Merge tag 'mm-stable-2024-05-17-19-19' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57 #include <linux/task_work.h>
58
59 #include "internal.h"
60
61 #include <asm/irq_regs.h>
62
63 typedef int (*remote_function_f)(void *);
64
65 struct remote_function_call {
66         struct task_struct      *p;
67         remote_function_f       func;
68         void                    *info;
69         int                     ret;
70 };
71
72 static void remote_function(void *data)
73 {
74         struct remote_function_call *tfc = data;
75         struct task_struct *p = tfc->p;
76
77         if (p) {
78                 /* -EAGAIN */
79                 if (task_cpu(p) != smp_processor_id())
80                         return;
81
82                 /*
83                  * Now that we're on right CPU with IRQs disabled, we can test
84                  * if we hit the right task without races.
85                  */
86
87                 tfc->ret = -ESRCH; /* No such (running) process */
88                 if (p != current)
89                         return;
90         }
91
92         tfc->ret = tfc->func(tfc->info);
93 }
94
95 /**
96  * task_function_call - call a function on the cpu on which a task runs
97  * @p:          the task to evaluate
98  * @func:       the function to be called
99  * @info:       the function call argument
100  *
101  * Calls the function @func when the task is currently running. This might
102  * be on the current CPU, which just calls the function directly.  This will
103  * retry due to any failures in smp_call_function_single(), such as if the
104  * task_cpu() goes offline concurrently.
105  *
106  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
107  */
108 static int
109 task_function_call(struct task_struct *p, remote_function_f func, void *info)
110 {
111         struct remote_function_call data = {
112                 .p      = p,
113                 .func   = func,
114                 .info   = info,
115                 .ret    = -EAGAIN,
116         };
117         int ret;
118
119         for (;;) {
120                 ret = smp_call_function_single(task_cpu(p), remote_function,
121                                                &data, 1);
122                 if (!ret)
123                         ret = data.ret;
124
125                 if (ret != -EAGAIN)
126                         break;
127
128                 cond_resched();
129         }
130
131         return ret;
132 }
133
134 /**
135  * cpu_function_call - call a function on the cpu
136  * @cpu:        target cpu to queue this function
137  * @func:       the function to be called
138  * @info:       the function call argument
139  *
140  * Calls the function @func on the remote cpu.
141  *
142  * returns: @func return value or -ENXIO when the cpu is offline
143  */
144 static int cpu_function_call(int cpu, remote_function_f func, void *info)
145 {
146         struct remote_function_call data = {
147                 .p      = NULL,
148                 .func   = func,
149                 .info   = info,
150                 .ret    = -ENXIO, /* No such CPU */
151         };
152
153         smp_call_function_single(cpu, remote_function, &data, 1);
154
155         return data.ret;
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 static DEFINE_PER_CPU(struct perf_cpu_context, perf_cpu_context);
182
183 struct perf_event_context *perf_cpu_task_ctx(void)
184 {
185         lockdep_assert_irqs_disabled();
186         return this_cpu_ptr(&perf_cpu_context)->task_ctx;
187 }
188
189 /*
190  * On task ctx scheduling...
191  *
192  * When !ctx->nr_events a task context will not be scheduled. This means
193  * we can disable the scheduler hooks (for performance) without leaving
194  * pending task ctx state.
195  *
196  * This however results in two special cases:
197  *
198  *  - removing the last event from a task ctx; this is relatively straight
199  *    forward and is done in __perf_remove_from_context.
200  *
201  *  - adding the first event to a task ctx; this is tricky because we cannot
202  *    rely on ctx->is_active and therefore cannot use event_function_call().
203  *    See perf_install_in_context().
204  *
205  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
206  */
207
208 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
209                         struct perf_event_context *, void *);
210
211 struct event_function_struct {
212         struct perf_event *event;
213         event_f func;
214         void *data;
215 };
216
217 static int event_function(void *info)
218 {
219         struct event_function_struct *efs = info;
220         struct perf_event *event = efs->event;
221         struct perf_event_context *ctx = event->ctx;
222         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
223         struct perf_event_context *task_ctx = cpuctx->task_ctx;
224         int ret = 0;
225
226         lockdep_assert_irqs_disabled();
227
228         perf_ctx_lock(cpuctx, task_ctx);
229         /*
230          * Since we do the IPI call without holding ctx->lock things can have
231          * changed, double check we hit the task we set out to hit.
232          */
233         if (ctx->task) {
234                 if (ctx->task != current) {
235                         ret = -ESRCH;
236                         goto unlock;
237                 }
238
239                 /*
240                  * We only use event_function_call() on established contexts,
241                  * and event_function() is only ever called when active (or
242                  * rather, we'll have bailed in task_function_call() or the
243                  * above ctx->task != current test), therefore we must have
244                  * ctx->is_active here.
245                  */
246                 WARN_ON_ONCE(!ctx->is_active);
247                 /*
248                  * And since we have ctx->is_active, cpuctx->task_ctx must
249                  * match.
250                  */
251                 WARN_ON_ONCE(task_ctx != ctx);
252         } else {
253                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
254         }
255
256         efs->func(event, cpuctx, ctx, efs->data);
257 unlock:
258         perf_ctx_unlock(cpuctx, task_ctx);
259
260         return ret;
261 }
262
263 static void event_function_call(struct perf_event *event, event_f func, void *data)
264 {
265         struct perf_event_context *ctx = event->ctx;
266         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
267         struct event_function_struct efs = {
268                 .event = event,
269                 .func = func,
270                 .data = data,
271         };
272
273         if (!event->parent) {
274                 /*
275                  * If this is a !child event, we must hold ctx::mutex to
276                  * stabilize the event->ctx relation. See
277                  * perf_event_ctx_lock().
278                  */
279                 lockdep_assert_held(&ctx->mutex);
280         }
281
282         if (!task) {
283                 cpu_function_call(event->cpu, event_function, &efs);
284                 return;
285         }
286
287         if (task == TASK_TOMBSTONE)
288                 return;
289
290 again:
291         if (!task_function_call(task, event_function, &efs))
292                 return;
293
294         raw_spin_lock_irq(&ctx->lock);
295         /*
296          * Reload the task pointer, it might have been changed by
297          * a concurrent perf_event_context_sched_out().
298          */
299         task = ctx->task;
300         if (task == TASK_TOMBSTONE) {
301                 raw_spin_unlock_irq(&ctx->lock);
302                 return;
303         }
304         if (ctx->is_active) {
305                 raw_spin_unlock_irq(&ctx->lock);
306                 goto again;
307         }
308         func(event, NULL, ctx, data);
309         raw_spin_unlock_irq(&ctx->lock);
310 }
311
312 /*
313  * Similar to event_function_call() + event_function(), but hard assumes IRQs
314  * are already disabled and we're on the right CPU.
315  */
316 static void event_function_local(struct perf_event *event, event_f func, void *data)
317 {
318         struct perf_event_context *ctx = event->ctx;
319         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
320         struct task_struct *task = READ_ONCE(ctx->task);
321         struct perf_event_context *task_ctx = NULL;
322
323         lockdep_assert_irqs_disabled();
324
325         if (task) {
326                 if (task == TASK_TOMBSTONE)
327                         return;
328
329                 task_ctx = ctx;
330         }
331
332         perf_ctx_lock(cpuctx, task_ctx);
333
334         task = ctx->task;
335         if (task == TASK_TOMBSTONE)
336                 goto unlock;
337
338         if (task) {
339                 /*
340                  * We must be either inactive or active and the right task,
341                  * otherwise we're screwed, since we cannot IPI to somewhere
342                  * else.
343                  */
344                 if (ctx->is_active) {
345                         if (WARN_ON_ONCE(task != current))
346                                 goto unlock;
347
348                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
349                                 goto unlock;
350                 }
351         } else {
352                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
353         }
354
355         func(event, cpuctx, ctx, data);
356 unlock:
357         perf_ctx_unlock(cpuctx, task_ctx);
358 }
359
360 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
361                        PERF_FLAG_FD_OUTPUT  |\
362                        PERF_FLAG_PID_CGROUP |\
363                        PERF_FLAG_FD_CLOEXEC)
364
365 /*
366  * branch priv levels that need permission checks
367  */
368 #define PERF_SAMPLE_BRANCH_PERM_PLM \
369         (PERF_SAMPLE_BRANCH_KERNEL |\
370          PERF_SAMPLE_BRANCH_HV)
371
372 enum event_type_t {
373         EVENT_FLEXIBLE = 0x1,
374         EVENT_PINNED = 0x2,
375         EVENT_TIME = 0x4,
376         /* see ctx_resched() for details */
377         EVENT_CPU = 0x8,
378         EVENT_CGROUP = 0x10,
379         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
380 };
381
382 /*
383  * perf_sched_events : >0 events exist
384  */
385
386 static void perf_sched_delayed(struct work_struct *work);
387 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
388 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
389 static DEFINE_MUTEX(perf_sched_mutex);
390 static atomic_t perf_sched_count;
391
392 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
393
394 static atomic_t nr_mmap_events __read_mostly;
395 static atomic_t nr_comm_events __read_mostly;
396 static atomic_t nr_namespaces_events __read_mostly;
397 static atomic_t nr_task_events __read_mostly;
398 static atomic_t nr_freq_events __read_mostly;
399 static atomic_t nr_switch_events __read_mostly;
400 static atomic_t nr_ksymbol_events __read_mostly;
401 static atomic_t nr_bpf_events __read_mostly;
402 static atomic_t nr_cgroup_events __read_mostly;
403 static atomic_t nr_text_poke_events __read_mostly;
404 static atomic_t nr_build_id_events __read_mostly;
405
406 static LIST_HEAD(pmus);
407 static DEFINE_MUTEX(pmus_lock);
408 static struct srcu_struct pmus_srcu;
409 static cpumask_var_t perf_online_mask;
410 static struct kmem_cache *perf_event_cache;
411
412 /*
413  * perf event paranoia level:
414  *  -1 - not paranoid at all
415  *   0 - disallow raw tracepoint access for unpriv
416  *   1 - disallow cpu events for unpriv
417  *   2 - disallow kernel profiling for unpriv
418  */
419 int sysctl_perf_event_paranoid __read_mostly = 2;
420
421 /* Minimum for 512 kiB + 1 user control page */
422 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
423
424 /*
425  * max perf event sample rate
426  */
427 #define DEFAULT_MAX_SAMPLE_RATE         100000
428 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
429 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
430
431 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
432
433 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
434 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
435
436 static int perf_sample_allowed_ns __read_mostly =
437         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
438
439 static void update_perf_cpu_limits(void)
440 {
441         u64 tmp = perf_sample_period_ns;
442
443         tmp *= sysctl_perf_cpu_time_max_percent;
444         tmp = div_u64(tmp, 100);
445         if (!tmp)
446                 tmp = 1;
447
448         WRITE_ONCE(perf_sample_allowed_ns, tmp);
449 }
450
451 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc);
452
453 int perf_event_max_sample_rate_handler(struct ctl_table *table, int write,
454                                        void *buffer, size_t *lenp, loff_t *ppos)
455 {
456         int ret;
457         int perf_cpu = sysctl_perf_cpu_time_max_percent;
458         /*
459          * If throttling is disabled don't allow the write:
460          */
461         if (write && (perf_cpu == 100 || perf_cpu == 0))
462                 return -EINVAL;
463
464         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465         if (ret || !write)
466                 return ret;
467
468         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
469         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
470         update_perf_cpu_limits();
471
472         return 0;
473 }
474
475 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
476
477 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
478                 void *buffer, size_t *lenp, loff_t *ppos)
479 {
480         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
481
482         if (ret || !write)
483                 return ret;
484
485         if (sysctl_perf_cpu_time_max_percent == 100 ||
486             sysctl_perf_cpu_time_max_percent == 0) {
487                 printk(KERN_WARNING
488                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
489                 WRITE_ONCE(perf_sample_allowed_ns, 0);
490         } else {
491                 update_perf_cpu_limits();
492         }
493
494         return 0;
495 }
496
497 /*
498  * perf samples are done in some very critical code paths (NMIs).
499  * If they take too much CPU time, the system can lock up and not
500  * get any real work done.  This will drop the sample rate when
501  * we detect that events are taking too long.
502  */
503 #define NR_ACCUMULATED_SAMPLES 128
504 static DEFINE_PER_CPU(u64, running_sample_length);
505
506 static u64 __report_avg;
507 static u64 __report_allowed;
508
509 static void perf_duration_warn(struct irq_work *w)
510 {
511         printk_ratelimited(KERN_INFO
512                 "perf: interrupt took too long (%lld > %lld), lowering "
513                 "kernel.perf_event_max_sample_rate to %d\n",
514                 __report_avg, __report_allowed,
515                 sysctl_perf_event_sample_rate);
516 }
517
518 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
519
520 void perf_sample_event_took(u64 sample_len_ns)
521 {
522         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
523         u64 running_len;
524         u64 avg_len;
525         u32 max;
526
527         if (max_len == 0)
528                 return;
529
530         /* Decay the counter by 1 average sample. */
531         running_len = __this_cpu_read(running_sample_length);
532         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
533         running_len += sample_len_ns;
534         __this_cpu_write(running_sample_length, running_len);
535
536         /*
537          * Note: this will be biased artifically low until we have
538          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
539          * from having to maintain a count.
540          */
541         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
542         if (avg_len <= max_len)
543                 return;
544
545         __report_avg = avg_len;
546         __report_allowed = max_len;
547
548         /*
549          * Compute a throttle threshold 25% below the current duration.
550          */
551         avg_len += avg_len / 4;
552         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
553         if (avg_len < max)
554                 max /= (u32)avg_len;
555         else
556                 max = 1;
557
558         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
559         WRITE_ONCE(max_samples_per_tick, max);
560
561         sysctl_perf_event_sample_rate = max * HZ;
562         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
563
564         if (!irq_work_queue(&perf_duration_work)) {
565                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
566                              "kernel.perf_event_max_sample_rate to %d\n",
567                              __report_avg, __report_allowed,
568                              sysctl_perf_event_sample_rate);
569         }
570 }
571
572 static atomic64_t perf_event_id;
573
574 static void update_context_time(struct perf_event_context *ctx);
575 static u64 perf_event_time(struct perf_event *event);
576
577 void __weak perf_event_print_debug(void)        { }
578
579 static inline u64 perf_clock(void)
580 {
581         return local_clock();
582 }
583
584 static inline u64 perf_event_clock(struct perf_event *event)
585 {
586         return event->clock();
587 }
588
589 /*
590  * State based event timekeeping...
591  *
592  * The basic idea is to use event->state to determine which (if any) time
593  * fields to increment with the current delta. This means we only need to
594  * update timestamps when we change state or when they are explicitly requested
595  * (read).
596  *
597  * Event groups make things a little more complicated, but not terribly so. The
598  * rules for a group are that if the group leader is OFF the entire group is
599  * OFF, irrespecive of what the group member states are. This results in
600  * __perf_effective_state().
601  *
602  * A futher ramification is that when a group leader flips between OFF and
603  * !OFF, we need to update all group member times.
604  *
605  *
606  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
607  * need to make sure the relevant context time is updated before we try and
608  * update our timestamps.
609  */
610
611 static __always_inline enum perf_event_state
612 __perf_effective_state(struct perf_event *event)
613 {
614         struct perf_event *leader = event->group_leader;
615
616         if (leader->state <= PERF_EVENT_STATE_OFF)
617                 return leader->state;
618
619         return event->state;
620 }
621
622 static __always_inline void
623 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
624 {
625         enum perf_event_state state = __perf_effective_state(event);
626         u64 delta = now - event->tstamp;
627
628         *enabled = event->total_time_enabled;
629         if (state >= PERF_EVENT_STATE_INACTIVE)
630                 *enabled += delta;
631
632         *running = event->total_time_running;
633         if (state >= PERF_EVENT_STATE_ACTIVE)
634                 *running += delta;
635 }
636
637 static void perf_event_update_time(struct perf_event *event)
638 {
639         u64 now = perf_event_time(event);
640
641         __perf_update_times(event, now, &event->total_time_enabled,
642                                         &event->total_time_running);
643         event->tstamp = now;
644 }
645
646 static void perf_event_update_sibling_time(struct perf_event *leader)
647 {
648         struct perf_event *sibling;
649
650         for_each_sibling_event(sibling, leader)
651                 perf_event_update_time(sibling);
652 }
653
654 static void
655 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
656 {
657         if (event->state == state)
658                 return;
659
660         perf_event_update_time(event);
661         /*
662          * If a group leader gets enabled/disabled all its siblings
663          * are affected too.
664          */
665         if ((event->state < 0) ^ (state < 0))
666                 perf_event_update_sibling_time(event);
667
668         WRITE_ONCE(event->state, state);
669 }
670
671 /*
672  * UP store-release, load-acquire
673  */
674
675 #define __store_release(ptr, val)                                       \
676 do {                                                                    \
677         barrier();                                                      \
678         WRITE_ONCE(*(ptr), (val));                                      \
679 } while (0)
680
681 #define __load_acquire(ptr)                                             \
682 ({                                                                      \
683         __unqual_scalar_typeof(*(ptr)) ___p = READ_ONCE(*(ptr));        \
684         barrier();                                                      \
685         ___p;                                                           \
686 })
687
688 static void perf_ctx_disable(struct perf_event_context *ctx, bool cgroup)
689 {
690         struct perf_event_pmu_context *pmu_ctx;
691
692         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
693                 if (cgroup && !pmu_ctx->nr_cgroups)
694                         continue;
695                 perf_pmu_disable(pmu_ctx->pmu);
696         }
697 }
698
699 static void perf_ctx_enable(struct perf_event_context *ctx, bool cgroup)
700 {
701         struct perf_event_pmu_context *pmu_ctx;
702
703         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
704                 if (cgroup && !pmu_ctx->nr_cgroups)
705                         continue;
706                 perf_pmu_enable(pmu_ctx->pmu);
707         }
708 }
709
710 static void ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type);
711 static void ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type);
712
713 #ifdef CONFIG_CGROUP_PERF
714
715 static inline bool
716 perf_cgroup_match(struct perf_event *event)
717 {
718         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
719
720         /* @event doesn't care about cgroup */
721         if (!event->cgrp)
722                 return true;
723
724         /* wants specific cgroup scope but @cpuctx isn't associated with any */
725         if (!cpuctx->cgrp)
726                 return false;
727
728         /*
729          * Cgroup scoping is recursive.  An event enabled for a cgroup is
730          * also enabled for all its descendant cgroups.  If @cpuctx's
731          * cgroup is a descendant of @event's (the test covers identity
732          * case), it's a match.
733          */
734         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
735                                     event->cgrp->css.cgroup);
736 }
737
738 static inline void perf_detach_cgroup(struct perf_event *event)
739 {
740         css_put(&event->cgrp->css);
741         event->cgrp = NULL;
742 }
743
744 static inline int is_cgroup_event(struct perf_event *event)
745 {
746         return event->cgrp != NULL;
747 }
748
749 static inline u64 perf_cgroup_event_time(struct perf_event *event)
750 {
751         struct perf_cgroup_info *t;
752
753         t = per_cpu_ptr(event->cgrp->info, event->cpu);
754         return t->time;
755 }
756
757 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
758 {
759         struct perf_cgroup_info *t;
760
761         t = per_cpu_ptr(event->cgrp->info, event->cpu);
762         if (!__load_acquire(&t->active))
763                 return t->time;
764         now += READ_ONCE(t->timeoffset);
765         return now;
766 }
767
768 static inline void __update_cgrp_time(struct perf_cgroup_info *info, u64 now, bool adv)
769 {
770         if (adv)
771                 info->time += now - info->timestamp;
772         info->timestamp = now;
773         /*
774          * see update_context_time()
775          */
776         WRITE_ONCE(info->timeoffset, info->time - info->timestamp);
777 }
778
779 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx, bool final)
780 {
781         struct perf_cgroup *cgrp = cpuctx->cgrp;
782         struct cgroup_subsys_state *css;
783         struct perf_cgroup_info *info;
784
785         if (cgrp) {
786                 u64 now = perf_clock();
787
788                 for (css = &cgrp->css; css; css = css->parent) {
789                         cgrp = container_of(css, struct perf_cgroup, css);
790                         info = this_cpu_ptr(cgrp->info);
791
792                         __update_cgrp_time(info, now, true);
793                         if (final)
794                                 __store_release(&info->active, 0);
795                 }
796         }
797 }
798
799 static inline void update_cgrp_time_from_event(struct perf_event *event)
800 {
801         struct perf_cgroup_info *info;
802
803         /*
804          * ensure we access cgroup data only when needed and
805          * when we know the cgroup is pinned (css_get)
806          */
807         if (!is_cgroup_event(event))
808                 return;
809
810         info = this_cpu_ptr(event->cgrp->info);
811         /*
812          * Do not update time when cgroup is not active
813          */
814         if (info->active)
815                 __update_cgrp_time(info, perf_clock(), true);
816 }
817
818 static inline void
819 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
820 {
821         struct perf_event_context *ctx = &cpuctx->ctx;
822         struct perf_cgroup *cgrp = cpuctx->cgrp;
823         struct perf_cgroup_info *info;
824         struct cgroup_subsys_state *css;
825
826         /*
827          * ctx->lock held by caller
828          * ensure we do not access cgroup data
829          * unless we have the cgroup pinned (css_get)
830          */
831         if (!cgrp)
832                 return;
833
834         WARN_ON_ONCE(!ctx->nr_cgroups);
835
836         for (css = &cgrp->css; css; css = css->parent) {
837                 cgrp = container_of(css, struct perf_cgroup, css);
838                 info = this_cpu_ptr(cgrp->info);
839                 __update_cgrp_time(info, ctx->timestamp, false);
840                 __store_release(&info->active, 1);
841         }
842 }
843
844 /*
845  * reschedule events based on the cgroup constraint of task.
846  */
847 static void perf_cgroup_switch(struct task_struct *task)
848 {
849         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
850         struct perf_cgroup *cgrp;
851
852         /*
853          * cpuctx->cgrp is set when the first cgroup event enabled,
854          * and is cleared when the last cgroup event disabled.
855          */
856         if (READ_ONCE(cpuctx->cgrp) == NULL)
857                 return;
858
859         WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
860
861         cgrp = perf_cgroup_from_task(task, NULL);
862         if (READ_ONCE(cpuctx->cgrp) == cgrp)
863                 return;
864
865         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
866         perf_ctx_disable(&cpuctx->ctx, true);
867
868         ctx_sched_out(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
869         /*
870          * must not be done before ctxswout due
871          * to update_cgrp_time_from_cpuctx() in
872          * ctx_sched_out()
873          */
874         cpuctx->cgrp = cgrp;
875         /*
876          * set cgrp before ctxsw in to allow
877          * perf_cgroup_set_timestamp() in ctx_sched_in()
878          * to not have to pass task around
879          */
880         ctx_sched_in(&cpuctx->ctx, EVENT_ALL|EVENT_CGROUP);
881
882         perf_ctx_enable(&cpuctx->ctx, true);
883         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
884 }
885
886 static int perf_cgroup_ensure_storage(struct perf_event *event,
887                                 struct cgroup_subsys_state *css)
888 {
889         struct perf_cpu_context *cpuctx;
890         struct perf_event **storage;
891         int cpu, heap_size, ret = 0;
892
893         /*
894          * Allow storage to have sufficent space for an iterator for each
895          * possibly nested cgroup plus an iterator for events with no cgroup.
896          */
897         for (heap_size = 1; css; css = css->parent)
898                 heap_size++;
899
900         for_each_possible_cpu(cpu) {
901                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
902                 if (heap_size <= cpuctx->heap_size)
903                         continue;
904
905                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
906                                        GFP_KERNEL, cpu_to_node(cpu));
907                 if (!storage) {
908                         ret = -ENOMEM;
909                         break;
910                 }
911
912                 raw_spin_lock_irq(&cpuctx->ctx.lock);
913                 if (cpuctx->heap_size < heap_size) {
914                         swap(cpuctx->heap, storage);
915                         if (storage == cpuctx->heap_default)
916                                 storage = NULL;
917                         cpuctx->heap_size = heap_size;
918                 }
919                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
920
921                 kfree(storage);
922         }
923
924         return ret;
925 }
926
927 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
928                                       struct perf_event_attr *attr,
929                                       struct perf_event *group_leader)
930 {
931         struct perf_cgroup *cgrp;
932         struct cgroup_subsys_state *css;
933         struct fd f = fdget(fd);
934         int ret = 0;
935
936         if (!f.file)
937                 return -EBADF;
938
939         css = css_tryget_online_from_dir(f.file->f_path.dentry,
940                                          &perf_event_cgrp_subsys);
941         if (IS_ERR(css)) {
942                 ret = PTR_ERR(css);
943                 goto out;
944         }
945
946         ret = perf_cgroup_ensure_storage(event, css);
947         if (ret)
948                 goto out;
949
950         cgrp = container_of(css, struct perf_cgroup, css);
951         event->cgrp = cgrp;
952
953         /*
954          * all events in a group must monitor
955          * the same cgroup because a task belongs
956          * to only one perf cgroup at a time
957          */
958         if (group_leader && group_leader->cgrp != cgrp) {
959                 perf_detach_cgroup(event);
960                 ret = -EINVAL;
961         }
962 out:
963         fdput(f);
964         return ret;
965 }
966
967 static inline void
968 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
969 {
970         struct perf_cpu_context *cpuctx;
971
972         if (!is_cgroup_event(event))
973                 return;
974
975         event->pmu_ctx->nr_cgroups++;
976
977         /*
978          * Because cgroup events are always per-cpu events,
979          * @ctx == &cpuctx->ctx.
980          */
981         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
982
983         if (ctx->nr_cgroups++)
984                 return;
985
986         cpuctx->cgrp = perf_cgroup_from_task(current, ctx);
987 }
988
989 static inline void
990 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
991 {
992         struct perf_cpu_context *cpuctx;
993
994         if (!is_cgroup_event(event))
995                 return;
996
997         event->pmu_ctx->nr_cgroups--;
998
999         /*
1000          * Because cgroup events are always per-cpu events,
1001          * @ctx == &cpuctx->ctx.
1002          */
1003         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1004
1005         if (--ctx->nr_cgroups)
1006                 return;
1007
1008         cpuctx->cgrp = NULL;
1009 }
1010
1011 #else /* !CONFIG_CGROUP_PERF */
1012
1013 static inline bool
1014 perf_cgroup_match(struct perf_event *event)
1015 {
1016         return true;
1017 }
1018
1019 static inline void perf_detach_cgroup(struct perf_event *event)
1020 {}
1021
1022 static inline int is_cgroup_event(struct perf_event *event)
1023 {
1024         return 0;
1025 }
1026
1027 static inline void update_cgrp_time_from_event(struct perf_event *event)
1028 {
1029 }
1030
1031 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx,
1032                                                 bool final)
1033 {
1034 }
1035
1036 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1037                                       struct perf_event_attr *attr,
1038                                       struct perf_event *group_leader)
1039 {
1040         return -EINVAL;
1041 }
1042
1043 static inline void
1044 perf_cgroup_set_timestamp(struct perf_cpu_context *cpuctx)
1045 {
1046 }
1047
1048 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1049 {
1050         return 0;
1051 }
1052
1053 static inline u64 perf_cgroup_event_time_now(struct perf_event *event, u64 now)
1054 {
1055         return 0;
1056 }
1057
1058 static inline void
1059 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1060 {
1061 }
1062
1063 static inline void
1064 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1065 {
1066 }
1067
1068 static void perf_cgroup_switch(struct task_struct *task)
1069 {
1070 }
1071 #endif
1072
1073 /*
1074  * set default to be dependent on timer tick just
1075  * like original code
1076  */
1077 #define PERF_CPU_HRTIMER (1000 / HZ)
1078 /*
1079  * function must be called with interrupts disabled
1080  */
1081 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1082 {
1083         struct perf_cpu_pmu_context *cpc;
1084         bool rotations;
1085
1086         lockdep_assert_irqs_disabled();
1087
1088         cpc = container_of(hr, struct perf_cpu_pmu_context, hrtimer);
1089         rotations = perf_rotate_context(cpc);
1090
1091         raw_spin_lock(&cpc->hrtimer_lock);
1092         if (rotations)
1093                 hrtimer_forward_now(hr, cpc->hrtimer_interval);
1094         else
1095                 cpc->hrtimer_active = 0;
1096         raw_spin_unlock(&cpc->hrtimer_lock);
1097
1098         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1099 }
1100
1101 static void __perf_mux_hrtimer_init(struct perf_cpu_pmu_context *cpc, int cpu)
1102 {
1103         struct hrtimer *timer = &cpc->hrtimer;
1104         struct pmu *pmu = cpc->epc.pmu;
1105         u64 interval;
1106
1107         /*
1108          * check default is sane, if not set then force to
1109          * default interval (1/tick)
1110          */
1111         interval = pmu->hrtimer_interval_ms;
1112         if (interval < 1)
1113                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1114
1115         cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1116
1117         raw_spin_lock_init(&cpc->hrtimer_lock);
1118         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1119         timer->function = perf_mux_hrtimer_handler;
1120 }
1121
1122 static int perf_mux_hrtimer_restart(struct perf_cpu_pmu_context *cpc)
1123 {
1124         struct hrtimer *timer = &cpc->hrtimer;
1125         unsigned long flags;
1126
1127         raw_spin_lock_irqsave(&cpc->hrtimer_lock, flags);
1128         if (!cpc->hrtimer_active) {
1129                 cpc->hrtimer_active = 1;
1130                 hrtimer_forward_now(timer, cpc->hrtimer_interval);
1131                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1132         }
1133         raw_spin_unlock_irqrestore(&cpc->hrtimer_lock, flags);
1134
1135         return 0;
1136 }
1137
1138 static int perf_mux_hrtimer_restart_ipi(void *arg)
1139 {
1140         return perf_mux_hrtimer_restart(arg);
1141 }
1142
1143 void perf_pmu_disable(struct pmu *pmu)
1144 {
1145         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1146         if (!(*count)++)
1147                 pmu->pmu_disable(pmu);
1148 }
1149
1150 void perf_pmu_enable(struct pmu *pmu)
1151 {
1152         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1153         if (!--(*count))
1154                 pmu->pmu_enable(pmu);
1155 }
1156
1157 static void perf_assert_pmu_disabled(struct pmu *pmu)
1158 {
1159         WARN_ON_ONCE(*this_cpu_ptr(pmu->pmu_disable_count) == 0);
1160 }
1161
1162 static void get_ctx(struct perf_event_context *ctx)
1163 {
1164         refcount_inc(&ctx->refcount);
1165 }
1166
1167 static void *alloc_task_ctx_data(struct pmu *pmu)
1168 {
1169         if (pmu->task_ctx_cache)
1170                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1171
1172         return NULL;
1173 }
1174
1175 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1176 {
1177         if (pmu->task_ctx_cache && task_ctx_data)
1178                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1179 }
1180
1181 static void free_ctx(struct rcu_head *head)
1182 {
1183         struct perf_event_context *ctx;
1184
1185         ctx = container_of(head, struct perf_event_context, rcu_head);
1186         kfree(ctx);
1187 }
1188
1189 static void put_ctx(struct perf_event_context *ctx)
1190 {
1191         if (refcount_dec_and_test(&ctx->refcount)) {
1192                 if (ctx->parent_ctx)
1193                         put_ctx(ctx->parent_ctx);
1194                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1195                         put_task_struct(ctx->task);
1196                 call_rcu(&ctx->rcu_head, free_ctx);
1197         }
1198 }
1199
1200 /*
1201  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1202  * perf_pmu_migrate_context() we need some magic.
1203  *
1204  * Those places that change perf_event::ctx will hold both
1205  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1206  *
1207  * Lock ordering is by mutex address. There are two other sites where
1208  * perf_event_context::mutex nests and those are:
1209  *
1210  *  - perf_event_exit_task_context()    [ child , 0 ]
1211  *      perf_event_exit_event()
1212  *        put_event()                   [ parent, 1 ]
1213  *
1214  *  - perf_event_init_context()         [ parent, 0 ]
1215  *      inherit_task_group()
1216  *        inherit_group()
1217  *          inherit_event()
1218  *            perf_event_alloc()
1219  *              perf_init_event()
1220  *                perf_try_init_event() [ child , 1 ]
1221  *
1222  * While it appears there is an obvious deadlock here -- the parent and child
1223  * nesting levels are inverted between the two. This is in fact safe because
1224  * life-time rules separate them. That is an exiting task cannot fork, and a
1225  * spawning task cannot (yet) exit.
1226  *
1227  * But remember that these are parent<->child context relations, and
1228  * migration does not affect children, therefore these two orderings should not
1229  * interact.
1230  *
1231  * The change in perf_event::ctx does not affect children (as claimed above)
1232  * because the sys_perf_event_open() case will install a new event and break
1233  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1234  * concerned with cpuctx and that doesn't have children.
1235  *
1236  * The places that change perf_event::ctx will issue:
1237  *
1238  *   perf_remove_from_context();
1239  *   synchronize_rcu();
1240  *   perf_install_in_context();
1241  *
1242  * to affect the change. The remove_from_context() + synchronize_rcu() should
1243  * quiesce the event, after which we can install it in the new location. This
1244  * means that only external vectors (perf_fops, prctl) can perturb the event
1245  * while in transit. Therefore all such accessors should also acquire
1246  * perf_event_context::mutex to serialize against this.
1247  *
1248  * However; because event->ctx can change while we're waiting to acquire
1249  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1250  * function.
1251  *
1252  * Lock order:
1253  *    exec_update_lock
1254  *      task_struct::perf_event_mutex
1255  *        perf_event_context::mutex
1256  *          perf_event::child_mutex;
1257  *            perf_event_context::lock
1258  *          perf_event::mmap_mutex
1259  *          mmap_lock
1260  *            perf_addr_filters_head::lock
1261  *
1262  *    cpu_hotplug_lock
1263  *      pmus_lock
1264  *        cpuctx->mutex / perf_event_context::mutex
1265  */
1266 static struct perf_event_context *
1267 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1268 {
1269         struct perf_event_context *ctx;
1270
1271 again:
1272         rcu_read_lock();
1273         ctx = READ_ONCE(event->ctx);
1274         if (!refcount_inc_not_zero(&ctx->refcount)) {
1275                 rcu_read_unlock();
1276                 goto again;
1277         }
1278         rcu_read_unlock();
1279
1280         mutex_lock_nested(&ctx->mutex, nesting);
1281         if (event->ctx != ctx) {
1282                 mutex_unlock(&ctx->mutex);
1283                 put_ctx(ctx);
1284                 goto again;
1285         }
1286
1287         return ctx;
1288 }
1289
1290 static inline struct perf_event_context *
1291 perf_event_ctx_lock(struct perf_event *event)
1292 {
1293         return perf_event_ctx_lock_nested(event, 0);
1294 }
1295
1296 static void perf_event_ctx_unlock(struct perf_event *event,
1297                                   struct perf_event_context *ctx)
1298 {
1299         mutex_unlock(&ctx->mutex);
1300         put_ctx(ctx);
1301 }
1302
1303 /*
1304  * This must be done under the ctx->lock, such as to serialize against
1305  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1306  * calling scheduler related locks and ctx->lock nests inside those.
1307  */
1308 static __must_check struct perf_event_context *
1309 unclone_ctx(struct perf_event_context *ctx)
1310 {
1311         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1312
1313         lockdep_assert_held(&ctx->lock);
1314
1315         if (parent_ctx)
1316                 ctx->parent_ctx = NULL;
1317         ctx->generation++;
1318
1319         return parent_ctx;
1320 }
1321
1322 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1323                                 enum pid_type type)
1324 {
1325         u32 nr;
1326         /*
1327          * only top level events have the pid namespace they were created in
1328          */
1329         if (event->parent)
1330                 event = event->parent;
1331
1332         nr = __task_pid_nr_ns(p, type, event->ns);
1333         /* avoid -1 if it is idle thread or runs in another ns */
1334         if (!nr && !pid_alive(p))
1335                 nr = -1;
1336         return nr;
1337 }
1338
1339 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1340 {
1341         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1342 }
1343
1344 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1345 {
1346         return perf_event_pid_type(event, p, PIDTYPE_PID);
1347 }
1348
1349 /*
1350  * If we inherit events we want to return the parent event id
1351  * to userspace.
1352  */
1353 static u64 primary_event_id(struct perf_event *event)
1354 {
1355         u64 id = event->id;
1356
1357         if (event->parent)
1358                 id = event->parent->id;
1359
1360         return id;
1361 }
1362
1363 /*
1364  * Get the perf_event_context for a task and lock it.
1365  *
1366  * This has to cope with the fact that until it is locked,
1367  * the context could get moved to another task.
1368  */
1369 static struct perf_event_context *
1370 perf_lock_task_context(struct task_struct *task, unsigned long *flags)
1371 {
1372         struct perf_event_context *ctx;
1373
1374 retry:
1375         /*
1376          * One of the few rules of preemptible RCU is that one cannot do
1377          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1378          * part of the read side critical section was irqs-enabled -- see
1379          * rcu_read_unlock_special().
1380          *
1381          * Since ctx->lock nests under rq->lock we must ensure the entire read
1382          * side critical section has interrupts disabled.
1383          */
1384         local_irq_save(*flags);
1385         rcu_read_lock();
1386         ctx = rcu_dereference(task->perf_event_ctxp);
1387         if (ctx) {
1388                 /*
1389                  * If this context is a clone of another, it might
1390                  * get swapped for another underneath us by
1391                  * perf_event_task_sched_out, though the
1392                  * rcu_read_lock() protects us from any context
1393                  * getting freed.  Lock the context and check if it
1394                  * got swapped before we could get the lock, and retry
1395                  * if so.  If we locked the right context, then it
1396                  * can't get swapped on us any more.
1397                  */
1398                 raw_spin_lock(&ctx->lock);
1399                 if (ctx != rcu_dereference(task->perf_event_ctxp)) {
1400                         raw_spin_unlock(&ctx->lock);
1401                         rcu_read_unlock();
1402                         local_irq_restore(*flags);
1403                         goto retry;
1404                 }
1405
1406                 if (ctx->task == TASK_TOMBSTONE ||
1407                     !refcount_inc_not_zero(&ctx->refcount)) {
1408                         raw_spin_unlock(&ctx->lock);
1409                         ctx = NULL;
1410                 } else {
1411                         WARN_ON_ONCE(ctx->task != task);
1412                 }
1413         }
1414         rcu_read_unlock();
1415         if (!ctx)
1416                 local_irq_restore(*flags);
1417         return ctx;
1418 }
1419
1420 /*
1421  * Get the context for a task and increment its pin_count so it
1422  * can't get swapped to another task.  This also increments its
1423  * reference count so that the context can't get freed.
1424  */
1425 static struct perf_event_context *
1426 perf_pin_task_context(struct task_struct *task)
1427 {
1428         struct perf_event_context *ctx;
1429         unsigned long flags;
1430
1431         ctx = perf_lock_task_context(task, &flags);
1432         if (ctx) {
1433                 ++ctx->pin_count;
1434                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1435         }
1436         return ctx;
1437 }
1438
1439 static void perf_unpin_context(struct perf_event_context *ctx)
1440 {
1441         unsigned long flags;
1442
1443         raw_spin_lock_irqsave(&ctx->lock, flags);
1444         --ctx->pin_count;
1445         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1446 }
1447
1448 /*
1449  * Update the record of the current time in a context.
1450  */
1451 static void __update_context_time(struct perf_event_context *ctx, bool adv)
1452 {
1453         u64 now = perf_clock();
1454
1455         lockdep_assert_held(&ctx->lock);
1456
1457         if (adv)
1458                 ctx->time += now - ctx->timestamp;
1459         ctx->timestamp = now;
1460
1461         /*
1462          * The above: time' = time + (now - timestamp), can be re-arranged
1463          * into: time` = now + (time - timestamp), which gives a single value
1464          * offset to compute future time without locks on.
1465          *
1466          * See perf_event_time_now(), which can be used from NMI context where
1467          * it's (obviously) not possible to acquire ctx->lock in order to read
1468          * both the above values in a consistent manner.
1469          */
1470         WRITE_ONCE(ctx->timeoffset, ctx->time - ctx->timestamp);
1471 }
1472
1473 static void update_context_time(struct perf_event_context *ctx)
1474 {
1475         __update_context_time(ctx, true);
1476 }
1477
1478 static u64 perf_event_time(struct perf_event *event)
1479 {
1480         struct perf_event_context *ctx = event->ctx;
1481
1482         if (unlikely(!ctx))
1483                 return 0;
1484
1485         if (is_cgroup_event(event))
1486                 return perf_cgroup_event_time(event);
1487
1488         return ctx->time;
1489 }
1490
1491 static u64 perf_event_time_now(struct perf_event *event, u64 now)
1492 {
1493         struct perf_event_context *ctx = event->ctx;
1494
1495         if (unlikely(!ctx))
1496                 return 0;
1497
1498         if (is_cgroup_event(event))
1499                 return perf_cgroup_event_time_now(event, now);
1500
1501         if (!(__load_acquire(&ctx->is_active) & EVENT_TIME))
1502                 return ctx->time;
1503
1504         now += READ_ONCE(ctx->timeoffset);
1505         return now;
1506 }
1507
1508 static enum event_type_t get_event_type(struct perf_event *event)
1509 {
1510         struct perf_event_context *ctx = event->ctx;
1511         enum event_type_t event_type;
1512
1513         lockdep_assert_held(&ctx->lock);
1514
1515         /*
1516          * It's 'group type', really, because if our group leader is
1517          * pinned, so are we.
1518          */
1519         if (event->group_leader != event)
1520                 event = event->group_leader;
1521
1522         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1523         if (!ctx->task)
1524                 event_type |= EVENT_CPU;
1525
1526         return event_type;
1527 }
1528
1529 /*
1530  * Helper function to initialize event group nodes.
1531  */
1532 static void init_event_group(struct perf_event *event)
1533 {
1534         RB_CLEAR_NODE(&event->group_node);
1535         event->group_index = 0;
1536 }
1537
1538 /*
1539  * Extract pinned or flexible groups from the context
1540  * based on event attrs bits.
1541  */
1542 static struct perf_event_groups *
1543 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1544 {
1545         if (event->attr.pinned)
1546                 return &ctx->pinned_groups;
1547         else
1548                 return &ctx->flexible_groups;
1549 }
1550
1551 /*
1552  * Helper function to initializes perf_event_group trees.
1553  */
1554 static void perf_event_groups_init(struct perf_event_groups *groups)
1555 {
1556         groups->tree = RB_ROOT;
1557         groups->index = 0;
1558 }
1559
1560 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1561 {
1562         struct cgroup *cgroup = NULL;
1563
1564 #ifdef CONFIG_CGROUP_PERF
1565         if (event->cgrp)
1566                 cgroup = event->cgrp->css.cgroup;
1567 #endif
1568
1569         return cgroup;
1570 }
1571
1572 /*
1573  * Compare function for event groups;
1574  *
1575  * Implements complex key that first sorts by CPU and then by virtual index
1576  * which provides ordering when rotating groups for the same CPU.
1577  */
1578 static __always_inline int
1579 perf_event_groups_cmp(const int left_cpu, const struct pmu *left_pmu,
1580                       const struct cgroup *left_cgroup, const u64 left_group_index,
1581                       const struct perf_event *right)
1582 {
1583         if (left_cpu < right->cpu)
1584                 return -1;
1585         if (left_cpu > right->cpu)
1586                 return 1;
1587
1588         if (left_pmu) {
1589                 if (left_pmu < right->pmu_ctx->pmu)
1590                         return -1;
1591                 if (left_pmu > right->pmu_ctx->pmu)
1592                         return 1;
1593         }
1594
1595 #ifdef CONFIG_CGROUP_PERF
1596         {
1597                 const struct cgroup *right_cgroup = event_cgroup(right);
1598
1599                 if (left_cgroup != right_cgroup) {
1600                         if (!left_cgroup) {
1601                                 /*
1602                                  * Left has no cgroup but right does, no
1603                                  * cgroups come first.
1604                                  */
1605                                 return -1;
1606                         }
1607                         if (!right_cgroup) {
1608                                 /*
1609                                  * Right has no cgroup but left does, no
1610                                  * cgroups come first.
1611                                  */
1612                                 return 1;
1613                         }
1614                         /* Two dissimilar cgroups, order by id. */
1615                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1616                                 return -1;
1617
1618                         return 1;
1619                 }
1620         }
1621 #endif
1622
1623         if (left_group_index < right->group_index)
1624                 return -1;
1625         if (left_group_index > right->group_index)
1626                 return 1;
1627
1628         return 0;
1629 }
1630
1631 #define __node_2_pe(node) \
1632         rb_entry((node), struct perf_event, group_node)
1633
1634 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1635 {
1636         struct perf_event *e = __node_2_pe(a);
1637         return perf_event_groups_cmp(e->cpu, e->pmu_ctx->pmu, event_cgroup(e),
1638                                      e->group_index, __node_2_pe(b)) < 0;
1639 }
1640
1641 struct __group_key {
1642         int cpu;
1643         struct pmu *pmu;
1644         struct cgroup *cgroup;
1645 };
1646
1647 static inline int __group_cmp(const void *key, const struct rb_node *node)
1648 {
1649         const struct __group_key *a = key;
1650         const struct perf_event *b = __node_2_pe(node);
1651
1652         /* partial/subtree match: @cpu, @pmu, @cgroup; ignore: @group_index */
1653         return perf_event_groups_cmp(a->cpu, a->pmu, a->cgroup, b->group_index, b);
1654 }
1655
1656 static inline int
1657 __group_cmp_ignore_cgroup(const void *key, const struct rb_node *node)
1658 {
1659         const struct __group_key *a = key;
1660         const struct perf_event *b = __node_2_pe(node);
1661
1662         /* partial/subtree match: @cpu, @pmu, ignore: @cgroup, @group_index */
1663         return perf_event_groups_cmp(a->cpu, a->pmu, event_cgroup(b),
1664                                      b->group_index, b);
1665 }
1666
1667 /*
1668  * Insert @event into @groups' tree; using
1669  *   {@event->cpu, @event->pmu_ctx->pmu, event_cgroup(@event), ++@groups->index}
1670  * as key. This places it last inside the {cpu,pmu,cgroup} subtree.
1671  */
1672 static void
1673 perf_event_groups_insert(struct perf_event_groups *groups,
1674                          struct perf_event *event)
1675 {
1676         event->group_index = ++groups->index;
1677
1678         rb_add(&event->group_node, &groups->tree, __group_less);
1679 }
1680
1681 /*
1682  * Helper function to insert event into the pinned or flexible groups.
1683  */
1684 static void
1685 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1686 {
1687         struct perf_event_groups *groups;
1688
1689         groups = get_event_groups(event, ctx);
1690         perf_event_groups_insert(groups, event);
1691 }
1692
1693 /*
1694  * Delete a group from a tree.
1695  */
1696 static void
1697 perf_event_groups_delete(struct perf_event_groups *groups,
1698                          struct perf_event *event)
1699 {
1700         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1701                      RB_EMPTY_ROOT(&groups->tree));
1702
1703         rb_erase(&event->group_node, &groups->tree);
1704         init_event_group(event);
1705 }
1706
1707 /*
1708  * Helper function to delete event from its groups.
1709  */
1710 static void
1711 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1712 {
1713         struct perf_event_groups *groups;
1714
1715         groups = get_event_groups(event, ctx);
1716         perf_event_groups_delete(groups, event);
1717 }
1718
1719 /*
1720  * Get the leftmost event in the {cpu,pmu,cgroup} subtree.
1721  */
1722 static struct perf_event *
1723 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1724                         struct pmu *pmu, struct cgroup *cgrp)
1725 {
1726         struct __group_key key = {
1727                 .cpu = cpu,
1728                 .pmu = pmu,
1729                 .cgroup = cgrp,
1730         };
1731         struct rb_node *node;
1732
1733         node = rb_find_first(&key, &groups->tree, __group_cmp);
1734         if (node)
1735                 return __node_2_pe(node);
1736
1737         return NULL;
1738 }
1739
1740 static struct perf_event *
1741 perf_event_groups_next(struct perf_event *event, struct pmu *pmu)
1742 {
1743         struct __group_key key = {
1744                 .cpu = event->cpu,
1745                 .pmu = pmu,
1746                 .cgroup = event_cgroup(event),
1747         };
1748         struct rb_node *next;
1749
1750         next = rb_next_match(&key, &event->group_node, __group_cmp);
1751         if (next)
1752                 return __node_2_pe(next);
1753
1754         return NULL;
1755 }
1756
1757 #define perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu)          \
1758         for (event = perf_event_groups_first(groups, cpu, pmu, NULL);   \
1759              event; event = perf_event_groups_next(event, pmu))
1760
1761 /*
1762  * Iterate through the whole groups tree.
1763  */
1764 #define perf_event_groups_for_each(event, groups)                       \
1765         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1766                                 typeof(*event), group_node); event;     \
1767                 event = rb_entry_safe(rb_next(&event->group_node),      \
1768                                 typeof(*event), group_node))
1769
1770 /*
1771  * Add an event from the lists for its context.
1772  * Must be called with ctx->mutex and ctx->lock held.
1773  */
1774 static void
1775 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1776 {
1777         lockdep_assert_held(&ctx->lock);
1778
1779         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1780         event->attach_state |= PERF_ATTACH_CONTEXT;
1781
1782         event->tstamp = perf_event_time(event);
1783
1784         /*
1785          * If we're a stand alone event or group leader, we go to the context
1786          * list, group events are kept attached to the group so that
1787          * perf_group_detach can, at all times, locate all siblings.
1788          */
1789         if (event->group_leader == event) {
1790                 event->group_caps = event->event_caps;
1791                 add_event_to_groups(event, ctx);
1792         }
1793
1794         list_add_rcu(&event->event_entry, &ctx->event_list);
1795         ctx->nr_events++;
1796         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
1797                 ctx->nr_user++;
1798         if (event->attr.inherit_stat)
1799                 ctx->nr_stat++;
1800
1801         if (event->state > PERF_EVENT_STATE_OFF)
1802                 perf_cgroup_event_enable(event, ctx);
1803
1804         ctx->generation++;
1805         event->pmu_ctx->nr_events++;
1806 }
1807
1808 /*
1809  * Initialize event state based on the perf_event_attr::disabled.
1810  */
1811 static inline void perf_event__state_init(struct perf_event *event)
1812 {
1813         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1814                                               PERF_EVENT_STATE_INACTIVE;
1815 }
1816
1817 static int __perf_event_read_size(u64 read_format, int nr_siblings)
1818 {
1819         int entry = sizeof(u64); /* value */
1820         int size = 0;
1821         int nr = 1;
1822
1823         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1824                 size += sizeof(u64);
1825
1826         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1827                 size += sizeof(u64);
1828
1829         if (read_format & PERF_FORMAT_ID)
1830                 entry += sizeof(u64);
1831
1832         if (read_format & PERF_FORMAT_LOST)
1833                 entry += sizeof(u64);
1834
1835         if (read_format & PERF_FORMAT_GROUP) {
1836                 nr += nr_siblings;
1837                 size += sizeof(u64);
1838         }
1839
1840         /*
1841          * Since perf_event_validate_size() limits this to 16k and inhibits
1842          * adding more siblings, this will never overflow.
1843          */
1844         return size + nr * entry;
1845 }
1846
1847 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1848 {
1849         struct perf_sample_data *data;
1850         u16 size = 0;
1851
1852         if (sample_type & PERF_SAMPLE_IP)
1853                 size += sizeof(data->ip);
1854
1855         if (sample_type & PERF_SAMPLE_ADDR)
1856                 size += sizeof(data->addr);
1857
1858         if (sample_type & PERF_SAMPLE_PERIOD)
1859                 size += sizeof(data->period);
1860
1861         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1862                 size += sizeof(data->weight.full);
1863
1864         if (sample_type & PERF_SAMPLE_READ)
1865                 size += event->read_size;
1866
1867         if (sample_type & PERF_SAMPLE_DATA_SRC)
1868                 size += sizeof(data->data_src.val);
1869
1870         if (sample_type & PERF_SAMPLE_TRANSACTION)
1871                 size += sizeof(data->txn);
1872
1873         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1874                 size += sizeof(data->phys_addr);
1875
1876         if (sample_type & PERF_SAMPLE_CGROUP)
1877                 size += sizeof(data->cgroup);
1878
1879         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1880                 size += sizeof(data->data_page_size);
1881
1882         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1883                 size += sizeof(data->code_page_size);
1884
1885         event->header_size = size;
1886 }
1887
1888 /*
1889  * Called at perf_event creation and when events are attached/detached from a
1890  * group.
1891  */
1892 static void perf_event__header_size(struct perf_event *event)
1893 {
1894         event->read_size =
1895                 __perf_event_read_size(event->attr.read_format,
1896                                        event->group_leader->nr_siblings);
1897         __perf_event_header_size(event, event->attr.sample_type);
1898 }
1899
1900 static void perf_event__id_header_size(struct perf_event *event)
1901 {
1902         struct perf_sample_data *data;
1903         u64 sample_type = event->attr.sample_type;
1904         u16 size = 0;
1905
1906         if (sample_type & PERF_SAMPLE_TID)
1907                 size += sizeof(data->tid_entry);
1908
1909         if (sample_type & PERF_SAMPLE_TIME)
1910                 size += sizeof(data->time);
1911
1912         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1913                 size += sizeof(data->id);
1914
1915         if (sample_type & PERF_SAMPLE_ID)
1916                 size += sizeof(data->id);
1917
1918         if (sample_type & PERF_SAMPLE_STREAM_ID)
1919                 size += sizeof(data->stream_id);
1920
1921         if (sample_type & PERF_SAMPLE_CPU)
1922                 size += sizeof(data->cpu_entry);
1923
1924         event->id_header_size = size;
1925 }
1926
1927 /*
1928  * Check that adding an event to the group does not result in anybody
1929  * overflowing the 64k event limit imposed by the output buffer.
1930  *
1931  * Specifically, check that the read_size for the event does not exceed 16k,
1932  * read_size being the one term that grows with groups size. Since read_size
1933  * depends on per-event read_format, also (re)check the existing events.
1934  *
1935  * This leaves 48k for the constant size fields and things like callchains,
1936  * branch stacks and register sets.
1937  */
1938 static bool perf_event_validate_size(struct perf_event *event)
1939 {
1940         struct perf_event *sibling, *group_leader = event->group_leader;
1941
1942         if (__perf_event_read_size(event->attr.read_format,
1943                                    group_leader->nr_siblings + 1) > 16*1024)
1944                 return false;
1945
1946         if (__perf_event_read_size(group_leader->attr.read_format,
1947                                    group_leader->nr_siblings + 1) > 16*1024)
1948                 return false;
1949
1950         /*
1951          * When creating a new group leader, group_leader->ctx is initialized
1952          * after the size has been validated, but we cannot safely use
1953          * for_each_sibling_event() until group_leader->ctx is set. A new group
1954          * leader cannot have any siblings yet, so we can safely skip checking
1955          * the non-existent siblings.
1956          */
1957         if (event == group_leader)
1958                 return true;
1959
1960         for_each_sibling_event(sibling, group_leader) {
1961                 if (__perf_event_read_size(sibling->attr.read_format,
1962                                            group_leader->nr_siblings + 1) > 16*1024)
1963                         return false;
1964         }
1965
1966         return true;
1967 }
1968
1969 static void perf_group_attach(struct perf_event *event)
1970 {
1971         struct perf_event *group_leader = event->group_leader, *pos;
1972
1973         lockdep_assert_held(&event->ctx->lock);
1974
1975         /*
1976          * We can have double attach due to group movement (move_group) in
1977          * perf_event_open().
1978          */
1979         if (event->attach_state & PERF_ATTACH_GROUP)
1980                 return;
1981
1982         event->attach_state |= PERF_ATTACH_GROUP;
1983
1984         if (group_leader == event)
1985                 return;
1986
1987         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1988
1989         group_leader->group_caps &= event->event_caps;
1990
1991         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1992         group_leader->nr_siblings++;
1993         group_leader->group_generation++;
1994
1995         perf_event__header_size(group_leader);
1996
1997         for_each_sibling_event(pos, group_leader)
1998                 perf_event__header_size(pos);
1999 }
2000
2001 /*
2002  * Remove an event from the lists for its context.
2003  * Must be called with ctx->mutex and ctx->lock held.
2004  */
2005 static void
2006 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
2007 {
2008         WARN_ON_ONCE(event->ctx != ctx);
2009         lockdep_assert_held(&ctx->lock);
2010
2011         /*
2012          * We can have double detach due to exit/hot-unplug + close.
2013          */
2014         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
2015                 return;
2016
2017         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2018
2019         ctx->nr_events--;
2020         if (event->hw.flags & PERF_EVENT_FLAG_USER_READ_CNT)
2021                 ctx->nr_user--;
2022         if (event->attr.inherit_stat)
2023                 ctx->nr_stat--;
2024
2025         list_del_rcu(&event->event_entry);
2026
2027         if (event->group_leader == event)
2028                 del_event_from_groups(event, ctx);
2029
2030         /*
2031          * If event was in error state, then keep it
2032          * that way, otherwise bogus counts will be
2033          * returned on read(). The only way to get out
2034          * of error state is by explicit re-enabling
2035          * of the event
2036          */
2037         if (event->state > PERF_EVENT_STATE_OFF) {
2038                 perf_cgroup_event_disable(event, ctx);
2039                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2040         }
2041
2042         ctx->generation++;
2043         event->pmu_ctx->nr_events--;
2044 }
2045
2046 static int
2047 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2048 {
2049         if (!has_aux(aux_event))
2050                 return 0;
2051
2052         if (!event->pmu->aux_output_match)
2053                 return 0;
2054
2055         return event->pmu->aux_output_match(aux_event);
2056 }
2057
2058 static void put_event(struct perf_event *event);
2059 static void event_sched_out(struct perf_event *event,
2060                             struct perf_event_context *ctx);
2061
2062 static void perf_put_aux_event(struct perf_event *event)
2063 {
2064         struct perf_event_context *ctx = event->ctx;
2065         struct perf_event *iter;
2066
2067         /*
2068          * If event uses aux_event tear down the link
2069          */
2070         if (event->aux_event) {
2071                 iter = event->aux_event;
2072                 event->aux_event = NULL;
2073                 put_event(iter);
2074                 return;
2075         }
2076
2077         /*
2078          * If the event is an aux_event, tear down all links to
2079          * it from other events.
2080          */
2081         for_each_sibling_event(iter, event->group_leader) {
2082                 if (iter->aux_event != event)
2083                         continue;
2084
2085                 iter->aux_event = NULL;
2086                 put_event(event);
2087
2088                 /*
2089                  * If it's ACTIVE, schedule it out and put it into ERROR
2090                  * state so that we don't try to schedule it again. Note
2091                  * that perf_event_enable() will clear the ERROR status.
2092                  */
2093                 event_sched_out(iter, ctx);
2094                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2095         }
2096 }
2097
2098 static bool perf_need_aux_event(struct perf_event *event)
2099 {
2100         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2101 }
2102
2103 static int perf_get_aux_event(struct perf_event *event,
2104                               struct perf_event *group_leader)
2105 {
2106         /*
2107          * Our group leader must be an aux event if we want to be
2108          * an aux_output. This way, the aux event will precede its
2109          * aux_output events in the group, and therefore will always
2110          * schedule first.
2111          */
2112         if (!group_leader)
2113                 return 0;
2114
2115         /*
2116          * aux_output and aux_sample_size are mutually exclusive.
2117          */
2118         if (event->attr.aux_output && event->attr.aux_sample_size)
2119                 return 0;
2120
2121         if (event->attr.aux_output &&
2122             !perf_aux_output_match(event, group_leader))
2123                 return 0;
2124
2125         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2126                 return 0;
2127
2128         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2129                 return 0;
2130
2131         /*
2132          * Link aux_outputs to their aux event; this is undone in
2133          * perf_group_detach() by perf_put_aux_event(). When the
2134          * group in torn down, the aux_output events loose their
2135          * link to the aux_event and can't schedule any more.
2136          */
2137         event->aux_event = group_leader;
2138
2139         return 1;
2140 }
2141
2142 static inline struct list_head *get_event_list(struct perf_event *event)
2143 {
2144         return event->attr.pinned ? &event->pmu_ctx->pinned_active :
2145                                     &event->pmu_ctx->flexible_active;
2146 }
2147
2148 /*
2149  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2150  * cannot exist on their own, schedule them out and move them into the ERROR
2151  * state. Also see _perf_event_enable(), it will not be able to recover
2152  * this ERROR state.
2153  */
2154 static inline void perf_remove_sibling_event(struct perf_event *event)
2155 {
2156         event_sched_out(event, event->ctx);
2157         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2158 }
2159
2160 static void perf_group_detach(struct perf_event *event)
2161 {
2162         struct perf_event *leader = event->group_leader;
2163         struct perf_event *sibling, *tmp;
2164         struct perf_event_context *ctx = event->ctx;
2165
2166         lockdep_assert_held(&ctx->lock);
2167
2168         /*
2169          * We can have double detach due to exit/hot-unplug + close.
2170          */
2171         if (!(event->attach_state & PERF_ATTACH_GROUP))
2172                 return;
2173
2174         event->attach_state &= ~PERF_ATTACH_GROUP;
2175
2176         perf_put_aux_event(event);
2177
2178         /*
2179          * If this is a sibling, remove it from its group.
2180          */
2181         if (leader != event) {
2182                 list_del_init(&event->sibling_list);
2183                 event->group_leader->nr_siblings--;
2184                 event->group_leader->group_generation++;
2185                 goto out;
2186         }
2187
2188         /*
2189          * If this was a group event with sibling events then
2190          * upgrade the siblings to singleton events by adding them
2191          * to whatever list we are on.
2192          */
2193         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2194
2195                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2196                         perf_remove_sibling_event(sibling);
2197
2198                 sibling->group_leader = sibling;
2199                 list_del_init(&sibling->sibling_list);
2200
2201                 /* Inherit group flags from the previous leader */
2202                 sibling->group_caps = event->group_caps;
2203
2204                 if (sibling->attach_state & PERF_ATTACH_CONTEXT) {
2205                         add_event_to_groups(sibling, event->ctx);
2206
2207                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2208                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2209                 }
2210
2211                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2212         }
2213
2214 out:
2215         for_each_sibling_event(tmp, leader)
2216                 perf_event__header_size(tmp);
2217
2218         perf_event__header_size(leader);
2219 }
2220
2221 static void sync_child_event(struct perf_event *child_event);
2222
2223 static void perf_child_detach(struct perf_event *event)
2224 {
2225         struct perf_event *parent_event = event->parent;
2226
2227         if (!(event->attach_state & PERF_ATTACH_CHILD))
2228                 return;
2229
2230         event->attach_state &= ~PERF_ATTACH_CHILD;
2231
2232         if (WARN_ON_ONCE(!parent_event))
2233                 return;
2234
2235         lockdep_assert_held(&parent_event->child_mutex);
2236
2237         sync_child_event(event);
2238         list_del_init(&event->child_list);
2239 }
2240
2241 static bool is_orphaned_event(struct perf_event *event)
2242 {
2243         return event->state == PERF_EVENT_STATE_DEAD;
2244 }
2245
2246 static inline int
2247 event_filter_match(struct perf_event *event)
2248 {
2249         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2250                perf_cgroup_match(event);
2251 }
2252
2253 static void
2254 event_sched_out(struct perf_event *event, struct perf_event_context *ctx)
2255 {
2256         struct perf_event_pmu_context *epc = event->pmu_ctx;
2257         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2258         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2259
2260         // XXX cpc serialization, probably per-cpu IRQ disabled
2261
2262         WARN_ON_ONCE(event->ctx != ctx);
2263         lockdep_assert_held(&ctx->lock);
2264
2265         if (event->state != PERF_EVENT_STATE_ACTIVE)
2266                 return;
2267
2268         /*
2269          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2270          * we can schedule events _OUT_ individually through things like
2271          * __perf_remove_from_context().
2272          */
2273         list_del_init(&event->active_list);
2274
2275         perf_pmu_disable(event->pmu);
2276
2277         event->pmu->del(event, 0);
2278         event->oncpu = -1;
2279
2280         if (event->pending_disable) {
2281                 event->pending_disable = 0;
2282                 perf_cgroup_event_disable(event, ctx);
2283                 state = PERF_EVENT_STATE_OFF;
2284         }
2285
2286         if (event->pending_sigtrap) {
2287                 bool dec = true;
2288
2289                 event->pending_sigtrap = 0;
2290                 if (state != PERF_EVENT_STATE_OFF &&
2291                     !event->pending_work) {
2292                         event->pending_work = 1;
2293                         dec = false;
2294                         WARN_ON_ONCE(!atomic_long_inc_not_zero(&event->refcount));
2295                         task_work_add(current, &event->pending_task, TWA_RESUME);
2296                 }
2297                 if (dec)
2298                         local_dec(&event->ctx->nr_pending);
2299         }
2300
2301         perf_event_set_state(event, state);
2302
2303         if (!is_software_event(event))
2304                 cpc->active_oncpu--;
2305         if (event->attr.freq && event->attr.sample_freq) {
2306                 ctx->nr_freq--;
2307                 epc->nr_freq--;
2308         }
2309         if (event->attr.exclusive || !cpc->active_oncpu)
2310                 cpc->exclusive = 0;
2311
2312         perf_pmu_enable(event->pmu);
2313 }
2314
2315 static void
2316 group_sched_out(struct perf_event *group_event, struct perf_event_context *ctx)
2317 {
2318         struct perf_event *event;
2319
2320         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2321                 return;
2322
2323         perf_assert_pmu_disabled(group_event->pmu_ctx->pmu);
2324
2325         event_sched_out(group_event, ctx);
2326
2327         /*
2328          * Schedule out siblings (if any):
2329          */
2330         for_each_sibling_event(event, group_event)
2331                 event_sched_out(event, ctx);
2332 }
2333
2334 #define DETACH_GROUP    0x01UL
2335 #define DETACH_CHILD    0x02UL
2336 #define DETACH_DEAD     0x04UL
2337
2338 /*
2339  * Cross CPU call to remove a performance event
2340  *
2341  * We disable the event on the hardware level first. After that we
2342  * remove it from the context list.
2343  */
2344 static void
2345 __perf_remove_from_context(struct perf_event *event,
2346                            struct perf_cpu_context *cpuctx,
2347                            struct perf_event_context *ctx,
2348                            void *info)
2349 {
2350         struct perf_event_pmu_context *pmu_ctx = event->pmu_ctx;
2351         unsigned long flags = (unsigned long)info;
2352
2353         if (ctx->is_active & EVENT_TIME) {
2354                 update_context_time(ctx);
2355                 update_cgrp_time_from_cpuctx(cpuctx, false);
2356         }
2357
2358         /*
2359          * Ensure event_sched_out() switches to OFF, at the very least
2360          * this avoids raising perf_pending_task() at this time.
2361          */
2362         if (flags & DETACH_DEAD)
2363                 event->pending_disable = 1;
2364         event_sched_out(event, ctx);
2365         if (flags & DETACH_GROUP)
2366                 perf_group_detach(event);
2367         if (flags & DETACH_CHILD)
2368                 perf_child_detach(event);
2369         list_del_event(event, ctx);
2370         if (flags & DETACH_DEAD)
2371                 event->state = PERF_EVENT_STATE_DEAD;
2372
2373         if (!pmu_ctx->nr_events) {
2374                 pmu_ctx->rotate_necessary = 0;
2375
2376                 if (ctx->task && ctx->is_active) {
2377                         struct perf_cpu_pmu_context *cpc;
2378
2379                         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
2380                         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
2381                         cpc->task_epc = NULL;
2382                 }
2383         }
2384
2385         if (!ctx->nr_events && ctx->is_active) {
2386                 if (ctx == &cpuctx->ctx)
2387                         update_cgrp_time_from_cpuctx(cpuctx, true);
2388
2389                 ctx->is_active = 0;
2390                 if (ctx->task) {
2391                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2392                         cpuctx->task_ctx = NULL;
2393                 }
2394         }
2395 }
2396
2397 /*
2398  * Remove the event from a task's (or a CPU's) list of events.
2399  *
2400  * If event->ctx is a cloned context, callers must make sure that
2401  * every task struct that event->ctx->task could possibly point to
2402  * remains valid.  This is OK when called from perf_release since
2403  * that only calls us on the top-level context, which can't be a clone.
2404  * When called from perf_event_exit_task, it's OK because the
2405  * context has been detached from its task.
2406  */
2407 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2408 {
2409         struct perf_event_context *ctx = event->ctx;
2410
2411         lockdep_assert_held(&ctx->mutex);
2412
2413         /*
2414          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2415          * to work in the face of TASK_TOMBSTONE, unlike every other
2416          * event_function_call() user.
2417          */
2418         raw_spin_lock_irq(&ctx->lock);
2419         if (!ctx->is_active) {
2420                 __perf_remove_from_context(event, this_cpu_ptr(&perf_cpu_context),
2421                                            ctx, (void *)flags);
2422                 raw_spin_unlock_irq(&ctx->lock);
2423                 return;
2424         }
2425         raw_spin_unlock_irq(&ctx->lock);
2426
2427         event_function_call(event, __perf_remove_from_context, (void *)flags);
2428 }
2429
2430 /*
2431  * Cross CPU call to disable a performance event
2432  */
2433 static void __perf_event_disable(struct perf_event *event,
2434                                  struct perf_cpu_context *cpuctx,
2435                                  struct perf_event_context *ctx,
2436                                  void *info)
2437 {
2438         if (event->state < PERF_EVENT_STATE_INACTIVE)
2439                 return;
2440
2441         if (ctx->is_active & EVENT_TIME) {
2442                 update_context_time(ctx);
2443                 update_cgrp_time_from_event(event);
2444         }
2445
2446         perf_pmu_disable(event->pmu_ctx->pmu);
2447
2448         if (event == event->group_leader)
2449                 group_sched_out(event, ctx);
2450         else
2451                 event_sched_out(event, ctx);
2452
2453         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2454         perf_cgroup_event_disable(event, ctx);
2455
2456         perf_pmu_enable(event->pmu_ctx->pmu);
2457 }
2458
2459 /*
2460  * Disable an event.
2461  *
2462  * If event->ctx is a cloned context, callers must make sure that
2463  * every task struct that event->ctx->task could possibly point to
2464  * remains valid.  This condition is satisfied when called through
2465  * perf_event_for_each_child or perf_event_for_each because they
2466  * hold the top-level event's child_mutex, so any descendant that
2467  * goes to exit will block in perf_event_exit_event().
2468  *
2469  * When called from perf_pending_irq it's OK because event->ctx
2470  * is the current context on this CPU and preemption is disabled,
2471  * hence we can't get into perf_event_task_sched_out for this context.
2472  */
2473 static void _perf_event_disable(struct perf_event *event)
2474 {
2475         struct perf_event_context *ctx = event->ctx;
2476
2477         raw_spin_lock_irq(&ctx->lock);
2478         if (event->state <= PERF_EVENT_STATE_OFF) {
2479                 raw_spin_unlock_irq(&ctx->lock);
2480                 return;
2481         }
2482         raw_spin_unlock_irq(&ctx->lock);
2483
2484         event_function_call(event, __perf_event_disable, NULL);
2485 }
2486
2487 void perf_event_disable_local(struct perf_event *event)
2488 {
2489         event_function_local(event, __perf_event_disable, NULL);
2490 }
2491
2492 /*
2493  * Strictly speaking kernel users cannot create groups and therefore this
2494  * interface does not need the perf_event_ctx_lock() magic.
2495  */
2496 void perf_event_disable(struct perf_event *event)
2497 {
2498         struct perf_event_context *ctx;
2499
2500         ctx = perf_event_ctx_lock(event);
2501         _perf_event_disable(event);
2502         perf_event_ctx_unlock(event, ctx);
2503 }
2504 EXPORT_SYMBOL_GPL(perf_event_disable);
2505
2506 void perf_event_disable_inatomic(struct perf_event *event)
2507 {
2508         event->pending_disable = 1;
2509         irq_work_queue(&event->pending_irq);
2510 }
2511
2512 #define MAX_INTERRUPTS (~0ULL)
2513
2514 static void perf_log_throttle(struct perf_event *event, int enable);
2515 static void perf_log_itrace_start(struct perf_event *event);
2516
2517 static int
2518 event_sched_in(struct perf_event *event, struct perf_event_context *ctx)
2519 {
2520         struct perf_event_pmu_context *epc = event->pmu_ctx;
2521         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2522         int ret = 0;
2523
2524         WARN_ON_ONCE(event->ctx != ctx);
2525
2526         lockdep_assert_held(&ctx->lock);
2527
2528         if (event->state <= PERF_EVENT_STATE_OFF)
2529                 return 0;
2530
2531         WRITE_ONCE(event->oncpu, smp_processor_id());
2532         /*
2533          * Order event::oncpu write to happen before the ACTIVE state is
2534          * visible. This allows perf_event_{stop,read}() to observe the correct
2535          * ->oncpu if it sees ACTIVE.
2536          */
2537         smp_wmb();
2538         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2539
2540         /*
2541          * Unthrottle events, since we scheduled we might have missed several
2542          * ticks already, also for a heavily scheduling task there is little
2543          * guarantee it'll get a tick in a timely manner.
2544          */
2545         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2546                 perf_log_throttle(event, 1);
2547                 event->hw.interrupts = 0;
2548         }
2549
2550         perf_pmu_disable(event->pmu);
2551
2552         perf_log_itrace_start(event);
2553
2554         if (event->pmu->add(event, PERF_EF_START)) {
2555                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2556                 event->oncpu = -1;
2557                 ret = -EAGAIN;
2558                 goto out;
2559         }
2560
2561         if (!is_software_event(event))
2562                 cpc->active_oncpu++;
2563         if (event->attr.freq && event->attr.sample_freq) {
2564                 ctx->nr_freq++;
2565                 epc->nr_freq++;
2566         }
2567         if (event->attr.exclusive)
2568                 cpc->exclusive = 1;
2569
2570 out:
2571         perf_pmu_enable(event->pmu);
2572
2573         return ret;
2574 }
2575
2576 static int
2577 group_sched_in(struct perf_event *group_event, struct perf_event_context *ctx)
2578 {
2579         struct perf_event *event, *partial_group = NULL;
2580         struct pmu *pmu = group_event->pmu_ctx->pmu;
2581
2582         if (group_event->state == PERF_EVENT_STATE_OFF)
2583                 return 0;
2584
2585         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2586
2587         if (event_sched_in(group_event, ctx))
2588                 goto error;
2589
2590         /*
2591          * Schedule in siblings as one group (if any):
2592          */
2593         for_each_sibling_event(event, group_event) {
2594                 if (event_sched_in(event, ctx)) {
2595                         partial_group = event;
2596                         goto group_error;
2597                 }
2598         }
2599
2600         if (!pmu->commit_txn(pmu))
2601                 return 0;
2602
2603 group_error:
2604         /*
2605          * Groups can be scheduled in as one unit only, so undo any
2606          * partial group before returning:
2607          * The events up to the failed event are scheduled out normally.
2608          */
2609         for_each_sibling_event(event, group_event) {
2610                 if (event == partial_group)
2611                         break;
2612
2613                 event_sched_out(event, ctx);
2614         }
2615         event_sched_out(group_event, ctx);
2616
2617 error:
2618         pmu->cancel_txn(pmu);
2619         return -EAGAIN;
2620 }
2621
2622 /*
2623  * Work out whether we can put this event group on the CPU now.
2624  */
2625 static int group_can_go_on(struct perf_event *event, int can_add_hw)
2626 {
2627         struct perf_event_pmu_context *epc = event->pmu_ctx;
2628         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(epc->pmu->cpu_pmu_context);
2629
2630         /*
2631          * Groups consisting entirely of software events can always go on.
2632          */
2633         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2634                 return 1;
2635         /*
2636          * If an exclusive group is already on, no other hardware
2637          * events can go on.
2638          */
2639         if (cpc->exclusive)
2640                 return 0;
2641         /*
2642          * If this group is exclusive and there are already
2643          * events on the CPU, it can't go on.
2644          */
2645         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2646                 return 0;
2647         /*
2648          * Otherwise, try to add it if all previous groups were able
2649          * to go on.
2650          */
2651         return can_add_hw;
2652 }
2653
2654 static void add_event_to_ctx(struct perf_event *event,
2655                                struct perf_event_context *ctx)
2656 {
2657         list_add_event(event, ctx);
2658         perf_group_attach(event);
2659 }
2660
2661 static void task_ctx_sched_out(struct perf_event_context *ctx,
2662                                 enum event_type_t event_type)
2663 {
2664         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2665
2666         if (!cpuctx->task_ctx)
2667                 return;
2668
2669         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2670                 return;
2671
2672         ctx_sched_out(ctx, event_type);
2673 }
2674
2675 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2676                                 struct perf_event_context *ctx)
2677 {
2678         ctx_sched_in(&cpuctx->ctx, EVENT_PINNED);
2679         if (ctx)
2680                  ctx_sched_in(ctx, EVENT_PINNED);
2681         ctx_sched_in(&cpuctx->ctx, EVENT_FLEXIBLE);
2682         if (ctx)
2683                  ctx_sched_in(ctx, EVENT_FLEXIBLE);
2684 }
2685
2686 /*
2687  * We want to maintain the following priority of scheduling:
2688  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2689  *  - task pinned (EVENT_PINNED)
2690  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2691  *  - task flexible (EVENT_FLEXIBLE).
2692  *
2693  * In order to avoid unscheduling and scheduling back in everything every
2694  * time an event is added, only do it for the groups of equal priority and
2695  * below.
2696  *
2697  * This can be called after a batch operation on task events, in which case
2698  * event_type is a bit mask of the types of events involved. For CPU events,
2699  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2700  */
2701 /*
2702  * XXX: ctx_resched() reschedule entire perf_event_context while adding new
2703  * event to the context or enabling existing event in the context. We can
2704  * probably optimize it by rescheduling only affected pmu_ctx.
2705  */
2706 static void ctx_resched(struct perf_cpu_context *cpuctx,
2707                         struct perf_event_context *task_ctx,
2708                         enum event_type_t event_type)
2709 {
2710         bool cpu_event = !!(event_type & EVENT_CPU);
2711
2712         /*
2713          * If pinned groups are involved, flexible groups also need to be
2714          * scheduled out.
2715          */
2716         if (event_type & EVENT_PINNED)
2717                 event_type |= EVENT_FLEXIBLE;
2718
2719         event_type &= EVENT_ALL;
2720
2721         perf_ctx_disable(&cpuctx->ctx, false);
2722         if (task_ctx) {
2723                 perf_ctx_disable(task_ctx, false);
2724                 task_ctx_sched_out(task_ctx, event_type);
2725         }
2726
2727         /*
2728          * Decide which cpu ctx groups to schedule out based on the types
2729          * of events that caused rescheduling:
2730          *  - EVENT_CPU: schedule out corresponding groups;
2731          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2732          *  - otherwise, do nothing more.
2733          */
2734         if (cpu_event)
2735                 ctx_sched_out(&cpuctx->ctx, event_type);
2736         else if (event_type & EVENT_PINNED)
2737                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
2738
2739         perf_event_sched_in(cpuctx, task_ctx);
2740
2741         perf_ctx_enable(&cpuctx->ctx, false);
2742         if (task_ctx)
2743                 perf_ctx_enable(task_ctx, false);
2744 }
2745
2746 void perf_pmu_resched(struct pmu *pmu)
2747 {
2748         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2749         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2750
2751         perf_ctx_lock(cpuctx, task_ctx);
2752         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2753         perf_ctx_unlock(cpuctx, task_ctx);
2754 }
2755
2756 /*
2757  * Cross CPU call to install and enable a performance event
2758  *
2759  * Very similar to remote_function() + event_function() but cannot assume that
2760  * things like ctx->is_active and cpuctx->task_ctx are set.
2761  */
2762 static int  __perf_install_in_context(void *info)
2763 {
2764         struct perf_event *event = info;
2765         struct perf_event_context *ctx = event->ctx;
2766         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
2767         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2768         bool reprogram = true;
2769         int ret = 0;
2770
2771         raw_spin_lock(&cpuctx->ctx.lock);
2772         if (ctx->task) {
2773                 raw_spin_lock(&ctx->lock);
2774                 task_ctx = ctx;
2775
2776                 reprogram = (ctx->task == current);
2777
2778                 /*
2779                  * If the task is running, it must be running on this CPU,
2780                  * otherwise we cannot reprogram things.
2781                  *
2782                  * If its not running, we don't care, ctx->lock will
2783                  * serialize against it becoming runnable.
2784                  */
2785                 if (task_curr(ctx->task) && !reprogram) {
2786                         ret = -ESRCH;
2787                         goto unlock;
2788                 }
2789
2790                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2791         } else if (task_ctx) {
2792                 raw_spin_lock(&task_ctx->lock);
2793         }
2794
2795 #ifdef CONFIG_CGROUP_PERF
2796         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2797                 /*
2798                  * If the current cgroup doesn't match the event's
2799                  * cgroup, we should not try to schedule it.
2800                  */
2801                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2802                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2803                                         event->cgrp->css.cgroup);
2804         }
2805 #endif
2806
2807         if (reprogram) {
2808                 ctx_sched_out(ctx, EVENT_TIME);
2809                 add_event_to_ctx(event, ctx);
2810                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2811         } else {
2812                 add_event_to_ctx(event, ctx);
2813         }
2814
2815 unlock:
2816         perf_ctx_unlock(cpuctx, task_ctx);
2817
2818         return ret;
2819 }
2820
2821 static bool exclusive_event_installable(struct perf_event *event,
2822                                         struct perf_event_context *ctx);
2823
2824 /*
2825  * Attach a performance event to a context.
2826  *
2827  * Very similar to event_function_call, see comment there.
2828  */
2829 static void
2830 perf_install_in_context(struct perf_event_context *ctx,
2831                         struct perf_event *event,
2832                         int cpu)
2833 {
2834         struct task_struct *task = READ_ONCE(ctx->task);
2835
2836         lockdep_assert_held(&ctx->mutex);
2837
2838         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2839
2840         if (event->cpu != -1)
2841                 WARN_ON_ONCE(event->cpu != cpu);
2842
2843         /*
2844          * Ensures that if we can observe event->ctx, both the event and ctx
2845          * will be 'complete'. See perf_iterate_sb_cpu().
2846          */
2847         smp_store_release(&event->ctx, ctx);
2848
2849         /*
2850          * perf_event_attr::disabled events will not run and can be initialized
2851          * without IPI. Except when this is the first event for the context, in
2852          * that case we need the magic of the IPI to set ctx->is_active.
2853          *
2854          * The IOC_ENABLE that is sure to follow the creation of a disabled
2855          * event will issue the IPI and reprogram the hardware.
2856          */
2857         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF &&
2858             ctx->nr_events && !is_cgroup_event(event)) {
2859                 raw_spin_lock_irq(&ctx->lock);
2860                 if (ctx->task == TASK_TOMBSTONE) {
2861                         raw_spin_unlock_irq(&ctx->lock);
2862                         return;
2863                 }
2864                 add_event_to_ctx(event, ctx);
2865                 raw_spin_unlock_irq(&ctx->lock);
2866                 return;
2867         }
2868
2869         if (!task) {
2870                 cpu_function_call(cpu, __perf_install_in_context, event);
2871                 return;
2872         }
2873
2874         /*
2875          * Should not happen, we validate the ctx is still alive before calling.
2876          */
2877         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2878                 return;
2879
2880         /*
2881          * Installing events is tricky because we cannot rely on ctx->is_active
2882          * to be set in case this is the nr_events 0 -> 1 transition.
2883          *
2884          * Instead we use task_curr(), which tells us if the task is running.
2885          * However, since we use task_curr() outside of rq::lock, we can race
2886          * against the actual state. This means the result can be wrong.
2887          *
2888          * If we get a false positive, we retry, this is harmless.
2889          *
2890          * If we get a false negative, things are complicated. If we are after
2891          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2892          * value must be correct. If we're before, it doesn't matter since
2893          * perf_event_context_sched_in() will program the counter.
2894          *
2895          * However, this hinges on the remote context switch having observed
2896          * our task->perf_event_ctxp[] store, such that it will in fact take
2897          * ctx::lock in perf_event_context_sched_in().
2898          *
2899          * We do this by task_function_call(), if the IPI fails to hit the task
2900          * we know any future context switch of task must see the
2901          * perf_event_ctpx[] store.
2902          */
2903
2904         /*
2905          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2906          * task_cpu() load, such that if the IPI then does not find the task
2907          * running, a future context switch of that task must observe the
2908          * store.
2909          */
2910         smp_mb();
2911 again:
2912         if (!task_function_call(task, __perf_install_in_context, event))
2913                 return;
2914
2915         raw_spin_lock_irq(&ctx->lock);
2916         task = ctx->task;
2917         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2918                 /*
2919                  * Cannot happen because we already checked above (which also
2920                  * cannot happen), and we hold ctx->mutex, which serializes us
2921                  * against perf_event_exit_task_context().
2922                  */
2923                 raw_spin_unlock_irq(&ctx->lock);
2924                 return;
2925         }
2926         /*
2927          * If the task is not running, ctx->lock will avoid it becoming so,
2928          * thus we can safely install the event.
2929          */
2930         if (task_curr(task)) {
2931                 raw_spin_unlock_irq(&ctx->lock);
2932                 goto again;
2933         }
2934         add_event_to_ctx(event, ctx);
2935         raw_spin_unlock_irq(&ctx->lock);
2936 }
2937
2938 /*
2939  * Cross CPU call to enable a performance event
2940  */
2941 static void __perf_event_enable(struct perf_event *event,
2942                                 struct perf_cpu_context *cpuctx,
2943                                 struct perf_event_context *ctx,
2944                                 void *info)
2945 {
2946         struct perf_event *leader = event->group_leader;
2947         struct perf_event_context *task_ctx;
2948
2949         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2950             event->state <= PERF_EVENT_STATE_ERROR)
2951                 return;
2952
2953         if (ctx->is_active)
2954                 ctx_sched_out(ctx, EVENT_TIME);
2955
2956         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2957         perf_cgroup_event_enable(event, ctx);
2958
2959         if (!ctx->is_active)
2960                 return;
2961
2962         if (!event_filter_match(event)) {
2963                 ctx_sched_in(ctx, EVENT_TIME);
2964                 return;
2965         }
2966
2967         /*
2968          * If the event is in a group and isn't the group leader,
2969          * then don't put it on unless the group is on.
2970          */
2971         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2972                 ctx_sched_in(ctx, EVENT_TIME);
2973                 return;
2974         }
2975
2976         task_ctx = cpuctx->task_ctx;
2977         if (ctx->task)
2978                 WARN_ON_ONCE(task_ctx != ctx);
2979
2980         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2981 }
2982
2983 /*
2984  * Enable an event.
2985  *
2986  * If event->ctx is a cloned context, callers must make sure that
2987  * every task struct that event->ctx->task could possibly point to
2988  * remains valid.  This condition is satisfied when called through
2989  * perf_event_for_each_child or perf_event_for_each as described
2990  * for perf_event_disable.
2991  */
2992 static void _perf_event_enable(struct perf_event *event)
2993 {
2994         struct perf_event_context *ctx = event->ctx;
2995
2996         raw_spin_lock_irq(&ctx->lock);
2997         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2998             event->state <  PERF_EVENT_STATE_ERROR) {
2999 out:
3000                 raw_spin_unlock_irq(&ctx->lock);
3001                 return;
3002         }
3003
3004         /*
3005          * If the event is in error state, clear that first.
3006          *
3007          * That way, if we see the event in error state below, we know that it
3008          * has gone back into error state, as distinct from the task having
3009          * been scheduled away before the cross-call arrived.
3010          */
3011         if (event->state == PERF_EVENT_STATE_ERROR) {
3012                 /*
3013                  * Detached SIBLING events cannot leave ERROR state.
3014                  */
3015                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3016                     event->group_leader == event)
3017                         goto out;
3018
3019                 event->state = PERF_EVENT_STATE_OFF;
3020         }
3021         raw_spin_unlock_irq(&ctx->lock);
3022
3023         event_function_call(event, __perf_event_enable, NULL);
3024 }
3025
3026 /*
3027  * See perf_event_disable();
3028  */
3029 void perf_event_enable(struct perf_event *event)
3030 {
3031         struct perf_event_context *ctx;
3032
3033         ctx = perf_event_ctx_lock(event);
3034         _perf_event_enable(event);
3035         perf_event_ctx_unlock(event, ctx);
3036 }
3037 EXPORT_SYMBOL_GPL(perf_event_enable);
3038
3039 struct stop_event_data {
3040         struct perf_event       *event;
3041         unsigned int            restart;
3042 };
3043
3044 static int __perf_event_stop(void *info)
3045 {
3046         struct stop_event_data *sd = info;
3047         struct perf_event *event = sd->event;
3048
3049         /* if it's already INACTIVE, do nothing */
3050         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3051                 return 0;
3052
3053         /* matches smp_wmb() in event_sched_in() */
3054         smp_rmb();
3055
3056         /*
3057          * There is a window with interrupts enabled before we get here,
3058          * so we need to check again lest we try to stop another CPU's event.
3059          */
3060         if (READ_ONCE(event->oncpu) != smp_processor_id())
3061                 return -EAGAIN;
3062
3063         event->pmu->stop(event, PERF_EF_UPDATE);
3064
3065         /*
3066          * May race with the actual stop (through perf_pmu_output_stop()),
3067          * but it is only used for events with AUX ring buffer, and such
3068          * events will refuse to restart because of rb::aux_mmap_count==0,
3069          * see comments in perf_aux_output_begin().
3070          *
3071          * Since this is happening on an event-local CPU, no trace is lost
3072          * while restarting.
3073          */
3074         if (sd->restart)
3075                 event->pmu->start(event, 0);
3076
3077         return 0;
3078 }
3079
3080 static int perf_event_stop(struct perf_event *event, int restart)
3081 {
3082         struct stop_event_data sd = {
3083                 .event          = event,
3084                 .restart        = restart,
3085         };
3086         int ret = 0;
3087
3088         do {
3089                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3090                         return 0;
3091
3092                 /* matches smp_wmb() in event_sched_in() */
3093                 smp_rmb();
3094
3095                 /*
3096                  * We only want to restart ACTIVE events, so if the event goes
3097                  * inactive here (event->oncpu==-1), there's nothing more to do;
3098                  * fall through with ret==-ENXIO.
3099                  */
3100                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3101                                         __perf_event_stop, &sd);
3102         } while (ret == -EAGAIN);
3103
3104         return ret;
3105 }
3106
3107 /*
3108  * In order to contain the amount of racy and tricky in the address filter
3109  * configuration management, it is a two part process:
3110  *
3111  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3112  *      we update the addresses of corresponding vmas in
3113  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3114  * (p2) when an event is scheduled in (pmu::add), it calls
3115  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3116  *      if the generation has changed since the previous call.
3117  *
3118  * If (p1) happens while the event is active, we restart it to force (p2).
3119  *
3120  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3121  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3122  *     ioctl;
3123  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3124  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3125  *     for reading;
3126  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3127  *     of exec.
3128  */
3129 void perf_event_addr_filters_sync(struct perf_event *event)
3130 {
3131         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3132
3133         if (!has_addr_filter(event))
3134                 return;
3135
3136         raw_spin_lock(&ifh->lock);
3137         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3138                 event->pmu->addr_filters_sync(event);
3139                 event->hw.addr_filters_gen = event->addr_filters_gen;
3140         }
3141         raw_spin_unlock(&ifh->lock);
3142 }
3143 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3144
3145 static int _perf_event_refresh(struct perf_event *event, int refresh)
3146 {
3147         /*
3148          * not supported on inherited events
3149          */
3150         if (event->attr.inherit || !is_sampling_event(event))
3151                 return -EINVAL;
3152
3153         atomic_add(refresh, &event->event_limit);
3154         _perf_event_enable(event);
3155
3156         return 0;
3157 }
3158
3159 /*
3160  * See perf_event_disable()
3161  */
3162 int perf_event_refresh(struct perf_event *event, int refresh)
3163 {
3164         struct perf_event_context *ctx;
3165         int ret;
3166
3167         ctx = perf_event_ctx_lock(event);
3168         ret = _perf_event_refresh(event, refresh);
3169         perf_event_ctx_unlock(event, ctx);
3170
3171         return ret;
3172 }
3173 EXPORT_SYMBOL_GPL(perf_event_refresh);
3174
3175 static int perf_event_modify_breakpoint(struct perf_event *bp,
3176                                          struct perf_event_attr *attr)
3177 {
3178         int err;
3179
3180         _perf_event_disable(bp);
3181
3182         err = modify_user_hw_breakpoint_check(bp, attr, true);
3183
3184         if (!bp->attr.disabled)
3185                 _perf_event_enable(bp);
3186
3187         return err;
3188 }
3189
3190 /*
3191  * Copy event-type-independent attributes that may be modified.
3192  */
3193 static void perf_event_modify_copy_attr(struct perf_event_attr *to,
3194                                         const struct perf_event_attr *from)
3195 {
3196         to->sig_data = from->sig_data;
3197 }
3198
3199 static int perf_event_modify_attr(struct perf_event *event,
3200                                   struct perf_event_attr *attr)
3201 {
3202         int (*func)(struct perf_event *, struct perf_event_attr *);
3203         struct perf_event *child;
3204         int err;
3205
3206         if (event->attr.type != attr->type)
3207                 return -EINVAL;
3208
3209         switch (event->attr.type) {
3210         case PERF_TYPE_BREAKPOINT:
3211                 func = perf_event_modify_breakpoint;
3212                 break;
3213         default:
3214                 /* Place holder for future additions. */
3215                 return -EOPNOTSUPP;
3216         }
3217
3218         WARN_ON_ONCE(event->ctx->parent_ctx);
3219
3220         mutex_lock(&event->child_mutex);
3221         /*
3222          * Event-type-independent attributes must be copied before event-type
3223          * modification, which will validate that final attributes match the
3224          * source attributes after all relevant attributes have been copied.
3225          */
3226         perf_event_modify_copy_attr(&event->attr, attr);
3227         err = func(event, attr);
3228         if (err)
3229                 goto out;
3230         list_for_each_entry(child, &event->child_list, child_list) {
3231                 perf_event_modify_copy_attr(&child->attr, attr);
3232                 err = func(child, attr);
3233                 if (err)
3234                         goto out;
3235         }
3236 out:
3237         mutex_unlock(&event->child_mutex);
3238         return err;
3239 }
3240
3241 static void __pmu_ctx_sched_out(struct perf_event_pmu_context *pmu_ctx,
3242                                 enum event_type_t event_type)
3243 {
3244         struct perf_event_context *ctx = pmu_ctx->ctx;
3245         struct perf_event *event, *tmp;
3246         struct pmu *pmu = pmu_ctx->pmu;
3247
3248         if (ctx->task && !ctx->is_active) {
3249                 struct perf_cpu_pmu_context *cpc;
3250
3251                 cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3252                 WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3253                 cpc->task_epc = NULL;
3254         }
3255
3256         if (!event_type)
3257                 return;
3258
3259         perf_pmu_disable(pmu);
3260         if (event_type & EVENT_PINNED) {
3261                 list_for_each_entry_safe(event, tmp,
3262                                          &pmu_ctx->pinned_active,
3263                                          active_list)
3264                         group_sched_out(event, ctx);
3265         }
3266
3267         if (event_type & EVENT_FLEXIBLE) {
3268                 list_for_each_entry_safe(event, tmp,
3269                                          &pmu_ctx->flexible_active,
3270                                          active_list)
3271                         group_sched_out(event, ctx);
3272                 /*
3273                  * Since we cleared EVENT_FLEXIBLE, also clear
3274                  * rotate_necessary, is will be reset by
3275                  * ctx_flexible_sched_in() when needed.
3276                  */
3277                 pmu_ctx->rotate_necessary = 0;
3278         }
3279         perf_pmu_enable(pmu);
3280 }
3281
3282 static void
3283 ctx_sched_out(struct perf_event_context *ctx, enum event_type_t event_type)
3284 {
3285         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3286         struct perf_event_pmu_context *pmu_ctx;
3287         int is_active = ctx->is_active;
3288         bool cgroup = event_type & EVENT_CGROUP;
3289
3290         event_type &= ~EVENT_CGROUP;
3291
3292         lockdep_assert_held(&ctx->lock);
3293
3294         if (likely(!ctx->nr_events)) {
3295                 /*
3296                  * See __perf_remove_from_context().
3297                  */
3298                 WARN_ON_ONCE(ctx->is_active);
3299                 if (ctx->task)
3300                         WARN_ON_ONCE(cpuctx->task_ctx);
3301                 return;
3302         }
3303
3304         /*
3305          * Always update time if it was set; not only when it changes.
3306          * Otherwise we can 'forget' to update time for any but the last
3307          * context we sched out. For example:
3308          *
3309          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3310          *   ctx_sched_out(.event_type = EVENT_PINNED)
3311          *
3312          * would only update time for the pinned events.
3313          */
3314         if (is_active & EVENT_TIME) {
3315                 /* update (and stop) ctx time */
3316                 update_context_time(ctx);
3317                 update_cgrp_time_from_cpuctx(cpuctx, ctx == &cpuctx->ctx);
3318                 /*
3319                  * CPU-release for the below ->is_active store,
3320                  * see __load_acquire() in perf_event_time_now()
3321                  */
3322                 barrier();
3323         }
3324
3325         ctx->is_active &= ~event_type;
3326         if (!(ctx->is_active & EVENT_ALL))
3327                 ctx->is_active = 0;
3328
3329         if (ctx->task) {
3330                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3331                 if (!ctx->is_active)
3332                         cpuctx->task_ctx = NULL;
3333         }
3334
3335         is_active ^= ctx->is_active; /* changed bits */
3336
3337         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3338                 if (cgroup && !pmu_ctx->nr_cgroups)
3339                         continue;
3340                 __pmu_ctx_sched_out(pmu_ctx, is_active);
3341         }
3342 }
3343
3344 /*
3345  * Test whether two contexts are equivalent, i.e. whether they have both been
3346  * cloned from the same version of the same context.
3347  *
3348  * Equivalence is measured using a generation number in the context that is
3349  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3350  * and list_del_event().
3351  */
3352 static int context_equiv(struct perf_event_context *ctx1,
3353                          struct perf_event_context *ctx2)
3354 {
3355         lockdep_assert_held(&ctx1->lock);
3356         lockdep_assert_held(&ctx2->lock);
3357
3358         /* Pinning disables the swap optimization */
3359         if (ctx1->pin_count || ctx2->pin_count)
3360                 return 0;
3361
3362         /* If ctx1 is the parent of ctx2 */
3363         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3364                 return 1;
3365
3366         /* If ctx2 is the parent of ctx1 */
3367         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3368                 return 1;
3369
3370         /*
3371          * If ctx1 and ctx2 have the same parent; we flatten the parent
3372          * hierarchy, see perf_event_init_context().
3373          */
3374         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3375                         ctx1->parent_gen == ctx2->parent_gen)
3376                 return 1;
3377
3378         /* Unmatched */
3379         return 0;
3380 }
3381
3382 static void __perf_event_sync_stat(struct perf_event *event,
3383                                      struct perf_event *next_event)
3384 {
3385         u64 value;
3386
3387         if (!event->attr.inherit_stat)
3388                 return;
3389
3390         /*
3391          * Update the event value, we cannot use perf_event_read()
3392          * because we're in the middle of a context switch and have IRQs
3393          * disabled, which upsets smp_call_function_single(), however
3394          * we know the event must be on the current CPU, therefore we
3395          * don't need to use it.
3396          */
3397         if (event->state == PERF_EVENT_STATE_ACTIVE)
3398                 event->pmu->read(event);
3399
3400         perf_event_update_time(event);
3401
3402         /*
3403          * In order to keep per-task stats reliable we need to flip the event
3404          * values when we flip the contexts.
3405          */
3406         value = local64_read(&next_event->count);
3407         value = local64_xchg(&event->count, value);
3408         local64_set(&next_event->count, value);
3409
3410         swap(event->total_time_enabled, next_event->total_time_enabled);
3411         swap(event->total_time_running, next_event->total_time_running);
3412
3413         /*
3414          * Since we swizzled the values, update the user visible data too.
3415          */
3416         perf_event_update_userpage(event);
3417         perf_event_update_userpage(next_event);
3418 }
3419
3420 static void perf_event_sync_stat(struct perf_event_context *ctx,
3421                                    struct perf_event_context *next_ctx)
3422 {
3423         struct perf_event *event, *next_event;
3424
3425         if (!ctx->nr_stat)
3426                 return;
3427
3428         update_context_time(ctx);
3429
3430         event = list_first_entry(&ctx->event_list,
3431                                    struct perf_event, event_entry);
3432
3433         next_event = list_first_entry(&next_ctx->event_list,
3434                                         struct perf_event, event_entry);
3435
3436         while (&event->event_entry != &ctx->event_list &&
3437                &next_event->event_entry != &next_ctx->event_list) {
3438
3439                 __perf_event_sync_stat(event, next_event);
3440
3441                 event = list_next_entry(event, event_entry);
3442                 next_event = list_next_entry(next_event, event_entry);
3443         }
3444 }
3445
3446 #define double_list_for_each_entry(pos1, pos2, head1, head2, member)    \
3447         for (pos1 = list_first_entry(head1, typeof(*pos1), member),     \
3448              pos2 = list_first_entry(head2, typeof(*pos2), member);     \
3449              !list_entry_is_head(pos1, head1, member) &&                \
3450              !list_entry_is_head(pos2, head2, member);                  \
3451              pos1 = list_next_entry(pos1, member),                      \
3452              pos2 = list_next_entry(pos2, member))
3453
3454 static void perf_event_swap_task_ctx_data(struct perf_event_context *prev_ctx,
3455                                           struct perf_event_context *next_ctx)
3456 {
3457         struct perf_event_pmu_context *prev_epc, *next_epc;
3458
3459         if (!prev_ctx->nr_task_data)
3460                 return;
3461
3462         double_list_for_each_entry(prev_epc, next_epc,
3463                                    &prev_ctx->pmu_ctx_list, &next_ctx->pmu_ctx_list,
3464                                    pmu_ctx_entry) {
3465
3466                 if (WARN_ON_ONCE(prev_epc->pmu != next_epc->pmu))
3467                         continue;
3468
3469                 /*
3470                  * PMU specific parts of task perf context can require
3471                  * additional synchronization. As an example of such
3472                  * synchronization see implementation details of Intel
3473                  * LBR call stack data profiling;
3474                  */
3475                 if (prev_epc->pmu->swap_task_ctx)
3476                         prev_epc->pmu->swap_task_ctx(prev_epc, next_epc);
3477                 else
3478                         swap(prev_epc->task_ctx_data, next_epc->task_ctx_data);
3479         }
3480 }
3481
3482 static void perf_ctx_sched_task_cb(struct perf_event_context *ctx, bool sched_in)
3483 {
3484         struct perf_event_pmu_context *pmu_ctx;
3485         struct perf_cpu_pmu_context *cpc;
3486
3487         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3488                 cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3489
3490                 if (cpc->sched_cb_usage && pmu_ctx->pmu->sched_task)
3491                         pmu_ctx->pmu->sched_task(pmu_ctx, sched_in);
3492         }
3493 }
3494
3495 static void
3496 perf_event_context_sched_out(struct task_struct *task, struct task_struct *next)
3497 {
3498         struct perf_event_context *ctx = task->perf_event_ctxp;
3499         struct perf_event_context *next_ctx;
3500         struct perf_event_context *parent, *next_parent;
3501         int do_switch = 1;
3502
3503         if (likely(!ctx))
3504                 return;
3505
3506         rcu_read_lock();
3507         next_ctx = rcu_dereference(next->perf_event_ctxp);
3508         if (!next_ctx)
3509                 goto unlock;
3510
3511         parent = rcu_dereference(ctx->parent_ctx);
3512         next_parent = rcu_dereference(next_ctx->parent_ctx);
3513
3514         /* If neither context have a parent context; they cannot be clones. */
3515         if (!parent && !next_parent)
3516                 goto unlock;
3517
3518         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3519                 /*
3520                  * Looks like the two contexts are clones, so we might be
3521                  * able to optimize the context switch.  We lock both
3522                  * contexts and check that they are clones under the
3523                  * lock (including re-checking that neither has been
3524                  * uncloned in the meantime).  It doesn't matter which
3525                  * order we take the locks because no other cpu could
3526                  * be trying to lock both of these tasks.
3527                  */
3528                 raw_spin_lock(&ctx->lock);
3529                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3530                 if (context_equiv(ctx, next_ctx)) {
3531
3532                         perf_ctx_disable(ctx, false);
3533
3534                         /* PMIs are disabled; ctx->nr_pending is stable. */
3535                         if (local_read(&ctx->nr_pending) ||
3536                             local_read(&next_ctx->nr_pending)) {
3537                                 /*
3538                                  * Must not swap out ctx when there's pending
3539                                  * events that rely on the ctx->task relation.
3540                                  */
3541                                 raw_spin_unlock(&next_ctx->lock);
3542                                 rcu_read_unlock();
3543                                 goto inside_switch;
3544                         }
3545
3546                         WRITE_ONCE(ctx->task, next);
3547                         WRITE_ONCE(next_ctx->task, task);
3548
3549                         perf_ctx_sched_task_cb(ctx, false);
3550                         perf_event_swap_task_ctx_data(ctx, next_ctx);
3551
3552                         perf_ctx_enable(ctx, false);
3553
3554                         /*
3555                          * RCU_INIT_POINTER here is safe because we've not
3556                          * modified the ctx and the above modification of
3557                          * ctx->task and ctx->task_ctx_data are immaterial
3558                          * since those values are always verified under
3559                          * ctx->lock which we're now holding.
3560                          */
3561                         RCU_INIT_POINTER(task->perf_event_ctxp, next_ctx);
3562                         RCU_INIT_POINTER(next->perf_event_ctxp, ctx);
3563
3564                         do_switch = 0;
3565
3566                         perf_event_sync_stat(ctx, next_ctx);
3567                 }
3568                 raw_spin_unlock(&next_ctx->lock);
3569                 raw_spin_unlock(&ctx->lock);
3570         }
3571 unlock:
3572         rcu_read_unlock();
3573
3574         if (do_switch) {
3575                 raw_spin_lock(&ctx->lock);
3576                 perf_ctx_disable(ctx, false);
3577
3578 inside_switch:
3579                 perf_ctx_sched_task_cb(ctx, false);
3580                 task_ctx_sched_out(ctx, EVENT_ALL);
3581
3582                 perf_ctx_enable(ctx, false);
3583                 raw_spin_unlock(&ctx->lock);
3584         }
3585 }
3586
3587 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3588 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
3589
3590 void perf_sched_cb_dec(struct pmu *pmu)
3591 {
3592         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3593
3594         this_cpu_dec(perf_sched_cb_usages);
3595         barrier();
3596
3597         if (!--cpc->sched_cb_usage)
3598                 list_del(&cpc->sched_cb_entry);
3599 }
3600
3601
3602 void perf_sched_cb_inc(struct pmu *pmu)
3603 {
3604         struct perf_cpu_pmu_context *cpc = this_cpu_ptr(pmu->cpu_pmu_context);
3605
3606         if (!cpc->sched_cb_usage++)
3607                 list_add(&cpc->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3608
3609         barrier();
3610         this_cpu_inc(perf_sched_cb_usages);
3611 }
3612
3613 /*
3614  * This function provides the context switch callback to the lower code
3615  * layer. It is invoked ONLY when the context switch callback is enabled.
3616  *
3617  * This callback is relevant even to per-cpu events; for example multi event
3618  * PEBS requires this to provide PID/TID information. This requires we flush
3619  * all queued PEBS records before we context switch to a new task.
3620  */
3621 static void __perf_pmu_sched_task(struct perf_cpu_pmu_context *cpc, bool sched_in)
3622 {
3623         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3624         struct pmu *pmu;
3625
3626         pmu = cpc->epc.pmu;
3627
3628         /* software PMUs will not have sched_task */
3629         if (WARN_ON_ONCE(!pmu->sched_task))
3630                 return;
3631
3632         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3633         perf_pmu_disable(pmu);
3634
3635         pmu->sched_task(cpc->task_epc, sched_in);
3636
3637         perf_pmu_enable(pmu);
3638         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3639 }
3640
3641 static void perf_pmu_sched_task(struct task_struct *prev,
3642                                 struct task_struct *next,
3643                                 bool sched_in)
3644 {
3645         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3646         struct perf_cpu_pmu_context *cpc;
3647
3648         /* cpuctx->task_ctx will be handled in perf_event_context_sched_in/out */
3649         if (prev == next || cpuctx->task_ctx)
3650                 return;
3651
3652         list_for_each_entry(cpc, this_cpu_ptr(&sched_cb_list), sched_cb_entry)
3653                 __perf_pmu_sched_task(cpc, sched_in);
3654 }
3655
3656 static void perf_event_switch(struct task_struct *task,
3657                               struct task_struct *next_prev, bool sched_in);
3658
3659 /*
3660  * Called from scheduler to remove the events of the current task,
3661  * with interrupts disabled.
3662  *
3663  * We stop each event and update the event value in event->count.
3664  *
3665  * This does not protect us against NMI, but disable()
3666  * sets the disabled bit in the control field of event _before_
3667  * accessing the event control register. If a NMI hits, then it will
3668  * not restart the event.
3669  */
3670 void __perf_event_task_sched_out(struct task_struct *task,
3671                                  struct task_struct *next)
3672 {
3673         if (__this_cpu_read(perf_sched_cb_usages))
3674                 perf_pmu_sched_task(task, next, false);
3675
3676         if (atomic_read(&nr_switch_events))
3677                 perf_event_switch(task, next, false);
3678
3679         perf_event_context_sched_out(task, next);
3680
3681         /*
3682          * if cgroup events exist on this CPU, then we need
3683          * to check if we have to switch out PMU state.
3684          * cgroup event are system-wide mode only
3685          */
3686         perf_cgroup_switch(next);
3687 }
3688
3689 static bool perf_less_group_idx(const void *l, const void *r)
3690 {
3691         const struct perf_event *le = *(const struct perf_event **)l;
3692         const struct perf_event *re = *(const struct perf_event **)r;
3693
3694         return le->group_index < re->group_index;
3695 }
3696
3697 static void swap_ptr(void *l, void *r)
3698 {
3699         void **lp = l, **rp = r;
3700
3701         swap(*lp, *rp);
3702 }
3703
3704 static const struct min_heap_callbacks perf_min_heap = {
3705         .elem_size = sizeof(struct perf_event *),
3706         .less = perf_less_group_idx,
3707         .swp = swap_ptr,
3708 };
3709
3710 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3711 {
3712         struct perf_event **itrs = heap->data;
3713
3714         if (event) {
3715                 itrs[heap->nr] = event;
3716                 heap->nr++;
3717         }
3718 }
3719
3720 static void __link_epc(struct perf_event_pmu_context *pmu_ctx)
3721 {
3722         struct perf_cpu_pmu_context *cpc;
3723
3724         if (!pmu_ctx->ctx->task)
3725                 return;
3726
3727         cpc = this_cpu_ptr(pmu_ctx->pmu->cpu_pmu_context);
3728         WARN_ON_ONCE(cpc->task_epc && cpc->task_epc != pmu_ctx);
3729         cpc->task_epc = pmu_ctx;
3730 }
3731
3732 static noinline int visit_groups_merge(struct perf_event_context *ctx,
3733                                 struct perf_event_groups *groups, int cpu,
3734                                 struct pmu *pmu,
3735                                 int (*func)(struct perf_event *, void *),
3736                                 void *data)
3737 {
3738 #ifdef CONFIG_CGROUP_PERF
3739         struct cgroup_subsys_state *css = NULL;
3740 #endif
3741         struct perf_cpu_context *cpuctx = NULL;
3742         /* Space for per CPU and/or any CPU event iterators. */
3743         struct perf_event *itrs[2];
3744         struct min_heap event_heap;
3745         struct perf_event **evt;
3746         int ret;
3747
3748         if (pmu->filter && pmu->filter(pmu, cpu))
3749                 return 0;
3750
3751         if (!ctx->task) {
3752                 cpuctx = this_cpu_ptr(&perf_cpu_context);
3753                 event_heap = (struct min_heap){
3754                         .data = cpuctx->heap,
3755                         .nr = 0,
3756                         .size = cpuctx->heap_size,
3757                 };
3758
3759                 lockdep_assert_held(&cpuctx->ctx.lock);
3760
3761 #ifdef CONFIG_CGROUP_PERF
3762                 if (cpuctx->cgrp)
3763                         css = &cpuctx->cgrp->css;
3764 #endif
3765         } else {
3766                 event_heap = (struct min_heap){
3767                         .data = itrs,
3768                         .nr = 0,
3769                         .size = ARRAY_SIZE(itrs),
3770                 };
3771                 /* Events not within a CPU context may be on any CPU. */
3772                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, pmu, NULL));
3773         }
3774         evt = event_heap.data;
3775
3776         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, NULL));
3777
3778 #ifdef CONFIG_CGROUP_PERF
3779         for (; css; css = css->parent)
3780                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, pmu, css->cgroup));
3781 #endif
3782
3783         if (event_heap.nr) {
3784                 __link_epc((*evt)->pmu_ctx);
3785                 perf_assert_pmu_disabled((*evt)->pmu_ctx->pmu);
3786         }
3787
3788         min_heapify_all(&event_heap, &perf_min_heap);
3789
3790         while (event_heap.nr) {
3791                 ret = func(*evt, data);
3792                 if (ret)
3793                         return ret;
3794
3795                 *evt = perf_event_groups_next(*evt, pmu);
3796                 if (*evt)
3797                         min_heapify(&event_heap, 0, &perf_min_heap);
3798                 else
3799                         min_heap_pop(&event_heap, &perf_min_heap);
3800         }
3801
3802         return 0;
3803 }
3804
3805 /*
3806  * Because the userpage is strictly per-event (there is no concept of context,
3807  * so there cannot be a context indirection), every userpage must be updated
3808  * when context time starts :-(
3809  *
3810  * IOW, we must not miss EVENT_TIME edges.
3811  */
3812 static inline bool event_update_userpage(struct perf_event *event)
3813 {
3814         if (likely(!atomic_read(&event->mmap_count)))
3815                 return false;
3816
3817         perf_event_update_time(event);
3818         perf_event_update_userpage(event);
3819
3820         return true;
3821 }
3822
3823 static inline void group_update_userpage(struct perf_event *group_event)
3824 {
3825         struct perf_event *event;
3826
3827         if (!event_update_userpage(group_event))
3828                 return;
3829
3830         for_each_sibling_event(event, group_event)
3831                 event_update_userpage(event);
3832 }
3833
3834 static int merge_sched_in(struct perf_event *event, void *data)
3835 {
3836         struct perf_event_context *ctx = event->ctx;
3837         int *can_add_hw = data;
3838
3839         if (event->state <= PERF_EVENT_STATE_OFF)
3840                 return 0;
3841
3842         if (!event_filter_match(event))
3843                 return 0;
3844
3845         if (group_can_go_on(event, *can_add_hw)) {
3846                 if (!group_sched_in(event, ctx))
3847                         list_add_tail(&event->active_list, get_event_list(event));
3848         }
3849
3850         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3851                 *can_add_hw = 0;
3852                 if (event->attr.pinned) {
3853                         perf_cgroup_event_disable(event, ctx);
3854                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3855                 } else {
3856                         struct perf_cpu_pmu_context *cpc;
3857
3858                         event->pmu_ctx->rotate_necessary = 1;
3859                         cpc = this_cpu_ptr(event->pmu_ctx->pmu->cpu_pmu_context);
3860                         perf_mux_hrtimer_restart(cpc);
3861                         group_update_userpage(event);
3862                 }
3863         }
3864
3865         return 0;
3866 }
3867
3868 static void pmu_groups_sched_in(struct perf_event_context *ctx,
3869                                 struct perf_event_groups *groups,
3870                                 struct pmu *pmu)
3871 {
3872         int can_add_hw = 1;
3873         visit_groups_merge(ctx, groups, smp_processor_id(), pmu,
3874                            merge_sched_in, &can_add_hw);
3875 }
3876
3877 static void ctx_groups_sched_in(struct perf_event_context *ctx,
3878                                 struct perf_event_groups *groups,
3879                                 bool cgroup)
3880 {
3881         struct perf_event_pmu_context *pmu_ctx;
3882
3883         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
3884                 if (cgroup && !pmu_ctx->nr_cgroups)
3885                         continue;
3886                 pmu_groups_sched_in(ctx, groups, pmu_ctx->pmu);
3887         }
3888 }
3889
3890 static void __pmu_ctx_sched_in(struct perf_event_context *ctx,
3891                                struct pmu *pmu)
3892 {
3893         pmu_groups_sched_in(ctx, &ctx->flexible_groups, pmu);
3894 }
3895
3896 static void
3897 ctx_sched_in(struct perf_event_context *ctx, enum event_type_t event_type)
3898 {
3899         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3900         int is_active = ctx->is_active;
3901         bool cgroup = event_type & EVENT_CGROUP;
3902
3903         event_type &= ~EVENT_CGROUP;
3904
3905         lockdep_assert_held(&ctx->lock);
3906
3907         if (likely(!ctx->nr_events))
3908                 return;
3909
3910         if (!(is_active & EVENT_TIME)) {
3911                 /* start ctx time */
3912                 __update_context_time(ctx, false);
3913                 perf_cgroup_set_timestamp(cpuctx);
3914                 /*
3915                  * CPU-release for the below ->is_active store,
3916                  * see __load_acquire() in perf_event_time_now()
3917                  */
3918                 barrier();
3919         }
3920
3921         ctx->is_active |= (event_type | EVENT_TIME);
3922         if (ctx->task) {
3923                 if (!is_active)
3924                         cpuctx->task_ctx = ctx;
3925                 else
3926                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3927         }
3928
3929         is_active ^= ctx->is_active; /* changed bits */
3930
3931         /*
3932          * First go through the list and put on any pinned groups
3933          * in order to give them the best chance of going on.
3934          */
3935         if (is_active & EVENT_PINNED)
3936                 ctx_groups_sched_in(ctx, &ctx->pinned_groups, cgroup);
3937
3938         /* Then walk through the lower prio flexible groups */
3939         if (is_active & EVENT_FLEXIBLE)
3940                 ctx_groups_sched_in(ctx, &ctx->flexible_groups, cgroup);
3941 }
3942
3943 static void perf_event_context_sched_in(struct task_struct *task)
3944 {
3945         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
3946         struct perf_event_context *ctx;
3947
3948         rcu_read_lock();
3949         ctx = rcu_dereference(task->perf_event_ctxp);
3950         if (!ctx)
3951                 goto rcu_unlock;
3952
3953         if (cpuctx->task_ctx == ctx) {
3954                 perf_ctx_lock(cpuctx, ctx);
3955                 perf_ctx_disable(ctx, false);
3956
3957                 perf_ctx_sched_task_cb(ctx, true);
3958
3959                 perf_ctx_enable(ctx, false);
3960                 perf_ctx_unlock(cpuctx, ctx);
3961                 goto rcu_unlock;
3962         }
3963
3964         perf_ctx_lock(cpuctx, ctx);
3965         /*
3966          * We must check ctx->nr_events while holding ctx->lock, such
3967          * that we serialize against perf_install_in_context().
3968          */
3969         if (!ctx->nr_events)
3970                 goto unlock;
3971
3972         perf_ctx_disable(ctx, false);
3973         /*
3974          * We want to keep the following priority order:
3975          * cpu pinned (that don't need to move), task pinned,
3976          * cpu flexible, task flexible.
3977          *
3978          * However, if task's ctx is not carrying any pinned
3979          * events, no need to flip the cpuctx's events around.
3980          */
3981         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree)) {
3982                 perf_ctx_disable(&cpuctx->ctx, false);
3983                 ctx_sched_out(&cpuctx->ctx, EVENT_FLEXIBLE);
3984         }
3985
3986         perf_event_sched_in(cpuctx, ctx);
3987
3988         perf_ctx_sched_task_cb(cpuctx->task_ctx, true);
3989
3990         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3991                 perf_ctx_enable(&cpuctx->ctx, false);
3992
3993         perf_ctx_enable(ctx, false);
3994
3995 unlock:
3996         perf_ctx_unlock(cpuctx, ctx);
3997 rcu_unlock:
3998         rcu_read_unlock();
3999 }
4000
4001 /*
4002  * Called from scheduler to add the events of the current task
4003  * with interrupts disabled.
4004  *
4005  * We restore the event value and then enable it.
4006  *
4007  * This does not protect us against NMI, but enable()
4008  * sets the enabled bit in the control field of event _before_
4009  * accessing the event control register. If a NMI hits, then it will
4010  * keep the event running.
4011  */
4012 void __perf_event_task_sched_in(struct task_struct *prev,
4013                                 struct task_struct *task)
4014 {
4015         perf_event_context_sched_in(task);
4016
4017         if (atomic_read(&nr_switch_events))
4018                 perf_event_switch(task, prev, true);
4019
4020         if (__this_cpu_read(perf_sched_cb_usages))
4021                 perf_pmu_sched_task(prev, task, true);
4022 }
4023
4024 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
4025 {
4026         u64 frequency = event->attr.sample_freq;
4027         u64 sec = NSEC_PER_SEC;
4028         u64 divisor, dividend;
4029
4030         int count_fls, nsec_fls, frequency_fls, sec_fls;
4031
4032         count_fls = fls64(count);
4033         nsec_fls = fls64(nsec);
4034         frequency_fls = fls64(frequency);
4035         sec_fls = 30;
4036
4037         /*
4038          * We got @count in @nsec, with a target of sample_freq HZ
4039          * the target period becomes:
4040          *
4041          *             @count * 10^9
4042          * period = -------------------
4043          *          @nsec * sample_freq
4044          *
4045          */
4046
4047         /*
4048          * Reduce accuracy by one bit such that @a and @b converge
4049          * to a similar magnitude.
4050          */
4051 #define REDUCE_FLS(a, b)                \
4052 do {                                    \
4053         if (a##_fls > b##_fls) {        \
4054                 a >>= 1;                \
4055                 a##_fls--;              \
4056         } else {                        \
4057                 b >>= 1;                \
4058                 b##_fls--;              \
4059         }                               \
4060 } while (0)
4061
4062         /*
4063          * Reduce accuracy until either term fits in a u64, then proceed with
4064          * the other, so that finally we can do a u64/u64 division.
4065          */
4066         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
4067                 REDUCE_FLS(nsec, frequency);
4068                 REDUCE_FLS(sec, count);
4069         }
4070
4071         if (count_fls + sec_fls > 64) {
4072                 divisor = nsec * frequency;
4073
4074                 while (count_fls + sec_fls > 64) {
4075                         REDUCE_FLS(count, sec);
4076                         divisor >>= 1;
4077                 }
4078
4079                 dividend = count * sec;
4080         } else {
4081                 dividend = count * sec;
4082
4083                 while (nsec_fls + frequency_fls > 64) {
4084                         REDUCE_FLS(nsec, frequency);
4085                         dividend >>= 1;
4086                 }
4087
4088                 divisor = nsec * frequency;
4089         }
4090
4091         if (!divisor)
4092                 return dividend;
4093
4094         return div64_u64(dividend, divisor);
4095 }
4096
4097 static DEFINE_PER_CPU(int, perf_throttled_count);
4098 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4099
4100 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4101 {
4102         struct hw_perf_event *hwc = &event->hw;
4103         s64 period, sample_period;
4104         s64 delta;
4105
4106         period = perf_calculate_period(event, nsec, count);
4107
4108         delta = (s64)(period - hwc->sample_period);
4109         delta = (delta + 7) / 8; /* low pass filter */
4110
4111         sample_period = hwc->sample_period + delta;
4112
4113         if (!sample_period)
4114                 sample_period = 1;
4115
4116         hwc->sample_period = sample_period;
4117
4118         if (local64_read(&hwc->period_left) > 8*sample_period) {
4119                 if (disable)
4120                         event->pmu->stop(event, PERF_EF_UPDATE);
4121
4122                 local64_set(&hwc->period_left, 0);
4123
4124                 if (disable)
4125                         event->pmu->start(event, PERF_EF_RELOAD);
4126         }
4127 }
4128
4129 static void perf_adjust_freq_unthr_events(struct list_head *event_list)
4130 {
4131         struct perf_event *event;
4132         struct hw_perf_event *hwc;
4133         u64 now, period = TICK_NSEC;
4134         s64 delta;
4135
4136         list_for_each_entry(event, event_list, active_list) {
4137                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4138                         continue;
4139
4140                 // XXX use visit thingy to avoid the -1,cpu match
4141                 if (!event_filter_match(event))
4142                         continue;
4143
4144                 hwc = &event->hw;
4145
4146                 if (hwc->interrupts == MAX_INTERRUPTS) {
4147                         hwc->interrupts = 0;
4148                         perf_log_throttle(event, 1);
4149                         if (!event->attr.freq || !event->attr.sample_freq)
4150                                 event->pmu->start(event, 0);
4151                 }
4152
4153                 if (!event->attr.freq || !event->attr.sample_freq)
4154                         continue;
4155
4156                 /*
4157                  * stop the event and update event->count
4158                  */
4159                 event->pmu->stop(event, PERF_EF_UPDATE);
4160
4161                 now = local64_read(&event->count);
4162                 delta = now - hwc->freq_count_stamp;
4163                 hwc->freq_count_stamp = now;
4164
4165                 /*
4166                  * restart the event
4167                  * reload only if value has changed
4168                  * we have stopped the event so tell that
4169                  * to perf_adjust_period() to avoid stopping it
4170                  * twice.
4171                  */
4172                 if (delta > 0)
4173                         perf_adjust_period(event, period, delta, false);
4174
4175                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4176         }
4177 }
4178
4179 /*
4180  * combine freq adjustment with unthrottling to avoid two passes over the
4181  * events. At the same time, make sure, having freq events does not change
4182  * the rate of unthrottling as that would introduce bias.
4183  */
4184 static void
4185 perf_adjust_freq_unthr_context(struct perf_event_context *ctx, bool unthrottle)
4186 {
4187         struct perf_event_pmu_context *pmu_ctx;
4188
4189         /*
4190          * only need to iterate over all events iff:
4191          * - context have events in frequency mode (needs freq adjust)
4192          * - there are events to unthrottle on this cpu
4193          */
4194         if (!(ctx->nr_freq || unthrottle))
4195                 return;
4196
4197         raw_spin_lock(&ctx->lock);
4198
4199         list_for_each_entry(pmu_ctx, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4200                 if (!(pmu_ctx->nr_freq || unthrottle))
4201                         continue;
4202                 if (!perf_pmu_ctx_is_active(pmu_ctx))
4203                         continue;
4204                 if (pmu_ctx->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT)
4205                         continue;
4206
4207                 perf_pmu_disable(pmu_ctx->pmu);
4208                 perf_adjust_freq_unthr_events(&pmu_ctx->pinned_active);
4209                 perf_adjust_freq_unthr_events(&pmu_ctx->flexible_active);
4210                 perf_pmu_enable(pmu_ctx->pmu);
4211         }
4212
4213         raw_spin_unlock(&ctx->lock);
4214 }
4215
4216 /*
4217  * Move @event to the tail of the @ctx's elegible events.
4218  */
4219 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4220 {
4221         /*
4222          * Rotate the first entry last of non-pinned groups. Rotation might be
4223          * disabled by the inheritance code.
4224          */
4225         if (ctx->rotate_disable)
4226                 return;
4227
4228         perf_event_groups_delete(&ctx->flexible_groups, event);
4229         perf_event_groups_insert(&ctx->flexible_groups, event);
4230 }
4231
4232 /* pick an event from the flexible_groups to rotate */
4233 static inline struct perf_event *
4234 ctx_event_to_rotate(struct perf_event_pmu_context *pmu_ctx)
4235 {
4236         struct perf_event *event;
4237         struct rb_node *node;
4238         struct rb_root *tree;
4239         struct __group_key key = {
4240                 .pmu = pmu_ctx->pmu,
4241         };
4242
4243         /* pick the first active flexible event */
4244         event = list_first_entry_or_null(&pmu_ctx->flexible_active,
4245                                          struct perf_event, active_list);
4246         if (event)
4247                 goto out;
4248
4249         /* if no active flexible event, pick the first event */
4250         tree = &pmu_ctx->ctx->flexible_groups.tree;
4251
4252         if (!pmu_ctx->ctx->task) {
4253                 key.cpu = smp_processor_id();
4254
4255                 node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4256                 if (node)
4257                         event = __node_2_pe(node);
4258                 goto out;
4259         }
4260
4261         key.cpu = -1;
4262         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4263         if (node) {
4264                 event = __node_2_pe(node);
4265                 goto out;
4266         }
4267
4268         key.cpu = smp_processor_id();
4269         node = rb_find_first(&key, tree, __group_cmp_ignore_cgroup);
4270         if (node)
4271                 event = __node_2_pe(node);
4272
4273 out:
4274         /*
4275          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4276          * finds there are unschedulable events, it will set it again.
4277          */
4278         pmu_ctx->rotate_necessary = 0;
4279
4280         return event;
4281 }
4282
4283 static bool perf_rotate_context(struct perf_cpu_pmu_context *cpc)
4284 {
4285         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4286         struct perf_event_pmu_context *cpu_epc, *task_epc = NULL;
4287         struct perf_event *cpu_event = NULL, *task_event = NULL;
4288         int cpu_rotate, task_rotate;
4289         struct pmu *pmu;
4290
4291         /*
4292          * Since we run this from IRQ context, nobody can install new
4293          * events, thus the event count values are stable.
4294          */
4295
4296         cpu_epc = &cpc->epc;
4297         pmu = cpu_epc->pmu;
4298         task_epc = cpc->task_epc;
4299
4300         cpu_rotate = cpu_epc->rotate_necessary;
4301         task_rotate = task_epc ? task_epc->rotate_necessary : 0;
4302
4303         if (!(cpu_rotate || task_rotate))
4304                 return false;
4305
4306         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4307         perf_pmu_disable(pmu);
4308
4309         if (task_rotate)
4310                 task_event = ctx_event_to_rotate(task_epc);
4311         if (cpu_rotate)
4312                 cpu_event = ctx_event_to_rotate(cpu_epc);
4313
4314         /*
4315          * As per the order given at ctx_resched() first 'pop' task flexible
4316          * and then, if needed CPU flexible.
4317          */
4318         if (task_event || (task_epc && cpu_event)) {
4319                 update_context_time(task_epc->ctx);
4320                 __pmu_ctx_sched_out(task_epc, EVENT_FLEXIBLE);
4321         }
4322
4323         if (cpu_event) {
4324                 update_context_time(&cpuctx->ctx);
4325                 __pmu_ctx_sched_out(cpu_epc, EVENT_FLEXIBLE);
4326                 rotate_ctx(&cpuctx->ctx, cpu_event);
4327                 __pmu_ctx_sched_in(&cpuctx->ctx, pmu);
4328         }
4329
4330         if (task_event)
4331                 rotate_ctx(task_epc->ctx, task_event);
4332
4333         if (task_event || (task_epc && cpu_event))
4334                 __pmu_ctx_sched_in(task_epc->ctx, pmu);
4335
4336         perf_pmu_enable(pmu);
4337         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4338
4339         return true;
4340 }
4341
4342 void perf_event_task_tick(void)
4343 {
4344         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4345         struct perf_event_context *ctx;
4346         int throttled;
4347
4348         lockdep_assert_irqs_disabled();
4349
4350         __this_cpu_inc(perf_throttled_seq);
4351         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4352         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4353
4354         perf_adjust_freq_unthr_context(&cpuctx->ctx, !!throttled);
4355
4356         rcu_read_lock();
4357         ctx = rcu_dereference(current->perf_event_ctxp);
4358         if (ctx)
4359                 perf_adjust_freq_unthr_context(ctx, !!throttled);
4360         rcu_read_unlock();
4361 }
4362
4363 static int event_enable_on_exec(struct perf_event *event,
4364                                 struct perf_event_context *ctx)
4365 {
4366         if (!event->attr.enable_on_exec)
4367                 return 0;
4368
4369         event->attr.enable_on_exec = 0;
4370         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4371                 return 0;
4372
4373         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4374
4375         return 1;
4376 }
4377
4378 /*
4379  * Enable all of a task's events that have been marked enable-on-exec.
4380  * This expects task == current.
4381  */
4382 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
4383 {
4384         struct perf_event_context *clone_ctx = NULL;
4385         enum event_type_t event_type = 0;
4386         struct perf_cpu_context *cpuctx;
4387         struct perf_event *event;
4388         unsigned long flags;
4389         int enabled = 0;
4390
4391         local_irq_save(flags);
4392         if (WARN_ON_ONCE(current->perf_event_ctxp != ctx))
4393                 goto out;
4394
4395         if (!ctx->nr_events)
4396                 goto out;
4397
4398         cpuctx = this_cpu_ptr(&perf_cpu_context);
4399         perf_ctx_lock(cpuctx, ctx);
4400         ctx_sched_out(ctx, EVENT_TIME);
4401
4402         list_for_each_entry(event, &ctx->event_list, event_entry) {
4403                 enabled |= event_enable_on_exec(event, ctx);
4404                 event_type |= get_event_type(event);
4405         }
4406
4407         /*
4408          * Unclone and reschedule this context if we enabled any event.
4409          */
4410         if (enabled) {
4411                 clone_ctx = unclone_ctx(ctx);
4412                 ctx_resched(cpuctx, ctx, event_type);
4413         } else {
4414                 ctx_sched_in(ctx, EVENT_TIME);
4415         }
4416         perf_ctx_unlock(cpuctx, ctx);
4417
4418 out:
4419         local_irq_restore(flags);
4420
4421         if (clone_ctx)
4422                 put_ctx(clone_ctx);
4423 }
4424
4425 static void perf_remove_from_owner(struct perf_event *event);
4426 static void perf_event_exit_event(struct perf_event *event,
4427                                   struct perf_event_context *ctx);
4428
4429 /*
4430  * Removes all events from the current task that have been marked
4431  * remove-on-exec, and feeds their values back to parent events.
4432  */
4433 static void perf_event_remove_on_exec(struct perf_event_context *ctx)
4434 {
4435         struct perf_event_context *clone_ctx = NULL;
4436         struct perf_event *event, *next;
4437         unsigned long flags;
4438         bool modified = false;
4439
4440         mutex_lock(&ctx->mutex);
4441
4442         if (WARN_ON_ONCE(ctx->task != current))
4443                 goto unlock;
4444
4445         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4446                 if (!event->attr.remove_on_exec)
4447                         continue;
4448
4449                 if (!is_kernel_event(event))
4450                         perf_remove_from_owner(event);
4451
4452                 modified = true;
4453
4454                 perf_event_exit_event(event, ctx);
4455         }
4456
4457         raw_spin_lock_irqsave(&ctx->lock, flags);
4458         if (modified)
4459                 clone_ctx = unclone_ctx(ctx);
4460         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4461
4462 unlock:
4463         mutex_unlock(&ctx->mutex);
4464
4465         if (clone_ctx)
4466                 put_ctx(clone_ctx);
4467 }
4468
4469 struct perf_read_data {
4470         struct perf_event *event;
4471         bool group;
4472         int ret;
4473 };
4474
4475 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4476 {
4477         u16 local_pkg, event_pkg;
4478
4479         if ((unsigned)event_cpu >= nr_cpu_ids)
4480                 return event_cpu;
4481
4482         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4483                 int local_cpu = smp_processor_id();
4484
4485                 event_pkg = topology_physical_package_id(event_cpu);
4486                 local_pkg = topology_physical_package_id(local_cpu);
4487
4488                 if (event_pkg == local_pkg)
4489                         return local_cpu;
4490         }
4491
4492         return event_cpu;
4493 }
4494
4495 /*
4496  * Cross CPU call to read the hardware event
4497  */
4498 static void __perf_event_read(void *info)
4499 {
4500         struct perf_read_data *data = info;
4501         struct perf_event *sub, *event = data->event;
4502         struct perf_event_context *ctx = event->ctx;
4503         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
4504         struct pmu *pmu = event->pmu;
4505
4506         /*
4507          * If this is a task context, we need to check whether it is
4508          * the current task context of this cpu.  If not it has been
4509          * scheduled out before the smp call arrived.  In that case
4510          * event->count would have been updated to a recent sample
4511          * when the event was scheduled out.
4512          */
4513         if (ctx->task && cpuctx->task_ctx != ctx)
4514                 return;
4515
4516         raw_spin_lock(&ctx->lock);
4517         if (ctx->is_active & EVENT_TIME) {
4518                 update_context_time(ctx);
4519                 update_cgrp_time_from_event(event);
4520         }
4521
4522         perf_event_update_time(event);
4523         if (data->group)
4524                 perf_event_update_sibling_time(event);
4525
4526         if (event->state != PERF_EVENT_STATE_ACTIVE)
4527                 goto unlock;
4528
4529         if (!data->group) {
4530                 pmu->read(event);
4531                 data->ret = 0;
4532                 goto unlock;
4533         }
4534
4535         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4536
4537         pmu->read(event);
4538
4539         for_each_sibling_event(sub, event) {
4540                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4541                         /*
4542                          * Use sibling's PMU rather than @event's since
4543                          * sibling could be on different (eg: software) PMU.
4544                          */
4545                         sub->pmu->read(sub);
4546                 }
4547         }
4548
4549         data->ret = pmu->commit_txn(pmu);
4550
4551 unlock:
4552         raw_spin_unlock(&ctx->lock);
4553 }
4554
4555 static inline u64 perf_event_count(struct perf_event *event)
4556 {
4557         return local64_read(&event->count) + atomic64_read(&event->child_count);
4558 }
4559
4560 static void calc_timer_values(struct perf_event *event,
4561                                 u64 *now,
4562                                 u64 *enabled,
4563                                 u64 *running)
4564 {
4565         u64 ctx_time;
4566
4567         *now = perf_clock();
4568         ctx_time = perf_event_time_now(event, *now);
4569         __perf_update_times(event, ctx_time, enabled, running);
4570 }
4571
4572 /*
4573  * NMI-safe method to read a local event, that is an event that
4574  * is:
4575  *   - either for the current task, or for this CPU
4576  *   - does not have inherit set, for inherited task events
4577  *     will not be local and we cannot read them atomically
4578  *   - must not have a pmu::count method
4579  */
4580 int perf_event_read_local(struct perf_event *event, u64 *value,
4581                           u64 *enabled, u64 *running)
4582 {
4583         unsigned long flags;
4584         int event_oncpu;
4585         int event_cpu;
4586         int ret = 0;
4587
4588         /*
4589          * Disabling interrupts avoids all counter scheduling (context
4590          * switches, timer based rotation and IPIs).
4591          */
4592         local_irq_save(flags);
4593
4594         /*
4595          * It must not be an event with inherit set, we cannot read
4596          * all child counters from atomic context.
4597          */
4598         if (event->attr.inherit) {
4599                 ret = -EOPNOTSUPP;
4600                 goto out;
4601         }
4602
4603         /* If this is a per-task event, it must be for current */
4604         if ((event->attach_state & PERF_ATTACH_TASK) &&
4605             event->hw.target != current) {
4606                 ret = -EINVAL;
4607                 goto out;
4608         }
4609
4610         /*
4611          * Get the event CPU numbers, and adjust them to local if the event is
4612          * a per-package event that can be read locally
4613          */
4614         event_oncpu = __perf_event_read_cpu(event, event->oncpu);
4615         event_cpu = __perf_event_read_cpu(event, event->cpu);
4616
4617         /* If this is a per-CPU event, it must be for this CPU */
4618         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4619             event_cpu != smp_processor_id()) {
4620                 ret = -EINVAL;
4621                 goto out;
4622         }
4623
4624         /* If this is a pinned event it must be running on this CPU */
4625         if (event->attr.pinned && event_oncpu != smp_processor_id()) {
4626                 ret = -EBUSY;
4627                 goto out;
4628         }
4629
4630         /*
4631          * If the event is currently on this CPU, its either a per-task event,
4632          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4633          * oncpu == -1).
4634          */
4635         if (event_oncpu == smp_processor_id())
4636                 event->pmu->read(event);
4637
4638         *value = local64_read(&event->count);
4639         if (enabled || running) {
4640                 u64 __enabled, __running, __now;
4641
4642                 calc_timer_values(event, &__now, &__enabled, &__running);
4643                 if (enabled)
4644                         *enabled = __enabled;
4645                 if (running)
4646                         *running = __running;
4647         }
4648 out:
4649         local_irq_restore(flags);
4650
4651         return ret;
4652 }
4653
4654 static int perf_event_read(struct perf_event *event, bool group)
4655 {
4656         enum perf_event_state state = READ_ONCE(event->state);
4657         int event_cpu, ret = 0;
4658
4659         /*
4660          * If event is enabled and currently active on a CPU, update the
4661          * value in the event structure:
4662          */
4663 again:
4664         if (state == PERF_EVENT_STATE_ACTIVE) {
4665                 struct perf_read_data data;
4666
4667                 /*
4668                  * Orders the ->state and ->oncpu loads such that if we see
4669                  * ACTIVE we must also see the right ->oncpu.
4670                  *
4671                  * Matches the smp_wmb() from event_sched_in().
4672                  */
4673                 smp_rmb();
4674
4675                 event_cpu = READ_ONCE(event->oncpu);
4676                 if ((unsigned)event_cpu >= nr_cpu_ids)
4677                         return 0;
4678
4679                 data = (struct perf_read_data){
4680                         .event = event,
4681                         .group = group,
4682                         .ret = 0,
4683                 };
4684
4685                 preempt_disable();
4686                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4687
4688                 /*
4689                  * Purposely ignore the smp_call_function_single() return
4690                  * value.
4691                  *
4692                  * If event_cpu isn't a valid CPU it means the event got
4693                  * scheduled out and that will have updated the event count.
4694                  *
4695                  * Therefore, either way, we'll have an up-to-date event count
4696                  * after this.
4697                  */
4698                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4699                 preempt_enable();
4700                 ret = data.ret;
4701
4702         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4703                 struct perf_event_context *ctx = event->ctx;
4704                 unsigned long flags;
4705
4706                 raw_spin_lock_irqsave(&ctx->lock, flags);
4707                 state = event->state;
4708                 if (state != PERF_EVENT_STATE_INACTIVE) {
4709                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4710                         goto again;
4711                 }
4712
4713                 /*
4714                  * May read while context is not active (e.g., thread is
4715                  * blocked), in that case we cannot update context time
4716                  */
4717                 if (ctx->is_active & EVENT_TIME) {
4718                         update_context_time(ctx);
4719                         update_cgrp_time_from_event(event);
4720                 }
4721
4722                 perf_event_update_time(event);
4723                 if (group)
4724                         perf_event_update_sibling_time(event);
4725                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4726         }
4727
4728         return ret;
4729 }
4730
4731 /*
4732  * Initialize the perf_event context in a task_struct:
4733  */
4734 static void __perf_event_init_context(struct perf_event_context *ctx)
4735 {
4736         raw_spin_lock_init(&ctx->lock);
4737         mutex_init(&ctx->mutex);
4738         INIT_LIST_HEAD(&ctx->pmu_ctx_list);
4739         perf_event_groups_init(&ctx->pinned_groups);
4740         perf_event_groups_init(&ctx->flexible_groups);
4741         INIT_LIST_HEAD(&ctx->event_list);
4742         refcount_set(&ctx->refcount, 1);
4743 }
4744
4745 static void
4746 __perf_init_event_pmu_context(struct perf_event_pmu_context *epc, struct pmu *pmu)
4747 {
4748         epc->pmu = pmu;
4749         INIT_LIST_HEAD(&epc->pmu_ctx_entry);
4750         INIT_LIST_HEAD(&epc->pinned_active);
4751         INIT_LIST_HEAD(&epc->flexible_active);
4752         atomic_set(&epc->refcount, 1);
4753 }
4754
4755 static struct perf_event_context *
4756 alloc_perf_context(struct task_struct *task)
4757 {
4758         struct perf_event_context *ctx;
4759
4760         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4761         if (!ctx)
4762                 return NULL;
4763
4764         __perf_event_init_context(ctx);
4765         if (task)
4766                 ctx->task = get_task_struct(task);
4767
4768         return ctx;
4769 }
4770
4771 static struct task_struct *
4772 find_lively_task_by_vpid(pid_t vpid)
4773 {
4774         struct task_struct *task;
4775
4776         rcu_read_lock();
4777         if (!vpid)
4778                 task = current;
4779         else
4780                 task = find_task_by_vpid(vpid);
4781         if (task)
4782                 get_task_struct(task);
4783         rcu_read_unlock();
4784
4785         if (!task)
4786                 return ERR_PTR(-ESRCH);
4787
4788         return task;
4789 }
4790
4791 /*
4792  * Returns a matching context with refcount and pincount.
4793  */
4794 static struct perf_event_context *
4795 find_get_context(struct task_struct *task, struct perf_event *event)
4796 {
4797         struct perf_event_context *ctx, *clone_ctx = NULL;
4798         struct perf_cpu_context *cpuctx;
4799         unsigned long flags;
4800         int err;
4801
4802         if (!task) {
4803                 /* Must be root to operate on a CPU event: */
4804                 err = perf_allow_cpu(&event->attr);
4805                 if (err)
4806                         return ERR_PTR(err);
4807
4808                 cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
4809                 ctx = &cpuctx->ctx;
4810                 get_ctx(ctx);
4811                 raw_spin_lock_irqsave(&ctx->lock, flags);
4812                 ++ctx->pin_count;
4813                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4814
4815                 return ctx;
4816         }
4817
4818         err = -EINVAL;
4819 retry:
4820         ctx = perf_lock_task_context(task, &flags);
4821         if (ctx) {
4822                 clone_ctx = unclone_ctx(ctx);
4823                 ++ctx->pin_count;
4824
4825                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4826
4827                 if (clone_ctx)
4828                         put_ctx(clone_ctx);
4829         } else {
4830                 ctx = alloc_perf_context(task);
4831                 err = -ENOMEM;
4832                 if (!ctx)
4833                         goto errout;
4834
4835                 err = 0;
4836                 mutex_lock(&task->perf_event_mutex);
4837                 /*
4838                  * If it has already passed perf_event_exit_task().
4839                  * we must see PF_EXITING, it takes this mutex too.
4840                  */
4841                 if (task->flags & PF_EXITING)
4842                         err = -ESRCH;
4843                 else if (task->perf_event_ctxp)
4844                         err = -EAGAIN;
4845                 else {
4846                         get_ctx(ctx);
4847                         ++ctx->pin_count;
4848                         rcu_assign_pointer(task->perf_event_ctxp, ctx);
4849                 }
4850                 mutex_unlock(&task->perf_event_mutex);
4851
4852                 if (unlikely(err)) {
4853                         put_ctx(ctx);
4854
4855                         if (err == -EAGAIN)
4856                                 goto retry;
4857                         goto errout;
4858                 }
4859         }
4860
4861         return ctx;
4862
4863 errout:
4864         return ERR_PTR(err);
4865 }
4866
4867 static struct perf_event_pmu_context *
4868 find_get_pmu_context(struct pmu *pmu, struct perf_event_context *ctx,
4869                      struct perf_event *event)
4870 {
4871         struct perf_event_pmu_context *new = NULL, *epc;
4872         void *task_ctx_data = NULL;
4873
4874         if (!ctx->task) {
4875                 /*
4876                  * perf_pmu_migrate_context() / __perf_pmu_install_event()
4877                  * relies on the fact that find_get_pmu_context() cannot fail
4878                  * for CPU contexts.
4879                  */
4880                 struct perf_cpu_pmu_context *cpc;
4881
4882                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, event->cpu);
4883                 epc = &cpc->epc;
4884                 raw_spin_lock_irq(&ctx->lock);
4885                 if (!epc->ctx) {
4886                         atomic_set(&epc->refcount, 1);
4887                         epc->embedded = 1;
4888                         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4889                         epc->ctx = ctx;
4890                 } else {
4891                         WARN_ON_ONCE(epc->ctx != ctx);
4892                         atomic_inc(&epc->refcount);
4893                 }
4894                 raw_spin_unlock_irq(&ctx->lock);
4895                 return epc;
4896         }
4897
4898         new = kzalloc(sizeof(*epc), GFP_KERNEL);
4899         if (!new)
4900                 return ERR_PTR(-ENOMEM);
4901
4902         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4903                 task_ctx_data = alloc_task_ctx_data(pmu);
4904                 if (!task_ctx_data) {
4905                         kfree(new);
4906                         return ERR_PTR(-ENOMEM);
4907                 }
4908         }
4909
4910         __perf_init_event_pmu_context(new, pmu);
4911
4912         /*
4913          * XXX
4914          *
4915          * lockdep_assert_held(&ctx->mutex);
4916          *
4917          * can't because perf_event_init_task() doesn't actually hold the
4918          * child_ctx->mutex.
4919          */
4920
4921         raw_spin_lock_irq(&ctx->lock);
4922         list_for_each_entry(epc, &ctx->pmu_ctx_list, pmu_ctx_entry) {
4923                 if (epc->pmu == pmu) {
4924                         WARN_ON_ONCE(epc->ctx != ctx);
4925                         atomic_inc(&epc->refcount);
4926                         goto found_epc;
4927                 }
4928         }
4929
4930         epc = new;
4931         new = NULL;
4932
4933         list_add(&epc->pmu_ctx_entry, &ctx->pmu_ctx_list);
4934         epc->ctx = ctx;
4935
4936 found_epc:
4937         if (task_ctx_data && !epc->task_ctx_data) {
4938                 epc->task_ctx_data = task_ctx_data;
4939                 task_ctx_data = NULL;
4940                 ctx->nr_task_data++;
4941         }
4942         raw_spin_unlock_irq(&ctx->lock);
4943
4944         free_task_ctx_data(pmu, task_ctx_data);
4945         kfree(new);
4946
4947         return epc;
4948 }
4949
4950 static void get_pmu_ctx(struct perf_event_pmu_context *epc)
4951 {
4952         WARN_ON_ONCE(!atomic_inc_not_zero(&epc->refcount));
4953 }
4954
4955 static void free_epc_rcu(struct rcu_head *head)
4956 {
4957         struct perf_event_pmu_context *epc = container_of(head, typeof(*epc), rcu_head);
4958
4959         kfree(epc->task_ctx_data);
4960         kfree(epc);
4961 }
4962
4963 static void put_pmu_ctx(struct perf_event_pmu_context *epc)
4964 {
4965         struct perf_event_context *ctx = epc->ctx;
4966         unsigned long flags;
4967
4968         /*
4969          * XXX
4970          *
4971          * lockdep_assert_held(&ctx->mutex);
4972          *
4973          * can't because of the call-site in _free_event()/put_event()
4974          * which isn't always called under ctx->mutex.
4975          */
4976         if (!atomic_dec_and_raw_lock_irqsave(&epc->refcount, &ctx->lock, flags))
4977                 return;
4978
4979         WARN_ON_ONCE(list_empty(&epc->pmu_ctx_entry));
4980
4981         list_del_init(&epc->pmu_ctx_entry);
4982         epc->ctx = NULL;
4983
4984         WARN_ON_ONCE(!list_empty(&epc->pinned_active));
4985         WARN_ON_ONCE(!list_empty(&epc->flexible_active));
4986
4987         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4988
4989         if (epc->embedded)
4990                 return;
4991
4992         call_rcu(&epc->rcu_head, free_epc_rcu);
4993 }
4994
4995 static void perf_event_free_filter(struct perf_event *event);
4996
4997 static void free_event_rcu(struct rcu_head *head)
4998 {
4999         struct perf_event *event = container_of(head, typeof(*event), rcu_head);
5000
5001         if (event->ns)
5002                 put_pid_ns(event->ns);
5003         perf_event_free_filter(event);
5004         kmem_cache_free(perf_event_cache, event);
5005 }
5006
5007 static void ring_buffer_attach(struct perf_event *event,
5008                                struct perf_buffer *rb);
5009
5010 static void detach_sb_event(struct perf_event *event)
5011 {
5012         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
5013
5014         raw_spin_lock(&pel->lock);
5015         list_del_rcu(&event->sb_list);
5016         raw_spin_unlock(&pel->lock);
5017 }
5018
5019 static bool is_sb_event(struct perf_event *event)
5020 {
5021         struct perf_event_attr *attr = &event->attr;
5022
5023         if (event->parent)
5024                 return false;
5025
5026         if (event->attach_state & PERF_ATTACH_TASK)
5027                 return false;
5028
5029         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
5030             attr->comm || attr->comm_exec ||
5031             attr->task || attr->ksymbol ||
5032             attr->context_switch || attr->text_poke ||
5033             attr->bpf_event)
5034                 return true;
5035         return false;
5036 }
5037
5038 static void unaccount_pmu_sb_event(struct perf_event *event)
5039 {
5040         if (is_sb_event(event))
5041                 detach_sb_event(event);
5042 }
5043
5044 #ifdef CONFIG_NO_HZ_FULL
5045 static DEFINE_SPINLOCK(nr_freq_lock);
5046 #endif
5047
5048 static void unaccount_freq_event_nohz(void)
5049 {
5050 #ifdef CONFIG_NO_HZ_FULL
5051         spin_lock(&nr_freq_lock);
5052         if (atomic_dec_and_test(&nr_freq_events))
5053                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
5054         spin_unlock(&nr_freq_lock);
5055 #endif
5056 }
5057
5058 static void unaccount_freq_event(void)
5059 {
5060         if (tick_nohz_full_enabled())
5061                 unaccount_freq_event_nohz();
5062         else
5063                 atomic_dec(&nr_freq_events);
5064 }
5065
5066 static void unaccount_event(struct perf_event *event)
5067 {
5068         bool dec = false;
5069
5070         if (event->parent)
5071                 return;
5072
5073         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
5074                 dec = true;
5075         if (event->attr.mmap || event->attr.mmap_data)
5076                 atomic_dec(&nr_mmap_events);
5077         if (event->attr.build_id)
5078                 atomic_dec(&nr_build_id_events);
5079         if (event->attr.comm)
5080                 atomic_dec(&nr_comm_events);
5081         if (event->attr.namespaces)
5082                 atomic_dec(&nr_namespaces_events);
5083         if (event->attr.cgroup)
5084                 atomic_dec(&nr_cgroup_events);
5085         if (event->attr.task)
5086                 atomic_dec(&nr_task_events);
5087         if (event->attr.freq)
5088                 unaccount_freq_event();
5089         if (event->attr.context_switch) {
5090                 dec = true;
5091                 atomic_dec(&nr_switch_events);
5092         }
5093         if (is_cgroup_event(event))
5094                 dec = true;
5095         if (has_branch_stack(event))
5096                 dec = true;
5097         if (event->attr.ksymbol)
5098                 atomic_dec(&nr_ksymbol_events);
5099         if (event->attr.bpf_event)
5100                 atomic_dec(&nr_bpf_events);
5101         if (event->attr.text_poke)
5102                 atomic_dec(&nr_text_poke_events);
5103
5104         if (dec) {
5105                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
5106                         schedule_delayed_work(&perf_sched_work, HZ);
5107         }
5108
5109         unaccount_pmu_sb_event(event);
5110 }
5111
5112 static void perf_sched_delayed(struct work_struct *work)
5113 {
5114         mutex_lock(&perf_sched_mutex);
5115         if (atomic_dec_and_test(&perf_sched_count))
5116                 static_branch_disable(&perf_sched_events);
5117         mutex_unlock(&perf_sched_mutex);
5118 }
5119
5120 /*
5121  * The following implement mutual exclusion of events on "exclusive" pmus
5122  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
5123  * at a time, so we disallow creating events that might conflict, namely:
5124  *
5125  *  1) cpu-wide events in the presence of per-task events,
5126  *  2) per-task events in the presence of cpu-wide events,
5127  *  3) two matching events on the same perf_event_context.
5128  *
5129  * The former two cases are handled in the allocation path (perf_event_alloc(),
5130  * _free_event()), the latter -- before the first perf_install_in_context().
5131  */
5132 static int exclusive_event_init(struct perf_event *event)
5133 {
5134         struct pmu *pmu = event->pmu;
5135
5136         if (!is_exclusive_pmu(pmu))
5137                 return 0;
5138
5139         /*
5140          * Prevent co-existence of per-task and cpu-wide events on the
5141          * same exclusive pmu.
5142          *
5143          * Negative pmu::exclusive_cnt means there are cpu-wide
5144          * events on this "exclusive" pmu, positive means there are
5145          * per-task events.
5146          *
5147          * Since this is called in perf_event_alloc() path, event::ctx
5148          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
5149          * to mean "per-task event", because unlike other attach states it
5150          * never gets cleared.
5151          */
5152         if (event->attach_state & PERF_ATTACH_TASK) {
5153                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
5154                         return -EBUSY;
5155         } else {
5156                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
5157                         return -EBUSY;
5158         }
5159
5160         return 0;
5161 }
5162
5163 static void exclusive_event_destroy(struct perf_event *event)
5164 {
5165         struct pmu *pmu = event->pmu;
5166
5167         if (!is_exclusive_pmu(pmu))
5168                 return;
5169
5170         /* see comment in exclusive_event_init() */
5171         if (event->attach_state & PERF_ATTACH_TASK)
5172                 atomic_dec(&pmu->exclusive_cnt);
5173         else
5174                 atomic_inc(&pmu->exclusive_cnt);
5175 }
5176
5177 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
5178 {
5179         if ((e1->pmu == e2->pmu) &&
5180             (e1->cpu == e2->cpu ||
5181              e1->cpu == -1 ||
5182              e2->cpu == -1))
5183                 return true;
5184         return false;
5185 }
5186
5187 static bool exclusive_event_installable(struct perf_event *event,
5188                                         struct perf_event_context *ctx)
5189 {
5190         struct perf_event *iter_event;
5191         struct pmu *pmu = event->pmu;
5192
5193         lockdep_assert_held(&ctx->mutex);
5194
5195         if (!is_exclusive_pmu(pmu))
5196                 return true;
5197
5198         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
5199                 if (exclusive_event_match(iter_event, event))
5200                         return false;
5201         }
5202
5203         return true;
5204 }
5205
5206 static void perf_addr_filters_splice(struct perf_event *event,
5207                                        struct list_head *head);
5208
5209 static void _free_event(struct perf_event *event)
5210 {
5211         irq_work_sync(&event->pending_irq);
5212
5213         unaccount_event(event);
5214
5215         security_perf_event_free(event);
5216
5217         if (event->rb) {
5218                 /*
5219                  * Can happen when we close an event with re-directed output.
5220                  *
5221                  * Since we have a 0 refcount, perf_mmap_close() will skip
5222                  * over us; possibly making our ring_buffer_put() the last.
5223                  */
5224                 mutex_lock(&event->mmap_mutex);
5225                 ring_buffer_attach(event, NULL);
5226                 mutex_unlock(&event->mmap_mutex);
5227         }
5228
5229         if (is_cgroup_event(event))
5230                 perf_detach_cgroup(event);
5231
5232         if (!event->parent) {
5233                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
5234                         put_callchain_buffers();
5235         }
5236
5237         perf_event_free_bpf_prog(event);
5238         perf_addr_filters_splice(event, NULL);
5239         kfree(event->addr_filter_ranges);
5240
5241         if (event->destroy)
5242                 event->destroy(event);
5243
5244         /*
5245          * Must be after ->destroy(), due to uprobe_perf_close() using
5246          * hw.target.
5247          */
5248         if (event->hw.target)
5249                 put_task_struct(event->hw.target);
5250
5251         if (event->pmu_ctx)
5252                 put_pmu_ctx(event->pmu_ctx);
5253
5254         /*
5255          * perf_event_free_task() relies on put_ctx() being 'last', in particular
5256          * all task references must be cleaned up.
5257          */
5258         if (event->ctx)
5259                 put_ctx(event->ctx);
5260
5261         exclusive_event_destroy(event);
5262         module_put(event->pmu->module);
5263
5264         call_rcu(&event->rcu_head, free_event_rcu);
5265 }
5266
5267 /*
5268  * Used to free events which have a known refcount of 1, such as in error paths
5269  * where the event isn't exposed yet and inherited events.
5270  */
5271 static void free_event(struct perf_event *event)
5272 {
5273         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5274                                 "unexpected event refcount: %ld; ptr=%p\n",
5275                                 atomic_long_read(&event->refcount), event)) {
5276                 /* leak to avoid use-after-free */
5277                 return;
5278         }
5279
5280         _free_event(event);
5281 }
5282
5283 /*
5284  * Remove user event from the owner task.
5285  */
5286 static void perf_remove_from_owner(struct perf_event *event)
5287 {
5288         struct task_struct *owner;
5289
5290         rcu_read_lock();
5291         /*
5292          * Matches the smp_store_release() in perf_event_exit_task(). If we
5293          * observe !owner it means the list deletion is complete and we can
5294          * indeed free this event, otherwise we need to serialize on
5295          * owner->perf_event_mutex.
5296          */
5297         owner = READ_ONCE(event->owner);
5298         if (owner) {
5299                 /*
5300                  * Since delayed_put_task_struct() also drops the last
5301                  * task reference we can safely take a new reference
5302                  * while holding the rcu_read_lock().
5303                  */
5304                 get_task_struct(owner);
5305         }
5306         rcu_read_unlock();
5307
5308         if (owner) {
5309                 /*
5310                  * If we're here through perf_event_exit_task() we're already
5311                  * holding ctx->mutex which would be an inversion wrt. the
5312                  * normal lock order.
5313                  *
5314                  * However we can safely take this lock because its the child
5315                  * ctx->mutex.
5316                  */
5317                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5318
5319                 /*
5320                  * We have to re-check the event->owner field, if it is cleared
5321                  * we raced with perf_event_exit_task(), acquiring the mutex
5322                  * ensured they're done, and we can proceed with freeing the
5323                  * event.
5324                  */
5325                 if (event->owner) {
5326                         list_del_init(&event->owner_entry);
5327                         smp_store_release(&event->owner, NULL);
5328                 }
5329                 mutex_unlock(&owner->perf_event_mutex);
5330                 put_task_struct(owner);
5331         }
5332 }
5333
5334 static void put_event(struct perf_event *event)
5335 {
5336         if (!atomic_long_dec_and_test(&event->refcount))
5337                 return;
5338
5339         _free_event(event);
5340 }
5341
5342 /*
5343  * Kill an event dead; while event:refcount will preserve the event
5344  * object, it will not preserve its functionality. Once the last 'user'
5345  * gives up the object, we'll destroy the thing.
5346  */
5347 int perf_event_release_kernel(struct perf_event *event)
5348 {
5349         struct perf_event_context *ctx = event->ctx;
5350         struct perf_event *child, *tmp;
5351         LIST_HEAD(free_list);
5352
5353         /*
5354          * If we got here through err_alloc: free_event(event); we will not
5355          * have attached to a context yet.
5356          */
5357         if (!ctx) {
5358                 WARN_ON_ONCE(event->attach_state &
5359                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5360                 goto no_ctx;
5361         }
5362
5363         if (!is_kernel_event(event))
5364                 perf_remove_from_owner(event);
5365
5366         ctx = perf_event_ctx_lock(event);
5367         WARN_ON_ONCE(ctx->parent_ctx);
5368
5369         /*
5370          * Mark this event as STATE_DEAD, there is no external reference to it
5371          * anymore.
5372          *
5373          * Anybody acquiring event->child_mutex after the below loop _must_
5374          * also see this, most importantly inherit_event() which will avoid
5375          * placing more children on the list.
5376          *
5377          * Thus this guarantees that we will in fact observe and kill _ALL_
5378          * child events.
5379          */
5380         perf_remove_from_context(event, DETACH_GROUP|DETACH_DEAD);
5381
5382         perf_event_ctx_unlock(event, ctx);
5383
5384 again:
5385         mutex_lock(&event->child_mutex);
5386         list_for_each_entry(child, &event->child_list, child_list) {
5387
5388                 /*
5389                  * Cannot change, child events are not migrated, see the
5390                  * comment with perf_event_ctx_lock_nested().
5391                  */
5392                 ctx = READ_ONCE(child->ctx);
5393                 /*
5394                  * Since child_mutex nests inside ctx::mutex, we must jump
5395                  * through hoops. We start by grabbing a reference on the ctx.
5396                  *
5397                  * Since the event cannot get freed while we hold the
5398                  * child_mutex, the context must also exist and have a !0
5399                  * reference count.
5400                  */
5401                 get_ctx(ctx);
5402
5403                 /*
5404                  * Now that we have a ctx ref, we can drop child_mutex, and
5405                  * acquire ctx::mutex without fear of it going away. Then we
5406                  * can re-acquire child_mutex.
5407                  */
5408                 mutex_unlock(&event->child_mutex);
5409                 mutex_lock(&ctx->mutex);
5410                 mutex_lock(&event->child_mutex);
5411
5412                 /*
5413                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5414                  * state, if child is still the first entry, it didn't get freed
5415                  * and we can continue doing so.
5416                  */
5417                 tmp = list_first_entry_or_null(&event->child_list,
5418                                                struct perf_event, child_list);
5419                 if (tmp == child) {
5420                         perf_remove_from_context(child, DETACH_GROUP);
5421                         list_move(&child->child_list, &free_list);
5422                         /*
5423                          * This matches the refcount bump in inherit_event();
5424                          * this can't be the last reference.
5425                          */
5426                         put_event(event);
5427                 }
5428
5429                 mutex_unlock(&event->child_mutex);
5430                 mutex_unlock(&ctx->mutex);
5431                 put_ctx(ctx);
5432                 goto again;
5433         }
5434         mutex_unlock(&event->child_mutex);
5435
5436         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5437                 void *var = &child->ctx->refcount;
5438
5439                 list_del(&child->child_list);
5440                 free_event(child);
5441
5442                 /*
5443                  * Wake any perf_event_free_task() waiting for this event to be
5444                  * freed.
5445                  */
5446                 smp_mb(); /* pairs with wait_var_event() */
5447                 wake_up_var(var);
5448         }
5449
5450 no_ctx:
5451         put_event(event); /* Must be the 'last' reference */
5452         return 0;
5453 }
5454 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5455
5456 /*
5457  * Called when the last reference to the file is gone.
5458  */
5459 static int perf_release(struct inode *inode, struct file *file)
5460 {
5461         perf_event_release_kernel(file->private_data);
5462         return 0;
5463 }
5464
5465 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5466 {
5467         struct perf_event *child;
5468         u64 total = 0;
5469
5470         *enabled = 0;
5471         *running = 0;
5472
5473         mutex_lock(&event->child_mutex);
5474
5475         (void)perf_event_read(event, false);
5476         total += perf_event_count(event);
5477
5478         *enabled += event->total_time_enabled +
5479                         atomic64_read(&event->child_total_time_enabled);
5480         *running += event->total_time_running +
5481                         atomic64_read(&event->child_total_time_running);
5482
5483         list_for_each_entry(child, &event->child_list, child_list) {
5484                 (void)perf_event_read(child, false);
5485                 total += perf_event_count(child);
5486                 *enabled += child->total_time_enabled;
5487                 *running += child->total_time_running;
5488         }
5489         mutex_unlock(&event->child_mutex);
5490
5491         return total;
5492 }
5493
5494 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5495 {
5496         struct perf_event_context *ctx;
5497         u64 count;
5498
5499         ctx = perf_event_ctx_lock(event);
5500         count = __perf_event_read_value(event, enabled, running);
5501         perf_event_ctx_unlock(event, ctx);
5502
5503         return count;
5504 }
5505 EXPORT_SYMBOL_GPL(perf_event_read_value);
5506
5507 static int __perf_read_group_add(struct perf_event *leader,
5508                                         u64 read_format, u64 *values)
5509 {
5510         struct perf_event_context *ctx = leader->ctx;
5511         struct perf_event *sub, *parent;
5512         unsigned long flags;
5513         int n = 1; /* skip @nr */
5514         int ret;
5515
5516         ret = perf_event_read(leader, true);
5517         if (ret)
5518                 return ret;
5519
5520         raw_spin_lock_irqsave(&ctx->lock, flags);
5521         /*
5522          * Verify the grouping between the parent and child (inherited)
5523          * events is still in tact.
5524          *
5525          * Specifically:
5526          *  - leader->ctx->lock pins leader->sibling_list
5527          *  - parent->child_mutex pins parent->child_list
5528          *  - parent->ctx->mutex pins parent->sibling_list
5529          *
5530          * Because parent->ctx != leader->ctx (and child_list nests inside
5531          * ctx->mutex), group destruction is not atomic between children, also
5532          * see perf_event_release_kernel(). Additionally, parent can grow the
5533          * group.
5534          *
5535          * Therefore it is possible to have parent and child groups in a
5536          * different configuration and summing over such a beast makes no sense
5537          * what so ever.
5538          *
5539          * Reject this.
5540          */
5541         parent = leader->parent;
5542         if (parent &&
5543             (parent->group_generation != leader->group_generation ||
5544              parent->nr_siblings != leader->nr_siblings)) {
5545                 ret = -ECHILD;
5546                 goto unlock;
5547         }
5548
5549         /*
5550          * Since we co-schedule groups, {enabled,running} times of siblings
5551          * will be identical to those of the leader, so we only publish one
5552          * set.
5553          */
5554         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5555                 values[n++] += leader->total_time_enabled +
5556                         atomic64_read(&leader->child_total_time_enabled);
5557         }
5558
5559         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5560                 values[n++] += leader->total_time_running +
5561                         atomic64_read(&leader->child_total_time_running);
5562         }
5563
5564         /*
5565          * Write {count,id} tuples for every sibling.
5566          */
5567         values[n++] += perf_event_count(leader);
5568         if (read_format & PERF_FORMAT_ID)
5569                 values[n++] = primary_event_id(leader);
5570         if (read_format & PERF_FORMAT_LOST)
5571                 values[n++] = atomic64_read(&leader->lost_samples);
5572
5573         for_each_sibling_event(sub, leader) {
5574                 values[n++] += perf_event_count(sub);
5575                 if (read_format & PERF_FORMAT_ID)
5576                         values[n++] = primary_event_id(sub);
5577                 if (read_format & PERF_FORMAT_LOST)
5578                         values[n++] = atomic64_read(&sub->lost_samples);
5579         }
5580
5581 unlock:
5582         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5583         return ret;
5584 }
5585
5586 static int perf_read_group(struct perf_event *event,
5587                                    u64 read_format, char __user *buf)
5588 {
5589         struct perf_event *leader = event->group_leader, *child;
5590         struct perf_event_context *ctx = leader->ctx;
5591         int ret;
5592         u64 *values;
5593
5594         lockdep_assert_held(&ctx->mutex);
5595
5596         values = kzalloc(event->read_size, GFP_KERNEL);
5597         if (!values)
5598                 return -ENOMEM;
5599
5600         values[0] = 1 + leader->nr_siblings;
5601
5602         mutex_lock(&leader->child_mutex);
5603
5604         ret = __perf_read_group_add(leader, read_format, values);
5605         if (ret)
5606                 goto unlock;
5607
5608         list_for_each_entry(child, &leader->child_list, child_list) {
5609                 ret = __perf_read_group_add(child, read_format, values);
5610                 if (ret)
5611                         goto unlock;
5612         }
5613
5614         mutex_unlock(&leader->child_mutex);
5615
5616         ret = event->read_size;
5617         if (copy_to_user(buf, values, event->read_size))
5618                 ret = -EFAULT;
5619         goto out;
5620
5621 unlock:
5622         mutex_unlock(&leader->child_mutex);
5623 out:
5624         kfree(values);
5625         return ret;
5626 }
5627
5628 static int perf_read_one(struct perf_event *event,
5629                                  u64 read_format, char __user *buf)
5630 {
5631         u64 enabled, running;
5632         u64 values[5];
5633         int n = 0;
5634
5635         values[n++] = __perf_event_read_value(event, &enabled, &running);
5636         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5637                 values[n++] = enabled;
5638         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5639                 values[n++] = running;
5640         if (read_format & PERF_FORMAT_ID)
5641                 values[n++] = primary_event_id(event);
5642         if (read_format & PERF_FORMAT_LOST)
5643                 values[n++] = atomic64_read(&event->lost_samples);
5644
5645         if (copy_to_user(buf, values, n * sizeof(u64)))
5646                 return -EFAULT;
5647
5648         return n * sizeof(u64);
5649 }
5650
5651 static bool is_event_hup(struct perf_event *event)
5652 {
5653         bool no_children;
5654
5655         if (event->state > PERF_EVENT_STATE_EXIT)
5656                 return false;
5657
5658         mutex_lock(&event->child_mutex);
5659         no_children = list_empty(&event->child_list);
5660         mutex_unlock(&event->child_mutex);
5661         return no_children;
5662 }
5663
5664 /*
5665  * Read the performance event - simple non blocking version for now
5666  */
5667 static ssize_t
5668 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5669 {
5670         u64 read_format = event->attr.read_format;
5671         int ret;
5672
5673         /*
5674          * Return end-of-file for a read on an event that is in
5675          * error state (i.e. because it was pinned but it couldn't be
5676          * scheduled on to the CPU at some point).
5677          */
5678         if (event->state == PERF_EVENT_STATE_ERROR)
5679                 return 0;
5680
5681         if (count < event->read_size)
5682                 return -ENOSPC;
5683
5684         WARN_ON_ONCE(event->ctx->parent_ctx);
5685         if (read_format & PERF_FORMAT_GROUP)
5686                 ret = perf_read_group(event, read_format, buf);
5687         else
5688                 ret = perf_read_one(event, read_format, buf);
5689
5690         return ret;
5691 }
5692
5693 static ssize_t
5694 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5695 {
5696         struct perf_event *event = file->private_data;
5697         struct perf_event_context *ctx;
5698         int ret;
5699
5700         ret = security_perf_event_read(event);
5701         if (ret)
5702                 return ret;
5703
5704         ctx = perf_event_ctx_lock(event);
5705         ret = __perf_read(event, buf, count);
5706         perf_event_ctx_unlock(event, ctx);
5707
5708         return ret;
5709 }
5710
5711 static __poll_t perf_poll(struct file *file, poll_table *wait)
5712 {
5713         struct perf_event *event = file->private_data;
5714         struct perf_buffer *rb;
5715         __poll_t events = EPOLLHUP;
5716
5717         poll_wait(file, &event->waitq, wait);
5718
5719         if (is_event_hup(event))
5720                 return events;
5721
5722         /*
5723          * Pin the event->rb by taking event->mmap_mutex; otherwise
5724          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5725          */
5726         mutex_lock(&event->mmap_mutex);
5727         rb = event->rb;
5728         if (rb)
5729                 events = atomic_xchg(&rb->poll, 0);
5730         mutex_unlock(&event->mmap_mutex);
5731         return events;
5732 }
5733
5734 static void _perf_event_reset(struct perf_event *event)
5735 {
5736         (void)perf_event_read(event, false);
5737         local64_set(&event->count, 0);
5738         perf_event_update_userpage(event);
5739 }
5740
5741 /* Assume it's not an event with inherit set. */
5742 u64 perf_event_pause(struct perf_event *event, bool reset)
5743 {
5744         struct perf_event_context *ctx;
5745         u64 count;
5746
5747         ctx = perf_event_ctx_lock(event);
5748         WARN_ON_ONCE(event->attr.inherit);
5749         _perf_event_disable(event);
5750         count = local64_read(&event->count);
5751         if (reset)
5752                 local64_set(&event->count, 0);
5753         perf_event_ctx_unlock(event, ctx);
5754
5755         return count;
5756 }
5757 EXPORT_SYMBOL_GPL(perf_event_pause);
5758
5759 /*
5760  * Holding the top-level event's child_mutex means that any
5761  * descendant process that has inherited this event will block
5762  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5763  * task existence requirements of perf_event_enable/disable.
5764  */
5765 static void perf_event_for_each_child(struct perf_event *event,
5766                                         void (*func)(struct perf_event *))
5767 {
5768         struct perf_event *child;
5769
5770         WARN_ON_ONCE(event->ctx->parent_ctx);
5771
5772         mutex_lock(&event->child_mutex);
5773         func(event);
5774         list_for_each_entry(child, &event->child_list, child_list)
5775                 func(child);
5776         mutex_unlock(&event->child_mutex);
5777 }
5778
5779 static void perf_event_for_each(struct perf_event *event,
5780                                   void (*func)(struct perf_event *))
5781 {
5782         struct perf_event_context *ctx = event->ctx;
5783         struct perf_event *sibling;
5784
5785         lockdep_assert_held(&ctx->mutex);
5786
5787         event = event->group_leader;
5788
5789         perf_event_for_each_child(event, func);
5790         for_each_sibling_event(sibling, event)
5791                 perf_event_for_each_child(sibling, func);
5792 }
5793
5794 static void __perf_event_period(struct perf_event *event,
5795                                 struct perf_cpu_context *cpuctx,
5796                                 struct perf_event_context *ctx,
5797                                 void *info)
5798 {
5799         u64 value = *((u64 *)info);
5800         bool active;
5801
5802         if (event->attr.freq) {
5803                 event->attr.sample_freq = value;
5804         } else {
5805                 event->attr.sample_period = value;
5806                 event->hw.sample_period = value;
5807         }
5808
5809         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5810         if (active) {
5811                 perf_pmu_disable(event->pmu);
5812                 /*
5813                  * We could be throttled; unthrottle now to avoid the tick
5814                  * trying to unthrottle while we already re-started the event.
5815                  */
5816                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5817                         event->hw.interrupts = 0;
5818                         perf_log_throttle(event, 1);
5819                 }
5820                 event->pmu->stop(event, PERF_EF_UPDATE);
5821         }
5822
5823         local64_set(&event->hw.period_left, 0);
5824
5825         if (active) {
5826                 event->pmu->start(event, PERF_EF_RELOAD);
5827                 perf_pmu_enable(event->pmu);
5828         }
5829 }
5830
5831 static int perf_event_check_period(struct perf_event *event, u64 value)
5832 {
5833         return event->pmu->check_period(event, value);
5834 }
5835
5836 static int _perf_event_period(struct perf_event *event, u64 value)
5837 {
5838         if (!is_sampling_event(event))
5839                 return -EINVAL;
5840
5841         if (!value)
5842                 return -EINVAL;
5843
5844         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5845                 return -EINVAL;
5846
5847         if (perf_event_check_period(event, value))
5848                 return -EINVAL;
5849
5850         if (!event->attr.freq && (value & (1ULL << 63)))
5851                 return -EINVAL;
5852
5853         event_function_call(event, __perf_event_period, &value);
5854
5855         return 0;
5856 }
5857
5858 int perf_event_period(struct perf_event *event, u64 value)
5859 {
5860         struct perf_event_context *ctx;
5861         int ret;
5862
5863         ctx = perf_event_ctx_lock(event);
5864         ret = _perf_event_period(event, value);
5865         perf_event_ctx_unlock(event, ctx);
5866
5867         return ret;
5868 }
5869 EXPORT_SYMBOL_GPL(perf_event_period);
5870
5871 static const struct file_operations perf_fops;
5872
5873 static inline int perf_fget_light(int fd, struct fd *p)
5874 {
5875         struct fd f = fdget(fd);
5876         if (!f.file)
5877                 return -EBADF;
5878
5879         if (f.file->f_op != &perf_fops) {
5880                 fdput(f);
5881                 return -EBADF;
5882         }
5883         *p = f;
5884         return 0;
5885 }
5886
5887 static int perf_event_set_output(struct perf_event *event,
5888                                  struct perf_event *output_event);
5889 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5890 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5891                           struct perf_event_attr *attr);
5892
5893 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5894 {
5895         void (*func)(struct perf_event *);
5896         u32 flags = arg;
5897
5898         switch (cmd) {
5899         case PERF_EVENT_IOC_ENABLE:
5900                 func = _perf_event_enable;
5901                 break;
5902         case PERF_EVENT_IOC_DISABLE:
5903                 func = _perf_event_disable;
5904                 break;
5905         case PERF_EVENT_IOC_RESET:
5906                 func = _perf_event_reset;
5907                 break;
5908
5909         case PERF_EVENT_IOC_REFRESH:
5910                 return _perf_event_refresh(event, arg);
5911
5912         case PERF_EVENT_IOC_PERIOD:
5913         {
5914                 u64 value;
5915
5916                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5917                         return -EFAULT;
5918
5919                 return _perf_event_period(event, value);
5920         }
5921         case PERF_EVENT_IOC_ID:
5922         {
5923                 u64 id = primary_event_id(event);
5924
5925                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5926                         return -EFAULT;
5927                 return 0;
5928         }
5929
5930         case PERF_EVENT_IOC_SET_OUTPUT:
5931         {
5932                 int ret;
5933                 if (arg != -1) {
5934                         struct perf_event *output_event;
5935                         struct fd output;
5936                         ret = perf_fget_light(arg, &output);
5937                         if (ret)
5938                                 return ret;
5939                         output_event = output.file->private_data;
5940                         ret = perf_event_set_output(event, output_event);
5941                         fdput(output);
5942                 } else {
5943                         ret = perf_event_set_output(event, NULL);
5944                 }
5945                 return ret;
5946         }
5947
5948         case PERF_EVENT_IOC_SET_FILTER:
5949                 return perf_event_set_filter(event, (void __user *)arg);
5950
5951         case PERF_EVENT_IOC_SET_BPF:
5952         {
5953                 struct bpf_prog *prog;
5954                 int err;
5955
5956                 prog = bpf_prog_get(arg);
5957                 if (IS_ERR(prog))
5958                         return PTR_ERR(prog);
5959
5960                 err = perf_event_set_bpf_prog(event, prog, 0);
5961                 if (err) {
5962                         bpf_prog_put(prog);
5963                         return err;
5964                 }
5965
5966                 return 0;
5967         }
5968
5969         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5970                 struct perf_buffer *rb;
5971
5972                 rcu_read_lock();
5973                 rb = rcu_dereference(event->rb);
5974                 if (!rb || !rb->nr_pages) {
5975                         rcu_read_unlock();
5976                         return -EINVAL;
5977                 }
5978                 rb_toggle_paused(rb, !!arg);
5979                 rcu_read_unlock();
5980                 return 0;
5981         }
5982
5983         case PERF_EVENT_IOC_QUERY_BPF:
5984                 return perf_event_query_prog_array(event, (void __user *)arg);
5985
5986         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5987                 struct perf_event_attr new_attr;
5988                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5989                                          &new_attr);
5990
5991                 if (err)
5992                         return err;
5993
5994                 return perf_event_modify_attr(event,  &new_attr);
5995         }
5996         default:
5997                 return -ENOTTY;
5998         }
5999
6000         if (flags & PERF_IOC_FLAG_GROUP)
6001                 perf_event_for_each(event, func);
6002         else
6003                 perf_event_for_each_child(event, func);
6004
6005         return 0;
6006 }
6007
6008 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
6009 {
6010         struct perf_event *event = file->private_data;
6011         struct perf_event_context *ctx;
6012         long ret;
6013
6014         /* Treat ioctl like writes as it is likely a mutating operation. */
6015         ret = security_perf_event_write(event);
6016         if (ret)
6017                 return ret;
6018
6019         ctx = perf_event_ctx_lock(event);
6020         ret = _perf_ioctl(event, cmd, arg);
6021         perf_event_ctx_unlock(event, ctx);
6022
6023         return ret;
6024 }
6025
6026 #ifdef CONFIG_COMPAT
6027 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
6028                                 unsigned long arg)
6029 {
6030         switch (_IOC_NR(cmd)) {
6031         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
6032         case _IOC_NR(PERF_EVENT_IOC_ID):
6033         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
6034         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
6035                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
6036                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
6037                         cmd &= ~IOCSIZE_MASK;
6038                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
6039                 }
6040                 break;
6041         }
6042         return perf_ioctl(file, cmd, arg);
6043 }
6044 #else
6045 # define perf_compat_ioctl NULL
6046 #endif
6047
6048 int perf_event_task_enable(void)
6049 {
6050         struct perf_event_context *ctx;
6051         struct perf_event *event;
6052
6053         mutex_lock(&current->perf_event_mutex);
6054         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6055                 ctx = perf_event_ctx_lock(event);
6056                 perf_event_for_each_child(event, _perf_event_enable);
6057                 perf_event_ctx_unlock(event, ctx);
6058         }
6059         mutex_unlock(&current->perf_event_mutex);
6060
6061         return 0;
6062 }
6063
6064 int perf_event_task_disable(void)
6065 {
6066         struct perf_event_context *ctx;
6067         struct perf_event *event;
6068
6069         mutex_lock(&current->perf_event_mutex);
6070         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
6071                 ctx = perf_event_ctx_lock(event);
6072                 perf_event_for_each_child(event, _perf_event_disable);
6073                 perf_event_ctx_unlock(event, ctx);
6074         }
6075         mutex_unlock(&current->perf_event_mutex);
6076
6077         return 0;
6078 }
6079
6080 static int perf_event_index(struct perf_event *event)
6081 {
6082         if (event->hw.state & PERF_HES_STOPPED)
6083                 return 0;
6084
6085         if (event->state != PERF_EVENT_STATE_ACTIVE)
6086                 return 0;
6087
6088         return event->pmu->event_idx(event);
6089 }
6090
6091 static void perf_event_init_userpage(struct perf_event *event)
6092 {
6093         struct perf_event_mmap_page *userpg;
6094         struct perf_buffer *rb;
6095
6096         rcu_read_lock();
6097         rb = rcu_dereference(event->rb);
6098         if (!rb)
6099                 goto unlock;
6100
6101         userpg = rb->user_page;
6102
6103         /* Allow new userspace to detect that bit 0 is deprecated */
6104         userpg->cap_bit0_is_deprecated = 1;
6105         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
6106         userpg->data_offset = PAGE_SIZE;
6107         userpg->data_size = perf_data_size(rb);
6108
6109 unlock:
6110         rcu_read_unlock();
6111 }
6112
6113 void __weak arch_perf_update_userpage(
6114         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
6115 {
6116 }
6117
6118 /*
6119  * Callers need to ensure there can be no nesting of this function, otherwise
6120  * the seqlock logic goes bad. We can not serialize this because the arch
6121  * code calls this from NMI context.
6122  */
6123 void perf_event_update_userpage(struct perf_event *event)
6124 {
6125         struct perf_event_mmap_page *userpg;
6126         struct perf_buffer *rb;
6127         u64 enabled, running, now;
6128
6129         rcu_read_lock();
6130         rb = rcu_dereference(event->rb);
6131         if (!rb)
6132                 goto unlock;
6133
6134         /*
6135          * compute total_time_enabled, total_time_running
6136          * based on snapshot values taken when the event
6137          * was last scheduled in.
6138          *
6139          * we cannot simply called update_context_time()
6140          * because of locking issue as we can be called in
6141          * NMI context
6142          */
6143         calc_timer_values(event, &now, &enabled, &running);
6144
6145         userpg = rb->user_page;
6146         /*
6147          * Disable preemption to guarantee consistent time stamps are stored to
6148          * the user page.
6149          */
6150         preempt_disable();
6151         ++userpg->lock;
6152         barrier();
6153         userpg->index = perf_event_index(event);
6154         userpg->offset = perf_event_count(event);
6155         if (userpg->index)
6156                 userpg->offset -= local64_read(&event->hw.prev_count);
6157
6158         userpg->time_enabled = enabled +
6159                         atomic64_read(&event->child_total_time_enabled);
6160
6161         userpg->time_running = running +
6162                         atomic64_read(&event->child_total_time_running);
6163
6164         arch_perf_update_userpage(event, userpg, now);
6165
6166         barrier();
6167         ++userpg->lock;
6168         preempt_enable();
6169 unlock:
6170         rcu_read_unlock();
6171 }
6172 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
6173
6174 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
6175 {
6176         struct perf_event *event = vmf->vma->vm_file->private_data;
6177         struct perf_buffer *rb;
6178         vm_fault_t ret = VM_FAULT_SIGBUS;
6179
6180         if (vmf->flags & FAULT_FLAG_MKWRITE) {
6181                 if (vmf->pgoff == 0)
6182                         ret = 0;
6183                 return ret;
6184         }
6185
6186         rcu_read_lock();
6187         rb = rcu_dereference(event->rb);
6188         if (!rb)
6189                 goto unlock;
6190
6191         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
6192                 goto unlock;
6193
6194         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
6195         if (!vmf->page)
6196                 goto unlock;
6197
6198         get_page(vmf->page);
6199         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
6200         vmf->page->index   = vmf->pgoff;
6201
6202         ret = 0;
6203 unlock:
6204         rcu_read_unlock();
6205
6206         return ret;
6207 }
6208
6209 static void ring_buffer_attach(struct perf_event *event,
6210                                struct perf_buffer *rb)
6211 {
6212         struct perf_buffer *old_rb = NULL;
6213         unsigned long flags;
6214
6215         WARN_ON_ONCE(event->parent);
6216
6217         if (event->rb) {
6218                 /*
6219                  * Should be impossible, we set this when removing
6220                  * event->rb_entry and wait/clear when adding event->rb_entry.
6221                  */
6222                 WARN_ON_ONCE(event->rcu_pending);
6223
6224                 old_rb = event->rb;
6225                 spin_lock_irqsave(&old_rb->event_lock, flags);
6226                 list_del_rcu(&event->rb_entry);
6227                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
6228
6229                 event->rcu_batches = get_state_synchronize_rcu();
6230                 event->rcu_pending = 1;
6231         }
6232
6233         if (rb) {
6234                 if (event->rcu_pending) {
6235                         cond_synchronize_rcu(event->rcu_batches);
6236                         event->rcu_pending = 0;
6237                 }
6238
6239                 spin_lock_irqsave(&rb->event_lock, flags);
6240                 list_add_rcu(&event->rb_entry, &rb->event_list);
6241                 spin_unlock_irqrestore(&rb->event_lock, flags);
6242         }
6243
6244         /*
6245          * Avoid racing with perf_mmap_close(AUX): stop the event
6246          * before swizzling the event::rb pointer; if it's getting
6247          * unmapped, its aux_mmap_count will be 0 and it won't
6248          * restart. See the comment in __perf_pmu_output_stop().
6249          *
6250          * Data will inevitably be lost when set_output is done in
6251          * mid-air, but then again, whoever does it like this is
6252          * not in for the data anyway.
6253          */
6254         if (has_aux(event))
6255                 perf_event_stop(event, 0);
6256
6257         rcu_assign_pointer(event->rb, rb);
6258
6259         if (old_rb) {
6260                 ring_buffer_put(old_rb);
6261                 /*
6262                  * Since we detached before setting the new rb, so that we
6263                  * could attach the new rb, we could have missed a wakeup.
6264                  * Provide it now.
6265                  */
6266                 wake_up_all(&event->waitq);
6267         }
6268 }
6269
6270 static void ring_buffer_wakeup(struct perf_event *event)
6271 {
6272         struct perf_buffer *rb;
6273
6274         if (event->parent)
6275                 event = event->parent;
6276
6277         rcu_read_lock();
6278         rb = rcu_dereference(event->rb);
6279         if (rb) {
6280                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
6281                         wake_up_all(&event->waitq);
6282         }
6283         rcu_read_unlock();
6284 }
6285
6286 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6287 {
6288         struct perf_buffer *rb;
6289
6290         if (event->parent)
6291                 event = event->parent;
6292
6293         rcu_read_lock();
6294         rb = rcu_dereference(event->rb);
6295         if (rb) {
6296                 if (!refcount_inc_not_zero(&rb->refcount))
6297                         rb = NULL;
6298         }
6299         rcu_read_unlock();
6300
6301         return rb;
6302 }
6303
6304 void ring_buffer_put(struct perf_buffer *rb)
6305 {
6306         if (!refcount_dec_and_test(&rb->refcount))
6307                 return;
6308
6309         WARN_ON_ONCE(!list_empty(&rb->event_list));
6310
6311         call_rcu(&rb->rcu_head, rb_free_rcu);
6312 }
6313
6314 static void perf_mmap_open(struct vm_area_struct *vma)
6315 {
6316         struct perf_event *event = vma->vm_file->private_data;
6317
6318         atomic_inc(&event->mmap_count);
6319         atomic_inc(&event->rb->mmap_count);
6320
6321         if (vma->vm_pgoff)
6322                 atomic_inc(&event->rb->aux_mmap_count);
6323
6324         if (event->pmu->event_mapped)
6325                 event->pmu->event_mapped(event, vma->vm_mm);
6326 }
6327
6328 static void perf_pmu_output_stop(struct perf_event *event);
6329
6330 /*
6331  * A buffer can be mmap()ed multiple times; either directly through the same
6332  * event, or through other events by use of perf_event_set_output().
6333  *
6334  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6335  * the buffer here, where we still have a VM context. This means we need
6336  * to detach all events redirecting to us.
6337  */
6338 static void perf_mmap_close(struct vm_area_struct *vma)
6339 {
6340         struct perf_event *event = vma->vm_file->private_data;
6341         struct perf_buffer *rb = ring_buffer_get(event);
6342         struct user_struct *mmap_user = rb->mmap_user;
6343         int mmap_locked = rb->mmap_locked;
6344         unsigned long size = perf_data_size(rb);
6345         bool detach_rest = false;
6346
6347         if (event->pmu->event_unmapped)
6348                 event->pmu->event_unmapped(event, vma->vm_mm);
6349
6350         /*
6351          * rb->aux_mmap_count will always drop before rb->mmap_count and
6352          * event->mmap_count, so it is ok to use event->mmap_mutex to
6353          * serialize with perf_mmap here.
6354          */
6355         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6356             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6357                 /*
6358                  * Stop all AUX events that are writing to this buffer,
6359                  * so that we can free its AUX pages and corresponding PMU
6360                  * data. Note that after rb::aux_mmap_count dropped to zero,
6361                  * they won't start any more (see perf_aux_output_begin()).
6362                  */
6363                 perf_pmu_output_stop(event);
6364
6365                 /* now it's safe to free the pages */
6366                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6367                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6368
6369                 /* this has to be the last one */
6370                 rb_free_aux(rb);
6371                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6372
6373                 mutex_unlock(&event->mmap_mutex);
6374         }
6375
6376         if (atomic_dec_and_test(&rb->mmap_count))
6377                 detach_rest = true;
6378
6379         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6380                 goto out_put;
6381
6382         ring_buffer_attach(event, NULL);
6383         mutex_unlock(&event->mmap_mutex);
6384
6385         /* If there's still other mmap()s of this buffer, we're done. */
6386         if (!detach_rest)
6387                 goto out_put;
6388
6389         /*
6390          * No other mmap()s, detach from all other events that might redirect
6391          * into the now unreachable buffer. Somewhat complicated by the
6392          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6393          */
6394 again:
6395         rcu_read_lock();
6396         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6397                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6398                         /*
6399                          * This event is en-route to free_event() which will
6400                          * detach it and remove it from the list.
6401                          */
6402                         continue;
6403                 }
6404                 rcu_read_unlock();
6405
6406                 mutex_lock(&event->mmap_mutex);
6407                 /*
6408                  * Check we didn't race with perf_event_set_output() which can
6409                  * swizzle the rb from under us while we were waiting to
6410                  * acquire mmap_mutex.
6411                  *
6412                  * If we find a different rb; ignore this event, a next
6413                  * iteration will no longer find it on the list. We have to
6414                  * still restart the iteration to make sure we're not now
6415                  * iterating the wrong list.
6416                  */
6417                 if (event->rb == rb)
6418                         ring_buffer_attach(event, NULL);
6419
6420                 mutex_unlock(&event->mmap_mutex);
6421                 put_event(event);
6422
6423                 /*
6424                  * Restart the iteration; either we're on the wrong list or
6425                  * destroyed its integrity by doing a deletion.
6426                  */
6427                 goto again;
6428         }
6429         rcu_read_unlock();
6430
6431         /*
6432          * It could be there's still a few 0-ref events on the list; they'll
6433          * get cleaned up by free_event() -- they'll also still have their
6434          * ref on the rb and will free it whenever they are done with it.
6435          *
6436          * Aside from that, this buffer is 'fully' detached and unmapped,
6437          * undo the VM accounting.
6438          */
6439
6440         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6441                         &mmap_user->locked_vm);
6442         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6443         free_uid(mmap_user);
6444
6445 out_put:
6446         ring_buffer_put(rb); /* could be last */
6447 }
6448
6449 static const struct vm_operations_struct perf_mmap_vmops = {
6450         .open           = perf_mmap_open,
6451         .close          = perf_mmap_close, /* non mergeable */
6452         .fault          = perf_mmap_fault,
6453         .page_mkwrite   = perf_mmap_fault,
6454 };
6455
6456 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6457 {
6458         struct perf_event *event = file->private_data;
6459         unsigned long user_locked, user_lock_limit;
6460         struct user_struct *user = current_user();
6461         struct perf_buffer *rb = NULL;
6462         unsigned long locked, lock_limit;
6463         unsigned long vma_size;
6464         unsigned long nr_pages;
6465         long user_extra = 0, extra = 0;
6466         int ret = 0, flags = 0;
6467
6468         /*
6469          * Don't allow mmap() of inherited per-task counters. This would
6470          * create a performance issue due to all children writing to the
6471          * same rb.
6472          */
6473         if (event->cpu == -1 && event->attr.inherit)
6474                 return -EINVAL;
6475
6476         if (!(vma->vm_flags & VM_SHARED))
6477                 return -EINVAL;
6478
6479         ret = security_perf_event_read(event);
6480         if (ret)
6481                 return ret;
6482
6483         vma_size = vma->vm_end - vma->vm_start;
6484
6485         if (vma->vm_pgoff == 0) {
6486                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6487         } else {
6488                 /*
6489                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6490                  * mapped, all subsequent mappings should have the same size
6491                  * and offset. Must be above the normal perf buffer.
6492                  */
6493                 u64 aux_offset, aux_size;
6494
6495                 if (!event->rb)
6496                         return -EINVAL;
6497
6498                 nr_pages = vma_size / PAGE_SIZE;
6499
6500                 mutex_lock(&event->mmap_mutex);
6501                 ret = -EINVAL;
6502
6503                 rb = event->rb;
6504                 if (!rb)
6505                         goto aux_unlock;
6506
6507                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6508                 aux_size = READ_ONCE(rb->user_page->aux_size);
6509
6510                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6511                         goto aux_unlock;
6512
6513                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6514                         goto aux_unlock;
6515
6516                 /* already mapped with a different offset */
6517                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6518                         goto aux_unlock;
6519
6520                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6521                         goto aux_unlock;
6522
6523                 /* already mapped with a different size */
6524                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6525                         goto aux_unlock;
6526
6527                 if (!is_power_of_2(nr_pages))
6528                         goto aux_unlock;
6529
6530                 if (!atomic_inc_not_zero(&rb->mmap_count))
6531                         goto aux_unlock;
6532
6533                 if (rb_has_aux(rb)) {
6534                         atomic_inc(&rb->aux_mmap_count);
6535                         ret = 0;
6536                         goto unlock;
6537                 }
6538
6539                 atomic_set(&rb->aux_mmap_count, 1);
6540                 user_extra = nr_pages;
6541
6542                 goto accounting;
6543         }
6544
6545         /*
6546          * If we have rb pages ensure they're a power-of-two number, so we
6547          * can do bitmasks instead of modulo.
6548          */
6549         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6550                 return -EINVAL;
6551
6552         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6553                 return -EINVAL;
6554
6555         WARN_ON_ONCE(event->ctx->parent_ctx);
6556 again:
6557         mutex_lock(&event->mmap_mutex);
6558         if (event->rb) {
6559                 if (data_page_nr(event->rb) != nr_pages) {
6560                         ret = -EINVAL;
6561                         goto unlock;
6562                 }
6563
6564                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6565                         /*
6566                          * Raced against perf_mmap_close(); remove the
6567                          * event and try again.
6568                          */
6569                         ring_buffer_attach(event, NULL);
6570                         mutex_unlock(&event->mmap_mutex);
6571                         goto again;
6572                 }
6573
6574                 goto unlock;
6575         }
6576
6577         user_extra = nr_pages + 1;
6578
6579 accounting:
6580         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6581
6582         /*
6583          * Increase the limit linearly with more CPUs:
6584          */
6585         user_lock_limit *= num_online_cpus();
6586
6587         user_locked = atomic_long_read(&user->locked_vm);
6588
6589         /*
6590          * sysctl_perf_event_mlock may have changed, so that
6591          *     user->locked_vm > user_lock_limit
6592          */
6593         if (user_locked > user_lock_limit)
6594                 user_locked = user_lock_limit;
6595         user_locked += user_extra;
6596
6597         if (user_locked > user_lock_limit) {
6598                 /*
6599                  * charge locked_vm until it hits user_lock_limit;
6600                  * charge the rest from pinned_vm
6601                  */
6602                 extra = user_locked - user_lock_limit;
6603                 user_extra -= extra;
6604         }
6605
6606         lock_limit = rlimit(RLIMIT_MEMLOCK);
6607         lock_limit >>= PAGE_SHIFT;
6608         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6609
6610         if ((locked > lock_limit) && perf_is_paranoid() &&
6611                 !capable(CAP_IPC_LOCK)) {
6612                 ret = -EPERM;
6613                 goto unlock;
6614         }
6615
6616         WARN_ON(!rb && event->rb);
6617
6618         if (vma->vm_flags & VM_WRITE)
6619                 flags |= RING_BUFFER_WRITABLE;
6620
6621         if (!rb) {
6622                 rb = rb_alloc(nr_pages,
6623                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6624                               event->cpu, flags);
6625
6626                 if (!rb) {
6627                         ret = -ENOMEM;
6628                         goto unlock;
6629                 }
6630
6631                 atomic_set(&rb->mmap_count, 1);
6632                 rb->mmap_user = get_current_user();
6633                 rb->mmap_locked = extra;
6634
6635                 ring_buffer_attach(event, rb);
6636
6637                 perf_event_update_time(event);
6638                 perf_event_init_userpage(event);
6639                 perf_event_update_userpage(event);
6640         } else {
6641                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6642                                    event->attr.aux_watermark, flags);
6643                 if (!ret)
6644                         rb->aux_mmap_locked = extra;
6645         }
6646
6647 unlock:
6648         if (!ret) {
6649                 atomic_long_add(user_extra, &user->locked_vm);
6650                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6651
6652                 atomic_inc(&event->mmap_count);
6653         } else if (rb) {
6654                 atomic_dec(&rb->mmap_count);
6655         }
6656 aux_unlock:
6657         mutex_unlock(&event->mmap_mutex);
6658
6659         /*
6660          * Since pinned accounting is per vm we cannot allow fork() to copy our
6661          * vma.
6662          */
6663         vm_flags_set(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP);
6664         vma->vm_ops = &perf_mmap_vmops;
6665
6666         if (event->pmu->event_mapped)
6667                 event->pmu->event_mapped(event, vma->vm_mm);
6668
6669         return ret;
6670 }
6671
6672 static int perf_fasync(int fd, struct file *filp, int on)
6673 {
6674         struct inode *inode = file_inode(filp);
6675         struct perf_event *event = filp->private_data;
6676         int retval;
6677
6678         inode_lock(inode);
6679         retval = fasync_helper(fd, filp, on, &event->fasync);
6680         inode_unlock(inode);
6681
6682         if (retval < 0)
6683                 return retval;
6684
6685         return 0;
6686 }
6687
6688 static const struct file_operations perf_fops = {
6689         .llseek                 = no_llseek,
6690         .release                = perf_release,
6691         .read                   = perf_read,
6692         .poll                   = perf_poll,
6693         .unlocked_ioctl         = perf_ioctl,
6694         .compat_ioctl           = perf_compat_ioctl,
6695         .mmap                   = perf_mmap,
6696         .fasync                 = perf_fasync,
6697 };
6698
6699 /*
6700  * Perf event wakeup
6701  *
6702  * If there's data, ensure we set the poll() state and publish everything
6703  * to user-space before waking everybody up.
6704  */
6705
6706 void perf_event_wakeup(struct perf_event *event)
6707 {
6708         ring_buffer_wakeup(event);
6709
6710         if (event->pending_kill) {
6711                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6712                 event->pending_kill = 0;
6713         }
6714 }
6715
6716 static void perf_sigtrap(struct perf_event *event)
6717 {
6718         /*
6719          * We'd expect this to only occur if the irq_work is delayed and either
6720          * ctx->task or current has changed in the meantime. This can be the
6721          * case on architectures that do not implement arch_irq_work_raise().
6722          */
6723         if (WARN_ON_ONCE(event->ctx->task != current))
6724                 return;
6725
6726         /*
6727          * Both perf_pending_task() and perf_pending_irq() can race with the
6728          * task exiting.
6729          */
6730         if (current->flags & PF_EXITING)
6731                 return;
6732
6733         send_sig_perf((void __user *)event->pending_addr,
6734                       event->orig_type, event->attr.sig_data);
6735 }
6736
6737 /*
6738  * Deliver the pending work in-event-context or follow the context.
6739  */
6740 static void __perf_pending_irq(struct perf_event *event)
6741 {
6742         int cpu = READ_ONCE(event->oncpu);
6743
6744         /*
6745          * If the event isn't running; we done. event_sched_out() will have
6746          * taken care of things.
6747          */
6748         if (cpu < 0)
6749                 return;
6750
6751         /*
6752          * Yay, we hit home and are in the context of the event.
6753          */
6754         if (cpu == smp_processor_id()) {
6755                 if (event->pending_sigtrap) {
6756                         event->pending_sigtrap = 0;
6757                         perf_sigtrap(event);
6758                         local_dec(&event->ctx->nr_pending);
6759                 }
6760                 if (event->pending_disable) {
6761                         event->pending_disable = 0;
6762                         perf_event_disable_local(event);
6763                 }
6764                 return;
6765         }
6766
6767         /*
6768          *  CPU-A                       CPU-B
6769          *
6770          *  perf_event_disable_inatomic()
6771          *    @pending_disable = CPU-A;
6772          *    irq_work_queue();
6773          *
6774          *  sched-out
6775          *    @pending_disable = -1;
6776          *
6777          *                              sched-in
6778          *                              perf_event_disable_inatomic()
6779          *                                @pending_disable = CPU-B;
6780          *                                irq_work_queue(); // FAILS
6781          *
6782          *  irq_work_run()
6783          *    perf_pending_irq()
6784          *
6785          * But the event runs on CPU-B and wants disabling there.
6786          */
6787         irq_work_queue_on(&event->pending_irq, cpu);
6788 }
6789
6790 static void perf_pending_irq(struct irq_work *entry)
6791 {
6792         struct perf_event *event = container_of(entry, struct perf_event, pending_irq);
6793         int rctx;
6794
6795         /*
6796          * If we 'fail' here, that's OK, it means recursion is already disabled
6797          * and we won't recurse 'further'.
6798          */
6799         rctx = perf_swevent_get_recursion_context();
6800
6801         /*
6802          * The wakeup isn't bound to the context of the event -- it can happen
6803          * irrespective of where the event is.
6804          */
6805         if (event->pending_wakeup) {
6806                 event->pending_wakeup = 0;
6807                 perf_event_wakeup(event);
6808         }
6809
6810         __perf_pending_irq(event);
6811
6812         if (rctx >= 0)
6813                 perf_swevent_put_recursion_context(rctx);
6814 }
6815
6816 static void perf_pending_task(struct callback_head *head)
6817 {
6818         struct perf_event *event = container_of(head, struct perf_event, pending_task);
6819         int rctx;
6820
6821         /*
6822          * If we 'fail' here, that's OK, it means recursion is already disabled
6823          * and we won't recurse 'further'.
6824          */
6825         preempt_disable_notrace();
6826         rctx = perf_swevent_get_recursion_context();
6827
6828         if (event->pending_work) {
6829                 event->pending_work = 0;
6830                 perf_sigtrap(event);
6831                 local_dec(&event->ctx->nr_pending);
6832         }
6833
6834         if (rctx >= 0)
6835                 perf_swevent_put_recursion_context(rctx);
6836         preempt_enable_notrace();
6837
6838         put_event(event);
6839 }
6840
6841 #ifdef CONFIG_GUEST_PERF_EVENTS
6842 struct perf_guest_info_callbacks __rcu *perf_guest_cbs;
6843
6844 DEFINE_STATIC_CALL_RET0(__perf_guest_state, *perf_guest_cbs->state);
6845 DEFINE_STATIC_CALL_RET0(__perf_guest_get_ip, *perf_guest_cbs->get_ip);
6846 DEFINE_STATIC_CALL_RET0(__perf_guest_handle_intel_pt_intr, *perf_guest_cbs->handle_intel_pt_intr);
6847
6848 void perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6849 {
6850         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs)))
6851                 return;
6852
6853         rcu_assign_pointer(perf_guest_cbs, cbs);
6854         static_call_update(__perf_guest_state, cbs->state);
6855         static_call_update(__perf_guest_get_ip, cbs->get_ip);
6856
6857         /* Implementing ->handle_intel_pt_intr is optional. */
6858         if (cbs->handle_intel_pt_intr)
6859                 static_call_update(__perf_guest_handle_intel_pt_intr,
6860                                    cbs->handle_intel_pt_intr);
6861 }
6862 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6863
6864 void perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6865 {
6866         if (WARN_ON_ONCE(rcu_access_pointer(perf_guest_cbs) != cbs))
6867                 return;
6868
6869         rcu_assign_pointer(perf_guest_cbs, NULL);
6870         static_call_update(__perf_guest_state, (void *)&__static_call_return0);
6871         static_call_update(__perf_guest_get_ip, (void *)&__static_call_return0);
6872         static_call_update(__perf_guest_handle_intel_pt_intr,
6873                            (void *)&__static_call_return0);
6874         synchronize_rcu();
6875 }
6876 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6877 #endif
6878
6879 static void
6880 perf_output_sample_regs(struct perf_output_handle *handle,
6881                         struct pt_regs *regs, u64 mask)
6882 {
6883         int bit;
6884         DECLARE_BITMAP(_mask, 64);
6885
6886         bitmap_from_u64(_mask, mask);
6887         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6888                 u64 val;
6889
6890                 val = perf_reg_value(regs, bit);
6891                 perf_output_put(handle, val);
6892         }
6893 }
6894
6895 static void perf_sample_regs_user(struct perf_regs *regs_user,
6896                                   struct pt_regs *regs)
6897 {
6898         if (user_mode(regs)) {
6899                 regs_user->abi = perf_reg_abi(current);
6900                 regs_user->regs = regs;
6901         } else if (!(current->flags & PF_KTHREAD)) {
6902                 perf_get_regs_user(regs_user, regs);
6903         } else {
6904                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6905                 regs_user->regs = NULL;
6906         }
6907 }
6908
6909 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6910                                   struct pt_regs *regs)
6911 {
6912         regs_intr->regs = regs;
6913         regs_intr->abi  = perf_reg_abi(current);
6914 }
6915
6916
6917 /*
6918  * Get remaining task size from user stack pointer.
6919  *
6920  * It'd be better to take stack vma map and limit this more
6921  * precisely, but there's no way to get it safely under interrupt,
6922  * so using TASK_SIZE as limit.
6923  */
6924 static u64 perf_ustack_task_size(struct pt_regs *regs)
6925 {
6926         unsigned long addr = perf_user_stack_pointer(regs);
6927
6928         if (!addr || addr >= TASK_SIZE)
6929                 return 0;
6930
6931         return TASK_SIZE - addr;
6932 }
6933
6934 static u16
6935 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6936                         struct pt_regs *regs)
6937 {
6938         u64 task_size;
6939
6940         /* No regs, no stack pointer, no dump. */
6941         if (!regs)
6942                 return 0;
6943
6944         /*
6945          * Check if we fit in with the requested stack size into the:
6946          * - TASK_SIZE
6947          *   If we don't, we limit the size to the TASK_SIZE.
6948          *
6949          * - remaining sample size
6950          *   If we don't, we customize the stack size to
6951          *   fit in to the remaining sample size.
6952          */
6953
6954         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6955         stack_size = min(stack_size, (u16) task_size);
6956
6957         /* Current header size plus static size and dynamic size. */
6958         header_size += 2 * sizeof(u64);
6959
6960         /* Do we fit in with the current stack dump size? */
6961         if ((u16) (header_size + stack_size) < header_size) {
6962                 /*
6963                  * If we overflow the maximum size for the sample,
6964                  * we customize the stack dump size to fit in.
6965                  */
6966                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6967                 stack_size = round_up(stack_size, sizeof(u64));
6968         }
6969
6970         return stack_size;
6971 }
6972
6973 static void
6974 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6975                           struct pt_regs *regs)
6976 {
6977         /* Case of a kernel thread, nothing to dump */
6978         if (!regs) {
6979                 u64 size = 0;
6980                 perf_output_put(handle, size);
6981         } else {
6982                 unsigned long sp;
6983                 unsigned int rem;
6984                 u64 dyn_size;
6985
6986                 /*
6987                  * We dump:
6988                  * static size
6989                  *   - the size requested by user or the best one we can fit
6990                  *     in to the sample max size
6991                  * data
6992                  *   - user stack dump data
6993                  * dynamic size
6994                  *   - the actual dumped size
6995                  */
6996
6997                 /* Static size. */
6998                 perf_output_put(handle, dump_size);
6999
7000                 /* Data. */
7001                 sp = perf_user_stack_pointer(regs);
7002                 rem = __output_copy_user(handle, (void *) sp, dump_size);
7003                 dyn_size = dump_size - rem;
7004
7005                 perf_output_skip(handle, rem);
7006
7007                 /* Dynamic size. */
7008                 perf_output_put(handle, dyn_size);
7009         }
7010 }
7011
7012 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
7013                                           struct perf_sample_data *data,
7014                                           size_t size)
7015 {
7016         struct perf_event *sampler = event->aux_event;
7017         struct perf_buffer *rb;
7018
7019         data->aux_size = 0;
7020
7021         if (!sampler)
7022                 goto out;
7023
7024         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
7025                 goto out;
7026
7027         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
7028                 goto out;
7029
7030         rb = ring_buffer_get(sampler);
7031         if (!rb)
7032                 goto out;
7033
7034         /*
7035          * If this is an NMI hit inside sampling code, don't take
7036          * the sample. See also perf_aux_sample_output().
7037          */
7038         if (READ_ONCE(rb->aux_in_sampling)) {
7039                 data->aux_size = 0;
7040         } else {
7041                 size = min_t(size_t, size, perf_aux_size(rb));
7042                 data->aux_size = ALIGN(size, sizeof(u64));
7043         }
7044         ring_buffer_put(rb);
7045
7046 out:
7047         return data->aux_size;
7048 }
7049
7050 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
7051                                  struct perf_event *event,
7052                                  struct perf_output_handle *handle,
7053                                  unsigned long size)
7054 {
7055         unsigned long flags;
7056         long ret;
7057
7058         /*
7059          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
7060          * paths. If we start calling them in NMI context, they may race with
7061          * the IRQ ones, that is, for example, re-starting an event that's just
7062          * been stopped, which is why we're using a separate callback that
7063          * doesn't change the event state.
7064          *
7065          * IRQs need to be disabled to prevent IPIs from racing with us.
7066          */
7067         local_irq_save(flags);
7068         /*
7069          * Guard against NMI hits inside the critical section;
7070          * see also perf_prepare_sample_aux().
7071          */
7072         WRITE_ONCE(rb->aux_in_sampling, 1);
7073         barrier();
7074
7075         ret = event->pmu->snapshot_aux(event, handle, size);
7076
7077         barrier();
7078         WRITE_ONCE(rb->aux_in_sampling, 0);
7079         local_irq_restore(flags);
7080
7081         return ret;
7082 }
7083
7084 static void perf_aux_sample_output(struct perf_event *event,
7085                                    struct perf_output_handle *handle,
7086                                    struct perf_sample_data *data)
7087 {
7088         struct perf_event *sampler = event->aux_event;
7089         struct perf_buffer *rb;
7090         unsigned long pad;
7091         long size;
7092
7093         if (WARN_ON_ONCE(!sampler || !data->aux_size))
7094                 return;
7095
7096         rb = ring_buffer_get(sampler);
7097         if (!rb)
7098                 return;
7099
7100         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
7101
7102         /*
7103          * An error here means that perf_output_copy() failed (returned a
7104          * non-zero surplus that it didn't copy), which in its current
7105          * enlightened implementation is not possible. If that changes, we'd
7106          * like to know.
7107          */
7108         if (WARN_ON_ONCE(size < 0))
7109                 goto out_put;
7110
7111         /*
7112          * The pad comes from ALIGN()ing data->aux_size up to u64 in
7113          * perf_prepare_sample_aux(), so should not be more than that.
7114          */
7115         pad = data->aux_size - size;
7116         if (WARN_ON_ONCE(pad >= sizeof(u64)))
7117                 pad = 8;
7118
7119         if (pad) {
7120                 u64 zero = 0;
7121                 perf_output_copy(handle, &zero, pad);
7122         }
7123
7124 out_put:
7125         ring_buffer_put(rb);
7126 }
7127
7128 /*
7129  * A set of common sample data types saved even for non-sample records
7130  * when event->attr.sample_id_all is set.
7131  */
7132 #define PERF_SAMPLE_ID_ALL  (PERF_SAMPLE_TID | PERF_SAMPLE_TIME |       \
7133                              PERF_SAMPLE_ID | PERF_SAMPLE_STREAM_ID |   \
7134                              PERF_SAMPLE_CPU | PERF_SAMPLE_IDENTIFIER)
7135
7136 static void __perf_event_header__init_id(struct perf_sample_data *data,
7137                                          struct perf_event *event,
7138                                          u64 sample_type)
7139 {
7140         data->type = event->attr.sample_type;
7141         data->sample_flags |= data->type & PERF_SAMPLE_ID_ALL;
7142
7143         if (sample_type & PERF_SAMPLE_TID) {
7144                 /* namespace issues */
7145                 data->tid_entry.pid = perf_event_pid(event, current);
7146                 data->tid_entry.tid = perf_event_tid(event, current);
7147         }
7148
7149         if (sample_type & PERF_SAMPLE_TIME)
7150                 data->time = perf_event_clock(event);
7151
7152         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
7153                 data->id = primary_event_id(event);
7154
7155         if (sample_type & PERF_SAMPLE_STREAM_ID)
7156                 data->stream_id = event->id;
7157
7158         if (sample_type & PERF_SAMPLE_CPU) {
7159                 data->cpu_entry.cpu      = raw_smp_processor_id();
7160                 data->cpu_entry.reserved = 0;
7161         }
7162 }
7163
7164 void perf_event_header__init_id(struct perf_event_header *header,
7165                                 struct perf_sample_data *data,
7166                                 struct perf_event *event)
7167 {
7168         if (event->attr.sample_id_all) {
7169                 header->size += event->id_header_size;
7170                 __perf_event_header__init_id(data, event, event->attr.sample_type);
7171         }
7172 }
7173
7174 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
7175                                            struct perf_sample_data *data)
7176 {
7177         u64 sample_type = data->type;
7178
7179         if (sample_type & PERF_SAMPLE_TID)
7180                 perf_output_put(handle, data->tid_entry);
7181
7182         if (sample_type & PERF_SAMPLE_TIME)
7183                 perf_output_put(handle, data->time);
7184
7185         if (sample_type & PERF_SAMPLE_ID)
7186                 perf_output_put(handle, data->id);
7187
7188         if (sample_type & PERF_SAMPLE_STREAM_ID)
7189                 perf_output_put(handle, data->stream_id);
7190
7191         if (sample_type & PERF_SAMPLE_CPU)
7192                 perf_output_put(handle, data->cpu_entry);
7193
7194         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7195                 perf_output_put(handle, data->id);
7196 }
7197
7198 void perf_event__output_id_sample(struct perf_event *event,
7199                                   struct perf_output_handle *handle,
7200                                   struct perf_sample_data *sample)
7201 {
7202         if (event->attr.sample_id_all)
7203                 __perf_event__output_id_sample(handle, sample);
7204 }
7205
7206 static void perf_output_read_one(struct perf_output_handle *handle,
7207                                  struct perf_event *event,
7208                                  u64 enabled, u64 running)
7209 {
7210         u64 read_format = event->attr.read_format;
7211         u64 values[5];
7212         int n = 0;
7213
7214         values[n++] = perf_event_count(event);
7215         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
7216                 values[n++] = enabled +
7217                         atomic64_read(&event->child_total_time_enabled);
7218         }
7219         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
7220                 values[n++] = running +
7221                         atomic64_read(&event->child_total_time_running);
7222         }
7223         if (read_format & PERF_FORMAT_ID)
7224                 values[n++] = primary_event_id(event);
7225         if (read_format & PERF_FORMAT_LOST)
7226                 values[n++] = atomic64_read(&event->lost_samples);
7227
7228         __output_copy(handle, values, n * sizeof(u64));
7229 }
7230
7231 static void perf_output_read_group(struct perf_output_handle *handle,
7232                             struct perf_event *event,
7233                             u64 enabled, u64 running)
7234 {
7235         struct perf_event *leader = event->group_leader, *sub;
7236         u64 read_format = event->attr.read_format;
7237         unsigned long flags;
7238         u64 values[6];
7239         int n = 0;
7240
7241         /*
7242          * Disabling interrupts avoids all counter scheduling
7243          * (context switches, timer based rotation and IPIs).
7244          */
7245         local_irq_save(flags);
7246
7247         values[n++] = 1 + leader->nr_siblings;
7248
7249         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
7250                 values[n++] = enabled;
7251
7252         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
7253                 values[n++] = running;
7254
7255         if ((leader != event) &&
7256             (leader->state == PERF_EVENT_STATE_ACTIVE))
7257                 leader->pmu->read(leader);
7258
7259         values[n++] = perf_event_count(leader);
7260         if (read_format & PERF_FORMAT_ID)
7261                 values[n++] = primary_event_id(leader);
7262         if (read_format & PERF_FORMAT_LOST)
7263                 values[n++] = atomic64_read(&leader->lost_samples);
7264
7265         __output_copy(handle, values, n * sizeof(u64));
7266
7267         for_each_sibling_event(sub, leader) {
7268                 n = 0;
7269
7270                 if ((sub != event) &&
7271                     (sub->state == PERF_EVENT_STATE_ACTIVE))
7272                         sub->pmu->read(sub);
7273
7274                 values[n++] = perf_event_count(sub);
7275                 if (read_format & PERF_FORMAT_ID)
7276                         values[n++] = primary_event_id(sub);
7277                 if (read_format & PERF_FORMAT_LOST)
7278                         values[n++] = atomic64_read(&sub->lost_samples);
7279
7280                 __output_copy(handle, values, n * sizeof(u64));
7281         }
7282
7283         local_irq_restore(flags);
7284 }
7285
7286 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
7287                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
7288
7289 /*
7290  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
7291  *
7292  * The problem is that its both hard and excessively expensive to iterate the
7293  * child list, not to mention that its impossible to IPI the children running
7294  * on another CPU, from interrupt/NMI context.
7295  */
7296 static void perf_output_read(struct perf_output_handle *handle,
7297                              struct perf_event *event)
7298 {
7299         u64 enabled = 0, running = 0, now;
7300         u64 read_format = event->attr.read_format;
7301
7302         /*
7303          * compute total_time_enabled, total_time_running
7304          * based on snapshot values taken when the event
7305          * was last scheduled in.
7306          *
7307          * we cannot simply called update_context_time()
7308          * because of locking issue as we are called in
7309          * NMI context
7310          */
7311         if (read_format & PERF_FORMAT_TOTAL_TIMES)
7312                 calc_timer_values(event, &now, &enabled, &running);
7313
7314         if (event->attr.read_format & PERF_FORMAT_GROUP)
7315                 perf_output_read_group(handle, event, enabled, running);
7316         else
7317                 perf_output_read_one(handle, event, enabled, running);
7318 }
7319
7320 void perf_output_sample(struct perf_output_handle *handle,
7321                         struct perf_event_header *header,
7322                         struct perf_sample_data *data,
7323                         struct perf_event *event)
7324 {
7325         u64 sample_type = data->type;
7326
7327         perf_output_put(handle, *header);
7328
7329         if (sample_type & PERF_SAMPLE_IDENTIFIER)
7330                 perf_output_put(handle, data->id);
7331
7332         if (sample_type & PERF_SAMPLE_IP)
7333                 perf_output_put(handle, data->ip);
7334
7335         if (sample_type & PERF_SAMPLE_TID)
7336                 perf_output_put(handle, data->tid_entry);
7337
7338         if (sample_type & PERF_SAMPLE_TIME)
7339                 perf_output_put(handle, data->time);
7340
7341         if (sample_type & PERF_SAMPLE_ADDR)
7342                 perf_output_put(handle, data->addr);
7343
7344         if (sample_type & PERF_SAMPLE_ID)
7345                 perf_output_put(handle, data->id);
7346
7347         if (sample_type & PERF_SAMPLE_STREAM_ID)
7348                 perf_output_put(handle, data->stream_id);
7349
7350         if (sample_type & PERF_SAMPLE_CPU)
7351                 perf_output_put(handle, data->cpu_entry);
7352
7353         if (sample_type & PERF_SAMPLE_PERIOD)
7354                 perf_output_put(handle, data->period);
7355
7356         if (sample_type & PERF_SAMPLE_READ)
7357                 perf_output_read(handle, event);
7358
7359         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7360                 int size = 1;
7361
7362                 size += data->callchain->nr;
7363                 size *= sizeof(u64);
7364                 __output_copy(handle, data->callchain, size);
7365         }
7366
7367         if (sample_type & PERF_SAMPLE_RAW) {
7368                 struct perf_raw_record *raw = data->raw;
7369
7370                 if (raw) {
7371                         struct perf_raw_frag *frag = &raw->frag;
7372
7373                         perf_output_put(handle, raw->size);
7374                         do {
7375                                 if (frag->copy) {
7376                                         __output_custom(handle, frag->copy,
7377                                                         frag->data, frag->size);
7378                                 } else {
7379                                         __output_copy(handle, frag->data,
7380                                                       frag->size);
7381                                 }
7382                                 if (perf_raw_frag_last(frag))
7383                                         break;
7384                                 frag = frag->next;
7385                         } while (1);
7386                         if (frag->pad)
7387                                 __output_skip(handle, NULL, frag->pad);
7388                 } else {
7389                         struct {
7390                                 u32     size;
7391                                 u32     data;
7392                         } raw = {
7393                                 .size = sizeof(u32),
7394                                 .data = 0,
7395                         };
7396                         perf_output_put(handle, raw);
7397                 }
7398         }
7399
7400         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7401                 if (data->br_stack) {
7402                         size_t size;
7403
7404                         size = data->br_stack->nr
7405                              * sizeof(struct perf_branch_entry);
7406
7407                         perf_output_put(handle, data->br_stack->nr);
7408                         if (branch_sample_hw_index(event))
7409                                 perf_output_put(handle, data->br_stack->hw_idx);
7410                         perf_output_copy(handle, data->br_stack->entries, size);
7411                         /*
7412                          * Add the extension space which is appended
7413                          * right after the struct perf_branch_stack.
7414                          */
7415                         if (data->br_stack_cntr) {
7416                                 size = data->br_stack->nr * sizeof(u64);
7417                                 perf_output_copy(handle, data->br_stack_cntr, size);
7418                         }
7419                 } else {
7420                         /*
7421                          * we always store at least the value of nr
7422                          */
7423                         u64 nr = 0;
7424                         perf_output_put(handle, nr);
7425                 }
7426         }
7427
7428         if (sample_type & PERF_SAMPLE_REGS_USER) {
7429                 u64 abi = data->regs_user.abi;
7430
7431                 /*
7432                  * If there are no regs to dump, notice it through
7433                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7434                  */
7435                 perf_output_put(handle, abi);
7436
7437                 if (abi) {
7438                         u64 mask = event->attr.sample_regs_user;
7439                         perf_output_sample_regs(handle,
7440                                                 data->regs_user.regs,
7441                                                 mask);
7442                 }
7443         }
7444
7445         if (sample_type & PERF_SAMPLE_STACK_USER) {
7446                 perf_output_sample_ustack(handle,
7447                                           data->stack_user_size,
7448                                           data->regs_user.regs);
7449         }
7450
7451         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7452                 perf_output_put(handle, data->weight.full);
7453
7454         if (sample_type & PERF_SAMPLE_DATA_SRC)
7455                 perf_output_put(handle, data->data_src.val);
7456
7457         if (sample_type & PERF_SAMPLE_TRANSACTION)
7458                 perf_output_put(handle, data->txn);
7459
7460         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7461                 u64 abi = data->regs_intr.abi;
7462                 /*
7463                  * If there are no regs to dump, notice it through
7464                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7465                  */
7466                 perf_output_put(handle, abi);
7467
7468                 if (abi) {
7469                         u64 mask = event->attr.sample_regs_intr;
7470
7471                         perf_output_sample_regs(handle,
7472                                                 data->regs_intr.regs,
7473                                                 mask);
7474                 }
7475         }
7476
7477         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7478                 perf_output_put(handle, data->phys_addr);
7479
7480         if (sample_type & PERF_SAMPLE_CGROUP)
7481                 perf_output_put(handle, data->cgroup);
7482
7483         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7484                 perf_output_put(handle, data->data_page_size);
7485
7486         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7487                 perf_output_put(handle, data->code_page_size);
7488
7489         if (sample_type & PERF_SAMPLE_AUX) {
7490                 perf_output_put(handle, data->aux_size);
7491
7492                 if (data->aux_size)
7493                         perf_aux_sample_output(event, handle, data);
7494         }
7495
7496         if (!event->attr.watermark) {
7497                 int wakeup_events = event->attr.wakeup_events;
7498
7499                 if (wakeup_events) {
7500                         struct perf_buffer *rb = handle->rb;
7501                         int events = local_inc_return(&rb->events);
7502
7503                         if (events >= wakeup_events) {
7504                                 local_sub(wakeup_events, &rb->events);
7505                                 local_inc(&rb->wakeup);
7506                         }
7507                 }
7508         }
7509 }
7510
7511 static u64 perf_virt_to_phys(u64 virt)
7512 {
7513         u64 phys_addr = 0;
7514
7515         if (!virt)
7516                 return 0;
7517
7518         if (virt >= TASK_SIZE) {
7519                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7520                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7521                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7522                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7523         } else {
7524                 /*
7525                  * Walking the pages tables for user address.
7526                  * Interrupts are disabled, so it prevents any tear down
7527                  * of the page tables.
7528                  * Try IRQ-safe get_user_page_fast_only first.
7529                  * If failed, leave phys_addr as 0.
7530                  */
7531                 if (current->mm != NULL) {
7532                         struct page *p;
7533
7534                         pagefault_disable();
7535                         if (get_user_page_fast_only(virt, 0, &p)) {
7536                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7537                                 put_page(p);
7538                         }
7539                         pagefault_enable();
7540                 }
7541         }
7542
7543         return phys_addr;
7544 }
7545
7546 /*
7547  * Return the pagetable size of a given virtual address.
7548  */
7549 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7550 {
7551         u64 size = 0;
7552
7553 #ifdef CONFIG_HAVE_GUP_FAST
7554         pgd_t *pgdp, pgd;
7555         p4d_t *p4dp, p4d;
7556         pud_t *pudp, pud;
7557         pmd_t *pmdp, pmd;
7558         pte_t *ptep, pte;
7559
7560         pgdp = pgd_offset(mm, addr);
7561         pgd = READ_ONCE(*pgdp);
7562         if (pgd_none(pgd))
7563                 return 0;
7564
7565         if (pgd_leaf(pgd))
7566                 return pgd_leaf_size(pgd);
7567
7568         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7569         p4d = READ_ONCE(*p4dp);
7570         if (!p4d_present(p4d))
7571                 return 0;
7572
7573         if (p4d_leaf(p4d))
7574                 return p4d_leaf_size(p4d);
7575
7576         pudp = pud_offset_lockless(p4dp, p4d, addr);
7577         pud = READ_ONCE(*pudp);
7578         if (!pud_present(pud))
7579                 return 0;
7580
7581         if (pud_leaf(pud))
7582                 return pud_leaf_size(pud);
7583
7584         pmdp = pmd_offset_lockless(pudp, pud, addr);
7585 again:
7586         pmd = pmdp_get_lockless(pmdp);
7587         if (!pmd_present(pmd))
7588                 return 0;
7589
7590         if (pmd_leaf(pmd))
7591                 return pmd_leaf_size(pmd);
7592
7593         ptep = pte_offset_map(&pmd, addr);
7594         if (!ptep)
7595                 goto again;
7596
7597         pte = ptep_get_lockless(ptep);
7598         if (pte_present(pte))
7599                 size = pte_leaf_size(pte);
7600         pte_unmap(ptep);
7601 #endif /* CONFIG_HAVE_GUP_FAST */
7602
7603         return size;
7604 }
7605
7606 static u64 perf_get_page_size(unsigned long addr)
7607 {
7608         struct mm_struct *mm;
7609         unsigned long flags;
7610         u64 size;
7611
7612         if (!addr)
7613                 return 0;
7614
7615         /*
7616          * Software page-table walkers must disable IRQs,
7617          * which prevents any tear down of the page tables.
7618          */
7619         local_irq_save(flags);
7620
7621         mm = current->mm;
7622         if (!mm) {
7623                 /*
7624                  * For kernel threads and the like, use init_mm so that
7625                  * we can find kernel memory.
7626                  */
7627                 mm = &init_mm;
7628         }
7629
7630         size = perf_get_pgtable_size(mm, addr);
7631
7632         local_irq_restore(flags);
7633
7634         return size;
7635 }
7636
7637 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7638
7639 struct perf_callchain_entry *
7640 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7641 {
7642         bool kernel = !event->attr.exclude_callchain_kernel;
7643         bool user   = !event->attr.exclude_callchain_user;
7644         /* Disallow cross-task user callchains. */
7645         bool crosstask = event->ctx->task && event->ctx->task != current;
7646         const u32 max_stack = event->attr.sample_max_stack;
7647         struct perf_callchain_entry *callchain;
7648
7649         if (!kernel && !user)
7650                 return &__empty_callchain;
7651
7652         callchain = get_perf_callchain(regs, 0, kernel, user,
7653                                        max_stack, crosstask, true);
7654         return callchain ?: &__empty_callchain;
7655 }
7656
7657 static __always_inline u64 __cond_set(u64 flags, u64 s, u64 d)
7658 {
7659         return d * !!(flags & s);
7660 }
7661
7662 void perf_prepare_sample(struct perf_sample_data *data,
7663                          struct perf_event *event,
7664                          struct pt_regs *regs)
7665 {
7666         u64 sample_type = event->attr.sample_type;
7667         u64 filtered_sample_type;
7668
7669         /*
7670          * Add the sample flags that are dependent to others.  And clear the
7671          * sample flags that have already been done by the PMU driver.
7672          */
7673         filtered_sample_type = sample_type;
7674         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_CODE_PAGE_SIZE,
7675                                            PERF_SAMPLE_IP);
7676         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_DATA_PAGE_SIZE |
7677                                            PERF_SAMPLE_PHYS_ADDR, PERF_SAMPLE_ADDR);
7678         filtered_sample_type |= __cond_set(sample_type, PERF_SAMPLE_STACK_USER,
7679                                            PERF_SAMPLE_REGS_USER);
7680         filtered_sample_type &= ~data->sample_flags;
7681
7682         if (filtered_sample_type == 0) {
7683                 /* Make sure it has the correct data->type for output */
7684                 data->type = event->attr.sample_type;
7685                 return;
7686         }
7687
7688         __perf_event_header__init_id(data, event, filtered_sample_type);
7689
7690         if (filtered_sample_type & PERF_SAMPLE_IP) {
7691                 data->ip = perf_instruction_pointer(regs);
7692                 data->sample_flags |= PERF_SAMPLE_IP;
7693         }
7694
7695         if (filtered_sample_type & PERF_SAMPLE_CALLCHAIN)
7696                 perf_sample_save_callchain(data, event, regs);
7697
7698         if (filtered_sample_type & PERF_SAMPLE_RAW) {
7699                 data->raw = NULL;
7700                 data->dyn_size += sizeof(u64);
7701                 data->sample_flags |= PERF_SAMPLE_RAW;
7702         }
7703
7704         if (filtered_sample_type & PERF_SAMPLE_BRANCH_STACK) {
7705                 data->br_stack = NULL;
7706                 data->dyn_size += sizeof(u64);
7707                 data->sample_flags |= PERF_SAMPLE_BRANCH_STACK;
7708         }
7709
7710         if (filtered_sample_type & PERF_SAMPLE_REGS_USER)
7711                 perf_sample_regs_user(&data->regs_user, regs);
7712
7713         /*
7714          * It cannot use the filtered_sample_type here as REGS_USER can be set
7715          * by STACK_USER (using __cond_set() above) and we don't want to update
7716          * the dyn_size if it's not requested by users.
7717          */
7718         if ((sample_type & ~data->sample_flags) & PERF_SAMPLE_REGS_USER) {
7719                 /* regs dump ABI info */
7720                 int size = sizeof(u64);
7721
7722                 if (data->regs_user.regs) {
7723                         u64 mask = event->attr.sample_regs_user;
7724                         size += hweight64(mask) * sizeof(u64);
7725                 }
7726
7727                 data->dyn_size += size;
7728                 data->sample_flags |= PERF_SAMPLE_REGS_USER;
7729         }
7730
7731         if (filtered_sample_type & PERF_SAMPLE_STACK_USER) {
7732                 /*
7733                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7734                  * processed as the last one or have additional check added
7735                  * in case new sample type is added, because we could eat
7736                  * up the rest of the sample size.
7737                  */
7738                 u16 stack_size = event->attr.sample_stack_user;
7739                 u16 header_size = perf_sample_data_size(data, event);
7740                 u16 size = sizeof(u64);
7741
7742                 stack_size = perf_sample_ustack_size(stack_size, header_size,
7743                                                      data->regs_user.regs);
7744
7745                 /*
7746                  * If there is something to dump, add space for the dump
7747                  * itself and for the field that tells the dynamic size,
7748                  * which is how many have been actually dumped.
7749                  */
7750                 if (stack_size)
7751                         size += sizeof(u64) + stack_size;
7752
7753                 data->stack_user_size = stack_size;
7754                 data->dyn_size += size;
7755                 data->sample_flags |= PERF_SAMPLE_STACK_USER;
7756         }
7757
7758         if (filtered_sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
7759                 data->weight.full = 0;
7760                 data->sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
7761         }
7762
7763         if (filtered_sample_type & PERF_SAMPLE_DATA_SRC) {
7764                 data->data_src.val = PERF_MEM_NA;
7765                 data->sample_flags |= PERF_SAMPLE_DATA_SRC;
7766         }
7767
7768         if (filtered_sample_type & PERF_SAMPLE_TRANSACTION) {
7769                 data->txn = 0;
7770                 data->sample_flags |= PERF_SAMPLE_TRANSACTION;
7771         }
7772
7773         if (filtered_sample_type & PERF_SAMPLE_ADDR) {
7774                 data->addr = 0;
7775                 data->sample_flags |= PERF_SAMPLE_ADDR;
7776         }
7777
7778         if (filtered_sample_type & PERF_SAMPLE_REGS_INTR) {
7779                 /* regs dump ABI info */
7780                 int size = sizeof(u64);
7781
7782                 perf_sample_regs_intr(&data->regs_intr, regs);
7783
7784                 if (data->regs_intr.regs) {
7785                         u64 mask = event->attr.sample_regs_intr;
7786
7787                         size += hweight64(mask) * sizeof(u64);
7788                 }
7789
7790                 data->dyn_size += size;
7791                 data->sample_flags |= PERF_SAMPLE_REGS_INTR;
7792         }
7793
7794         if (filtered_sample_type & PERF_SAMPLE_PHYS_ADDR) {
7795                 data->phys_addr = perf_virt_to_phys(data->addr);
7796                 data->sample_flags |= PERF_SAMPLE_PHYS_ADDR;
7797         }
7798
7799 #ifdef CONFIG_CGROUP_PERF
7800         if (filtered_sample_type & PERF_SAMPLE_CGROUP) {
7801                 struct cgroup *cgrp;
7802
7803                 /* protected by RCU */
7804                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7805                 data->cgroup = cgroup_id(cgrp);
7806                 data->sample_flags |= PERF_SAMPLE_CGROUP;
7807         }
7808 #endif
7809
7810         /*
7811          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7812          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7813          * but the value will not dump to the userspace.
7814          */
7815         if (filtered_sample_type & PERF_SAMPLE_DATA_PAGE_SIZE) {
7816                 data->data_page_size = perf_get_page_size(data->addr);
7817                 data->sample_flags |= PERF_SAMPLE_DATA_PAGE_SIZE;
7818         }
7819
7820         if (filtered_sample_type & PERF_SAMPLE_CODE_PAGE_SIZE) {
7821                 data->code_page_size = perf_get_page_size(data->ip);
7822                 data->sample_flags |= PERF_SAMPLE_CODE_PAGE_SIZE;
7823         }
7824
7825         if (filtered_sample_type & PERF_SAMPLE_AUX) {
7826                 u64 size;
7827                 u16 header_size = perf_sample_data_size(data, event);
7828
7829                 header_size += sizeof(u64); /* size */
7830
7831                 /*
7832                  * Given the 16bit nature of header::size, an AUX sample can
7833                  * easily overflow it, what with all the preceding sample bits.
7834                  * Make sure this doesn't happen by using up to U16_MAX bytes
7835                  * per sample in total (rounded down to 8 byte boundary).
7836                  */
7837                 size = min_t(size_t, U16_MAX - header_size,
7838                              event->attr.aux_sample_size);
7839                 size = rounddown(size, 8);
7840                 size = perf_prepare_sample_aux(event, data, size);
7841
7842                 WARN_ON_ONCE(size + header_size > U16_MAX);
7843                 data->dyn_size += size + sizeof(u64); /* size above */
7844                 data->sample_flags |= PERF_SAMPLE_AUX;
7845         }
7846 }
7847
7848 void perf_prepare_header(struct perf_event_header *header,
7849                          struct perf_sample_data *data,
7850                          struct perf_event *event,
7851                          struct pt_regs *regs)
7852 {
7853         header->type = PERF_RECORD_SAMPLE;
7854         header->size = perf_sample_data_size(data, event);
7855         header->misc = perf_misc_flags(regs);
7856
7857         /*
7858          * If you're adding more sample types here, you likely need to do
7859          * something about the overflowing header::size, like repurpose the
7860          * lowest 3 bits of size, which should be always zero at the moment.
7861          * This raises a more important question, do we really need 512k sized
7862          * samples and why, so good argumentation is in order for whatever you
7863          * do here next.
7864          */
7865         WARN_ON_ONCE(header->size & 7);
7866 }
7867
7868 static __always_inline int
7869 __perf_event_output(struct perf_event *event,
7870                     struct perf_sample_data *data,
7871                     struct pt_regs *regs,
7872                     int (*output_begin)(struct perf_output_handle *,
7873                                         struct perf_sample_data *,
7874                                         struct perf_event *,
7875                                         unsigned int))
7876 {
7877         struct perf_output_handle handle;
7878         struct perf_event_header header;
7879         int err;
7880
7881         /* protect the callchain buffers */
7882         rcu_read_lock();
7883
7884         perf_prepare_sample(data, event, regs);
7885         perf_prepare_header(&header, data, event, regs);
7886
7887         err = output_begin(&handle, data, event, header.size);
7888         if (err)
7889                 goto exit;
7890
7891         perf_output_sample(&handle, &header, data, event);
7892
7893         perf_output_end(&handle);
7894
7895 exit:
7896         rcu_read_unlock();
7897         return err;
7898 }
7899
7900 void
7901 perf_event_output_forward(struct perf_event *event,
7902                          struct perf_sample_data *data,
7903                          struct pt_regs *regs)
7904 {
7905         __perf_event_output(event, data, regs, perf_output_begin_forward);
7906 }
7907
7908 void
7909 perf_event_output_backward(struct perf_event *event,
7910                            struct perf_sample_data *data,
7911                            struct pt_regs *regs)
7912 {
7913         __perf_event_output(event, data, regs, perf_output_begin_backward);
7914 }
7915
7916 int
7917 perf_event_output(struct perf_event *event,
7918                   struct perf_sample_data *data,
7919                   struct pt_regs *regs)
7920 {
7921         return __perf_event_output(event, data, regs, perf_output_begin);
7922 }
7923
7924 /*
7925  * read event_id
7926  */
7927
7928 struct perf_read_event {
7929         struct perf_event_header        header;
7930
7931         u32                             pid;
7932         u32                             tid;
7933 };
7934
7935 static void
7936 perf_event_read_event(struct perf_event *event,
7937                         struct task_struct *task)
7938 {
7939         struct perf_output_handle handle;
7940         struct perf_sample_data sample;
7941         struct perf_read_event read_event = {
7942                 .header = {
7943                         .type = PERF_RECORD_READ,
7944                         .misc = 0,
7945                         .size = sizeof(read_event) + event->read_size,
7946                 },
7947                 .pid = perf_event_pid(event, task),
7948                 .tid = perf_event_tid(event, task),
7949         };
7950         int ret;
7951
7952         perf_event_header__init_id(&read_event.header, &sample, event);
7953         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7954         if (ret)
7955                 return;
7956
7957         perf_output_put(&handle, read_event);
7958         perf_output_read(&handle, event);
7959         perf_event__output_id_sample(event, &handle, &sample);
7960
7961         perf_output_end(&handle);
7962 }
7963
7964 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7965
7966 static void
7967 perf_iterate_ctx(struct perf_event_context *ctx,
7968                    perf_iterate_f output,
7969                    void *data, bool all)
7970 {
7971         struct perf_event *event;
7972
7973         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7974                 if (!all) {
7975                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7976                                 continue;
7977                         if (!event_filter_match(event))
7978                                 continue;
7979                 }
7980
7981                 output(event, data);
7982         }
7983 }
7984
7985 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7986 {
7987         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7988         struct perf_event *event;
7989
7990         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7991                 /*
7992                  * Skip events that are not fully formed yet; ensure that
7993                  * if we observe event->ctx, both event and ctx will be
7994                  * complete enough. See perf_install_in_context().
7995                  */
7996                 if (!smp_load_acquire(&event->ctx))
7997                         continue;
7998
7999                 if (event->state < PERF_EVENT_STATE_INACTIVE)
8000                         continue;
8001                 if (!event_filter_match(event))
8002                         continue;
8003                 output(event, data);
8004         }
8005 }
8006
8007 /*
8008  * Iterate all events that need to receive side-band events.
8009  *
8010  * For new callers; ensure that account_pmu_sb_event() includes
8011  * your event, otherwise it might not get delivered.
8012  */
8013 static void
8014 perf_iterate_sb(perf_iterate_f output, void *data,
8015                struct perf_event_context *task_ctx)
8016 {
8017         struct perf_event_context *ctx;
8018
8019         rcu_read_lock();
8020         preempt_disable();
8021
8022         /*
8023          * If we have task_ctx != NULL we only notify the task context itself.
8024          * The task_ctx is set only for EXIT events before releasing task
8025          * context.
8026          */
8027         if (task_ctx) {
8028                 perf_iterate_ctx(task_ctx, output, data, false);
8029                 goto done;
8030         }
8031
8032         perf_iterate_sb_cpu(output, data);
8033
8034         ctx = rcu_dereference(current->perf_event_ctxp);
8035         if (ctx)
8036                 perf_iterate_ctx(ctx, output, data, false);
8037 done:
8038         preempt_enable();
8039         rcu_read_unlock();
8040 }
8041
8042 /*
8043  * Clear all file-based filters at exec, they'll have to be
8044  * re-instated when/if these objects are mmapped again.
8045  */
8046 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
8047 {
8048         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8049         struct perf_addr_filter *filter;
8050         unsigned int restart = 0, count = 0;
8051         unsigned long flags;
8052
8053         if (!has_addr_filter(event))
8054                 return;
8055
8056         raw_spin_lock_irqsave(&ifh->lock, flags);
8057         list_for_each_entry(filter, &ifh->list, entry) {
8058                 if (filter->path.dentry) {
8059                         event->addr_filter_ranges[count].start = 0;
8060                         event->addr_filter_ranges[count].size = 0;
8061                         restart++;
8062                 }
8063
8064                 count++;
8065         }
8066
8067         if (restart)
8068                 event->addr_filters_gen++;
8069         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8070
8071         if (restart)
8072                 perf_event_stop(event, 1);
8073 }
8074
8075 void perf_event_exec(void)
8076 {
8077         struct perf_event_context *ctx;
8078
8079         ctx = perf_pin_task_context(current);
8080         if (!ctx)
8081                 return;
8082
8083         perf_event_enable_on_exec(ctx);
8084         perf_event_remove_on_exec(ctx);
8085         perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL, true);
8086
8087         perf_unpin_context(ctx);
8088         put_ctx(ctx);
8089 }
8090
8091 struct remote_output {
8092         struct perf_buffer      *rb;
8093         int                     err;
8094 };
8095
8096 static void __perf_event_output_stop(struct perf_event *event, void *data)
8097 {
8098         struct perf_event *parent = event->parent;
8099         struct remote_output *ro = data;
8100         struct perf_buffer *rb = ro->rb;
8101         struct stop_event_data sd = {
8102                 .event  = event,
8103         };
8104
8105         if (!has_aux(event))
8106                 return;
8107
8108         if (!parent)
8109                 parent = event;
8110
8111         /*
8112          * In case of inheritance, it will be the parent that links to the
8113          * ring-buffer, but it will be the child that's actually using it.
8114          *
8115          * We are using event::rb to determine if the event should be stopped,
8116          * however this may race with ring_buffer_attach() (through set_output),
8117          * which will make us skip the event that actually needs to be stopped.
8118          * So ring_buffer_attach() has to stop an aux event before re-assigning
8119          * its rb pointer.
8120          */
8121         if (rcu_dereference(parent->rb) == rb)
8122                 ro->err = __perf_event_stop(&sd);
8123 }
8124
8125 static int __perf_pmu_output_stop(void *info)
8126 {
8127         struct perf_event *event = info;
8128         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
8129         struct remote_output ro = {
8130                 .rb     = event->rb,
8131         };
8132
8133         rcu_read_lock();
8134         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
8135         if (cpuctx->task_ctx)
8136                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
8137                                    &ro, false);
8138         rcu_read_unlock();
8139
8140         return ro.err;
8141 }
8142
8143 static void perf_pmu_output_stop(struct perf_event *event)
8144 {
8145         struct perf_event *iter;
8146         int err, cpu;
8147
8148 restart:
8149         rcu_read_lock();
8150         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
8151                 /*
8152                  * For per-CPU events, we need to make sure that neither they
8153                  * nor their children are running; for cpu==-1 events it's
8154                  * sufficient to stop the event itself if it's active, since
8155                  * it can't have children.
8156                  */
8157                 cpu = iter->cpu;
8158                 if (cpu == -1)
8159                         cpu = READ_ONCE(iter->oncpu);
8160
8161                 if (cpu == -1)
8162                         continue;
8163
8164                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
8165                 if (err == -EAGAIN) {
8166                         rcu_read_unlock();
8167                         goto restart;
8168                 }
8169         }
8170         rcu_read_unlock();
8171 }
8172
8173 /*
8174  * task tracking -- fork/exit
8175  *
8176  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
8177  */
8178
8179 struct perf_task_event {
8180         struct task_struct              *task;
8181         struct perf_event_context       *task_ctx;
8182
8183         struct {
8184                 struct perf_event_header        header;
8185
8186                 u32                             pid;
8187                 u32                             ppid;
8188                 u32                             tid;
8189                 u32                             ptid;
8190                 u64                             time;
8191         } event_id;
8192 };
8193
8194 static int perf_event_task_match(struct perf_event *event)
8195 {
8196         return event->attr.comm  || event->attr.mmap ||
8197                event->attr.mmap2 || event->attr.mmap_data ||
8198                event->attr.task;
8199 }
8200
8201 static void perf_event_task_output(struct perf_event *event,
8202                                    void *data)
8203 {
8204         struct perf_task_event *task_event = data;
8205         struct perf_output_handle handle;
8206         struct perf_sample_data sample;
8207         struct task_struct *task = task_event->task;
8208         int ret, size = task_event->event_id.header.size;
8209
8210         if (!perf_event_task_match(event))
8211                 return;
8212
8213         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
8214
8215         ret = perf_output_begin(&handle, &sample, event,
8216                                 task_event->event_id.header.size);
8217         if (ret)
8218                 goto out;
8219
8220         task_event->event_id.pid = perf_event_pid(event, task);
8221         task_event->event_id.tid = perf_event_tid(event, task);
8222
8223         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
8224                 task_event->event_id.ppid = perf_event_pid(event,
8225                                                         task->real_parent);
8226                 task_event->event_id.ptid = perf_event_pid(event,
8227                                                         task->real_parent);
8228         } else {  /* PERF_RECORD_FORK */
8229                 task_event->event_id.ppid = perf_event_pid(event, current);
8230                 task_event->event_id.ptid = perf_event_tid(event, current);
8231         }
8232
8233         task_event->event_id.time = perf_event_clock(event);
8234
8235         perf_output_put(&handle, task_event->event_id);
8236
8237         perf_event__output_id_sample(event, &handle, &sample);
8238
8239         perf_output_end(&handle);
8240 out:
8241         task_event->event_id.header.size = size;
8242 }
8243
8244 static void perf_event_task(struct task_struct *task,
8245                               struct perf_event_context *task_ctx,
8246                               int new)
8247 {
8248         struct perf_task_event task_event;
8249
8250         if (!atomic_read(&nr_comm_events) &&
8251             !atomic_read(&nr_mmap_events) &&
8252             !atomic_read(&nr_task_events))
8253                 return;
8254
8255         task_event = (struct perf_task_event){
8256                 .task     = task,
8257                 .task_ctx = task_ctx,
8258                 .event_id    = {
8259                         .header = {
8260                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
8261                                 .misc = 0,
8262                                 .size = sizeof(task_event.event_id),
8263                         },
8264                         /* .pid  */
8265                         /* .ppid */
8266                         /* .tid  */
8267                         /* .ptid */
8268                         /* .time */
8269                 },
8270         };
8271
8272         perf_iterate_sb(perf_event_task_output,
8273                        &task_event,
8274                        task_ctx);
8275 }
8276
8277 void perf_event_fork(struct task_struct *task)
8278 {
8279         perf_event_task(task, NULL, 1);
8280         perf_event_namespaces(task);
8281 }
8282
8283 /*
8284  * comm tracking
8285  */
8286
8287 struct perf_comm_event {
8288         struct task_struct      *task;
8289         char                    *comm;
8290         int                     comm_size;
8291
8292         struct {
8293                 struct perf_event_header        header;
8294
8295                 u32                             pid;
8296                 u32                             tid;
8297         } event_id;
8298 };
8299
8300 static int perf_event_comm_match(struct perf_event *event)
8301 {
8302         return event->attr.comm;
8303 }
8304
8305 static void perf_event_comm_output(struct perf_event *event,
8306                                    void *data)
8307 {
8308         struct perf_comm_event *comm_event = data;
8309         struct perf_output_handle handle;
8310         struct perf_sample_data sample;
8311         int size = comm_event->event_id.header.size;
8312         int ret;
8313
8314         if (!perf_event_comm_match(event))
8315                 return;
8316
8317         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
8318         ret = perf_output_begin(&handle, &sample, event,
8319                                 comm_event->event_id.header.size);
8320
8321         if (ret)
8322                 goto out;
8323
8324         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
8325         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
8326
8327         perf_output_put(&handle, comm_event->event_id);
8328         __output_copy(&handle, comm_event->comm,
8329                                    comm_event->comm_size);
8330
8331         perf_event__output_id_sample(event, &handle, &sample);
8332
8333         perf_output_end(&handle);
8334 out:
8335         comm_event->event_id.header.size = size;
8336 }
8337
8338 static void perf_event_comm_event(struct perf_comm_event *comm_event)
8339 {
8340         char comm[TASK_COMM_LEN];
8341         unsigned int size;
8342
8343         memset(comm, 0, sizeof(comm));
8344         strscpy(comm, comm_event->task->comm, sizeof(comm));
8345         size = ALIGN(strlen(comm)+1, sizeof(u64));
8346
8347         comm_event->comm = comm;
8348         comm_event->comm_size = size;
8349
8350         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8351
8352         perf_iterate_sb(perf_event_comm_output,
8353                        comm_event,
8354                        NULL);
8355 }
8356
8357 void perf_event_comm(struct task_struct *task, bool exec)
8358 {
8359         struct perf_comm_event comm_event;
8360
8361         if (!atomic_read(&nr_comm_events))
8362                 return;
8363
8364         comm_event = (struct perf_comm_event){
8365                 .task   = task,
8366                 /* .comm      */
8367                 /* .comm_size */
8368                 .event_id  = {
8369                         .header = {
8370                                 .type = PERF_RECORD_COMM,
8371                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
8372                                 /* .size */
8373                         },
8374                         /* .pid */
8375                         /* .tid */
8376                 },
8377         };
8378
8379         perf_event_comm_event(&comm_event);
8380 }
8381
8382 /*
8383  * namespaces tracking
8384  */
8385
8386 struct perf_namespaces_event {
8387         struct task_struct              *task;
8388
8389         struct {
8390                 struct perf_event_header        header;
8391
8392                 u32                             pid;
8393                 u32                             tid;
8394                 u64                             nr_namespaces;
8395                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8396         } event_id;
8397 };
8398
8399 static int perf_event_namespaces_match(struct perf_event *event)
8400 {
8401         return event->attr.namespaces;
8402 }
8403
8404 static void perf_event_namespaces_output(struct perf_event *event,
8405                                          void *data)
8406 {
8407         struct perf_namespaces_event *namespaces_event = data;
8408         struct perf_output_handle handle;
8409         struct perf_sample_data sample;
8410         u16 header_size = namespaces_event->event_id.header.size;
8411         int ret;
8412
8413         if (!perf_event_namespaces_match(event))
8414                 return;
8415
8416         perf_event_header__init_id(&namespaces_event->event_id.header,
8417                                    &sample, event);
8418         ret = perf_output_begin(&handle, &sample, event,
8419                                 namespaces_event->event_id.header.size);
8420         if (ret)
8421                 goto out;
8422
8423         namespaces_event->event_id.pid = perf_event_pid(event,
8424                                                         namespaces_event->task);
8425         namespaces_event->event_id.tid = perf_event_tid(event,
8426                                                         namespaces_event->task);
8427
8428         perf_output_put(&handle, namespaces_event->event_id);
8429
8430         perf_event__output_id_sample(event, &handle, &sample);
8431
8432         perf_output_end(&handle);
8433 out:
8434         namespaces_event->event_id.header.size = header_size;
8435 }
8436
8437 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8438                                    struct task_struct *task,
8439                                    const struct proc_ns_operations *ns_ops)
8440 {
8441         struct path ns_path;
8442         struct inode *ns_inode;
8443         int error;
8444
8445         error = ns_get_path(&ns_path, task, ns_ops);
8446         if (!error) {
8447                 ns_inode = ns_path.dentry->d_inode;
8448                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8449                 ns_link_info->ino = ns_inode->i_ino;
8450                 path_put(&ns_path);
8451         }
8452 }
8453
8454 void perf_event_namespaces(struct task_struct *task)
8455 {
8456         struct perf_namespaces_event namespaces_event;
8457         struct perf_ns_link_info *ns_link_info;
8458
8459         if (!atomic_read(&nr_namespaces_events))
8460                 return;
8461
8462         namespaces_event = (struct perf_namespaces_event){
8463                 .task   = task,
8464                 .event_id  = {
8465                         .header = {
8466                                 .type = PERF_RECORD_NAMESPACES,
8467                                 .misc = 0,
8468                                 .size = sizeof(namespaces_event.event_id),
8469                         },
8470                         /* .pid */
8471                         /* .tid */
8472                         .nr_namespaces = NR_NAMESPACES,
8473                         /* .link_info[NR_NAMESPACES] */
8474                 },
8475         };
8476
8477         ns_link_info = namespaces_event.event_id.link_info;
8478
8479         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8480                                task, &mntns_operations);
8481
8482 #ifdef CONFIG_USER_NS
8483         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8484                                task, &userns_operations);
8485 #endif
8486 #ifdef CONFIG_NET_NS
8487         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8488                                task, &netns_operations);
8489 #endif
8490 #ifdef CONFIG_UTS_NS
8491         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8492                                task, &utsns_operations);
8493 #endif
8494 #ifdef CONFIG_IPC_NS
8495         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8496                                task, &ipcns_operations);
8497 #endif
8498 #ifdef CONFIG_PID_NS
8499         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8500                                task, &pidns_operations);
8501 #endif
8502 #ifdef CONFIG_CGROUPS
8503         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8504                                task, &cgroupns_operations);
8505 #endif
8506
8507         perf_iterate_sb(perf_event_namespaces_output,
8508                         &namespaces_event,
8509                         NULL);
8510 }
8511
8512 /*
8513  * cgroup tracking
8514  */
8515 #ifdef CONFIG_CGROUP_PERF
8516
8517 struct perf_cgroup_event {
8518         char                            *path;
8519         int                             path_size;
8520         struct {
8521                 struct perf_event_header        header;
8522                 u64                             id;
8523                 char                            path[];
8524         } event_id;
8525 };
8526
8527 static int perf_event_cgroup_match(struct perf_event *event)
8528 {
8529         return event->attr.cgroup;
8530 }
8531
8532 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8533 {
8534         struct perf_cgroup_event *cgroup_event = data;
8535         struct perf_output_handle handle;
8536         struct perf_sample_data sample;
8537         u16 header_size = cgroup_event->event_id.header.size;
8538         int ret;
8539
8540         if (!perf_event_cgroup_match(event))
8541                 return;
8542
8543         perf_event_header__init_id(&cgroup_event->event_id.header,
8544                                    &sample, event);
8545         ret = perf_output_begin(&handle, &sample, event,
8546                                 cgroup_event->event_id.header.size);
8547         if (ret)
8548                 goto out;
8549
8550         perf_output_put(&handle, cgroup_event->event_id);
8551         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8552
8553         perf_event__output_id_sample(event, &handle, &sample);
8554
8555         perf_output_end(&handle);
8556 out:
8557         cgroup_event->event_id.header.size = header_size;
8558 }
8559
8560 static void perf_event_cgroup(struct cgroup *cgrp)
8561 {
8562         struct perf_cgroup_event cgroup_event;
8563         char path_enomem[16] = "//enomem";
8564         char *pathname;
8565         size_t size;
8566
8567         if (!atomic_read(&nr_cgroup_events))
8568                 return;
8569
8570         cgroup_event = (struct perf_cgroup_event){
8571                 .event_id  = {
8572                         .header = {
8573                                 .type = PERF_RECORD_CGROUP,
8574                                 .misc = 0,
8575                                 .size = sizeof(cgroup_event.event_id),
8576                         },
8577                         .id = cgroup_id(cgrp),
8578                 },
8579         };
8580
8581         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8582         if (pathname == NULL) {
8583                 cgroup_event.path = path_enomem;
8584         } else {
8585                 /* just to be sure to have enough space for alignment */
8586                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8587                 cgroup_event.path = pathname;
8588         }
8589
8590         /*
8591          * Since our buffer works in 8 byte units we need to align our string
8592          * size to a multiple of 8. However, we must guarantee the tail end is
8593          * zero'd out to avoid leaking random bits to userspace.
8594          */
8595         size = strlen(cgroup_event.path) + 1;
8596         while (!IS_ALIGNED(size, sizeof(u64)))
8597                 cgroup_event.path[size++] = '\0';
8598
8599         cgroup_event.event_id.header.size += size;
8600         cgroup_event.path_size = size;
8601
8602         perf_iterate_sb(perf_event_cgroup_output,
8603                         &cgroup_event,
8604                         NULL);
8605
8606         kfree(pathname);
8607 }
8608
8609 #endif
8610
8611 /*
8612  * mmap tracking
8613  */
8614
8615 struct perf_mmap_event {
8616         struct vm_area_struct   *vma;
8617
8618         const char              *file_name;
8619         int                     file_size;
8620         int                     maj, min;
8621         u64                     ino;
8622         u64                     ino_generation;
8623         u32                     prot, flags;
8624         u8                      build_id[BUILD_ID_SIZE_MAX];
8625         u32                     build_id_size;
8626
8627         struct {
8628                 struct perf_event_header        header;
8629
8630                 u32                             pid;
8631                 u32                             tid;
8632                 u64                             start;
8633                 u64                             len;
8634                 u64                             pgoff;
8635         } event_id;
8636 };
8637
8638 static int perf_event_mmap_match(struct perf_event *event,
8639                                  void *data)
8640 {
8641         struct perf_mmap_event *mmap_event = data;
8642         struct vm_area_struct *vma = mmap_event->vma;
8643         int executable = vma->vm_flags & VM_EXEC;
8644
8645         return (!executable && event->attr.mmap_data) ||
8646                (executable && (event->attr.mmap || event->attr.mmap2));
8647 }
8648
8649 static void perf_event_mmap_output(struct perf_event *event,
8650                                    void *data)
8651 {
8652         struct perf_mmap_event *mmap_event = data;
8653         struct perf_output_handle handle;
8654         struct perf_sample_data sample;
8655         int size = mmap_event->event_id.header.size;
8656         u32 type = mmap_event->event_id.header.type;
8657         bool use_build_id;
8658         int ret;
8659
8660         if (!perf_event_mmap_match(event, data))
8661                 return;
8662
8663         if (event->attr.mmap2) {
8664                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8665                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8666                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8667                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8668                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8669                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8670                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8671         }
8672
8673         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8674         ret = perf_output_begin(&handle, &sample, event,
8675                                 mmap_event->event_id.header.size);
8676         if (ret)
8677                 goto out;
8678
8679         mmap_event->event_id.pid = perf_event_pid(event, current);
8680         mmap_event->event_id.tid = perf_event_tid(event, current);
8681
8682         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8683
8684         if (event->attr.mmap2 && use_build_id)
8685                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8686
8687         perf_output_put(&handle, mmap_event->event_id);
8688
8689         if (event->attr.mmap2) {
8690                 if (use_build_id) {
8691                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8692
8693                         __output_copy(&handle, size, 4);
8694                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8695                 } else {
8696                         perf_output_put(&handle, mmap_event->maj);
8697                         perf_output_put(&handle, mmap_event->min);
8698                         perf_output_put(&handle, mmap_event->ino);
8699                         perf_output_put(&handle, mmap_event->ino_generation);
8700                 }
8701                 perf_output_put(&handle, mmap_event->prot);
8702                 perf_output_put(&handle, mmap_event->flags);
8703         }
8704
8705         __output_copy(&handle, mmap_event->file_name,
8706                                    mmap_event->file_size);
8707
8708         perf_event__output_id_sample(event, &handle, &sample);
8709
8710         perf_output_end(&handle);
8711 out:
8712         mmap_event->event_id.header.size = size;
8713         mmap_event->event_id.header.type = type;
8714 }
8715
8716 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8717 {
8718         struct vm_area_struct *vma = mmap_event->vma;
8719         struct file *file = vma->vm_file;
8720         int maj = 0, min = 0;
8721         u64 ino = 0, gen = 0;
8722         u32 prot = 0, flags = 0;
8723         unsigned int size;
8724         char tmp[16];
8725         char *buf = NULL;
8726         char *name = NULL;
8727
8728         if (vma->vm_flags & VM_READ)
8729                 prot |= PROT_READ;
8730         if (vma->vm_flags & VM_WRITE)
8731                 prot |= PROT_WRITE;
8732         if (vma->vm_flags & VM_EXEC)
8733                 prot |= PROT_EXEC;
8734
8735         if (vma->vm_flags & VM_MAYSHARE)
8736                 flags = MAP_SHARED;
8737         else
8738                 flags = MAP_PRIVATE;
8739
8740         if (vma->vm_flags & VM_LOCKED)
8741                 flags |= MAP_LOCKED;
8742         if (is_vm_hugetlb_page(vma))
8743                 flags |= MAP_HUGETLB;
8744
8745         if (file) {
8746                 struct inode *inode;
8747                 dev_t dev;
8748
8749                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8750                 if (!buf) {
8751                         name = "//enomem";
8752                         goto cpy_name;
8753                 }
8754                 /*
8755                  * d_path() works from the end of the rb backwards, so we
8756                  * need to add enough zero bytes after the string to handle
8757                  * the 64bit alignment we do later.
8758                  */
8759                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8760                 if (IS_ERR(name)) {
8761                         name = "//toolong";
8762                         goto cpy_name;
8763                 }
8764                 inode = file_inode(vma->vm_file);
8765                 dev = inode->i_sb->s_dev;
8766                 ino = inode->i_ino;
8767                 gen = inode->i_generation;
8768                 maj = MAJOR(dev);
8769                 min = MINOR(dev);
8770
8771                 goto got_name;
8772         } else {
8773                 if (vma->vm_ops && vma->vm_ops->name)
8774                         name = (char *) vma->vm_ops->name(vma);
8775                 if (!name)
8776                         name = (char *)arch_vma_name(vma);
8777                 if (!name) {
8778                         if (vma_is_initial_heap(vma))
8779                                 name = "[heap]";
8780                         else if (vma_is_initial_stack(vma))
8781                                 name = "[stack]";
8782                         else
8783                                 name = "//anon";
8784                 }
8785         }
8786
8787 cpy_name:
8788         strscpy(tmp, name, sizeof(tmp));
8789         name = tmp;
8790 got_name:
8791         /*
8792          * Since our buffer works in 8 byte units we need to align our string
8793          * size to a multiple of 8. However, we must guarantee the tail end is
8794          * zero'd out to avoid leaking random bits to userspace.
8795          */
8796         size = strlen(name)+1;
8797         while (!IS_ALIGNED(size, sizeof(u64)))
8798                 name[size++] = '\0';
8799
8800         mmap_event->file_name = name;
8801         mmap_event->file_size = size;
8802         mmap_event->maj = maj;
8803         mmap_event->min = min;
8804         mmap_event->ino = ino;
8805         mmap_event->ino_generation = gen;
8806         mmap_event->prot = prot;
8807         mmap_event->flags = flags;
8808
8809         if (!(vma->vm_flags & VM_EXEC))
8810                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8811
8812         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8813
8814         if (atomic_read(&nr_build_id_events))
8815                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8816
8817         perf_iterate_sb(perf_event_mmap_output,
8818                        mmap_event,
8819                        NULL);
8820
8821         kfree(buf);
8822 }
8823
8824 /*
8825  * Check whether inode and address range match filter criteria.
8826  */
8827 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8828                                      struct file *file, unsigned long offset,
8829                                      unsigned long size)
8830 {
8831         /* d_inode(NULL) won't be equal to any mapped user-space file */
8832         if (!filter->path.dentry)
8833                 return false;
8834
8835         if (d_inode(filter->path.dentry) != file_inode(file))
8836                 return false;
8837
8838         if (filter->offset > offset + size)
8839                 return false;
8840
8841         if (filter->offset + filter->size < offset)
8842                 return false;
8843
8844         return true;
8845 }
8846
8847 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8848                                         struct vm_area_struct *vma,
8849                                         struct perf_addr_filter_range *fr)
8850 {
8851         unsigned long vma_size = vma->vm_end - vma->vm_start;
8852         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8853         struct file *file = vma->vm_file;
8854
8855         if (!perf_addr_filter_match(filter, file, off, vma_size))
8856                 return false;
8857
8858         if (filter->offset < off) {
8859                 fr->start = vma->vm_start;
8860                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8861         } else {
8862                 fr->start = vma->vm_start + filter->offset - off;
8863                 fr->size = min(vma->vm_end - fr->start, filter->size);
8864         }
8865
8866         return true;
8867 }
8868
8869 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8870 {
8871         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8872         struct vm_area_struct *vma = data;
8873         struct perf_addr_filter *filter;
8874         unsigned int restart = 0, count = 0;
8875         unsigned long flags;
8876
8877         if (!has_addr_filter(event))
8878                 return;
8879
8880         if (!vma->vm_file)
8881                 return;
8882
8883         raw_spin_lock_irqsave(&ifh->lock, flags);
8884         list_for_each_entry(filter, &ifh->list, entry) {
8885                 if (perf_addr_filter_vma_adjust(filter, vma,
8886                                                 &event->addr_filter_ranges[count]))
8887                         restart++;
8888
8889                 count++;
8890         }
8891
8892         if (restart)
8893                 event->addr_filters_gen++;
8894         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8895
8896         if (restart)
8897                 perf_event_stop(event, 1);
8898 }
8899
8900 /*
8901  * Adjust all task's events' filters to the new vma
8902  */
8903 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8904 {
8905         struct perf_event_context *ctx;
8906
8907         /*
8908          * Data tracing isn't supported yet and as such there is no need
8909          * to keep track of anything that isn't related to executable code:
8910          */
8911         if (!(vma->vm_flags & VM_EXEC))
8912                 return;
8913
8914         rcu_read_lock();
8915         ctx = rcu_dereference(current->perf_event_ctxp);
8916         if (ctx)
8917                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8918         rcu_read_unlock();
8919 }
8920
8921 void perf_event_mmap(struct vm_area_struct *vma)
8922 {
8923         struct perf_mmap_event mmap_event;
8924
8925         if (!atomic_read(&nr_mmap_events))
8926                 return;
8927
8928         mmap_event = (struct perf_mmap_event){
8929                 .vma    = vma,
8930                 /* .file_name */
8931                 /* .file_size */
8932                 .event_id  = {
8933                         .header = {
8934                                 .type = PERF_RECORD_MMAP,
8935                                 .misc = PERF_RECORD_MISC_USER,
8936                                 /* .size */
8937                         },
8938                         /* .pid */
8939                         /* .tid */
8940                         .start  = vma->vm_start,
8941                         .len    = vma->vm_end - vma->vm_start,
8942                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8943                 },
8944                 /* .maj (attr_mmap2 only) */
8945                 /* .min (attr_mmap2 only) */
8946                 /* .ino (attr_mmap2 only) */
8947                 /* .ino_generation (attr_mmap2 only) */
8948                 /* .prot (attr_mmap2 only) */
8949                 /* .flags (attr_mmap2 only) */
8950         };
8951
8952         perf_addr_filters_adjust(vma);
8953         perf_event_mmap_event(&mmap_event);
8954 }
8955
8956 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8957                           unsigned long size, u64 flags)
8958 {
8959         struct perf_output_handle handle;
8960         struct perf_sample_data sample;
8961         struct perf_aux_event {
8962                 struct perf_event_header        header;
8963                 u64                             offset;
8964                 u64                             size;
8965                 u64                             flags;
8966         } rec = {
8967                 .header = {
8968                         .type = PERF_RECORD_AUX,
8969                         .misc = 0,
8970                         .size = sizeof(rec),
8971                 },
8972                 .offset         = head,
8973                 .size           = size,
8974                 .flags          = flags,
8975         };
8976         int ret;
8977
8978         perf_event_header__init_id(&rec.header, &sample, event);
8979         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8980
8981         if (ret)
8982                 return;
8983
8984         perf_output_put(&handle, rec);
8985         perf_event__output_id_sample(event, &handle, &sample);
8986
8987         perf_output_end(&handle);
8988 }
8989
8990 /*
8991  * Lost/dropped samples logging
8992  */
8993 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8994 {
8995         struct perf_output_handle handle;
8996         struct perf_sample_data sample;
8997         int ret;
8998
8999         struct {
9000                 struct perf_event_header        header;
9001                 u64                             lost;
9002         } lost_samples_event = {
9003                 .header = {
9004                         .type = PERF_RECORD_LOST_SAMPLES,
9005                         .misc = 0,
9006                         .size = sizeof(lost_samples_event),
9007                 },
9008                 .lost           = lost,
9009         };
9010
9011         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
9012
9013         ret = perf_output_begin(&handle, &sample, event,
9014                                 lost_samples_event.header.size);
9015         if (ret)
9016                 return;
9017
9018         perf_output_put(&handle, lost_samples_event);
9019         perf_event__output_id_sample(event, &handle, &sample);
9020         perf_output_end(&handle);
9021 }
9022
9023 /*
9024  * context_switch tracking
9025  */
9026
9027 struct perf_switch_event {
9028         struct task_struct      *task;
9029         struct task_struct      *next_prev;
9030
9031         struct {
9032                 struct perf_event_header        header;
9033                 u32                             next_prev_pid;
9034                 u32                             next_prev_tid;
9035         } event_id;
9036 };
9037
9038 static int perf_event_switch_match(struct perf_event *event)
9039 {
9040         return event->attr.context_switch;
9041 }
9042
9043 static void perf_event_switch_output(struct perf_event *event, void *data)
9044 {
9045         struct perf_switch_event *se = data;
9046         struct perf_output_handle handle;
9047         struct perf_sample_data sample;
9048         int ret;
9049
9050         if (!perf_event_switch_match(event))
9051                 return;
9052
9053         /* Only CPU-wide events are allowed to see next/prev pid/tid */
9054         if (event->ctx->task) {
9055                 se->event_id.header.type = PERF_RECORD_SWITCH;
9056                 se->event_id.header.size = sizeof(se->event_id.header);
9057         } else {
9058                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
9059                 se->event_id.header.size = sizeof(se->event_id);
9060                 se->event_id.next_prev_pid =
9061                                         perf_event_pid(event, se->next_prev);
9062                 se->event_id.next_prev_tid =
9063                                         perf_event_tid(event, se->next_prev);
9064         }
9065
9066         perf_event_header__init_id(&se->event_id.header, &sample, event);
9067
9068         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
9069         if (ret)
9070                 return;
9071
9072         if (event->ctx->task)
9073                 perf_output_put(&handle, se->event_id.header);
9074         else
9075                 perf_output_put(&handle, se->event_id);
9076
9077         perf_event__output_id_sample(event, &handle, &sample);
9078
9079         perf_output_end(&handle);
9080 }
9081
9082 static void perf_event_switch(struct task_struct *task,
9083                               struct task_struct *next_prev, bool sched_in)
9084 {
9085         struct perf_switch_event switch_event;
9086
9087         /* N.B. caller checks nr_switch_events != 0 */
9088
9089         switch_event = (struct perf_switch_event){
9090                 .task           = task,
9091                 .next_prev      = next_prev,
9092                 .event_id       = {
9093                         .header = {
9094                                 /* .type */
9095                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
9096                                 /* .size */
9097                         },
9098                         /* .next_prev_pid */
9099                         /* .next_prev_tid */
9100                 },
9101         };
9102
9103         if (!sched_in && task->on_rq) {
9104                 switch_event.event_id.header.misc |=
9105                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
9106         }
9107
9108         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
9109 }
9110
9111 /*
9112  * IRQ throttle logging
9113  */
9114
9115 static void perf_log_throttle(struct perf_event *event, int enable)
9116 {
9117         struct perf_output_handle handle;
9118         struct perf_sample_data sample;
9119         int ret;
9120
9121         struct {
9122                 struct perf_event_header        header;
9123                 u64                             time;
9124                 u64                             id;
9125                 u64                             stream_id;
9126         } throttle_event = {
9127                 .header = {
9128                         .type = PERF_RECORD_THROTTLE,
9129                         .misc = 0,
9130                         .size = sizeof(throttle_event),
9131                 },
9132                 .time           = perf_event_clock(event),
9133                 .id             = primary_event_id(event),
9134                 .stream_id      = event->id,
9135         };
9136
9137         if (enable)
9138                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
9139
9140         perf_event_header__init_id(&throttle_event.header, &sample, event);
9141
9142         ret = perf_output_begin(&handle, &sample, event,
9143                                 throttle_event.header.size);
9144         if (ret)
9145                 return;
9146
9147         perf_output_put(&handle, throttle_event);
9148         perf_event__output_id_sample(event, &handle, &sample);
9149         perf_output_end(&handle);
9150 }
9151
9152 /*
9153  * ksymbol register/unregister tracking
9154  */
9155
9156 struct perf_ksymbol_event {
9157         const char      *name;
9158         int             name_len;
9159         struct {
9160                 struct perf_event_header        header;
9161                 u64                             addr;
9162                 u32                             len;
9163                 u16                             ksym_type;
9164                 u16                             flags;
9165         } event_id;
9166 };
9167
9168 static int perf_event_ksymbol_match(struct perf_event *event)
9169 {
9170         return event->attr.ksymbol;
9171 }
9172
9173 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
9174 {
9175         struct perf_ksymbol_event *ksymbol_event = data;
9176         struct perf_output_handle handle;
9177         struct perf_sample_data sample;
9178         int ret;
9179
9180         if (!perf_event_ksymbol_match(event))
9181                 return;
9182
9183         perf_event_header__init_id(&ksymbol_event->event_id.header,
9184                                    &sample, event);
9185         ret = perf_output_begin(&handle, &sample, event,
9186                                 ksymbol_event->event_id.header.size);
9187         if (ret)
9188                 return;
9189
9190         perf_output_put(&handle, ksymbol_event->event_id);
9191         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
9192         perf_event__output_id_sample(event, &handle, &sample);
9193
9194         perf_output_end(&handle);
9195 }
9196
9197 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
9198                         const char *sym)
9199 {
9200         struct perf_ksymbol_event ksymbol_event;
9201         char name[KSYM_NAME_LEN];
9202         u16 flags = 0;
9203         int name_len;
9204
9205         if (!atomic_read(&nr_ksymbol_events))
9206                 return;
9207
9208         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
9209             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
9210                 goto err;
9211
9212         strscpy(name, sym, KSYM_NAME_LEN);
9213         name_len = strlen(name) + 1;
9214         while (!IS_ALIGNED(name_len, sizeof(u64)))
9215                 name[name_len++] = '\0';
9216         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
9217
9218         if (unregister)
9219                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
9220
9221         ksymbol_event = (struct perf_ksymbol_event){
9222                 .name = name,
9223                 .name_len = name_len,
9224                 .event_id = {
9225                         .header = {
9226                                 .type = PERF_RECORD_KSYMBOL,
9227                                 .size = sizeof(ksymbol_event.event_id) +
9228                                         name_len,
9229                         },
9230                         .addr = addr,
9231                         .len = len,
9232                         .ksym_type = ksym_type,
9233                         .flags = flags,
9234                 },
9235         };
9236
9237         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
9238         return;
9239 err:
9240         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
9241 }
9242
9243 /*
9244  * bpf program load/unload tracking
9245  */
9246
9247 struct perf_bpf_event {
9248         struct bpf_prog *prog;
9249         struct {
9250                 struct perf_event_header        header;
9251                 u16                             type;
9252                 u16                             flags;
9253                 u32                             id;
9254                 u8                              tag[BPF_TAG_SIZE];
9255         } event_id;
9256 };
9257
9258 static int perf_event_bpf_match(struct perf_event *event)
9259 {
9260         return event->attr.bpf_event;
9261 }
9262
9263 static void perf_event_bpf_output(struct perf_event *event, void *data)
9264 {
9265         struct perf_bpf_event *bpf_event = data;
9266         struct perf_output_handle handle;
9267         struct perf_sample_data sample;
9268         int ret;
9269
9270         if (!perf_event_bpf_match(event))
9271                 return;
9272
9273         perf_event_header__init_id(&bpf_event->event_id.header,
9274                                    &sample, event);
9275         ret = perf_output_begin(&handle, &sample, event,
9276                                 bpf_event->event_id.header.size);
9277         if (ret)
9278                 return;
9279
9280         perf_output_put(&handle, bpf_event->event_id);
9281         perf_event__output_id_sample(event, &handle, &sample);
9282
9283         perf_output_end(&handle);
9284 }
9285
9286 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
9287                                          enum perf_bpf_event_type type)
9288 {
9289         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
9290         int i;
9291
9292         if (prog->aux->func_cnt == 0) {
9293                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
9294                                    (u64)(unsigned long)prog->bpf_func,
9295                                    prog->jited_len, unregister,
9296                                    prog->aux->ksym.name);
9297         } else {
9298                 for (i = 0; i < prog->aux->func_cnt; i++) {
9299                         struct bpf_prog *subprog = prog->aux->func[i];
9300
9301                         perf_event_ksymbol(
9302                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
9303                                 (u64)(unsigned long)subprog->bpf_func,
9304                                 subprog->jited_len, unregister,
9305                                 subprog->aux->ksym.name);
9306                 }
9307         }
9308 }
9309
9310 void perf_event_bpf_event(struct bpf_prog *prog,
9311                           enum perf_bpf_event_type type,
9312                           u16 flags)
9313 {
9314         struct perf_bpf_event bpf_event;
9315
9316         switch (type) {
9317         case PERF_BPF_EVENT_PROG_LOAD:
9318         case PERF_BPF_EVENT_PROG_UNLOAD:
9319                 if (atomic_read(&nr_ksymbol_events))
9320                         perf_event_bpf_emit_ksymbols(prog, type);
9321                 break;
9322         default:
9323                 return;
9324         }
9325
9326         if (!atomic_read(&nr_bpf_events))
9327                 return;
9328
9329         bpf_event = (struct perf_bpf_event){
9330                 .prog = prog,
9331                 .event_id = {
9332                         .header = {
9333                                 .type = PERF_RECORD_BPF_EVENT,
9334                                 .size = sizeof(bpf_event.event_id),
9335                         },
9336                         .type = type,
9337                         .flags = flags,
9338                         .id = prog->aux->id,
9339                 },
9340         };
9341
9342         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
9343
9344         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
9345         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
9346 }
9347
9348 struct perf_text_poke_event {
9349         const void              *old_bytes;
9350         const void              *new_bytes;
9351         size_t                  pad;
9352         u16                     old_len;
9353         u16                     new_len;
9354
9355         struct {
9356                 struct perf_event_header        header;
9357
9358                 u64                             addr;
9359         } event_id;
9360 };
9361
9362 static int perf_event_text_poke_match(struct perf_event *event)
9363 {
9364         return event->attr.text_poke;
9365 }
9366
9367 static void perf_event_text_poke_output(struct perf_event *event, void *data)
9368 {
9369         struct perf_text_poke_event *text_poke_event = data;
9370         struct perf_output_handle handle;
9371         struct perf_sample_data sample;
9372         u64 padding = 0;
9373         int ret;
9374
9375         if (!perf_event_text_poke_match(event))
9376                 return;
9377
9378         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9379
9380         ret = perf_output_begin(&handle, &sample, event,
9381                                 text_poke_event->event_id.header.size);
9382         if (ret)
9383                 return;
9384
9385         perf_output_put(&handle, text_poke_event->event_id);
9386         perf_output_put(&handle, text_poke_event->old_len);
9387         perf_output_put(&handle, text_poke_event->new_len);
9388
9389         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9390         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9391
9392         if (text_poke_event->pad)
9393                 __output_copy(&handle, &padding, text_poke_event->pad);
9394
9395         perf_event__output_id_sample(event, &handle, &sample);
9396
9397         perf_output_end(&handle);
9398 }
9399
9400 void perf_event_text_poke(const void *addr, const void *old_bytes,
9401                           size_t old_len, const void *new_bytes, size_t new_len)
9402 {
9403         struct perf_text_poke_event text_poke_event;
9404         size_t tot, pad;
9405
9406         if (!atomic_read(&nr_text_poke_events))
9407                 return;
9408
9409         tot  = sizeof(text_poke_event.old_len) + old_len;
9410         tot += sizeof(text_poke_event.new_len) + new_len;
9411         pad  = ALIGN(tot, sizeof(u64)) - tot;
9412
9413         text_poke_event = (struct perf_text_poke_event){
9414                 .old_bytes    = old_bytes,
9415                 .new_bytes    = new_bytes,
9416                 .pad          = pad,
9417                 .old_len      = old_len,
9418                 .new_len      = new_len,
9419                 .event_id  = {
9420                         .header = {
9421                                 .type = PERF_RECORD_TEXT_POKE,
9422                                 .misc = PERF_RECORD_MISC_KERNEL,
9423                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9424                         },
9425                         .addr = (unsigned long)addr,
9426                 },
9427         };
9428
9429         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9430 }
9431
9432 void perf_event_itrace_started(struct perf_event *event)
9433 {
9434         event->attach_state |= PERF_ATTACH_ITRACE;
9435 }
9436
9437 static void perf_log_itrace_start(struct perf_event *event)
9438 {
9439         struct perf_output_handle handle;
9440         struct perf_sample_data sample;
9441         struct perf_aux_event {
9442                 struct perf_event_header        header;
9443                 u32                             pid;
9444                 u32                             tid;
9445         } rec;
9446         int ret;
9447
9448         if (event->parent)
9449                 event = event->parent;
9450
9451         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9452             event->attach_state & PERF_ATTACH_ITRACE)
9453                 return;
9454
9455         rec.header.type = PERF_RECORD_ITRACE_START;
9456         rec.header.misc = 0;
9457         rec.header.size = sizeof(rec);
9458         rec.pid = perf_event_pid(event, current);
9459         rec.tid = perf_event_tid(event, current);
9460
9461         perf_event_header__init_id(&rec.header, &sample, event);
9462         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9463
9464         if (ret)
9465                 return;
9466
9467         perf_output_put(&handle, rec);
9468         perf_event__output_id_sample(event, &handle, &sample);
9469
9470         perf_output_end(&handle);
9471 }
9472
9473 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9474 {
9475         struct perf_output_handle handle;
9476         struct perf_sample_data sample;
9477         struct perf_aux_event {
9478                 struct perf_event_header        header;
9479                 u64                             hw_id;
9480         } rec;
9481         int ret;
9482
9483         if (event->parent)
9484                 event = event->parent;
9485
9486         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9487         rec.header.misc = 0;
9488         rec.header.size = sizeof(rec);
9489         rec.hw_id       = hw_id;
9490
9491         perf_event_header__init_id(&rec.header, &sample, event);
9492         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9493
9494         if (ret)
9495                 return;
9496
9497         perf_output_put(&handle, rec);
9498         perf_event__output_id_sample(event, &handle, &sample);
9499
9500         perf_output_end(&handle);
9501 }
9502 EXPORT_SYMBOL_GPL(perf_report_aux_output_id);
9503
9504 static int
9505 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9506 {
9507         struct hw_perf_event *hwc = &event->hw;
9508         int ret = 0;
9509         u64 seq;
9510
9511         seq = __this_cpu_read(perf_throttled_seq);
9512         if (seq != hwc->interrupts_seq) {
9513                 hwc->interrupts_seq = seq;
9514                 hwc->interrupts = 1;
9515         } else {
9516                 hwc->interrupts++;
9517                 if (unlikely(throttle &&
9518                              hwc->interrupts > max_samples_per_tick)) {
9519                         __this_cpu_inc(perf_throttled_count);
9520                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9521                         hwc->interrupts = MAX_INTERRUPTS;
9522                         perf_log_throttle(event, 0);
9523                         ret = 1;
9524                 }
9525         }
9526
9527         if (event->attr.freq) {
9528                 u64 now = perf_clock();
9529                 s64 delta = now - hwc->freq_time_stamp;
9530
9531                 hwc->freq_time_stamp = now;
9532
9533                 if (delta > 0 && delta < 2*TICK_NSEC)
9534                         perf_adjust_period(event, delta, hwc->last_period, true);
9535         }
9536
9537         return ret;
9538 }
9539
9540 int perf_event_account_interrupt(struct perf_event *event)
9541 {
9542         return __perf_event_account_interrupt(event, 1);
9543 }
9544
9545 static inline bool sample_is_allowed(struct perf_event *event, struct pt_regs *regs)
9546 {
9547         /*
9548          * Due to interrupt latency (AKA "skid"), we may enter the
9549          * kernel before taking an overflow, even if the PMU is only
9550          * counting user events.
9551          */
9552         if (event->attr.exclude_kernel && !user_mode(regs))
9553                 return false;
9554
9555         return true;
9556 }
9557
9558 #ifdef CONFIG_BPF_SYSCALL
9559 static int bpf_overflow_handler(struct perf_event *event,
9560                                 struct perf_sample_data *data,
9561                                 struct pt_regs *regs)
9562 {
9563         struct bpf_perf_event_data_kern ctx = {
9564                 .data = data,
9565                 .event = event,
9566         };
9567         struct bpf_prog *prog;
9568         int ret = 0;
9569
9570         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9571         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9572                 goto out;
9573         rcu_read_lock();
9574         prog = READ_ONCE(event->prog);
9575         if (prog) {
9576                 perf_prepare_sample(data, event, regs);
9577                 ret = bpf_prog_run(prog, &ctx);
9578         }
9579         rcu_read_unlock();
9580 out:
9581         __this_cpu_dec(bpf_prog_active);
9582
9583         return ret;
9584 }
9585
9586 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9587                                              struct bpf_prog *prog,
9588                                              u64 bpf_cookie)
9589 {
9590         if (event->overflow_handler_context)
9591                 /* hw breakpoint or kernel counter */
9592                 return -EINVAL;
9593
9594         if (event->prog)
9595                 return -EEXIST;
9596
9597         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
9598                 return -EINVAL;
9599
9600         if (event->attr.precise_ip &&
9601             prog->call_get_stack &&
9602             (!(event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) ||
9603              event->attr.exclude_callchain_kernel ||
9604              event->attr.exclude_callchain_user)) {
9605                 /*
9606                  * On perf_event with precise_ip, calling bpf_get_stack()
9607                  * may trigger unwinder warnings and occasional crashes.
9608                  * bpf_get_[stack|stackid] works around this issue by using
9609                  * callchain attached to perf_sample_data. If the
9610                  * perf_event does not full (kernel and user) callchain
9611                  * attached to perf_sample_data, do not allow attaching BPF
9612                  * program that calls bpf_get_[stack|stackid].
9613                  */
9614                 return -EPROTO;
9615         }
9616
9617         event->prog = prog;
9618         event->bpf_cookie = bpf_cookie;
9619         return 0;
9620 }
9621
9622 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9623 {
9624         struct bpf_prog *prog = event->prog;
9625
9626         if (!prog)
9627                 return;
9628
9629         event->prog = NULL;
9630         bpf_prog_put(prog);
9631 }
9632 #else
9633 static inline int bpf_overflow_handler(struct perf_event *event,
9634                                        struct perf_sample_data *data,
9635                                        struct pt_regs *regs)
9636 {
9637         return 1;
9638 }
9639
9640 static inline int perf_event_set_bpf_handler(struct perf_event *event,
9641                                              struct bpf_prog *prog,
9642                                              u64 bpf_cookie)
9643 {
9644         return -EOPNOTSUPP;
9645 }
9646
9647 static inline void perf_event_free_bpf_handler(struct perf_event *event)
9648 {
9649 }
9650 #endif
9651
9652 /*
9653  * Generic event overflow handling, sampling.
9654  */
9655
9656 static int __perf_event_overflow(struct perf_event *event,
9657                                  int throttle, struct perf_sample_data *data,
9658                                  struct pt_regs *regs)
9659 {
9660         int events = atomic_read(&event->event_limit);
9661         int ret = 0;
9662
9663         /*
9664          * Non-sampling counters might still use the PMI to fold short
9665          * hardware counters, ignore those.
9666          */
9667         if (unlikely(!is_sampling_event(event)))
9668                 return 0;
9669
9670         ret = __perf_event_account_interrupt(event, throttle);
9671
9672         if (event->prog && !bpf_overflow_handler(event, data, regs))
9673                 return ret;
9674
9675         /*
9676          * XXX event_limit might not quite work as expected on inherited
9677          * events
9678          */
9679
9680         event->pending_kill = POLL_IN;
9681         if (events && atomic_dec_and_test(&event->event_limit)) {
9682                 ret = 1;
9683                 event->pending_kill = POLL_HUP;
9684                 perf_event_disable_inatomic(event);
9685         }
9686
9687         if (event->attr.sigtrap) {
9688                 /*
9689                  * The desired behaviour of sigtrap vs invalid samples is a bit
9690                  * tricky; on the one hand, one should not loose the SIGTRAP if
9691                  * it is the first event, on the other hand, we should also not
9692                  * trigger the WARN or override the data address.
9693                  */
9694                 bool valid_sample = sample_is_allowed(event, regs);
9695                 unsigned int pending_id = 1;
9696
9697                 if (regs)
9698                         pending_id = hash32_ptr((void *)instruction_pointer(regs)) ?: 1;
9699                 if (!event->pending_sigtrap) {
9700                         event->pending_sigtrap = pending_id;
9701                         local_inc(&event->ctx->nr_pending);
9702                 } else if (event->attr.exclude_kernel && valid_sample) {
9703                         /*
9704                          * Should not be able to return to user space without
9705                          * consuming pending_sigtrap; with exceptions:
9706                          *
9707                          *  1. Where !exclude_kernel, events can overflow again
9708                          *     in the kernel without returning to user space.
9709                          *
9710                          *  2. Events that can overflow again before the IRQ-
9711                          *     work without user space progress (e.g. hrtimer).
9712                          *     To approximate progress (with false negatives),
9713                          *     check 32-bit hash of the current IP.
9714                          */
9715                         WARN_ON_ONCE(event->pending_sigtrap != pending_id);
9716                 }
9717
9718                 event->pending_addr = 0;
9719                 if (valid_sample && (data->sample_flags & PERF_SAMPLE_ADDR))
9720                         event->pending_addr = data->addr;
9721                 irq_work_queue(&event->pending_irq);
9722         }
9723
9724         READ_ONCE(event->overflow_handler)(event, data, regs);
9725
9726         if (*perf_event_fasync(event) && event->pending_kill) {
9727                 event->pending_wakeup = 1;
9728                 irq_work_queue(&event->pending_irq);
9729         }
9730
9731         return ret;
9732 }
9733
9734 int perf_event_overflow(struct perf_event *event,
9735                         struct perf_sample_data *data,
9736                         struct pt_regs *regs)
9737 {
9738         return __perf_event_overflow(event, 1, data, regs);
9739 }
9740
9741 /*
9742  * Generic software event infrastructure
9743  */
9744
9745 struct swevent_htable {
9746         struct swevent_hlist            *swevent_hlist;
9747         struct mutex                    hlist_mutex;
9748         int                             hlist_refcount;
9749
9750         /* Recursion avoidance in each contexts */
9751         int                             recursion[PERF_NR_CONTEXTS];
9752 };
9753
9754 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9755
9756 /*
9757  * We directly increment event->count and keep a second value in
9758  * event->hw.period_left to count intervals. This period event
9759  * is kept in the range [-sample_period, 0] so that we can use the
9760  * sign as trigger.
9761  */
9762
9763 u64 perf_swevent_set_period(struct perf_event *event)
9764 {
9765         struct hw_perf_event *hwc = &event->hw;
9766         u64 period = hwc->last_period;
9767         u64 nr, offset;
9768         s64 old, val;
9769
9770         hwc->last_period = hwc->sample_period;
9771
9772         old = local64_read(&hwc->period_left);
9773         do {
9774                 val = old;
9775                 if (val < 0)
9776                         return 0;
9777
9778                 nr = div64_u64(period + val, period);
9779                 offset = nr * period;
9780                 val -= offset;
9781         } while (!local64_try_cmpxchg(&hwc->period_left, &old, val));
9782
9783         return nr;
9784 }
9785
9786 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9787                                     struct perf_sample_data *data,
9788                                     struct pt_regs *regs)
9789 {
9790         struct hw_perf_event *hwc = &event->hw;
9791         int throttle = 0;
9792
9793         if (!overflow)
9794                 overflow = perf_swevent_set_period(event);
9795
9796         if (hwc->interrupts == MAX_INTERRUPTS)
9797                 return;
9798
9799         for (; overflow; overflow--) {
9800                 if (__perf_event_overflow(event, throttle,
9801                                             data, regs)) {
9802                         /*
9803                          * We inhibit the overflow from happening when
9804                          * hwc->interrupts == MAX_INTERRUPTS.
9805                          */
9806                         break;
9807                 }
9808                 throttle = 1;
9809         }
9810 }
9811
9812 static void perf_swevent_event(struct perf_event *event, u64 nr,
9813                                struct perf_sample_data *data,
9814                                struct pt_regs *regs)
9815 {
9816         struct hw_perf_event *hwc = &event->hw;
9817
9818         local64_add(nr, &event->count);
9819
9820         if (!regs)
9821                 return;
9822
9823         if (!is_sampling_event(event))
9824                 return;
9825
9826         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9827                 data->period = nr;
9828                 return perf_swevent_overflow(event, 1, data, regs);
9829         } else
9830                 data->period = event->hw.last_period;
9831
9832         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9833                 return perf_swevent_overflow(event, 1, data, regs);
9834
9835         if (local64_add_negative(nr, &hwc->period_left))
9836                 return;
9837
9838         perf_swevent_overflow(event, 0, data, regs);
9839 }
9840
9841 static int perf_exclude_event(struct perf_event *event,
9842                               struct pt_regs *regs)
9843 {
9844         if (event->hw.state & PERF_HES_STOPPED)
9845                 return 1;
9846
9847         if (regs) {
9848                 if (event->attr.exclude_user && user_mode(regs))
9849                         return 1;
9850
9851                 if (event->attr.exclude_kernel && !user_mode(regs))
9852                         return 1;
9853         }
9854
9855         return 0;
9856 }
9857
9858 static int perf_swevent_match(struct perf_event *event,
9859                                 enum perf_type_id type,
9860                                 u32 event_id,
9861                                 struct perf_sample_data *data,
9862                                 struct pt_regs *regs)
9863 {
9864         if (event->attr.type != type)
9865                 return 0;
9866
9867         if (event->attr.config != event_id)
9868                 return 0;
9869
9870         if (perf_exclude_event(event, regs))
9871                 return 0;
9872
9873         return 1;
9874 }
9875
9876 static inline u64 swevent_hash(u64 type, u32 event_id)
9877 {
9878         u64 val = event_id | (type << 32);
9879
9880         return hash_64(val, SWEVENT_HLIST_BITS);
9881 }
9882
9883 static inline struct hlist_head *
9884 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9885 {
9886         u64 hash = swevent_hash(type, event_id);
9887
9888         return &hlist->heads[hash];
9889 }
9890
9891 /* For the read side: events when they trigger */
9892 static inline struct hlist_head *
9893 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9894 {
9895         struct swevent_hlist *hlist;
9896
9897         hlist = rcu_dereference(swhash->swevent_hlist);
9898         if (!hlist)
9899                 return NULL;
9900
9901         return __find_swevent_head(hlist, type, event_id);
9902 }
9903
9904 /* For the event head insertion and removal in the hlist */
9905 static inline struct hlist_head *
9906 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9907 {
9908         struct swevent_hlist *hlist;
9909         u32 event_id = event->attr.config;
9910         u64 type = event->attr.type;
9911
9912         /*
9913          * Event scheduling is always serialized against hlist allocation
9914          * and release. Which makes the protected version suitable here.
9915          * The context lock guarantees that.
9916          */
9917         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9918                                           lockdep_is_held(&event->ctx->lock));
9919         if (!hlist)
9920                 return NULL;
9921
9922         return __find_swevent_head(hlist, type, event_id);
9923 }
9924
9925 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9926                                     u64 nr,
9927                                     struct perf_sample_data *data,
9928                                     struct pt_regs *regs)
9929 {
9930         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9931         struct perf_event *event;
9932         struct hlist_head *head;
9933
9934         rcu_read_lock();
9935         head = find_swevent_head_rcu(swhash, type, event_id);
9936         if (!head)
9937                 goto end;
9938
9939         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9940                 if (perf_swevent_match(event, type, event_id, data, regs))
9941                         perf_swevent_event(event, nr, data, regs);
9942         }
9943 end:
9944         rcu_read_unlock();
9945 }
9946
9947 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9948
9949 int perf_swevent_get_recursion_context(void)
9950 {
9951         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9952
9953         return get_recursion_context(swhash->recursion);
9954 }
9955 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9956
9957 void perf_swevent_put_recursion_context(int rctx)
9958 {
9959         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9960
9961         put_recursion_context(swhash->recursion, rctx);
9962 }
9963
9964 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9965 {
9966         struct perf_sample_data data;
9967
9968         if (WARN_ON_ONCE(!regs))
9969                 return;
9970
9971         perf_sample_data_init(&data, addr, 0);
9972         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9973 }
9974
9975 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9976 {
9977         int rctx;
9978
9979         preempt_disable_notrace();
9980         rctx = perf_swevent_get_recursion_context();
9981         if (unlikely(rctx < 0))
9982                 goto fail;
9983
9984         ___perf_sw_event(event_id, nr, regs, addr);
9985
9986         perf_swevent_put_recursion_context(rctx);
9987 fail:
9988         preempt_enable_notrace();
9989 }
9990
9991 static void perf_swevent_read(struct perf_event *event)
9992 {
9993 }
9994
9995 static int perf_swevent_add(struct perf_event *event, int flags)
9996 {
9997         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9998         struct hw_perf_event *hwc = &event->hw;
9999         struct hlist_head *head;
10000
10001         if (is_sampling_event(event)) {
10002                 hwc->last_period = hwc->sample_period;
10003                 perf_swevent_set_period(event);
10004         }
10005
10006         hwc->state = !(flags & PERF_EF_START);
10007
10008         head = find_swevent_head(swhash, event);
10009         if (WARN_ON_ONCE(!head))
10010                 return -EINVAL;
10011
10012         hlist_add_head_rcu(&event->hlist_entry, head);
10013         perf_event_update_userpage(event);
10014
10015         return 0;
10016 }
10017
10018 static void perf_swevent_del(struct perf_event *event, int flags)
10019 {
10020         hlist_del_rcu(&event->hlist_entry);
10021 }
10022
10023 static void perf_swevent_start(struct perf_event *event, int flags)
10024 {
10025         event->hw.state = 0;
10026 }
10027
10028 static void perf_swevent_stop(struct perf_event *event, int flags)
10029 {
10030         event->hw.state = PERF_HES_STOPPED;
10031 }
10032
10033 /* Deref the hlist from the update side */
10034 static inline struct swevent_hlist *
10035 swevent_hlist_deref(struct swevent_htable *swhash)
10036 {
10037         return rcu_dereference_protected(swhash->swevent_hlist,
10038                                          lockdep_is_held(&swhash->hlist_mutex));
10039 }
10040
10041 static void swevent_hlist_release(struct swevent_htable *swhash)
10042 {
10043         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
10044
10045         if (!hlist)
10046                 return;
10047
10048         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
10049         kfree_rcu(hlist, rcu_head);
10050 }
10051
10052 static void swevent_hlist_put_cpu(int cpu)
10053 {
10054         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10055
10056         mutex_lock(&swhash->hlist_mutex);
10057
10058         if (!--swhash->hlist_refcount)
10059                 swevent_hlist_release(swhash);
10060
10061         mutex_unlock(&swhash->hlist_mutex);
10062 }
10063
10064 static void swevent_hlist_put(void)
10065 {
10066         int cpu;
10067
10068         for_each_possible_cpu(cpu)
10069                 swevent_hlist_put_cpu(cpu);
10070 }
10071
10072 static int swevent_hlist_get_cpu(int cpu)
10073 {
10074         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
10075         int err = 0;
10076
10077         mutex_lock(&swhash->hlist_mutex);
10078         if (!swevent_hlist_deref(swhash) &&
10079             cpumask_test_cpu(cpu, perf_online_mask)) {
10080                 struct swevent_hlist *hlist;
10081
10082                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
10083                 if (!hlist) {
10084                         err = -ENOMEM;
10085                         goto exit;
10086                 }
10087                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
10088         }
10089         swhash->hlist_refcount++;
10090 exit:
10091         mutex_unlock(&swhash->hlist_mutex);
10092
10093         return err;
10094 }
10095
10096 static int swevent_hlist_get(void)
10097 {
10098         int err, cpu, failed_cpu;
10099
10100         mutex_lock(&pmus_lock);
10101         for_each_possible_cpu(cpu) {
10102                 err = swevent_hlist_get_cpu(cpu);
10103                 if (err) {
10104                         failed_cpu = cpu;
10105                         goto fail;
10106                 }
10107         }
10108         mutex_unlock(&pmus_lock);
10109         return 0;
10110 fail:
10111         for_each_possible_cpu(cpu) {
10112                 if (cpu == failed_cpu)
10113                         break;
10114                 swevent_hlist_put_cpu(cpu);
10115         }
10116         mutex_unlock(&pmus_lock);
10117         return err;
10118 }
10119
10120 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
10121
10122 static void sw_perf_event_destroy(struct perf_event *event)
10123 {
10124         u64 event_id = event->attr.config;
10125
10126         WARN_ON(event->parent);
10127
10128         static_key_slow_dec(&perf_swevent_enabled[event_id]);
10129         swevent_hlist_put();
10130 }
10131
10132 static struct pmu perf_cpu_clock; /* fwd declaration */
10133 static struct pmu perf_task_clock;
10134
10135 static int perf_swevent_init(struct perf_event *event)
10136 {
10137         u64 event_id = event->attr.config;
10138
10139         if (event->attr.type != PERF_TYPE_SOFTWARE)
10140                 return -ENOENT;
10141
10142         /*
10143          * no branch sampling for software events
10144          */
10145         if (has_branch_stack(event))
10146                 return -EOPNOTSUPP;
10147
10148         switch (event_id) {
10149         case PERF_COUNT_SW_CPU_CLOCK:
10150                 event->attr.type = perf_cpu_clock.type;
10151                 return -ENOENT;
10152         case PERF_COUNT_SW_TASK_CLOCK:
10153                 event->attr.type = perf_task_clock.type;
10154                 return -ENOENT;
10155
10156         default:
10157                 break;
10158         }
10159
10160         if (event_id >= PERF_COUNT_SW_MAX)
10161                 return -ENOENT;
10162
10163         if (!event->parent) {
10164                 int err;
10165
10166                 err = swevent_hlist_get();
10167                 if (err)
10168                         return err;
10169
10170                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
10171                 event->destroy = sw_perf_event_destroy;
10172         }
10173
10174         return 0;
10175 }
10176
10177 static struct pmu perf_swevent = {
10178         .task_ctx_nr    = perf_sw_context,
10179
10180         .capabilities   = PERF_PMU_CAP_NO_NMI,
10181
10182         .event_init     = perf_swevent_init,
10183         .add            = perf_swevent_add,
10184         .del            = perf_swevent_del,
10185         .start          = perf_swevent_start,
10186         .stop           = perf_swevent_stop,
10187         .read           = perf_swevent_read,
10188 };
10189
10190 #ifdef CONFIG_EVENT_TRACING
10191
10192 static void tp_perf_event_destroy(struct perf_event *event)
10193 {
10194         perf_trace_destroy(event);
10195 }
10196
10197 static int perf_tp_event_init(struct perf_event *event)
10198 {
10199         int err;
10200
10201         if (event->attr.type != PERF_TYPE_TRACEPOINT)
10202                 return -ENOENT;
10203
10204         /*
10205          * no branch sampling for tracepoint events
10206          */
10207         if (has_branch_stack(event))
10208                 return -EOPNOTSUPP;
10209
10210         err = perf_trace_init(event);
10211         if (err)
10212                 return err;
10213
10214         event->destroy = tp_perf_event_destroy;
10215
10216         return 0;
10217 }
10218
10219 static struct pmu perf_tracepoint = {
10220         .task_ctx_nr    = perf_sw_context,
10221
10222         .event_init     = perf_tp_event_init,
10223         .add            = perf_trace_add,
10224         .del            = perf_trace_del,
10225         .start          = perf_swevent_start,
10226         .stop           = perf_swevent_stop,
10227         .read           = perf_swevent_read,
10228 };
10229
10230 static int perf_tp_filter_match(struct perf_event *event,
10231                                 struct perf_sample_data *data)
10232 {
10233         void *record = data->raw->frag.data;
10234
10235         /* only top level events have filters set */
10236         if (event->parent)
10237                 event = event->parent;
10238
10239         if (likely(!event->filter) || filter_match_preds(event->filter, record))
10240                 return 1;
10241         return 0;
10242 }
10243
10244 static int perf_tp_event_match(struct perf_event *event,
10245                                 struct perf_sample_data *data,
10246                                 struct pt_regs *regs)
10247 {
10248         if (event->hw.state & PERF_HES_STOPPED)
10249                 return 0;
10250         /*
10251          * If exclude_kernel, only trace user-space tracepoints (uprobes)
10252          */
10253         if (event->attr.exclude_kernel && !user_mode(regs))
10254                 return 0;
10255
10256         if (!perf_tp_filter_match(event, data))
10257                 return 0;
10258
10259         return 1;
10260 }
10261
10262 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
10263                                struct trace_event_call *call, u64 count,
10264                                struct pt_regs *regs, struct hlist_head *head,
10265                                struct task_struct *task)
10266 {
10267         if (bpf_prog_array_valid(call)) {
10268                 *(struct pt_regs **)raw_data = regs;
10269                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
10270                         perf_swevent_put_recursion_context(rctx);
10271                         return;
10272                 }
10273         }
10274         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
10275                       rctx, task);
10276 }
10277 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
10278
10279 static void __perf_tp_event_target_task(u64 count, void *record,
10280                                         struct pt_regs *regs,
10281                                         struct perf_sample_data *data,
10282                                         struct perf_event *event)
10283 {
10284         struct trace_entry *entry = record;
10285
10286         if (event->attr.config != entry->type)
10287                 return;
10288         /* Cannot deliver synchronous signal to other task. */
10289         if (event->attr.sigtrap)
10290                 return;
10291         if (perf_tp_event_match(event, data, regs))
10292                 perf_swevent_event(event, count, data, regs);
10293 }
10294
10295 static void perf_tp_event_target_task(u64 count, void *record,
10296                                       struct pt_regs *regs,
10297                                       struct perf_sample_data *data,
10298                                       struct perf_event_context *ctx)
10299 {
10300         unsigned int cpu = smp_processor_id();
10301         struct pmu *pmu = &perf_tracepoint;
10302         struct perf_event *event, *sibling;
10303
10304         perf_event_groups_for_cpu_pmu(event, &ctx->pinned_groups, cpu, pmu) {
10305                 __perf_tp_event_target_task(count, record, regs, data, event);
10306                 for_each_sibling_event(sibling, event)
10307                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10308         }
10309
10310         perf_event_groups_for_cpu_pmu(event, &ctx->flexible_groups, cpu, pmu) {
10311                 __perf_tp_event_target_task(count, record, regs, data, event);
10312                 for_each_sibling_event(sibling, event)
10313                         __perf_tp_event_target_task(count, record, regs, data, sibling);
10314         }
10315 }
10316
10317 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
10318                    struct pt_regs *regs, struct hlist_head *head, int rctx,
10319                    struct task_struct *task)
10320 {
10321         struct perf_sample_data data;
10322         struct perf_event *event;
10323
10324         struct perf_raw_record raw = {
10325                 .frag = {
10326                         .size = entry_size,
10327                         .data = record,
10328                 },
10329         };
10330
10331         perf_sample_data_init(&data, 0, 0);
10332         perf_sample_save_raw_data(&data, &raw);
10333
10334         perf_trace_buf_update(record, event_type);
10335
10336         hlist_for_each_entry_rcu(event, head, hlist_entry) {
10337                 if (perf_tp_event_match(event, &data, regs)) {
10338                         perf_swevent_event(event, count, &data, regs);
10339
10340                         /*
10341                          * Here use the same on-stack perf_sample_data,
10342                          * some members in data are event-specific and
10343                          * need to be re-computed for different sweveents.
10344                          * Re-initialize data->sample_flags safely to avoid
10345                          * the problem that next event skips preparing data
10346                          * because data->sample_flags is set.
10347                          */
10348                         perf_sample_data_init(&data, 0, 0);
10349                         perf_sample_save_raw_data(&data, &raw);
10350                 }
10351         }
10352
10353         /*
10354          * If we got specified a target task, also iterate its context and
10355          * deliver this event there too.
10356          */
10357         if (task && task != current) {
10358                 struct perf_event_context *ctx;
10359
10360                 rcu_read_lock();
10361                 ctx = rcu_dereference(task->perf_event_ctxp);
10362                 if (!ctx)
10363                         goto unlock;
10364
10365                 raw_spin_lock(&ctx->lock);
10366                 perf_tp_event_target_task(count, record, regs, &data, ctx);
10367                 raw_spin_unlock(&ctx->lock);
10368 unlock:
10369                 rcu_read_unlock();
10370         }
10371
10372         perf_swevent_put_recursion_context(rctx);
10373 }
10374 EXPORT_SYMBOL_GPL(perf_tp_event);
10375
10376 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
10377 /*
10378  * Flags in config, used by dynamic PMU kprobe and uprobe
10379  * The flags should match following PMU_FORMAT_ATTR().
10380  *
10381  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
10382  *                               if not set, create kprobe/uprobe
10383  *
10384  * The following values specify a reference counter (or semaphore in the
10385  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
10386  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
10387  *
10388  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
10389  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
10390  */
10391 enum perf_probe_config {
10392         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
10393         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
10394         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
10395 };
10396
10397 PMU_FORMAT_ATTR(retprobe, "config:0");
10398 #endif
10399
10400 #ifdef CONFIG_KPROBE_EVENTS
10401 static struct attribute *kprobe_attrs[] = {
10402         &format_attr_retprobe.attr,
10403         NULL,
10404 };
10405
10406 static struct attribute_group kprobe_format_group = {
10407         .name = "format",
10408         .attrs = kprobe_attrs,
10409 };
10410
10411 static const struct attribute_group *kprobe_attr_groups[] = {
10412         &kprobe_format_group,
10413         NULL,
10414 };
10415
10416 static int perf_kprobe_event_init(struct perf_event *event);
10417 static struct pmu perf_kprobe = {
10418         .task_ctx_nr    = perf_sw_context,
10419         .event_init     = perf_kprobe_event_init,
10420         .add            = perf_trace_add,
10421         .del            = perf_trace_del,
10422         .start          = perf_swevent_start,
10423         .stop           = perf_swevent_stop,
10424         .read           = perf_swevent_read,
10425         .attr_groups    = kprobe_attr_groups,
10426 };
10427
10428 static int perf_kprobe_event_init(struct perf_event *event)
10429 {
10430         int err;
10431         bool is_retprobe;
10432
10433         if (event->attr.type != perf_kprobe.type)
10434                 return -ENOENT;
10435
10436         if (!perfmon_capable())
10437                 return -EACCES;
10438
10439         /*
10440          * no branch sampling for probe events
10441          */
10442         if (has_branch_stack(event))
10443                 return -EOPNOTSUPP;
10444
10445         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10446         err = perf_kprobe_init(event, is_retprobe);
10447         if (err)
10448                 return err;
10449
10450         event->destroy = perf_kprobe_destroy;
10451
10452         return 0;
10453 }
10454 #endif /* CONFIG_KPROBE_EVENTS */
10455
10456 #ifdef CONFIG_UPROBE_EVENTS
10457 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
10458
10459 static struct attribute *uprobe_attrs[] = {
10460         &format_attr_retprobe.attr,
10461         &format_attr_ref_ctr_offset.attr,
10462         NULL,
10463 };
10464
10465 static struct attribute_group uprobe_format_group = {
10466         .name = "format",
10467         .attrs = uprobe_attrs,
10468 };
10469
10470 static const struct attribute_group *uprobe_attr_groups[] = {
10471         &uprobe_format_group,
10472         NULL,
10473 };
10474
10475 static int perf_uprobe_event_init(struct perf_event *event);
10476 static struct pmu perf_uprobe = {
10477         .task_ctx_nr    = perf_sw_context,
10478         .event_init     = perf_uprobe_event_init,
10479         .add            = perf_trace_add,
10480         .del            = perf_trace_del,
10481         .start          = perf_swevent_start,
10482         .stop           = perf_swevent_stop,
10483         .read           = perf_swevent_read,
10484         .attr_groups    = uprobe_attr_groups,
10485 };
10486
10487 static int perf_uprobe_event_init(struct perf_event *event)
10488 {
10489         int err;
10490         unsigned long ref_ctr_offset;
10491         bool is_retprobe;
10492
10493         if (event->attr.type != perf_uprobe.type)
10494                 return -ENOENT;
10495
10496         if (!perfmon_capable())
10497                 return -EACCES;
10498
10499         /*
10500          * no branch sampling for probe events
10501          */
10502         if (has_branch_stack(event))
10503                 return -EOPNOTSUPP;
10504
10505         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
10506         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10507         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
10508         if (err)
10509                 return err;
10510
10511         event->destroy = perf_uprobe_destroy;
10512
10513         return 0;
10514 }
10515 #endif /* CONFIG_UPROBE_EVENTS */
10516
10517 static inline void perf_tp_register(void)
10518 {
10519         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
10520 #ifdef CONFIG_KPROBE_EVENTS
10521         perf_pmu_register(&perf_kprobe, "kprobe", -1);
10522 #endif
10523 #ifdef CONFIG_UPROBE_EVENTS
10524         perf_pmu_register(&perf_uprobe, "uprobe", -1);
10525 #endif
10526 }
10527
10528 static void perf_event_free_filter(struct perf_event *event)
10529 {
10530         ftrace_profile_free_filter(event);
10531 }
10532
10533 /*
10534  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10535  * with perf_event_open()
10536  */
10537 static inline bool perf_event_is_tracing(struct perf_event *event)
10538 {
10539         if (event->pmu == &perf_tracepoint)
10540                 return true;
10541 #ifdef CONFIG_KPROBE_EVENTS
10542         if (event->pmu == &perf_kprobe)
10543                 return true;
10544 #endif
10545 #ifdef CONFIG_UPROBE_EVENTS
10546         if (event->pmu == &perf_uprobe)
10547                 return true;
10548 #endif
10549         return false;
10550 }
10551
10552 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10553                             u64 bpf_cookie)
10554 {
10555         bool is_kprobe, is_uprobe, is_tracepoint, is_syscall_tp;
10556
10557         if (!perf_event_is_tracing(event))
10558                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10559
10560         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_KPROBE;
10561         is_uprobe = event->tp_event->flags & TRACE_EVENT_FL_UPROBE;
10562         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10563         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10564         if (!is_kprobe && !is_uprobe && !is_tracepoint && !is_syscall_tp)
10565                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10566                 return -EINVAL;
10567
10568         if (((is_kprobe || is_uprobe) && prog->type != BPF_PROG_TYPE_KPROBE) ||
10569             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10570             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10571                 return -EINVAL;
10572
10573         if (prog->type == BPF_PROG_TYPE_KPROBE && prog->sleepable && !is_uprobe)
10574                 /* only uprobe programs are allowed to be sleepable */
10575                 return -EINVAL;
10576
10577         /* Kprobe override only works for kprobes, not uprobes. */
10578         if (prog->kprobe_override && !is_kprobe)
10579                 return -EINVAL;
10580
10581         if (is_tracepoint || is_syscall_tp) {
10582                 int off = trace_event_get_offsets(event->tp_event);
10583
10584                 if (prog->aux->max_ctx_offset > off)
10585                         return -EACCES;
10586         }
10587
10588         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10589 }
10590
10591 void perf_event_free_bpf_prog(struct perf_event *event)
10592 {
10593         if (!perf_event_is_tracing(event)) {
10594                 perf_event_free_bpf_handler(event);
10595                 return;
10596         }
10597         perf_event_detach_bpf_prog(event);
10598 }
10599
10600 #else
10601
10602 static inline void perf_tp_register(void)
10603 {
10604 }
10605
10606 static void perf_event_free_filter(struct perf_event *event)
10607 {
10608 }
10609
10610 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10611                             u64 bpf_cookie)
10612 {
10613         return -ENOENT;
10614 }
10615
10616 void perf_event_free_bpf_prog(struct perf_event *event)
10617 {
10618 }
10619 #endif /* CONFIG_EVENT_TRACING */
10620
10621 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10622 void perf_bp_event(struct perf_event *bp, void *data)
10623 {
10624         struct perf_sample_data sample;
10625         struct pt_regs *regs = data;
10626
10627         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10628
10629         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10630                 perf_swevent_event(bp, 1, &sample, regs);
10631 }
10632 #endif
10633
10634 /*
10635  * Allocate a new address filter
10636  */
10637 static struct perf_addr_filter *
10638 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10639 {
10640         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10641         struct perf_addr_filter *filter;
10642
10643         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10644         if (!filter)
10645                 return NULL;
10646
10647         INIT_LIST_HEAD(&filter->entry);
10648         list_add_tail(&filter->entry, filters);
10649
10650         return filter;
10651 }
10652
10653 static void free_filters_list(struct list_head *filters)
10654 {
10655         struct perf_addr_filter *filter, *iter;
10656
10657         list_for_each_entry_safe(filter, iter, filters, entry) {
10658                 path_put(&filter->path);
10659                 list_del(&filter->entry);
10660                 kfree(filter);
10661         }
10662 }
10663
10664 /*
10665  * Free existing address filters and optionally install new ones
10666  */
10667 static void perf_addr_filters_splice(struct perf_event *event,
10668                                      struct list_head *head)
10669 {
10670         unsigned long flags;
10671         LIST_HEAD(list);
10672
10673         if (!has_addr_filter(event))
10674                 return;
10675
10676         /* don't bother with children, they don't have their own filters */
10677         if (event->parent)
10678                 return;
10679
10680         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10681
10682         list_splice_init(&event->addr_filters.list, &list);
10683         if (head)
10684                 list_splice(head, &event->addr_filters.list);
10685
10686         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10687
10688         free_filters_list(&list);
10689 }
10690
10691 /*
10692  * Scan through mm's vmas and see if one of them matches the
10693  * @filter; if so, adjust filter's address range.
10694  * Called with mm::mmap_lock down for reading.
10695  */
10696 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10697                                    struct mm_struct *mm,
10698                                    struct perf_addr_filter_range *fr)
10699 {
10700         struct vm_area_struct *vma;
10701         VMA_ITERATOR(vmi, mm, 0);
10702
10703         for_each_vma(vmi, vma) {
10704                 if (!vma->vm_file)
10705                         continue;
10706
10707                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10708                         return;
10709         }
10710 }
10711
10712 /*
10713  * Update event's address range filters based on the
10714  * task's existing mappings, if any.
10715  */
10716 static void perf_event_addr_filters_apply(struct perf_event *event)
10717 {
10718         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10719         struct task_struct *task = READ_ONCE(event->ctx->task);
10720         struct perf_addr_filter *filter;
10721         struct mm_struct *mm = NULL;
10722         unsigned int count = 0;
10723         unsigned long flags;
10724
10725         /*
10726          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10727          * will stop on the parent's child_mutex that our caller is also holding
10728          */
10729         if (task == TASK_TOMBSTONE)
10730                 return;
10731
10732         if (ifh->nr_file_filters) {
10733                 mm = get_task_mm(task);
10734                 if (!mm)
10735                         goto restart;
10736
10737                 mmap_read_lock(mm);
10738         }
10739
10740         raw_spin_lock_irqsave(&ifh->lock, flags);
10741         list_for_each_entry(filter, &ifh->list, entry) {
10742                 if (filter->path.dentry) {
10743                         /*
10744                          * Adjust base offset if the filter is associated to a
10745                          * binary that needs to be mapped:
10746                          */
10747                         event->addr_filter_ranges[count].start = 0;
10748                         event->addr_filter_ranges[count].size = 0;
10749
10750                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10751                 } else {
10752                         event->addr_filter_ranges[count].start = filter->offset;
10753                         event->addr_filter_ranges[count].size  = filter->size;
10754                 }
10755
10756                 count++;
10757         }
10758
10759         event->addr_filters_gen++;
10760         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10761
10762         if (ifh->nr_file_filters) {
10763                 mmap_read_unlock(mm);
10764
10765                 mmput(mm);
10766         }
10767
10768 restart:
10769         perf_event_stop(event, 1);
10770 }
10771
10772 /*
10773  * Address range filtering: limiting the data to certain
10774  * instruction address ranges. Filters are ioctl()ed to us from
10775  * userspace as ascii strings.
10776  *
10777  * Filter string format:
10778  *
10779  * ACTION RANGE_SPEC
10780  * where ACTION is one of the
10781  *  * "filter": limit the trace to this region
10782  *  * "start": start tracing from this address
10783  *  * "stop": stop tracing at this address/region;
10784  * RANGE_SPEC is
10785  *  * for kernel addresses: <start address>[/<size>]
10786  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10787  *
10788  * if <size> is not specified or is zero, the range is treated as a single
10789  * address; not valid for ACTION=="filter".
10790  */
10791 enum {
10792         IF_ACT_NONE = -1,
10793         IF_ACT_FILTER,
10794         IF_ACT_START,
10795         IF_ACT_STOP,
10796         IF_SRC_FILE,
10797         IF_SRC_KERNEL,
10798         IF_SRC_FILEADDR,
10799         IF_SRC_KERNELADDR,
10800 };
10801
10802 enum {
10803         IF_STATE_ACTION = 0,
10804         IF_STATE_SOURCE,
10805         IF_STATE_END,
10806 };
10807
10808 static const match_table_t if_tokens = {
10809         { IF_ACT_FILTER,        "filter" },
10810         { IF_ACT_START,         "start" },
10811         { IF_ACT_STOP,          "stop" },
10812         { IF_SRC_FILE,          "%u/%u@%s" },
10813         { IF_SRC_KERNEL,        "%u/%u" },
10814         { IF_SRC_FILEADDR,      "%u@%s" },
10815         { IF_SRC_KERNELADDR,    "%u" },
10816         { IF_ACT_NONE,          NULL },
10817 };
10818
10819 /*
10820  * Address filter string parser
10821  */
10822 static int
10823 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10824                              struct list_head *filters)
10825 {
10826         struct perf_addr_filter *filter = NULL;
10827         char *start, *orig, *filename = NULL;
10828         substring_t args[MAX_OPT_ARGS];
10829         int state = IF_STATE_ACTION, token;
10830         unsigned int kernel = 0;
10831         int ret = -EINVAL;
10832
10833         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10834         if (!fstr)
10835                 return -ENOMEM;
10836
10837         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10838                 static const enum perf_addr_filter_action_t actions[] = {
10839                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10840                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10841                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10842                 };
10843                 ret = -EINVAL;
10844
10845                 if (!*start)
10846                         continue;
10847
10848                 /* filter definition begins */
10849                 if (state == IF_STATE_ACTION) {
10850                         filter = perf_addr_filter_new(event, filters);
10851                         if (!filter)
10852                                 goto fail;
10853                 }
10854
10855                 token = match_token(start, if_tokens, args);
10856                 switch (token) {
10857                 case IF_ACT_FILTER:
10858                 case IF_ACT_START:
10859                 case IF_ACT_STOP:
10860                         if (state != IF_STATE_ACTION)
10861                                 goto fail;
10862
10863                         filter->action = actions[token];
10864                         state = IF_STATE_SOURCE;
10865                         break;
10866
10867                 case IF_SRC_KERNELADDR:
10868                 case IF_SRC_KERNEL:
10869                         kernel = 1;
10870                         fallthrough;
10871
10872                 case IF_SRC_FILEADDR:
10873                 case IF_SRC_FILE:
10874                         if (state != IF_STATE_SOURCE)
10875                                 goto fail;
10876
10877                         *args[0].to = 0;
10878                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10879                         if (ret)
10880                                 goto fail;
10881
10882                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10883                                 *args[1].to = 0;
10884                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10885                                 if (ret)
10886                                         goto fail;
10887                         }
10888
10889                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10890                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10891
10892                                 kfree(filename);
10893                                 filename = match_strdup(&args[fpos]);
10894                                 if (!filename) {
10895                                         ret = -ENOMEM;
10896                                         goto fail;
10897                                 }
10898                         }
10899
10900                         state = IF_STATE_END;
10901                         break;
10902
10903                 default:
10904                         goto fail;
10905                 }
10906
10907                 /*
10908                  * Filter definition is fully parsed, validate and install it.
10909                  * Make sure that it doesn't contradict itself or the event's
10910                  * attribute.
10911                  */
10912                 if (state == IF_STATE_END) {
10913                         ret = -EINVAL;
10914
10915                         /*
10916                          * ACTION "filter" must have a non-zero length region
10917                          * specified.
10918                          */
10919                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10920                             !filter->size)
10921                                 goto fail;
10922
10923                         if (!kernel) {
10924                                 if (!filename)
10925                                         goto fail;
10926
10927                                 /*
10928                                  * For now, we only support file-based filters
10929                                  * in per-task events; doing so for CPU-wide
10930                                  * events requires additional context switching
10931                                  * trickery, since same object code will be
10932                                  * mapped at different virtual addresses in
10933                                  * different processes.
10934                                  */
10935                                 ret = -EOPNOTSUPP;
10936                                 if (!event->ctx->task)
10937                                         goto fail;
10938
10939                                 /* look up the path and grab its inode */
10940                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10941                                                 &filter->path);
10942                                 if (ret)
10943                                         goto fail;
10944
10945                                 ret = -EINVAL;
10946                                 if (!filter->path.dentry ||
10947                                     !S_ISREG(d_inode(filter->path.dentry)
10948                                              ->i_mode))
10949                                         goto fail;
10950
10951                                 event->addr_filters.nr_file_filters++;
10952                         }
10953
10954                         /* ready to consume more filters */
10955                         kfree(filename);
10956                         filename = NULL;
10957                         state = IF_STATE_ACTION;
10958                         filter = NULL;
10959                         kernel = 0;
10960                 }
10961         }
10962
10963         if (state != IF_STATE_ACTION)
10964                 goto fail;
10965
10966         kfree(filename);
10967         kfree(orig);
10968
10969         return 0;
10970
10971 fail:
10972         kfree(filename);
10973         free_filters_list(filters);
10974         kfree(orig);
10975
10976         return ret;
10977 }
10978
10979 static int
10980 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10981 {
10982         LIST_HEAD(filters);
10983         int ret;
10984
10985         /*
10986          * Since this is called in perf_ioctl() path, we're already holding
10987          * ctx::mutex.
10988          */
10989         lockdep_assert_held(&event->ctx->mutex);
10990
10991         if (WARN_ON_ONCE(event->parent))
10992                 return -EINVAL;
10993
10994         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10995         if (ret)
10996                 goto fail_clear_files;
10997
10998         ret = event->pmu->addr_filters_validate(&filters);
10999         if (ret)
11000                 goto fail_free_filters;
11001
11002         /* remove existing filters, if any */
11003         perf_addr_filters_splice(event, &filters);
11004
11005         /* install new filters */
11006         perf_event_for_each_child(event, perf_event_addr_filters_apply);
11007
11008         return ret;
11009
11010 fail_free_filters:
11011         free_filters_list(&filters);
11012
11013 fail_clear_files:
11014         event->addr_filters.nr_file_filters = 0;
11015
11016         return ret;
11017 }
11018
11019 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
11020 {
11021         int ret = -EINVAL;
11022         char *filter_str;
11023
11024         filter_str = strndup_user(arg, PAGE_SIZE);
11025         if (IS_ERR(filter_str))
11026                 return PTR_ERR(filter_str);
11027
11028 #ifdef CONFIG_EVENT_TRACING
11029         if (perf_event_is_tracing(event)) {
11030                 struct perf_event_context *ctx = event->ctx;
11031
11032                 /*
11033                  * Beware, here be dragons!!
11034                  *
11035                  * the tracepoint muck will deadlock against ctx->mutex, but
11036                  * the tracepoint stuff does not actually need it. So
11037                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
11038                  * already have a reference on ctx.
11039                  *
11040                  * This can result in event getting moved to a different ctx,
11041                  * but that does not affect the tracepoint state.
11042                  */
11043                 mutex_unlock(&ctx->mutex);
11044                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
11045                 mutex_lock(&ctx->mutex);
11046         } else
11047 #endif
11048         if (has_addr_filter(event))
11049                 ret = perf_event_set_addr_filter(event, filter_str);
11050
11051         kfree(filter_str);
11052         return ret;
11053 }
11054
11055 /*
11056  * hrtimer based swevent callback
11057  */
11058
11059 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
11060 {
11061         enum hrtimer_restart ret = HRTIMER_RESTART;
11062         struct perf_sample_data data;
11063         struct pt_regs *regs;
11064         struct perf_event *event;
11065         u64 period;
11066
11067         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
11068
11069         if (event->state != PERF_EVENT_STATE_ACTIVE)
11070                 return HRTIMER_NORESTART;
11071
11072         event->pmu->read(event);
11073
11074         perf_sample_data_init(&data, 0, event->hw.last_period);
11075         regs = get_irq_regs();
11076
11077         if (regs && !perf_exclude_event(event, regs)) {
11078                 if (!(event->attr.exclude_idle && is_idle_task(current)))
11079                         if (__perf_event_overflow(event, 1, &data, regs))
11080                                 ret = HRTIMER_NORESTART;
11081         }
11082
11083         period = max_t(u64, 10000, event->hw.sample_period);
11084         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
11085
11086         return ret;
11087 }
11088
11089 static void perf_swevent_start_hrtimer(struct perf_event *event)
11090 {
11091         struct hw_perf_event *hwc = &event->hw;
11092         s64 period;
11093
11094         if (!is_sampling_event(event))
11095                 return;
11096
11097         period = local64_read(&hwc->period_left);
11098         if (period) {
11099                 if (period < 0)
11100                         period = 10000;
11101
11102                 local64_set(&hwc->period_left, 0);
11103         } else {
11104                 period = max_t(u64, 10000, hwc->sample_period);
11105         }
11106         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
11107                       HRTIMER_MODE_REL_PINNED_HARD);
11108 }
11109
11110 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
11111 {
11112         struct hw_perf_event *hwc = &event->hw;
11113
11114         if (is_sampling_event(event)) {
11115                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
11116                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
11117
11118                 hrtimer_cancel(&hwc->hrtimer);
11119         }
11120 }
11121
11122 static void perf_swevent_init_hrtimer(struct perf_event *event)
11123 {
11124         struct hw_perf_event *hwc = &event->hw;
11125
11126         if (!is_sampling_event(event))
11127                 return;
11128
11129         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
11130         hwc->hrtimer.function = perf_swevent_hrtimer;
11131
11132         /*
11133          * Since hrtimers have a fixed rate, we can do a static freq->period
11134          * mapping and avoid the whole period adjust feedback stuff.
11135          */
11136         if (event->attr.freq) {
11137                 long freq = event->attr.sample_freq;
11138
11139                 event->attr.sample_period = NSEC_PER_SEC / freq;
11140                 hwc->sample_period = event->attr.sample_period;
11141                 local64_set(&hwc->period_left, hwc->sample_period);
11142                 hwc->last_period = hwc->sample_period;
11143                 event->attr.freq = 0;
11144         }
11145 }
11146
11147 /*
11148  * Software event: cpu wall time clock
11149  */
11150
11151 static void cpu_clock_event_update(struct perf_event *event)
11152 {
11153         s64 prev;
11154         u64 now;
11155
11156         now = local_clock();
11157         prev = local64_xchg(&event->hw.prev_count, now);
11158         local64_add(now - prev, &event->count);
11159 }
11160
11161 static void cpu_clock_event_start(struct perf_event *event, int flags)
11162 {
11163         local64_set(&event->hw.prev_count, local_clock());
11164         perf_swevent_start_hrtimer(event);
11165 }
11166
11167 static void cpu_clock_event_stop(struct perf_event *event, int flags)
11168 {
11169         perf_swevent_cancel_hrtimer(event);
11170         cpu_clock_event_update(event);
11171 }
11172
11173 static int cpu_clock_event_add(struct perf_event *event, int flags)
11174 {
11175         if (flags & PERF_EF_START)
11176                 cpu_clock_event_start(event, flags);
11177         perf_event_update_userpage(event);
11178
11179         return 0;
11180 }
11181
11182 static void cpu_clock_event_del(struct perf_event *event, int flags)
11183 {
11184         cpu_clock_event_stop(event, flags);
11185 }
11186
11187 static void cpu_clock_event_read(struct perf_event *event)
11188 {
11189         cpu_clock_event_update(event);
11190 }
11191
11192 static int cpu_clock_event_init(struct perf_event *event)
11193 {
11194         if (event->attr.type != perf_cpu_clock.type)
11195                 return -ENOENT;
11196
11197         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
11198                 return -ENOENT;
11199
11200         /*
11201          * no branch sampling for software events
11202          */
11203         if (has_branch_stack(event))
11204                 return -EOPNOTSUPP;
11205
11206         perf_swevent_init_hrtimer(event);
11207
11208         return 0;
11209 }
11210
11211 static struct pmu perf_cpu_clock = {
11212         .task_ctx_nr    = perf_sw_context,
11213
11214         .capabilities   = PERF_PMU_CAP_NO_NMI,
11215         .dev            = PMU_NULL_DEV,
11216
11217         .event_init     = cpu_clock_event_init,
11218         .add            = cpu_clock_event_add,
11219         .del            = cpu_clock_event_del,
11220         .start          = cpu_clock_event_start,
11221         .stop           = cpu_clock_event_stop,
11222         .read           = cpu_clock_event_read,
11223 };
11224
11225 /*
11226  * Software event: task time clock
11227  */
11228
11229 static void task_clock_event_update(struct perf_event *event, u64 now)
11230 {
11231         u64 prev;
11232         s64 delta;
11233
11234         prev = local64_xchg(&event->hw.prev_count, now);
11235         delta = now - prev;
11236         local64_add(delta, &event->count);
11237 }
11238
11239 static void task_clock_event_start(struct perf_event *event, int flags)
11240 {
11241         local64_set(&event->hw.prev_count, event->ctx->time);
11242         perf_swevent_start_hrtimer(event);
11243 }
11244
11245 static void task_clock_event_stop(struct perf_event *event, int flags)
11246 {
11247         perf_swevent_cancel_hrtimer(event);
11248         task_clock_event_update(event, event->ctx->time);
11249 }
11250
11251 static int task_clock_event_add(struct perf_event *event, int flags)
11252 {
11253         if (flags & PERF_EF_START)
11254                 task_clock_event_start(event, flags);
11255         perf_event_update_userpage(event);
11256
11257         return 0;
11258 }
11259
11260 static void task_clock_event_del(struct perf_event *event, int flags)
11261 {
11262         task_clock_event_stop(event, PERF_EF_UPDATE);
11263 }
11264
11265 static void task_clock_event_read(struct perf_event *event)
11266 {
11267         u64 now = perf_clock();
11268         u64 delta = now - event->ctx->timestamp;
11269         u64 time = event->ctx->time + delta;
11270
11271         task_clock_event_update(event, time);
11272 }
11273
11274 static int task_clock_event_init(struct perf_event *event)
11275 {
11276         if (event->attr.type != perf_task_clock.type)
11277                 return -ENOENT;
11278
11279         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
11280                 return -ENOENT;
11281
11282         /*
11283          * no branch sampling for software events
11284          */
11285         if (has_branch_stack(event))
11286                 return -EOPNOTSUPP;
11287
11288         perf_swevent_init_hrtimer(event);
11289
11290         return 0;
11291 }
11292
11293 static struct pmu perf_task_clock = {
11294         .task_ctx_nr    = perf_sw_context,
11295
11296         .capabilities   = PERF_PMU_CAP_NO_NMI,
11297         .dev            = PMU_NULL_DEV,
11298
11299         .event_init     = task_clock_event_init,
11300         .add            = task_clock_event_add,
11301         .del            = task_clock_event_del,
11302         .start          = task_clock_event_start,
11303         .stop           = task_clock_event_stop,
11304         .read           = task_clock_event_read,
11305 };
11306
11307 static void perf_pmu_nop_void(struct pmu *pmu)
11308 {
11309 }
11310
11311 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
11312 {
11313 }
11314
11315 static int perf_pmu_nop_int(struct pmu *pmu)
11316 {
11317         return 0;
11318 }
11319
11320 static int perf_event_nop_int(struct perf_event *event, u64 value)
11321 {
11322         return 0;
11323 }
11324
11325 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
11326
11327 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
11328 {
11329         __this_cpu_write(nop_txn_flags, flags);
11330
11331         if (flags & ~PERF_PMU_TXN_ADD)
11332                 return;
11333
11334         perf_pmu_disable(pmu);
11335 }
11336
11337 static int perf_pmu_commit_txn(struct pmu *pmu)
11338 {
11339         unsigned int flags = __this_cpu_read(nop_txn_flags);
11340
11341         __this_cpu_write(nop_txn_flags, 0);
11342
11343         if (flags & ~PERF_PMU_TXN_ADD)
11344                 return 0;
11345
11346         perf_pmu_enable(pmu);
11347         return 0;
11348 }
11349
11350 static void perf_pmu_cancel_txn(struct pmu *pmu)
11351 {
11352         unsigned int flags =  __this_cpu_read(nop_txn_flags);
11353
11354         __this_cpu_write(nop_txn_flags, 0);
11355
11356         if (flags & ~PERF_PMU_TXN_ADD)
11357                 return;
11358
11359         perf_pmu_enable(pmu);
11360 }
11361
11362 static int perf_event_idx_default(struct perf_event *event)
11363 {
11364         return 0;
11365 }
11366
11367 static void free_pmu_context(struct pmu *pmu)
11368 {
11369         free_percpu(pmu->cpu_pmu_context);
11370 }
11371
11372 /*
11373  * Let userspace know that this PMU supports address range filtering:
11374  */
11375 static ssize_t nr_addr_filters_show(struct device *dev,
11376                                     struct device_attribute *attr,
11377                                     char *page)
11378 {
11379         struct pmu *pmu = dev_get_drvdata(dev);
11380
11381         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
11382 }
11383 DEVICE_ATTR_RO(nr_addr_filters);
11384
11385 static struct idr pmu_idr;
11386
11387 static ssize_t
11388 type_show(struct device *dev, struct device_attribute *attr, char *page)
11389 {
11390         struct pmu *pmu = dev_get_drvdata(dev);
11391
11392         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->type);
11393 }
11394 static DEVICE_ATTR_RO(type);
11395
11396 static ssize_t
11397 perf_event_mux_interval_ms_show(struct device *dev,
11398                                 struct device_attribute *attr,
11399                                 char *page)
11400 {
11401         struct pmu *pmu = dev_get_drvdata(dev);
11402
11403         return scnprintf(page, PAGE_SIZE - 1, "%d\n", pmu->hrtimer_interval_ms);
11404 }
11405
11406 static DEFINE_MUTEX(mux_interval_mutex);
11407
11408 static ssize_t
11409 perf_event_mux_interval_ms_store(struct device *dev,
11410                                  struct device_attribute *attr,
11411                                  const char *buf, size_t count)
11412 {
11413         struct pmu *pmu = dev_get_drvdata(dev);
11414         int timer, cpu, ret;
11415
11416         ret = kstrtoint(buf, 0, &timer);
11417         if (ret)
11418                 return ret;
11419
11420         if (timer < 1)
11421                 return -EINVAL;
11422
11423         /* same value, noting to do */
11424         if (timer == pmu->hrtimer_interval_ms)
11425                 return count;
11426
11427         mutex_lock(&mux_interval_mutex);
11428         pmu->hrtimer_interval_ms = timer;
11429
11430         /* update all cpuctx for this PMU */
11431         cpus_read_lock();
11432         for_each_online_cpu(cpu) {
11433                 struct perf_cpu_pmu_context *cpc;
11434                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11435                 cpc->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
11436
11437                 cpu_function_call(cpu, perf_mux_hrtimer_restart_ipi, cpc);
11438         }
11439         cpus_read_unlock();
11440         mutex_unlock(&mux_interval_mutex);
11441
11442         return count;
11443 }
11444 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
11445
11446 static struct attribute *pmu_dev_attrs[] = {
11447         &dev_attr_type.attr,
11448         &dev_attr_perf_event_mux_interval_ms.attr,
11449         &dev_attr_nr_addr_filters.attr,
11450         NULL,
11451 };
11452
11453 static umode_t pmu_dev_is_visible(struct kobject *kobj, struct attribute *a, int n)
11454 {
11455         struct device *dev = kobj_to_dev(kobj);
11456         struct pmu *pmu = dev_get_drvdata(dev);
11457
11458         if (n == 2 && !pmu->nr_addr_filters)
11459                 return 0;
11460
11461         return a->mode;
11462 }
11463
11464 static struct attribute_group pmu_dev_attr_group = {
11465         .is_visible = pmu_dev_is_visible,
11466         .attrs = pmu_dev_attrs,
11467 };
11468
11469 static const struct attribute_group *pmu_dev_groups[] = {
11470         &pmu_dev_attr_group,
11471         NULL,
11472 };
11473
11474 static int pmu_bus_running;
11475 static struct bus_type pmu_bus = {
11476         .name           = "event_source",
11477         .dev_groups     = pmu_dev_groups,
11478 };
11479
11480 static void pmu_dev_release(struct device *dev)
11481 {
11482         kfree(dev);
11483 }
11484
11485 static int pmu_dev_alloc(struct pmu *pmu)
11486 {
11487         int ret = -ENOMEM;
11488
11489         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11490         if (!pmu->dev)
11491                 goto out;
11492
11493         pmu->dev->groups = pmu->attr_groups;
11494         device_initialize(pmu->dev);
11495
11496         dev_set_drvdata(pmu->dev, pmu);
11497         pmu->dev->bus = &pmu_bus;
11498         pmu->dev->parent = pmu->parent;
11499         pmu->dev->release = pmu_dev_release;
11500
11501         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11502         if (ret)
11503                 goto free_dev;
11504
11505         ret = device_add(pmu->dev);
11506         if (ret)
11507                 goto free_dev;
11508
11509         if (pmu->attr_update) {
11510                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11511                 if (ret)
11512                         goto del_dev;
11513         }
11514
11515 out:
11516         return ret;
11517
11518 del_dev:
11519         device_del(pmu->dev);
11520
11521 free_dev:
11522         put_device(pmu->dev);
11523         goto out;
11524 }
11525
11526 static struct lock_class_key cpuctx_mutex;
11527 static struct lock_class_key cpuctx_lock;
11528
11529 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11530 {
11531         int cpu, ret, max = PERF_TYPE_MAX;
11532
11533         mutex_lock(&pmus_lock);
11534         ret = -ENOMEM;
11535         pmu->pmu_disable_count = alloc_percpu(int);
11536         if (!pmu->pmu_disable_count)
11537                 goto unlock;
11538
11539         pmu->type = -1;
11540         if (WARN_ONCE(!name, "Can not register anonymous pmu.\n")) {
11541                 ret = -EINVAL;
11542                 goto free_pdc;
11543         }
11544
11545         pmu->name = name;
11546
11547         if (type >= 0)
11548                 max = type;
11549
11550         ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11551         if (ret < 0)
11552                 goto free_pdc;
11553
11554         WARN_ON(type >= 0 && ret != type);
11555
11556         type = ret;
11557         pmu->type = type;
11558
11559         if (pmu_bus_running && !pmu->dev) {
11560                 ret = pmu_dev_alloc(pmu);
11561                 if (ret)
11562                         goto free_idr;
11563         }
11564
11565         ret = -ENOMEM;
11566         pmu->cpu_pmu_context = alloc_percpu(struct perf_cpu_pmu_context);
11567         if (!pmu->cpu_pmu_context)
11568                 goto free_dev;
11569
11570         for_each_possible_cpu(cpu) {
11571                 struct perf_cpu_pmu_context *cpc;
11572
11573                 cpc = per_cpu_ptr(pmu->cpu_pmu_context, cpu);
11574                 __perf_init_event_pmu_context(&cpc->epc, pmu);
11575                 __perf_mux_hrtimer_init(cpc, cpu);
11576         }
11577
11578         if (!pmu->start_txn) {
11579                 if (pmu->pmu_enable) {
11580                         /*
11581                          * If we have pmu_enable/pmu_disable calls, install
11582                          * transaction stubs that use that to try and batch
11583                          * hardware accesses.
11584                          */
11585                         pmu->start_txn  = perf_pmu_start_txn;
11586                         pmu->commit_txn = perf_pmu_commit_txn;
11587                         pmu->cancel_txn = perf_pmu_cancel_txn;
11588                 } else {
11589                         pmu->start_txn  = perf_pmu_nop_txn;
11590                         pmu->commit_txn = perf_pmu_nop_int;
11591                         pmu->cancel_txn = perf_pmu_nop_void;
11592                 }
11593         }
11594
11595         if (!pmu->pmu_enable) {
11596                 pmu->pmu_enable  = perf_pmu_nop_void;
11597                 pmu->pmu_disable = perf_pmu_nop_void;
11598         }
11599
11600         if (!pmu->check_period)
11601                 pmu->check_period = perf_event_nop_int;
11602
11603         if (!pmu->event_idx)
11604                 pmu->event_idx = perf_event_idx_default;
11605
11606         list_add_rcu(&pmu->entry, &pmus);
11607         atomic_set(&pmu->exclusive_cnt, 0);
11608         ret = 0;
11609 unlock:
11610         mutex_unlock(&pmus_lock);
11611
11612         return ret;
11613
11614 free_dev:
11615         if (pmu->dev && pmu->dev != PMU_NULL_DEV) {
11616                 device_del(pmu->dev);
11617                 put_device(pmu->dev);
11618         }
11619
11620 free_idr:
11621         idr_remove(&pmu_idr, pmu->type);
11622
11623 free_pdc:
11624         free_percpu(pmu->pmu_disable_count);
11625         goto unlock;
11626 }
11627 EXPORT_SYMBOL_GPL(perf_pmu_register);
11628
11629 void perf_pmu_unregister(struct pmu *pmu)
11630 {
11631         mutex_lock(&pmus_lock);
11632         list_del_rcu(&pmu->entry);
11633
11634         /*
11635          * We dereference the pmu list under both SRCU and regular RCU, so
11636          * synchronize against both of those.
11637          */
11638         synchronize_srcu(&pmus_srcu);
11639         synchronize_rcu();
11640
11641         free_percpu(pmu->pmu_disable_count);
11642         idr_remove(&pmu_idr, pmu->type);
11643         if (pmu_bus_running && pmu->dev && pmu->dev != PMU_NULL_DEV) {
11644                 if (pmu->nr_addr_filters)
11645                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11646                 device_del(pmu->dev);
11647                 put_device(pmu->dev);
11648         }
11649         free_pmu_context(pmu);
11650         mutex_unlock(&pmus_lock);
11651 }
11652 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11653
11654 static inline bool has_extended_regs(struct perf_event *event)
11655 {
11656         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11657                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11658 }
11659
11660 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11661 {
11662         struct perf_event_context *ctx = NULL;
11663         int ret;
11664
11665         if (!try_module_get(pmu->module))
11666                 return -ENODEV;
11667
11668         /*
11669          * A number of pmu->event_init() methods iterate the sibling_list to,
11670          * for example, validate if the group fits on the PMU. Therefore,
11671          * if this is a sibling event, acquire the ctx->mutex to protect
11672          * the sibling_list.
11673          */
11674         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11675                 /*
11676                  * This ctx->mutex can nest when we're called through
11677                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11678                  */
11679                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11680                                                  SINGLE_DEPTH_NESTING);
11681                 BUG_ON(!ctx);
11682         }
11683
11684         event->pmu = pmu;
11685         ret = pmu->event_init(event);
11686
11687         if (ctx)
11688                 perf_event_ctx_unlock(event->group_leader, ctx);
11689
11690         if (!ret) {
11691                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11692                     has_extended_regs(event))
11693                         ret = -EOPNOTSUPP;
11694
11695                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11696                     event_has_any_exclude_flag(event))
11697                         ret = -EINVAL;
11698
11699                 if (ret && event->destroy)
11700                         event->destroy(event);
11701         }
11702
11703         if (ret)
11704                 module_put(pmu->module);
11705
11706         return ret;
11707 }
11708
11709 static struct pmu *perf_init_event(struct perf_event *event)
11710 {
11711         bool extended_type = false;
11712         int idx, type, ret;
11713         struct pmu *pmu;
11714
11715         idx = srcu_read_lock(&pmus_srcu);
11716
11717         /*
11718          * Save original type before calling pmu->event_init() since certain
11719          * pmus overwrites event->attr.type to forward event to another pmu.
11720          */
11721         event->orig_type = event->attr.type;
11722
11723         /* Try parent's PMU first: */
11724         if (event->parent && event->parent->pmu) {
11725                 pmu = event->parent->pmu;
11726                 ret = perf_try_init_event(pmu, event);
11727                 if (!ret)
11728                         goto unlock;
11729         }
11730
11731         /*
11732          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11733          * are often aliases for PERF_TYPE_RAW.
11734          */
11735         type = event->attr.type;
11736         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11737                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11738                 if (!type) {
11739                         type = PERF_TYPE_RAW;
11740                 } else {
11741                         extended_type = true;
11742                         event->attr.config &= PERF_HW_EVENT_MASK;
11743                 }
11744         }
11745
11746 again:
11747         rcu_read_lock();
11748         pmu = idr_find(&pmu_idr, type);
11749         rcu_read_unlock();
11750         if (pmu) {
11751                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11752                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11753                         goto fail;
11754
11755                 ret = perf_try_init_event(pmu, event);
11756                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11757                         type = event->attr.type;
11758                         goto again;
11759                 }
11760
11761                 if (ret)
11762                         pmu = ERR_PTR(ret);
11763
11764                 goto unlock;
11765         }
11766
11767         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11768                 ret = perf_try_init_event(pmu, event);
11769                 if (!ret)
11770                         goto unlock;
11771
11772                 if (ret != -ENOENT) {
11773                         pmu = ERR_PTR(ret);
11774                         goto unlock;
11775                 }
11776         }
11777 fail:
11778         pmu = ERR_PTR(-ENOENT);
11779 unlock:
11780         srcu_read_unlock(&pmus_srcu, idx);
11781
11782         return pmu;
11783 }
11784
11785 static void attach_sb_event(struct perf_event *event)
11786 {
11787         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11788
11789         raw_spin_lock(&pel->lock);
11790         list_add_rcu(&event->sb_list, &pel->list);
11791         raw_spin_unlock(&pel->lock);
11792 }
11793
11794 /*
11795  * We keep a list of all !task (and therefore per-cpu) events
11796  * that need to receive side-band records.
11797  *
11798  * This avoids having to scan all the various PMU per-cpu contexts
11799  * looking for them.
11800  */
11801 static void account_pmu_sb_event(struct perf_event *event)
11802 {
11803         if (is_sb_event(event))
11804                 attach_sb_event(event);
11805 }
11806
11807 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11808 static void account_freq_event_nohz(void)
11809 {
11810 #ifdef CONFIG_NO_HZ_FULL
11811         /* Lock so we don't race with concurrent unaccount */
11812         spin_lock(&nr_freq_lock);
11813         if (atomic_inc_return(&nr_freq_events) == 1)
11814                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11815         spin_unlock(&nr_freq_lock);
11816 #endif
11817 }
11818
11819 static void account_freq_event(void)
11820 {
11821         if (tick_nohz_full_enabled())
11822                 account_freq_event_nohz();
11823         else
11824                 atomic_inc(&nr_freq_events);
11825 }
11826
11827
11828 static void account_event(struct perf_event *event)
11829 {
11830         bool inc = false;
11831
11832         if (event->parent)
11833                 return;
11834
11835         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11836                 inc = true;
11837         if (event->attr.mmap || event->attr.mmap_data)
11838                 atomic_inc(&nr_mmap_events);
11839         if (event->attr.build_id)
11840                 atomic_inc(&nr_build_id_events);
11841         if (event->attr.comm)
11842                 atomic_inc(&nr_comm_events);
11843         if (event->attr.namespaces)
11844                 atomic_inc(&nr_namespaces_events);
11845         if (event->attr.cgroup)
11846                 atomic_inc(&nr_cgroup_events);
11847         if (event->attr.task)
11848                 atomic_inc(&nr_task_events);
11849         if (event->attr.freq)
11850                 account_freq_event();
11851         if (event->attr.context_switch) {
11852                 atomic_inc(&nr_switch_events);
11853                 inc = true;
11854         }
11855         if (has_branch_stack(event))
11856                 inc = true;
11857         if (is_cgroup_event(event))
11858                 inc = true;
11859         if (event->attr.ksymbol)
11860                 atomic_inc(&nr_ksymbol_events);
11861         if (event->attr.bpf_event)
11862                 atomic_inc(&nr_bpf_events);
11863         if (event->attr.text_poke)
11864                 atomic_inc(&nr_text_poke_events);
11865
11866         if (inc) {
11867                 /*
11868                  * We need the mutex here because static_branch_enable()
11869                  * must complete *before* the perf_sched_count increment
11870                  * becomes visible.
11871                  */
11872                 if (atomic_inc_not_zero(&perf_sched_count))
11873                         goto enabled;
11874
11875                 mutex_lock(&perf_sched_mutex);
11876                 if (!atomic_read(&perf_sched_count)) {
11877                         static_branch_enable(&perf_sched_events);
11878                         /*
11879                          * Guarantee that all CPUs observe they key change and
11880                          * call the perf scheduling hooks before proceeding to
11881                          * install events that need them.
11882                          */
11883                         synchronize_rcu();
11884                 }
11885                 /*
11886                  * Now that we have waited for the sync_sched(), allow further
11887                  * increments to by-pass the mutex.
11888                  */
11889                 atomic_inc(&perf_sched_count);
11890                 mutex_unlock(&perf_sched_mutex);
11891         }
11892 enabled:
11893
11894         account_pmu_sb_event(event);
11895 }
11896
11897 /*
11898  * Allocate and initialize an event structure
11899  */
11900 static struct perf_event *
11901 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11902                  struct task_struct *task,
11903                  struct perf_event *group_leader,
11904                  struct perf_event *parent_event,
11905                  perf_overflow_handler_t overflow_handler,
11906                  void *context, int cgroup_fd)
11907 {
11908         struct pmu *pmu;
11909         struct perf_event *event;
11910         struct hw_perf_event *hwc;
11911         long err = -EINVAL;
11912         int node;
11913
11914         if ((unsigned)cpu >= nr_cpu_ids) {
11915                 if (!task || cpu != -1)
11916                         return ERR_PTR(-EINVAL);
11917         }
11918         if (attr->sigtrap && !task) {
11919                 /* Requires a task: avoid signalling random tasks. */
11920                 return ERR_PTR(-EINVAL);
11921         }
11922
11923         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11924         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11925                                       node);
11926         if (!event)
11927                 return ERR_PTR(-ENOMEM);
11928
11929         /*
11930          * Single events are their own group leaders, with an
11931          * empty sibling list:
11932          */
11933         if (!group_leader)
11934                 group_leader = event;
11935
11936         mutex_init(&event->child_mutex);
11937         INIT_LIST_HEAD(&event->child_list);
11938
11939         INIT_LIST_HEAD(&event->event_entry);
11940         INIT_LIST_HEAD(&event->sibling_list);
11941         INIT_LIST_HEAD(&event->active_list);
11942         init_event_group(event);
11943         INIT_LIST_HEAD(&event->rb_entry);
11944         INIT_LIST_HEAD(&event->active_entry);
11945         INIT_LIST_HEAD(&event->addr_filters.list);
11946         INIT_HLIST_NODE(&event->hlist_entry);
11947
11948
11949         init_waitqueue_head(&event->waitq);
11950         init_irq_work(&event->pending_irq, perf_pending_irq);
11951         init_task_work(&event->pending_task, perf_pending_task);
11952
11953         mutex_init(&event->mmap_mutex);
11954         raw_spin_lock_init(&event->addr_filters.lock);
11955
11956         atomic_long_set(&event->refcount, 1);
11957         event->cpu              = cpu;
11958         event->attr             = *attr;
11959         event->group_leader     = group_leader;
11960         event->pmu              = NULL;
11961         event->oncpu            = -1;
11962
11963         event->parent           = parent_event;
11964
11965         event->ns               = get_pid_ns(task_active_pid_ns(current));
11966         event->id               = atomic64_inc_return(&perf_event_id);
11967
11968         event->state            = PERF_EVENT_STATE_INACTIVE;
11969
11970         if (parent_event)
11971                 event->event_caps = parent_event->event_caps;
11972
11973         if (task) {
11974                 event->attach_state = PERF_ATTACH_TASK;
11975                 /*
11976                  * XXX pmu::event_init needs to know what task to account to
11977                  * and we cannot use the ctx information because we need the
11978                  * pmu before we get a ctx.
11979                  */
11980                 event->hw.target = get_task_struct(task);
11981         }
11982
11983         event->clock = &local_clock;
11984         if (parent_event)
11985                 event->clock = parent_event->clock;
11986
11987         if (!overflow_handler && parent_event) {
11988                 overflow_handler = parent_event->overflow_handler;
11989                 context = parent_event->overflow_handler_context;
11990 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11991                 if (parent_event->prog) {
11992                         struct bpf_prog *prog = parent_event->prog;
11993
11994                         bpf_prog_inc(prog);
11995                         event->prog = prog;
11996                 }
11997 #endif
11998         }
11999
12000         if (overflow_handler) {
12001                 event->overflow_handler = overflow_handler;
12002                 event->overflow_handler_context = context;
12003         } else if (is_write_backward(event)){
12004                 event->overflow_handler = perf_event_output_backward;
12005                 event->overflow_handler_context = NULL;
12006         } else {
12007                 event->overflow_handler = perf_event_output_forward;
12008                 event->overflow_handler_context = NULL;
12009         }
12010
12011         perf_event__state_init(event);
12012
12013         pmu = NULL;
12014
12015         hwc = &event->hw;
12016         hwc->sample_period = attr->sample_period;
12017         if (attr->freq && attr->sample_freq)
12018                 hwc->sample_period = 1;
12019         hwc->last_period = hwc->sample_period;
12020
12021         local64_set(&hwc->period_left, hwc->sample_period);
12022
12023         /*
12024          * We currently do not support PERF_SAMPLE_READ on inherited events.
12025          * See perf_output_read().
12026          */
12027         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
12028                 goto err_ns;
12029
12030         if (!has_branch_stack(event))
12031                 event->attr.branch_sample_type = 0;
12032
12033         pmu = perf_init_event(event);
12034         if (IS_ERR(pmu)) {
12035                 err = PTR_ERR(pmu);
12036                 goto err_ns;
12037         }
12038
12039         /*
12040          * Disallow uncore-task events. Similarly, disallow uncore-cgroup
12041          * events (they don't make sense as the cgroup will be different
12042          * on other CPUs in the uncore mask).
12043          */
12044         if (pmu->task_ctx_nr == perf_invalid_context && (task || cgroup_fd != -1)) {
12045                 err = -EINVAL;
12046                 goto err_pmu;
12047         }
12048
12049         if (event->attr.aux_output &&
12050             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
12051                 err = -EOPNOTSUPP;
12052                 goto err_pmu;
12053         }
12054
12055         if (cgroup_fd != -1) {
12056                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
12057                 if (err)
12058                         goto err_pmu;
12059         }
12060
12061         err = exclusive_event_init(event);
12062         if (err)
12063                 goto err_pmu;
12064
12065         if (has_addr_filter(event)) {
12066                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
12067                                                     sizeof(struct perf_addr_filter_range),
12068                                                     GFP_KERNEL);
12069                 if (!event->addr_filter_ranges) {
12070                         err = -ENOMEM;
12071                         goto err_per_task;
12072                 }
12073
12074                 /*
12075                  * Clone the parent's vma offsets: they are valid until exec()
12076                  * even if the mm is not shared with the parent.
12077                  */
12078                 if (event->parent) {
12079                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
12080
12081                         raw_spin_lock_irq(&ifh->lock);
12082                         memcpy(event->addr_filter_ranges,
12083                                event->parent->addr_filter_ranges,
12084                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
12085                         raw_spin_unlock_irq(&ifh->lock);
12086                 }
12087
12088                 /* force hw sync on the address filters */
12089                 event->addr_filters_gen = 1;
12090         }
12091
12092         if (!event->parent) {
12093                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
12094                         err = get_callchain_buffers(attr->sample_max_stack);
12095                         if (err)
12096                                 goto err_addr_filters;
12097                 }
12098         }
12099
12100         err = security_perf_event_alloc(event);
12101         if (err)
12102                 goto err_callchain_buffer;
12103
12104         /* symmetric to unaccount_event() in _free_event() */
12105         account_event(event);
12106
12107         return event;
12108
12109 err_callchain_buffer:
12110         if (!event->parent) {
12111                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
12112                         put_callchain_buffers();
12113         }
12114 err_addr_filters:
12115         kfree(event->addr_filter_ranges);
12116
12117 err_per_task:
12118         exclusive_event_destroy(event);
12119
12120 err_pmu:
12121         if (is_cgroup_event(event))
12122                 perf_detach_cgroup(event);
12123         if (event->destroy)
12124                 event->destroy(event);
12125         module_put(pmu->module);
12126 err_ns:
12127         if (event->hw.target)
12128                 put_task_struct(event->hw.target);
12129         call_rcu(&event->rcu_head, free_event_rcu);
12130
12131         return ERR_PTR(err);
12132 }
12133
12134 static int perf_copy_attr(struct perf_event_attr __user *uattr,
12135                           struct perf_event_attr *attr)
12136 {
12137         u32 size;
12138         int ret;
12139
12140         /* Zero the full structure, so that a short copy will be nice. */
12141         memset(attr, 0, sizeof(*attr));
12142
12143         ret = get_user(size, &uattr->size);
12144         if (ret)
12145                 return ret;
12146
12147         /* ABI compatibility quirk: */
12148         if (!size)
12149                 size = PERF_ATTR_SIZE_VER0;
12150         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
12151                 goto err_size;
12152
12153         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
12154         if (ret) {
12155                 if (ret == -E2BIG)
12156                         goto err_size;
12157                 return ret;
12158         }
12159
12160         attr->size = size;
12161
12162         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
12163                 return -EINVAL;
12164
12165         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
12166                 return -EINVAL;
12167
12168         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
12169                 return -EINVAL;
12170
12171         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
12172                 u64 mask = attr->branch_sample_type;
12173
12174                 /* only using defined bits */
12175                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
12176                         return -EINVAL;
12177
12178                 /* at least one branch bit must be set */
12179                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
12180                         return -EINVAL;
12181
12182                 /* propagate priv level, when not set for branch */
12183                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
12184
12185                         /* exclude_kernel checked on syscall entry */
12186                         if (!attr->exclude_kernel)
12187                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
12188
12189                         if (!attr->exclude_user)
12190                                 mask |= PERF_SAMPLE_BRANCH_USER;
12191
12192                         if (!attr->exclude_hv)
12193                                 mask |= PERF_SAMPLE_BRANCH_HV;
12194                         /*
12195                          * adjust user setting (for HW filter setup)
12196                          */
12197                         attr->branch_sample_type = mask;
12198                 }
12199                 /* privileged levels capture (kernel, hv): check permissions */
12200                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
12201                         ret = perf_allow_kernel(attr);
12202                         if (ret)
12203                                 return ret;
12204                 }
12205         }
12206
12207         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
12208                 ret = perf_reg_validate(attr->sample_regs_user);
12209                 if (ret)
12210                         return ret;
12211         }
12212
12213         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
12214                 if (!arch_perf_have_user_stack_dump())
12215                         return -ENOSYS;
12216
12217                 /*
12218                  * We have __u32 type for the size, but so far
12219                  * we can only use __u16 as maximum due to the
12220                  * __u16 sample size limit.
12221                  */
12222                 if (attr->sample_stack_user >= USHRT_MAX)
12223                         return -EINVAL;
12224                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
12225                         return -EINVAL;
12226         }
12227
12228         if (!attr->sample_max_stack)
12229                 attr->sample_max_stack = sysctl_perf_event_max_stack;
12230
12231         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
12232                 ret = perf_reg_validate(attr->sample_regs_intr);
12233
12234 #ifndef CONFIG_CGROUP_PERF
12235         if (attr->sample_type & PERF_SAMPLE_CGROUP)
12236                 return -EINVAL;
12237 #endif
12238         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
12239             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
12240                 return -EINVAL;
12241
12242         if (!attr->inherit && attr->inherit_thread)
12243                 return -EINVAL;
12244
12245         if (attr->remove_on_exec && attr->enable_on_exec)
12246                 return -EINVAL;
12247
12248         if (attr->sigtrap && !attr->remove_on_exec)
12249                 return -EINVAL;
12250
12251 out:
12252         return ret;
12253
12254 err_size:
12255         put_user(sizeof(*attr), &uattr->size);
12256         ret = -E2BIG;
12257         goto out;
12258 }
12259
12260 static void mutex_lock_double(struct mutex *a, struct mutex *b)
12261 {
12262         if (b < a)
12263                 swap(a, b);
12264
12265         mutex_lock(a);
12266         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
12267 }
12268
12269 static int
12270 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
12271 {
12272         struct perf_buffer *rb = NULL;
12273         int ret = -EINVAL;
12274
12275         if (!output_event) {
12276                 mutex_lock(&event->mmap_mutex);
12277                 goto set;
12278         }
12279
12280         /* don't allow circular references */
12281         if (event == output_event)
12282                 goto out;
12283
12284         /*
12285          * Don't allow cross-cpu buffers
12286          */
12287         if (output_event->cpu != event->cpu)
12288                 goto out;
12289
12290         /*
12291          * If its not a per-cpu rb, it must be the same task.
12292          */
12293         if (output_event->cpu == -1 && output_event->hw.target != event->hw.target)
12294                 goto out;
12295
12296         /*
12297          * Mixing clocks in the same buffer is trouble you don't need.
12298          */
12299         if (output_event->clock != event->clock)
12300                 goto out;
12301
12302         /*
12303          * Either writing ring buffer from beginning or from end.
12304          * Mixing is not allowed.
12305          */
12306         if (is_write_backward(output_event) != is_write_backward(event))
12307                 goto out;
12308
12309         /*
12310          * If both events generate aux data, they must be on the same PMU
12311          */
12312         if (has_aux(event) && has_aux(output_event) &&
12313             event->pmu != output_event->pmu)
12314                 goto out;
12315
12316         /*
12317          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
12318          * output_event is already on rb->event_list, and the list iteration
12319          * restarts after every removal, it is guaranteed this new event is
12320          * observed *OR* if output_event is already removed, it's guaranteed we
12321          * observe !rb->mmap_count.
12322          */
12323         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
12324 set:
12325         /* Can't redirect output if we've got an active mmap() */
12326         if (atomic_read(&event->mmap_count))
12327                 goto unlock;
12328
12329         if (output_event) {
12330                 /* get the rb we want to redirect to */
12331                 rb = ring_buffer_get(output_event);
12332                 if (!rb)
12333                         goto unlock;
12334
12335                 /* did we race against perf_mmap_close() */
12336                 if (!atomic_read(&rb->mmap_count)) {
12337                         ring_buffer_put(rb);
12338                         goto unlock;
12339                 }
12340         }
12341
12342         ring_buffer_attach(event, rb);
12343
12344         ret = 0;
12345 unlock:
12346         mutex_unlock(&event->mmap_mutex);
12347         if (output_event)
12348                 mutex_unlock(&output_event->mmap_mutex);
12349
12350 out:
12351         return ret;
12352 }
12353
12354 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
12355 {
12356         bool nmi_safe = false;
12357
12358         switch (clk_id) {
12359         case CLOCK_MONOTONIC:
12360                 event->clock = &ktime_get_mono_fast_ns;
12361                 nmi_safe = true;
12362                 break;
12363
12364         case CLOCK_MONOTONIC_RAW:
12365                 event->clock = &ktime_get_raw_fast_ns;
12366                 nmi_safe = true;
12367                 break;
12368
12369         case CLOCK_REALTIME:
12370                 event->clock = &ktime_get_real_ns;
12371                 break;
12372
12373         case CLOCK_BOOTTIME:
12374                 event->clock = &ktime_get_boottime_ns;
12375                 break;
12376
12377         case CLOCK_TAI:
12378                 event->clock = &ktime_get_clocktai_ns;
12379                 break;
12380
12381         default:
12382                 return -EINVAL;
12383         }
12384
12385         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
12386                 return -EINVAL;
12387
12388         return 0;
12389 }
12390
12391 static bool
12392 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
12393 {
12394         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
12395         bool is_capable = perfmon_capable();
12396
12397         if (attr->sigtrap) {
12398                 /*
12399                  * perf_event_attr::sigtrap sends signals to the other task.
12400                  * Require the current task to also have CAP_KILL.
12401                  */
12402                 rcu_read_lock();
12403                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
12404                 rcu_read_unlock();
12405
12406                 /*
12407                  * If the required capabilities aren't available, checks for
12408                  * ptrace permissions: upgrade to ATTACH, since sending signals
12409                  * can effectively change the target task.
12410                  */
12411                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
12412         }
12413
12414         /*
12415          * Preserve ptrace permission check for backwards compatibility. The
12416          * ptrace check also includes checks that the current task and other
12417          * task have matching uids, and is therefore not done here explicitly.
12418          */
12419         return is_capable || ptrace_may_access(task, ptrace_mode);
12420 }
12421
12422 /**
12423  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12424  *
12425  * @attr_uptr:  event_id type attributes for monitoring/sampling
12426  * @pid:                target pid
12427  * @cpu:                target cpu
12428  * @group_fd:           group leader event fd
12429  * @flags:              perf event open flags
12430  */
12431 SYSCALL_DEFINE5(perf_event_open,
12432                 struct perf_event_attr __user *, attr_uptr,
12433                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12434 {
12435         struct perf_event *group_leader = NULL, *output_event = NULL;
12436         struct perf_event_pmu_context *pmu_ctx;
12437         struct perf_event *event, *sibling;
12438         struct perf_event_attr attr;
12439         struct perf_event_context *ctx;
12440         struct file *event_file = NULL;
12441         struct fd group = {NULL, 0};
12442         struct task_struct *task = NULL;
12443         struct pmu *pmu;
12444         int event_fd;
12445         int move_group = 0;
12446         int err;
12447         int f_flags = O_RDWR;
12448         int cgroup_fd = -1;
12449
12450         /* for future expandability... */
12451         if (flags & ~PERF_FLAG_ALL)
12452                 return -EINVAL;
12453
12454         err = perf_copy_attr(attr_uptr, &attr);
12455         if (err)
12456                 return err;
12457
12458         /* Do we allow access to perf_event_open(2) ? */
12459         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12460         if (err)
12461                 return err;
12462
12463         if (!attr.exclude_kernel) {
12464                 err = perf_allow_kernel(&attr);
12465                 if (err)
12466                         return err;
12467         }
12468
12469         if (attr.namespaces) {
12470                 if (!perfmon_capable())
12471                         return -EACCES;
12472         }
12473
12474         if (attr.freq) {
12475                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12476                         return -EINVAL;
12477         } else {
12478                 if (attr.sample_period & (1ULL << 63))
12479                         return -EINVAL;
12480         }
12481
12482         /* Only privileged users can get physical addresses */
12483         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12484                 err = perf_allow_kernel(&attr);
12485                 if (err)
12486                         return err;
12487         }
12488
12489         /* REGS_INTR can leak data, lockdown must prevent this */
12490         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12491                 err = security_locked_down(LOCKDOWN_PERF);
12492                 if (err)
12493                         return err;
12494         }
12495
12496         /*
12497          * In cgroup mode, the pid argument is used to pass the fd
12498          * opened to the cgroup directory in cgroupfs. The cpu argument
12499          * designates the cpu on which to monitor threads from that
12500          * cgroup.
12501          */
12502         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12503                 return -EINVAL;
12504
12505         if (flags & PERF_FLAG_FD_CLOEXEC)
12506                 f_flags |= O_CLOEXEC;
12507
12508         event_fd = get_unused_fd_flags(f_flags);
12509         if (event_fd < 0)
12510                 return event_fd;
12511
12512         if (group_fd != -1) {
12513                 err = perf_fget_light(group_fd, &group);
12514                 if (err)
12515                         goto err_fd;
12516                 group_leader = group.file->private_data;
12517                 if (flags & PERF_FLAG_FD_OUTPUT)
12518                         output_event = group_leader;
12519                 if (flags & PERF_FLAG_FD_NO_GROUP)
12520                         group_leader = NULL;
12521         }
12522
12523         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12524                 task = find_lively_task_by_vpid(pid);
12525                 if (IS_ERR(task)) {
12526                         err = PTR_ERR(task);
12527                         goto err_group_fd;
12528                 }
12529         }
12530
12531         if (task && group_leader &&
12532             group_leader->attr.inherit != attr.inherit) {
12533                 err = -EINVAL;
12534                 goto err_task;
12535         }
12536
12537         if (flags & PERF_FLAG_PID_CGROUP)
12538                 cgroup_fd = pid;
12539
12540         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12541                                  NULL, NULL, cgroup_fd);
12542         if (IS_ERR(event)) {
12543                 err = PTR_ERR(event);
12544                 goto err_task;
12545         }
12546
12547         if (is_sampling_event(event)) {
12548                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12549                         err = -EOPNOTSUPP;
12550                         goto err_alloc;
12551                 }
12552         }
12553
12554         /*
12555          * Special case software events and allow them to be part of
12556          * any hardware group.
12557          */
12558         pmu = event->pmu;
12559
12560         if (attr.use_clockid) {
12561                 err = perf_event_set_clock(event, attr.clockid);
12562                 if (err)
12563                         goto err_alloc;
12564         }
12565
12566         if (pmu->task_ctx_nr == perf_sw_context)
12567                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12568
12569         if (task) {
12570                 err = down_read_interruptible(&task->signal->exec_update_lock);
12571                 if (err)
12572                         goto err_alloc;
12573
12574                 /*
12575                  * We must hold exec_update_lock across this and any potential
12576                  * perf_install_in_context() call for this new event to
12577                  * serialize against exec() altering our credentials (and the
12578                  * perf_event_exit_task() that could imply).
12579                  */
12580                 err = -EACCES;
12581                 if (!perf_check_permission(&attr, task))
12582                         goto err_cred;
12583         }
12584
12585         /*
12586          * Get the target context (task or percpu):
12587          */
12588         ctx = find_get_context(task, event);
12589         if (IS_ERR(ctx)) {
12590                 err = PTR_ERR(ctx);
12591                 goto err_cred;
12592         }
12593
12594         mutex_lock(&ctx->mutex);
12595
12596         if (ctx->task == TASK_TOMBSTONE) {
12597                 err = -ESRCH;
12598                 goto err_locked;
12599         }
12600
12601         if (!task) {
12602                 /*
12603                  * Check if the @cpu we're creating an event for is online.
12604                  *
12605                  * We use the perf_cpu_context::ctx::mutex to serialize against
12606                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12607                  */
12608                 struct perf_cpu_context *cpuctx = per_cpu_ptr(&perf_cpu_context, event->cpu);
12609
12610                 if (!cpuctx->online) {
12611                         err = -ENODEV;
12612                         goto err_locked;
12613                 }
12614         }
12615
12616         if (group_leader) {
12617                 err = -EINVAL;
12618
12619                 /*
12620                  * Do not allow a recursive hierarchy (this new sibling
12621                  * becoming part of another group-sibling):
12622                  */
12623                 if (group_leader->group_leader != group_leader)
12624                         goto err_locked;
12625
12626                 /* All events in a group should have the same clock */
12627                 if (group_leader->clock != event->clock)
12628                         goto err_locked;
12629
12630                 /*
12631                  * Make sure we're both events for the same CPU;
12632                  * grouping events for different CPUs is broken; since
12633                  * you can never concurrently schedule them anyhow.
12634                  */
12635                 if (group_leader->cpu != event->cpu)
12636                         goto err_locked;
12637
12638                 /*
12639                  * Make sure we're both on the same context; either task or cpu.
12640                  */
12641                 if (group_leader->ctx != ctx)
12642                         goto err_locked;
12643
12644                 /*
12645                  * Only a group leader can be exclusive or pinned
12646                  */
12647                 if (attr.exclusive || attr.pinned)
12648                         goto err_locked;
12649
12650                 if (is_software_event(event) &&
12651                     !in_software_context(group_leader)) {
12652                         /*
12653                          * If the event is a sw event, but the group_leader
12654                          * is on hw context.
12655                          *
12656                          * Allow the addition of software events to hw
12657                          * groups, this is safe because software events
12658                          * never fail to schedule.
12659                          *
12660                          * Note the comment that goes with struct
12661                          * perf_event_pmu_context.
12662                          */
12663                         pmu = group_leader->pmu_ctx->pmu;
12664                 } else if (!is_software_event(event)) {
12665                         if (is_software_event(group_leader) &&
12666                             (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12667                                 /*
12668                                  * In case the group is a pure software group, and we
12669                                  * try to add a hardware event, move the whole group to
12670                                  * the hardware context.
12671                                  */
12672                                 move_group = 1;
12673                         }
12674
12675                         /* Don't allow group of multiple hw events from different pmus */
12676                         if (!in_software_context(group_leader) &&
12677                             group_leader->pmu_ctx->pmu != pmu)
12678                                 goto err_locked;
12679                 }
12680         }
12681
12682         /*
12683          * Now that we're certain of the pmu; find the pmu_ctx.
12684          */
12685         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12686         if (IS_ERR(pmu_ctx)) {
12687                 err = PTR_ERR(pmu_ctx);
12688                 goto err_locked;
12689         }
12690         event->pmu_ctx = pmu_ctx;
12691
12692         if (output_event) {
12693                 err = perf_event_set_output(event, output_event);
12694                 if (err)
12695                         goto err_context;
12696         }
12697
12698         if (!perf_event_validate_size(event)) {
12699                 err = -E2BIG;
12700                 goto err_context;
12701         }
12702
12703         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12704                 err = -EINVAL;
12705                 goto err_context;
12706         }
12707
12708         /*
12709          * Must be under the same ctx::mutex as perf_install_in_context(),
12710          * because we need to serialize with concurrent event creation.
12711          */
12712         if (!exclusive_event_installable(event, ctx)) {
12713                 err = -EBUSY;
12714                 goto err_context;
12715         }
12716
12717         WARN_ON_ONCE(ctx->parent_ctx);
12718
12719         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, f_flags);
12720         if (IS_ERR(event_file)) {
12721                 err = PTR_ERR(event_file);
12722                 event_file = NULL;
12723                 goto err_context;
12724         }
12725
12726         /*
12727          * This is the point on no return; we cannot fail hereafter. This is
12728          * where we start modifying current state.
12729          */
12730
12731         if (move_group) {
12732                 perf_remove_from_context(group_leader, 0);
12733                 put_pmu_ctx(group_leader->pmu_ctx);
12734
12735                 for_each_sibling_event(sibling, group_leader) {
12736                         perf_remove_from_context(sibling, 0);
12737                         put_pmu_ctx(sibling->pmu_ctx);
12738                 }
12739
12740                 /*
12741                  * Install the group siblings before the group leader.
12742                  *
12743                  * Because a group leader will try and install the entire group
12744                  * (through the sibling list, which is still in-tact), we can
12745                  * end up with siblings installed in the wrong context.
12746                  *
12747                  * By installing siblings first we NO-OP because they're not
12748                  * reachable through the group lists.
12749                  */
12750                 for_each_sibling_event(sibling, group_leader) {
12751                         sibling->pmu_ctx = pmu_ctx;
12752                         get_pmu_ctx(pmu_ctx);
12753                         perf_event__state_init(sibling);
12754                         perf_install_in_context(ctx, sibling, sibling->cpu);
12755                 }
12756
12757                 /*
12758                  * Removing from the context ends up with disabled
12759                  * event. What we want here is event in the initial
12760                  * startup state, ready to be add into new context.
12761                  */
12762                 group_leader->pmu_ctx = pmu_ctx;
12763                 get_pmu_ctx(pmu_ctx);
12764                 perf_event__state_init(group_leader);
12765                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12766         }
12767
12768         /*
12769          * Precalculate sample_data sizes; do while holding ctx::mutex such
12770          * that we're serialized against further additions and before
12771          * perf_install_in_context() which is the point the event is active and
12772          * can use these values.
12773          */
12774         perf_event__header_size(event);
12775         perf_event__id_header_size(event);
12776
12777         event->owner = current;
12778
12779         perf_install_in_context(ctx, event, event->cpu);
12780         perf_unpin_context(ctx);
12781
12782         mutex_unlock(&ctx->mutex);
12783
12784         if (task) {
12785                 up_read(&task->signal->exec_update_lock);
12786                 put_task_struct(task);
12787         }
12788
12789         mutex_lock(&current->perf_event_mutex);
12790         list_add_tail(&event->owner_entry, &current->perf_event_list);
12791         mutex_unlock(&current->perf_event_mutex);
12792
12793         /*
12794          * Drop the reference on the group_event after placing the
12795          * new event on the sibling_list. This ensures destruction
12796          * of the group leader will find the pointer to itself in
12797          * perf_group_detach().
12798          */
12799         fdput(group);
12800         fd_install(event_fd, event_file);
12801         return event_fd;
12802
12803 err_context:
12804         put_pmu_ctx(event->pmu_ctx);
12805         event->pmu_ctx = NULL; /* _free_event() */
12806 err_locked:
12807         mutex_unlock(&ctx->mutex);
12808         perf_unpin_context(ctx);
12809         put_ctx(ctx);
12810 err_cred:
12811         if (task)
12812                 up_read(&task->signal->exec_update_lock);
12813 err_alloc:
12814         free_event(event);
12815 err_task:
12816         if (task)
12817                 put_task_struct(task);
12818 err_group_fd:
12819         fdput(group);
12820 err_fd:
12821         put_unused_fd(event_fd);
12822         return err;
12823 }
12824
12825 /**
12826  * perf_event_create_kernel_counter
12827  *
12828  * @attr: attributes of the counter to create
12829  * @cpu: cpu in which the counter is bound
12830  * @task: task to profile (NULL for percpu)
12831  * @overflow_handler: callback to trigger when we hit the event
12832  * @context: context data could be used in overflow_handler callback
12833  */
12834 struct perf_event *
12835 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12836                                  struct task_struct *task,
12837                                  perf_overflow_handler_t overflow_handler,
12838                                  void *context)
12839 {
12840         struct perf_event_pmu_context *pmu_ctx;
12841         struct perf_event_context *ctx;
12842         struct perf_event *event;
12843         struct pmu *pmu;
12844         int err;
12845
12846         /*
12847          * Grouping is not supported for kernel events, neither is 'AUX',
12848          * make sure the caller's intentions are adjusted.
12849          */
12850         if (attr->aux_output)
12851                 return ERR_PTR(-EINVAL);
12852
12853         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12854                                  overflow_handler, context, -1);
12855         if (IS_ERR(event)) {
12856                 err = PTR_ERR(event);
12857                 goto err;
12858         }
12859
12860         /* Mark owner so we could distinguish it from user events. */
12861         event->owner = TASK_TOMBSTONE;
12862         pmu = event->pmu;
12863
12864         if (pmu->task_ctx_nr == perf_sw_context)
12865                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12866
12867         /*
12868          * Get the target context (task or percpu):
12869          */
12870         ctx = find_get_context(task, event);
12871         if (IS_ERR(ctx)) {
12872                 err = PTR_ERR(ctx);
12873                 goto err_alloc;
12874         }
12875
12876         WARN_ON_ONCE(ctx->parent_ctx);
12877         mutex_lock(&ctx->mutex);
12878         if (ctx->task == TASK_TOMBSTONE) {
12879                 err = -ESRCH;
12880                 goto err_unlock;
12881         }
12882
12883         pmu_ctx = find_get_pmu_context(pmu, ctx, event);
12884         if (IS_ERR(pmu_ctx)) {
12885                 err = PTR_ERR(pmu_ctx);
12886                 goto err_unlock;
12887         }
12888         event->pmu_ctx = pmu_ctx;
12889
12890         if (!task) {
12891                 /*
12892                  * Check if the @cpu we're creating an event for is online.
12893                  *
12894                  * We use the perf_cpu_context::ctx::mutex to serialize against
12895                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12896                  */
12897                 struct perf_cpu_context *cpuctx =
12898                         container_of(ctx, struct perf_cpu_context, ctx);
12899                 if (!cpuctx->online) {
12900                         err = -ENODEV;
12901                         goto err_pmu_ctx;
12902                 }
12903         }
12904
12905         if (!exclusive_event_installable(event, ctx)) {
12906                 err = -EBUSY;
12907                 goto err_pmu_ctx;
12908         }
12909
12910         perf_install_in_context(ctx, event, event->cpu);
12911         perf_unpin_context(ctx);
12912         mutex_unlock(&ctx->mutex);
12913
12914         return event;
12915
12916 err_pmu_ctx:
12917         put_pmu_ctx(pmu_ctx);
12918         event->pmu_ctx = NULL; /* _free_event() */
12919 err_unlock:
12920         mutex_unlock(&ctx->mutex);
12921         perf_unpin_context(ctx);
12922         put_ctx(ctx);
12923 err_alloc:
12924         free_event(event);
12925 err:
12926         return ERR_PTR(err);
12927 }
12928 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12929
12930 static void __perf_pmu_remove(struct perf_event_context *ctx,
12931                               int cpu, struct pmu *pmu,
12932                               struct perf_event_groups *groups,
12933                               struct list_head *events)
12934 {
12935         struct perf_event *event, *sibling;
12936
12937         perf_event_groups_for_cpu_pmu(event, groups, cpu, pmu) {
12938                 perf_remove_from_context(event, 0);
12939                 put_pmu_ctx(event->pmu_ctx);
12940                 list_add(&event->migrate_entry, events);
12941
12942                 for_each_sibling_event(sibling, event) {
12943                         perf_remove_from_context(sibling, 0);
12944                         put_pmu_ctx(sibling->pmu_ctx);
12945                         list_add(&sibling->migrate_entry, events);
12946                 }
12947         }
12948 }
12949
12950 static void __perf_pmu_install_event(struct pmu *pmu,
12951                                      struct perf_event_context *ctx,
12952                                      int cpu, struct perf_event *event)
12953 {
12954         struct perf_event_pmu_context *epc;
12955         struct perf_event_context *old_ctx = event->ctx;
12956
12957         get_ctx(ctx); /* normally find_get_context() */
12958
12959         event->cpu = cpu;
12960         epc = find_get_pmu_context(pmu, ctx, event);
12961         event->pmu_ctx = epc;
12962
12963         if (event->state >= PERF_EVENT_STATE_OFF)
12964                 event->state = PERF_EVENT_STATE_INACTIVE;
12965         perf_install_in_context(ctx, event, cpu);
12966
12967         /*
12968          * Now that event->ctx is updated and visible, put the old ctx.
12969          */
12970         put_ctx(old_ctx);
12971 }
12972
12973 static void __perf_pmu_install(struct perf_event_context *ctx,
12974                                int cpu, struct pmu *pmu, struct list_head *events)
12975 {
12976         struct perf_event *event, *tmp;
12977
12978         /*
12979          * Re-instate events in 2 passes.
12980          *
12981          * Skip over group leaders and only install siblings on this first
12982          * pass, siblings will not get enabled without a leader, however a
12983          * leader will enable its siblings, even if those are still on the old
12984          * context.
12985          */
12986         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12987                 if (event->group_leader == event)
12988                         continue;
12989
12990                 list_del(&event->migrate_entry);
12991                 __perf_pmu_install_event(pmu, ctx, cpu, event);
12992         }
12993
12994         /*
12995          * Once all the siblings are setup properly, install the group leaders
12996          * to make it go.
12997          */
12998         list_for_each_entry_safe(event, tmp, events, migrate_entry) {
12999                 list_del(&event->migrate_entry);
13000                 __perf_pmu_install_event(pmu, ctx, cpu, event);
13001         }
13002 }
13003
13004 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
13005 {
13006         struct perf_event_context *src_ctx, *dst_ctx;
13007         LIST_HEAD(events);
13008
13009         /*
13010          * Since per-cpu context is persistent, no need to grab an extra
13011          * reference.
13012          */
13013         src_ctx = &per_cpu_ptr(&perf_cpu_context, src_cpu)->ctx;
13014         dst_ctx = &per_cpu_ptr(&perf_cpu_context, dst_cpu)->ctx;
13015
13016         /*
13017          * See perf_event_ctx_lock() for comments on the details
13018          * of swizzling perf_event::ctx.
13019          */
13020         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
13021
13022         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->pinned_groups, &events);
13023         __perf_pmu_remove(src_ctx, src_cpu, pmu, &src_ctx->flexible_groups, &events);
13024
13025         if (!list_empty(&events)) {
13026                 /*
13027                  * Wait for the events to quiesce before re-instating them.
13028                  */
13029                 synchronize_rcu();
13030
13031                 __perf_pmu_install(dst_ctx, dst_cpu, pmu, &events);
13032         }
13033
13034         mutex_unlock(&dst_ctx->mutex);
13035         mutex_unlock(&src_ctx->mutex);
13036 }
13037 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
13038
13039 static void sync_child_event(struct perf_event *child_event)
13040 {
13041         struct perf_event *parent_event = child_event->parent;
13042         u64 child_val;
13043
13044         if (child_event->attr.inherit_stat) {
13045                 struct task_struct *task = child_event->ctx->task;
13046
13047                 if (task && task != TASK_TOMBSTONE)
13048                         perf_event_read_event(child_event, task);
13049         }
13050
13051         child_val = perf_event_count(child_event);
13052
13053         /*
13054          * Add back the child's count to the parent's count:
13055          */
13056         atomic64_add(child_val, &parent_event->child_count);
13057         atomic64_add(child_event->total_time_enabled,
13058                      &parent_event->child_total_time_enabled);
13059         atomic64_add(child_event->total_time_running,
13060                      &parent_event->child_total_time_running);
13061 }
13062
13063 static void
13064 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
13065 {
13066         struct perf_event *parent_event = event->parent;
13067         unsigned long detach_flags = 0;
13068
13069         if (parent_event) {
13070                 /*
13071                  * Do not destroy the 'original' grouping; because of the
13072                  * context switch optimization the original events could've
13073                  * ended up in a random child task.
13074                  *
13075                  * If we were to destroy the original group, all group related
13076                  * operations would cease to function properly after this
13077                  * random child dies.
13078                  *
13079                  * Do destroy all inherited groups, we don't care about those
13080                  * and being thorough is better.
13081                  */
13082                 detach_flags = DETACH_GROUP | DETACH_CHILD;
13083                 mutex_lock(&parent_event->child_mutex);
13084         }
13085
13086         perf_remove_from_context(event, detach_flags);
13087
13088         raw_spin_lock_irq(&ctx->lock);
13089         if (event->state > PERF_EVENT_STATE_EXIT)
13090                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
13091         raw_spin_unlock_irq(&ctx->lock);
13092
13093         /*
13094          * Child events can be freed.
13095          */
13096         if (parent_event) {
13097                 mutex_unlock(&parent_event->child_mutex);
13098                 /*
13099                  * Kick perf_poll() for is_event_hup();
13100                  */
13101                 perf_event_wakeup(parent_event);
13102                 free_event(event);
13103                 put_event(parent_event);
13104                 return;
13105         }
13106
13107         /*
13108          * Parent events are governed by their filedesc, retain them.
13109          */
13110         perf_event_wakeup(event);
13111 }
13112
13113 static void perf_event_exit_task_context(struct task_struct *child)
13114 {
13115         struct perf_event_context *child_ctx, *clone_ctx = NULL;
13116         struct perf_event *child_event, *next;
13117
13118         WARN_ON_ONCE(child != current);
13119
13120         child_ctx = perf_pin_task_context(child);
13121         if (!child_ctx)
13122                 return;
13123
13124         /*
13125          * In order to reduce the amount of tricky in ctx tear-down, we hold
13126          * ctx::mutex over the entire thing. This serializes against almost
13127          * everything that wants to access the ctx.
13128          *
13129          * The exception is sys_perf_event_open() /
13130          * perf_event_create_kernel_count() which does find_get_context()
13131          * without ctx::mutex (it cannot because of the move_group double mutex
13132          * lock thing). See the comments in perf_install_in_context().
13133          */
13134         mutex_lock(&child_ctx->mutex);
13135
13136         /*
13137          * In a single ctx::lock section, de-schedule the events and detach the
13138          * context from the task such that we cannot ever get it scheduled back
13139          * in.
13140          */
13141         raw_spin_lock_irq(&child_ctx->lock);
13142         task_ctx_sched_out(child_ctx, EVENT_ALL);
13143
13144         /*
13145          * Now that the context is inactive, destroy the task <-> ctx relation
13146          * and mark the context dead.
13147          */
13148         RCU_INIT_POINTER(child->perf_event_ctxp, NULL);
13149         put_ctx(child_ctx); /* cannot be last */
13150         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
13151         put_task_struct(current); /* cannot be last */
13152
13153         clone_ctx = unclone_ctx(child_ctx);
13154         raw_spin_unlock_irq(&child_ctx->lock);
13155
13156         if (clone_ctx)
13157                 put_ctx(clone_ctx);
13158
13159         /*
13160          * Report the task dead after unscheduling the events so that we
13161          * won't get any samples after PERF_RECORD_EXIT. We can however still
13162          * get a few PERF_RECORD_READ events.
13163          */
13164         perf_event_task(child, child_ctx, 0);
13165
13166         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
13167                 perf_event_exit_event(child_event, child_ctx);
13168
13169         mutex_unlock(&child_ctx->mutex);
13170
13171         put_ctx(child_ctx);
13172 }
13173
13174 /*
13175  * When a child task exits, feed back event values to parent events.
13176  *
13177  * Can be called with exec_update_lock held when called from
13178  * setup_new_exec().
13179  */
13180 void perf_event_exit_task(struct task_struct *child)
13181 {
13182         struct perf_event *event, *tmp;
13183
13184         mutex_lock(&child->perf_event_mutex);
13185         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
13186                                  owner_entry) {
13187                 list_del_init(&event->owner_entry);
13188
13189                 /*
13190                  * Ensure the list deletion is visible before we clear
13191                  * the owner, closes a race against perf_release() where
13192                  * we need to serialize on the owner->perf_event_mutex.
13193                  */
13194                 smp_store_release(&event->owner, NULL);
13195         }
13196         mutex_unlock(&child->perf_event_mutex);
13197
13198         perf_event_exit_task_context(child);
13199
13200         /*
13201          * The perf_event_exit_task_context calls perf_event_task
13202          * with child's task_ctx, which generates EXIT events for
13203          * child contexts and sets child->perf_event_ctxp[] to NULL.
13204          * At this point we need to send EXIT events to cpu contexts.
13205          */
13206         perf_event_task(child, NULL, 0);
13207 }
13208
13209 static void perf_free_event(struct perf_event *event,
13210                             struct perf_event_context *ctx)
13211 {
13212         struct perf_event *parent = event->parent;
13213
13214         if (WARN_ON_ONCE(!parent))
13215                 return;
13216
13217         mutex_lock(&parent->child_mutex);
13218         list_del_init(&event->child_list);
13219         mutex_unlock(&parent->child_mutex);
13220
13221         put_event(parent);
13222
13223         raw_spin_lock_irq(&ctx->lock);
13224         perf_group_detach(event);
13225         list_del_event(event, ctx);
13226         raw_spin_unlock_irq(&ctx->lock);
13227         free_event(event);
13228 }
13229
13230 /*
13231  * Free a context as created by inheritance by perf_event_init_task() below,
13232  * used by fork() in case of fail.
13233  *
13234  * Even though the task has never lived, the context and events have been
13235  * exposed through the child_list, so we must take care tearing it all down.
13236  */
13237 void perf_event_free_task(struct task_struct *task)
13238 {
13239         struct perf_event_context *ctx;
13240         struct perf_event *event, *tmp;
13241
13242         ctx = rcu_access_pointer(task->perf_event_ctxp);
13243         if (!ctx)
13244                 return;
13245
13246         mutex_lock(&ctx->mutex);
13247         raw_spin_lock_irq(&ctx->lock);
13248         /*
13249          * Destroy the task <-> ctx relation and mark the context dead.
13250          *
13251          * This is important because even though the task hasn't been
13252          * exposed yet the context has been (through child_list).
13253          */
13254         RCU_INIT_POINTER(task->perf_event_ctxp, NULL);
13255         WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
13256         put_task_struct(task); /* cannot be last */
13257         raw_spin_unlock_irq(&ctx->lock);
13258
13259
13260         list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
13261                 perf_free_event(event, ctx);
13262
13263         mutex_unlock(&ctx->mutex);
13264
13265         /*
13266          * perf_event_release_kernel() could've stolen some of our
13267          * child events and still have them on its free_list. In that
13268          * case we must wait for these events to have been freed (in
13269          * particular all their references to this task must've been
13270          * dropped).
13271          *
13272          * Without this copy_process() will unconditionally free this
13273          * task (irrespective of its reference count) and
13274          * _free_event()'s put_task_struct(event->hw.target) will be a
13275          * use-after-free.
13276          *
13277          * Wait for all events to drop their context reference.
13278          */
13279         wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
13280         put_ctx(ctx); /* must be last */
13281 }
13282
13283 void perf_event_delayed_put(struct task_struct *task)
13284 {
13285         WARN_ON_ONCE(task->perf_event_ctxp);
13286 }
13287
13288 struct file *perf_event_get(unsigned int fd)
13289 {
13290         struct file *file = fget(fd);
13291         if (!file)
13292                 return ERR_PTR(-EBADF);
13293
13294         if (file->f_op != &perf_fops) {
13295                 fput(file);
13296                 return ERR_PTR(-EBADF);
13297         }
13298
13299         return file;
13300 }
13301
13302 const struct perf_event *perf_get_event(struct file *file)
13303 {
13304         if (file->f_op != &perf_fops)
13305                 return ERR_PTR(-EINVAL);
13306
13307         return file->private_data;
13308 }
13309
13310 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
13311 {
13312         if (!event)
13313                 return ERR_PTR(-EINVAL);
13314
13315         return &event->attr;
13316 }
13317
13318 /*
13319  * Inherit an event from parent task to child task.
13320  *
13321  * Returns:
13322  *  - valid pointer on success
13323  *  - NULL for orphaned events
13324  *  - IS_ERR() on error
13325  */
13326 static struct perf_event *
13327 inherit_event(struct perf_event *parent_event,
13328               struct task_struct *parent,
13329               struct perf_event_context *parent_ctx,
13330               struct task_struct *child,
13331               struct perf_event *group_leader,
13332               struct perf_event_context *child_ctx)
13333 {
13334         enum perf_event_state parent_state = parent_event->state;
13335         struct perf_event_pmu_context *pmu_ctx;
13336         struct perf_event *child_event;
13337         unsigned long flags;
13338
13339         /*
13340          * Instead of creating recursive hierarchies of events,
13341          * we link inherited events back to the original parent,
13342          * which has a filp for sure, which we use as the reference
13343          * count:
13344          */
13345         if (parent_event->parent)
13346                 parent_event = parent_event->parent;
13347
13348         child_event = perf_event_alloc(&parent_event->attr,
13349                                            parent_event->cpu,
13350                                            child,
13351                                            group_leader, parent_event,
13352                                            NULL, NULL, -1);
13353         if (IS_ERR(child_event))
13354                 return child_event;
13355
13356         pmu_ctx = find_get_pmu_context(child_event->pmu, child_ctx, child_event);
13357         if (IS_ERR(pmu_ctx)) {
13358                 free_event(child_event);
13359                 return ERR_CAST(pmu_ctx);
13360         }
13361         child_event->pmu_ctx = pmu_ctx;
13362
13363         /*
13364          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
13365          * must be under the same lock in order to serialize against
13366          * perf_event_release_kernel(), such that either we must observe
13367          * is_orphaned_event() or they will observe us on the child_list.
13368          */
13369         mutex_lock(&parent_event->child_mutex);
13370         if (is_orphaned_event(parent_event) ||
13371             !atomic_long_inc_not_zero(&parent_event->refcount)) {
13372                 mutex_unlock(&parent_event->child_mutex);
13373                 /* task_ctx_data is freed with child_ctx */
13374                 free_event(child_event);
13375                 return NULL;
13376         }
13377
13378         get_ctx(child_ctx);
13379
13380         /*
13381          * Make the child state follow the state of the parent event,
13382          * not its attr.disabled bit.  We hold the parent's mutex,
13383          * so we won't race with perf_event_{en, dis}able_family.
13384          */
13385         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
13386                 child_event->state = PERF_EVENT_STATE_INACTIVE;
13387         else
13388                 child_event->state = PERF_EVENT_STATE_OFF;
13389
13390         if (parent_event->attr.freq) {
13391                 u64 sample_period = parent_event->hw.sample_period;
13392                 struct hw_perf_event *hwc = &child_event->hw;
13393
13394                 hwc->sample_period = sample_period;
13395                 hwc->last_period   = sample_period;
13396
13397                 local64_set(&hwc->period_left, sample_period);
13398         }
13399
13400         child_event->ctx = child_ctx;
13401         child_event->overflow_handler = parent_event->overflow_handler;
13402         child_event->overflow_handler_context
13403                 = parent_event->overflow_handler_context;
13404
13405         /*
13406          * Precalculate sample_data sizes
13407          */
13408         perf_event__header_size(child_event);
13409         perf_event__id_header_size(child_event);
13410
13411         /*
13412          * Link it up in the child's context:
13413          */
13414         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13415         add_event_to_ctx(child_event, child_ctx);
13416         child_event->attach_state |= PERF_ATTACH_CHILD;
13417         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13418
13419         /*
13420          * Link this into the parent event's child list
13421          */
13422         list_add_tail(&child_event->child_list, &parent_event->child_list);
13423         mutex_unlock(&parent_event->child_mutex);
13424
13425         return child_event;
13426 }
13427
13428 /*
13429  * Inherits an event group.
13430  *
13431  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13432  * This matches with perf_event_release_kernel() removing all child events.
13433  *
13434  * Returns:
13435  *  - 0 on success
13436  *  - <0 on error
13437  */
13438 static int inherit_group(struct perf_event *parent_event,
13439               struct task_struct *parent,
13440               struct perf_event_context *parent_ctx,
13441               struct task_struct *child,
13442               struct perf_event_context *child_ctx)
13443 {
13444         struct perf_event *leader;
13445         struct perf_event *sub;
13446         struct perf_event *child_ctr;
13447
13448         leader = inherit_event(parent_event, parent, parent_ctx,
13449                                  child, NULL, child_ctx);
13450         if (IS_ERR(leader))
13451                 return PTR_ERR(leader);
13452         /*
13453          * @leader can be NULL here because of is_orphaned_event(). In this
13454          * case inherit_event() will create individual events, similar to what
13455          * perf_group_detach() would do anyway.
13456          */
13457         for_each_sibling_event(sub, parent_event) {
13458                 child_ctr = inherit_event(sub, parent, parent_ctx,
13459                                             child, leader, child_ctx);
13460                 if (IS_ERR(child_ctr))
13461                         return PTR_ERR(child_ctr);
13462
13463                 if (sub->aux_event == parent_event && child_ctr &&
13464                     !perf_get_aux_event(child_ctr, leader))
13465                         return -EINVAL;
13466         }
13467         if (leader)
13468                 leader->group_generation = parent_event->group_generation;
13469         return 0;
13470 }
13471
13472 /*
13473  * Creates the child task context and tries to inherit the event-group.
13474  *
13475  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13476  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13477  * consistent with perf_event_release_kernel() removing all child events.
13478  *
13479  * Returns:
13480  *  - 0 on success
13481  *  - <0 on error
13482  */
13483 static int
13484 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13485                    struct perf_event_context *parent_ctx,
13486                    struct task_struct *child,
13487                    u64 clone_flags, int *inherited_all)
13488 {
13489         struct perf_event_context *child_ctx;
13490         int ret;
13491
13492         if (!event->attr.inherit ||
13493             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13494             /* Do not inherit if sigtrap and signal handlers were cleared. */
13495             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13496                 *inherited_all = 0;
13497                 return 0;
13498         }
13499
13500         child_ctx = child->perf_event_ctxp;
13501         if (!child_ctx) {
13502                 /*
13503                  * This is executed from the parent task context, so
13504                  * inherit events that have been marked for cloning.
13505                  * First allocate and initialize a context for the
13506                  * child.
13507                  */
13508                 child_ctx = alloc_perf_context(child);
13509                 if (!child_ctx)
13510                         return -ENOMEM;
13511
13512                 child->perf_event_ctxp = child_ctx;
13513         }
13514
13515         ret = inherit_group(event, parent, parent_ctx, child, child_ctx);
13516         if (ret)
13517                 *inherited_all = 0;
13518
13519         return ret;
13520 }
13521
13522 /*
13523  * Initialize the perf_event context in task_struct
13524  */
13525 static int perf_event_init_context(struct task_struct *child, u64 clone_flags)
13526 {
13527         struct perf_event_context *child_ctx, *parent_ctx;
13528         struct perf_event_context *cloned_ctx;
13529         struct perf_event *event;
13530         struct task_struct *parent = current;
13531         int inherited_all = 1;
13532         unsigned long flags;
13533         int ret = 0;
13534
13535         if (likely(!parent->perf_event_ctxp))
13536                 return 0;
13537
13538         /*
13539          * If the parent's context is a clone, pin it so it won't get
13540          * swapped under us.
13541          */
13542         parent_ctx = perf_pin_task_context(parent);
13543         if (!parent_ctx)
13544                 return 0;
13545
13546         /*
13547          * No need to check if parent_ctx != NULL here; since we saw
13548          * it non-NULL earlier, the only reason for it to become NULL
13549          * is if we exit, and since we're currently in the middle of
13550          * a fork we can't be exiting at the same time.
13551          */
13552
13553         /*
13554          * Lock the parent list. No need to lock the child - not PID
13555          * hashed yet and not running, so nobody can access it.
13556          */
13557         mutex_lock(&parent_ctx->mutex);
13558
13559         /*
13560          * We dont have to disable NMIs - we are only looking at
13561          * the list, not manipulating it:
13562          */
13563         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13564                 ret = inherit_task_group(event, parent, parent_ctx,
13565                                          child, clone_flags, &inherited_all);
13566                 if (ret)
13567                         goto out_unlock;
13568         }
13569
13570         /*
13571          * We can't hold ctx->lock when iterating the ->flexible_group list due
13572          * to allocations, but we need to prevent rotation because
13573          * rotate_ctx() will change the list from interrupt context.
13574          */
13575         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13576         parent_ctx->rotate_disable = 1;
13577         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13578
13579         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13580                 ret = inherit_task_group(event, parent, parent_ctx,
13581                                          child, clone_flags, &inherited_all);
13582                 if (ret)
13583                         goto out_unlock;
13584         }
13585
13586         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13587         parent_ctx->rotate_disable = 0;
13588
13589         child_ctx = child->perf_event_ctxp;
13590
13591         if (child_ctx && inherited_all) {
13592                 /*
13593                  * Mark the child context as a clone of the parent
13594                  * context, or of whatever the parent is a clone of.
13595                  *
13596                  * Note that if the parent is a clone, the holding of
13597                  * parent_ctx->lock avoids it from being uncloned.
13598                  */
13599                 cloned_ctx = parent_ctx->parent_ctx;
13600                 if (cloned_ctx) {
13601                         child_ctx->parent_ctx = cloned_ctx;
13602                         child_ctx->parent_gen = parent_ctx->parent_gen;
13603                 } else {
13604                         child_ctx->parent_ctx = parent_ctx;
13605                         child_ctx->parent_gen = parent_ctx->generation;
13606                 }
13607                 get_ctx(child_ctx->parent_ctx);
13608         }
13609
13610         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13611 out_unlock:
13612         mutex_unlock(&parent_ctx->mutex);
13613
13614         perf_unpin_context(parent_ctx);
13615         put_ctx(parent_ctx);
13616
13617         return ret;
13618 }
13619
13620 /*
13621  * Initialize the perf_event context in task_struct
13622  */
13623 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13624 {
13625         int ret;
13626
13627         child->perf_event_ctxp = NULL;
13628         mutex_init(&child->perf_event_mutex);
13629         INIT_LIST_HEAD(&child->perf_event_list);
13630
13631         ret = perf_event_init_context(child, clone_flags);
13632         if (ret) {
13633                 perf_event_free_task(child);
13634                 return ret;
13635         }
13636
13637         return 0;
13638 }
13639
13640 static void __init perf_event_init_all_cpus(void)
13641 {
13642         struct swevent_htable *swhash;
13643         struct perf_cpu_context *cpuctx;
13644         int cpu;
13645
13646         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13647
13648         for_each_possible_cpu(cpu) {
13649                 swhash = &per_cpu(swevent_htable, cpu);
13650                 mutex_init(&swhash->hlist_mutex);
13651
13652                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13653                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13654
13655                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13656
13657                 cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13658                 __perf_event_init_context(&cpuctx->ctx);
13659                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
13660                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
13661                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
13662                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
13663                 cpuctx->heap = cpuctx->heap_default;
13664         }
13665 }
13666
13667 static void perf_swevent_init_cpu(unsigned int cpu)
13668 {
13669         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13670
13671         mutex_lock(&swhash->hlist_mutex);
13672         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13673                 struct swevent_hlist *hlist;
13674
13675                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13676                 WARN_ON(!hlist);
13677                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13678         }
13679         mutex_unlock(&swhash->hlist_mutex);
13680 }
13681
13682 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13683 static void __perf_event_exit_context(void *__info)
13684 {
13685         struct perf_cpu_context *cpuctx = this_cpu_ptr(&perf_cpu_context);
13686         struct perf_event_context *ctx = __info;
13687         struct perf_event *event;
13688
13689         raw_spin_lock(&ctx->lock);
13690         ctx_sched_out(ctx, EVENT_TIME);
13691         list_for_each_entry(event, &ctx->event_list, event_entry)
13692                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13693         raw_spin_unlock(&ctx->lock);
13694 }
13695
13696 static void perf_event_exit_cpu_context(int cpu)
13697 {
13698         struct perf_cpu_context *cpuctx;
13699         struct perf_event_context *ctx;
13700
13701         // XXX simplify cpuctx->online
13702         mutex_lock(&pmus_lock);
13703         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13704         ctx = &cpuctx->ctx;
13705
13706         mutex_lock(&ctx->mutex);
13707         smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13708         cpuctx->online = 0;
13709         mutex_unlock(&ctx->mutex);
13710         cpumask_clear_cpu(cpu, perf_online_mask);
13711         mutex_unlock(&pmus_lock);
13712 }
13713 #else
13714
13715 static void perf_event_exit_cpu_context(int cpu) { }
13716
13717 #endif
13718
13719 int perf_event_init_cpu(unsigned int cpu)
13720 {
13721         struct perf_cpu_context *cpuctx;
13722         struct perf_event_context *ctx;
13723
13724         perf_swevent_init_cpu(cpu);
13725
13726         mutex_lock(&pmus_lock);
13727         cpumask_set_cpu(cpu, perf_online_mask);
13728         cpuctx = per_cpu_ptr(&perf_cpu_context, cpu);
13729         ctx = &cpuctx->ctx;
13730
13731         mutex_lock(&ctx->mutex);
13732         cpuctx->online = 1;
13733         mutex_unlock(&ctx->mutex);
13734         mutex_unlock(&pmus_lock);
13735
13736         return 0;
13737 }
13738
13739 int perf_event_exit_cpu(unsigned int cpu)
13740 {
13741         perf_event_exit_cpu_context(cpu);
13742         return 0;
13743 }
13744
13745 static int
13746 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13747 {
13748         int cpu;
13749
13750         for_each_online_cpu(cpu)
13751                 perf_event_exit_cpu(cpu);
13752
13753         return NOTIFY_OK;
13754 }
13755
13756 /*
13757  * Run the perf reboot notifier at the very last possible moment so that
13758  * the generic watchdog code runs as long as possible.
13759  */
13760 static struct notifier_block perf_reboot_notifier = {
13761         .notifier_call = perf_reboot,
13762         .priority = INT_MIN,
13763 };
13764
13765 void __init perf_event_init(void)
13766 {
13767         int ret;
13768
13769         idr_init(&pmu_idr);
13770
13771         perf_event_init_all_cpus();
13772         init_srcu_struct(&pmus_srcu);
13773         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13774         perf_pmu_register(&perf_cpu_clock, "cpu_clock", -1);
13775         perf_pmu_register(&perf_task_clock, "task_clock", -1);
13776         perf_tp_register();
13777         perf_event_init_cpu(smp_processor_id());
13778         register_reboot_notifier(&perf_reboot_notifier);
13779
13780         ret = init_hw_breakpoint();
13781         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13782
13783         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13784
13785         /*
13786          * Build time assertion that we keep the data_head at the intended
13787          * location.  IOW, validation we got the __reserved[] size right.
13788          */
13789         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13790                      != 1024);
13791 }
13792
13793 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13794                               char *page)
13795 {
13796         struct perf_pmu_events_attr *pmu_attr =
13797                 container_of(attr, struct perf_pmu_events_attr, attr);
13798
13799         if (pmu_attr->event_str)
13800                 return sprintf(page, "%s\n", pmu_attr->event_str);
13801
13802         return 0;
13803 }
13804 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13805
13806 static int __init perf_event_sysfs_init(void)
13807 {
13808         struct pmu *pmu;
13809         int ret;
13810
13811         mutex_lock(&pmus_lock);
13812
13813         ret = bus_register(&pmu_bus);
13814         if (ret)
13815                 goto unlock;
13816
13817         list_for_each_entry(pmu, &pmus, entry) {
13818                 if (pmu->dev)
13819                         continue;
13820
13821                 ret = pmu_dev_alloc(pmu);
13822                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13823         }
13824         pmu_bus_running = 1;
13825         ret = 0;
13826
13827 unlock:
13828         mutex_unlock(&pmus_lock);
13829
13830         return ret;
13831 }
13832 device_initcall(perf_event_sysfs_init);
13833
13834 #ifdef CONFIG_CGROUP_PERF
13835 static struct cgroup_subsys_state *
13836 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13837 {
13838         struct perf_cgroup *jc;
13839
13840         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13841         if (!jc)
13842                 return ERR_PTR(-ENOMEM);
13843
13844         jc->info = alloc_percpu(struct perf_cgroup_info);
13845         if (!jc->info) {
13846                 kfree(jc);
13847                 return ERR_PTR(-ENOMEM);
13848         }
13849
13850         return &jc->css;
13851 }
13852
13853 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13854 {
13855         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13856
13857         free_percpu(jc->info);
13858         kfree(jc);
13859 }
13860
13861 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13862 {
13863         perf_event_cgroup(css->cgroup);
13864         return 0;
13865 }
13866
13867 static int __perf_cgroup_move(void *info)
13868 {
13869         struct task_struct *task = info;
13870
13871         preempt_disable();
13872         perf_cgroup_switch(task);
13873         preempt_enable();
13874
13875         return 0;
13876 }
13877
13878 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13879 {
13880         struct task_struct *task;
13881         struct cgroup_subsys_state *css;
13882
13883         cgroup_taskset_for_each(task, css, tset)
13884                 task_function_call(task, __perf_cgroup_move, task);
13885 }
13886
13887 struct cgroup_subsys perf_event_cgrp_subsys = {
13888         .css_alloc      = perf_cgroup_css_alloc,
13889         .css_free       = perf_cgroup_css_free,
13890         .css_online     = perf_cgroup_css_online,
13891         .attach         = perf_cgroup_attach,
13892         /*
13893          * Implicitly enable on dfl hierarchy so that perf events can
13894          * always be filtered by cgroup2 path as long as perf_event
13895          * controller is not mounted on a legacy hierarchy.
13896          */
13897         .implicit_on_dfl = true,
13898         .threaded       = true,
13899 };
13900 #endif /* CONFIG_CGROUP_PERF */
13901
13902 DEFINE_STATIC_CALL_RET0(perf_snapshot_branch_stack, perf_snapshot_branch_stack_t);