perf_sched_mutex);
4321         if (atomic_dec_and_test(&perf_sched_count))
4322                 static_branch_disable(&perf_sched_events);
4323         mutex_unlock(&perf_sched_mutex);
4324 }
4325
4326 /*
4327  * The following implement mutual exclusion of events on "exclusive" pmus
4328  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329  * at a time, so we disallow creating events that might conflict, namely:
4330  *
4331  *  1) cpu-wide events in the presence of per-task events,
4332  *  2) per-task events in the presence of cpu-wide events,
4333  *  3) two matching events on the same context.
4334  *
4335  * The former two cases are handled in the allocation path (perf_event_alloc(),
4336  * _free_event()), the latter -- before the first perf_install_in_context().
4337  */
4338 static int exclusive_event_init(struct perf_event *event)
4339 {
4340         struct pmu *pmu = event->pmu;
4341
4342         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4343                 return 0;
4344
4345         /*
4346          * Prevent co-existence of per-task and cpu-wide events on the
4347          * same exclusive pmu.
4348          *
4349          * Negative pmu::exclusive_cnt means there are cpu-wide
4350          * events on this "exclusive" pmu, positive means there are
4351          * per-task events.
4352          *
4353          * Since this is called in perf_event_alloc() path, event::ctx
4354          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355          * to mean "per-task event", because unlike other attach states it
4356          * never gets cleared.
4357          */
4358         if (event->attach_state & PERF_ATTACH_TASK) {
4359                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4360                         return -EBUSY;
4361         } else {
4362                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4363                         return -EBUSY;
4364         }
4365
4366         return 0;
4367 }
4368
4369 static void exclusive_event_destroy(struct perf_event *event)
4370 {
4371         struct pmu *pmu = event->pmu;
4372
4373         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4374                 return;
4375
4376         /* see comment in exclusive_event_init() */
4377         if (event->attach_state & PERF_ATTACH_TASK)
4378                 atomic_dec(&pmu->exclusive_cnt);
4379         else
4380                 atomic_inc(&pmu->exclusive_cnt);
4381 }
4382
4383 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4384 {
4385         if ((e1->pmu == e2->pmu) &&
4386             (e1->cpu == e2->cpu ||
4387              e1->cpu == -1 ||
4388              e2->cpu == -1))
4389                 return true;
4390         return false;
4391 }
4392
4393 /* Called under the same ctx::mutex as perf_install_in_context() */
4394 static bool exclusive_event_installable(struct perf_event *event,
4395                                         struct perf_event_context *ctx)
4396 {
4397         struct perf_event *iter_event;
4398         struct pmu *pmu = event->pmu;
4399
4400         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4401                 return true;
4402
4403         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4404                 if (exclusive_event_match(iter_event, event))
4405                         return false;
4406         }
4407
4408         return true;
4409 }
4410
4411 static void perf_addr_filters_splice(struct perf_event *event,
4412                                        struct list_head *head);
4413
4414 static void _free_event(struct perf_event *event)
4415 {
4416         irq_work_sync(&event->pending);
4417
4418         unaccount_event(event);
4419
4420         if (event->rb) {
4421                 /*
4422                  * Can happen when we close an event with re-directed output.
4423                  *
4424                  * Since we have a 0 refcount, perf_mmap_close() will skip
4425                  * over us; possibly making our ring_buffer_put() the last.
4426                  */
4427                 mutex_lock(&event->mmap_mutex);
4428                 ring_buffer_attach(event, NULL);
4429                 mutex_unlock(&event->mmap_mutex);
4430         }
4431
4432         if (is_cgroup_event(event))
4433                 perf_detach_cgroup(event);
4434
4435         if (!event->parent) {
4436                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4437                         put_callchain_buffers();
4438         }
4439
4440         perf_event_free_bpf_prog(event);
4441         perf_addr_filters_splice(event, NULL);
4442         kfree(event->addr_filters_offs);
4443
4444         if (event->destroy)
4445                 event->destroy(event);
4446
4447         if (event->ctx)
4448                 put_ctx(event->ctx);
4449
4450         if (event->hw.target)
4451                 put_task_struct(event->hw.target);
4452
4453         exclusive_event_destroy(event);
4454         module_put(event->pmu->module);
4455
4456         call_rcu(&event->rcu_head, free_event_rcu);
4457 }
4458
4459 /*
4460  * Used to free events which have a known refcount of 1, such as in error paths
4461  * where the event isn't exposed yet and inherited events.
4462  */
4463 static void free_event(struct perf_event *event)
4464 {
4465         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4466                                 "unexpected event refcount: %ld; ptr=%p\n",
4467                                 atomic_long_read(&event->refcount), event)) {
4468                 /* leak to avoid use-after-free */
4469                 return;
4470         }
4471
4472         _free_event(event);
4473 }
4474
4475 /*
4476  * Remove user event from the owner task.
4477  */
4478 static void perf_remove_from_owner(struct perf_event *event)
4479 {
4480         struct task_struct *owner;
4481
4482         rcu_read_lock();
4483         /*
4484          * Matches the smp_store_release() in perf_event_exit_task(). If we
4485          * observe !owner it means the list deletion is complete and we can
4486          * indeed free this event, otherwise we need to serialize on
4487          * owner->perf_event_mutex.
4488          */
4489         owner = READ_ONCE(event->owner);
4490         if (owner) {
4491                 /*
4492                  * Since delayed_put_task_struct() also drops the last
4493                  * task reference we can safely take a new reference
4494                  * while holding the rcu_read_lock().
4495                  */
4496                 get_task_struct(owner);
4497         }
4498         rcu_read_unlock();
4499
4500         if (owner) {
4501                 /*
4502                  * If we're here through perf_event_exit_task() we're already
4503                  * holding ctx->mutex which would be an inversion wrt. the
4504                  * normal lock order.
4505                  *
4506                  * However we can safely take this lock because its the child
4507                  * ctx->mutex.
4508                  */
4509                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4510
4511                 /*
4512                  * We have to re-check the event->owner field, if it is cleared
4513                  * we raced with perf_event_exit_task(), acquiring the mutex
4514                  * ensured they're done, and we can proceed with freeing the
4515                  * event.
4516                  */
4517                 if (event->owner) {
4518                         list_del_init(&event->owner_entry);
4519                         smp_store_release(&event->owner, NULL);
4520                 }
4521                 mutex_unlock(&owner->perf_event_mutex);
4522                 put_task_struct(owner);
4523         }
4524 }
4525
4526 static void put_event(struct perf_event *event)
4527 {
4528         if (!atomic_long_dec_and_test(&event->refcount))
4529                 return;
4530
4531         _free_event(event);
4532 }
4533
4534 /*
4535  * Kill an event dead; while event:refcount will preserve the event
4536  * object, it will not preserve its functionality. Once the last 'user'
4537  * gives up the object, we'll destroy the thing.
4538  */
4539 int perf_event_release_kernel(struct perf_event *event)
4540 {
4541         struct perf_event_context *ctx = event->ctx;
4542         struct perf_event *child, *tmp;
4543         LIST_HEAD(free_list);
4544
4545         /*
4546          * If we got here through err_file: fput(event_file); we will not have
4547          * attached to a context yet.
4548          */
4549         if (!ctx) {
4550                 WARN_ON_ONCE(event->attach_state &
4551                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4552                 goto no_ctx;
4553         }
4554
4555         if (!is_kernel_event(event))
4556                 perf_remove_from_owner(event);
4557
4558         ctx = perf_event_ctx_lock(event);
4559         WARN_ON_ONCE(ctx->parent_ctx);
4560         perf_remove_from_context(event, DETACH_GROUP);
4561
4562         raw_spin_lock_irq(&ctx->lock);
4563         /*
4564          * Mark this event as STATE_DEAD, there is no external reference to it
4565          * anymore.
4566          *
4567          * Anybody acquiring event->child_mutex after the below loop _must_
4568          * also see this, most importantly inherit_event() which will avoid
4569          * placing more children on the list.
4570          *
4571          * Thus this guarantees that we will in fact observe and kill _ALL_
4572          * child events.
4573          */
4574         event->state = PERF_EVENT_STATE_DEAD;
4575         raw_spin_unlock_irq(&ctx->lock);
4576
4577         perf_event_ctx_unlock(event, ctx);
4578
4579 again:
4580         mutex_lock(&event->child_mutex);
4581         list_for_each_entry(child, &event->child_list, child_list) {
4582
4583                 /*
4584                  * Cannot change, child events are not migrated, see the
4585                  * comment with perf_event_ctx_lock_nested().
4586                  */
4587                 ctx = READ_ONCE(child->ctx);
4588                 /*
4589                  * Since child_mutex nests inside ctx::mutex, we must jump
4590                  * through hoops. We start by grabbing a reference on the ctx.
4591                  *
4592                  * Since the event cannot get freed while we hold the
4593                  * child_mutex, the context must also exist and have a !0
4594                  * reference count.
4595                  */
4596                 get_ctx(ctx);
4597
4598                 /*
4599                  * Now that we have a ctx ref, we can drop child_mutex, and
4600                  * acquire ctx::mutex without fear of it going away. Then we
4601                  * can re-acquire child_mutex.
4602                  */
4603                 mutex_unlock(&event->child_mutex);
4604                 mutex_lock(&ctx->mutex);
4605                 mutex_lock(&event->child_mutex);
4606
4607                 /*
4608                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4609                  * state, if child is still the first entry, it didn't get freed
4610                  * and we can continue doing so.
4611                  */
4612                 tmp = list_first_entry_or_null(&event->child_list,
4613                                                struct perf_event, child_list);
4614                 if (tmp == child) {
4615                         perf_remove_from_context(child, DETACH_GROUP);
4616                         list_move(&child->child_list, &free_list);
4617                         /*
4618                          * This matches the refcount bump in inherit_event();
4619                          * this can't be the last reference.
4620                          */
4621                         put_event(event);
4622                 }
4623
4624                 mutex_unlock(&event->child_mutex);
4625                 mutex_unlock(&ctx->mutex);
4626                 put_ctx(ctx);
4627                 goto again;
4628         }
4629         mutex_unlock(&event->child_mutex);
4630
4631         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4632                 list_del(&child->child_list);
4633                 free_event(child);
4634         }
4635
4636 no_ctx:
4637         put_event(event); /* Must be the 'last' reference */
4638         return 0;
4639 }
4640 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4641
4642 /*
4643  * Called when the last reference to the file is gone.
4644  */
4645 static int perf_release(struct inode *inode, struct file *file)
4646 {
4647         perf_event_release_kernel(file->private_data);
4648         return 0;
4649 }
4650
4651 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4652 {
4653         struct perf_event *child;
4654         u64 total = 0;
4655
4656         *enabled = 0;
4657         *running = 0;
4658
4659         mutex_lock(&event->child_mutex);
4660
4661         (void)perf_event_read(event, false);
4662         total += perf_event_count(event);
4663
4664         *enabled += event->total_time_enabled +
4665                         atomic64_read(&event->child_total_time_enabled);
4666         *running += event->total_time_running +
4667                         atomic64_read(&event->child_total_time_running);
4668
4669         list_for_each_entry(child, &event->child_list, child_list) {
4670                 (void)perf_event_read(child, false);
4671                 total += perf_event_count(child);
4672                 *enabled += child->total_time_enabled;
4673                 *running += child->total_time_running;
4674         }
4675         mutex_unlock(&event->child_mutex);
4676
4677         return total;
4678 }
4679
4680 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4681 {
4682         struct perf_event_context *ctx;
4683         u64 count;
4684
4685         ctx = perf_event_ctx_lock(event);
4686         count = __perf_event_read_value(event, enabled, running);
4687         perf_event_ctx_unlock(event, ctx);
4688
4689         return count;
4690 }
4691 EXPORT_SYMBOL_GPL(perf_event_read_value);
4692
4693 static int __perf_read_group_add(struct perf_event *leader,
4694                                         u64 read_format, u64 *values)
4695 {
4696         struct perf_event_context *ctx = leader->ctx;
4697         struct perf_event *sub;
4698         unsigned long flags;
4699         int n = 1; /* skip @nr */
4700         int ret;
4701
4702         ret = perf_event_read(leader, true);
4703         if (ret)
4704                 return ret;
4705
4706         raw_spin_lock_irqsave(&ctx->lock, flags);
4707
4708         /*
4709          * Since we co-schedule groups, {enabled,running} times of siblings
4710          * will be identical to those of the leader, so we only publish one
4711          * set.
4712          */
4713         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4714                 values[n++] += leader->total_time_enabled +
4715                         atomic64_read(&leader->child_total_time_enabled);
4716         }
4717
4718         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4719                 values[n++] += leader->total_time_running +
4720                         atomic64_read(&leader->child_total_time_running);
4721         }
4722
4723         /*
4724          * Write {count,id} tuples for every sibling.
4725          */
4726         values[n++] += perf_event_count(leader);
4727         if (read_format & PERF_FORMAT_ID)
4728                 values[n++] = primary_event_id(leader);
4729
4730         for_each_sibling_event(sub, leader) {
4731                 values[n++] += perf_event_count(sub);
4732                 if (read_format & PERF_FORMAT_ID)
4733                         values[n++] = primary_event_id(sub);
4734         }
4735
4736         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4737         return 0;
4738 }
4739
4740 static int perf_read_group(struct perf_event *event,
4741                                    u64 read_format, char __user *buf)
4742 {
4743         struct perf_event *leader = event->group_leader, *child;
4744         struct perf_event_context *ctx = leader->ctx;
4745         int ret;
4746         u64 *values;
4747
4748         lockdep_assert_held(&ctx->mutex);
4749
4750         values = kzalloc(event->read_size, GFP_KERNEL);
4751         if (!values)
4752                 return -ENOMEM;
4753
4754         values[0] = 1 + leader->nr_siblings;
4755
4756         /*
4757          * By locking the child_mutex of the leader we effectively
4758          * lock the child list of all siblings.. XXX explain how.
4759          */
4760         mutex_lock(&leader->child_mutex);
4761
4762         ret = __perf_read_group_add(leader, read_format, values);
4763         if (ret)
4764                 goto unlock;
4765
4766         list_for_each_entry(child, &leader->child_list, child_list) {
4767                 ret = __perf_read_group_add(child, read_format, values);
4768                 if (ret)
4769                         goto unlock;
4770         }
4771
4772         mutex_unlock(&leader->child_mutex);
4773
4774         ret = event->read_size;
4775         if (copy_to_user(buf, values, event->read_size))
4776                 ret = -EFAULT;
4777         goto out;
4778
4779 unlock:
4780         mutex_unlock(&leader->child_mutex);
4781 out:
4782         kfree(values);
4783         return ret;
4784 }
4785
4786 static int perf_read_one(struct perf_event *event,
4787                                  u64 read_format, char __user *buf)
4788 {
4789         u64 enabled, running;
4790         u64 values[4];
4791         int n = 0;
4792
4793         values[n++] = __perf_event_read_value(event, &enabled, &running);
4794         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4795                 values[n++] = enabled;
4796         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4797                 values[n++] = running;
4798         if (read_format & PERF_FORMAT_ID)
4799                 values[n++] = primary_event_id(event);
4800
4801         if (copy_to_user(buf, values, n * sizeof(u64)))
4802                 return -EFAULT;
4803
4804         return n * sizeof(u64);
4805 }
4806
4807 static bool is_event_hup(struct perf_event *event)
4808 {
4809         bool no_children;
4810
4811         if (event->state > PERF_EVENT_STATE_EXIT)
4812                 return false;
4813
4814         mutex_lock(&event->child_mutex);
4815         no_children = list_empty(&event->child_list);
4816         mutex_unlock(&event->child_mutex);
4817         return no_children;
4818 }
4819
4820 /*
4821  * Read the performance event - simple non blocking version for now
4822  */
4823 static ssize_t
4824 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4825 {
4826         u64 read_format = event->attr.read_format;
4827         int ret;
4828
4829         /*
4830          * Return end-of-file for a read on an event that is in
4831          * error state (i.e. because it was pinned but it couldn't be
4832          * scheduled on to the CPU at some point).
4833          */
4834         if (event->state == PERF_EVENT_STATE_ERROR)
4835                 return 0;
4836
4837         if (count < event->read_size)
4838                 return -ENOSPC;
4839
4840         WARN_ON_ONCE(event->ctx->parent_ctx);
4841         if (read_format & PERF_FORMAT_GROUP)
4842                 ret = perf_read_group(event, read_format, buf);
4843         else
4844                 ret = perf_read_one(event, read_format, buf);
4845
4846         return ret;
4847 }
4848
4849 static ssize_t
4850 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4851 {
4852         struct perf_event *event = file->private_data;
4853         struct perf_event_context *ctx;
4854         int ret;
4855
4856         ctx = perf_event_ctx_lock(event);
4857         ret = __perf_read(event, buf, count);
4858         perf_event_ctx_unlock(event, ctx);
4859
4860         return ret;
4861 }
4862
4863 static __poll_t perf_poll(struct file *file, poll_table *wait)
4864 {
4865         struct perf_event *event = file->private_data;
4866         struct ring_buffer *rb;
4867         __poll_t events = EPOLLHUP;
4868
4869         poll_wait(file, &event->waitq, wait);
4870
4871         if (is_event_hup(event))
4872                 return events;
4873
4874         /*
4875          * Pin the event->rb by taking event->mmap_mutex; otherwise
4876          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4877          */
4878         mutex_lock(&event->mmap_mutex);
4879         rb = event->rb;
4880         if (rb)
4881                 events = atomic_xchg(&rb->poll, 0);
4882         mutex_unlock(&event->mmap_mutex);
4883         return events;
4884 }
4885
4886 static void _perf_event_reset(struct perf_event *event)
4887 {
4888         (void)perf_event_read(event, false);
4889         local64_set(&event->count, 0);
4890         perf_event_update_userpage(event);
4891 }
4892
4893 /*
4894  * Holding the top-level event's child_mutex means that any
4895  * descendant process that has inherited this event will block
4896  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4897  * task existence requirements of perf_event_enable/disable.
4898  */
4899 static void perf_event_for_each_child(struct perf_event *event,
4900                                         void (*func)(struct perf_event *))
4901 {
4902         struct perf_event *child;
4903
4904         WARN_ON_ONCE(event->ctx->parent_ctx);
4905
4906         mutex_lock(&event->child_mutex);
4907         func(event);
4908         list_for_each_entry(child, &event->child_list, child_list)
4909                 func(child);
4910         mutex_unlock(&event->child_mutex);
4911 }
4912
4913 static void perf_event_for_each(struct perf_event *event,
4914                                   void (*func)(struct perf_event *))
4915 {
4916         struct perf_event_context *ctx = event->ctx;
4917         struct perf_event *sibling;
4918
4919         lockdep_assert_held(&ctx->mutex);
4920
4921         event = event->group_leader;
4922
4923         perf_event_for_each_child(event, func);
4924         for_each_sibling_event(sibling, event)
4925                 perf_event_for_each_child(sibling, func);
4926 }
4927
4928 static void __perf_event_period(struct perf_event *event,
4929                                 struct perf_cpu_context *cpuctx,
4930                                 struct perf_event_context *ctx,
4931                                 void *info)
4932 {
4933         u64 value = *((u64 *)info);
4934         bool active;
4935
4936         if (event->attr.freq) {
4937                 event->attr.sample_freq = value;
4938         } else {
4939                 event->attr.sample_period = value;
4940                 event->hw.sample_period = value;
4941         }
4942
4943         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4944         if (active) {
4945                 perf_pmu_disable(ctx->pmu);
4946                 /*
4947                  * We could be throttled; unthrottle now to avoid the tick
4948                  * trying to unthrottle while we already re-started the event.
4949                  */
4950                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4951                         event->hw.interrupts = 0;
4952                         perf_log_throttle(event, 1);
4953                 }
4954                 event->pmu->stop(event, PERF_EF_UPDATE);
4955         }
4956
4957         local64_set(&event->hw.period_left, 0);
4958
4959         if (active) {
4960                 event->pmu->start(event, PERF_EF_RELOAD);
4961                 perf_pmu_enable(ctx->pmu);
4962         }
4963 }
4964
4965 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4966 {
4967         u64 value;
4968
4969         if (!is_sampling_event(event))
4970                 return -EINVAL;
4971
4972         if (copy_from_user(&value, arg, sizeof(value)))
4973                 return -EFAULT;
4974
4975         if (!value)
4976                 return -EINVAL;
4977
4978         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4979                 return -EINVAL;
4980
4981         event_function_call(event, __perf_event_period, &value);
4982
4983         return 0;
4984 }
4985
4986 static const struct file_operations perf_fops;
4987
4988 static inline int perf_fget_light(int fd, struct fd *p)
4989 {
4990         struct fd f = fdget(fd);
4991         if (!f.file)
4992                 return -EBADF;
4993
4994         if (f.file->f_op != &perf_fops) {
4995                 fdput(f);
4996                 return -EBADF;
4997         }
4998         *p = f;
4999         return 0;
5000 }
5001
5002 static int perf_event_set_output(struct perf_event *event,
5003                                  struct perf_event *output_event);
5004 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5006 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5007                           struct perf_event_attr *attr);
5008
5009 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5010 {
5011         void (*func)(struct perf_event *);
5012         u32 flags = arg;
5013
5014         switch (cmd) {
5015         case PERF_EVENT_IOC_ENABLE:
5016                 func = _perf_event_enable;
5017                 break;
5018         case PERF_EVENT_IOC_DISABLE:
5019                 func = _perf_event_disable;
5020                 break;
5021         case PERF_EVENT_IOC_RESET:
5022                 func = _perf_event_reset;
5023                 break;
5024
5025         case PERF_EVENT_IOC_REFRESH:
5026                 return _perf_event_refresh(event, arg);
5027
5028         case PERF_EVENT_IOC_PERIOD:
5029                 return perf_event_period(event, (u64 __user *)arg);
5030
5031         case PERF_EVENT_IOC_ID:
5032         {
5033                 u64 id = primary_event_id(event);
5034
5035                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5036                         return -EFAULT;
5037                 return 0;
5038         }
5039
5040         case PERF_EVENT_IOC_SET_OUTPUT:
5041         {
5042                 int ret;
5043                 if (arg != -1) {
5044                         struct perf_event *output_event;
5045                         struct fd output;
5046                         ret = perf_fget_light(arg, &output);
5047                         if (ret)
5048                                 return ret;
5049                         output_event = output.file->private_data;
5050                         ret = perf_event_set_output(event, output_event);
5051                         fdput(output);
5052                 } else {
5053                         ret = perf_event_set_output(event, NULL);
5054                 }
5055                 return ret;
5056         }
5057
5058         case PERF_EVENT_IOC_SET_FILTER:
5059                 return perf_event_set_filter(event, (void __user *)arg);
5060
5061         case PERF_EVENT_IOC_SET_BPF:
5062                 return perf_event_set_bpf_prog(event, arg);
5063
5064         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5065                 struct ring_buffer *rb;
5066
5067                 rcu_read_lock();
5068                 rb = rcu_dereference(event->rb);
5069                 if (!rb || !rb->nr_pages) {
5070                         rcu_read_unlock();
5071                         return -EINVAL;
5072                 }
5073                 rb_toggle_paused(rb, !!arg);
5074                 rcu_read_unlock();
5075                 return 0;
5076         }
5077
5078         case PERF_EVENT_IOC_QUERY_BPF:
5079                 return perf_event_query_prog_array(event, (void __user *)arg);
5080
5081         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5082                 struct perf_event_attr new_attr;
5083                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5084                                          &new_attr);
5085
5086                 if (err)
5087                         return err;
5088
5089                 return perf_event_modify_attr(event,  &new_attr);
5090         }
5091         default:
5092                 return -ENOTTY;
5093         }
5094
5095         if (flags & PERF_IOC_FLAG_GROUP)
5096                 perf_event_for_each(event, func);
5097         else
5098                 perf_event_for_each_child(event, func);
5099
5100         return 0;
5101 }
5102
5103 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5104 {
5105         struct perf_event *event = file->private_data;
5106         struct perf_event_context *ctx;
5107         long ret;
5108
5109         ctx = perf_event_ctx_lock(event);
5110         ret = _perf_ioctl(event, cmd, arg);
5111         perf_event_ctx_unlock(event, ctx);
5112
5113         return ret;
5114 }
5115
5116 #ifdef CONFIG_COMPAT
5117 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5118                                 unsigned long arg)
5119 {
5120         switch (_IOC_NR(cmd)) {
5121         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5122         case _IOC_NR(PERF_EVENT_IOC_ID):
5123         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5124         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5125                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5126                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5127                         cmd &= ~IOCSIZE_MASK;
5128                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5129                 }
5130                 break;
5131         }
5132         return perf_ioctl(file, cmd, arg);
5133 }
5134 #else
5135 # define perf_compat_ioctl NULL
5136 #endif
5137
5138 int perf_event_task_enable(void)
5139 {
5140         struct perf_event_context *ctx;
5141         struct perf_event *event;
5142
5143         mutex_lock(&current->perf_event_mutex);
5144         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5145                 ctx = perf_event_ctx_lock(event);
5146                 perf_event_for_each_child(event, _perf_event_enable);
5147                 perf_event_ctx_unlock(event, ctx);
5148         }
5149         mutex_unlock(&current->perf_event_mutex);
5150
5151         return 0;
5152 }
5153
5154 int perf_event_task_disable(void)
5155 {
5156         struct perf_event_context *ctx;
5157         struct perf_event *event;
5158
5159         mutex_lock(&current->perf_event_mutex);
5160         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5161                 ctx = perf_event_ctx_lock(event);
5162                 perf_event_for_each_child(event, _perf_event_disable);
5163                 perf_event_ctx_unlock(event, ctx);
5164         }
5165         mutex_unlock(&current->perf_event_mutex);
5166
5167         return 0;
5168 }
5169
5170 static int perf_event_index(struct perf_event *event)
5171 {
5172         if (event->hw.state & PERF_HES_STOPPED)
5173                 return 0;
5174
5175         if (event->state != PERF_EVENT_STATE_ACTIVE)
5176                 return 0;
5177
5178         return event->pmu->event_idx(event);
5179 }
5180
5181 static void calc_timer_values(struct perf_event *event,
5182                                 u64 *now,
5183                                 u64 *enabled,
5184                                 u64 *running)
5185 {
5186         u64 ctx_time;
5187
5188         *now = perf_clock();
5189         ctx_time = event->shadow_ctx_time + *now;
5190         __perf_update_times(event, ctx_time, enabled, running);
5191 }
5192
5193 static void perf_event_init_userpage(struct perf_event *event)
5194 {
5195         struct perf_event_mmap_page *userpg;
5196         struct ring_buffer *rb;
5197
5198         rcu_read_lock();
5199         rb = rcu_dereference(event->rb);
5200         if (!rb)
5201                 goto unlock;
5202
5203         userpg = rb->user_page;
5204
5205         /* Allow new userspace to detect that bit 0 is deprecated */
5206         userpg->cap_bit0_is_deprecated = 1;
5207         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5208         userpg->data_offset = PAGE_SIZE;
5209         userpg->data_size = perf_data_size(rb);
5210
5211 unlock:
5212         rcu_read_unlock();
5213 }
5214
5215 void __weak arch_perf_update_userpage(
5216         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5217 {
5218 }
5219
5220 /*
5221  * Callers need to ensure there can be no nesting of this function, otherwise
5222  * the seqlock logic goes bad. We can not serialize this because the arch
5223  * code calls this from NMI context.
5224  */
5225 void perf_event_update_userpage(struct perf_event *event)
5226 {
5227         struct perf_event_mmap_page *userpg;
5228         struct ring_buffer *rb;
5229         u64 enabled, running, now;
5230
5231         rcu_read_lock();
5232         rb = rcu_dereference(event->rb);
5233         if (!rb)
5234                 goto unlock;
5235
5236         /*
5237          * compute total_time_enabled, total_time_running
5238          * based on snapshot values taken when the event
5239          * was last scheduled in.
5240          *
5241          * we cannot simply called update_context_time()
5242          * because of locking issue as we can be called in
5243          * NMI context
5244          */
5245         calc_timer_values(event, &now, &enabled, &running);
5246
5247         userpg = rb->user_page;
5248         /*
5249          * Disable preemption so as to not let the corresponding user-space
5250          * spin too long if we get preempted.
5251          */
5252         preempt_disable();
5253         ++userpg->lock;
5254         barrier();
5255         userpg->index = perf_event_index(event);
5256         userpg->offset = perf_event_count(event);
5257         if (userpg->index)
5258                 userpg->offset -= local64_read(&event->hw.prev_count);
5259
5260         userpg->time_enabled = enabled +
5261                         atomic64_read(&event->child_total_time_enabled);
5262
5263         userpg->time_running = running +
5264                         atomic64_read(&event->child_total_time_running);
5265
5266         arch_perf_update_userpage(event, userpg, now);
5267
5268         barrier();
5269         ++userpg->lock;
5270         preempt_enable();
5271 unlock:
5272         rcu_read_unlock();
5273 }
5274 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5275
5276 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5277 {
5278         struct perf_event *event = vmf->vma->vm_file->private_data;
5279         struct ring_buffer *rb;
5280         vm_fault_t ret = VM_FAULT_SIGBUS;
5281
5282         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5283                 if (vmf->pgoff == 0)
5284                         ret = 0;
5285                 return ret;
5286         }
5287
5288         rcu_read_lock();
5289         rb = rcu_dereference(event->rb);
5290         if (!rb)
5291                 goto unlock;
5292
5293         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5294                 goto unlock;
5295
5296         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5297         if (!vmf->page)
5298                 goto unlock;
5299
5300         get_page(vmf->page);
5301         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5302         vmf->page->index   = vmf->pgoff;
5303
5304         ret = 0;
5305 unlock:
5306         rcu_read_unlock();
5307
5308         return ret;
5309 }
5310
5311 static void ring_buffer_attach(struct perf_event *event,
5312                                struct ring_buffer *rb)
5313 {
5314         struct ring_buffer *old_rb = NULL;
5315         unsigned long flags;
5316
5317         if (event->rb) {
5318                 /*
5319                  * Should be impossible, we set this when removing
5320                  * event->rb_entry and wait/clear when adding event->rb_entry.
5321                  */
5322                 WARN_ON_ONCE(event->rcu_pending);
5323
5324                 old_rb = event->rb;
5325                 spin_lock_irqsave(&old_rb->event_lock, flags);
5326                 list_del_rcu(&event->rb_entry);
5327                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5328
5329                 event->rcu_batches = get_state_synchronize_rcu();
5330                 event->rcu_pending = 1;
5331         }
5332
5333         if (rb) {
5334                 if (event->rcu_pending) {
5335                         cond_synchronize_rcu(event->rcu_batches);
5336                         event->rcu_pending = 0;
5337                 }
5338
5339                 spin_lock_irqsave(&rb->event_lock, flags);
5340                 list_add_rcu(&event->rb_entry, &rb->event_list);
5341                 spin_unlock_irqrestore(&rb->event_lock, flags);
5342         }
5343
5344         /*
5345          * Avoid racing with perf_mmap_close(AUX): stop the event
5346          * before swizzling the event::rb pointer; if it's getting
5347          * unmapped, its aux_mmap_count will be 0 and it won't
5348          * restart. See the comment in __perf_pmu_output_stop().
5349          *
5350          * Data will inevitably be lost when set_output is done in
5351          * mid-air, but then again, whoever does it like this is
5352          * not in for the data anyway.
5353          */
5354         if (has_aux(event))
5355                 perf_event_stop(event, 0);
5356
5357         rcu_assign_pointer(event->rb, rb);
5358
5359         if (old_rb) {
5360                 ring_buffer_put(old_rb);
5361                 /*
5362                  * Since we detached before setting the new rb, so that we
5363                  * could attach the new rb, we could have missed a wakeup.
5364                  * Provide it now.
5365                  */
5366                 wake_up_all(&event->waitq);
5367         }
5368 }
5369
5370 static void ring_buffer_wakeup(struct perf_event *event)
5371 {
5372         struct ring_buffer *rb;
5373
5374         rcu_read_lock();
5375         rb = rcu_dereference(event->rb);
5376         if (rb) {
5377                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5378                         wake_up_all(&event->waitq);
5379         }
5380         rcu_read_unlock();
5381 }
5382
5383 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5384 {
5385         struct ring_buffer *rb;
5386
5387         rcu_read_lock();
5388         rb = rcu_dereference(event->rb);
5389         if (rb) {
5390                 if (!atomic_inc_not_zero(&rb->refcount))
5391                         rb = NULL;
5392         }
5393         rcu_read_unlock();
5394
5395         return rb;
5396 }
5397
5398 void ring_buffer_put(struct ring_buffer *rb)
5399 {
5400         if (!atomic_dec_and_test(&rb->refcount))
5401                 return;
5402
5403         WARN_ON_ONCE(!list_empty(&rb->event_list));
5404
5405         call_rcu(&rb->rcu_head, rb_free_rcu);
5406 }
5407
5408 static void perf_mmap_open(struct vm_area_struct *vma)
5409 {
5410         struct perf_event *event = vma->vm_file->private_data;
5411
5412         atomic_inc(&event->mmap_count);
5413         atomic_inc(&event->rb->mmap_count);
5414
5415         if (vma->vm_pgoff)
5416                 atomic_inc(&event->rb->aux_mmap_count);
5417
5418         if (event->pmu->event_mapped)
5419                 event->pmu->event_mapped(event, vma->vm_mm);
5420 }
5421
5422 static void perf_pmu_output_stop(struct perf_event *event);
5423
5424 /*
5425  * A buffer can be mmap()ed multiple times; either directly through the same
5426  * event, or through other events by use of perf_event_set_output().
5427  *
5428  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5429  * the buffer here, where we still have a VM context. This means we need
5430  * to detach all events redirecting to us.
5431  */
5432 static void perf_mmap_close(struct vm_area_struct *vma)
5433 {
5434         struct perf_event *event = vma->vm_file->private_data;
5435
5436         struct ring_buffer *rb = ring_buffer_get(event);
5437         struct user_struct *mmap_user = rb->mmap_user;
5438         int mmap_locked = rb->mmap_locked;
5439         unsigned long size = perf_data_size(rb);
5440
5441         if (event->pmu->event_unmapped)
5442                 event->pmu->event_unmapped(event, vma->vm_mm);
5443
5444         /*
5445          * rb->aux_mmap_count will always drop before rb->mmap_count and
5446          * event->mmap_count, so it is ok to use event->mmap_mutex to
5447          * serialize with perf_mmap here.
5448          */
5449         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5450             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5451                 /*
5452                  * Stop all AUX events that are writing to this buffer,
5453                  * so that we can free its AUX pages and corresponding PMU
5454                  * data. Note that after rb::aux_mmap_count dropped to zero,
5455                  * they won't start any more (see perf_aux_output_begin()).
5456                  */
5457                 perf_pmu_output_stop(event);
5458
5459                 /* now it's safe to free the pages */
5460                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5461                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5462
5463                 /* this has to be the last one */
5464                 rb_free_aux(rb);
5465                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5466
5467                 mutex_unlock(&event->mmap_mutex);
5468         }
5469
5470         atomic_dec(&rb->mmap_count);
5471
5472         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5473                 goto out_put;
5474
5475         ring_buffer_attach(event, NULL);
5476         mutex_unlock(&event->mmap_mutex);
5477
5478         /* If there's still other mmap()s of this buffer, we're done. */
5479         if (atomic_read(&rb->mmap_count))
5480                 goto out_put;
5481
5482         /*
5483          * No other mmap()s, detach from all other events that might redirect
5484          * into the now unreachable buffer. Somewhat complicated by the
5485          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5486          */
5487 again:
5488         rcu_read_lock();
5489         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5490                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5491                         /*
5492                          * This event is en-route to free_event() which will
5493                          * detach it and remove it from the list.
5494                          */
5495                         continue;
5496                 }
5497                 rcu_read_unlock();
5498
5499                 mutex_lock(&event->mmap_mutex);
5500                 /*
5501                  * Check we didn't race with perf_event_set_output() which can
5502                  * swizzle the rb from under us while we were waiting to
5503                  * acquire mmap_mutex.
5504                  *
5505                  * If we find a different rb; ignore this event, a next
5506                  * iteration will no longer find it on the list. We have to
5507                  * still restart the iteration to make sure we're not now
5508                  * iterating the wrong list.
5509                  */
5510                 if (event->rb == rb)
5511                         ring_buffer_attach(event, NULL);
5512
5513                 mutex_unlock(&event->mmap_mutex);
5514                 put_event(event);
5515
5516                 /*
5517                  * Restart the iteration; either we're on the wrong list or
5518                  * destroyed its integrity by doing a deletion.
5519                  */
5520                 goto again;
5521         }
5522         rcu_read_unlock();
5523
5524         /*
5525          * It could be there's still a few 0-ref events on the list; they'll
5526          * get cleaned up by free_event() -- they'll also still have their
5527          * ref on the rb and will free it whenever they are done with it.
5528          *
5529          * Aside from that, this buffer is 'fully' detached and unmapped,
5530          * undo the VM accounting.
5531          */
5532
5533         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5534         vma->vm_mm->pinned_vm -= mmap_locked;
5535         free_uid(mmap_user);
5536
5537 out_put:
5538         ring_buffer_put(rb); /* could be last */
5539 }
5540
5541 static const struct vm_operations_struct perf_mmap_vmops = {
5542         .open           = perf_mmap_open,
5543         .close          = perf_mmap_close, /* non mergable */
5544         .fault          = perf_mmap_fault,
5545         .page_mkwrite   = perf_mmap_fault,
5546 };
5547
5548 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5549 {
5550         struct perf_event *event = file->private_data;
5551         unsigned long user_locked, user_lock_limit;
5552         struct user_struct *user = current_user();
5553         unsigned long locked, lock_limit;
5554         struct ring_buffer *rb = NULL;
5555         unsigned long vma_size;
5556         unsigned long nr_pages;
5557         long user_extra = 0, extra = 0;
5558         int ret = 0, flags = 0;
5559
5560         /*
5561          * Don't allow mmap() of inherited per-task counters. This would
5562          * create a performance issue due to all children writing to the
5563          * same rb.
5564          */
5565         if (event->cpu == -1 && event->attr.inherit)
5566                 return -EINVAL;
5567
5568         if (!(vma->vm_flags & VM_SHARED))
5569                 return -EINVAL;
5570
5571         vma_size = vma->vm_end - vma->vm_start;
5572
5573         if (vma->vm_pgoff == 0) {
5574                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5575         } else {
5576                 /*
5577                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5578                  * mapped, all subsequent mappings should have the same size
5579                  * and offset. Must be above the normal perf buffer.
5580                  */
5581                 u64 aux_offset, aux_size;
5582
5583                 if (!event->rb)
5584                         return -EINVAL;
5585
5586                 nr_pages = vma_size / PAGE_SIZE;
5587
5588                 mutex_lock(&event->mmap_mutex);
5589                 ret = -EINVAL;
5590
5591                 rb = event->rb;
5592                 if (!rb)
5593                         goto aux_unlock;
5594
5595                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5596                 aux_size = READ_ONCE(rb->user_page->aux_size);
5597
5598                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5599                         goto aux_unlock;
5600
5601                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5602                         goto aux_unlock;
5603
5604                 /* already mapped with a different offset */
5605                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5606                         goto aux_unlock;
5607
5608                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5609                         goto aux_unlock;
5610
5611                 /* already mapped with a different size */
5612                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5613                         goto aux_unlock;
5614
5615                 if (!is_power_of_2(nr_pages))
5616                         goto aux_unlock;
5617
5618                 if (!atomic_inc_not_zero(&rb->mmap_count))
5619                         goto aux_unlock;
5620
5621                 if (rb_has_aux(rb)) {
5622                         atomic_inc(&rb->aux_mmap_count);
5623                         ret = 0;
5624                         goto unlock;
5625                 }
5626
5627                 atomic_set(&rb->aux_mmap_count, 1);
5628                 user_extra = nr_pages;
5629
5630                 goto accounting;
5631         }
5632
5633         /*
5634          * If we have rb pages ensure they're a power-of-two number, so we
5635          * can do bitmasks instead of modulo.
5636          */
5637         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5638                 return -EINVAL;
5639
5640         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5641                 return -EINVAL;
5642
5643         WARN_ON_ONCE(event->ctx->parent_ctx);
5644 again:
5645         mutex_lock(&event->mmap_mutex);
5646         if (event->rb) {
5647                 if (event->rb->nr_pages != nr_pages) {
5648                         ret = -EINVAL;
5649                         goto unlock;
5650                 }
5651
5652                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5653                         /*
5654                          * Raced against perf_mmap_close() through
5655                          * perf_event_set_output(). Try again, hope for better
5656                          * luck.
5657                          */
5658                         mutex_unlock(&event->mmap_mutex);
5659                         goto again;
5660                 }
5661
5662                 goto unlock;
5663         }
5664
5665         user_extra = nr_pages + 1;
5666
5667 accounting:
5668         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5669
5670         /*
5671          * Increase the limit linearly with more CPUs:
5672          */
5673         user_lock_limit *= num_online_cpus();
5674
5675         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5676
5677         if (user_locked > user_lock_limit)
5678                 extra = user_locked - user_lock_limit;
5679
5680         lock_limit = rlimit(RLIMIT_MEMLOCK);
5681         lock_limit >>= PAGE_SHIFT;
5682         locked = vma->vm_mm->pinned_vm + extra;
5683
5684         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5685                 !capable(CAP_IPC_LOCK)) {
5686                 ret = -EPERM;
5687                 goto unlock;
5688         }
5689
5690         WARN_ON(!rb && event->rb);
5691
5692         if (vma->vm_flags & VM_WRITE)
5693                 flags |= RING_BUFFER_WRITABLE;
5694
5695         if (!rb) {
5696                 rb = rb_alloc(nr_pages,
5697                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5698                               event->cpu, flags);
5699
5700                 if (!rb) {
5701                         ret = -ENOMEM;
5702                         goto unlock;
5703                 }
5704
5705                 atomic_set(&rb->mmap_count, 1);
5706                 rb->mmap_user = get_current_user();
5707                 rb->mmap_locked = extra;
5708
5709                 ring_buffer_attach(event, rb);
5710
5711                 perf_event_init_userpage(event);
5712                 perf_event_update_userpage(event);
5713         } else {
5714                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5715                                    event->attr.aux_watermark, flags);
5716                 if (!ret)
5717                         rb->aux_mmap_locked = extra;
5718         }
5719
5720 unlock:
5721         if (!ret) {
5722                 atomic_long_add(user_extra, &user->locked_vm);
5723                 vma->vm_mm->pinned_vm += extra;
5724
5725                 atomic_inc(&event->mmap_count);
5726         } else if (rb) {
5727                 atomic_dec(&rb->mmap_count);
5728         }
5729 aux_unlock:
5730         mutex_unlock(&event->mmap_mutex);
5731
5732         /*
5733          * Since pinned accounting is per vm we cannot allow fork() to copy our
5734          * vma.
5735          */
5736         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5737         vma->vm_ops = &perf_mmap_vmops;
5738
5739         if (event->pmu->event_mapped)
5740                 event->pmu->event_mapped(event, vma->vm_mm);
5741
5742         return ret;
5743 }
5744
5745 static int perf_fasync(int fd, struct file *filp, int on)
5746 {
5747         struct inode *inode = file_inode(filp);
5748         struct perf_event *event = filp->private_data;
5749         int retval;
5750
5751         inode_lock(inode);
5752         retval = fasync_helper(fd, filp, on, &event->fasync);
5753         inode_unlock(inode);
5754
5755         if (retval < 0)
5756                 return retval;
5757
5758         return 0;
5759 }
5760
5761 static const struct file_operations perf_fops = {
5762         .llseek                 = no_llseek,
5763         .release                = perf_release,
5764         .read                   = perf_read,
5765         .poll                   = perf_poll,
5766         .unlocked_ioctl         = perf_ioctl,
5767         .compat_ioctl           = perf_compat_ioctl,
5768         .mmap                   = perf_mmap,
5769         .fasync                 = perf_fasync,
5770 };
5771
5772 /*
5773  * Perf event wakeup
5774  *
5775  * If there's data, ensure we set the poll() state and publish everything
5776  * to user-space before waking everybody up.
5777  */
5778
5779 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5780 {
5781         /* only the parent has fasync state */
5782         if (event->parent)
5783                 event = event->parent;
5784         return &event->fasync;
5785 }
5786
5787 void perf_event_wakeup(struct perf_event *event)
5788 {
5789         ring_buffer_wakeup(event);
5790
5791         if (event->pending_kill) {
5792                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5793                 event->pending_kill = 0;
5794         }
5795 }
5796
5797 static void perf_pending_event(struct irq_work *entry)
5798 {
5799         struct perf_event *event = container_of(entry,
5800                         struct perf_event, pending);
5801         int rctx;
5802
5803         rctx = perf_swevent_get_recursion_context();
5804         /*
5805          * If we 'fail' here, that's OK, it means recursion is already disabled
5806          * and we won't recurse 'further'.
5807          */
5808
5809         if (event->pending_disable) {
5810                 event->pending_disable = 0;
5811                 perf_event_disable_local(event);
5812         }
5813
5814         if (event->pending_wakeup) {
5815                 event->pending_wakeup = 0;
5816                 perf_event_wakeup(event);
5817         }
5818
5819         if (rctx >= 0)
5820                 perf_swevent_put_recursion_context(rctx);
5821 }
5822
5823 /*
5824  * We assume there is only KVM supporting the callbacks.
5825  * Later on, we might change it to a list if there is
5826  * another virtualization implementation supporting the callbacks.
5827  */
5828 struct perf_guest_info_callbacks *perf_guest_cbs;
5829
5830 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5831 {
5832         perf_guest_cbs = cbs;
5833         return 0;
5834 }
5835 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5836
5837 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5838 {
5839         perf_guest_cbs = NULL;
5840         return 0;
5841 }
5842 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5843
5844 static void
5845 perf_output_sample_regs(struct perf_output_handle *handle,
5846                         struct pt_regs *regs, u64 mask)
5847 {
5848         int bit;
5849         DECLARE_BITMAP(_mask, 64);
5850
5851         bitmap_from_u64(_mask, mask);
5852         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5853                 u64 val;
5854
5855                 val = perf_reg_value(regs, bit);
5856                 perf_output_put(handle, val);
5857         }
5858 }
5859
5860 static void perf_sample_regs_user(struct perf_regs *regs_user,
5861                                   struct pt_regs *regs,
5862                                   struct pt_regs *regs_user_copy)
5863 {
5864         if (user_mode(regs)) {
5865                 regs_user->abi = perf_reg_abi(current);
5866                 regs_user->regs = regs;
5867         } else if (current->mm) {
5868                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5869         } else {
5870                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5871                 regs_user->regs = NULL;
5872         }
5873 }
5874
5875 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5876                                   struct pt_regs *regs)
5877 {
5878         regs_intr->regs = regs;
5879         regs_intr->abi  = perf_reg_abi(current);
5880 }
5881
5882
5883 /*
5884  * Get remaining task size from user stack pointer.
5885  *
5886  * It'd be better to take stack vma map and limit this more
5887  * precisly, but there's no way to get it safely under interrupt,
5888  * so using TASK_SIZE as limit.
5889  */
5890 static u64 perf_ustack_task_size(struct pt_regs *regs)
5891 {
5892         unsigned long addr = perf_user_stack_pointer(regs);
5893
5894         if (!addr || addr >= TASK_SIZE)
5895                 return 0;
5896
5897         return TASK_SIZE - addr;
5898 }
5899
5900 static u16
5901 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5902                         struct pt_regs *regs)
5903 {
5904         u64 task_size;
5905
5906         /* No regs, no stack pointer, no dump. */
5907         if (!regs)
5908                 return 0;
5909
5910         /*
5911          * Check if we fit in with the requested stack size into the:
5912          * - TASK_SIZE
5913          *   If we don't, we limit the size to the TASK_SIZE.
5914          *
5915          * - remaining sample size
5916          *   If we don't, we customize the stack size to
5917          *   fit in to the remaining sample size.
5918          */
5919
5920         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5921         stack_size = min(stack_size, (u16) task_size);
5922
5923         /* Current header size plus static size and dynamic size. */
5924         header_size += 2 * sizeof(u64);
5925
5926         /* Do we fit in with the current stack dump size? */
5927         if ((u16) (header_size + stack_size) < header_size) {
5928                 /*
5929                  * If we overflow the maximum size for the sample,
5930                  * we customize the stack dump size to fit in.
5931                  */
5932                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5933                 stack_size = round_up(stack_size, sizeof(u64));
5934         }
5935
5936         return stack_size;
5937 }
5938
5939 static void
5940 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5941                           struct pt_regs *regs)
5942 {
5943         /* Case of a kernel thread, nothing to dump */
5944         if (!regs) {
5945                 u64 size = 0;
5946                 perf_output_put(handle, size);
5947         } else {
5948                 unsigned long sp;
5949                 unsigned int rem;
5950                 u64 dyn_size;
5951
5952                 /*
5953                  * We dump:
5954                  * static size
5955                  *   - the size requested by user or the best one we can fit
5956                  *     in to the sample max size
5957                  * data
5958                  *   - user stack dump data
5959                  * dynamic size
5960                  *   - the actual dumped size
5961                  */
5962
5963                 /* Static size. */
5964                 perf_output_put(handle, dump_size);
5965
5966                 /* Data. */
5967                 sp = perf_user_stack_pointer(regs);
5968                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5969                 dyn_size = dump_size - rem;
5970
5971                 perf_output_skip(handle, rem);
5972
5973                 /* Dynamic size. */
5974                 perf_output_put(handle, dyn_size);
5975         }
5976 }
5977
5978 static void __perf_event_header__init_id(struct perf_event_header *header,
5979                                          struct perf_sample_data *data,
5980                                          struct perf_event *event)
5981 {
5982         u64 sample_type = event->attr.sample_type;
5983
5984         data->type = sample_type;
5985         header->size += event->id_header_size;
5986
5987         if (sample_type & PERF_SAMPLE_TID) {
5988                 /* namespace issues */
5989                 data->tid_entry.pid = perf_event_pid(event, current);
5990                 data->tid_entry.tid = perf_event_tid(event, current);
5991         }
5992
5993         if (sample_type & PERF_SAMPLE_TIME)
5994                 data->time = perf_event_clock(event);
5995
5996         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5997                 data->id = primary_event_id(event);
5998
5999         if (sample_type & PERF_SAMPLE_STREAM_ID)
6000                 data->stream_id = event->id;
6001
6002         if (sample_type & PERF_SAMPLE_CPU) {
6003                 data->cpu_entry.cpu      = raw_smp_processor_id();
6004                 data->cpu_entry.reserved = 0;
6005         }
6006 }
6007
6008 void perf_event_header__init_id(struct perf_event_header *header,
6009                                 struct perf_sample_data *data,
6010                                 struct perf_event *event)
6011 {
6012         if (event->attr.sample_id_all)
6013                 __perf_event_header__init_id(header, data, event);
6014 }
6015
6016 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6017                                            struct perf_sample_data *data)
6018 {
6019         u64 sample_type = data->type;
6020
6021         if (sample_type & PERF_SAMPLE_TID)
6022                 perf_output_put(handle, data->tid_entry);
6023
6024         if (sample_type & PERF_SAMPLE_TIME)
6025                 perf_output_put(handle, data->time);
6026
6027         if (sample_type & PERF_SAMPLE_ID)
6028                 perf_output_put(handle, data->id);
6029
6030         if (sample_type & PERF_SAMPLE_STREAM_ID)
6031                 perf_output_put(handle, data->stream_id);
6032
6033         if (sample_type & PERF_SAMPLE_CPU)
6034                 perf_output_put(handle, data->cpu_entry);
6035
6036         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6037                 perf_output_put(handle, data->id);
6038 }
6039
6040 void perf_event__output_id_sample(struct perf_event *event,
6041                                   struct perf_output_handle *handle,
6042                                   struct perf_sample_data *sample)
6043 {
6044         if (event->attr.sample_id_all)
6045                 __perf_event__output_id_sample(handle, sample);
6046 }
6047
6048 static void perf_output_read_one(struct perf_output_handle *handle,
6049                                  struct perf_event *event,
6050                                  u64 enabled, u64 running)
6051 {
6052         u64 read_format = event->attr.read_format;
6053         u64 values[4];
6054         int n = 0;
6055
6056         values[n++] = perf_event_count(event);
6057         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6058                 values[n++] = enabled +
6059                         atomic64_read(&event->child_total_time_enabled);
6060         }
6061         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6062                 values[n++] = running +
6063                         atomic64_read(&event->child_total_time_running);
6064         }
6065         if (read_format & PERF_FORMAT_ID)
6066                 values[n++] = primary_event_id(event);
6067
6068         __output_copy(handle, values, n * sizeof(u64));
6069 }
6070
6071 static void perf_output_read_group(struct perf_output_handle *handle,
6072                             struct perf_event *event,
6073                             u64 enabled, u64 running)
6074 {
6075         struct perf_event *leader = event->group_leader, *sub;
6076         u64 read_format = event->attr.read_format;
6077         u64 values[5];
6078         int n = 0;
6079
6080         values[n++] = 1 + leader->nr_siblings;
6081
6082         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6083                 values[n++] = enabled;
6084
6085         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6086                 values[n++] = running;
6087
6088         if ((leader != event) &&
6089             (leader->state == PERF_EVENT_STATE_ACTIVE))
6090                 leader->pmu->read(leader);
6091
6092         values[n++] = perf_event_count(leader);
6093         if (read_format & PERF_FORMAT_ID)
6094                 values[n++] = primary_event_id(leader);
6095
6096         __output_copy(handle, values, n * sizeof(u64));
6097
6098         for_each_sibling_event(sub, leader) {
6099                 n = 0;
6100
6101                 if ((sub != event) &&
6102                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6103                         sub->pmu->read(sub);
6104
6105                 values[n++] = perf_event_count(sub);
6106                 if (read_format & PERF_FORMAT_ID)
6107                         values[n++] = primary_event_id(sub);
6108
6109                 __output_copy(handle, values, n * sizeof(u64));
6110         }
6111 }
6112
6113 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6114                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6115
6116 /*
6117  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6118  *
6119  * The problem is that its both hard and excessively expensive to iterate the
6120  * child list, not to mention that its impossible to IPI the children running
6121  * on another CPU, from interrupt/NMI context.
6122  */
6123 static void perf_output_read(struct perf_output_handle *handle,
6124                              struct perf_event *event)
6125 {
6126         u64 enabled = 0, running = 0, now;
6127         u64 read_format = event->attr.read_format;
6128
6129         /*
6130          * compute total_time_enabled, total_time_running
6131          * based on snapshot values taken when the event
6132          * was last scheduled in.
6133          *
6134          * we cannot simply called update_context_time()
6135          * because of locking issue as we are called in
6136          * NMI context
6137          */
6138         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6139                 calc_timer_values(event, &now, &enabled, &running);
6140
6141         if (event->attr.read_format & PERF_FORMAT_GROUP)
6142                 perf_output_read_group(handle, event, enabled, running);
6143         else
6144                 perf_output_read_one(handle, event, enabled, running);
6145 }
6146
6147 void perf_output_sample(struct perf_output_handle *handle,
6148                         struct perf_event_header *header,
6149                         struct perf_sample_data *data,
6150                         struct perf_event *event)
6151 {
6152         u64 sample_type = data->type;
6153
6154         perf_output_put(handle, *header);
6155
6156         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6157                 perf_output_put(handle, data->id);
6158
6159         if (sample_type & PERF_SAMPLE_IP)
6160                 perf_output_put(handle, data->ip);
6161
6162         if (sample_type & PERF_SAMPLE_TID)
6163                 perf_output_put(handle, data->tid_entry);
6164
6165         if (sample_type & PERF_SAMPLE_TIME)
6166                 perf_output_put(handle, data->time);
6167
6168         if (sample_type & PERF_SAMPLE_ADDR)
6169                 perf_output_put(handle, data->addr);
6170
6171         if (sample_type & PERF_SAMPLE_ID)
6172                 perf_output_put(handle, data->id);
6173
6174         if (sample_type & PERF_SAMPLE_STREAM_ID)
6175                 perf_output_put(handle, data->stream_id);
6176
6177         if (sample_type & PERF_SAMPLE_CPU)
6178                 perf_output_put(handle, data->cpu_entry);
6179
6180         if (sample_type & PERF_SAMPLE_PERIOD)
6181                 perf_output_put(handle, data->period);
6182
6183         if (sample_type & PERF_SAMPLE_READ)
6184                 perf_output_read(handle, event);
6185
6186         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6187                 int size = 1;
6188
6189                 size += data->callchain->nr;
6190                 size *= sizeof(u64);
6191                 __output_copy(handle, data->callchain, size);
6192         }
6193
6194         if (sample_type & PERF_SAMPLE_RAW) {
6195                 struct perf_raw_record *raw = data->raw;
6196
6197                 if (raw) {
6198                         struct perf_raw_frag *frag = &raw->frag;
6199
6200                         perf_output_put(handle, raw->size);
6201                         do {
6202                                 if (frag->copy) {
6203                                         __output_custom(handle, frag->copy,
6204                                                         frag->data, frag->size);
6205                                 } else {
6206                                         __output_copy(handle, frag->data,
6207                                                       frag->size);
6208                                 }
6209                                 if (perf_raw_frag_last(frag))
6210                                         break;
6211                                 frag = frag->next;
6212                         } while (1);
6213                         if (frag->pad)
6214                                 __output_skip(handle, NULL, frag->pad);
6215                 } else {
6216                         struct {
6217                                 u32     size;
6218                                 u32     data;
6219                         } raw = {
6220                                 .size = sizeof(u32),
6221                                 .data = 0,
6222                         };
6223                         perf_output_put(handle, raw);
6224                 }
6225         }
6226
6227         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6228                 if (data->br_stack) {
6229                         size_t size;
6230
6231                         size = data->br_stack->nr
6232                              * sizeof(struct perf_branch_entry);
6233
6234                         perf_output_put(handle, data->br_stack->nr);
6235                         perf_output_copy(handle, data->br_stack->entries, size);
6236                 } else {
6237                         /*
6238                          * we always store at least the value of nr
6239                          */
6240                         u64 nr = 0;
6241                         perf_output_put(handle, nr);
6242                 }
6243         }
6244
6245         if (sample_type & PERF_SAMPLE_REGS_USER) {
6246                 u64 abi = data->regs_user.abi;
6247
6248                 /*
6249                  * If there are no regs to dump, notice it through
6250                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6251                  */
6252                 perf_output_put(handle, abi);
6253
6254                 if (abi) {
6255                         u64 mask = event->attr.sample_regs_user;
6256                         perf_output_sample_regs(handle,
6257                                                 data->regs_user.regs,
6258                                                 mask);
6259                 }
6260         }
6261
6262         if (sample_type & PERF_SAMPLE_STACK_USER) {
6263                 perf_output_sample_ustack(handle,
6264                                           data->stack_user_size,
6265                                           data->regs_user.regs);
6266         }
6267
6268         if (sample_type & PERF_SAMPLE_WEIGHT)
6269                 perf_output_put(handle, data->weight);
6270
6271         if (sample_type & PERF_SAMPLE_DATA_SRC)
6272                 perf_output_put(handle, data->data_src.val);
6273
6274         if (sample_type & PERF_SAMPLE_TRANSACTION)
6275                 perf_output_put(handle, data->txn);
6276
6277         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6278                 u64 abi = data->regs_intr.abi;
6279                 /*
6280                  * If there are no regs to dump, notice it through
6281                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6282                  */
6283                 perf_output_put(handle, abi);
6284
6285                 if (abi) {
6286                         u64 mask = event->attr.sample_regs_intr;
6287
6288                         perf_output_sample_regs(handle,
6289                                                 data->regs_intr.regs,
6290                                                 mask);
6291                 }
6292         }
6293
6294         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6295                 perf_output_put(handle, data->phys_addr);
6296
6297         if (!event->attr.watermark) {
6298                 int wakeup_events = event->attr.wakeup_events;
6299
6300                 if (wakeup_events) {
6301                         struct ring_buffer *rb = handle->rb;
6302                         int events = local_inc_return(&rb->events);
6303
6304                         if (events >= wakeup_events) {
6305                                 local_sub(wakeup_events, &rb->events);
6306                                 local_inc(&rb->wakeup);
6307                         }
6308                 }
6309         }
6310 }
6311
6312 static u64 perf_virt_to_phys(u64 virt)
6313 {
6314         u64 phys_addr = 0;
6315         struct page *p = NULL;
6316
6317         if (!virt)
6318                 return 0;
6319
6320         if (virt >= TASK_SIZE) {
6321                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6322                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6323                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6324                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6325         } else {
6326                 /*
6327                  * Walking the pages tables for user address.
6328                  * Interrupts are disabled, so it prevents any tear down
6329                  * of the page tables.
6330                  * Try IRQ-safe __get_user_pages_fast first.
6331                  * If failed, leave phys_addr as 0.
6332                  */
6333                 if ((current->mm != NULL) &&
6334                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6335                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6336
6337                 if (p)
6338                         put_page(p);
6339         }
6340
6341         return phys_addr;
6342 }
6343
6344 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6345
6346 struct perf_callchain_entry *
6347 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6348 {
6349         bool kernel = !event->attr.exclude_callchain_kernel;
6350         bool user   = !event->attr.exclude_callchain_user;
6351         /* Disallow cross-task user callchains. */
6352         bool crosstask = event->ctx->task && event->ctx->task != current;
6353         const u32 max_stack = event->attr.sample_max_stack;
6354         struct perf_callchain_entry *callchain;
6355
6356         if (!kernel && !user)
6357                 return &__empty_callchain;
6358
6359         callchain = get_perf_callchain(regs, 0, kernel, user,
6360                                        max_stack, crosstask, true);
6361         return callchain ?: &__empty_callchain;
6362 }
6363
6364 void perf_prepare_sample(struct perf_event_header *header,
6365                          struct perf_sample_data *data,
6366                          struct perf_event *event,
6367                          struct pt_regs *regs)
6368 {
6369         u64 sample_type = event->attr.sample_type;
6370
6371         header->type = PERF_RECORD_SAMPLE;
6372         header->size = sizeof(*header) + event->header_size;
6373
6374         header->misc = 0;
6375         header->misc |= perf_misc_flags(regs);
6376
6377         __perf_event_header__init_id(header, data, event);
6378
6379         if (sample_type & PERF_SAMPLE_IP)
6380                 data->ip = perf_instruction_pointer(regs);
6381
6382         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6383                 int size = 1;
6384
6385                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
6386                         data->callchain = perf_callchain(event, regs);
6387
6388                 size += data->callchain->nr;
6389
6390                 header->size += size * sizeof(u64);
6391         }
6392
6393         if (sample_type & PERF_SAMPLE_RAW) {
6394                 struct perf_raw_record *raw = data->raw;
6395                 int size;
6396
6397                 if (raw) {
6398                         struct perf_raw_frag *frag = &raw->frag;
6399                         u32 sum = 0;
6400
6401                         do {
6402                                 sum += frag->size;
6403                                 if (perf_raw_frag_last(frag))
6404                                         break;
6405                                 frag = frag->next;
6406                         } while (1);
6407
6408                         size = round_up(sum + sizeof(u32), sizeof(u64));
6409                         raw->size = size - sizeof(u32);
6410                         frag->pad = raw->size - sum;
6411                 } else {
6412                         size = sizeof(u64);
6413                 }
6414
6415                 header->size += size;
6416         }
6417
6418         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6419                 int size = sizeof(u64); /* nr */
6420                 if (data->br_stack) {
6421                         size += data->br_stack->nr
6422                               * sizeof(struct perf_branch_entry);
6423                 }
6424                 header->size += size;
6425         }
6426
6427         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6428                 perf_sample_regs_user(&data->regs_user, regs,
6429                                       &data->regs_user_copy);
6430
6431         if (sample_type & PERF_SAMPLE_REGS_USER) {
6432                 /* regs dump ABI info */
6433                 int size = sizeof(u64);
6434
6435                 if (data->regs_user.regs) {
6436                         u64 mask = event->attr.sample_regs_user;
6437                         size += hweight64(mask) * sizeof(u64);
6438                 }
6439
6440                 header->size += size;
6441         }
6442
6443         if (sample_type & PERF_SAMPLE_STACK_USER) {
6444                 /*
6445                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6446                  * processed as the last one or have additional check added
6447                  * in case new sample type is added, because we could eat
6448                  * up the rest of the sample size.
6449                  */
6450                 u16 stack_size = event->attr.sample_stack_user;
6451                 u16 size = sizeof(u64);
6452
6453                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6454                                                      data->regs_user.regs);
6455
6456                 /*
6457                  * If there is something to dump, add space for the dump
6458                  * itself and for the field that tells the dynamic size,
6459                  * which is how many have been actually dumped.
6460                  */
6461                 if (stack_size)
6462                         size += sizeof(u64) + stack_size;
6463
6464                 data->stack_user_size = stack_size;
6465                 header->size += size;
6466         }
6467
6468         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6469                 /* regs dump ABI info */
6470                 int size = sizeof(u64);
6471
6472                 perf_sample_regs_intr(&data->regs_intr, regs);
6473
6474                 if (data->regs_intr.regs) {
6475                         u64 mask = event->attr.sample_regs_intr;
6476
6477                         size += hweight64(mask) * sizeof(u64);
6478                 }
6479
6480                 header->size += size;
6481         }
6482
6483         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6484                 data->phys_addr = perf_virt_to_phys(data->addr);
6485 }
6486
6487 static __always_inline void
6488 __perf_event_output(struct perf_event *event,
6489                     struct perf_sample_data *data,
6490                     struct pt_regs *regs,
6491                     int (*output_begin)(struct perf_output_handle *,
6492                                         struct perf_event *,
6493                                         unsigned int))
6494 {
6495         struct perf_output_handle handle;
6496         struct perf_event_header header;
6497
6498         /* protect the callchain buffers */
6499         rcu_read_lock();
6500
6501         perf_prepare_sample(&header, data, event, regs);
6502
6503         if (output_begin(&handle, event, header.size))
6504                 goto exit;
6505
6506         perf_output_sample(&handle, &header, data, event);
6507
6508         perf_output_end(&handle);
6509
6510 exit:
6511         rcu_read_unlock();
6512 }
6513
6514 void
6515 perf_event_output_forward(struct perf_event *event,
6516                          struct perf_sample_data *data,
6517                          struct pt_regs *regs)
6518 {
6519         __perf_event_output(event, data, regs, perf_output_begin_forward);
6520 }
6521
6522 void
6523 perf_event_output_backward(struct perf_event *event,
6524                            struct perf_sample_data *data,
6525                            struct pt_regs *regs)
6526 {
6527         __perf_event_output(event, data, regs, perf_output_begin_backward);
6528 }
6529
6530 void
6531 perf_event_output(struct perf_event *event,
6532                   struct perf_sample_data *data,
6533                   struct pt_regs *regs)
6534 {
6535         __perf_event_output(event, data, regs, perf_output_begin);
6536 }
6537
6538 /*
6539  * read event_id
6540  */
6541
6542 struct perf_read_event {
6543         struct perf_event_header        header;
6544
6545         u32                             pid;
6546         u32                             tid;
6547 };
6548
6549 static void
6550 perf_event_read_event(struct perf_event *event,
6551                         struct task_struct *task)
6552 {
6553         struct perf_output_handle handle;
6554         struct perf_sample_data sample;
6555         struct perf_read_event read_event = {
6556                 .header = {
6557                         .type = PERF_RECORD_READ,
6558                         .misc = 0,
6559                         .size = sizeof(read_event) + event->read_size,
6560                 },
6561                 .pid = perf_event_pid(event, task),
6562                 .tid = perf_event_tid(event, task),
6563         };
6564         int ret;
6565
6566         perf_event_header__init_id(&read_event.header, &sample, event);
6567         ret = perf_output_begin(&handle, event, read_event.header.size);
6568         if (ret)
6569                 return;
6570
6571         perf_output_put(&handle, read_event);
6572         perf_output_read(&handle, event);
6573         perf_event__output_id_sample(event, &handle, &sample);
6574
6575         perf_output_end(&handle);
6576 }
6577
6578 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6579
6580 static void
6581 perf_iterate_ctx(struct perf_event_context *ctx,
6582                    perf_iterate_f output,
6583                    void *data, bool all)
6584 {
6585         struct perf_event *event;
6586
6587         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6588                 if (!all) {
6589                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6590                                 continue;
6591                         if (!event_filter_match(event))
6592                                 continue;
6593                 }
6594
6595                 output(event, data);
6596         }
6597 }
6598
6599 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6600 {
6601         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6602         struct perf_event *event;
6603
6604         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6605                 /*
6606                  * Skip events that are not fully formed yet; ensure that
6607                  * if we observe event->ctx, both event and ctx will be
6608                  * complete enough. See perf_install_in_context().
6609                  */
6610                 if (!smp_load_acquire(&event->ctx))
6611                         continue;
6612
6613                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6614                         continue;
6615                 if (!event_filter_match(event))
6616                         continue;
6617                 output(event, data);
6618         }
6619 }
6620
6621 /*
6622  * Iterate all events that need to receive side-band events.
6623  *
6624  * For new callers; ensure that account_pmu_sb_event() includes
6625  * your event, otherwise it might not get delivered.
6626  */
6627 static void
6628 perf_iterate_sb(perf_iterate_f output, void *data,
6629                struct perf_event_context *task_ctx)
6630 {
6631         struct perf_event_context *ctx;
6632         int ctxn;
6633
6634         rcu_read_lock();
6635         preempt_disable();
6636
6637         /*
6638          * If we have task_ctx != NULL we only notify the task context itself.
6639          * The task_ctx is set only for EXIT events before releasing task
6640          * context.
6641          */
6642         if (task_ctx) {
6643                 perf_iterate_ctx(task_ctx, output, data, false);
6644                 goto done;
6645         }
6646
6647         perf_iterate_sb_cpu(output, data);
6648
6649         for_each_task_context_nr(ctxn) {
6650                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6651                 if (ctx)
6652                         perf_iterate_ctx(ctx, output, data, false);
6653         }
6654 done:
6655         preempt_enable();
6656         rcu_read_unlock();
6657 }
6658
6659 /*
6660  * Clear all file-based filters at exec, they'll have to be
6661  * re-instated when/if these objects are mmapped again.
6662  */
6663 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6664 {
6665         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6666         struct perf_addr_filter *filter;
6667         unsigned int restart = 0, count = 0;
6668         unsigned long flags;
6669
6670         if (!has_addr_filter(event))
6671                 return;
6672
6673         raw_spin_lock_irqsave(&ifh->lock, flags);
6674         list_for_each_entry(filter, &ifh->list, entry) {
6675                 if (filter->path.dentry) {
6676                         event->addr_filters_offs[count] = 0;
6677                         restart++;
6678                 }
6679
6680                 count++;
6681         }
6682
6683         if (restart)
6684                 event->addr_filters_gen++;
6685         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6686
6687         if (restart)
6688                 perf_event_stop(event, 1);
6689 }
6690
6691 void perf_event_exec(void)
6692 {
6693         struct perf_event_context *ctx;
6694         int ctxn;
6695
6696         rcu_read_lock();
6697         for_each_task_context_nr(ctxn) {
6698                 ctx = current->perf_event_ctxp[ctxn];
6699                 if (!ctx)
6700                         continue;
6701
6702                 perf_event_enable_on_exec(ctxn);
6703
6704                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6705                                    true);
6706         }
6707         rcu_read_unlock();
6708 }
6709
6710 struct remote_output {
6711         struct ring_buffer      *rb;
6712         int                     err;
6713 };
6714
6715 static void __perf_event_output_stop(struct perf_event *event, void *data)
6716 {
6717         struct perf_event *parent = event->parent;
6718         struct remote_output *ro = data;
6719         struct ring_buffer *rb = ro->rb;
6720         struct stop_event_data sd = {
6721                 .event  = event,
6722         };
6723
6724         if (!has_aux(event))
6725                 return;
6726
6727         if (!parent)
6728                 parent = event;
6729
6730         /*
6731          * In case of inheritance, it will be the parent that links to the
6732          * ring-buffer, but it will be the child that's actually using it.
6733          *
6734          * We are using event::rb to determine if the event should be stopped,
6735          * however this may race with ring_buffer_attach() (through set_output),
6736          * which will make us skip the event that actually needs to be stopped.
6737          * So ring_buffer_attach() has to stop an aux event before re-assigning
6738          * its rb pointer.
6739          */
6740         if (rcu_dereference(parent->rb) == rb)
6741                 ro->err = __perf_event_stop(&sd);
6742 }
6743
6744 static int __perf_pmu_output_stop(void *info)
6745 {
6746         struct perf_event *event = info;
6747         struct pmu *pmu = event->pmu;
6748         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6749         struct remote_output ro = {
6750                 .rb     = event->rb,
6751         };
6752
6753         rcu_read_lock();
6754         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6755         if (cpuctx->task_ctx)
6756                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6757                                    &ro, false);
6758         rcu_read_unlock();
6759
6760         return ro.err;
6761 }
6762
6763 static void perf_pmu_output_stop(struct perf_event *event)
6764 {
6765         struct perf_event *iter;
6766         int err, cpu;
6767
6768 restart:
6769         rcu_read_lock();
6770         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6771                 /*
6772                  * For per-CPU events, we need to make sure that neither they
6773                  * nor their children are running; for cpu==-1 events it's
6774                  * sufficient to stop the event itself if it's active, since
6775                  * it can't have children.
6776                  */
6777                 cpu = iter->cpu;
6778                 if (cpu == -1)
6779                         cpu = READ_ONCE(iter->oncpu);
6780
6781                 if (cpu == -1)
6782                         continue;
6783
6784                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6785                 if (err == -EAGAIN) {
6786                         rcu_read_unlock();
6787                         goto restart;
6788                 }
6789         }
6790         rcu_read_unlock();
6791 }
6792
6793 /*
6794  * task tracking -- fork/exit
6795  *
6796  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6797  */
6798
6799 struct perf_task_event {
6800         struct task_struct              *task;
6801         struct perf_event_context       *task_ctx;
6802
6803         struct {
6804                 struct perf_event_header        header;
6805
6806                 u32                             pid;
6807                 u32                             ppid;
6808                 u32                             tid;
6809                 u32                             ptid;
6810                 u64                             time;
6811         } event_id;
6812 };
6813
6814 static int perf_event_task_match(struct perf_event *event)
6815 {
6816         return event->attr.comm  || event->attr.mmap ||
6817                event->attr.mmap2 || event->attr.mmap_data ||
6818                event->attr.task;
6819 }
6820
6821 static void perf_event_task_output(struct perf_event *event,
6822                                    void *data)
6823 {
6824         struct perf_task_event *task_event = data;
6825         struct perf_output_handle handle;
6826         struct perf_sample_data sample;
6827         struct task_struct *task = task_event->task;
6828         int ret, size = task_event->event_id.header.size;
6829
6830         if (!perf_event_task_match(event))
6831                 return;
6832
6833         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6834
6835         ret = perf_output_begin(&handle, event,
6836                                 task_event->event_id.header.size);
6837         if (ret)
6838                 goto out;
6839
6840         task_event->event_id.pid = perf_event_pid(event, task);
6841         task_event->event_id.ppid = perf_event_pid(event, current);
6842
6843         task_event->event_id.tid = perf_event_tid(event, task);
6844         task_event->event_id.ptid = perf_event_tid(event, current);
6845
6846         task_event->event_id.time = perf_event_clock(event);
6847
6848         perf_output_put(&handle, task_event->event_id);
6849
6850         perf_event__output_id_sample(event, &handle, &sample);
6851
6852         perf_output_end(&handle);
6853 out:
6854         task_event->event_id.header.size = size;
6855 }
6856
6857 static void perf_event_task(struct task_struct *task,
6858                               struct perf_event_context *task_ctx,
6859                               int new)
6860 {
6861         struct perf_task_event task_event;
6862
6863         if (!atomic_read(&nr_comm_events) &&
6864             !atomic_read(&nr_mmap_events) &&
6865             !atomic_read(&nr_task_events))
6866                 return;
6867
6868         task_event = (struct perf_task_event){
6869                 .task     = task,
6870                 .task_ctx = task_ctx,
6871                 .event_id    = {
6872                         .header = {
6873                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6874                                 .misc = 0,
6875                                 .size = sizeof(task_event.event_id),
6876                         },
6877                         /* .pid  */
6878                         /* .ppid */
6879                         /* .tid  */
6880                         /* .ptid */
6881                         /* .time */
6882                 },
6883         };
6884
6885         perf_iterate_sb(perf_event_task_output,
6886                        &task_event,
6887                        task_ctx);
6888 }
6889
6890 void perf_event_fork(struct task_struct *task)
6891 {
6892         perf_event_task(task, NULL, 1);
6893         perf_event_namespaces(task);
6894 }
6895
6896 /*
6897  * comm tracking
6898  */
6899
6900 struct perf_comm_event {
6901         struct task_struct      *task;
6902         char                    *comm;
6903         int                     comm_size;
6904
6905         struct {
6906                 struct perf_event_header        header;
6907
6908                 u32                             pid;
6909                 u32                             tid;
6910         } event_id;
6911 };
6912
6913 static int perf_event_comm_match(struct perf_event *event)
6914 {
6915         return event->attr.comm;
6916 }
6917
6918 static void perf_event_comm_output(struct perf_event *event,
6919                                    void *data)
6920 {
6921         struct perf_comm_event *comm_event = data;
6922         struct perf_output_handle handle;
6923         struct perf_sample_data sample;
6924         int size = comm_event->event_id.header.size;
6925         int ret;
6926
6927         if (!perf_event_comm_match(event))
6928                 return;
6929
6930         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6931         ret = perf_output_begin(&handle, event,
6932                                 comm_event->event_id.header.size);
6933
6934         if (ret)
6935                 goto out;
6936
6937         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6938         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6939
6940         perf_output_put(&handle, comm_event->event_id);
6941         __output_copy(&handle, comm_event->comm,
6942                                    comm_event->comm_size);
6943
6944         perf_event__output_id_sample(event, &handle, &sample);
6945
6946         perf_output_end(&handle);
6947 out:
6948         comm_event->event_id.header.size = size;
6949 }
6950
6951 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6952 {
6953         char comm[TASK_COMM_LEN];
6954         unsigned int size;
6955
6956         memset(comm, 0, sizeof(comm));
6957         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6958         size = ALIGN(strlen(comm)+1, sizeof(u64));
6959
6960         comm_event->comm = comm;
6961         comm_event->comm_size = size;
6962
6963         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6964
6965         perf_iterate_sb(perf_event_comm_output,
6966                        comm_event,
6967                        NULL);
6968 }
6969
6970 void perf_event_comm(struct task_struct *task, bool exec)
6971 {
6972         struct perf_comm_event comm_event;
6973
6974         if (!atomic_read(&nr_comm_events))
6975                 return;
6976
6977         comm_event = (struct perf_comm_event){
6978                 .task   = task,
6979                 /* .comm      */
6980                 /* .comm_size */
6981                 .event_id  = {
6982                         .header = {
6983                                 .type = PERF_RECORD_COMM,
6984                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6985                                 /* .size */
6986                         },
6987                         /* .pid */
6988                         /* .tid */
6989                 },
6990         };
6991
6992         perf_event_comm_event(&comm_event);
6993 }
6994
6995 /*
6996  * namespaces tracking
6997  */
6998
6999 struct perf_namespaces_event {
7000         struct task_struct              *task;
7001
7002         struct {
7003                 struct perf_event_header        header;
7004
7005                 u32                             pid;
7006                 u32                             tid;
7007                 u64                             nr_namespaces;
7008                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7009         } event_id;
7010 };
7011
7012 static int perf_event_namespaces_match(struct perf_event *event)
7013 {
7014         return event->attr.namespaces;
7015 }
7016
7017 static void perf_event_namespaces_output(struct perf_event *event,
7018                                          void *data)
7019 {
7020         struct perf_namespaces_event *namespaces_event = data;
7021         struct perf_output_handle handle;
7022         struct perf_sample_data sample;
7023         u16 header_size = namespaces_event->event_id.header.size;
7024         int ret;
7025
7026         if (!perf_event_namespaces_match(event))
7027                 return;
7028
7029         perf_event_header__init_id(&namespaces_event->event_id.header,
7030                                    &sample, event);
7031         ret = perf_output_begin(&handle, event,
7032                                 namespaces_event->event_id.header.size);
7033         if (ret)
7034                 goto out;
7035
7036         namespaces_event->event_id.pid = perf_event_pid(event,
7037                                                         namespaces_event->task);
7038         namespaces_event->event_id.tid = perf_event_tid(event,
7039                                                         namespaces_event->task);
7040
7041         perf_output_put(&handle, namespaces_event->event_id);
7042
7043         perf_event__output_id_sample(event, &handle, &sample);
7044
7045         perf_output_end(&handle);
7046 out:
7047         namespaces_event->event_id.header.size = header_size;
7048 }
7049
7050 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7051                                    struct task_struct *task,
7052                                    const struct proc_ns_operations *ns_ops)
7053 {
7054         struct path ns_path;
7055         struct inode *ns_inode;
7056         void *error;
7057
7058         error = ns_get_path(&ns_path, task, ns_ops);
7059         if (!error) {
7060                 ns_inode = ns_path.dentry->d_inode;
7061                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7062                 ns_link_info->ino = ns_inode->i_ino;
7063                 path_put(&ns_path);
7064         }
7065 }
7066
7067 void perf_event_namespaces(struct task_struct *task)
7068 {
7069         struct perf_namespaces_event namespaces_event;
7070         struct perf_ns_link_info *ns_link_info;
7071
7072         if (!atomic_read(&nr_namespaces_events))
7073                 return;
7074
7075         namespaces_event = (struct perf_namespaces_event){
7076                 .task   = task,
7077                 .event_id  = {
7078                         .header = {
7079                                 .type = PERF_RECORD_NAMESPACES,
7080                                 .misc = 0,
7081                                 .size = sizeof(namespaces_event.event_id),
7082                         },
7083                         /* .pid */
7084                         /* .tid */
7085                         .nr_namespaces = NR_NAMESPACES,
7086                         /* .link_info[NR_NAMESPACES] */
7087                 },
7088         };
7089
7090         ns_link_info = namespaces_event.event_id.link_info;
7091
7092         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7093                                task, &mntns_operations);
7094
7095 #ifdef CONFIG_USER_NS
7096         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7097                                task, &userns_operations);
7098 #endif
7099 #ifdef CONFIG_NET_NS
7100         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7101                                task, &netns_operations);
7102 #endif
7103 #ifdef CONFIG_UTS_NS
7104         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7105                                task, &utsns_operations);
7106 #endif
7107 #ifdef CONFIG_IPC_NS
7108         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7109                                task, &ipcns_operations);
7110 #endif
7111 #ifdef CONFIG_PID_NS
7112         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7113                                task, &pidns_operations);
7114 #endif
7115 #ifdef CONFIG_CGROUPS
7116         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7117                                task, &cgroupns_operations);
7118 #endif
7119
7120         perf_iterate_sb(perf_event_namespaces_output,
7121                         &namespaces_event,
7122                         NULL);
7123 }
7124
7125 /*
7126  * mmap tracking
7127  */
7128
7129 struct perf_mmap_event {
7130         struct vm_area_struct   *vma;
7131
7132         const char              *file_name;
7133         int                     file_size;
7134         int                     maj, min;
7135         u64                     ino;
7136         u64                     ino_generation;
7137         u32                     prot, flags;
7138
7139         struct {
7140                 struct perf_event_header        header;
7141
7142                 u32                             pid;
7143                 u32                             tid;
7144                 u64                             start;
7145                 u64                             len;
7146                 u64                             pgoff;
7147         } event_id;
7148 };
7149
7150 static int perf_event_mmap_match(struct perf_event *event,
7151                                  void *data)
7152 {
7153         struct perf_mmap_event *mmap_event = data;
7154         struct vm_area_struct *vma = mmap_event->vma;
7155         int executable = vma->vm_flags & VM_EXEC;
7156
7157         return (!executable && event->attr.mmap_data) ||
7158                (executable && (event->attr.mmap || event->attr.mmap2));
7159 }
7160
7161 static void perf_event_mmap_output(struct perf_event *event,
7162                                    void *data)
7163 {
7164         struct perf_mmap_event *mmap_event = data;
7165         struct perf_output_handle handle;
7166         struct perf_sample_data sample;
7167         int size = mmap_event->event_id.header.size;
7168         int ret;
7169
7170         if (!perf_event_mmap_match(event, data))
7171                 return;
7172
7173         if (event->attr.mmap2) {
7174                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7175                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7176                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7177                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7178                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7179                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7180                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7181         }
7182
7183         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7184         ret = perf_output_begin(&handle, event,
7185                                 mmap_event->event_id.header.size);
7186         if (ret)
7187                 goto out;
7188
7189         mmap_event->event_id.pid = perf_event_pid(event, current);
7190         mmap_event->event_id.tid = perf_event_tid(event, current);
7191
7192         perf_output_put(&handle, mmap_event->event_id);
7193
7194         if (event->attr.mmap2) {
7195                 perf_output_put(&handle, mmap_event->maj);
7196                 perf_output_put(&handle, mmap_event->min);
7197                 perf_output_put(&handle, mmap_event->ino);
7198                 perf_output_put(&handle, mmap_event->ino_generation);
7199                 perf_output_put(&handle, mmap_event->prot);
7200                 perf_output_put(&handle, mmap_event->flags);
7201         }
7202
7203         __output_copy(&handle, mmap_event->file_name,
7204                                    mmap_event->file_size);
7205
7206         perf_event__output_id_sample(event, &handle, &sample);
7207
7208         perf_output_end(&handle);
7209 out:
7210         mmap_event->event_id.header.size = size;
7211 }
7212
7213 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7214 {
7215         struct vm_area_struct *vma = mmap_event->vma;
7216         struct file *file = vma->vm_file;
7217         int maj = 0, min = 0;
7218         u64 ino = 0, gen = 0;
7219         u32 prot = 0, flags = 0;
7220         unsigned int size;
7221         char tmp[16];
7222         char *buf = NULL;
7223         char *name;
7224
7225         if (vma->vm_flags & VM_READ)
7226                 prot |= PROT_READ;
7227         if (vma->vm_flags & VM_WRITE)
7228                 prot |= PROT_WRITE;
7229         if (vma->vm_flags & VM_EXEC)
7230                 prot |= PROT_EXEC;
7231
7232         if (vma->vm_flags & VM_MAYSHARE)
7233                 flags = MAP_SHARED;
7234         else
7235                 flags = MAP_PRIVATE;
7236
7237         if (vma->vm_flags & VM_DENYWRITE)
7238                 flags |= MAP_DENYWRITE;
7239         if (vma->vm_flags & VM_MAYEXEC)
7240                 flags |= MAP_EXECUTABLE;
7241         if (vma->vm_flags & VM_LOCKED)
7242                 flags |= MAP_LOCKED;
7243         if (vma->vm_flags & VM_HUGETLB)
7244                 flags |= MAP_HUGETLB;
7245
7246         if (file) {
7247                 struct inode *inode;
7248                 dev_t dev;
7249
7250                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7251                 if (!buf) {
7252                         name = "//enomem";
7253                         goto cpy_name;
7254                 }
7255                 /*
7256                  * d_path() works from the end of the rb backwards, so we
7257                  * need to add enough zero bytes after the string to handle
7258                  * the 64bit alignment we do later.
7259                  */
7260                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7261                 if (IS_ERR(name)) {
7262                         name = "//toolong";
7263                         goto cpy_name;
7264                 }
7265                 inode = file_inode(vma->vm_file);
7266                 dev = inode->i_sb->s_dev;
7267                 ino = inode->i_ino;
7268                 gen = inode->i_generation;
7269                 maj = MAJOR(dev);
7270                 min = MINOR(dev);
7271
7272                 goto got_name;
7273         } else {
7274                 if (vma->vm_ops && vma->vm_ops->name) {
7275                         name = (char *) vma->vm_ops->name(vma);
7276                         if (name)
7277                                 goto cpy_name;
7278                 }
7279
7280                 name = (char *)arch_vma_name(vma);
7281                 if (name)
7282                         goto cpy_name;
7283
7284                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7285                                 vma->vm_end >= vma->vm_mm->brk) {
7286                         name = "[heap]";
7287                         goto cpy_name;
7288                 }
7289                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7290                                 vma->vm_end >= vma->vm_mm->start_stack) {
7291                         name = "[stack]";
7292                         goto cpy_name;
7293                 }
7294
7295                 name = "//anon";
7296                 goto cpy_name;
7297         }
7298
7299 cpy_name:
7300         strlcpy(tmp, name, sizeof(tmp));
7301         name = tmp;
7302 got_name:
7303         /*
7304          * Since our buffer works in 8 byte units we need to align our string
7305          * size to a multiple of 8. However, we must guarantee the tail end is
7306          * zero'd out to avoid leaking random bits to userspace.
7307          */
7308         size = strlen(name)+1;
7309         while (!IS_ALIGNED(size, sizeof(u64)))
7310                 name[size++] = '\0';
7311
7312         mmap_event->file_name = name;
7313         mmap_event->file_size = size;
7314         mmap_event->maj = maj;
7315         mmap_event->min = min;
7316         mmap_event->ino = ino;
7317         mmap_event->ino_generation = gen;
7318         mmap_event->prot = prot;
7319         mmap_event->flags = flags;
7320
7321         if (!(vma->vm_flags & VM_EXEC))
7322                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7323
7324         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7325
7326         perf_iterate_sb(perf_event_mmap_output,
7327                        mmap_event,
7328                        NULL);
7329
7330         kfree(buf);
7331 }
7332
7333 /*
7334  * Check whether inode and address range match filter criteria.
7335  */
7336 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7337                                      struct file *file, unsigned long offset,
7338                                      unsigned long size)
7339 {
7340         /* d_inode(NULL) won't be equal to any mapped user-space file */
7341         if (!filter->path.dentry)
7342                 return false;
7343
7344         if (d_inode(filter->path.dentry) != file_inode(file))
7345                 return false;
7346
7347         if (filter->offset > offset + size)
7348                 return false;
7349
7350         if (filter->offset + filter->size < offset)
7351                 return false;
7352
7353         return true;
7354 }
7355
7356 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7357 {
7358         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7359         struct vm_area_struct *vma = data;
7360         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7361         struct file *file = vma->vm_file;
7362         struct perf_addr_filter *filter;
7363         unsigned int restart = 0, count = 0;
7364
7365         if (!has_addr_filter(event))
7366                 return;
7367
7368         if (!file)
7369                 return;
7370
7371         raw_spin_lock_irqsave(&ifh->lock, flags);
7372         list_for_each_entry(filter, &ifh->list, entry) {
7373                 if (perf_addr_filter_match(filter, file, off,
7374                                              vma->vm_end - vma->vm_start)) {
7375                         event->addr_filters_offs[count] = vma->vm_start;
7376                         restart++;
7377                 }
7378
7379                 count++;
7380         }
7381
7382         if (restart)
7383                 event->addr_filters_gen++;
7384         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7385
7386         if (restart)
7387                 perf_event_stop(event, 1);
7388 }
7389
7390 /*
7391  * Adjust all task's events' filters to the new vma
7392  */
7393 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7394 {
7395         struct perf_event_context *ctx;
7396         int ctxn;
7397
7398         /*
7399          * Data tracing isn't supported yet and as such there is no need
7400          * to keep track of anything that isn't related to executable code:
7401          */
7402         if (!(vma->vm_flags & VM_EXEC))
7403                 return;
7404
7405         rcu_read_lock();
7406         for_each_task_context_nr(ctxn) {
7407                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7408                 if (!ctx)
7409                         continue;
7410
7411                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7412         }
7413         rcu_read_unlock();
7414 }
7415
7416 void perf_event_mmap(struct vm_area_struct *vma)
7417 {
7418         struct perf_mmap_event mmap_event;
7419
7420         if (!atomic_read(&nr_mmap_events))
7421                 return;
7422
7423         mmap_event = (struct perf_mmap_event){
7424                 .vma    = vma,
7425                 /* .file_name */
7426                 /* .file_size */
7427                 .event_id  = {
7428                         .header = {
7429                                 .type = PERF_RECORD_MMAP,
7430                                 .misc = PERF_RECORD_MISC_USER,
7431                                 /* .size */
7432                         },
7433                         /* .pid */
7434                         /* .tid */
7435                         .start  = vma->vm_start,
7436                         .len    = vma->vm_end - vma->vm_start,
7437                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7438                 },
7439                 /* .maj (attr_mmap2 only) */
7440                 /* .min (attr_mmap2 only) */
7441                 /* .ino (attr_mmap2 only) */
7442                 /* .ino_generation (attr_mmap2 only) */
7443                 /* .prot (attr_mmap2 only) */
7444                 /* .flags (attr_mmap2 only) */
7445         };
7446
7447         perf_addr_filters_adjust(vma);
7448         perf_event_mmap_event(&mmap_event);
7449 }
7450
7451 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7452                           unsigned long size, u64 flags)
7453 {
7454         struct perf_output_handle handle;
7455         struct perf_sample_data sample;
7456         struct perf_aux_event {
7457                 struct perf_event_header        header;
7458                 u64                             offset;
7459                 u64                             size;
7460                 u64                             flags;
7461         } rec = {
7462                 .header = {
7463                         .type = PERF_RECORD_AUX,
7464                         .misc = 0,
7465                         .size = sizeof(rec),
7466                 },
7467                 .offset         = head,
7468                 .size           = size,
7469                 .flags          = flags,
7470         };
7471         int ret;
7472
7473         perf_event_header__init_id(&rec.header, &sample, event);
7474         ret = perf_output_begin(&handle, event, rec.header.size);
7475
7476         if (ret)
7477                 return;
7478
7479         perf_output_put(&handle, rec);
7480         perf_event__output_id_sample(event, &handle, &sample);
7481
7482         perf_output_end(&handle);
7483 }
7484
7485 /*
7486  * Lost/dropped samples logging
7487  */
7488 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7489 {
7490         struct perf_output_handle handle;
7491         struct perf_sample_data sample;
7492         int ret;
7493
7494         struct {
7495                 struct perf_event_header        header;
7496                 u64                             lost;
7497         } lost_samples_event = {
7498                 .header = {
7499                         .type = PERF_RECORD_LOST_SAMPLES,
7500                         .misc = 0,
7501                         .size = sizeof(lost_samples_event),
7502                 },
7503                 .lost           = lost,
7504         };
7505
7506         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7507
7508         ret = perf_output_begin(&handle, event,
7509                                 lost_samples_event.header.size);
7510         if (ret)
7511                 return;
7512
7513         perf_output_put(&handle, lost_samples_event);
7514         perf_event__output_id_sample(event, &handle, &sample);
7515         perf_output_end(&handle);
7516 }
7517
7518 /*
7519  * context_switch tracking
7520  */
7521
7522 struct perf_switch_event {
7523         struct task_struct      *task;
7524         struct task_struct      *next_prev;
7525
7526         struct {
7527                 struct perf_event_header        header;
7528                 u32                             next_prev_pid;
7529                 u32                             next_prev_tid;
7530         } event_id;
7531 };
7532
7533 static int perf_event_switch_match(struct perf_event *event)
7534 {
7535         return event->attr.context_switch;
7536 }
7537
7538 static void perf_event_switch_output(struct perf_event *event, void *data)
7539 {
7540         struct perf_switch_event *se = data;
7541         struct perf_output_handle handle;
7542         struct perf_sample_data sample;
7543         int ret;
7544
7545         if (!perf_event_switch_match(event))
7546                 return;
7547
7548         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7549         if (event->ctx->task) {
7550                 se->event_id.header.type = PERF_RECORD_SWITCH;
7551                 se->event_id.header.size = sizeof(se->event_id.header);
7552         } else {
7553                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7554                 se->event_id.header.size = sizeof(se->event_id);
7555                 se->event_id.next_prev_pid =
7556                                         perf_event_pid(event, se->next_prev);
7557                 se->event_id.next_prev_tid =
7558                                         perf_event_tid(event, se->next_prev);
7559         }
7560
7561         perf_event_header__init_id(&se->event_id.header, &sample, event);
7562
7563         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7564         if (ret)
7565                 return;
7566
7567         if (event->ctx->task)
7568                 perf_output_put(&handle, se->event_id.header);
7569         else
7570                 perf_output_put(&handle, se->event_id);
7571
7572         perf_event__output_id_sample(event, &handle, &sample);
7573
7574         perf_output_end(&handle);
7575 }
7576
7577 static void perf_event_switch(struct task_struct *task,
7578                               struct task_struct *next_prev, bool sched_in)
7579 {
7580         struct perf_switch_event switch_event;
7581
7582         /* N.B. caller checks nr_switch_events != 0 */
7583
7584         switch_event = (struct perf_switch_event){
7585                 .task           = task,
7586                 .next_prev      = next_prev,
7587                 .event_id       = {
7588                         .header = {
7589                                 /* .type */
7590                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7591                                 /* .size */
7592                         },
7593                         /* .next_prev_pid */
7594                         /* .next_prev_tid */
7595                 },
7596         };
7597
7598         if (!sched_in && task->state == TASK_RUNNING)
7599                 switch_event.event_id.header.misc |=
7600                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7601
7602         perf_iterate_sb(perf_event_switch_output,
7603                        &switch_event,
7604                        NULL);
7605 }
7606
7607 /*
7608  * IRQ throttle logging
7609  */
7610
7611 static void perf_log_throttle(struct perf_event *event, int enable)
7612 {
7613         struct perf_output_handle handle;
7614         struct perf_sample_data sample;
7615         int ret;
7616
7617         struct {
7618                 struct perf_event_header        header;
7619                 u64                             time;
7620                 u64                             id;
7621                 u64                             stream_id;
7622         } throttle_event = {
7623                 .header = {
7624                         .type = PERF_RECORD_THROTTLE,
7625                         .misc = 0,
7626                         .size = sizeof(throttle_event),
7627                 },
7628                 .time           = perf_event_clock(event),
7629                 .id             = primary_event_id(event),
7630                 .stream_id      = event->id,
7631         };
7632
7633         if (enable)
7634                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7635
7636         perf_event_header__init_id(&throttle_event.header, &sample, event);
7637
7638         ret = perf_output_begin(&handle, event,
7639                                 throttle_event.header.size);
7640         if (ret)
7641                 return;
7642
7643         perf_output_put(&handle, throttle_event);
7644         perf_event__output_id_sample(event, &handle, &sample);
7645         perf_output_end(&handle);
7646 }
7647
7648 void perf_event_itrace_started(struct perf_event *event)
7649 {
7650         event->attach_state |= PERF_ATTACH_ITRACE;
7651 }
7652
7653 static void perf_log_itrace_start(struct perf_event *event)
7654 {
7655         struct perf_output_handle handle;
7656         struct perf_sample_data sample;
7657         struct perf_aux_event {
7658                 struct perf_event_header        header;
7659                 u32                             pid;
7660                 u32                             tid;
7661         } rec;
7662         int ret;
7663
7664         if (event->parent)
7665                 event = event->parent;
7666
7667         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7668             event->attach_state & PERF_ATTACH_ITRACE)
7669                 return;
7670
7671         rec.header.type = PERF_RECORD_ITRACE_START;
7672         rec.header.misc = 0;
7673         rec.header.size = sizeof(rec);
7674         rec.pid = perf_event_pid(event, current);
7675         rec.tid = perf_event_tid(event, current);
7676
7677         perf_event_header__init_id(&rec.header, &sample, event);
7678         ret = perf_output_begin(&handle, event, rec.header.size);
7679
7680         if (ret)
7681                 return;
7682
7683         perf_output_put(&handle, rec);
7684         perf_event__output_id_sample(event, &handle, &sample);
7685
7686         perf_output_end(&handle);
7687 }
7688
7689 static int
7690 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7691 {
7692         struct hw_perf_event *hwc = &event->hw;
7693         int ret = 0;
7694         u64 seq;
7695
7696         seq = __this_cpu_read(perf_throttled_seq);
7697         if (seq != hwc->interrupts_seq) {
7698                 hwc->interrupts_seq = seq;
7699                 hwc->interrupts = 1;
7700         } else {
7701                 hwc->interrupts++;
7702                 if (unlikely(throttle
7703                              && hwc->interrupts >= max_samples_per_tick)) {
7704                         __this_cpu_inc(perf_throttled_count);
7705                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7706                         hwc->interrupts = MAX_INTERRUPTS;
7707                         perf_log_throttle(event, 0);
7708                         ret = 1;
7709                 }
7710         }
7711
7712         if (event->attr.freq) {
7713                 u64 now = perf_clock();
7714                 s64 delta = now - hwc->freq_time_stamp;
7715
7716                 hwc->freq_time_stamp = now;
7717
7718                 if (delta > 0 && delta < 2*TICK_NSEC)
7719                         perf_adjust_period(event, delta, hwc->last_period, true);
7720         }
7721
7722         return ret;
7723 }
7724
7725 int perf_event_account_interrupt(struct perf_event *event)
7726 {
7727         return __perf_event_account_interrupt(event, 1);
7728 }
7729
7730 /*
7731  * Generic event overflow handling, sampling.
7732  */
7733
7734 static int __perf_event_overflow(struct perf_event *event,
7735                                    int throttle, struct perf_sample_data *data,
7736                                    struct pt_regs *regs)
7737 {
7738         int events = atomic_read(&event->event_limit);
7739         int ret = 0;
7740
7741         /*
7742          * Non-sampling counters might still use the PMI to fold short
7743          * hardware counters, ignore those.
7744          */
7745         if (unlikely(!is_sampling_event(event)))
7746                 return 0;
7747
7748         ret = __perf_event_account_interrupt(event, throttle);
7749
7750         /*
7751          * XXX event_limit might not quite work as expected on inherited
7752          * events
7753          */
7754
7755         event->pending_kill = POLL_IN;
7756         if (events && atomic_dec_and_test(&event->event_limit)) {
7757                 ret = 1;
7758                 event->pending_kill = POLL_HUP;
7759
7760                 perf_event_disable_inatomic(event);
7761         }
7762
7763         READ_ONCE(event->overflow_handler)(event, data, regs);
7764
7765         if (*perf_event_fasync(event) && event->pending_kill) {
7766                 event->pending_wakeup = 1;
7767                 irq_work_queue(&event->pending);
7768         }
7769
7770         return ret;
7771 }
7772
7773 int perf_event_overflow(struct perf_event *event,
7774                           struct perf_sample_data *data,
7775                           struct pt_regs *regs)
7776 {
7777         return __perf_event_overflow(event, 1, data, regs);
7778 }
7779
7780 /*
7781  * Generic software event infrastructure
7782  */
7783
7784 struct swevent_htable {
7785         struct swevent_hlist            *swevent_hlist;
7786         struct mutex                    hlist_mutex;
7787         int                             hlist_refcount;
7788
7789         /* Recursion avoidance in each contexts */
7790         int                             recursion[PERF_NR_CONTEXTS];
7791 };
7792
7793 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7794
7795 /*
7796  * We directly increment event->count and keep a second value in
7797  * event->hw.period_left to count intervals. This period event
7798  * is kept in the range [-sample_period, 0] so that we can use the
7799  * sign as trigger.
7800  */
7801
7802 u64 perf_swevent_set_period(struct perf_event *event)
7803 {
7804         struct hw_perf_event *hwc = &event->hw;
7805         u64 period = hwc->last_period;
7806         u64 nr, offset;
7807         s64 old, val;
7808
7809         hwc->last_period = hwc->sample_period;
7810
7811 again:
7812         old = val = local64_read(&hwc->period_left);
7813         if (val < 0)
7814                 return 0;
7815
7816         nr = div64_u64(period + val, period);
7817         offset = nr * period;
7818         val -= offset;
7819         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7820                 goto again;
7821
7822         return nr;
7823 }
7824
7825 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7826                                     struct perf_sample_data *data,
7827                                     struct pt_regs *regs)
7828 {
7829         struct hw_perf_event *hwc = &event->hw;
7830         int throttle = 0;
7831
7832         if (!overflow)
7833                 overflow = perf_swevent_set_period(event);
7834
7835         if (hwc->interrupts == MAX_INTERRUPTS)
7836                 return;
7837
7838         for (; overflow; overflow--) {
7839                 if (__perf_event_overflow(event, throttle,
7840                                             data, regs)) {
7841                         /*
7842                          * We inhibit the overflow from happening when
7843                          * hwc->interrupts == MAX_INTERRUPTS.
7844                          */
7845                         break;
7846                 }
7847                 throttle = 1;
7848         }
7849 }
7850
7851 static void perf_swevent_event(struct perf_event *event, u64 nr,
7852                                struct perf_sample_data *data,
7853                                struct pt_regs *regs)
7854 {
7855         struct hw_perf_event *hwc = &event->hw;
7856
7857         local64_add(nr, &event->count);
7858
7859         if (!regs)
7860                 return;
7861
7862         if (!is_sampling_event(event))
7863                 return;
7864
7865         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7866                 data->period = nr;
7867                 return perf_swevent_overflow(event, 1, data, regs);
7868         } else
7869                 data->period = event->hw.last_period;
7870
7871         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7872                 return perf_swevent_overflow(event, 1, data, regs);
7873
7874         if (local64_add_negative(nr, &hwc->period_left))
7875                 return;
7876
7877         perf_swevent_overflow(event, 0, data, regs);
7878 }
7879
7880 static int perf_exclude_event(struct perf_event *event,
7881                               struct pt_regs *regs)
7882 {
7883         if (event->hw.state & PERF_HES_STOPPED)
7884                 return 1;
7885
7886         if (regs) {
7887                 if (event->attr.exclude_user && user_mode(regs))
7888                         return 1;
7889
7890                 if (event->attr.exclude_kernel && !user_mode(regs))
7891                         return 1;
7892         }
7893
7894         return 0;
7895 }
7896
7897 static int perf_swevent_match(struct perf_event *event,
7898                                 enum perf_type_id type,
7899                                 u32 event_id,
7900                                 struct perf_sample_data *data,
7901                                 struct pt_regs *regs)
7902 {
7903         if (event->attr.type != type)
7904                 return 0;
7905
7906         if (event->attr.config != event_id)
7907                 return 0;
7908
7909         if (perf_exclude_event(event, regs))
7910                 return 0;
7911
7912         return 1;
7913 }
7914
7915 static inline u64 swevent_hash(u64 type, u32 event_id)
7916 {
7917         u64 val = event_id | (type << 32);
7918
7919         return hash_64(val, SWEVENT_HLIST_BITS);
7920 }
7921
7922 static inline struct hlist_head *
7923 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7924 {
7925         u64 hash = swevent_hash(type, event_id);
7926
7927         return &hlist->heads[hash];
7928 }
7929
7930 /* For the read side: events when they trigger */
7931 static inline struct hlist_head *
7932 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7933 {
7934         struct swevent_hlist *hlist;
7935
7936         hlist = rcu_dereference(swhash->swevent_hlist);
7937         if (!hlist)
7938                 return NULL;
7939
7940         return __find_swevent_head(hlist, type, event_id);
7941 }
7942
7943 /* For the event head insertion and removal in the hlist */
7944 static inline struct hlist_head *
7945 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7946 {
7947         struct swevent_hlist *hlist;
7948         u32 event_id = event->attr.config;
7949         u64 type = event->attr.type;
7950
7951         /*
7952          * Event scheduling is always serialized against hlist allocation
7953          * and release. Which makes the protected version suitable here.
7954          * The context lock guarantees that.
7955          */
7956         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7957                                           lockdep_is_held(&event->ctx->lock));
7958         if (!hlist)
7959                 return NULL;
7960
7961         return __find_swevent_head(hlist, type, event_id);
7962 }
7963
7964 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7965                                     u64 nr,
7966                                     struct perf_sample_data *data,
7967                                     struct pt_regs *regs)
7968 {
7969         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7970         struct perf_event *event;
7971         struct hlist_head *head;
7972
7973         rcu_read_lock();
7974         head = find_swevent_head_rcu(swhash, type, event_id);
7975         if (!head)
7976                 goto end;
7977
7978         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7979                 if (perf_swevent_match(event, type, event_id, data, regs))
7980                         perf_swevent_event(event, nr, data, regs);
7981         }
7982 end:
7983         rcu_read_unlock();
7984 }
7985
7986 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7987
7988 int perf_swevent_get_recursion_context(void)
7989 {
7990         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7991
7992         return get_recursion_context(swhash->recursion);
7993 }
7994 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7995
7996 void perf_swevent_put_recursion_context(int rctx)
7997 {
7998         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7999
8000         put_recursion_context(swhash->recursion, rctx);
8001 }
8002
8003 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8004 {
8005         struct perf_sample_data data;
8006
8007         if (WARN_ON_ONCE(!regs))
8008                 return;
8009
8010         perf_sample_data_init(&data, addr, 0);
8011         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8012 }
8013
8014 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8015 {
8016         int rctx;
8017
8018         preempt_disable_notrace();
8019         rctx = perf_swevent_get_recursion_context();
8020         if (unlikely(rctx < 0))
8021                 goto fail;
8022
8023         ___perf_sw_event(event_id, nr, regs, addr);
8024
8025         perf_swevent_put_recursion_context(rctx);
8026 fail:
8027         preempt_enable_notrace();
8028 }
8029
8030 static void perf_swevent_read(struct perf_event *event)
8031 {
8032 }
8033
8034 static int perf_swevent_add(struct perf_event *event, int flags)
8035 {
8036         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8037         struct hw_perf_event *hwc = &event->hw;
8038         struct hlist_head *head;
8039
8040         if (is_sampling_event(event)) {
8041                 hwc->last_period = hwc->sample_period;
8042                 perf_swevent_set_period(event);
8043         }
8044
8045         hwc->state = !(flags & PERF_EF_START);
8046
8047         head = find_swevent_head(swhash, event);
8048         if (WARN_ON_ONCE(!head))
8049                 return -EINVAL;
8050
8051         hlist_add_head_rcu(&event->hlist_entry, head);
8052         perf_event_update_userpage(event);
8053
8054         return 0;
8055 }
8056
8057 static void perf_swevent_del(struct perf_event *event, int flags)
8058 {
8059         hlist_del_rcu(&event->hlist_entry);
8060 }
8061
8062 static void perf_swevent_start(struct perf_event *event, int flags)
8063 {
8064         event->hw.state = 0;
8065 }
8066
8067 static void perf_swevent_stop(struct perf_event *event, int flags)
8068 {
8069         event->hw.state = PERF_HES_STOPPED;
8070 }
8071
8072 /* Deref the hlist from the update side */
8073 static inline struct swevent_hlist *
8074 swevent_hlist_deref(struct swevent_htable *swhash)
8075 {
8076         return rcu_dereference_protected(swhash->swevent_hlist,
8077                                          lockdep_is_held(&swhash->hlist_mutex));
8078 }
8079
8080 static void swevent_hlist_release(struct swevent_htable *swhash)
8081 {
8082         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8083
8084         if (!hlist)
8085                 return;
8086
8087         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8088         kfree_rcu(hlist, rcu_head);
8089 }
8090
8091 static void swevent_hlist_put_cpu(int cpu)
8092 {
8093         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8094
8095         mutex_lock(&swhash->hlist_mutex);
8096
8097         if (!--swhash->hlist_refcount)
8098                 swevent_hlist_release(swhash);
8099
8100         mutex_unlock(&swhash->hlist_mutex);
8101 }
8102
8103 static void swevent_hlist_put(void)
8104 {
8105         int cpu;
8106
8107         for_each_possible_cpu(cpu)
8108                 swevent_hlist_put_cpu(cpu);
8109 }
8110
8111 static int swevent_hlist_get_cpu(int cpu)
8112 {
8113         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8114         int err = 0;
8115
8116         mutex_lock(&swhash->hlist_mutex);
8117         if (!swevent_hlist_deref(swhash) &&
8118             cpumask_test_cpu(cpu, perf_online_mask)) {
8119                 struct swevent_hlist *hlist;
8120
8121                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8122                 if (!hlist) {
8123                         err = -ENOMEM;
8124                         goto exit;
8125                 }
8126                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8127         }
8128         swhash->hlist_refcount++;
8129 exit:
8130         mutex_unlock(&swhash->hlist_mutex);
8131
8132         return err;
8133 }
8134
8135 static int swevent_hlist_get(void)
8136 {
8137         int err, cpu, failed_cpu;
8138
8139         mutex_lock(&pmus_lock);
8140         for_each_possible_cpu(cpu) {
8141                 err = swevent_hlist_get_cpu(cpu);
8142                 if (err) {
8143                         failed_cpu = cpu;
8144                         goto fail;
8145                 }
8146         }
8147         mutex_unlock(&pmus_lock);
8148         return 0;
8149 fail:
8150         for_each_possible_cpu(cpu) {
8151                 if (cpu == failed_cpu)
8152                         break;
8153                 swevent_hlist_put_cpu(cpu);
8154         }
8155         mutex_unlock(&pmus_lock);
8156         return err;
8157 }
8158
8159 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8160
8161 static void sw_perf_event_destroy(struct perf_event *event)
8162 {
8163         u64 event_id = event->attr.config;
8164
8165         WARN_ON(event->parent);
8166
8167         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8168         swevent_hlist_put();
8169 }
8170
8171 static int perf_swevent_init(struct perf_event *event)
8172 {
8173         u64 event_id = event->attr.config;
8174
8175         if (event->attr.type != PERF_TYPE_SOFTWARE)
8176                 return -ENOENT;
8177
8178         /*
8179          * no branch sampling for software events
8180          */
8181         if (has_branch_stack(event))
8182                 return -EOPNOTSUPP;
8183
8184         switch (event_id) {
8185         case PERF_COUNT_SW_CPU_CLOCK:
8186         case PERF_COUNT_SW_TASK_CLOCK:
8187                 return -ENOENT;
8188
8189         default:
8190                 break;
8191         }
8192
8193         if (event_id >= PERF_COUNT_SW_MAX)
8194                 return -ENOENT;
8195
8196         if (!event->parent) {
8197                 int err;
8198
8199                 err = swevent_hlist_get();
8200                 if (err)
8201                         return err;
8202
8203                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8204                 event->destroy = sw_perf_event_destroy;
8205         }
8206
8207         return 0;
8208 }
8209
8210 static struct pmu perf_swevent = {
8211         .task_ctx_nr    = perf_sw_context,
8212
8213         .capabilities   = PERF_PMU_CAP_NO_NMI,
8214
8215         .event_init     = perf_swevent_init,
8216         .add            = perf_swevent_add,
8217         .del            = perf_swevent_del,
8218         .start          = perf_swevent_start,
8219         .stop           = perf_swevent_stop,
8220         .read           = perf_swevent_read,
8221 };
8222
8223 #ifdef CONFIG_EVENT_TRACING
8224
8225 static int perf_tp_filter_match(struct perf_event *event,
8226                                 struct perf_sample_data *data)
8227 {
8228         void *record = data->raw->frag.data;
8229
8230         /* only top level events have filters set */
8231         if (event->parent)
8232                 event = event->parent;
8233
8234         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8235                 return 1;
8236         return 0;
8237 }
8238
8239 static int perf_tp_event_match(struct perf_event *event,
8240                                 struct perf_sample_data *data,
8241                                 struct pt_regs *regs)
8242 {
8243         if (event->hw.state & PERF_HES_STOPPED)
8244                 return 0;
8245         /*
8246          * All tracepoints are from kernel-space.
8247          */
8248         if (event->attr.exclude_kernel)
8249                 return 0;
8250
8251         if (!perf_tp_filter_match(event, data))
8252                 return 0;
8253
8254         return 1;
8255 }
8256
8257 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8258                                struct trace_event_call *call, u64 count,
8259                                struct pt_regs *regs, struct hlist_head *head,
8260                                struct task_struct *task)
8261 {
8262         if (bpf_prog_array_valid(call)) {
8263                 *(struct pt_regs **)raw_data = regs;
8264                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8265                         perf_swevent_put_recursion_context(rctx);
8266                         return;
8267                 }
8268         }
8269         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8270                       rctx, task);
8271 }
8272 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8273
8274 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8275                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8276                    struct task_struct *task)
8277 {
8278         struct perf_sample_data data;
8279         struct perf_event *event;
8280
8281         struct perf_raw_record raw = {
8282                 .frag = {
8283                         .size = entry_size,
8284                         .data = record,
8285                 },
8286         };
8287
8288         perf_sample_data_init(&data, 0, 0);
8289         data.raw = &raw;
8290
8291         perf_trace_buf_update(record, event_type);
8292
8293         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8294                 if (perf_tp_event_match(event, &data, regs))
8295                         perf_swevent_event(event, count, &data, regs);
8296         }
8297
8298         /*
8299          * If we got specified a target task, also iterate its context and
8300          * deliver this event there too.
8301          */
8302         if (task && task != current) {
8303                 struct perf_event_context *ctx;
8304                 struct trace_entry *entry = record;
8305
8306                 rcu_read_lock();
8307                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8308                 if (!ctx)
8309                         goto unlock;
8310
8311                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8312                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8313                                 continue;
8314                         if (event->attr.config != entry->type)
8315                                 continue;
8316                         if (perf_tp_event_match(event, &data, regs))
8317                                 perf_swevent_event(event, count, &data, regs);
8318                 }
8319 unlock:
8320                 rcu_read_unlock();
8321         }
8322
8323         perf_swevent_put_recursion_context(rctx);
8324 }
8325 EXPORT_SYMBOL_GPL(perf_tp_event);
8326
8327 static void tp_perf_event_destroy(struct perf_event *event)
8328 {
8329         perf_trace_destroy(event);
8330 }
8331
8332 static int perf_tp_event_init(struct perf_event *event)
8333 {
8334         int err;
8335
8336         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8337                 return -ENOENT;
8338
8339         /*
8340          * no branch sampling for tracepoint events
8341          */
8342         if (has_branch_stack(event))
8343                 return -EOPNOTSUPP;
8344
8345         err = perf_trace_init(event);
8346         if (err)
8347                 return err;
8348
8349         event->destroy = tp_perf_event_destroy;
8350
8351         return 0;
8352 }
8353
8354 static struct pmu perf_tracepoint = {
8355         .task_ctx_nr    = perf_sw_context,
8356
8357         .event_init     = perf_tp_event_init,
8358         .add            = perf_trace_add,
8359         .del            = perf_trace_del,
8360         .start          = perf_swevent_start,
8361         .stop           = perf_swevent_stop,
8362         .read           = perf_swevent_read,
8363 };
8364
8365 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8366 /*
8367  * Flags in config, used by dynamic PMU kprobe and uprobe
8368  * The flags should match following PMU_FORMAT_ATTR().
8369  *
8370  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8371  *                               if not set, create kprobe/uprobe
8372  */
8373 enum perf_probe_config {
8374         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8375 };
8376
8377 PMU_FORMAT_ATTR(retprobe, "config:0");
8378
8379 static struct attribute *probe_attrs[] = {
8380         &format_attr_retprobe.attr,
8381         NULL,
8382 };
8383
8384 static struct attribute_group probe_format_group = {
8385         .name = "format",
8386         .attrs = probe_attrs,
8387 };
8388
8389 static const struct attribute_group *probe_attr_groups[] = {
8390         &probe_format_group,
8391         NULL,
8392 };
8393 #endif
8394
8395 #ifdef CONFIG_KPROBE_EVENTS
8396 static int perf_kprobe_event_init(struct perf_event *event);
8397 static struct pmu perf_kprobe = {
8398         .task_ctx_nr    = perf_sw_context,
8399         .event_init     = perf_kprobe_event_init,
8400         .add            = perf_trace_add,
8401         .del            = perf_trace_del,
8402         .start          = perf_swevent_start,
8403         .stop           = perf_swevent_stop,
8404         .read           = perf_swevent_read,
8405         .attr_groups    = probe_attr_groups,
8406 };
8407
8408 static int perf_kprobe_event_init(struct perf_event *event)
8409 {
8410         int err;
8411         bool is_retprobe;
8412
8413         if (event->attr.type != perf_kprobe.type)
8414                 return -ENOENT;
8415
8416         if (!capable(CAP_SYS_ADMIN))
8417                 return -EACCES;
8418
8419         /*
8420          * no branch sampling for probe events
8421          */
8422         if (has_branch_stack(event))
8423                 return -EOPNOTSUPP;
8424
8425         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8426         err = perf_kprobe_init(event, is_retprobe);
8427         if (err)
8428                 return err;
8429
8430         event->destroy = perf_kprobe_destroy;
8431
8432         return 0;
8433 }
8434 #endif /* CONFIG_KPROBE_EVENTS */
8435
8436 #ifdef CONFIG_UPROBE_EVENTS
8437 static int perf_uprobe_event_init(struct perf_event *event);
8438 static struct pmu perf_uprobe = {
8439         .task_ctx_nr    = perf_sw_context,
8440         .event_init     = perf_uprobe_event_init,
8441         .add            = perf_trace_add,
8442         .del            = perf_trace_del,
8443         .start          = perf_swevent_start,
8444         .stop           = perf_swevent_stop,
8445         .read           = perf_swevent_read,
8446         .attr_groups    = probe_attr_groups,
8447 };
8448
8449 static int perf_uprobe_event_init(struct perf_event *event)
8450 {
8451         int err;
8452         bool is_retprobe;
8453
8454         if (event->attr.type != perf_uprobe.type)
8455                 return -ENOENT;
8456
8457         if (!capable(CAP_SYS_ADMIN))
8458                 return -EACCES;
8459
8460         /*
8461          * no branch sampling for probe events
8462          */
8463         if (has_branch_stack(event))
8464                 return -EOPNOTSUPP;
8465
8466         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8467         err = perf_uprobe_init(event, is_retprobe);
8468         if (err)
8469                 return err;
8470
8471         event->destroy = perf_uprobe_destroy;
8472
8473         return 0;
8474 }
8475 #endif /* CONFIG_UPROBE_EVENTS */
8476
8477 static inline void perf_tp_register(void)
8478 {
8479         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8480 #ifdef CONFIG_KPROBE_EVENTS
8481         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8482 #endif
8483 #ifdef CONFIG_UPROBE_EVENTS
8484         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8485 #endif
8486 }
8487
8488 static void perf_event_free_filter(struct perf_event *event)
8489 {
8490         ftrace_profile_free_filter(event);
8491 }
8492
8493 #ifdef CONFIG_BPF_SYSCALL
8494 static void bpf_overflow_handler(struct perf_event *event,
8495                                  struct perf_sample_data *data,
8496                                  struct pt_regs *regs)
8497 {
8498         struct bpf_perf_event_data_kern ctx = {
8499                 .data = data,
8500                 .event = event,
8501         };
8502         int ret = 0;
8503
8504         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8505         preempt_disable();
8506         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8507                 goto out;
8508         rcu_read_lock();
8509         ret = BPF_PROG_RUN(event->prog, &ctx);
8510         rcu_read_unlock();
8511 out:
8512         __this_cpu_dec(bpf_prog_active);
8513         preempt_enable();
8514         if (!ret)
8515                 return;
8516
8517         event->orig_overflow_handler(event, data, regs);
8518 }
8519
8520 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8521 {
8522         struct bpf_prog *prog;
8523
8524         if (event->overflow_handler_context)
8525                 /* hw breakpoint or kernel counter */
8526                 return -EINVAL;
8527
8528         if (event->prog)
8529                 return -EEXIST;
8530
8531         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8532         if (IS_ERR(prog))
8533                 return PTR_ERR(prog);
8534
8535         event->prog = prog;
8536         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8537         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8538         return 0;
8539 }
8540
8541 static void perf_event_free_bpf_handler(struct perf_event *event)
8542 {
8543         struct bpf_prog *prog = event->prog;
8544
8545         if (!prog)
8546                 return;
8547
8548         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8549         event->prog = NULL;
8550         bpf_prog_put(prog);
8551 }
8552 #else
8553 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8554 {
8555         return -EOPNOTSUPP;
8556 }
8557 static void perf_event_free_bpf_handler(struct perf_event *event)
8558 {
8559 }
8560 #endif
8561
8562 /*
8563  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8564  * with perf_event_open()
8565  */
8566 static inline bool perf_event_is_tracing(struct perf_event *event)
8567 {
8568         if (event->pmu == &perf_tracepoint)
8569                 return true;
8570 #ifdef CONFIG_KPROBE_EVENTS
8571         if (event->pmu == &perf_kprobe)
8572                 return true;
8573 #endif
8574 #ifdef CONFIG_UPROBE_EVENTS
8575         if (event->pmu == &perf_uprobe)
8576                 return true;
8577 #endif
8578         return false;
8579 }
8580
8581 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8582 {
8583         bool is_kprobe, is_tracepoint, is_syscall_tp;
8584         struct bpf_prog *prog;
8585         int ret;
8586
8587         if (!perf_event_is_tracing(event))
8588                 return perf_event_set_bpf_handler(event, prog_fd);
8589
8590         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8591         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8592         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8593         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8594                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8595                 return -EINVAL;
8596
8597         prog = bpf_prog_get(prog_fd);
8598         if (IS_ERR(prog))
8599                 return PTR_ERR(prog);
8600
8601         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8602             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8603             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8604                 /* valid fd, but invalid bpf program type */
8605                 bpf_prog_put(prog);
8606                 return -EINVAL;
8607         }
8608
8609         /* Kprobe override only works for kprobes, not uprobes. */
8610         if (prog->kprobe_override &&
8611             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8612                 bpf_prog_put(prog);
8613                 return -EINVAL;
8614         }
8615
8616         if (is_tracepoint || is_syscall_tp) {
8617                 int off = trace_event_get_offsets(event->tp_event);
8618
8619                 if (prog->aux->max_ctx_offset > off) {
8620                         bpf_prog_put(prog);
8621                         return -EACCES;
8622                 }
8623         }
8624
8625         ret = perf_event_attach_bpf_prog(event, prog);
8626         if (ret)
8627                 bpf_prog_put(prog);
8628         return ret;
8629 }
8630
8631 static void perf_event_free_bpf_prog(struct perf_event *event)
8632 {
8633         if (!perf_event_is_tracing(event)) {
8634                 perf_event_free_bpf_handler(event);
8635                 return;
8636         }
8637         perf_event_detach_bpf_prog(event);
8638 }
8639
8640 #else
8641
8642 static inline void perf_tp_register(void)
8643 {
8644 }
8645
8646 static void perf_event_free_filter(struct perf_event *event)
8647 {
8648 }
8649
8650 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8651 {
8652         return -ENOENT;
8653 }
8654
8655 static void perf_event_free_bpf_prog(struct perf_event *event)
8656 {
8657 }
8658 #endif /* CONFIG_EVENT_TRACING */
8659
8660 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8661 void perf_bp_event(struct perf_event *bp, void *data)
8662 {
8663         struct perf_sample_data sample;
8664         struct pt_regs *regs = data;
8665
8666         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8667
8668         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8669                 perf_swevent_event(bp, 1, &sample, regs);
8670 }
8671 #endif
8672
8673 /*
8674  * Allocate a new address filter
8675  */
8676 static struct perf_addr_filter *
8677 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8678 {
8679         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8680         struct perf_addr_filter *filter;
8681
8682         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8683         if (!filter)
8684                 return NULL;
8685
8686         INIT_LIST_HEAD(&filter->entry);
8687         list_add_tail(&filter->entry, filters);
8688
8689         return filter;
8690 }
8691
8692 static void free_filters_list(struct list_head *filters)
8693 {
8694         struct perf_addr_filter *filter, *iter;
8695
8696         list_for_each_entry_safe(filter, iter, filters, entry) {
8697                 path_put(&filter->path);
8698                 list_del(&filter->entry);
8699                 kfree(filter);
8700         }
8701 }
8702
8703 /*
8704  * Free existing address filters and optionally install new ones
8705  */
8706 static void perf_addr_filters_splice(struct perf_event *event,
8707                                      struct list_head *head)
8708 {
8709         unsigned long flags;
8710         LIST_HEAD(list);
8711
8712         if (!has_addr_filter(event))
8713                 return;
8714
8715         /* don't bother with children, they don't have their own filters */
8716         if (event->parent)
8717                 return;
8718
8719         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8720
8721         list_splice_init(&event->addr_filters.list, &list);
8722         if (head)
8723                 list_splice(head, &event->addr_filters.list);
8724
8725         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8726
8727         free_filters_list(&list);
8728 }
8729
8730 /*
8731  * Scan through mm's vmas and see if one of them matches the
8732  * @filter; if so, adjust filter's address range.
8733  * Called with mm::mmap_sem down for reading.
8734  */
8735 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8736                                             struct mm_struct *mm)
8737 {
8738         struct vm_area_struct *vma;
8739
8740         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8741                 struct file *file = vma->vm_file;
8742                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8743                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8744
8745                 if (!file)
8746                         continue;
8747
8748                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8749                         continue;
8750
8751                 return vma->vm_start;
8752         }
8753
8754         return 0;
8755 }
8756
8757 /*
8758  * Update event's address range filters based on the
8759  * task's existing mappings, if any.
8760  */
8761 static void perf_event_addr_filters_apply(struct perf_event *event)
8762 {
8763         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8764         struct task_struct *task = READ_ONCE(event->ctx->task);
8765         struct perf_addr_filter *filter;
8766         struct mm_struct *mm = NULL;
8767         unsigned int count = 0;
8768         unsigned long flags;
8769
8770         /*
8771          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8772          * will stop on the parent's child_mutex that our caller is also holding
8773          */
8774         if (task == TASK_TOMBSTONE)
8775                 return;
8776
8777         if (!ifh->nr_file_filters)
8778                 return;
8779
8780         mm = get_task_mm(event->ctx->task);
8781         if (!mm)
8782                 goto restart;
8783
8784         down_read(&mm->mmap_sem);
8785
8786         raw_spin_lock_irqsave(&ifh->lock, flags);
8787         list_for_each_entry(filter, &ifh->list, entry) {
8788                 event->addr_filters_offs[count] = 0;
8789
8790                 /*
8791                  * Adjust base offset if the filter is associated to a binary
8792                  * that needs to be mapped:
8793                  */
8794                 if (filter->path.dentry)
8795                         event->addr_filters_offs[count] =
8796                                 perf_addr_filter_apply(filter, mm);
8797
8798                 count++;
8799         }
8800
8801         event->addr_filters_gen++;
8802         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8803
8804         up_read(&mm->mmap_sem);
8805
8806         mmput(mm);
8807
8808 restart:
8809         perf_event_stop(event, 1);
8810 }
8811
8812 /*
8813  * Address range filtering: limiting the data to certain
8814  * instruction address ranges. Filters are ioctl()ed to us from
8815  * userspace as ascii strings.
8816  *
8817  * Filter string format:
8818  *
8819  * ACTION RANGE_SPEC
8820  * where ACTION is one of the
8821  *  * "filter": limit the trace to this region
8822  *  * "start": start tracing from this address
8823  *  * "stop": stop tracing at this address/region;
8824  * RANGE_SPEC is
8825  *  * for kernel addresses: <start address>[/<size>]
8826  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8827  *
8828  * if <size> is not specified or is zero, the range is treated as a single
8829  * address; not valid for ACTION=="filter".
8830  */
8831 enum {
8832         IF_ACT_NONE = -1,
8833         IF_ACT_FILTER,
8834         IF_ACT_START,
8835         IF_ACT_STOP,
8836         IF_SRC_FILE,
8837         IF_SRC_KERNEL,
8838         IF_SRC_FILEADDR,
8839         IF_SRC_KERNELADDR,
8840 };
8841
8842 enum {
8843         IF_STATE_ACTION = 0,
8844         IF_STATE_SOURCE,
8845         IF_STATE_END,
8846 };
8847
8848 static const match_table_t if_tokens = {
8849         { IF_ACT_FILTER,        "filter" },
8850         { IF_ACT_START,         "start" },
8851         { IF_ACT_STOP,          "stop" },
8852         { IF_SRC_FILE,          "%u/%u@%s" },
8853         { IF_SRC_KERNEL,        "%u/%u" },
8854         { IF_SRC_FILEADDR,      "%u@%s" },
8855         { IF_SRC_KERNELADDR,    "%u" },
8856         { IF_ACT_NONE,          NULL },
8857 };
8858
8859 /*
8860  * Address filter string parser
8861  */
8862 static int
8863 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8864                              struct list_head *filters)
8865 {
8866         struct perf_addr_filter *filter = NULL;
8867         char *start, *orig, *filename = NULL;
8868         substring_t args[MAX_OPT_ARGS];
8869         int state = IF_STATE_ACTION, token;
8870         unsigned int kernel = 0;
8871         int ret = -EINVAL;
8872
8873         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8874         if (!fstr)
8875                 return -ENOMEM;
8876
8877         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8878                 static const enum perf_addr_filter_action_t actions[] = {
8879                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8880                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
8881                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
8882                 };
8883                 ret = -EINVAL;
8884
8885                 if (!*start)
8886                         continue;
8887
8888                 /* filter definition begins */
8889                 if (state == IF_STATE_ACTION) {
8890                         filter = perf_addr_filter_new(event, filters);
8891                         if (!filter)
8892                                 goto fail;
8893                 }
8894
8895                 token = match_token(start, if_tokens, args);
8896                 switch (token) {
8897                 case IF_ACT_FILTER:
8898                 case IF_ACT_START:
8899                 case IF_ACT_STOP:
8900                         if (state != IF_STATE_ACTION)
8901                                 goto fail;
8902
8903                         filter->action = actions[token];
8904                         state = IF_STATE_SOURCE;
8905                         break;
8906
8907                 case IF_SRC_KERNELADDR:
8908                 case IF_SRC_KERNEL:
8909                         kernel = 1;
8910
8911                 case IF_SRC_FILEADDR:
8912                 case IF_SRC_FILE:
8913                         if (state != IF_STATE_SOURCE)
8914                                 goto fail;
8915
8916                         *args[0].to = 0;
8917                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8918                         if (ret)
8919                                 goto fail;
8920
8921                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8922                                 *args[1].to = 0;
8923                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8924                                 if (ret)
8925                                         goto fail;
8926                         }
8927
8928                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8929                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
8930
8931                                 filename = match_strdup(&args[fpos]);
8932                                 if (!filename) {
8933                                         ret = -ENOMEM;
8934                                         goto fail;
8935                                 }
8936                         }
8937
8938                         state = IF_STATE_END;
8939                         break;
8940
8941                 default:
8942                         goto fail;
8943                 }
8944
8945                 /*
8946                  * Filter definition is fully parsed, validate and install it.
8947                  * Make sure that it doesn't contradict itself or the event's
8948                  * attribute.
8949                  */
8950                 if (state == IF_STATE_END) {
8951                         ret = -EINVAL;
8952                         if (kernel && event->attr.exclude_kernel)
8953                                 goto fail;
8954
8955                         /*
8956                          * ACTION "filter" must have a non-zero length region
8957                          * specified.
8958                          */
8959                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8960                             !filter->size)
8961                                 goto fail;
8962
8963                         if (!kernel) {
8964                                 if (!filename)
8965                                         goto fail;
8966
8967                                 /*
8968                                  * For now, we only support file-based filters
8969                                  * in per-task events; doing so for CPU-wide
8970                                  * events requires additional context switching
8971                                  * trickery, since same object code will be
8972                                  * mapped at different virtual addresses in
8973                                  * different processes.
8974                                  */
8975                                 ret = -EOPNOTSUPP;
8976                                 if (!event->ctx->task)
8977                                         goto fail_free_name;
8978
8979                                 /* look up the path and grab its inode */
8980                                 ret = kern_path(filename, LOOKUP_FOLLOW,
8981                                                 &filter->path);
8982                                 if (ret)
8983                                         goto fail_free_name;
8984
8985                                 kfree(filename);
8986                                 filename = NULL;
8987
8988                                 ret = -EINVAL;
8989                                 if (!filter->path.dentry ||
8990                                     !S_ISREG(d_inode(filter->path.dentry)
8991                                              ->i_mode))
8992                                         goto fail;
8993
8994                                 event->addr_filters.nr_file_filters++;
8995                         }
8996
8997                         /* ready to consume more filters */
8998                         state = IF_STATE_ACTION;
8999                         filter = NULL;
9000                 }
9001         }
9002
9003         if (state != IF_STATE_ACTION)
9004                 goto fail;
9005
9006         kfree(orig);
9007
9008         return 0;
9009
9010 fail_free_name:
9011         kfree(filename);
9012 fail:
9013         free_filters_list(filters);
9014         kfree(orig);
9015
9016         return ret;
9017 }
9018
9019 static int
9020 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9021 {
9022         LIST_HEAD(filters);
9023         int ret;
9024
9025         /*
9026          * Since this is called in perf_ioctl() path, we're already holding
9027          * ctx::mutex.
9028          */
9029         lockdep_assert_held(&event->ctx->mutex);
9030
9031         if (WARN_ON_ONCE(event->parent))
9032                 return -EINVAL;
9033
9034         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9035         if (ret)
9036                 goto fail_clear_files;
9037
9038         ret = event->pmu->addr_filters_validate(&filters);
9039         if (ret)
9040                 goto fail_free_filters;
9041
9042         /* remove existing filters, if any */
9043         perf_addr_filters_splice(event, &filters);
9044
9045         /* install new filters */
9046         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9047
9048         return ret;
9049
9050 fail_free_filters:
9051         free_filters_list(&filters);
9052
9053 fail_clear_files:
9054         event->addr_filters.nr_file_filters = 0;
9055
9056         return ret;
9057 }
9058
9059 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9060 {
9061         int ret = -EINVAL;
9062         char *filter_str;
9063
9064         filter_str = strndup_user(arg, PAGE_SIZE);
9065         if (IS_ERR(filter_str))
9066                 return PTR_ERR(filter_str);
9067
9068 #ifdef CONFIG_EVENT_TRACING
9069         if (perf_event_is_tracing(event)) {
9070                 struct perf_event_context *ctx = event->ctx;
9071
9072                 /*
9073                  * Beware, here be dragons!!
9074                  *
9075                  * the tracepoint muck will deadlock against ctx->mutex, but
9076                  * the tracepoint stuff does not actually need it. So
9077                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9078                  * already have a reference on ctx.
9079                  *
9080                  * This can result in event getting moved to a different ctx,
9081                  * but that does not affect the tracepoint state.
9082                  */
9083                 mutex_unlock(&ctx->mutex);
9084                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9085                 mutex_lock(&ctx->mutex);
9086         } else
9087 #endif
9088         if (has_addr_filter(event))
9089                 ret = perf_event_set_addr_filter(event, filter_str);
9090
9091         kfree(filter_str);
9092         return ret;
9093 }
9094
9095 /*
9096  * hrtimer based swevent callback
9097  */
9098
9099 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9100 {
9101         enum hrtimer_restart ret = HRTIMER_RESTART;
9102         struct perf_sample_data data;
9103         struct pt_regs *regs;
9104         struct perf_event *event;
9105         u64 period;
9106
9107         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9108
9109         if (event->state != PERF_EVENT_STATE_ACTIVE)
9110                 return HRTIMER_NORESTART;
9111
9112         event->pmu->read(event);
9113
9114         perf_sample_data_init(&data, 0, event->hw.last_period);
9115         regs = get_irq_regs();
9116
9117         if (regs && !perf_exclude_event(event, regs)) {
9118                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9119                         if (__perf_event_overflow(event, 1, &data, regs))
9120                                 ret = HRTIMER_NORESTART;
9121         }
9122
9123         period = max_t(u64, 10000, event->hw.sample_period);
9124         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9125
9126         return ret;
9127 }
9128
9129 static void perf_swevent_start_hrtimer(struct perf_event *event)
9130 {
9131         struct hw_perf_event *hwc = &event->hw;
9132         s64 period;
9133
9134         if (!is_sampling_event(event))
9135                 return;
9136
9137         period = local64_read(&hwc->period_left);
9138         if (period) {
9139                 if (period < 0)
9140                         period = 10000;
9141
9142                 local64_set(&hwc->period_left, 0);
9143         } else {
9144                 period = max_t(u64, 10000, hwc->sample_period);
9145         }
9146         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9147                       HRTIMER_MODE_REL_PINNED);
9148 }
9149
9150 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9151 {
9152         struct hw_perf_event *hwc = &event->hw;
9153
9154         if (is_sampling_event(event)) {
9155                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9156                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9157
9158                 hrtimer_cancel(&hwc->hrtimer);
9159         }
9160 }
9161
9162 static void perf_swevent_init_hrtimer(struct perf_event *event)
9163 {
9164         struct hw_perf_event *hwc = &event->hw;
9165
9166         if (!is_sampling_event(event))
9167                 return;
9168
9169         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9170         hwc->hrtimer.function = perf_swevent_hrtimer;
9171
9172         /*
9173          * Since hrtimers have a fixed rate, we can do a static freq->period
9174          * mapping and avoid the whole period adjust feedback stuff.
9175          */
9176         if (event->attr.freq) {
9177                 long freq = event->attr.sample_freq;
9178
9179                 event->attr.sample_period = NSEC_PER_SEC / freq;
9180                 hwc->sample_period = event->attr.sample_period;
9181                 local64_set(&hwc->period_left, hwc->sample_period);
9182                 hwc->last_period = hwc->sample_period;
9183                 event->attr.freq = 0;
9184         }
9185 }
9186
9187 /*
9188  * Software event: cpu wall time clock
9189  */
9190
9191 static void cpu_clock_event_update(struct perf_event *event)
9192 {
9193         s64 prev;
9194         u64 now;
9195
9196         now = local_clock();
9197         prev = local64_xchg(&event->hw.prev_count, now);
9198         local64_add(now - prev, &event->count);
9199 }
9200
9201 static void cpu_clock_event_start(struct perf_event *event, int flags)
9202 {
9203         local64_set(&event->hw.prev_count, local_clock());
9204         perf_swevent_start_hrtimer(event);
9205 }
9206
9207 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9208 {
9209         perf_swevent_cancel_hrtimer(event);
9210         cpu_clock_event_update(event);
9211 }
9212
9213 static int cpu_clock_event_add(struct perf_event *event, int flags)
9214 {
9215         if (flags & PERF_EF_START)
9216                 cpu_clock_event_start(event, flags);
9217         perf_event_update_userpage(event);
9218
9219         return 0;
9220 }
9221
9222 static void cpu_clock_event_del(struct perf_event *event, int flags)
9223 {
9224         cpu_clock_event_stop(event, flags);
9225 }
9226
9227 static void cpu_clock_event_read(struct perf_event *event)
9228 {
9229         cpu_clock_event_update(event);
9230 }
9231
9232 static int cpu_clock_event_init(struct perf_event *event)
9233 {
9234         if (event->attr.type != PERF_TYPE_SOFTWARE)
9235                 return -ENOENT;
9236
9237         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9238                 return -ENOENT;
9239
9240         /*
9241          * no branch sampling for software events
9242          */
9243         if (has_branch_stack(event))
9244                 return -EOPNOTSUPP;
9245
9246         perf_swevent_init_hrtimer(event);
9247
9248         return 0;
9249 }
9250
9251 static struct pmu perf_cpu_clock = {
9252         .task_ctx_nr    = perf_sw_context,
9253
9254         .capabilities   = PERF_PMU_CAP_NO_NMI,
9255
9256         .event_init     = cpu_clock_event_init,
9257         .add            = cpu_clock_event_add,
9258         .del            = cpu_clock_event_del,
9259         .start          = cpu_clock_event_start,
9260         .stop           = cpu_clock_event_stop,
9261         .read           = cpu_clock_event_read,
9262 };
9263
9264 /*
9265  * Software event: task time clock
9266  */
9267
9268 static void task_clock_event_update(struct perf_event *event, u64 now)
9269 {
9270         u64 prev;
9271         s64 delta;
9272
9273         prev = local64_xchg(&event->hw.prev_count, now);
9274         delta = now - prev;
9275         local64_add(delta, &event->count);
9276 }
9277
9278 static void task_clock_event_start(struct perf_event *event, int flags)
9279 {
9280         local64_set(&event->hw.prev_count, event->ctx->time);
9281         perf_swevent_start_hrtimer(event);
9282 }
9283
9284 static void task_clock_event_stop(struct perf_event *event, int flags)
9285 {
9286         perf_swevent_cancel_hrtimer(event);
9287         task_clock_event_update(event, event->ctx->time);
9288 }
9289
9290 static int task_clock_event_add(struct perf_event *event, int flags)
9291 {
9292         if (flags & PERF_EF_START)
9293                 task_clock_event_start(event, flags);
9294         perf_event_update_userpage(event);
9295
9296         return 0;
9297 }
9298
9299 static void task_clock_event_del(struct perf_event *event, int flags)
9300 {
9301         task_clock_event_stop(event, PERF_EF_UPDATE);
9302 }
9303
9304 static void task_clock_event_read(struct perf_event *event)
9305 {
9306         u64 now = perf_clock();
9307         u64 delta = now - event->ctx->timestamp;
9308         u64 time = event->ctx->time + delta;
9309
9310         task_clock_event_update(event, time);
9311 }
9312
9313 static int task_clock_event_init(struct perf_event *event)
9314 {
9315         if (event->attr.type != PERF_TYPE_SOFTWARE)
9316                 return -ENOENT;
9317
9318         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9319                 return -ENOENT;
9320
9321         /*
9322          * no branch sampling for software events
9323          */
9324         if (has_branch_stack(event))
9325                 return -EOPNOTSUPP;
9326
9327         perf_swevent_init_hrtimer(event);
9328
9329         return 0;
9330 }
9331
9332 static struct pmu perf_task_clock = {
9333         .task_ctx_nr    = perf_sw_context,
9334
9335         .capabilities   = PERF_PMU_CAP_NO_NMI,
9336
9337         .event_init     = task_clock_event_init,
9338         .add            = task_clock_event_add,
9339         .del            = task_clock_event_del,
9340         .start          = task_clock_event_start,
9341         .stop           = task_clock_event_stop,
9342         .read           = task_clock_event_read,
9343 };
9344
9345 static void perf_pmu_nop_void(struct pmu *pmu)
9346 {
9347 }
9348
9349 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9350 {
9351 }
9352
9353 static int perf_pmu_nop_int(struct pmu *pmu)
9354 {
9355         return 0;
9356 }
9357
9358 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9359
9360 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9361 {
9362         __this_cpu_write(nop_txn_flags, flags);
9363
9364         if (flags & ~PERF_PMU_TXN_ADD)
9365                 return;
9366
9367         perf_pmu_disable(pmu);
9368 }
9369
9370 static int perf_pmu_commit_txn(struct pmu *pmu)
9371 {
9372         unsigned int flags = __this_cpu_read(nop_txn_flags);
9373
9374         __this_cpu_write(nop_txn_flags, 0);
9375
9376         if (flags & ~PERF_PMU_TXN_ADD)
9377                 return 0;
9378
9379         perf_pmu_enable(pmu);
9380         return 0;
9381 }
9382
9383 static void perf_pmu_cancel_txn(struct pmu *pmu)
9384 {
9385         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9386
9387         __this_cpu_write(nop_txn_flags, 0);
9388
9389         if (flags & ~PERF_PMU_TXN_ADD)
9390                 return;
9391
9392         perf_pmu_enable(pmu);
9393 }
9394
9395 static int perf_event_idx_default(struct perf_event *event)
9396 {
9397         return 0;
9398 }
9399
9400 /*
9401  * Ensures all contexts with the same task_ctx_nr have the same
9402  * pmu_cpu_context too.
9403  */
9404 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9405 {
9406         struct pmu *pmu;
9407
9408         if (ctxn < 0)
9409                 return NULL;
9410
9411         list_for_each_entry(pmu, &pmus, entry) {
9412                 if (pmu->task_ctx_nr == ctxn)
9413                         return pmu->pmu_cpu_context;
9414         }
9415
9416         return NULL;
9417 }
9418
9419 static void free_pmu_context(struct pmu *pmu)
9420 {
9421         /*
9422          * Static contexts such as perf_sw_context have a global lifetime
9423          * and may be shared between different PMUs. Avoid freeing them
9424          * when a single PMU is going away.
9425          */
9426         if (pmu->task_ctx_nr > perf_invalid_context)
9427                 return;
9428
9429         mutex_lock(&pmus_lock);
9430         free_percpu(pmu->pmu_cpu_context);
9431         mutex_unlock(&pmus_lock);
9432 }
9433
9434 /*
9435  * Let userspace know that this PMU supports address range filtering:
9436  */
9437 static ssize_t nr_addr_filters_show(struct device *dev,
9438                                     struct device_attribute *attr,
9439                                     char *page)
9440 {
9441         struct pmu *pmu = dev_get_drvdata(dev);
9442
9443         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9444 }
9445 DEVICE_ATTR_RO(nr_addr_filters);
9446
9447 static struct idr pmu_idr;
9448
9449 static ssize_t
9450 type_show(struct device *dev, struct device_attribute *attr, char *page)
9451 {
9452         struct pmu *pmu = dev_get_drvdata(dev);
9453
9454         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9455 }
9456 static DEVICE_ATTR_RO(type);
9457
9458 static ssize_t
9459 perf_event_mux_interval_ms_show(struct device *dev,
9460                                 struct device_attribute *attr,
9461                                 char *page)
9462 {
9463         struct pmu *pmu = dev_get_drvdata(dev);
9464
9465         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9466 }
9467
9468 static DEFINE_MUTEX(mux_interval_mutex);
9469
9470 static ssize_t
9471 perf_event_mux_interval_ms_store(struct device *dev,
9472                                  struct device_attribute *attr,
9473                                  const char *buf, size_t count)
9474 {
9475         struct pmu *pmu = dev_get_drvdata(dev);
9476         int timer, cpu, ret;
9477
9478         ret = kstrtoint(buf, 0, &timer);
9479         if (ret)
9480                 return ret;
9481
9482         if (timer < 1)
9483                 return -EINVAL;
9484
9485         /* same value, noting to do */
9486         if (timer == pmu->hrtimer_interval_ms)
9487                 return count;
9488
9489         mutex_lock(&mux_interval_mutex);
9490         pmu->hrtimer_interval_ms = timer;
9491
9492         /* update all cpuctx for this PMU */
9493         cpus_read_lock();
9494         for_each_online_cpu(cpu) {
9495                 struct perf_cpu_context *cpuctx;
9496                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9497                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9498
9499                 cpu_function_call(cpu,
9500                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9501         }
9502         cpus_read_unlock();
9503         mutex_unlock(&mux_interval_mutex);
9504
9505         return count;
9506 }
9507 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9508
9509 static struct attribute *pmu_dev_attrs[] = {
9510         &dev_attr_type.attr,
9511         &dev_attr_perf_event_mux_interval_ms.attr,
9512         NULL,
9513 };
9514 ATTRIBUTE_GROUPS(pmu_dev);
9515
9516 static int pmu_bus_running;
9517 static struct bus_type pmu_bus = {
9518         .name           = "event_source",
9519         .dev_groups     = pmu_dev_groups,
9520 };
9521
9522 static void pmu_dev_release(struct device *dev)
9523 {
9524         kfree(dev);
9525 }
9526
9527 static int pmu_dev_alloc(struct pmu *pmu)
9528 {
9529         int ret = -ENOMEM;
9530
9531         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9532         if (!pmu->dev)
9533                 goto out;
9534
9535         pmu->dev->groups = pmu->attr_groups;
9536         device_initialize(pmu->dev);
9537         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9538         if (ret)
9539                 goto free_dev;
9540
9541         dev_set_drvdata(pmu->dev, pmu);
9542         pmu->dev->bus = &pmu_bus;
9543         pmu->dev->release = pmu_dev_release;
9544         ret = device_add(pmu->dev);
9545         if (ret)
9546                 goto free_dev;
9547
9548         /* For PMUs with address filters, throw in an extra attribute: */
9549         if (pmu->nr_addr_filters)
9550                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9551
9552         if (ret)
9553                 goto del_dev;
9554
9555 out:
9556         return ret;
9557
9558 del_dev:
9559         device_del(pmu->dev);
9560
9561 free_dev:
9562         put_device(pmu->dev);
9563         goto out;
9564 }
9565
9566 static struct lock_class_key cpuctx_mutex;
9567 static struct lock_class_key cpuctx_lock;
9568
9569 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9570 {
9571         int cpu, ret;
9572
9573         mutex_lock(&pmus_lock);
9574         ret = -ENOMEM;
9575         pmu->pmu_disable_count = alloc_percpu(int);
9576         if (!pmu->pmu_disable_count)
9577                 goto unlock;
9578
9579         pmu->type = -1;
9580         if (!name)
9581                 goto skip_type;
9582         pmu->name = name;
9583
9584         if (type < 0) {
9585                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9586                 if (type < 0) {
9587                         ret = type;
9588                         goto free_pdc;
9589                 }
9590         }
9591         pmu->type = type;
9592
9593         if (pmu_bus_running) {
9594                 ret = pmu_dev_alloc(pmu);
9595                 if (ret)
9596                         goto free_idr;
9597         }
9598
9599 skip_type:
9600         if (pmu->task_ctx_nr == perf_hw_context) {
9601                 static int hw_context_taken = 0;
9602
9603                 /*
9604                  * Other than systems with heterogeneous CPUs, it never makes
9605                  * sense for two PMUs to share perf_hw_context. PMUs which are
9606                  * uncore must use perf_invalid_context.
9607                  */
9608                 if (WARN_ON_ONCE(hw_context_taken &&
9609                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9610                         pmu->task_ctx_nr = perf_invalid_context;
9611
9612                 hw_context_taken = 1;
9613         }
9614
9615         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9616         if (pmu->pmu_cpu_context)
9617                 goto got_cpu_context;
9618
9619         ret = -ENOMEM;
9620         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9621         if (!pmu->pmu_cpu_context)
9622                 goto free_dev;
9623
9624         for_each_possible_cpu(cpu) {
9625                 struct perf_cpu_context *cpuctx;
9626
9627                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9628                 __perf_event_init_context(&cpuctx->ctx);
9629                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9630                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9631                 cpuctx->ctx.pmu = pmu;
9632                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9633
9634                 __perf_mux_hrtimer_init(cpuctx, cpu);
9635         }
9636
9637 got_cpu_context:
9638         if (!pmu->start_txn) {
9639                 if (pmu->pmu_enable) {
9640                         /*
9641                          * If we have pmu_enable/pmu_disable calls, install
9642                          * transaction stubs that use that to try and batch
9643                          * hardware accesses.
9644                          */
9645                         pmu->start_txn  = perf_pmu_start_txn;
9646                         pmu->commit_txn = perf_pmu_commit_txn;
9647                         pmu->cancel_txn = perf_pmu_cancel_txn;
9648                 } else {
9649                         pmu->start_txn  = perf_pmu_nop_txn;
9650                         pmu->commit_txn = perf_pmu_nop_int;
9651                         pmu->cancel_txn = perf_pmu_nop_void;
9652                 }
9653         }
9654
9655         if (!pmu->pmu_enable) {
9656                 pmu->pmu_enable  = perf_pmu_nop_void;
9657                 pmu->pmu_disable = perf_pmu_nop_void;
9658         }
9659
9660         if (!pmu->event_idx)
9661                 pmu->event_idx = perf_event_idx_default;
9662
9663         list_add_rcu(&pmu->entry, &pmus);
9664         atomic_set(&pmu->exclusive_cnt, 0);
9665         ret = 0;
9666 unlock:
9667         mutex_unlock(&pmus_lock);
9668
9669         return ret;
9670
9671 free_dev:
9672         device_del(pmu->dev);
9673         put_device(pmu->dev);
9674
9675 free_idr:
9676         if (pmu->type >= PERF_TYPE_MAX)
9677                 idr_remove(&pmu_idr, pmu->type);
9678
9679 free_pdc:
9680         free_percpu(pmu->pmu_disable_count);
9681         goto unlock;
9682 }
9683 EXPORT_SYMBOL_GPL(perf_pmu_register);
9684
9685 void perf_pmu_unregister(struct pmu *pmu)
9686 {
9687         int remove_device;
9688
9689         mutex_lock(&pmus_lock);
9690         remove_device = pmu_bus_running;
9691         list_del_rcu(&pmu->entry);
9692         mutex_unlock(&pmus_lock);
9693
9694         /*
9695          * We dereference the pmu list under both SRCU and regular RCU, so
9696          * synchronize against both of those.
9697          */
9698         synchronize_srcu(&pmus_srcu);
9699         synchronize_rcu();
9700
9701         free_percpu(pmu->pmu_disable_count);
9702         if (pmu->type >= PERF_TYPE_MAX)
9703                 idr_remove(&pmu_idr, pmu->type);
9704         if (remove_device) {
9705                 if (pmu->nr_addr_filters)
9706                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9707                 device_del(pmu->dev);
9708                 put_device(pmu->dev);
9709         }
9710         free_pmu_context(pmu);
9711 }
9712 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9713
9714 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9715 {
9716         struct perf_event_context *ctx = NULL;
9717         int ret;
9718
9719         if (!try_module_get(pmu->module))
9720                 return -ENODEV;
9721
9722         /*
9723          * A number of pmu->event_init() methods iterate the sibling_list to,
9724          * for example, validate if the group fits on the PMU. Therefore,
9725          * if this is a sibling event, acquire the ctx->mutex to protect
9726          * the sibling_list.
9727          */
9728         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9729                 /*
9730                  * This ctx->mutex can nest when we're called through
9731                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9732                  */
9733                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9734                                                  SINGLE_DEPTH_NESTING);
9735                 BUG_ON(!ctx);
9736         }
9737
9738         event->pmu = pmu;
9739         ret = pmu->event_init(event);
9740
9741         if (ctx)
9742                 perf_event_ctx_unlock(event->group_leader, ctx);
9743
9744         if (ret)
9745                 module_put(pmu->module);
9746
9747         return ret;
9748 }
9749
9750 static struct pmu *perf_init_event(struct perf_event *event)
9751 {
9752         struct pmu *pmu;
9753         int idx;
9754         int ret;
9755
9756         idx = srcu_read_lock(&pmus_srcu);
9757
9758         /* Try parent's PMU first: */
9759         if (event->parent && event->parent->pmu) {
9760                 pmu = event->parent->pmu;
9761                 ret = perf_try_init_event(pmu, event);
9762                 if (!ret)
9763                         goto unlock;
9764         }
9765
9766         rcu_read_lock();
9767         pmu = idr_find(&pmu_idr, event->attr.type);
9768         rcu_read_unlock();
9769         if (pmu) {
9770                 ret = perf_try_init_event(pmu, event);
9771                 if (ret)
9772                         pmu = ERR_PTR(ret);
9773                 goto unlock;
9774         }
9775
9776         list_for_each_entry_rcu(pmu, &pmus, entry) {
9777                 ret = perf_try_init_event(pmu, event);
9778                 if (!ret)
9779                         goto unlock;
9780
9781                 if (ret != -ENOENT) {
9782                         pmu = ERR_PTR(ret);
9783                         goto unlock;
9784                 }
9785         }
9786         pmu = ERR_PTR(-ENOENT);
9787 unlock:
9788         srcu_read_unlock(&pmus_srcu, idx);
9789
9790         return pmu;
9791 }
9792
9793 static void attach_sb_event(struct perf_event *event)
9794 {
9795         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9796
9797         raw_spin_lock(&pel->lock);
9798         list_add_rcu(&event->sb_list, &pel->list);
9799         raw_spin_unlock(&pel->lock);
9800 }
9801
9802 /*
9803  * We keep a list of all !task (and therefore per-cpu) events
9804  * that need to receive side-band records.
9805  *
9806  * This avoids having to scan all the various PMU per-cpu contexts
9807  * looking for them.
9808  */
9809 static void account_pmu_sb_event(struct perf_event *event)
9810 {
9811         if (is_sb_event(event))
9812                 attach_sb_event(event);
9813 }
9814
9815 static void account_event_cpu(struct perf_event *event, int cpu)
9816 {
9817         if (event->parent)
9818                 return;
9819
9820         if (is_cgroup_event(event))
9821                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9822 }
9823
9824 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9825 static void account_freq_event_nohz(void)
9826 {
9827 #ifdef CONFIG_NO_HZ_FULL
9828         /* Lock so we don't race with concurrent unaccount */
9829         spin_lock(&nr_freq_lock);
9830         if (atomic_inc_return(&nr_freq_events) == 1)
9831                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9832         spin_unlock(&nr_freq_lock);
9833 #endif
9834 }
9835
9836 static void account_freq_event(void)
9837 {
9838         if (tick_nohz_full_enabled())
9839                 account_freq_event_nohz();
9840         else
9841                 atomic_inc(&nr_freq_events);
9842 }
9843
9844
9845 static void account_event(struct perf_event *event)
9846 {
9847         bool inc = false;
9848
9849         if (event->parent)
9850                 return;
9851
9852         if (event->attach_state & PERF_ATTACH_TASK)
9853                 inc = true;
9854         if (event->attr.mmap || event->attr.mmap_data)
9855                 atomic_inc(&nr_mmap_events);
9856         if (event->attr.comm)
9857                 atomic_inc(&nr_comm_events);
9858         if (event->attr.namespaces)
9859                 atomic_inc(&nr_namespaces_events);
9860         if (event->attr.task)
9861                 atomic_inc(&nr_task_events);
9862         if (event->attr.freq)
9863                 account_freq_event();
9864         if (event->attr.context_switch) {
9865                 atomic_inc(&nr_switch_events);
9866                 inc = true;
9867         }
9868         if (has_branch_stack(event))
9869                 inc = true;
9870         if (is_cgroup_event(event))
9871                 inc = true;
9872
9873         if (inc) {
9874                 /*
9875                  * We need the mutex here because static_branch_enable()
9876                  * must complete *before* the perf_sched_count increment
9877                  * becomes visible.
9878                  */
9879                 if (atomic_inc_not_zero(&perf_sched_count))
9880                         goto enabled;
9881
9882                 mutex_lock(&perf_sched_mutex);
9883                 if (!atomic_read(&perf_sched_count)) {
9884                         static_branch_enable(&perf_sched_events);
9885                         /*
9886                          * Guarantee that all CPUs observe they key change and
9887                          * call the perf scheduling hooks before proceeding to
9888                          * install events that need them.
9889                          */
9890                         synchronize_sched();
9891                 }
9892                 /*
9893                  * Now that we have waited for the sync_sched(), allow further
9894                  * increments to by-pass the mutex.
9895                  */
9896                 atomic_inc(&perf_sched_count);
9897                 mutex_unlock(&perf_sched_mutex);
9898         }
9899 enabled:
9900
9901         account_event_cpu(event, event->cpu);
9902
9903         account_pmu_sb_event(event);
9904 }
9905
9906 /*
9907  * Allocate and initialize an event structure
9908  */
9909 static struct perf_event *
9910 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9911                  struct task_struct *task,
9912                  struct perf_event *group_leader,
9913                  struct perf_event *parent_event,
9914                  perf_overflow_handler_t overflow_handler,
9915                  void *context, int cgroup_fd)
9916 {
9917         struct pmu *pmu;
9918         struct perf_event *event;
9919         struct hw_perf_event *hwc;
9920         long err = -EINVAL;
9921
9922         if ((unsigned)cpu >= nr_cpu_ids) {
9923                 if (!task || cpu != -1)
9924                         return ERR_PTR(-EINVAL);
9925         }
9926
9927         event = kzalloc(sizeof(*event), GFP_KERNEL);
9928         if (!event)
9929                 return ERR_PTR(-ENOMEM);
9930
9931         /*
9932          * Single events are their own group leaders, with an
9933          * empty sibling list:
9934          */
9935         if (!group_leader)
9936                 group_leader = event;
9937
9938         mutex_init(&event->child_mutex);
9939         INIT_LIST_HEAD(&event->child_list);
9940
9941         INIT_LIST_HEAD(&event->event_entry);
9942         INIT_LIST_HEAD(&event->sibling_list);
9943         INIT_LIST_HEAD(&event->active_list);
9944         init_event_group(event);
9945         INIT_LIST_HEAD(&event->rb_entry);
9946         INIT_LIST_HEAD(&event->active_entry);
9947         INIT_LIST_HEAD(&event->addr_filters.list);
9948         INIT_HLIST_NODE(&event->hlist_entry);
9949
9950
9951         init_waitqueue_head(&event->waitq);
9952         init_irq_work(&event->pending, perf_pending_event);
9953
9954         mutex_init(&event->mmap_mutex);
9955         raw_spin_lock_init(&event->addr_filters.lock);
9956
9957         atomic_long_set(&event->refcount, 1);
9958         event->cpu              = cpu;
9959         event->attr             = *attr;
9960         event->group_leader     = group_leader;
9961         event->pmu              = NULL;
9962         event->oncpu            = -1;
9963
9964         event->parent           = parent_event;
9965
9966         event->ns               = get_pid_ns(task_active_pid_ns(current));
9967         event->id               = atomic64_inc_return(&perf_event_id);
9968
9969         event->state            = PERF_EVENT_STATE_INACTIVE;
9970
9971         if (task) {
9972                 event->attach_state = PERF_ATTACH_TASK;
9973                 /*
9974                  * XXX pmu::event_init needs to know what task to account to
9975                  * and we cannot use the ctx information because we need the
9976                  * pmu before we get a ctx.
9977                  */
9978                 get_task_struct(task);
9979                 event->hw.target = task;
9980         }
9981
9982         event->clock = &local_clock;
9983         if (parent_event)
9984                 event->clock = parent_event->clock;
9985
9986         if (!overflow_handler && parent_event) {
9987                 overflow_handler = parent_event->overflow_handler;
9988                 context = parent_event->overflow_handler_context;
9989 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9990                 if (overflow_handler == bpf_overflow_handler) {
9991                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9992
9993                         if (IS_ERR(prog)) {
9994                                 err = PTR_ERR(prog);
9995                                 goto err_ns;
9996                         }
9997                         event->prog = prog;
9998                         event->orig_overflow_handler =
9999                                 parent_event->orig_overflow_handler;
10000                 }
10001 #endif
10002         }
10003
10004         if (overflow_handler) {
10005                 event->overflow_handler = overflow_handler;
10006                 event->overflow_handler_context = context;
10007         } else if (is_write_backward(event)){
10008                 event->overflow_handler = perf_event_output_backward;
10009                 event->overflow_handler_context = NULL;
10010         } else {
10011                 event->overflow_handler = perf_event_output_forward;
10012                 event->overflow_handler_context = NULL;
10013         }
10014
10015         perf_event__state_init(event);
10016
10017         pmu = NULL;
10018
10019         hwc = &event->hw;
10020         hwc->sample_period = attr->sample_period;
10021         if (attr->freq && attr->sample_freq)
10022                 hwc->sample_period = 1;
10023         hwc->last_period = hwc->sample_period;
10024
10025         local64_set(&hwc->period_left, hwc->sample_period);
10026
10027         /*
10028          * We currently do not support PERF_SAMPLE_READ on inherited events.
10029          * See perf_output_read().
10030          */
10031         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10032                 goto err_ns;
10033
10034         if (!has_branch_stack(event))
10035                 event->attr.branch_sample_type = 0;
10036
10037         if (cgroup_fd != -1) {
10038                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10039                 if (err)
10040                         goto err_ns;
10041         }
10042
10043         pmu = perf_init_event(event);
10044         if (IS_ERR(pmu)) {
10045                 err = PTR_ERR(pmu);
10046                 goto err_ns;
10047         }
10048
10049         err = exclusive_event_init(event);
10050         if (err)
10051                 goto err_pmu;
10052
10053         if (has_addr_filter(event)) {
10054                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10055                                                    sizeof(unsigned long),
10056                                                    GFP_KERNEL);
10057                 if (!event->addr_filters_offs) {
10058                         err = -ENOMEM;
10059                         goto err_per_task;
10060                 }
10061
10062                 /* force hw sync on the address filters */
10063                 event->addr_filters_gen = 1;
10064         }
10065
10066         if (!event->parent) {
10067                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10068                         err = get_callchain_buffers(attr->sample_max_stack);
10069                         if (err)
10070                                 goto err_addr_filters;
10071                 }
10072         }
10073
10074         /* symmetric to unaccount_event() in _free_event() */
10075         account_event(event);
10076
10077         return event;
10078
10079 err_addr_filters:
10080         kfree(event->addr_filters_offs);
10081
10082 err_per_task:
10083         exclusive_event_destroy(event);
10084
10085 err_pmu:
10086         if (event->destroy)
10087                 event->destroy(event);
10088         module_put(pmu->module);
10089 err_ns:
10090         if (is_cgroup_event(event))
10091                 perf_detach_cgroup(event);
10092         if (event->ns)
10093                 put_pid_ns(event->ns);
10094         if (event->hw.target)
10095                 put_task_struct(event->hw.target);
10096         kfree(event);
10097
10098         return ERR_PTR(err);
10099 }
10100
10101 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10102                           struct perf_event_attr *attr)
10103 {
10104         u32 size;
10105         int ret;
10106
10107         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10108                 return -EFAULT;
10109
10110         /*
10111          * zero the full structure, so that a short copy will be nice.
10112          */
10113         memset(attr, 0, sizeof(*attr));
10114
10115         ret = get_user(size, &uattr->size);
10116         if (ret)
10117                 return ret;
10118
10119         if (size > PAGE_SIZE)   /* silly large */
10120                 goto err_size;
10121
10122         if (!size)              /* abi compat */
10123                 size = PERF_ATTR_SIZE_VER0;
10124
10125         if (size < PERF_ATTR_SIZE_VER0)
10126                 goto err_size;
10127
10128         /*
10129          * If we're handed a bigger struct than we know of,
10130          * ensure all the unknown bits are 0 - i.e. new
10131          * user-space does not rely on any kernel feature
10132          * extensions we dont know about yet.
10133          */
10134         if (size > sizeof(*attr)) {
10135                 unsigned char __user *addr;
10136                 unsigned char __user *end;
10137                 unsigned char val;
10138
10139                 addr = (void __user *)uattr + sizeof(*attr);
10140                 end  = (void __user *)uattr + size;
10141
10142                 for (; addr < end; addr++) {
10143                         ret = get_user(val, addr);
10144                         if (ret)
10145                                 return ret;
10146                         if (val)
10147                                 goto err_size;
10148                 }
10149                 size = sizeof(*attr);
10150         }
10151
10152         ret = copy_from_user(attr, uattr, size);
10153         if (ret)
10154                 return -EFAULT;
10155
10156         attr->size = size;
10157
10158         if (attr->__reserved_1)
10159                 return -EINVAL;
10160
10161         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10162                 return -EINVAL;
10163
10164         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10165                 return -EINVAL;
10166
10167         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10168                 u64 mask = attr->branch_sample_type;
10169
10170                 /* only using defined bits */
10171                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10172                         return -EINVAL;
10173
10174                 /* at least one branch bit must be set */
10175                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10176                         return -EINVAL;
10177
10178                 /* propagate priv level, when not set for branch */
10179                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10180
10181                         /* exclude_kernel checked on syscall entry */
10182                         if (!attr->exclude_kernel)
10183                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10184
10185                         if (!attr->exclude_user)
10186                                 mask |= PERF_SAMPLE_BRANCH_USER;
10187
10188                         if (!attr->exclude_hv)
10189                                 mask |= PERF_SAMPLE_BRANCH_HV;
10190                         /*
10191                          * adjust user setting (for HW filter setup)
10192                          */
10193                         attr->branch_sample_type = mask;
10194                 }
10195                 /* privileged levels capture (kernel, hv): check permissions */
10196                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10197                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10198                         return -EACCES;
10199         }
10200
10201         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10202                 ret = perf_reg_validate(attr->sample_regs_user);
10203                 if (ret)
10204                         return ret;
10205         }
10206
10207         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10208                 if (!arch_perf_have_user_stack_dump())
10209                         return -ENOSYS;
10210
10211                 /*
10212                  * We have __u32 type for the size, but so far
10213                  * we can only use __u16 as maximum due to the
10214                  * __u16 sample size limit.
10215                  */
10216                 if (attr->sample_stack_user >= USHRT_MAX)
10217                         return -EINVAL;
10218                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10219                         return -EINVAL;
10220         }
10221
10222         if (!attr->sample_max_stack)
10223                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10224
10225         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10226                 ret = perf_reg_validate(attr->sample_regs_intr);
10227 out:
10228         return ret;
10229
10230 err_size:
10231         put_user(sizeof(*attr), &uattr->size);
10232         ret = -E2BIG;
10233         goto out;
10234 }
10235
10236 static int
10237 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10238 {
10239         struct ring_buffer *rb = NULL;
10240         int ret = -EINVAL;
10241
10242         if (!output_event)
10243                 goto set;
10244
10245         /* don't allow circular references */
10246         if (event == output_event)
10247                 goto out;
10248
10249         /*
10250          * Don't allow cross-cpu buffers
10251          */
10252         if (output_event->cpu != event->cpu)
10253                 goto out;
10254
10255         /*
10256          * If its not a per-cpu rb, it must be the same task.
10257          */
10258         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10259                 goto out;
10260
10261         /*
10262          * Mixing clocks in the same buffer is trouble you don't need.
10263          */
10264         if (output_event->clock != event->clock)
10265                 goto out;
10266
10267         /*
10268          * Either writing ring buffer from beginning or from end.
10269          * Mixing is not allowed.
10270          */
10271         if (is_write_backward(output_event) != is_write_backward(event))
10272                 goto out;
10273
10274         /*
10275          * If both events generate aux data, they must be on the same PMU
10276          */
10277         if (has_aux(event) && has_aux(output_event) &&
10278             event->pmu != output_event->pmu)
10279                 goto out;
10280
10281 set:
10282         mutex_lock(&event->mmap_mutex);
10283         /* Can't redirect output if we've got an active mmap() */
10284         if (atomic_read(&event->mmap_count))
10285                 goto unlock;
10286
10287         if (output_event) {
10288                 /* get the rb we want to redirect to */
10289                 rb = ring_buffer_get(output_event);
10290                 if (!rb)
10291                         goto unlock;
10292         }
10293
10294         ring_buffer_attach(event, rb);
10295
10296         ret = 0;
10297 unlock:
10298         mutex_unlock(&event->mmap_mutex);
10299
10300 out:
10301         return ret;
10302 }
10303
10304 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10305 {
10306         if (b < a)
10307                 swap(a, b);
10308
10309         mutex_lock(a);
10310         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10311 }
10312
10313 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10314 {
10315         bool nmi_safe = false;
10316
10317         switch (clk_id) {
10318         case CLOCK_MONOTONIC:
10319                 event->clock = &ktime_get_mono_fast_ns;
10320                 nmi_safe = true;
10321                 break;
10322
10323         case CLOCK_MONOTONIC_RAW:
10324                 event->clock = &ktime_get_raw_fast_ns;
10325                 nmi_safe = true;
10326                 break;
10327
10328         case CLOCK_REALTIME:
10329                 event->clock = &ktime_get_real_ns;
10330                 break;
10331
10332         case CLOCK_BOOTTIME:
10333                 event->clock = &ktime_get_boot_ns;
10334                 break;
10335
10336         case CLOCK_TAI:
10337                 event->clock = &ktime_get_tai_ns;
10338                 break;
10339
10340         default:
10341                 return -EINVAL;
10342         }
10343
10344         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10345                 return -EINVAL;
10346
10347         return 0;
10348 }
10349
10350 /*
10351  * Variation on perf_event_ctx_lock_nested(), except we take two context
10352  * mutexes.
10353  */
10354 static struct perf_event_context *
10355 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10356                              struct perf_event_context *ctx)
10357 {
10358         struct perf_event_context *gctx;
10359
10360 again:
10361         rcu_read_lock();
10362         gctx = READ_ONCE(group_leader->ctx);
10363         if (!atomic_inc_not_zero(&gctx->refcount)) {
10364                 rcu_read_unlock();
10365                 goto again;
10366         }
10367         rcu_read_unlock();
10368
10369         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10370
10371         if (group_leader->ctx != gctx) {
10372                 mutex_unlock(&ctx->mutex);
10373                 mutex_unlock(&gctx->mutex);
10374                 put_ctx(gctx);
10375                 goto again;
10376         }
10377
10378         return gctx;
10379 }
10380
10381 /**
10382  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10383  *
10384  * @attr_uptr:  event_id type attributes for monitoring/sampling
10385  * @pid:                target pid
10386  * @cpu:                target cpu
10387  * @group_fd:           group leader event fd
10388  */
10389 SYSCALL_DEFINE5(perf_event_open,
10390                 struct perf_event_attr __user *, attr_uptr,
10391                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10392 {
10393         struct perf_event *group_leader = NULL, *output_event = NULL;
10394         struct perf_event *event, *sibling;
10395         struct perf_event_attr attr;
10396         struct perf_event_context *ctx, *uninitialized_var(gctx);
10397         struct file *event_file = NULL;
10398         struct fd group = {NULL, 0};
10399         struct task_struct *task = NULL;
10400         struct pmu *pmu;
10401         int event_fd;
10402         int move_group = 0;
10403         int err;
10404         int f_flags = O_RDWR;
10405         int cgroup_fd = -1;
10406
10407         /* for future expandability... */
10408         if (flags & ~PERF_FLAG_ALL)
10409                 return -EINVAL;
10410
10411         err = perf_copy_attr(attr_uptr, &attr);
10412         if (err)
10413                 return err;
10414
10415         if (!attr.exclude_kernel) {
10416                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10417                         return -EACCES;
10418         }
10419
10420         if (attr.namespaces) {
10421                 if (!capable(CAP_SYS_ADMIN))
10422                         return -EACCES;
10423         }
10424
10425         if (attr.freq) {
10426                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10427                         return -EINVAL;
10428         } else {
10429                 if (attr.sample_period & (1ULL << 63))
10430                         return -EINVAL;
10431         }
10432
10433         /* Only privileged users can get physical addresses */
10434         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10435             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10436                 return -EACCES;
10437
10438         /*
10439          * In cgroup mode, the pid argument is used to pass the fd
10440          * opened to the cgroup directory in cgroupfs. The cpu argument
10441          * designates the cpu on which to monitor threads from that
10442          * cgroup.
10443          */
10444         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10445                 return -EINVAL;
10446
10447         if (flags & PERF_FLAG_FD_CLOEXEC)
10448                 f_flags |= O_CLOEXEC;
10449
10450         event_fd = get_unused_fd_flags(f_flags);
10451         if (event_fd < 0)
10452                 return event_fd;
10453
10454         if (group_fd != -1) {
10455                 err = perf_fget_light(group_fd, &group);
10456                 if (err)
10457                         goto err_fd;
10458                 group_leader = group.file->private_data;
10459                 if (flags & PERF_FLAG_FD_OUTPUT)
10460                         output_event = group_leader;
10461                 if (flags & PERF_FLAG_FD_NO_GROUP)
10462                         group_leader = NULL;
10463         }
10464
10465         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10466                 task = find_lively_task_by_vpid(pid);
10467                 if (IS_ERR(task)) {
10468                         err = PTR_ERR(task);
10469                         goto err_group_fd;
10470                 }
10471         }
10472
10473         if (task && group_leader &&
10474             group_leader->attr.inherit != attr.inherit) {
10475                 err = -EINVAL;
10476                 goto err_task;
10477         }
10478
10479         if (task) {
10480                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10481                 if (err)
10482                         goto err_task;
10483
10484                 /*
10485                  * Reuse ptrace permission checks for now.
10486                  *
10487                  * We must hold cred_guard_mutex across this and any potential
10488                  * perf_install_in_context() call for this new event to
10489                  * serialize against exec() altering our credentials (and the
10490                  * perf_event_exit_task() that could imply).
10491                  */
10492                 err = -EACCES;
10493                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10494                         goto err_cred;
10495         }
10496
10497         if (flags & PERF_FLAG_PID_CGROUP)
10498                 cgroup_fd = pid;
10499
10500         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10501                                  NULL, NULL, cgroup_fd);
10502         if (IS_ERR(event)) {
10503                 err = PTR_ERR(event);
10504                 goto err_cred;
10505         }
10506
10507         if (is_sampling_event(event)) {
10508                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10509                         err = -EOPNOTSUPP;
10510                         goto err_alloc;
10511                 }
10512         }
10513
10514         /*
10515          * Special case software events and allow them to be part of
10516          * any hardware group.
10517          */
10518         pmu = event->pmu;
10519
10520         if (attr.use_clockid) {
10521                 err = perf_event_set_clock(event, attr.clockid);
10522                 if (err)
10523                         goto err_alloc;
10524         }
10525
10526         if (pmu->task_ctx_nr == perf_sw_context)
10527                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10528
10529         if (group_leader) {
10530                 if (is_software_event(event) &&
10531                     !in_software_context(group_leader)) {
10532                         /*
10533                          * If the event is a sw event, but the group_leader
10534                          * is on hw context.
10535                          *
10536                          * Allow the addition of software events to hw
10537                          * groups, this is safe because software events
10538                          * never fail to schedule.
10539                          */
10540                         pmu = group_leader->ctx->pmu;
10541                 } else if (!is_software_event(event) &&
10542                            is_software_event(group_leader) &&
10543                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10544                         /*
10545                          * In case the group is a pure software group, and we
10546                          * try to add a hardware event, move the whole group to
10547                          * the hardware context.
10548                          */
10549                         move_group = 1;
10550                 }
10551         }
10552
10553         /*
10554          * Get the target context (task or percpu):
10555          */
10556         ctx = find_get_context(pmu, task, event);
10557         if (IS_ERR(ctx)) {
10558                 err = PTR_ERR(ctx);
10559                 goto err_alloc;
10560         }
10561
10562         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10563                 err = -EBUSY;
10564                 goto err_context;
10565         }
10566
10567         /*
10568          * Look up the group leader (we will attach this event to it):
10569          */
10570         if (group_leader) {
10571                 err = -EINVAL;
10572
10573                 /*
10574                  * Do not allow a recursive hierarchy (this new sibling
10575                  * becoming part of another group-sibling):
10576                  */
10577                 if (group_leader->group_leader != group_leader)
10578                         goto err_context;
10579
10580                 /* All events in a group should have the same clock */
10581                 if (group_leader->clock != event->clock)
10582                         goto err_context;
10583
10584                 /*
10585                  * Make sure we're both events for the same CPU;
10586                  * grouping events for different CPUs is broken; since
10587                  * you can never concurrently schedule them anyhow.
10588                  */
10589                 if (group_leader->cpu != event->cpu)
10590                         goto err_context;
10591
10592                 /*
10593                  * Make sure we're both on the same task, or both
10594                  * per-CPU events.
10595                  */
10596                 if (group_leader->ctx->task != ctx->task)
10597                         goto err_context;
10598
10599                 /*
10600                  * Do not allow to attach to a group in a different task
10601                  * or CPU context. If we're moving SW events, we'll fix
10602                  * this up later, so allow that.
10603                  */
10604                 if (!move_group && group_leader->ctx != ctx)
10605                         goto err_context;
10606
10607                 /*
10608                  * Only a group leader can be exclusive or pinned
10609                  */
10610                 if (attr.exclusive || attr.pinned)
10611                         goto err_context;
10612         }
10613
10614         if (output_event) {
10615                 err = perf_event_set_output(event, output_event);
10616                 if (err)
10617                         goto err_context;
10618         }
10619
10620         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10621                                         f_flags);
10622         if (IS_ERR(event_file)) {
10623                 err = PTR_ERR(event_file);
10624                 event_file = NULL;
10625                 goto err_context;
10626         }
10627
10628         if (move_group) {
10629                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10630
10631                 if (gctx->task == TASK_TOMBSTONE) {
10632                         err = -ESRCH;
10633                         goto err_locked;
10634                 }
10635
10636                 /*
10637                  * Check if we raced against another sys_perf_event_open() call
10638                  * moving the software group underneath us.
10639                  */
10640                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10641                         /*
10642                          * If someone moved the group out from under us, check
10643                          * if this new event wound up on the same ctx, if so
10644                          * its the regular !move_group case, otherwise fail.
10645                          */
10646                         if (gctx != ctx) {
10647                                 err = -EINVAL;
10648                                 goto err_locked;
10649                         } else {
10650                                 perf_event_ctx_unlock(group_leader, gctx);
10651                                 move_group = 0;
10652                         }
10653                 }
10654         } else {
10655                 mutex_lock(&ctx->mutex);
10656         }
10657
10658         if (ctx->task == TASK_TOMBSTONE) {
10659                 err = -ESRCH;
10660                 goto err_locked;
10661         }
10662
10663         if (!perf_event_validate_size(event)) {
10664                 err = -E2BIG;
10665                 goto err_locked;
10666         }
10667
10668         if (!task) {
10669                 /*
10670                  * Check if the @cpu we're creating an event for is online.
10671                  *
10672                  * We use the perf_cpu_context::ctx::mutex to serialize against
10673                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10674                  */
10675                 struct perf_cpu_context *cpuctx =
10676                         container_of(ctx, struct perf_cpu_context, ctx);
10677
10678                 if (!cpuctx->online) {
10679                         err = -ENODEV;
10680                         goto err_locked;
10681                 }
10682         }
10683
10684
10685         /*
10686          * Must be under the same ctx::mutex as perf_install_in_context(),
10687          * because we need to serialize with concurrent event creation.
10688          */
10689         if (!exclusive_event_installable(event, ctx)) {
10690                 /* exclusive and group stuff are assumed mutually exclusive */
10691                 WARN_ON_ONCE(move_group);
10692
10693                 err = -EBUSY;
10694                 goto err_locked;
10695         }
10696
10697         WARN_ON_ONCE(ctx->parent_ctx);
10698
10699         /*
10700          * This is the point on no return; we cannot fail hereafter. This is
10701          * where we start modifying current state.
10702          */
10703
10704         if (move_group) {
10705                 /*
10706                  * See perf_event_ctx_lock() for comments on the details
10707                  * of swizzling perf_event::ctx.
10708                  */
10709                 perf_remove_from_context(group_leader, 0);
10710                 put_ctx(gctx);
10711
10712                 for_each_sibling_event(sibling, group_leader) {
10713                         perf_remove_from_context(sibling, 0);
10714                         put_ctx(gctx);
10715                 }
10716
10717                 /*
10718                  * Wait for everybody to stop referencing the events through
10719                  * the old lists, before installing it on new lists.
10720                  */
10721                 synchronize_rcu();
10722
10723                 /*
10724                  * Install the group siblings before the group leader.
10725                  *
10726                  * Because a group leader will try and install the entire group
10727                  * (through the sibling list, which is still in-tact), we can
10728                  * end up with siblings installed in the wrong context.
10729                  *
10730                  * By installing siblings first we NO-OP because they're not
10731                  * reachable through the group lists.
10732                  */
10733                 for_each_sibling_event(sibling, group_leader) {
10734                         perf_event__state_init(sibling);
10735                         perf_install_in_context(ctx, sibling, sibling->cpu);
10736                         get_ctx(ctx);
10737                 }
10738
10739                 /*
10740                  * Removing from the context ends up with disabled
10741                  * event. What we want here is event in the initial
10742                  * startup state, ready to be add into new context.
10743                  */
10744                 perf_event__state_init(group_leader);
10745                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10746                 get_ctx(ctx);
10747         }
10748
10749         /*
10750          * Precalculate sample_data sizes; do while holding ctx::mutex such
10751          * that we're serialized against further additions and before
10752          * perf_install_in_context() which is the point the event is active and
10753          * can use these values.
10754          */
10755         perf_event__header_size(event);
10756         perf_event__id_header_size(event);
10757
10758         event->owner = current;
10759
10760         perf_install_in_context(ctx, event, event->cpu);
10761         perf_unpin_context(ctx);
10762
10763         if (move_group)
10764                 perf_event_ctx_unlock(group_leader, gctx);
10765         mutex_unlock(&ctx->mutex);
10766
10767         if (task) {
10768                 mutex_unlock(&task->signal->cred_guard_mutex);
10769                 put_task_struct(task);
10770         }
10771
10772         mutex_lock(&current->perf_event_mutex);
10773         list_add_tail(&event->owner_entry, &current->perf_event_list);
10774         mutex_unlock(&current->perf_event_mutex);
10775
10776         /*
10777          * Drop the reference on the group_event after placing the
10778          * new event on the sibling_list. This ensures destruction
10779          * of the group leader will find the pointer to itself in
10780          * perf_group_detach().
10781          */
10782         fdput(group);
10783         fd_install(event_fd, event_file);
10784         return event_fd;
10785
10786 err_locked:
10787         if (move_group)
10788                 perf_event_ctx_unlock(group_leader, gctx);
10789         mutex_unlock(&ctx->mutex);
10790 /* err_file: */
10791         fput(event_file);
10792 err_context:
10793         perf_unpin_context(ctx);
10794         put_ctx(ctx);
10795 err_alloc:
10796         /*
10797          * If event_file is set, the fput() above will have called ->release()
10798          * and that will take care of freeing the event.
10799          */
10800         if (!event_file)
10801                 free_event(event);
10802 err_cred:
10803         if (task)
10804                 mutex_unlock(&task->signal->cred_guard_mutex);
10805 err_task:
10806         if (task)
10807                 put_task_struct(task);
10808 err_group_fd:
10809         fdput(group);
10810 err_fd:
10811         put_unused_fd(event_fd);
10812         return err;
10813 }
10814
10815 /**
10816  * perf_event_create_kernel_counter
10817  *
10818  * @attr: attributes of the counter to create
10819  * @cpu: cpu in which the counter is bound
10820  * @task: task to profile (NULL for percpu)
10821  */
10822 struct perf_event *
10823 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10824                                  struct task_struct *task,
10825                                  perf_overflow_handler_t overflow_handler,
10826                                  void *context)
10827 {
10828         struct perf_event_context *ctx;
10829         struct perf_event *event;
10830         int err;
10831
10832         /*
10833          * Get the target context (task or percpu):
10834          */
10835
10836         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10837                                  overflow_handler, context, -1);
10838         if (IS_ERR(event)) {
10839                 err = PTR_ERR(event);
10840                 goto err;
10841         }
10842
10843         /* Mark owner so we could distinguish it from user events. */
10844         event->owner = TASK_TOMBSTONE;
10845
10846         ctx = find_get_context(event->pmu, task, event);
10847         if (IS_ERR(ctx)) {
10848                 err = PTR_ERR(ctx);
10849                 goto err_free;
10850         }
10851
10852         WARN_ON_ONCE(ctx->parent_ctx);
10853         mutex_lock(&ctx->mutex);
10854         if (ctx->task == TASK_TOMBSTONE) {
10855                 err = -ESRCH;
10856                 goto err_unlock;
10857         }
10858
10859         if (!task) {
10860                 /*
10861                  * Check if the @cpu we're creating an event for is online.
10862                  *
10863                  * We use the perf_cpu_context::ctx::mutex to serialize against
10864                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10865                  */
10866                 struct perf_cpu_context *cpuctx =
10867                         container_of(ctx, struct perf_cpu_context, ctx);
10868                 if (!cpuctx->online) {
10869                         err = -ENODEV;
10870                         goto err_unlock;
10871                 }
10872         }
10873
10874         if (!exclusive_event_installable(event, ctx)) {
10875                 err = -EBUSY;
10876                 goto err_unlock;
10877         }
10878
10879         perf_install_in_context(ctx, event, cpu);
10880         perf_unpin_context(ctx);
10881         mutex_unlock(&ctx->mutex);
10882
10883         return event;
10884
10885 err_unlock:
10886         mutex_unlock(&ctx->mutex);
10887         perf_unpin_context(ctx);
10888         put_ctx(ctx);
10889 err_free:
10890         free_event(event);
10891 err:
10892         return ERR_PTR(err);
10893 }
10894 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10895
10896 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10897 {
10898         struct perf_event_context *src_ctx;
10899         struct perf_event_context *dst_ctx;
10900         struct perf_event *event, *tmp;
10901         LIST_HEAD(events);
10902
10903         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10904         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10905
10906         /*
10907          * See perf_event_ctx_lock() for comments on the details
10908          * of swizzling perf_event::ctx.
10909          */
10910         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10911         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10912                                  event_entry) {
10913                 perf_remove_from_context(event, 0);
10914                 unaccount_event_cpu(event, src_cpu);
10915                 put_ctx(src_ctx);
10916                 list_add(&event->migrate_entry, &events);
10917         }
10918
10919         /*
10920          * Wait for the events to quiesce before re-instating them.
10921          */
10922         synchronize_rcu();
10923
10924         /*
10925          * Re-instate events in 2 passes.
10926          *
10927          * Skip over group leaders and only install siblings on this first
10928          * pass, siblings will not get enabled without a leader, however a
10929          * leader will enable its siblings, even if those are still on the old
10930          * context.
10931          */
10932         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10933                 if (event->group_leader == event)
10934                         continue;
10935
10936                 list_del(&event->migrate_entry);
10937                 if (event->state >= PERF_EVENT_STATE_OFF)
10938                         event->state = PERF_EVENT_STATE_INACTIVE;
10939                 account_event_cpu(event, dst_cpu);
10940                 perf_install_in_context(dst_ctx, event, dst_cpu);
10941                 get_ctx(dst_ctx);
10942         }
10943
10944         /*
10945          * Once all the siblings are setup properly, install the group leaders
10946          * to make it go.
10947          */
10948         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10949                 list_del(&event->migrate_entry);
10950                 if (event->state >= PERF_EVENT_STATE_OFF)
10951                         event->state = PERF_EVENT_STATE_INACTIVE;
10952                 account_event_cpu(event, dst_cpu);
10953                 perf_install_in_context(dst_ctx, event, dst_cpu);
10954                 get_ctx(dst_ctx);
10955         }
10956         mutex_unlock(&dst_ctx->mutex);
10957         mutex_unlock(&src_ctx->mutex);
10958 }
10959 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10960
10961 static void sync_child_event(struct perf_event *child_event,
10962                                struct task_struct *child)
10963 {
10964         struct perf_event *parent_event = child_event->parent;
10965         u64 child_val;
10966
10967         if (child_event->attr.inherit_stat)
10968                 perf_event_read_event(child_event, child);
10969
10970         child_val = perf_event_count(child_event);
10971
10972         /*
10973          * Add back the child's count to the parent's count:
10974          */
10975         atomic64_add(child_val, &parent_event->child_count);
10976         atomic64_add(child_event->total_time_enabled,
10977                      &parent_event->child_total_time_enabled);
10978         atomic64_add(child_event->total_time_running,
10979                      &parent_event->child_total_time_running);
10980 }
10981
10982 static void
10983 perf_event_exit_event(struct perf_event *child_event,
10984                       struct perf_event_context *child_ctx,
10985                       struct task_struct *child)
10986 {
10987         struct perf_event *parent_event = child_event->parent;
10988
10989         /*
10990          * Do not destroy the 'original' grouping; because of the context
10991          * switch optimization the original events could've ended up in a
10992          * random child task.
10993          *
10994          * If we were to destroy the original group, all group related
10995          * operations would cease to function properly after this random
10996          * child dies.
10997          *
10998          * Do destroy all inherited groups, we don't care about those
10999          * and being thorough is better.
11000          */
11001         raw_spin_lock_irq(&child_ctx->lock);
11002         WARN_ON_ONCE(child_ctx->is_active);
11003
11004         if (parent_event)
11005                 perf_group_detach(child_event);
11006         list_del_event(child_event, child_ctx);
11007         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11008         raw_spin_unlock_irq(&child_ctx->lock);
11009
11010         /*
11011          * Parent events are governed by their filedesc, retain them.
11012          */
11013         if (!parent_event) {
11014                 perf_event_wakeup(child_event);
11015                 return;
11016         }
11017         /*
11018          * Child events can be cleaned up.
11019          */
11020
11021         sync_child_event(child_event, child);
11022
11023         /*
11024          * Remove this event from the parent's list
11025          */
11026         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11027         mutex_lock(&parent_event->child_mutex);
11028         list_del_init(&child_event->child_list);
11029         mutex_unlock(&parent_event->child_mutex);
11030
11031         /*
11032          * Kick perf_poll() for is_event_hup().
11033          */
11034         perf_event_wakeup(parent_event);
11035         free_event(child_event);
11036         put_event(parent_event);
11037 }
11038
11039 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11040 {
11041         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11042         struct perf_event *child_event, *next;
11043
11044         WARN_ON_ONCE(child != current);
11045
11046         child_ctx = perf_pin_task_context(child, ctxn);
11047         if (!child_ctx)
11048                 return;
11049
11050         /*
11051          * In order to reduce the amount of tricky in ctx tear-down, we hold
11052          * ctx::mutex over the entire thing. This serializes against almost
11053          * everything that wants to access the ctx.
11054          *
11055          * The exception is sys_perf_event_open() /
11056          * perf_event_create_kernel_count() which does find_get_context()
11057          * without ctx::mutex (it cannot because of the move_group double mutex
11058          * lock thing). See the comments in perf_install_in_context().
11059          */
11060         mutex_lock(&child_ctx->mutex);
11061
11062         /*
11063          * In a single ctx::lock section, de-schedule the events and detach the
11064          * context from the task such that we cannot ever get it scheduled back
11065          * in.
11066          */
11067         raw_spin_lock_irq(&child_ctx->lock);
11068         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11069
11070         /*
11071          * Now that the context is inactive, destroy the task <-> ctx relation
11072          * and mark the context dead.
11073          */
11074         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11075         put_ctx(child_ctx); /* cannot be last */
11076         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11077         put_task_struct(current); /* cannot be last */
11078
11079         clone_ctx = unclone_ctx(child_ctx);
11080         raw_spin_unlock_irq(&child_ctx->lock);
11081
11082         if (clone_ctx)
11083                 put_ctx(clone_ctx);
11084
11085         /*
11086          * Report the task dead after unscheduling the events so that we
11087          * won't get any samples after PERF_RECORD_EXIT. We can however still
11088          * get a few PERF_RECORD_READ events.
11089          */
11090         perf_event_task(child, child_ctx, 0);
11091
11092         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11093                 perf_event_exit_event(child_event, child_ctx, child);
11094
11095         mutex_unlock(&child_ctx->mutex);
11096
11097         put_ctx(child_ctx);
11098 }
11099
11100 /*
11101  * When a child task exits, feed back event values to parent events.
11102  *
11103  * Can be called with cred_guard_mutex held when called from
11104  * install_exec_creds().
11105  */
11106 void perf_event_exit_task(struct task_struct *child)
11107 {
11108         struct perf_event *event, *tmp;
11109         int ctxn;
11110
11111         mutex_lock(&child->perf_event_mutex);
11112         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11113                                  owner_entry) {
11114                 list_del_init(&event->owner_entry);
11115
11116                 /*
11117                  * Ensure the list deletion is visible before we clear
11118                  * the owner, closes a race against perf_release() where
11119                  * we need to serialize on the owner->perf_event_mutex.
11120                  */
11121                 smp_store_release(&event->owner, NULL);
11122         }
11123         mutex_unlock(&child->perf_event_mutex);
11124
11125         for_each_task_context_nr(ctxn)
11126                 perf_event_exit_task_context(child, ctxn);
11127
11128         /*
11129          * The perf_event_exit_task_context calls perf_event_task
11130          * with child's task_ctx, which generates EXIT events for
11131          * child contexts and sets child->perf_event_ctxp[] to NULL.
11132          * At this point we need to send EXIT events to cpu contexts.
11133          */
11134         perf_event_task(child, NULL, 0);
11135 }
11136
11137 static void perf_free_event(struct perf_event *event,
11138                             struct perf_event_context *ctx)
11139 {
11140         struct perf_event *parent = event->parent;
11141
11142         if (WARN_ON_ONCE(!parent))
11143                 return;
11144
11145         mutex_lock(&parent->child_mutex);
11146         list_del_init(&event->child_list);
11147         mutex_unlock(&parent->child_mutex);
11148
11149         put_event(parent);
11150
11151         raw_spin_lock_irq(&ctx->lock);
11152         perf_group_detach(event);
11153         list_del_event(event, ctx);
11154         raw_spin_unlock_irq(&ctx->lock);
11155         free_event(event);
11156 }
11157
11158 /*
11159  * Free an unexposed, unused context as created by inheritance by
11160  * perf_event_init_task below, used by fork() in case of fail.
11161  *
11162  * Not all locks are strictly required, but take them anyway to be nice and
11163  * help out with the lockdep assertions.
11164  */
11165 void perf_event_free_task(struct task_struct *task)
11166 {
11167         struct perf_event_context *ctx;
11168         struct perf_event *event, *tmp;
11169         int ctxn;
11170
11171         for_each_task_context_nr(ctxn) {
11172                 ctx = task->perf_event_ctxp[ctxn];
11173                 if (!ctx)
11174                         continue;
11175
11176                 mutex_lock(&ctx->mutex);
11177                 raw_spin_lock_irq(&ctx->lock);
11178                 /*
11179                  * Destroy the task <-> ctx relation and mark the context dead.
11180                  *
11181                  * This is important because even though the task hasn't been
11182                  * exposed yet the context has been (through child_list).
11183                  */
11184                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11185                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11186                 put_task_struct(task); /* cannot be last */
11187                 raw_spin_unlock_irq(&ctx->lock);
11188
11189                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11190                         perf_free_event(event, ctx);
11191
11192                 mutex_unlock(&ctx->mutex);
11193                 put_ctx(ctx);
11194         }
11195 }
11196
11197 void perf_event_delayed_put(struct task_struct *task)
11198 {
11199         int ctxn;
11200
11201         for_each_task_context_nr(ctxn)
11202                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11203 }
11204
11205 struct file *perf_event_get(unsigned int fd)
11206 {
11207         struct file *file;
11208
11209         file = fget_raw(fd);
11210         if (!file)
11211                 return ERR_PTR(-EBADF);
11212
11213         if (file->f_op != &perf_fops) {
11214                 fput(file);
11215                 return ERR_PTR(-EBADF);
11216         }
11217
11218         return file;
11219 }
11220
11221 const struct perf_event *perf_get_event(struct file *file)
11222 {
11223         if (file->f_op != &perf_fops)
11224                 return ERR_PTR(-EINVAL);
11225
11226         return file->private_data;
11227 }
11228
11229 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11230 {
11231         if (!event)
11232                 return ERR_PTR(-EINVAL);
11233
11234         return &event->attr;
11235 }
11236
11237 /*
11238  * Inherit an event from parent task to child task.
11239  *
11240  * Returns:
11241  *  - valid pointer on success
11242  *  - NULL for orphaned events
11243  *  - IS_ERR() on error
11244  */
11245 static struct perf_event *
11246 inherit_event(struct perf_event *parent_event,
11247               struct task_struct *parent,
11248               struct perf_event_context *parent_ctx,
11249               struct task_struct *child,
11250               struct perf_event *group_leader,
11251               struct perf_event_context *child_ctx)
11252 {
11253         enum perf_event_state parent_state = parent_event->state;
11254         struct perf_event *child_event;
11255         unsigned long flags;
11256
11257         /*
11258          * Instead of creating recursive hierarchies of events,
11259          * we link inherited events back to the original parent,
11260          * which has a filp for sure, which we use as the reference
11261          * count:
11262          */
11263         if (parent_event->parent)
11264                 parent_event = parent_event->parent;
11265
11266         child_event = perf_event_alloc(&parent_event->attr,
11267                                            parent_event->cpu,
11268                                            child,
11269                                            group_leader, parent_event,
11270                                            NULL, NULL, -1);
11271         if (IS_ERR(child_event))
11272                 return child_event;
11273
11274
11275         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11276             !child_ctx->task_ctx_data) {
11277                 struct pmu *pmu = child_event->pmu;
11278
11279                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11280                                                    GFP_KERNEL);
11281                 if (!child_ctx->task_ctx_data) {
11282                         free_event(child_event);
11283                         return NULL;
11284                 }
11285         }
11286
11287         /*
11288          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11289          * must be under the same lock in order to serialize against
11290          * perf_event_release_kernel(), such that either we must observe
11291          * is_orphaned_event() or they will observe us on the child_list.
11292          */
11293         mutex_lock(&parent_event->child_mutex);
11294         if (is_orphaned_event(parent_event) ||
11295             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11296                 mutex_unlock(&parent_event->child_mutex);
11297                 /* task_ctx_data is freed with child_ctx */
11298                 free_event(child_event);
11299                 return NULL;
11300         }
11301
11302         get_ctx(child_ctx);
11303
11304         /*
11305          * Make the child state follow the state of the parent event,
11306          * not its attr.disabled bit.  We hold the parent's mutex,
11307          * so we won't race with perf_event_{en, dis}able_family.
11308          */
11309         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11310                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11311         else
11312                 child_event->state = PERF_EVENT_STATE_OFF;
11313
11314         if (parent_event->attr.freq) {
11315                 u64 sample_period = parent_event->hw.sample_period;
11316                 struct hw_perf_event *hwc = &child_event->hw;
11317
11318                 hwc->sample_period = sample_period;
11319                 hwc->last_period   = sample_period;
11320
11321                 local64_set(&hwc->period_left, sample_period);
11322         }
11323
11324         child_event->ctx = child_ctx;
11325         child_event->overflow_handler = parent_event->overflow_handler;
11326         child_event->overflow_handler_context
11327                 = parent_event->overflow_handler_context;
11328
11329         /*
11330          * Precalculate sample_data sizes
11331          */
11332         perf_event__header_size(child_event);
11333         perf_event__id_header_size(child_event);
11334
11335         /*
11336          * Link it up in the child's context:
11337          */
11338         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11339         add_event_to_ctx(child_event, child_ctx);
11340         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11341
11342         /*
11343          * Link this into the parent event's child list
11344          */
11345         list_add_tail(&child_event->child_list, &parent_event->child_list);
11346         mutex_unlock(&parent_event->child_mutex);
11347
11348         return child_event;
11349 }
11350
11351 /*
11352  * Inherits an event group.
11353  *
11354  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11355  * This matches with perf_event_release_kernel() removing all child events.
11356  *
11357  * Returns:
11358  *  - 0 on success
11359  *  - <0 on error
11360  */
11361 static int inherit_group(struct perf_event *parent_event,
11362               struct task_struct *parent,
11363               struct perf_event_context *parent_ctx,
11364               struct task_struct *child,
11365               struct perf_event_context *child_ctx)
11366 {
11367         struct perf_event *leader;
11368         struct perf_event *sub;
11369         struct perf_event *child_ctr;
11370
11371         leader = inherit_event(parent_event, parent, parent_ctx,
11372                                  child, NULL, child_ctx);
11373         if (IS_ERR(leader))
11374                 return PTR_ERR(leader);
11375         /*
11376          * @leader can be NULL here because of is_orphaned_event(). In this
11377          * case inherit_event() will create individual events, similar to what
11378          * perf_group_detach() would do anyway.
11379          */
11380         for_each_sibling_event(sub, parent_event) {
11381                 child_ctr = inherit_event(sub, parent, parent_ctx,
11382                                             child, leader, child_ctx);
11383                 if (IS_ERR(child_ctr))
11384                         return PTR_ERR(child_ctr);
11385         }
11386         return 0;
11387 }
11388
11389 /*
11390  * Creates the child task context and tries to inherit the event-group.
11391  *
11392  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11393  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11394  * consistent with perf_event_release_kernel() removing all child events.
11395  *
11396  * Returns:
11397  *  - 0 on success
11398  *  - <0 on error
11399  */
11400 static int
11401 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11402                    struct perf_event_context *parent_ctx,
11403                    struct task_struct *child, int ctxn,
11404                    int *inherited_all)
11405 {
11406         int ret;
11407         struct perf_event_context *child_ctx;
11408
11409         if (!event->attr.inherit) {
11410                 *inherited_all = 0;
11411                 return 0;
11412         }
11413
11414         child_ctx = child->perf_event_ctxp[ctxn];
11415         if (!child_ctx) {
11416                 /*
11417                  * This is executed from the parent task context, so
11418                  * inherit events that have been marked for cloning.
11419                  * First allocate and initialize a context for the
11420                  * child.
11421                  */
11422                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11423                 if (!child_ctx)
11424                         return -ENOMEM;
11425
11426                 child->perf_event_ctxp[ctxn] = child_ctx;
11427         }
11428
11429         ret = inherit_group(event, parent, parent_ctx,
11430                             child, child_ctx);
11431
11432         if (ret)
11433                 *inherited_all = 0;
11434
11435         return ret;
11436 }
11437
11438 /*
11439  * Initialize the perf_event context in task_struct
11440  */
11441 static int perf_event_init_context(struct task_struct *child, int ctxn)
11442 {
11443         struct perf_event_context *child_ctx, *parent_ctx;
11444         struct perf_event_context *cloned_ctx;
11445         struct perf_event *event;
11446         struct task_struct *parent = current;
11447         int inherited_all = 1;
11448         unsigned long flags;
11449         int ret = 0;
11450
11451         if (likely(!parent->perf_event_ctxp[ctxn]))
11452                 return 0;
11453
11454         /*
11455          * If the parent's context is a clone, pin it so it won't get
11456          * swapped under us.
11457          */
11458         parent_ctx = perf_pin_task_context(parent, ctxn);
11459         if (!parent_ctx)
11460                 return 0;
11461
11462         /*
11463          * No need to check if parent_ctx != NULL here; since we saw
11464          * it non-NULL earlier, the only reason for it to become NULL
11465          * is if we exit, and since we're currently in the middle of
11466          * a fork we can't be exiting at the same time.
11467          */
11468
11469         /*
11470          * Lock the parent list. No need to lock the child - not PID
11471          * hashed yet and not running, so nobody can access it.
11472          */
11473         mutex_lock(&parent_ctx->mutex);
11474
11475         /*
11476          * We dont have to disable NMIs - we are only looking at
11477          * the list, not manipulating it:
11478          */
11479         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11480                 ret = inherit_task_group(event, parent, parent_ctx,
11481                                          child, ctxn, &inherited_all);
11482                 if (ret)
11483                         goto out_unlock;
11484         }
11485
11486         /*
11487          * We can't hold ctx->lock when iterating the ->flexible_group list due
11488          * to allocations, but we need to prevent rotation because
11489          * rotate_ctx() will change the list from interrupt context.
11490          */
11491         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11492         parent_ctx->rotate_disable = 1;
11493         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11494
11495         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11496                 ret = inherit_task_group(event, parent, parent_ctx,
11497                                          child, ctxn, &inherited_all);
11498                 if (ret)
11499                         goto out_unlock;
11500         }
11501
11502         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11503         parent_ctx->rotate_disable = 0;
11504
11505         child_ctx = child->perf_event_ctxp[ctxn];
11506
11507         if (child_ctx && inherited_all) {
11508                 /*
11509                  * Mark the child context as a clone of the parent
11510                  * context, or of whatever the parent is a clone of.
11511                  *
11512                  * Note that if the parent is a clone, the holding of
11513                  * parent_ctx->lock avoids it from being uncloned.
11514                  */
11515                 cloned_ctx = parent_ctx->parent_ctx;
11516                 if (cloned_ctx) {
11517                         child_ctx->parent_ctx = cloned_ctx;
11518                         child_ctx->parent_gen = parent_ctx->parent_gen;
11519                 } else {
11520                         child_ctx->parent_ctx = parent_ctx;
11521                         child_ctx->parent_gen = parent_ctx->generation;
11522                 }
11523                 get_ctx(child_ctx->parent_ctx);
11524         }
11525
11526         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11527 out_unlock:
11528         mutex_unlock(&parent_ctx->mutex);
11529
11530         perf_unpin_context(parent_ctx);
11531         put_ctx(parent_ctx);
11532
11533         return ret;
11534 }
11535
11536 /*
11537  * Initialize the perf_event context in task_struct
11538  */
11539 int perf_event_init_task(struct task_struct *child)
11540 {
11541         int ctxn, ret;
11542
11543         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11544         mutex_init(&child->perf_event_mutex);
11545         INIT_LIST_HEAD(&child->perf_event_list);
11546
11547         for_each_task_context_nr(ctxn) {
11548                 ret = perf_event_init_context(child, ctxn);
11549                 if (ret) {
11550                         perf_event_free_task(child);
11551                         return ret;
11552                 }
11553         }
11554
11555         return 0;
11556 }
11557
11558 static void __init perf_event_init_all_cpus(void)
11559 {
11560         struct swevent_htable *swhash;
11561         int cpu;
11562
11563         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11564
11565         for_each_possible_cpu(cpu) {
11566                 swhash = &per_cpu(swevent_htable, cpu);
11567                 mutex_init(&swhash->hlist_mutex);
11568                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11569
11570                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11571                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11572
11573 #ifdef CONFIG_CGROUP_PERF
11574                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11575 #endif
11576                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11577         }
11578 }
11579
11580 void perf_swevent_init_cpu(unsigned int cpu)
11581 {
11582         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11583
11584         mutex_lock(&swhash->hlist_mutex);
11585         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11586                 struct swevent_hlist *hlist;
11587
11588                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11589                 WARN_ON(!hlist);
11590                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11591         }
11592         mutex_unlock(&swhash->hlist_mutex);
11593 }
11594
11595 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11596 static void __perf_event_exit_context(void *__info)
11597 {
11598         struct perf_event_context *ctx = __info;
11599         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11600         struct perf_event *event;
11601
11602         raw_spin_lock(&ctx->lock);
11603         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11604         list_for_each_entry(event, &ctx->event_list, event_entry)
11605                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11606         raw_spin_unlock(&ctx->lock);
11607 }
11608
11609 static void perf_event_exit_cpu_context(int cpu)
11610 {
11611         struct perf_cpu_context *cpuctx;
11612         struct perf_event_context *ctx;
11613         struct pmu *pmu;
11614
11615         mutex_lock(&pmus_lock);
11616         list_for_each_entry(pmu, &pmus, entry) {
11617                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11618                 ctx = &cpuctx->ctx;
11619
11620                 mutex_lock(&ctx->mutex);
11621                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11622                 cpuctx->online = 0;
11623                 mutex_unlock(&ctx->mutex);
11624         }
11625         cpumask_clear_cpu(cpu, perf_online_mask);
11626         mutex_unlock(&pmus_lock);
11627 }
11628 #else
11629
11630 static void perf_event_exit_cpu_context(int cpu) { }
11631
11632 #endif
11633
11634 int perf_event_init_cpu(unsigned int cpu)
11635 {
11636         struct perf_cpu_context *cpuctx;
11637         struct perf_event_context *ctx;
11638         struct pmu *pmu;
11639
11640         perf_swevent_init_cpu(cpu);
11641
11642         mutex_lock(&pmus_lock);
11643         cpumask_set_cpu(cpu, perf_online_mask);
11644         list_for_each_entry(pmu, &pmus, entry) {
11645                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11646                 ctx = &cpuctx->ctx;
11647
11648                 mutex_lock(&ctx->mutex);
11649                 cpuctx->online = 1;
11650                 mutex_unlock(&ctx->mutex);
11651         }
11652         mutex_unlock(&pmus_lock);
11653
11654         return 0;
11655 }
11656
11657 int perf_event_exit_cpu(unsigned int cpu)
11658 {
11659         perf_event_exit_cpu_context(cpu);
11660         return 0;
11661 }
11662
11663 static int
11664 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11665 {
11666         int cpu;
11667
11668         for_each_online_cpu(cpu)
11669                 perf_event_exit_cpu(cpu);
11670
11671         return NOTIFY_OK;
11672 }
11673
11674 /*
11675  * Run the perf reboot notifier at the very last possible moment so that
11676  * the generic watchdog code runs as long as possible.
11677  */
11678 static struct notifier_block perf_reboot_notifier = {
11679         .notifier_call = perf_reboot,
11680         .priority = INT_MIN,
11681 };
11682
11683 void __init perf_event_init(void)
11684 {
11685         int ret;
11686
11687         idr_init(&pmu_idr);
11688
11689         perf_event_init_all_cpus();
11690         init_srcu_struct(&pmus_srcu);
11691         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11692         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11693         perf_pmu_register(&perf_task_clock, NULL, -1);
11694         perf_tp_register();
11695         perf_event_init_cpu(smp_processor_id());
11696         register_reboot_notifier(&perf_reboot_notifier);
11697
11698         ret = init_hw_breakpoint();
11699         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11700
11701         /*
11702          * Build time assertion that we keep the data_head at the intended
11703          * location.  IOW, validation we got the __reserved[] size right.
11704          */
11705         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11706                      != 1024);
11707 }
11708
11709 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11710                               char *page)
11711 {
11712         struct perf_pmu_events_attr *pmu_attr =
11713                 container_of(attr, struct perf_pmu_events_attr, attr);
11714
11715         if (pmu_attr->event_str)
11716                 return sprintf(page, "%s\n", pmu_attr->event_str);
11717
11718         return 0;
11719 }
11720 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11721
11722 static int __init perf_event_sysfs_init(void)
11723 {
11724         struct pmu *pmu;
11725         int ret;
11726
11727         mutex_lock(&pmus_lock);
11728
11729         ret = bus_register(&pmu_bus);
11730         if (ret)
11731                 goto unlock;
11732
11733         list_for_each_entry(pmu, &pmus, entry) {
11734                 if (!pmu->name || pmu->type < 0)
11735                         continue;
11736
11737                 ret = pmu_dev_alloc(pmu);
11738                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11739         }
11740         pmu_bus_running = 1;
11741         ret = 0;
11742
11743 unlock:
11744         mutex_unlock(&pmus_lock);
11745
11746         return ret;
11747 }
11748 device_initcall(perf_event_sysfs_init);
11749
11750 #ifdef CONFIG_CGROUP_PERF
11751 static struct cgroup_subsys_state *
11752 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11753 {
11754         struct perf_cgroup *jc;
11755
11756         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11757         if (!jc)
11758                 return ERR_PTR(-ENOMEM);
11759
11760         jc->info = alloc_percpu(struct perf_cgroup_info);
11761         if (!jc->info) {
11762                 kfree(jc);
11763                 return ERR_PTR(-ENOMEM);
11764         }
11765
11766         return &jc->css;
11767 }
11768
11769 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11770 {
11771         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11772
11773         free_percpu(jc->info);
11774         kfree(jc);
11775 }
11776
11777 static int __perf_cgroup_move(void *info)
11778 {
11779         struct task_struct *task = info;
11780         rcu_read_lock();
11781         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11782         rcu_read_unlock();
11783         return 0;
11784 }
11785
11786 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11787 {
11788         struct task_struct *task;
11789         struct cgroup_subsys_state *css;
11790
11791         cgroup_taskset_for_each(task, css, tset)
11792                 task_function_call(task, __perf_cgroup_move, task);
11793 }
11794
11795 struct cgroup_subsys perf_event_cgrp_subsys = {
11796         .css_alloc      = perf_cgroup_css_alloc,
11797         .css_free       = perf_cgroup_css_free,
11798         .attach         = perf_cgroup_attach,
11799         /*
11800          * Implicitly enable on dfl hierarchy so that perf events can
11801          * always be filtered by cgroup2 path as long as perf_event
11802          * controller is not mounted on a legacy hierarchy.
11803          */
11804         .implicit_on_dfl = true,
11805         .threaded       = true,
11806 };
11807 #endif /* CONFIG_CGROUP_PERF */