perf/core: Fix perf_kprobe_init()
[linux-2.6-microblaze.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         for_each_sibling_event(sibling, leader)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp = cpuctx->cgrp;
728         struct cgroup_subsys_state *css;
729
730         if (cgrp) {
731                 for (css = &cgrp->css; css; css = css->parent) {
732                         cgrp = container_of(css, struct perf_cgroup, css);
733                         __update_cgrp_time(cgrp);
734                 }
735         }
736 }
737
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740         struct perf_cgroup *cgrp;
741
742         /*
743          * ensure we access cgroup data only when needed and
744          * when we know the cgroup is pinned (css_get)
745          */
746         if (!is_cgroup_event(event))
747                 return;
748
749         cgrp = perf_cgroup_from_task(current, event->ctx);
750         /*
751          * Do not update time when cgroup is not active
752          */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754                 __update_cgrp_time(event->cgrp);
755 }
756
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759                           struct perf_event_context *ctx)
760 {
761         struct perf_cgroup *cgrp;
762         struct perf_cgroup_info *info;
763         struct cgroup_subsys_state *css;
764
765         /*
766          * ctx->lock held by caller
767          * ensure we do not access cgroup data
768          * unless we have the cgroup pinned (css_get)
769          */
770         if (!task || !ctx->nr_cgroups)
771                 return;
772
773         cgrp = perf_cgroup_from_task(task, ctx);
774
775         for (css = &cgrp->css; css; css = css->parent) {
776                 cgrp = container_of(css, struct perf_cgroup, css);
777                 info = this_cpu_ptr(cgrp->info);
778                 info->timestamp = ctx->timestamp;
779         }
780 }
781
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
784 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
786
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795         struct perf_cpu_context *cpuctx;
796         struct list_head *list;
797         unsigned long flags;
798
799         /*
800          * Disable interrupts and preemption to avoid this CPU's
801          * cgrp_cpuctx_entry to change under us.
802          */
803         local_irq_save(flags);
804
805         list = this_cpu_ptr(&cgrp_cpuctx_list);
806         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808
809                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810                 perf_pmu_disable(cpuctx->ctx.pmu);
811
812                 if (mode & PERF_CGROUP_SWOUT) {
813                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814                         /*
815                          * must not be done before ctxswout due
816                          * to event_filter_match() in event_sched_out()
817                          */
818                         cpuctx->cgrp = NULL;
819                 }
820
821                 if (mode & PERF_CGROUP_SWIN) {
822                         WARN_ON_ONCE(cpuctx->cgrp);
823                         /*
824                          * set cgrp before ctxsw in to allow
825                          * event_filter_match() to not have to pass
826                          * task around
827                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
828                          * because cgorup events are only per-cpu
829                          */
830                         cpuctx->cgrp = perf_cgroup_from_task(task,
831                                                              &cpuctx->ctx);
832                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833                 }
834                 perf_pmu_enable(cpuctx->ctx.pmu);
835                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836         }
837
838         local_irq_restore(flags);
839 }
840
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842                                          struct task_struct *next)
843 {
844         struct perf_cgroup *cgrp1;
845         struct perf_cgroup *cgrp2 = NULL;
846
847         rcu_read_lock();
848         /*
849          * we come here when we know perf_cgroup_events > 0
850          * we do not need to pass the ctx here because we know
851          * we are holding the rcu lock
852          */
853         cgrp1 = perf_cgroup_from_task(task, NULL);
854         cgrp2 = perf_cgroup_from_task(next, NULL);
855
856         /*
857          * only schedule out current cgroup events if we know
858          * that we are switching to a different cgroup. Otherwise,
859          * do no touch the cgroup events.
860          */
861         if (cgrp1 != cgrp2)
862                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863
864         rcu_read_unlock();
865 }
866
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868                                         struct task_struct *task)
869 {
870         struct perf_cgroup *cgrp1;
871         struct perf_cgroup *cgrp2 = NULL;
872
873         rcu_read_lock();
874         /*
875          * we come here when we know perf_cgroup_events > 0
876          * we do not need to pass the ctx here because we know
877          * we are holding the rcu lock
878          */
879         cgrp1 = perf_cgroup_from_task(task, NULL);
880         cgrp2 = perf_cgroup_from_task(prev, NULL);
881
882         /*
883          * only need to schedule in cgroup events if we are changing
884          * cgroup during ctxsw. Cgroup events were not scheduled
885          * out of ctxsw out if that was not the case.
886          */
887         if (cgrp1 != cgrp2)
888                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889
890         rcu_read_unlock();
891 }
892
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894                                       struct perf_event_attr *attr,
895                                       struct perf_event *group_leader)
896 {
897         struct perf_cgroup *cgrp;
898         struct cgroup_subsys_state *css;
899         struct fd f = fdget(fd);
900         int ret = 0;
901
902         if (!f.file)
903                 return -EBADF;
904
905         css = css_tryget_online_from_dir(f.file->f_path.dentry,
906                                          &perf_event_cgrp_subsys);
907         if (IS_ERR(css)) {
908                 ret = PTR_ERR(css);
909                 goto out;
910         }
911
912         cgrp = container_of(css, struct perf_cgroup, css);
913         event->cgrp = cgrp;
914
915         /*
916          * all events in a group must monitor
917          * the same cgroup because a task belongs
918          * to only one perf cgroup at a time
919          */
920         if (group_leader && group_leader->cgrp != cgrp) {
921                 perf_detach_cgroup(event);
922                 ret = -EINVAL;
923         }
924 out:
925         fdput(f);
926         return ret;
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932         struct perf_cgroup_info *t;
933         t = per_cpu_ptr(event->cgrp->info, event->cpu);
934         event->shadow_ctx_time = now - t->timestamp;
935 }
936
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943                          struct perf_event_context *ctx, bool add)
944 {
945         struct perf_cpu_context *cpuctx;
946         struct list_head *cpuctx_entry;
947
948         if (!is_cgroup_event(event))
949                 return;
950
951         /*
952          * Because cgroup events are always per-cpu events,
953          * this will always be called from the right CPU.
954          */
955         cpuctx = __get_cpu_context(ctx);
956
957         /*
958          * Since setting cpuctx->cgrp is conditional on the current @cgrp
959          * matching the event's cgroup, we must do this for every new event,
960          * because if the first would mismatch, the second would not try again
961          * and we would leave cpuctx->cgrp unset.
962          */
963         if (add && !cpuctx->cgrp) {
964                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
966                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967                         cpuctx->cgrp = cgrp;
968         }
969
970         if (add && ctx->nr_cgroups++)
971                 return;
972         else if (!add && --ctx->nr_cgroups)
973                 return;
974
975         /* no cgroup running */
976         if (!add)
977                 cpuctx->cgrp = NULL;
978
979         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980         if (add)
981                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982         else
983                 list_del(cpuctx_entry);
984 }
985
986 #else /* !CONFIG_CGROUP_PERF */
987
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991         return true;
992 }
993
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999         return 0;
1000 }
1001
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011                                          struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016                                         struct task_struct *task)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                       struct perf_event_attr *attr,
1022                                       struct perf_event *group_leader)
1023 {
1024         return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029                           struct perf_event_context *ctx)
1030 {
1031 }
1032
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045         return 0;
1046 }
1047
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050                          struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053
1054 #endif
1055
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066         struct perf_cpu_context *cpuctx;
1067         bool rotations;
1068
1069         lockdep_assert_irqs_disabled();
1070
1071         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072         rotations = perf_rotate_context(cpuctx);
1073
1074         raw_spin_lock(&cpuctx->hrtimer_lock);
1075         if (rotations)
1076                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077         else
1078                 cpuctx->hrtimer_active = 0;
1079         raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086         struct hrtimer *timer = &cpuctx->hrtimer;
1087         struct pmu *pmu = cpuctx->ctx.pmu;
1088         u64 interval;
1089
1090         /* no multiplexing needed for SW PMU */
1091         if (pmu->task_ctx_nr == perf_sw_context)
1092                 return;
1093
1094         /*
1095          * check default is sane, if not set then force to
1096          * default interval (1/tick)
1097          */
1098         interval = pmu->hrtimer_interval_ms;
1099         if (interval < 1)
1100                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106         timer->function = perf_mux_hrtimer_handler;
1107 }
1108
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111         struct hrtimer *timer = &cpuctx->hrtimer;
1112         struct pmu *pmu = cpuctx->ctx.pmu;
1113         unsigned long flags;
1114
1115         /* not for SW PMU */
1116         if (pmu->task_ctx_nr == perf_sw_context)
1117                 return 0;
1118
1119         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120         if (!cpuctx->hrtimer_active) {
1121                 cpuctx->hrtimer_active = 1;
1122                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124         }
1125         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127         return 0;
1128 }
1129
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133         if (!(*count)++)
1134                 pmu->pmu_disable(pmu);
1135 }
1136
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140         if (!--(*count))
1141                 pmu->pmu_enable(pmu);
1142 }
1143
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156         lockdep_assert_irqs_disabled();
1157
1158         WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160         list_add(&ctx->active_ctx_list, head);
1161 }
1162
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165         lockdep_assert_irqs_disabled();
1166
1167         WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169         list_del_init(&ctx->active_ctx_list);
1170 }
1171
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179         struct perf_event_context *ctx;
1180
1181         ctx = container_of(head, struct perf_event_context, rcu_head);
1182         kfree(ctx->task_ctx_data);
1183         kfree(ctx);
1184 }
1185
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188         if (atomic_dec_and_test(&ctx->refcount)) {
1189                 if (ctx->parent_ctx)
1190                         put_ctx(ctx->parent_ctx);
1191                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192                         put_task_struct(ctx->task);
1193                 call_rcu(&ctx->rcu_head, free_ctx);
1194         }
1195 }
1196
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()    [ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()                   [ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()         [ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event() [ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *      task_struct::perf_event_mutex
1252  *        perf_event_context::mutex
1253  *          perf_event::child_mutex;
1254  *            perf_event_context::lock
1255  *          perf_event::mmap_mutex
1256  *          mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *        cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265         struct perf_event_context *ctx;
1266
1267 again:
1268         rcu_read_lock();
1269         ctx = READ_ONCE(event->ctx);
1270         if (!atomic_inc_not_zero(&ctx->refcount)) {
1271                 rcu_read_unlock();
1272                 goto again;
1273         }
1274         rcu_read_unlock();
1275
1276         mutex_lock_nested(&ctx->mutex, nesting);
1277         if (event->ctx != ctx) {
1278                 mutex_unlock(&ctx->mutex);
1279                 put_ctx(ctx);
1280                 goto again;
1281         }
1282
1283         return ctx;
1284 }
1285
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289         return perf_event_ctx_lock_nested(event, 0);
1290 }
1291
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293                                   struct perf_event_context *ctx)
1294 {
1295         mutex_unlock(&ctx->mutex);
1296         put_ctx(ctx);
1297 }
1298
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309         lockdep_assert_held(&ctx->lock);
1310
1311         if (parent_ctx)
1312                 ctx->parent_ctx = NULL;
1313         ctx->generation++;
1314
1315         return parent_ctx;
1316 }
1317
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319                                 enum pid_type type)
1320 {
1321         u32 nr;
1322         /*
1323          * only top level events have the pid namespace they were created in
1324          */
1325         if (event->parent)
1326                 event = event->parent;
1327
1328         nr = __task_pid_nr_ns(p, type, event->ns);
1329         /* avoid -1 if it is idle thread or runs in another ns */
1330         if (!nr && !pid_alive(p))
1331                 nr = -1;
1332         return nr;
1333 }
1334
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1338 }
1339
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342         return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351         u64 id = event->id;
1352
1353         if (event->parent)
1354                 id = event->parent->id;
1355
1356         return id;
1357 }
1358
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368         struct perf_event_context *ctx;
1369
1370 retry:
1371         /*
1372          * One of the few rules of preemptible RCU is that one cannot do
1373          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374          * part of the read side critical section was irqs-enabled -- see
1375          * rcu_read_unlock_special().
1376          *
1377          * Since ctx->lock nests under rq->lock we must ensure the entire read
1378          * side critical section has interrupts disabled.
1379          */
1380         local_irq_save(*flags);
1381         rcu_read_lock();
1382         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383         if (ctx) {
1384                 /*
1385                  * If this context is a clone of another, it might
1386                  * get swapped for another underneath us by
1387                  * perf_event_task_sched_out, though the
1388                  * rcu_read_lock() protects us from any context
1389                  * getting freed.  Lock the context and check if it
1390                  * got swapped before we could get the lock, and retry
1391                  * if so.  If we locked the right context, then it
1392                  * can't get swapped on us any more.
1393                  */
1394                 raw_spin_lock(&ctx->lock);
1395                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396                         raw_spin_unlock(&ctx->lock);
1397                         rcu_read_unlock();
1398                         local_irq_restore(*flags);
1399                         goto retry;
1400                 }
1401
1402                 if (ctx->task == TASK_TOMBSTONE ||
1403                     !atomic_inc_not_zero(&ctx->refcount)) {
1404                         raw_spin_unlock(&ctx->lock);
1405                         ctx = NULL;
1406                 } else {
1407                         WARN_ON_ONCE(ctx->task != task);
1408                 }
1409         }
1410         rcu_read_unlock();
1411         if (!ctx)
1412                 local_irq_restore(*flags);
1413         return ctx;
1414 }
1415
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424         struct perf_event_context *ctx;
1425         unsigned long flags;
1426
1427         ctx = perf_lock_task_context(task, ctxn, &flags);
1428         if (ctx) {
1429                 ++ctx->pin_count;
1430                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431         }
1432         return ctx;
1433 }
1434
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437         unsigned long flags;
1438
1439         raw_spin_lock_irqsave(&ctx->lock, flags);
1440         --ctx->pin_count;
1441         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449         u64 now = perf_clock();
1450
1451         ctx->time += now - ctx->timestamp;
1452         ctx->timestamp = now;
1453 }
1454
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457         struct perf_event_context *ctx = event->ctx;
1458
1459         if (is_cgroup_event(event))
1460                 return perf_cgroup_event_time(event);
1461
1462         return ctx ? ctx->time : 0;
1463 }
1464
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467         struct perf_event_context *ctx = event->ctx;
1468         enum event_type_t event_type;
1469
1470         lockdep_assert_held(&ctx->lock);
1471
1472         /*
1473          * It's 'group type', really, because if our group leader is
1474          * pinned, so are we.
1475          */
1476         if (event->group_leader != event)
1477                 event = event->group_leader;
1478
1479         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480         if (!ctx->task)
1481                 event_type |= EVENT_CPU;
1482
1483         return event_type;
1484 }
1485
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491         RB_CLEAR_NODE(&event->group_node);
1492         event->group_index = 0;
1493 }
1494
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502         if (event->attr.pinned)
1503                 return &ctx->pinned_groups;
1504         else
1505                 return &ctx->flexible_groups;
1506 }
1507
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513         groups->tree = RB_ROOT;
1514         groups->index = 0;
1515 }
1516
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526         if (left->cpu < right->cpu)
1527                 return true;
1528         if (left->cpu > right->cpu)
1529                 return false;
1530
1531         if (left->group_index < right->group_index)
1532                 return true;
1533         if (left->group_index > right->group_index)
1534                 return false;
1535
1536         return false;
1537 }
1538
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546                          struct perf_event *event)
1547 {
1548         struct perf_event *node_event;
1549         struct rb_node *parent;
1550         struct rb_node **node;
1551
1552         event->group_index = ++groups->index;
1553
1554         node = &groups->tree.rb_node;
1555         parent = *node;
1556
1557         while (*node) {
1558                 parent = *node;
1559                 node_event = container_of(*node, struct perf_event, group_node);
1560
1561                 if (perf_event_groups_less(event, node_event))
1562                         node = &parent->rb_left;
1563                 else
1564                         node = &parent->rb_right;
1565         }
1566
1567         rb_link_node(&event->group_node, parent, node);
1568         rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577         struct perf_event_groups *groups;
1578
1579         groups = get_event_groups(event, ctx);
1580         perf_event_groups_insert(groups, event);
1581 }
1582
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588                          struct perf_event *event)
1589 {
1590         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591                      RB_EMPTY_ROOT(&groups->tree));
1592
1593         rb_erase(&event->group_node, &groups->tree);
1594         init_event_group(event);
1595 }
1596
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603         struct perf_event_groups *groups;
1604
1605         groups = get_event_groups(event, ctx);
1606         perf_event_groups_delete(groups, event);
1607 }
1608
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615         struct perf_event *node_event = NULL, *match = NULL;
1616         struct rb_node *node = groups->tree.rb_node;
1617
1618         while (node) {
1619                 node_event = container_of(node, struct perf_event, group_node);
1620
1621                 if (cpu < node_event->cpu) {
1622                         node = node->rb_left;
1623                 } else if (cpu > node_event->cpu) {
1624                         node = node->rb_right;
1625                 } else {
1626                         match = node_event;
1627                         node = node->rb_left;
1628                 }
1629         }
1630
1631         return match;
1632 }
1633
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640         struct perf_event *next;
1641
1642         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643         if (next && next->cpu == event->cpu)
1644                 return next;
1645
1646         return NULL;
1647 }
1648
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)                       \
1653         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1654                                 typeof(*event), group_node); event;     \
1655                 event = rb_entry_safe(rb_next(&event->group_node),      \
1656                                 typeof(*event), group_node))
1657
1658 /*
1659  * Add a event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         lockdep_assert_held(&ctx->lock);
1666
1667         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668         event->attach_state |= PERF_ATTACH_CONTEXT;
1669
1670         event->tstamp = perf_event_time(event);
1671
1672         /*
1673          * If we're a stand alone event or group leader, we go to the context
1674          * list, group events are kept attached to the group so that
1675          * perf_group_detach can, at all times, locate all siblings.
1676          */
1677         if (event->group_leader == event) {
1678                 event->group_caps = event->event_caps;
1679                 add_event_to_groups(event, ctx);
1680         }
1681
1682         list_update_cgroup_event(event, ctx, true);
1683
1684         list_add_rcu(&event->event_entry, &ctx->event_list);
1685         ctx->nr_events++;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat++;
1688
1689         ctx->generation++;
1690 }
1691
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698                                               PERF_EVENT_STATE_INACTIVE;
1699 }
1700
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703         int entry = sizeof(u64); /* value */
1704         int size = 0;
1705         int nr = 1;
1706
1707         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708                 size += sizeof(u64);
1709
1710         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711                 size += sizeof(u64);
1712
1713         if (event->attr.read_format & PERF_FORMAT_ID)
1714                 entry += sizeof(u64);
1715
1716         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717                 nr += nr_siblings;
1718                 size += sizeof(u64);
1719         }
1720
1721         size += entry * nr;
1722         event->read_size = size;
1723 }
1724
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727         struct perf_sample_data *data;
1728         u16 size = 0;
1729
1730         if (sample_type & PERF_SAMPLE_IP)
1731                 size += sizeof(data->ip);
1732
1733         if (sample_type & PERF_SAMPLE_ADDR)
1734                 size += sizeof(data->addr);
1735
1736         if (sample_type & PERF_SAMPLE_PERIOD)
1737                 size += sizeof(data->period);
1738
1739         if (sample_type & PERF_SAMPLE_WEIGHT)
1740                 size += sizeof(data->weight);
1741
1742         if (sample_type & PERF_SAMPLE_READ)
1743                 size += event->read_size;
1744
1745         if (sample_type & PERF_SAMPLE_DATA_SRC)
1746                 size += sizeof(data->data_src.val);
1747
1748         if (sample_type & PERF_SAMPLE_TRANSACTION)
1749                 size += sizeof(data->txn);
1750
1751         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752                 size += sizeof(data->phys_addr);
1753
1754         event->header_size = size;
1755 }
1756
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763         __perf_event_read_size(event,
1764                                event->group_leader->nr_siblings);
1765         __perf_event_header_size(event, event->attr.sample_type);
1766 }
1767
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770         struct perf_sample_data *data;
1771         u64 sample_type = event->attr.sample_type;
1772         u16 size = 0;
1773
1774         if (sample_type & PERF_SAMPLE_TID)
1775                 size += sizeof(data->tid_entry);
1776
1777         if (sample_type & PERF_SAMPLE_TIME)
1778                 size += sizeof(data->time);
1779
1780         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781                 size += sizeof(data->id);
1782
1783         if (sample_type & PERF_SAMPLE_ID)
1784                 size += sizeof(data->id);
1785
1786         if (sample_type & PERF_SAMPLE_STREAM_ID)
1787                 size += sizeof(data->stream_id);
1788
1789         if (sample_type & PERF_SAMPLE_CPU)
1790                 size += sizeof(data->cpu_entry);
1791
1792         event->id_header_size = size;
1793 }
1794
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797         /*
1798          * The values computed here will be over-written when we actually
1799          * attach the event.
1800          */
1801         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803         perf_event__id_header_size(event);
1804
1805         /*
1806          * Sum the lot; should not exceed the 64k limit we have on records.
1807          * Conservative limit to allow for callchains and other variable fields.
1808          */
1809         if (event->read_size + event->header_size +
1810             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811                 return false;
1812
1813         return true;
1814 }
1815
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818         struct perf_event *group_leader = event->group_leader, *pos;
1819
1820         lockdep_assert_held(&event->ctx->lock);
1821
1822         /*
1823          * We can have double attach due to group movement in perf_event_open.
1824          */
1825         if (event->attach_state & PERF_ATTACH_GROUP)
1826                 return;
1827
1828         event->attach_state |= PERF_ATTACH_GROUP;
1829
1830         if (group_leader == event)
1831                 return;
1832
1833         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
1835         group_leader->group_caps &= event->event_caps;
1836
1837         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838         group_leader->nr_siblings++;
1839
1840         perf_event__header_size(group_leader);
1841
1842         for_each_sibling_event(pos, group_leader)
1843                 perf_event__header_size(pos);
1844 }
1845
1846 /*
1847  * Remove a event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853         WARN_ON_ONCE(event->ctx != ctx);
1854         lockdep_assert_held(&ctx->lock);
1855
1856         /*
1857          * We can have double detach due to exit/hot-unplug + close.
1858          */
1859         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860                 return;
1861
1862         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
1864         list_update_cgroup_event(event, ctx, false);
1865
1866         ctx->nr_events--;
1867         if (event->attr.inherit_stat)
1868                 ctx->nr_stat--;
1869
1870         list_del_rcu(&event->event_entry);
1871
1872         if (event->group_leader == event)
1873                 del_event_from_groups(event, ctx);
1874
1875         /*
1876          * If event was in error state, then keep it
1877          * that way, otherwise bogus counts will be
1878          * returned on read(). The only way to get out
1879          * of error state is by explicit re-enabling
1880          * of the event
1881          */
1882         if (event->state > PERF_EVENT_STATE_OFF)
1883                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884
1885         ctx->generation++;
1886 }
1887
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890         struct perf_event *sibling, *tmp;
1891         struct perf_event_context *ctx = event->ctx;
1892
1893         lockdep_assert_held(&ctx->lock);
1894
1895         /*
1896          * We can have double detach due to exit/hot-unplug + close.
1897          */
1898         if (!(event->attach_state & PERF_ATTACH_GROUP))
1899                 return;
1900
1901         event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903         /*
1904          * If this is a sibling, remove it from its group.
1905          */
1906         if (event->group_leader != event) {
1907                 list_del_init(&event->sibling_list);
1908                 event->group_leader->nr_siblings--;
1909                 goto out;
1910         }
1911
1912         /*
1913          * If this was a group event with sibling events then
1914          * upgrade the siblings to singleton events by adding them
1915          * to whatever list we are on.
1916          */
1917         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918
1919                 sibling->group_leader = sibling;
1920                 list_del_init(&sibling->sibling_list);
1921
1922                 /* Inherit group flags from the previous leader */
1923                 sibling->group_caps = event->group_caps;
1924
1925                 if (!RB_EMPTY_NODE(&event->group_node)) {
1926                         add_event_to_groups(sibling, event->ctx);
1927
1928                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929                                 struct list_head *list = sibling->attr.pinned ?
1930                                         &ctx->pinned_active : &ctx->flexible_active;
1931
1932                                 list_add_tail(&sibling->active_list, list);
1933                         }
1934                 }
1935
1936                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1937         }
1938
1939 out:
1940         perf_event__header_size(event->group_leader);
1941
1942         for_each_sibling_event(tmp, event->group_leader)
1943                 perf_event__header_size(tmp);
1944 }
1945
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948         return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953         struct pmu *pmu = event->pmu;
1954         return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965         struct perf_event *sibling;
1966
1967         if (!__pmu_filter_match(event))
1968                 return 0;
1969
1970         for_each_sibling_event(sibling, event) {
1971                 if (!__pmu_filter_match(sibling))
1972                         return 0;
1973         }
1974
1975         return 1;
1976 }
1977
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982                perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984
1985 static void
1986 event_sched_out(struct perf_event *event,
1987                   struct perf_cpu_context *cpuctx,
1988                   struct perf_event_context *ctx)
1989 {
1990         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991
1992         WARN_ON_ONCE(event->ctx != ctx);
1993         lockdep_assert_held(&ctx->lock);
1994
1995         if (event->state != PERF_EVENT_STATE_ACTIVE)
1996                 return;
1997
1998         /*
1999          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000          * we can schedule events _OUT_ individually through things like
2001          * __perf_remove_from_context().
2002          */
2003         list_del_init(&event->active_list);
2004
2005         perf_pmu_disable(event->pmu);
2006
2007         event->pmu->del(event, 0);
2008         event->oncpu = -1;
2009
2010         if (event->pending_disable) {
2011                 event->pending_disable = 0;
2012                 state = PERF_EVENT_STATE_OFF;
2013         }
2014         perf_event_set_state(event, state);
2015
2016         if (!is_software_event(event))
2017                 cpuctx->active_oncpu--;
2018         if (!--ctx->nr_active)
2019                 perf_event_ctx_deactivate(ctx);
2020         if (event->attr.freq && event->attr.sample_freq)
2021                 ctx->nr_freq--;
2022         if (event->attr.exclusive || !cpuctx->active_oncpu)
2023                 cpuctx->exclusive = 0;
2024
2025         perf_pmu_enable(event->pmu);
2026 }
2027
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030                 struct perf_cpu_context *cpuctx,
2031                 struct perf_event_context *ctx)
2032 {
2033         struct perf_event *event;
2034
2035         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036                 return;
2037
2038         perf_pmu_disable(ctx->pmu);
2039
2040         event_sched_out(group_event, cpuctx, ctx);
2041
2042         /*
2043          * Schedule out siblings (if any):
2044          */
2045         for_each_sibling_event(event, group_event)
2046                 event_sched_out(event, cpuctx, ctx);
2047
2048         perf_pmu_enable(ctx->pmu);
2049
2050         if (group_event->attr.exclusive)
2051                 cpuctx->exclusive = 0;
2052 }
2053
2054 #define DETACH_GROUP    0x01UL
2055
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064                            struct perf_cpu_context *cpuctx,
2065                            struct perf_event_context *ctx,
2066                            void *info)
2067 {
2068         unsigned long flags = (unsigned long)info;
2069
2070         if (ctx->is_active & EVENT_TIME) {
2071                 update_context_time(ctx);
2072                 update_cgrp_time_from_cpuctx(cpuctx);
2073         }
2074
2075         event_sched_out(event, cpuctx, ctx);
2076         if (flags & DETACH_GROUP)
2077                 perf_group_detach(event);
2078         list_del_event(event, ctx);
2079
2080         if (!ctx->nr_events && ctx->is_active) {
2081                 ctx->is_active = 0;
2082                 if (ctx->task) {
2083                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084                         cpuctx->task_ctx = NULL;
2085                 }
2086         }
2087 }
2088
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101         struct perf_event_context *ctx = event->ctx;
2102
2103         lockdep_assert_held(&ctx->mutex);
2104
2105         event_function_call(event, __perf_remove_from_context, (void *)flags);
2106
2107         /*
2108          * The above event_function_call() can NO-OP when it hits
2109          * TASK_TOMBSTONE. In that case we must already have been detached
2110          * from the context (by perf_event_exit_event()) but the grouping
2111          * might still be in-tact.
2112          */
2113         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114         if ((flags & DETACH_GROUP) &&
2115             (event->attach_state & PERF_ATTACH_GROUP)) {
2116                 /*
2117                  * Since in that case we cannot possibly be scheduled, simply
2118                  * detach now.
2119                  */
2120                 raw_spin_lock_irq(&ctx->lock);
2121                 perf_group_detach(event);
2122                 raw_spin_unlock_irq(&ctx->lock);
2123         }
2124 }
2125
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130                                  struct perf_cpu_context *cpuctx,
2131                                  struct perf_event_context *ctx,
2132                                  void *info)
2133 {
2134         if (event->state < PERF_EVENT_STATE_INACTIVE)
2135                 return;
2136
2137         if (ctx->is_active & EVENT_TIME) {
2138                 update_context_time(ctx);
2139                 update_cgrp_time_from_event(event);
2140         }
2141
2142         if (event == event->group_leader)
2143                 group_sched_out(event, cpuctx, ctx);
2144         else
2145                 event_sched_out(event, cpuctx, ctx);
2146
2147         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149
2150 /*
2151  * Disable a event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166         struct perf_event_context *ctx = event->ctx;
2167
2168         raw_spin_lock_irq(&ctx->lock);
2169         if (event->state <= PERF_EVENT_STATE_OFF) {
2170                 raw_spin_unlock_irq(&ctx->lock);
2171                 return;
2172         }
2173         raw_spin_unlock_irq(&ctx->lock);
2174
2175         event_function_call(event, __perf_event_disable, NULL);
2176 }
2177
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180         event_function_local(event, __perf_event_disable, NULL);
2181 }
2182
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189         struct perf_event_context *ctx;
2190
2191         ctx = perf_event_ctx_lock(event);
2192         _perf_event_disable(event);
2193         perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199         event->pending_disable = 1;
2200         irq_work_queue(&event->pending);
2201 }
2202
2203 static void perf_set_shadow_time(struct perf_event *event,
2204                                  struct perf_event_context *ctx)
2205 {
2206         /*
2207          * use the correct time source for the time snapshot
2208          *
2209          * We could get by without this by leveraging the
2210          * fact that to get to this function, the caller
2211          * has most likely already called update_context_time()
2212          * and update_cgrp_time_xx() and thus both timestamp
2213          * are identical (or very close). Given that tstamp is,
2214          * already adjusted for cgroup, we could say that:
2215          *    tstamp - ctx->timestamp
2216          * is equivalent to
2217          *    tstamp - cgrp->timestamp.
2218          *
2219          * Then, in perf_output_read(), the calculation would
2220          * work with no changes because:
2221          * - event is guaranteed scheduled in
2222          * - no scheduled out in between
2223          * - thus the timestamp would be the same
2224          *
2225          * But this is a bit hairy.
2226          *
2227          * So instead, we have an explicit cgroup call to remain
2228          * within the time time source all along. We believe it
2229          * is cleaner and simpler to understand.
2230          */
2231         if (is_cgroup_event(event))
2232                 perf_cgroup_set_shadow_time(event, event->tstamp);
2233         else
2234                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236
2237 #define MAX_INTERRUPTS (~0ULL)
2238
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241
2242 static int
2243 event_sched_in(struct perf_event *event,
2244                  struct perf_cpu_context *cpuctx,
2245                  struct perf_event_context *ctx)
2246 {
2247         int ret = 0;
2248
2249         lockdep_assert_held(&ctx->lock);
2250
2251         if (event->state <= PERF_EVENT_STATE_OFF)
2252                 return 0;
2253
2254         WRITE_ONCE(event->oncpu, smp_processor_id());
2255         /*
2256          * Order event::oncpu write to happen before the ACTIVE state is
2257          * visible. This allows perf_event_{stop,read}() to observe the correct
2258          * ->oncpu if it sees ACTIVE.
2259          */
2260         smp_wmb();
2261         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262
2263         /*
2264          * Unthrottle events, since we scheduled we might have missed several
2265          * ticks already, also for a heavily scheduling task there is little
2266          * guarantee it'll get a tick in a timely manner.
2267          */
2268         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269                 perf_log_throttle(event, 1);
2270                 event->hw.interrupts = 0;
2271         }
2272
2273         perf_pmu_disable(event->pmu);
2274
2275         perf_set_shadow_time(event, ctx);
2276
2277         perf_log_itrace_start(event);
2278
2279         if (event->pmu->add(event, PERF_EF_START)) {
2280                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281                 event->oncpu = -1;
2282                 ret = -EAGAIN;
2283                 goto out;
2284         }
2285
2286         if (!is_software_event(event))
2287                 cpuctx->active_oncpu++;
2288         if (!ctx->nr_active++)
2289                 perf_event_ctx_activate(ctx);
2290         if (event->attr.freq && event->attr.sample_freq)
2291                 ctx->nr_freq++;
2292
2293         if (event->attr.exclusive)
2294                 cpuctx->exclusive = 1;
2295
2296 out:
2297         perf_pmu_enable(event->pmu);
2298
2299         return ret;
2300 }
2301
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304                struct perf_cpu_context *cpuctx,
2305                struct perf_event_context *ctx)
2306 {
2307         struct perf_event *event, *partial_group = NULL;
2308         struct pmu *pmu = ctx->pmu;
2309
2310         if (group_event->state == PERF_EVENT_STATE_OFF)
2311                 return 0;
2312
2313         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314
2315         if (event_sched_in(group_event, cpuctx, ctx)) {
2316                 pmu->cancel_txn(pmu);
2317                 perf_mux_hrtimer_restart(cpuctx);
2318                 return -EAGAIN;
2319         }
2320
2321         /*
2322          * Schedule in siblings as one group (if any):
2323          */
2324         for_each_sibling_event(event, group_event) {
2325                 if (event_sched_in(event, cpuctx, ctx)) {
2326                         partial_group = event;
2327                         goto group_error;
2328                 }
2329         }
2330
2331         if (!pmu->commit_txn(pmu))
2332                 return 0;
2333
2334 group_error:
2335         /*
2336          * Groups can be scheduled in as one unit only, so undo any
2337          * partial group before returning:
2338          * The events up to the failed event are scheduled out normally.
2339          */
2340         for_each_sibling_event(event, group_event) {
2341                 if (event == partial_group)
2342                         break;
2343
2344                 event_sched_out(event, cpuctx, ctx);
2345         }
2346         event_sched_out(group_event, cpuctx, ctx);
2347
2348         pmu->cancel_txn(pmu);
2349
2350         perf_mux_hrtimer_restart(cpuctx);
2351
2352         return -EAGAIN;
2353 }
2354
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359                            struct perf_cpu_context *cpuctx,
2360                            int can_add_hw)
2361 {
2362         /*
2363          * Groups consisting entirely of software events can always go on.
2364          */
2365         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366                 return 1;
2367         /*
2368          * If an exclusive group is already on, no other hardware
2369          * events can go on.
2370          */
2371         if (cpuctx->exclusive)
2372                 return 0;
2373         /*
2374          * If this group is exclusive and there are already
2375          * events on the CPU, it can't go on.
2376          */
2377         if (event->attr.exclusive && cpuctx->active_oncpu)
2378                 return 0;
2379         /*
2380          * Otherwise, try to add it if all previous groups were able
2381          * to go on.
2382          */
2383         return can_add_hw;
2384 }
2385
2386 static void add_event_to_ctx(struct perf_event *event,
2387                                struct perf_event_context *ctx)
2388 {
2389         list_add_event(event, ctx);
2390         perf_group_attach(event);
2391 }
2392
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394                           struct perf_cpu_context *cpuctx,
2395                           enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398              struct perf_cpu_context *cpuctx,
2399              enum event_type_t event_type,
2400              struct task_struct *task);
2401
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403                                struct perf_event_context *ctx,
2404                                enum event_type_t event_type)
2405 {
2406         if (!cpuctx->task_ctx)
2407                 return;
2408
2409         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410                 return;
2411
2412         ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416                                 struct perf_event_context *ctx,
2417                                 struct task_struct *task)
2418 {
2419         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420         if (ctx)
2421                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443                         struct perf_event_context *task_ctx,
2444                         enum event_type_t event_type)
2445 {
2446         enum event_type_t ctx_event_type;
2447         bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449         /*
2450          * If pinned groups are involved, flexible groups also need to be
2451          * scheduled out.
2452          */
2453         if (event_type & EVENT_PINNED)
2454                 event_type |= EVENT_FLEXIBLE;
2455
2456         ctx_event_type = event_type & EVENT_ALL;
2457
2458         perf_pmu_disable(cpuctx->ctx.pmu);
2459         if (task_ctx)
2460                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462         /*
2463          * Decide which cpu ctx groups to schedule out based on the types
2464          * of events that caused rescheduling:
2465          *  - EVENT_CPU: schedule out corresponding groups;
2466          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467          *  - otherwise, do nothing more.
2468          */
2469         if (cpu_event)
2470                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471         else if (ctx_event_type & EVENT_PINNED)
2472                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
2474         perf_event_sched_in(cpuctx, task_ctx, current);
2475         perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486         struct perf_event *event = info;
2487         struct perf_event_context *ctx = event->ctx;
2488         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490         bool reprogram = true;
2491         int ret = 0;
2492
2493         raw_spin_lock(&cpuctx->ctx.lock);
2494         if (ctx->task) {
2495                 raw_spin_lock(&ctx->lock);
2496                 task_ctx = ctx;
2497
2498                 reprogram = (ctx->task == current);
2499
2500                 /*
2501                  * If the task is running, it must be running on this CPU,
2502                  * otherwise we cannot reprogram things.
2503                  *
2504                  * If its not running, we don't care, ctx->lock will
2505                  * serialize against it becoming runnable.
2506                  */
2507                 if (task_curr(ctx->task) && !reprogram) {
2508                         ret = -ESRCH;
2509                         goto unlock;
2510                 }
2511
2512                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513         } else if (task_ctx) {
2514                 raw_spin_lock(&task_ctx->lock);
2515         }
2516
2517 #ifdef CONFIG_CGROUP_PERF
2518         if (is_cgroup_event(event)) {
2519                 /*
2520                  * If the current cgroup doesn't match the event's
2521                  * cgroup, we should not try to schedule it.
2522                  */
2523                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525                                         event->cgrp->css.cgroup);
2526         }
2527 #endif
2528
2529         if (reprogram) {
2530                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531                 add_event_to_ctx(event, ctx);
2532                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533         } else {
2534                 add_event_to_ctx(event, ctx);
2535         }
2536
2537 unlock:
2538         perf_ctx_unlock(cpuctx, task_ctx);
2539
2540         return ret;
2541 }
2542
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550                         struct perf_event *event,
2551                         int cpu)
2552 {
2553         struct task_struct *task = READ_ONCE(ctx->task);
2554
2555         lockdep_assert_held(&ctx->mutex);
2556
2557         if (event->cpu != -1)
2558                 event->cpu = cpu;
2559
2560         /*
2561          * Ensures that if we can observe event->ctx, both the event and ctx
2562          * will be 'complete'. See perf_iterate_sb_cpu().
2563          */
2564         smp_store_release(&event->ctx, ctx);
2565
2566         if (!task) {
2567                 cpu_function_call(cpu, __perf_install_in_context, event);
2568                 return;
2569         }
2570
2571         /*
2572          * Should not happen, we validate the ctx is still alive before calling.
2573          */
2574         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575                 return;
2576
2577         /*
2578          * Installing events is tricky because we cannot rely on ctx->is_active
2579          * to be set in case this is the nr_events 0 -> 1 transition.
2580          *
2581          * Instead we use task_curr(), which tells us if the task is running.
2582          * However, since we use task_curr() outside of rq::lock, we can race
2583          * against the actual state. This means the result can be wrong.
2584          *
2585          * If we get a false positive, we retry, this is harmless.
2586          *
2587          * If we get a false negative, things are complicated. If we are after
2588          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589          * value must be correct. If we're before, it doesn't matter since
2590          * perf_event_context_sched_in() will program the counter.
2591          *
2592          * However, this hinges on the remote context switch having observed
2593          * our task->perf_event_ctxp[] store, such that it will in fact take
2594          * ctx::lock in perf_event_context_sched_in().
2595          *
2596          * We do this by task_function_call(), if the IPI fails to hit the task
2597          * we know any future context switch of task must see the
2598          * perf_event_ctpx[] store.
2599          */
2600
2601         /*
2602          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603          * task_cpu() load, such that if the IPI then does not find the task
2604          * running, a future context switch of that task must observe the
2605          * store.
2606          */
2607         smp_mb();
2608 again:
2609         if (!task_function_call(task, __perf_install_in_context, event))
2610                 return;
2611
2612         raw_spin_lock_irq(&ctx->lock);
2613         task = ctx->task;
2614         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615                 /*
2616                  * Cannot happen because we already checked above (which also
2617                  * cannot happen), and we hold ctx->mutex, which serializes us
2618                  * against perf_event_exit_task_context().
2619                  */
2620                 raw_spin_unlock_irq(&ctx->lock);
2621                 return;
2622         }
2623         /*
2624          * If the task is not running, ctx->lock will avoid it becoming so,
2625          * thus we can safely install the event.
2626          */
2627         if (task_curr(task)) {
2628                 raw_spin_unlock_irq(&ctx->lock);
2629                 goto again;
2630         }
2631         add_event_to_ctx(event, ctx);
2632         raw_spin_unlock_irq(&ctx->lock);
2633 }
2634
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639                                 struct perf_cpu_context *cpuctx,
2640                                 struct perf_event_context *ctx,
2641                                 void *info)
2642 {
2643         struct perf_event *leader = event->group_leader;
2644         struct perf_event_context *task_ctx;
2645
2646         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647             event->state <= PERF_EVENT_STATE_ERROR)
2648                 return;
2649
2650         if (ctx->is_active)
2651                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
2653         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654
2655         if (!ctx->is_active)
2656                 return;
2657
2658         if (!event_filter_match(event)) {
2659                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660                 return;
2661         }
2662
2663         /*
2664          * If the event is in a group and isn't the group leader,
2665          * then don't put it on unless the group is on.
2666          */
2667         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669                 return;
2670         }
2671
2672         task_ctx = cpuctx->task_ctx;
2673         if (ctx->task)
2674                 WARN_ON_ONCE(task_ctx != ctx);
2675
2676         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678
2679 /*
2680  * Enable a event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690         struct perf_event_context *ctx = event->ctx;
2691
2692         raw_spin_lock_irq(&ctx->lock);
2693         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694             event->state <  PERF_EVENT_STATE_ERROR) {
2695                 raw_spin_unlock_irq(&ctx->lock);
2696                 return;
2697         }
2698
2699         /*
2700          * If the event is in error state, clear that first.
2701          *
2702          * That way, if we see the event in error state below, we know that it
2703          * has gone back into error state, as distinct from the task having
2704          * been scheduled away before the cross-call arrived.
2705          */
2706         if (event->state == PERF_EVENT_STATE_ERROR)
2707                 event->state = PERF_EVENT_STATE_OFF;
2708         raw_spin_unlock_irq(&ctx->lock);
2709
2710         event_function_call(event, __perf_event_enable, NULL);
2711 }
2712
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718         struct perf_event_context *ctx;
2719
2720         ctx = perf_event_ctx_lock(event);
2721         _perf_event_enable(event);
2722         perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725
2726 struct stop_event_data {
2727         struct perf_event       *event;
2728         unsigned int            restart;
2729 };
2730
2731 static int __perf_event_stop(void *info)
2732 {
2733         struct stop_event_data *sd = info;
2734         struct perf_event *event = sd->event;
2735
2736         /* if it's already INACTIVE, do nothing */
2737         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738                 return 0;
2739
2740         /* matches smp_wmb() in event_sched_in() */
2741         smp_rmb();
2742
2743         /*
2744          * There is a window with interrupts enabled before we get here,
2745          * so we need to check again lest we try to stop another CPU's event.
2746          */
2747         if (READ_ONCE(event->oncpu) != smp_processor_id())
2748                 return -EAGAIN;
2749
2750         event->pmu->stop(event, PERF_EF_UPDATE);
2751
2752         /*
2753          * May race with the actual stop (through perf_pmu_output_stop()),
2754          * but it is only used for events with AUX ring buffer, and such
2755          * events will refuse to restart because of rb::aux_mmap_count==0,
2756          * see comments in perf_aux_output_begin().
2757          *
2758          * Since this is happening on a event-local CPU, no trace is lost
2759          * while restarting.
2760          */
2761         if (sd->restart)
2762                 event->pmu->start(event, 0);
2763
2764         return 0;
2765 }
2766
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769         struct stop_event_data sd = {
2770                 .event          = event,
2771                 .restart        = restart,
2772         };
2773         int ret = 0;
2774
2775         do {
2776                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777                         return 0;
2778
2779                 /* matches smp_wmb() in event_sched_in() */
2780                 smp_rmb();
2781
2782                 /*
2783                  * We only want to restart ACTIVE events, so if the event goes
2784                  * inactive here (event->oncpu==-1), there's nothing more to do;
2785                  * fall through with ret==-ENXIO.
2786                  */
2787                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788                                         __perf_event_stop, &sd);
2789         } while (ret == -EAGAIN);
2790
2791         return ret;
2792 }
2793
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820         if (!has_addr_filter(event))
2821                 return;
2822
2823         raw_spin_lock(&ifh->lock);
2824         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825                 event->pmu->addr_filters_sync(event);
2826                 event->hw.addr_filters_gen = event->addr_filters_gen;
2827         }
2828         raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834         /*
2835          * not supported on inherited events
2836          */
2837         if (event->attr.inherit || !is_sampling_event(event))
2838                 return -EINVAL;
2839
2840         atomic_add(refresh, &event->event_limit);
2841         _perf_event_enable(event);
2842
2843         return 0;
2844 }
2845
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851         struct perf_event_context *ctx;
2852         int ret;
2853
2854         ctx = perf_event_ctx_lock(event);
2855         ret = _perf_event_refresh(event, refresh);
2856         perf_event_ctx_unlock(event, ctx);
2857
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863                                          struct perf_event_attr *attr)
2864 {
2865         int err;
2866
2867         _perf_event_disable(bp);
2868
2869         err = modify_user_hw_breakpoint_check(bp, attr, true);
2870         if (err) {
2871                 if (!bp->attr.disabled)
2872                         _perf_event_enable(bp);
2873
2874                 return err;
2875         }
2876
2877         if (!attr->disabled)
2878                 _perf_event_enable(bp);
2879         return 0;
2880 }
2881
2882 static int perf_event_modify_attr(struct perf_event *event,
2883                                   struct perf_event_attr *attr)
2884 {
2885         if (event->attr.type != attr->type)
2886                 return -EINVAL;
2887
2888         switch (event->attr.type) {
2889         case PERF_TYPE_BREAKPOINT:
2890                 return perf_event_modify_breakpoint(event, attr);
2891         default:
2892                 /* Place holder for future additions. */
2893                 return -EOPNOTSUPP;
2894         }
2895 }
2896
2897 static void ctx_sched_out(struct perf_event_context *ctx,
2898                           struct perf_cpu_context *cpuctx,
2899                           enum event_type_t event_type)
2900 {
2901         struct perf_event *event, *tmp;
2902         int is_active = ctx->is_active;
2903
2904         lockdep_assert_held(&ctx->lock);
2905
2906         if (likely(!ctx->nr_events)) {
2907                 /*
2908                  * See __perf_remove_from_context().
2909                  */
2910                 WARN_ON_ONCE(ctx->is_active);
2911                 if (ctx->task)
2912                         WARN_ON_ONCE(cpuctx->task_ctx);
2913                 return;
2914         }
2915
2916         ctx->is_active &= ~event_type;
2917         if (!(ctx->is_active & EVENT_ALL))
2918                 ctx->is_active = 0;
2919
2920         if (ctx->task) {
2921                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2922                 if (!ctx->is_active)
2923                         cpuctx->task_ctx = NULL;
2924         }
2925
2926         /*
2927          * Always update time if it was set; not only when it changes.
2928          * Otherwise we can 'forget' to update time for any but the last
2929          * context we sched out. For example:
2930          *
2931          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932          *   ctx_sched_out(.event_type = EVENT_PINNED)
2933          *
2934          * would only update time for the pinned events.
2935          */
2936         if (is_active & EVENT_TIME) {
2937                 /* update (and stop) ctx time */
2938                 update_context_time(ctx);
2939                 update_cgrp_time_from_cpuctx(cpuctx);
2940         }
2941
2942         is_active ^= ctx->is_active; /* changed bits */
2943
2944         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2945                 return;
2946
2947         perf_pmu_disable(ctx->pmu);
2948         if (is_active & EVENT_PINNED) {
2949                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2950                         group_sched_out(event, cpuctx, ctx);
2951         }
2952
2953         if (is_active & EVENT_FLEXIBLE) {
2954                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2955                         group_sched_out(event, cpuctx, ctx);
2956         }
2957         perf_pmu_enable(ctx->pmu);
2958 }
2959
2960 /*
2961  * Test whether two contexts are equivalent, i.e. whether they have both been
2962  * cloned from the same version of the same context.
2963  *
2964  * Equivalence is measured using a generation number in the context that is
2965  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966  * and list_del_event().
2967  */
2968 static int context_equiv(struct perf_event_context *ctx1,
2969                          struct perf_event_context *ctx2)
2970 {
2971         lockdep_assert_held(&ctx1->lock);
2972         lockdep_assert_held(&ctx2->lock);
2973
2974         /* Pinning disables the swap optimization */
2975         if (ctx1->pin_count || ctx2->pin_count)
2976                 return 0;
2977
2978         /* If ctx1 is the parent of ctx2 */
2979         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2980                 return 1;
2981
2982         /* If ctx2 is the parent of ctx1 */
2983         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2984                 return 1;
2985
2986         /*
2987          * If ctx1 and ctx2 have the same parent; we flatten the parent
2988          * hierarchy, see perf_event_init_context().
2989          */
2990         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2991                         ctx1->parent_gen == ctx2->parent_gen)
2992                 return 1;
2993
2994         /* Unmatched */
2995         return 0;
2996 }
2997
2998 static void __perf_event_sync_stat(struct perf_event *event,
2999                                      struct perf_event *next_event)
3000 {
3001         u64 value;
3002
3003         if (!event->attr.inherit_stat)
3004                 return;
3005
3006         /*
3007          * Update the event value, we cannot use perf_event_read()
3008          * because we're in the middle of a context switch and have IRQs
3009          * disabled, which upsets smp_call_function_single(), however
3010          * we know the event must be on the current CPU, therefore we
3011          * don't need to use it.
3012          */
3013         if (event->state == PERF_EVENT_STATE_ACTIVE)
3014                 event->pmu->read(event);
3015
3016         perf_event_update_time(event);
3017
3018         /*
3019          * In order to keep per-task stats reliable we need to flip the event
3020          * values when we flip the contexts.
3021          */
3022         value = local64_read(&next_event->count);
3023         value = local64_xchg(&event->count, value);
3024         local64_set(&next_event->count, value);
3025
3026         swap(event->total_time_enabled, next_event->total_time_enabled);
3027         swap(event->total_time_running, next_event->total_time_running);
3028
3029         /*
3030          * Since we swizzled the values, update the user visible data too.
3031          */
3032         perf_event_update_userpage(event);
3033         perf_event_update_userpage(next_event);
3034 }
3035
3036 static void perf_event_sync_stat(struct perf_event_context *ctx,
3037                                    struct perf_event_context *next_ctx)
3038 {
3039         struct perf_event *event, *next_event;
3040
3041         if (!ctx->nr_stat)
3042                 return;
3043
3044         update_context_time(ctx);
3045
3046         event = list_first_entry(&ctx->event_list,
3047                                    struct perf_event, event_entry);
3048
3049         next_event = list_first_entry(&next_ctx->event_list,
3050                                         struct perf_event, event_entry);
3051
3052         while (&event->event_entry != &ctx->event_list &&
3053                &next_event->event_entry != &next_ctx->event_list) {
3054
3055                 __perf_event_sync_stat(event, next_event);
3056
3057                 event = list_next_entry(event, event_entry);
3058                 next_event = list_next_entry(next_event, event_entry);
3059         }
3060 }
3061
3062 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3063                                          struct task_struct *next)
3064 {
3065         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3066         struct perf_event_context *next_ctx;
3067         struct perf_event_context *parent, *next_parent;
3068         struct perf_cpu_context *cpuctx;
3069         int do_switch = 1;
3070
3071         if (likely(!ctx))
3072                 return;
3073
3074         cpuctx = __get_cpu_context(ctx);
3075         if (!cpuctx->task_ctx)
3076                 return;
3077
3078         rcu_read_lock();
3079         next_ctx = next->perf_event_ctxp[ctxn];
3080         if (!next_ctx)
3081                 goto unlock;
3082
3083         parent = rcu_dereference(ctx->parent_ctx);
3084         next_parent = rcu_dereference(next_ctx->parent_ctx);
3085
3086         /* If neither context have a parent context; they cannot be clones. */
3087         if (!parent && !next_parent)
3088                 goto unlock;
3089
3090         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3091                 /*
3092                  * Looks like the two contexts are clones, so we might be
3093                  * able to optimize the context switch.  We lock both
3094                  * contexts and check that they are clones under the
3095                  * lock (including re-checking that neither has been
3096                  * uncloned in the meantime).  It doesn't matter which
3097                  * order we take the locks because no other cpu could
3098                  * be trying to lock both of these tasks.
3099                  */
3100                 raw_spin_lock(&ctx->lock);
3101                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3102                 if (context_equiv(ctx, next_ctx)) {
3103                         WRITE_ONCE(ctx->task, next);
3104                         WRITE_ONCE(next_ctx->task, task);
3105
3106                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3107
3108                         /*
3109                          * RCU_INIT_POINTER here is safe because we've not
3110                          * modified the ctx and the above modification of
3111                          * ctx->task and ctx->task_ctx_data are immaterial
3112                          * since those values are always verified under
3113                          * ctx->lock which we're now holding.
3114                          */
3115                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3116                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3117
3118                         do_switch = 0;
3119
3120                         perf_event_sync_stat(ctx, next_ctx);
3121                 }
3122                 raw_spin_unlock(&next_ctx->lock);
3123                 raw_spin_unlock(&ctx->lock);
3124         }
3125 unlock:
3126         rcu_read_unlock();
3127
3128         if (do_switch) {
3129                 raw_spin_lock(&ctx->lock);
3130                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3131                 raw_spin_unlock(&ctx->lock);
3132         }
3133 }
3134
3135 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3136
3137 void perf_sched_cb_dec(struct pmu *pmu)
3138 {
3139         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3140
3141         this_cpu_dec(perf_sched_cb_usages);
3142
3143         if (!--cpuctx->sched_cb_usage)
3144                 list_del(&cpuctx->sched_cb_entry);
3145 }
3146
3147
3148 void perf_sched_cb_inc(struct pmu *pmu)
3149 {
3150         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3151
3152         if (!cpuctx->sched_cb_usage++)
3153                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3154
3155         this_cpu_inc(perf_sched_cb_usages);
3156 }
3157
3158 /*
3159  * This function provides the context switch callback to the lower code
3160  * layer. It is invoked ONLY when the context switch callback is enabled.
3161  *
3162  * This callback is relevant even to per-cpu events; for example multi event
3163  * PEBS requires this to provide PID/TID information. This requires we flush
3164  * all queued PEBS records before we context switch to a new task.
3165  */
3166 static void perf_pmu_sched_task(struct task_struct *prev,
3167                                 struct task_struct *next,
3168                                 bool sched_in)
3169 {
3170         struct perf_cpu_context *cpuctx;
3171         struct pmu *pmu;
3172
3173         if (prev == next)
3174                 return;
3175
3176         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3177                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3178
3179                 if (WARN_ON_ONCE(!pmu->sched_task))
3180                         continue;
3181
3182                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3183                 perf_pmu_disable(pmu);
3184
3185                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3186
3187                 perf_pmu_enable(pmu);
3188                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3189         }
3190 }
3191
3192 static void perf_event_switch(struct task_struct *task,
3193                               struct task_struct *next_prev, bool sched_in);
3194
3195 #define for_each_task_context_nr(ctxn)                                  \
3196         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3197
3198 /*
3199  * Called from scheduler to remove the events of the current task,
3200  * with interrupts disabled.
3201  *
3202  * We stop each event and update the event value in event->count.
3203  *
3204  * This does not protect us against NMI, but disable()
3205  * sets the disabled bit in the control field of event _before_
3206  * accessing the event control register. If a NMI hits, then it will
3207  * not restart the event.
3208  */
3209 void __perf_event_task_sched_out(struct task_struct *task,
3210                                  struct task_struct *next)
3211 {
3212         int ctxn;
3213
3214         if (__this_cpu_read(perf_sched_cb_usages))
3215                 perf_pmu_sched_task(task, next, false);
3216
3217         if (atomic_read(&nr_switch_events))
3218                 perf_event_switch(task, next, false);
3219
3220         for_each_task_context_nr(ctxn)
3221                 perf_event_context_sched_out(task, ctxn, next);
3222
3223         /*
3224          * if cgroup events exist on this CPU, then we need
3225          * to check if we have to switch out PMU state.
3226          * cgroup event are system-wide mode only
3227          */
3228         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3229                 perf_cgroup_sched_out(task, next);
3230 }
3231
3232 /*
3233  * Called with IRQs disabled
3234  */
3235 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3236                               enum event_type_t event_type)
3237 {
3238         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3239 }
3240
3241 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3242                               int (*func)(struct perf_event *, void *), void *data)
3243 {
3244         struct perf_event **evt, *evt1, *evt2;
3245         int ret;
3246
3247         evt1 = perf_event_groups_first(groups, -1);
3248         evt2 = perf_event_groups_first(groups, cpu);
3249
3250         while (evt1 || evt2) {
3251                 if (evt1 && evt2) {
3252                         if (evt1->group_index < evt2->group_index)
3253                                 evt = &evt1;
3254                         else
3255                                 evt = &evt2;
3256                 } else if (evt1) {
3257                         evt = &evt1;
3258                 } else {
3259                         evt = &evt2;
3260                 }
3261
3262                 ret = func(*evt, data);
3263                 if (ret)
3264                         return ret;
3265
3266                 *evt = perf_event_groups_next(*evt);
3267         }
3268
3269         return 0;
3270 }
3271
3272 struct sched_in_data {
3273         struct perf_event_context *ctx;
3274         struct perf_cpu_context *cpuctx;
3275         int can_add_hw;
3276 };
3277
3278 static int pinned_sched_in(struct perf_event *event, void *data)
3279 {
3280         struct sched_in_data *sid = data;
3281
3282         if (event->state <= PERF_EVENT_STATE_OFF)
3283                 return 0;
3284
3285         if (!event_filter_match(event))
3286                 return 0;
3287
3288         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3289                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3290                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3291         }
3292
3293         /*
3294          * If this pinned group hasn't been scheduled,
3295          * put it in error state.
3296          */
3297         if (event->state == PERF_EVENT_STATE_INACTIVE)
3298                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3299
3300         return 0;
3301 }
3302
3303 static int flexible_sched_in(struct perf_event *event, void *data)
3304 {
3305         struct sched_in_data *sid = data;
3306
3307         if (event->state <= PERF_EVENT_STATE_OFF)
3308                 return 0;
3309
3310         if (!event_filter_match(event))
3311                 return 0;
3312
3313         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3314                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3315                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3316                 else
3317                         sid->can_add_hw = 0;
3318         }
3319
3320         return 0;
3321 }
3322
3323 static void
3324 ctx_pinned_sched_in(struct perf_event_context *ctx,
3325                     struct perf_cpu_context *cpuctx)
3326 {
3327         struct sched_in_data sid = {
3328                 .ctx = ctx,
3329                 .cpuctx = cpuctx,
3330                 .can_add_hw = 1,
3331         };
3332
3333         visit_groups_merge(&ctx->pinned_groups,
3334                            smp_processor_id(),
3335                            pinned_sched_in, &sid);
3336 }
3337
3338 static void
3339 ctx_flexible_sched_in(struct perf_event_context *ctx,
3340                       struct perf_cpu_context *cpuctx)
3341 {
3342         struct sched_in_data sid = {
3343                 .ctx = ctx,
3344                 .cpuctx = cpuctx,
3345                 .can_add_hw = 1,
3346         };
3347
3348         visit_groups_merge(&ctx->flexible_groups,
3349                            smp_processor_id(),
3350                            flexible_sched_in, &sid);
3351 }
3352
3353 static void
3354 ctx_sched_in(struct perf_event_context *ctx,
3355              struct perf_cpu_context *cpuctx,
3356              enum event_type_t event_type,
3357              struct task_struct *task)
3358 {
3359         int is_active = ctx->is_active;
3360         u64 now;
3361
3362         lockdep_assert_held(&ctx->lock);
3363
3364         if (likely(!ctx->nr_events))
3365                 return;
3366
3367         ctx->is_active |= (event_type | EVENT_TIME);
3368         if (ctx->task) {
3369                 if (!is_active)
3370                         cpuctx->task_ctx = ctx;
3371                 else
3372                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3373         }
3374
3375         is_active ^= ctx->is_active; /* changed bits */
3376
3377         if (is_active & EVENT_TIME) {
3378                 /* start ctx time */
3379                 now = perf_clock();
3380                 ctx->timestamp = now;
3381                 perf_cgroup_set_timestamp(task, ctx);
3382         }
3383
3384         /*
3385          * First go through the list and put on any pinned groups
3386          * in order to give them the best chance of going on.
3387          */
3388         if (is_active & EVENT_PINNED)
3389                 ctx_pinned_sched_in(ctx, cpuctx);
3390
3391         /* Then walk through the lower prio flexible groups */
3392         if (is_active & EVENT_FLEXIBLE)
3393                 ctx_flexible_sched_in(ctx, cpuctx);
3394 }
3395
3396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3397                              enum event_type_t event_type,
3398                              struct task_struct *task)
3399 {
3400         struct perf_event_context *ctx = &cpuctx->ctx;
3401
3402         ctx_sched_in(ctx, cpuctx, event_type, task);
3403 }
3404
3405 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3406                                         struct task_struct *task)
3407 {
3408         struct perf_cpu_context *cpuctx;
3409
3410         cpuctx = __get_cpu_context(ctx);
3411         if (cpuctx->task_ctx == ctx)
3412                 return;
3413
3414         perf_ctx_lock(cpuctx, ctx);
3415         /*
3416          * We must check ctx->nr_events while holding ctx->lock, such
3417          * that we serialize against perf_install_in_context().
3418          */
3419         if (!ctx->nr_events)
3420                 goto unlock;
3421
3422         perf_pmu_disable(ctx->pmu);
3423         /*
3424          * We want to keep the following priority order:
3425          * cpu pinned (that don't need to move), task pinned,
3426          * cpu flexible, task flexible.
3427          *
3428          * However, if task's ctx is not carrying any pinned
3429          * events, no need to flip the cpuctx's events around.
3430          */
3431         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3432                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3433         perf_event_sched_in(cpuctx, ctx, task);
3434         perf_pmu_enable(ctx->pmu);
3435
3436 unlock:
3437         perf_ctx_unlock(cpuctx, ctx);
3438 }
3439
3440 /*
3441  * Called from scheduler to add the events of the current task
3442  * with interrupts disabled.
3443  *
3444  * We restore the event value and then enable it.
3445  *
3446  * This does not protect us against NMI, but enable()
3447  * sets the enabled bit in the control field of event _before_
3448  * accessing the event control register. If a NMI hits, then it will
3449  * keep the event running.
3450  */
3451 void __perf_event_task_sched_in(struct task_struct *prev,
3452                                 struct task_struct *task)
3453 {
3454         struct perf_event_context *ctx;
3455         int ctxn;
3456
3457         /*
3458          * If cgroup events exist on this CPU, then we need to check if we have
3459          * to switch in PMU state; cgroup event are system-wide mode only.
3460          *
3461          * Since cgroup events are CPU events, we must schedule these in before
3462          * we schedule in the task events.
3463          */
3464         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3465                 perf_cgroup_sched_in(prev, task);
3466
3467         for_each_task_context_nr(ctxn) {
3468                 ctx = task->perf_event_ctxp[ctxn];
3469                 if (likely(!ctx))
3470                         continue;
3471
3472                 perf_event_context_sched_in(ctx, task);
3473         }
3474
3475         if (atomic_read(&nr_switch_events))
3476                 perf_event_switch(task, prev, true);
3477
3478         if (__this_cpu_read(perf_sched_cb_usages))
3479                 perf_pmu_sched_task(prev, task, true);
3480 }
3481
3482 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3483 {
3484         u64 frequency = event->attr.sample_freq;
3485         u64 sec = NSEC_PER_SEC;
3486         u64 divisor, dividend;
3487
3488         int count_fls, nsec_fls, frequency_fls, sec_fls;
3489
3490         count_fls = fls64(count);
3491         nsec_fls = fls64(nsec);
3492         frequency_fls = fls64(frequency);
3493         sec_fls = 30;
3494
3495         /*
3496          * We got @count in @nsec, with a target of sample_freq HZ
3497          * the target period becomes:
3498          *
3499          *             @count * 10^9
3500          * period = -------------------
3501          *          @nsec * sample_freq
3502          *
3503          */
3504
3505         /*
3506          * Reduce accuracy by one bit such that @a and @b converge
3507          * to a similar magnitude.
3508          */
3509 #define REDUCE_FLS(a, b)                \
3510 do {                                    \
3511         if (a##_fls > b##_fls) {        \
3512                 a >>= 1;                \
3513                 a##_fls--;              \
3514         } else {                        \
3515                 b >>= 1;                \
3516                 b##_fls--;              \
3517         }                               \
3518 } while (0)
3519
3520         /*
3521          * Reduce accuracy until either term fits in a u64, then proceed with
3522          * the other, so that finally we can do a u64/u64 division.
3523          */
3524         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3525                 REDUCE_FLS(nsec, frequency);
3526                 REDUCE_FLS(sec, count);
3527         }
3528
3529         if (count_fls + sec_fls > 64) {
3530                 divisor = nsec * frequency;
3531
3532                 while (count_fls + sec_fls > 64) {
3533                         REDUCE_FLS(count, sec);
3534                         divisor >>= 1;
3535                 }
3536
3537                 dividend = count * sec;
3538         } else {
3539                 dividend = count * sec;
3540
3541                 while (nsec_fls + frequency_fls > 64) {
3542                         REDUCE_FLS(nsec, frequency);
3543                         dividend >>= 1;
3544                 }
3545
3546                 divisor = nsec * frequency;
3547         }
3548
3549         if (!divisor)
3550                 return dividend;
3551
3552         return div64_u64(dividend, divisor);
3553 }
3554
3555 static DEFINE_PER_CPU(int, perf_throttled_count);
3556 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3557
3558 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3559 {
3560         struct hw_perf_event *hwc = &event->hw;
3561         s64 period, sample_period;
3562         s64 delta;
3563
3564         period = perf_calculate_period(event, nsec, count);
3565
3566         delta = (s64)(period - hwc->sample_period);
3567         delta = (delta + 7) / 8; /* low pass filter */
3568
3569         sample_period = hwc->sample_period + delta;
3570
3571         if (!sample_period)
3572                 sample_period = 1;
3573
3574         hwc->sample_period = sample_period;
3575
3576         if (local64_read(&hwc->period_left) > 8*sample_period) {
3577                 if (disable)
3578                         event->pmu->stop(event, PERF_EF_UPDATE);
3579
3580                 local64_set(&hwc->period_left, 0);
3581
3582                 if (disable)
3583                         event->pmu->start(event, PERF_EF_RELOAD);
3584         }
3585 }
3586
3587 /*
3588  * combine freq adjustment with unthrottling to avoid two passes over the
3589  * events. At the same time, make sure, having freq events does not change
3590  * the rate of unthrottling as that would introduce bias.
3591  */
3592 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3593                                            int needs_unthr)
3594 {
3595         struct perf_event *event;
3596         struct hw_perf_event *hwc;
3597         u64 now, period = TICK_NSEC;
3598         s64 delta;
3599
3600         /*
3601          * only need to iterate over all events iff:
3602          * - context have events in frequency mode (needs freq adjust)
3603          * - there are events to unthrottle on this cpu
3604          */
3605         if (!(ctx->nr_freq || needs_unthr))
3606                 return;
3607
3608         raw_spin_lock(&ctx->lock);
3609         perf_pmu_disable(ctx->pmu);
3610
3611         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3612                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3613                         continue;
3614
3615                 if (!event_filter_match(event))
3616                         continue;
3617
3618                 perf_pmu_disable(event->pmu);
3619
3620                 hwc = &event->hw;
3621
3622                 if (hwc->interrupts == MAX_INTERRUPTS) {
3623                         hwc->interrupts = 0;
3624                         perf_log_throttle(event, 1);
3625                         event->pmu->start(event, 0);
3626                 }
3627
3628                 if (!event->attr.freq || !event->attr.sample_freq)
3629                         goto next;
3630
3631                 /*
3632                  * stop the event and update event->count
3633                  */
3634                 event->pmu->stop(event, PERF_EF_UPDATE);
3635
3636                 now = local64_read(&event->count);
3637                 delta = now - hwc->freq_count_stamp;
3638                 hwc->freq_count_stamp = now;
3639
3640                 /*
3641                  * restart the event
3642                  * reload only if value has changed
3643                  * we have stopped the event so tell that
3644                  * to perf_adjust_period() to avoid stopping it
3645                  * twice.
3646                  */
3647                 if (delta > 0)
3648                         perf_adjust_period(event, period, delta, false);
3649
3650                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3651         next:
3652                 perf_pmu_enable(event->pmu);
3653         }
3654
3655         perf_pmu_enable(ctx->pmu);
3656         raw_spin_unlock(&ctx->lock);
3657 }
3658
3659 /*
3660  * Move @event to the tail of the @ctx's elegible events.
3661  */
3662 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3663 {
3664         /*
3665          * Rotate the first entry last of non-pinned groups. Rotation might be
3666          * disabled by the inheritance code.
3667          */
3668         if (ctx->rotate_disable)
3669                 return;
3670
3671         perf_event_groups_delete(&ctx->flexible_groups, event);
3672         perf_event_groups_insert(&ctx->flexible_groups, event);
3673 }
3674
3675 static inline struct perf_event *
3676 ctx_first_active(struct perf_event_context *ctx)
3677 {
3678         return list_first_entry_or_null(&ctx->flexible_active,
3679                                         struct perf_event, active_list);
3680 }
3681
3682 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3683 {
3684         struct perf_event *cpu_event = NULL, *task_event = NULL;
3685         bool cpu_rotate = false, task_rotate = false;
3686         struct perf_event_context *ctx = NULL;
3687
3688         /*
3689          * Since we run this from IRQ context, nobody can install new
3690          * events, thus the event count values are stable.
3691          */
3692
3693         if (cpuctx->ctx.nr_events) {
3694                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3695                         cpu_rotate = true;
3696         }
3697
3698         ctx = cpuctx->task_ctx;
3699         if (ctx && ctx->nr_events) {
3700                 if (ctx->nr_events != ctx->nr_active)
3701                         task_rotate = true;
3702         }
3703
3704         if (!(cpu_rotate || task_rotate))
3705                 return false;
3706
3707         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3708         perf_pmu_disable(cpuctx->ctx.pmu);
3709
3710         if (task_rotate)
3711                 task_event = ctx_first_active(ctx);
3712         if (cpu_rotate)
3713                 cpu_event = ctx_first_active(&cpuctx->ctx);
3714
3715         /*
3716          * As per the order given at ctx_resched() first 'pop' task flexible
3717          * and then, if needed CPU flexible.
3718          */
3719         if (task_event || (ctx && cpu_event))
3720                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3721         if (cpu_event)
3722                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3723
3724         if (task_event)
3725                 rotate_ctx(ctx, task_event);
3726         if (cpu_event)
3727                 rotate_ctx(&cpuctx->ctx, cpu_event);
3728
3729         perf_event_sched_in(cpuctx, ctx, current);
3730
3731         perf_pmu_enable(cpuctx->ctx.pmu);
3732         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3733
3734         return true;
3735 }
3736
3737 void perf_event_task_tick(void)
3738 {
3739         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3740         struct perf_event_context *ctx, *tmp;
3741         int throttled;
3742
3743         lockdep_assert_irqs_disabled();
3744
3745         __this_cpu_inc(perf_throttled_seq);
3746         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3747         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3748
3749         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3750                 perf_adjust_freq_unthr_context(ctx, throttled);
3751 }
3752
3753 static int event_enable_on_exec(struct perf_event *event,
3754                                 struct perf_event_context *ctx)
3755 {
3756         if (!event->attr.enable_on_exec)
3757                 return 0;
3758
3759         event->attr.enable_on_exec = 0;
3760         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3761                 return 0;
3762
3763         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3764
3765         return 1;
3766 }
3767
3768 /*
3769  * Enable all of a task's events that have been marked enable-on-exec.
3770  * This expects task == current.
3771  */
3772 static void perf_event_enable_on_exec(int ctxn)
3773 {
3774         struct perf_event_context *ctx, *clone_ctx = NULL;
3775         enum event_type_t event_type = 0;
3776         struct perf_cpu_context *cpuctx;
3777         struct perf_event *event;
3778         unsigned long flags;
3779         int enabled = 0;
3780
3781         local_irq_save(flags);
3782         ctx = current->perf_event_ctxp[ctxn];
3783         if (!ctx || !ctx->nr_events)
3784                 goto out;
3785
3786         cpuctx = __get_cpu_context(ctx);
3787         perf_ctx_lock(cpuctx, ctx);
3788         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3789         list_for_each_entry(event, &ctx->event_list, event_entry) {
3790                 enabled |= event_enable_on_exec(event, ctx);
3791                 event_type |= get_event_type(event);
3792         }
3793
3794         /*
3795          * Unclone and reschedule this context if we enabled any event.
3796          */
3797         if (enabled) {
3798                 clone_ctx = unclone_ctx(ctx);
3799                 ctx_resched(cpuctx, ctx, event_type);
3800         } else {
3801                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3802         }
3803         perf_ctx_unlock(cpuctx, ctx);
3804
3805 out:
3806         local_irq_restore(flags);
3807
3808         if (clone_ctx)
3809                 put_ctx(clone_ctx);
3810 }
3811
3812 struct perf_read_data {
3813         struct perf_event *event;
3814         bool group;
3815         int ret;
3816 };
3817
3818 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3819 {
3820         u16 local_pkg, event_pkg;
3821
3822         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3823                 int local_cpu = smp_processor_id();
3824
3825                 event_pkg = topology_physical_package_id(event_cpu);
3826                 local_pkg = topology_physical_package_id(local_cpu);
3827
3828                 if (event_pkg == local_pkg)
3829                         return local_cpu;
3830         }
3831
3832         return event_cpu;
3833 }
3834
3835 /*
3836  * Cross CPU call to read the hardware event
3837  */
3838 static void __perf_event_read(void *info)
3839 {
3840         struct perf_read_data *data = info;
3841         struct perf_event *sub, *event = data->event;
3842         struct perf_event_context *ctx = event->ctx;
3843         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3844         struct pmu *pmu = event->pmu;
3845
3846         /*
3847          * If this is a task context, we need to check whether it is
3848          * the current task context of this cpu.  If not it has been
3849          * scheduled out before the smp call arrived.  In that case
3850          * event->count would have been updated to a recent sample
3851          * when the event was scheduled out.
3852          */
3853         if (ctx->task && cpuctx->task_ctx != ctx)
3854                 return;
3855
3856         raw_spin_lock(&ctx->lock);
3857         if (ctx->is_active & EVENT_TIME) {
3858                 update_context_time(ctx);
3859                 update_cgrp_time_from_event(event);
3860         }
3861
3862         perf_event_update_time(event);
3863         if (data->group)
3864                 perf_event_update_sibling_time(event);
3865
3866         if (event->state != PERF_EVENT_STATE_ACTIVE)
3867                 goto unlock;
3868
3869         if (!data->group) {
3870                 pmu->read(event);
3871                 data->ret = 0;
3872                 goto unlock;
3873         }
3874
3875         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3876
3877         pmu->read(event);
3878
3879         for_each_sibling_event(sub, event) {
3880                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3881                         /*
3882                          * Use sibling's PMU rather than @event's since
3883                          * sibling could be on different (eg: software) PMU.
3884                          */
3885                         sub->pmu->read(sub);
3886                 }
3887         }
3888
3889         data->ret = pmu->commit_txn(pmu);
3890
3891 unlock:
3892         raw_spin_unlock(&ctx->lock);
3893 }
3894
3895 static inline u64 perf_event_count(struct perf_event *event)
3896 {
3897         return local64_read(&event->count) + atomic64_read(&event->child_count);
3898 }
3899
3900 /*
3901  * NMI-safe method to read a local event, that is an event that
3902  * is:
3903  *   - either for the current task, or for this CPU
3904  *   - does not have inherit set, for inherited task events
3905  *     will not be local and we cannot read them atomically
3906  *   - must not have a pmu::count method
3907  */
3908 int perf_event_read_local(struct perf_event *event, u64 *value,
3909                           u64 *enabled, u64 *running)
3910 {
3911         unsigned long flags;
3912         int ret = 0;
3913
3914         /*
3915          * Disabling interrupts avoids all counter scheduling (context
3916          * switches, timer based rotation and IPIs).
3917          */
3918         local_irq_save(flags);
3919
3920         /*
3921          * It must not be an event with inherit set, we cannot read
3922          * all child counters from atomic context.
3923          */
3924         if (event->attr.inherit) {
3925                 ret = -EOPNOTSUPP;
3926                 goto out;
3927         }
3928
3929         /* If this is a per-task event, it must be for current */
3930         if ((event->attach_state & PERF_ATTACH_TASK) &&
3931             event->hw.target != current) {
3932                 ret = -EINVAL;
3933                 goto out;
3934         }
3935
3936         /* If this is a per-CPU event, it must be for this CPU */
3937         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3938             event->cpu != smp_processor_id()) {
3939                 ret = -EINVAL;
3940                 goto out;
3941         }
3942
3943         /*
3944          * If the event is currently on this CPU, its either a per-task event,
3945          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3946          * oncpu == -1).
3947          */
3948         if (event->oncpu == smp_processor_id())
3949                 event->pmu->read(event);
3950
3951         *value = local64_read(&event->count);
3952         if (enabled || running) {
3953                 u64 now = event->shadow_ctx_time + perf_clock();
3954                 u64 __enabled, __running;
3955
3956                 __perf_update_times(event, now, &__enabled, &__running);
3957                 if (enabled)
3958                         *enabled = __enabled;
3959                 if (running)
3960                         *running = __running;
3961         }
3962 out:
3963         local_irq_restore(flags);
3964
3965         return ret;
3966 }
3967
3968 static int perf_event_read(struct perf_event *event, bool group)
3969 {
3970         enum perf_event_state state = READ_ONCE(event->state);
3971         int event_cpu, ret = 0;
3972
3973         /*
3974          * If event is enabled and currently active on a CPU, update the
3975          * value in the event structure:
3976          */
3977 again:
3978         if (state == PERF_EVENT_STATE_ACTIVE) {
3979                 struct perf_read_data data;
3980
3981                 /*
3982                  * Orders the ->state and ->oncpu loads such that if we see
3983                  * ACTIVE we must also see the right ->oncpu.
3984                  *
3985                  * Matches the smp_wmb() from event_sched_in().
3986                  */
3987                 smp_rmb();
3988
3989                 event_cpu = READ_ONCE(event->oncpu);
3990                 if ((unsigned)event_cpu >= nr_cpu_ids)
3991                         return 0;
3992
3993                 data = (struct perf_read_data){
3994                         .event = event,
3995                         .group = group,
3996                         .ret = 0,
3997                 };
3998
3999                 preempt_disable();
4000                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4001
4002                 /*
4003                  * Purposely ignore the smp_call_function_single() return
4004                  * value.
4005                  *
4006                  * If event_cpu isn't a valid CPU it means the event got
4007                  * scheduled out and that will have updated the event count.
4008                  *
4009                  * Therefore, either way, we'll have an up-to-date event count
4010                  * after this.
4011                  */
4012                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4013                 preempt_enable();
4014                 ret = data.ret;
4015
4016         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4017                 struct perf_event_context *ctx = event->ctx;
4018                 unsigned long flags;
4019
4020                 raw_spin_lock_irqsave(&ctx->lock, flags);
4021                 state = event->state;
4022                 if (state != PERF_EVENT_STATE_INACTIVE) {
4023                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4024                         goto again;
4025                 }
4026
4027                 /*
4028                  * May read while context is not active (e.g., thread is
4029                  * blocked), in that case we cannot update context time
4030                  */
4031                 if (ctx->is_active & EVENT_TIME) {
4032                         update_context_time(ctx);
4033                         update_cgrp_time_from_event(event);
4034                 }
4035
4036                 perf_event_update_time(event);
4037                 if (group)
4038                         perf_event_update_sibling_time(event);
4039                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040         }
4041
4042         return ret;
4043 }
4044
4045 /*
4046  * Initialize the perf_event context in a task_struct:
4047  */
4048 static void __perf_event_init_context(struct perf_event_context *ctx)
4049 {
4050         raw_spin_lock_init(&ctx->lock);
4051         mutex_init(&ctx->mutex);
4052         INIT_LIST_HEAD(&ctx->active_ctx_list);
4053         perf_event_groups_init(&ctx->pinned_groups);
4054         perf_event_groups_init(&ctx->flexible_groups);
4055         INIT_LIST_HEAD(&ctx->event_list);
4056         INIT_LIST_HEAD(&ctx->pinned_active);
4057         INIT_LIST_HEAD(&ctx->flexible_active);
4058         atomic_set(&ctx->refcount, 1);
4059 }
4060
4061 static struct perf_event_context *
4062 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4063 {
4064         struct perf_event_context *ctx;
4065
4066         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4067         if (!ctx)
4068                 return NULL;
4069
4070         __perf_event_init_context(ctx);
4071         if (task) {
4072                 ctx->task = task;
4073                 get_task_struct(task);
4074         }
4075         ctx->pmu = pmu;
4076
4077         return ctx;
4078 }
4079
4080 static struct task_struct *
4081 find_lively_task_by_vpid(pid_t vpid)
4082 {
4083         struct task_struct *task;
4084
4085         rcu_read_lock();
4086         if (!vpid)
4087                 task = current;
4088         else
4089                 task = find_task_by_vpid(vpid);
4090         if (task)
4091                 get_task_struct(task);
4092         rcu_read_unlock();
4093
4094         if (!task)
4095                 return ERR_PTR(-ESRCH);
4096
4097         return task;
4098 }
4099
4100 /*
4101  * Returns a matching context with refcount and pincount.
4102  */
4103 static struct perf_event_context *
4104 find_get_context(struct pmu *pmu, struct task_struct *task,
4105                 struct perf_event *event)
4106 {
4107         struct perf_event_context *ctx, *clone_ctx = NULL;
4108         struct perf_cpu_context *cpuctx;
4109         void *task_ctx_data = NULL;
4110         unsigned long flags;
4111         int ctxn, err;
4112         int cpu = event->cpu;
4113
4114         if (!task) {
4115                 /* Must be root to operate on a CPU event: */
4116                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4117                         return ERR_PTR(-EACCES);
4118
4119                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4120                 ctx = &cpuctx->ctx;
4121                 get_ctx(ctx);
4122                 ++ctx->pin_count;
4123
4124                 return ctx;
4125         }
4126
4127         err = -EINVAL;
4128         ctxn = pmu->task_ctx_nr;
4129         if (ctxn < 0)
4130                 goto errout;
4131
4132         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4133                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4134                 if (!task_ctx_data) {
4135                         err = -ENOMEM;
4136                         goto errout;
4137                 }
4138         }
4139
4140 retry:
4141         ctx = perf_lock_task_context(task, ctxn, &flags);
4142         if (ctx) {
4143                 clone_ctx = unclone_ctx(ctx);
4144                 ++ctx->pin_count;
4145
4146                 if (task_ctx_data && !ctx->task_ctx_data) {
4147                         ctx->task_ctx_data = task_ctx_data;
4148                         task_ctx_data = NULL;
4149                 }
4150                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4151
4152                 if (clone_ctx)
4153                         put_ctx(clone_ctx);
4154         } else {
4155                 ctx = alloc_perf_context(pmu, task);
4156                 err = -ENOMEM;
4157                 if (!ctx)
4158                         goto errout;
4159
4160                 if (task_ctx_data) {
4161                         ctx->task_ctx_data = task_ctx_data;
4162                         task_ctx_data = NULL;
4163                 }
4164
4165                 err = 0;
4166                 mutex_lock(&task->perf_event_mutex);
4167                 /*
4168                  * If it has already passed perf_event_exit_task().
4169                  * we must see PF_EXITING, it takes this mutex too.
4170                  */
4171                 if (task->flags & PF_EXITING)
4172                         err = -ESRCH;
4173                 else if (task->perf_event_ctxp[ctxn])
4174                         err = -EAGAIN;
4175                 else {
4176                         get_ctx(ctx);
4177                         ++ctx->pin_count;
4178                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4179                 }
4180                 mutex_unlock(&task->perf_event_mutex);
4181
4182                 if (unlikely(err)) {
4183                         put_ctx(ctx);
4184
4185                         if (err == -EAGAIN)
4186                                 goto retry;
4187                         goto errout;
4188                 }
4189         }
4190
4191         kfree(task_ctx_data);
4192         return ctx;
4193
4194 errout:
4195         kfree(task_ctx_data);
4196         return ERR_PTR(err);
4197 }
4198
4199 static void perf_event_free_filter(struct perf_event *event);
4200 static void perf_event_free_bpf_prog(struct perf_event *event);
4201
4202 static void free_event_rcu(struct rcu_head *head)
4203 {
4204         struct perf_event *event;
4205
4206         event = container_of(head, struct perf_event, rcu_head);
4207         if (event->ns)
4208                 put_pid_ns(event->ns);
4209         perf_event_free_filter(event);
4210         kfree(event);
4211 }
4212
4213 static void ring_buffer_attach(struct perf_event *event,
4214                                struct ring_buffer *rb);
4215
4216 static void detach_sb_event(struct perf_event *event)
4217 {
4218         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4219
4220         raw_spin_lock(&pel->lock);
4221         list_del_rcu(&event->sb_list);
4222         raw_spin_unlock(&pel->lock);
4223 }
4224
4225 static bool is_sb_event(struct perf_event *event)
4226 {
4227         struct perf_event_attr *attr = &event->attr;
4228
4229         if (event->parent)
4230                 return false;
4231
4232         if (event->attach_state & PERF_ATTACH_TASK)
4233                 return false;
4234
4235         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4236             attr->comm || attr->comm_exec ||
4237             attr->task ||
4238             attr->context_switch)
4239                 return true;
4240         return false;
4241 }
4242
4243 static void unaccount_pmu_sb_event(struct perf_event *event)
4244 {
4245         if (is_sb_event(event))
4246                 detach_sb_event(event);
4247 }
4248
4249 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4250 {
4251         if (event->parent)
4252                 return;
4253
4254         if (is_cgroup_event(event))
4255                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4256 }
4257
4258 #ifdef CONFIG_NO_HZ_FULL
4259 static DEFINE_SPINLOCK(nr_freq_lock);
4260 #endif
4261
4262 static void unaccount_freq_event_nohz(void)
4263 {
4264 #ifdef CONFIG_NO_HZ_FULL
4265         spin_lock(&nr_freq_lock);
4266         if (atomic_dec_and_test(&nr_freq_events))
4267                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4268         spin_unlock(&nr_freq_lock);
4269 #endif
4270 }
4271
4272 static void unaccount_freq_event(void)
4273 {
4274         if (tick_nohz_full_enabled())
4275                 unaccount_freq_event_nohz();
4276         else
4277                 atomic_dec(&nr_freq_events);
4278 }
4279
4280 static void unaccount_event(struct perf_event *event)
4281 {
4282         bool dec = false;
4283
4284         if (event->parent)
4285                 return;
4286
4287         if (event->attach_state & PERF_ATTACH_TASK)
4288                 dec = true;
4289         if (event->attr.mmap || event->attr.mmap_data)
4290                 atomic_dec(&nr_mmap_events);
4291         if (event->attr.comm)
4292                 atomic_dec(&nr_comm_events);
4293         if (event->attr.namespaces)
4294                 atomic_dec(&nr_namespaces_events);
4295         if (event->attr.task)
4296                 atomic_dec(&nr_task_events);
4297         if (event->attr.freq)
4298                 unaccount_freq_event();
4299         if (event->attr.context_switch) {
4300                 dec = true;
4301                 atomic_dec(&nr_switch_events);
4302         }
4303         if (is_cgroup_event(event))
4304                 dec = true;
4305         if (has_branch_stack(event))
4306                 dec = true;
4307
4308         if (dec) {
4309                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4310                         schedule_delayed_work(&perf_sched_work, HZ);
4311         }
4312
4313         unaccount_event_cpu(event, event->cpu);
4314
4315         unaccount_pmu_sb_event(event);
4316 }
4317
4318 static void perf_sched_delayed(struct work_struct *work)
4319 {
4320         mutex_lock(&perf_sched_mutex);
4321         if (atomic_dec_and_test(&perf_sched_count))
4322                 static_branch_disable(&perf_sched_events);
4323         mutex_unlock(&perf_sched_mutex);
4324 }
4325
4326 /*
4327  * The following implement mutual exclusion of events on "exclusive" pmus
4328  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329  * at a time, so we disallow creating events that might conflict, namely:
4330  *
4331  *  1) cpu-wide events in the presence of per-task events,
4332  *  2) per-task events in the presence of cpu-wide events,
4333  *  3) two matching events on the same context.
4334  *
4335  * The former two cases are handled in the allocation path (perf_event_alloc(),
4336  * _free_event()), the latter -- before the first perf_install_in_context().
4337  */
4338 static int exclusive_event_init(struct perf_event *event)
4339 {
4340         struct pmu *pmu = event->pmu;
4341
4342         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4343                 return 0;
4344
4345         /*
4346          * Prevent co-existence of per-task and cpu-wide events on the
4347          * same exclusive pmu.
4348          *
4349          * Negative pmu::exclusive_cnt means there are cpu-wide
4350          * events on this "exclusive" pmu, positive means there are
4351          * per-task events.
4352          *
4353          * Since this is called in perf_event_alloc() path, event::ctx
4354          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355          * to mean "per-task event", because unlike other attach states it
4356          * never gets cleared.
4357          */
4358         if (event->attach_state & PERF_ATTACH_TASK) {
4359                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4360                         return -EBUSY;
4361         } else {
4362                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4363                         return -EBUSY;
4364         }
4365
4366         return 0;
4367 }
4368
4369 static void exclusive_event_destroy(struct perf_event *event)
4370 {
4371         struct pmu *pmu = event->pmu;
4372
4373         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4374                 return;
4375
4376         /* see comment in exclusive_event_init() */
4377         if (event->attach_state & PERF_ATTACH_TASK)
4378                 atomic_dec(&pmu->exclusive_cnt);
4379         else
4380                 atomic_inc(&pmu->exclusive_cnt);
4381 }
4382
4383 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4384 {
4385         if ((e1->pmu == e2->pmu) &&
4386             (e1->cpu == e2->cpu ||
4387              e1->cpu == -1 ||
4388              e2->cpu == -1))
4389                 return true;
4390         return false;
4391 }
4392
4393 /* Called under the same ctx::mutex as perf_install_in_context() */
4394 static bool exclusive_event_installable(struct perf_event *event,
4395                                         struct perf_event_context *ctx)
4396 {
4397         struct perf_event *iter_event;
4398         struct pmu *pmu = event->pmu;
4399
4400         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4401                 return true;
4402
4403         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4404                 if (exclusive_event_match(iter_event, event))
4405                         return false;
4406         }
4407
4408         return true;
4409 }
4410
4411 static void perf_addr_filters_splice(struct perf_event *event,
4412                                        struct list_head *head);
4413
4414 static void _free_event(struct perf_event *event)
4415 {
4416         irq_work_sync(&event->pending);
4417
4418         unaccount_event(event);
4419
4420         if (event->rb) {
4421                 /*
4422                  * Can happen when we close an event with re-directed output.
4423                  *
4424                  * Since we have a 0 refcount, perf_mmap_close() will skip
4425                  * over us; possibly making our ring_buffer_put() the last.
4426                  */
4427                 mutex_lock(&event->mmap_mutex);
4428                 ring_buffer_attach(event, NULL);
4429                 mutex_unlock(&event->mmap_mutex);
4430         }
4431
4432         if (is_cgroup_event(event))
4433                 perf_detach_cgroup(event);
4434
4435         if (!event->parent) {
4436                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4437                         put_callchain_buffers();
4438         }
4439
4440         perf_event_free_bpf_prog(event);
4441         perf_addr_filters_splice(event, NULL);
4442         kfree(event->addr_filters_offs);
4443
4444         if (event->destroy)
4445                 event->destroy(event);
4446
4447         if (event->ctx)
4448                 put_ctx(event->ctx);
4449
4450         if (event->hw.target)
4451                 put_task_struct(event->hw.target);
4452
4453         exclusive_event_destroy(event);
4454         module_put(event->pmu->module);
4455
4456         call_rcu(&event->rcu_head, free_event_rcu);
4457 }
4458
4459 /*
4460  * Used to free events which have a known refcount of 1, such as in error paths
4461  * where the event isn't exposed yet and inherited events.
4462  */
4463 static void free_event(struct perf_event *event)
4464 {
4465         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4466                                 "unexpected event refcount: %ld; ptr=%p\n",
4467                                 atomic_long_read(&event->refcount), event)) {
4468                 /* leak to avoid use-after-free */
4469                 return;
4470         }
4471
4472         _free_event(event);
4473 }
4474
4475 /*
4476  * Remove user event from the owner task.
4477  */
4478 static void perf_remove_from_owner(struct perf_event *event)
4479 {
4480         struct task_struct *owner;
4481
4482         rcu_read_lock();
4483         /*
4484          * Matches the smp_store_release() in perf_event_exit_task(). If we
4485          * observe !owner it means the list deletion is complete and we can
4486          * indeed free this event, otherwise we need to serialize on
4487          * owner->perf_event_mutex.
4488          */
4489         owner = READ_ONCE(event->owner);
4490         if (owner) {
4491                 /*
4492                  * Since delayed_put_task_struct() also drops the last
4493                  * task reference we can safely take a new reference
4494                  * while holding the rcu_read_lock().
4495                  */
4496                 get_task_struct(owner);
4497         }
4498         rcu_read_unlock();
4499
4500         if (owner) {
4501                 /*
4502                  * If we're here through perf_event_exit_task() we're already
4503                  * holding ctx->mutex which would be an inversion wrt. the
4504                  * normal lock order.
4505                  *
4506                  * However we can safely take this lock because its the child
4507                  * ctx->mutex.
4508                  */
4509                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4510
4511                 /*
4512                  * We have to re-check the event->owner field, if it is cleared
4513                  * we raced with perf_event_exit_task(), acquiring the mutex
4514                  * ensured they're done, and we can proceed with freeing the
4515                  * event.
4516                  */
4517                 if (event->owner) {
4518                         list_del_init(&event->owner_entry);
4519                         smp_store_release(&event->owner, NULL);
4520                 }
4521                 mutex_unlock(&owner->perf_event_mutex);
4522                 put_task_struct(owner);
4523         }
4524 }
4525
4526 static void put_event(struct perf_event *event)
4527 {
4528         if (!atomic_long_dec_and_test(&event->refcount))
4529                 return;
4530
4531         _free_event(event);
4532 }
4533
4534 /*
4535  * Kill an event dead; while event:refcount will preserve the event
4536  * object, it will not preserve its functionality. Once the last 'user'
4537  * gives up the object, we'll destroy the thing.
4538  */
4539 int perf_event_release_kernel(struct perf_event *event)
4540 {
4541         struct perf_event_context *ctx = event->ctx;
4542         struct perf_event *child, *tmp;
4543         LIST_HEAD(free_list);
4544
4545         /*
4546          * If we got here through err_file: fput(event_file); we will not have
4547          * attached to a context yet.
4548          */
4549         if (!ctx) {
4550                 WARN_ON_ONCE(event->attach_state &
4551                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4552                 goto no_ctx;
4553         }
4554
4555         if (!is_kernel_event(event))
4556                 perf_remove_from_owner(event);
4557
4558         ctx = perf_event_ctx_lock(event);
4559         WARN_ON_ONCE(ctx->parent_ctx);
4560         perf_remove_from_context(event, DETACH_GROUP);
4561
4562         raw_spin_lock_irq(&ctx->lock);
4563         /*
4564          * Mark this event as STATE_DEAD, there is no external reference to it
4565          * anymore.
4566          *
4567          * Anybody acquiring event->child_mutex after the below loop _must_
4568          * also see this, most importantly inherit_event() which will avoid
4569          * placing more children on the list.
4570          *
4571          * Thus this guarantees that we will in fact observe and kill _ALL_
4572          * child events.
4573          */
4574         event->state = PERF_EVENT_STATE_DEAD;
4575         raw_spin_unlock_irq(&ctx->lock);
4576
4577         perf_event_ctx_unlock(event, ctx);
4578
4579 again:
4580         mutex_lock(&event->child_mutex);
4581         list_for_each_entry(child, &event->child_list, child_list) {
4582
4583                 /*
4584                  * Cannot change, child events are not migrated, see the
4585                  * comment with perf_event_ctx_lock_nested().
4586                  */
4587                 ctx = READ_ONCE(child->ctx);
4588                 /*
4589                  * Since child_mutex nests inside ctx::mutex, we must jump
4590                  * through hoops. We start by grabbing a reference on the ctx.
4591                  *
4592                  * Since the event cannot get freed while we hold the
4593                  * child_mutex, the context must also exist and have a !0
4594                  * reference count.
4595                  */
4596                 get_ctx(ctx);
4597
4598                 /*
4599                  * Now that we have a ctx ref, we can drop child_mutex, and
4600                  * acquire ctx::mutex without fear of it going away. Then we
4601                  * can re-acquire child_mutex.
4602                  */
4603                 mutex_unlock(&event->child_mutex);
4604                 mutex_lock(&ctx->mutex);
4605                 mutex_lock(&event->child_mutex);
4606
4607                 /*
4608                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4609                  * state, if child is still the first entry, it didn't get freed
4610                  * and we can continue doing so.
4611                  */
4612                 tmp = list_first_entry_or_null(&event->child_list,
4613                                                struct perf_event, child_list);
4614                 if (tmp == child) {
4615                         perf_remove_from_context(child, DETACH_GROUP);
4616                         list_move(&child->child_list, &free_list);
4617                         /*
4618                          * This matches the refcount bump in inherit_event();
4619                          * this can't be the last reference.
4620                          */
4621                         put_event(event);
4622                 }
4623
4624                 mutex_unlock(&event->child_mutex);
4625                 mutex_unlock(&ctx->mutex);
4626                 put_ctx(ctx);
4627                 goto again;
4628         }
4629         mutex_unlock(&event->child_mutex);
4630
4631         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4632                 list_del(&child->child_list);
4633                 free_event(child);
4634         }
4635
4636 no_ctx:
4637         put_event(event); /* Must be the 'last' reference */
4638         return 0;
4639 }
4640 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4641
4642 /*
4643  * Called when the last reference to the file is gone.
4644  */
4645 static int perf_release(struct inode *inode, struct file *file)
4646 {
4647         perf_event_release_kernel(file->private_data);
4648         return 0;
4649 }
4650
4651 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4652 {
4653         struct perf_event *child;
4654         u64 total = 0;
4655
4656         *enabled = 0;
4657         *running = 0;
4658
4659         mutex_lock(&event->child_mutex);
4660
4661         (void)perf_event_read(event, false);
4662         total += perf_event_count(event);
4663
4664         *enabled += event->total_time_enabled +
4665                         atomic64_read(&event->child_total_time_enabled);
4666         *running += event->total_time_running +
4667                         atomic64_read(&event->child_total_time_running);
4668
4669         list_for_each_entry(child, &event->child_list, child_list) {
4670                 (void)perf_event_read(child, false);
4671                 total += perf_event_count(child);
4672                 *enabled += child->total_time_enabled;
4673                 *running += child->total_time_running;
4674         }
4675         mutex_unlock(&event->child_mutex);
4676
4677         return total;
4678 }
4679
4680 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4681 {
4682         struct perf_event_context *ctx;
4683         u64 count;
4684
4685         ctx = perf_event_ctx_lock(event);
4686         count = __perf_event_read_value(event, enabled, running);
4687         perf_event_ctx_unlock(event, ctx);
4688
4689         return count;
4690 }
4691 EXPORT_SYMBOL_GPL(perf_event_read_value);
4692
4693 static int __perf_read_group_add(struct perf_event *leader,
4694                                         u64 read_format, u64 *values)
4695 {
4696         struct perf_event_context *ctx = leader->ctx;
4697         struct perf_event *sub;
4698         unsigned long flags;
4699         int n = 1; /* skip @nr */
4700         int ret;
4701
4702         ret = perf_event_read(leader, true);
4703         if (ret)
4704                 return ret;
4705
4706         raw_spin_lock_irqsave(&ctx->lock, flags);
4707
4708         /*
4709          * Since we co-schedule groups, {enabled,running} times of siblings
4710          * will be identical to those of the leader, so we only publish one
4711          * set.
4712          */
4713         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4714                 values[n++] += leader->total_time_enabled +
4715                         atomic64_read(&leader->child_total_time_enabled);
4716         }
4717
4718         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4719                 values[n++] += leader->total_time_running +
4720                         atomic64_read(&leader->child_total_time_running);
4721         }
4722
4723         /*
4724          * Write {count,id} tuples for every sibling.
4725          */
4726         values[n++] += perf_event_count(leader);
4727         if (read_format & PERF_FORMAT_ID)
4728                 values[n++] = primary_event_id(leader);
4729
4730         for_each_sibling_event(sub, leader) {
4731                 values[n++] += perf_event_count(sub);
4732                 if (read_format & PERF_FORMAT_ID)
4733                         values[n++] = primary_event_id(sub);
4734         }
4735
4736         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4737         return 0;
4738 }
4739
4740 static int perf_read_group(struct perf_event *event,
4741                                    u64 read_format, char __user *buf)
4742 {
4743         struct perf_event *leader = event->group_leader, *child;
4744         struct perf_event_context *ctx = leader->ctx;
4745         int ret;
4746         u64 *values;
4747
4748         lockdep_assert_held(&ctx->mutex);
4749
4750         values = kzalloc(event->read_size, GFP_KERNEL);
4751         if (!values)
4752                 return -ENOMEM;
4753
4754         values[0] = 1 + leader->nr_siblings;
4755
4756         /*
4757          * By locking the child_mutex of the leader we effectively
4758          * lock the child list of all siblings.. XXX explain how.
4759          */
4760         mutex_lock(&leader->child_mutex);
4761
4762         ret = __perf_read_group_add(leader, read_format, values);
4763         if (ret)
4764                 goto unlock;
4765
4766         list_for_each_entry(child, &leader->child_list, child_list) {
4767                 ret = __perf_read_group_add(child, read_format, values);
4768                 if (ret)
4769                         goto unlock;
4770         }
4771
4772         mutex_unlock(&leader->child_mutex);
4773
4774         ret = event->read_size;
4775         if (copy_to_user(buf, values, event->read_size))
4776                 ret = -EFAULT;
4777         goto out;
4778
4779 unlock:
4780         mutex_unlock(&leader->child_mutex);
4781 out:
4782         kfree(values);
4783         return ret;
4784 }
4785
4786 static int perf_read_one(struct perf_event *event,
4787                                  u64 read_format, char __user *buf)
4788 {
4789         u64 enabled, running;
4790         u64 values[4];
4791         int n = 0;
4792
4793         values[n++] = __perf_event_read_value(event, &enabled, &running);
4794         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4795                 values[n++] = enabled;
4796         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4797                 values[n++] = running;
4798         if (read_format & PERF_FORMAT_ID)
4799                 values[n++] = primary_event_id(event);
4800
4801         if (copy_to_user(buf, values, n * sizeof(u64)))
4802                 return -EFAULT;
4803
4804         return n * sizeof(u64);
4805 }
4806
4807 static bool is_event_hup(struct perf_event *event)
4808 {
4809         bool no_children;
4810
4811         if (event->state > PERF_EVENT_STATE_EXIT)
4812                 return false;
4813
4814         mutex_lock(&event->child_mutex);
4815         no_children = list_empty(&event->child_list);
4816         mutex_unlock(&event->child_mutex);
4817         return no_children;
4818 }
4819
4820 /*
4821  * Read the performance event - simple non blocking version for now
4822  */
4823 static ssize_t
4824 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4825 {
4826         u64 read_format = event->attr.read_format;
4827         int ret;
4828
4829         /*
4830          * Return end-of-file for a read on a event that is in
4831          * error state (i.e. because it was pinned but it couldn't be
4832          * scheduled on to the CPU at some point).
4833          */
4834         if (event->state == PERF_EVENT_STATE_ERROR)
4835                 return 0;
4836
4837         if (count < event->read_size)
4838                 return -ENOSPC;
4839
4840         WARN_ON_ONCE(event->ctx->parent_ctx);
4841         if (read_format & PERF_FORMAT_GROUP)
4842                 ret = perf_read_group(event, read_format, buf);
4843         else
4844                 ret = perf_read_one(event, read_format, buf);
4845
4846         return ret;
4847 }
4848
4849 static ssize_t
4850 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4851 {
4852         struct perf_event *event = file->private_data;
4853         struct perf_event_context *ctx;
4854         int ret;
4855
4856         ctx = perf_event_ctx_lock(event);
4857         ret = __perf_read(event, buf, count);
4858         perf_event_ctx_unlock(event, ctx);
4859
4860         return ret;
4861 }
4862
4863 static __poll_t perf_poll(struct file *file, poll_table *wait)
4864 {
4865         struct perf_event *event = file->private_data;
4866         struct ring_buffer *rb;
4867         __poll_t events = EPOLLHUP;
4868
4869         poll_wait(file, &event->waitq, wait);
4870
4871         if (is_event_hup(event))
4872                 return events;
4873
4874         /*
4875          * Pin the event->rb by taking event->mmap_mutex; otherwise
4876          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4877          */
4878         mutex_lock(&event->mmap_mutex);
4879         rb = event->rb;
4880         if (rb)
4881                 events = atomic_xchg(&rb->poll, 0);
4882         mutex_unlock(&event->mmap_mutex);
4883         return events;
4884 }
4885
4886 static void _perf_event_reset(struct perf_event *event)
4887 {
4888         (void)perf_event_read(event, false);
4889         local64_set(&event->count, 0);
4890         perf_event_update_userpage(event);
4891 }
4892
4893 /*
4894  * Holding the top-level event's child_mutex means that any
4895  * descendant process that has inherited this event will block
4896  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4897  * task existence requirements of perf_event_enable/disable.
4898  */
4899 static void perf_event_for_each_child(struct perf_event *event,
4900                                         void (*func)(struct perf_event *))
4901 {
4902         struct perf_event *child;
4903
4904         WARN_ON_ONCE(event->ctx->parent_ctx);
4905
4906         mutex_lock(&event->child_mutex);
4907         func(event);
4908         list_for_each_entry(child, &event->child_list, child_list)
4909                 func(child);
4910         mutex_unlock(&event->child_mutex);
4911 }
4912
4913 static void perf_event_for_each(struct perf_event *event,
4914                                   void (*func)(struct perf_event *))
4915 {
4916         struct perf_event_context *ctx = event->ctx;
4917         struct perf_event *sibling;
4918
4919         lockdep_assert_held(&ctx->mutex);
4920
4921         event = event->group_leader;
4922
4923         perf_event_for_each_child(event, func);
4924         for_each_sibling_event(sibling, event)
4925                 perf_event_for_each_child(sibling, func);
4926 }
4927
4928 static void __perf_event_period(struct perf_event *event,
4929                                 struct perf_cpu_context *cpuctx,
4930                                 struct perf_event_context *ctx,
4931                                 void *info)
4932 {
4933         u64 value = *((u64 *)info);
4934         bool active;
4935
4936         if (event->attr.freq) {
4937                 event->attr.sample_freq = value;
4938         } else {
4939                 event->attr.sample_period = value;
4940                 event->hw.sample_period = value;
4941         }
4942
4943         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4944         if (active) {
4945                 perf_pmu_disable(ctx->pmu);
4946                 /*
4947                  * We could be throttled; unthrottle now to avoid the tick
4948                  * trying to unthrottle while we already re-started the event.
4949                  */
4950                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4951                         event->hw.interrupts = 0;
4952                         perf_log_throttle(event, 1);
4953                 }
4954                 event->pmu->stop(event, PERF_EF_UPDATE);
4955         }
4956
4957         local64_set(&event->hw.period_left, 0);
4958
4959         if (active) {
4960                 event->pmu->start(event, PERF_EF_RELOAD);
4961                 perf_pmu_enable(ctx->pmu);
4962         }
4963 }
4964
4965 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4966 {
4967         u64 value;
4968
4969         if (!is_sampling_event(event))
4970                 return -EINVAL;
4971
4972         if (copy_from_user(&value, arg, sizeof(value)))
4973                 return -EFAULT;
4974
4975         if (!value)
4976                 return -EINVAL;
4977
4978         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4979                 return -EINVAL;
4980
4981         event_function_call(event, __perf_event_period, &value);
4982
4983         return 0;
4984 }
4985
4986 static const struct file_operations perf_fops;
4987
4988 static inline int perf_fget_light(int fd, struct fd *p)
4989 {
4990         struct fd f = fdget(fd);
4991         if (!f.file)
4992                 return -EBADF;
4993
4994         if (f.file->f_op != &perf_fops) {
4995                 fdput(f);
4996                 return -EBADF;
4997         }
4998         *p = f;
4999         return 0;
5000 }
5001
5002 static int perf_event_set_output(struct perf_event *event,
5003                                  struct perf_event *output_event);
5004 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5006 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5007                           struct perf_event_attr *attr);
5008
5009 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5010 {
5011         void (*func)(struct perf_event *);
5012         u32 flags = arg;
5013
5014         switch (cmd) {
5015         case PERF_EVENT_IOC_ENABLE:
5016                 func = _perf_event_enable;
5017                 break;
5018         case PERF_EVENT_IOC_DISABLE:
5019                 func = _perf_event_disable;
5020                 break;
5021         case PERF_EVENT_IOC_RESET:
5022                 func = _perf_event_reset;
5023                 break;
5024
5025         case PERF_EVENT_IOC_REFRESH:
5026                 return _perf_event_refresh(event, arg);
5027
5028         case PERF_EVENT_IOC_PERIOD:
5029                 return perf_event_period(event, (u64 __user *)arg);
5030
5031         case PERF_EVENT_IOC_ID:
5032         {
5033                 u64 id = primary_event_id(event);
5034
5035                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5036                         return -EFAULT;
5037                 return 0;
5038         }
5039
5040         case PERF_EVENT_IOC_SET_OUTPUT:
5041         {
5042                 int ret;
5043                 if (arg != -1) {
5044                         struct perf_event *output_event;
5045                         struct fd output;
5046                         ret = perf_fget_light(arg, &output);
5047                         if (ret)
5048                                 return ret;
5049                         output_event = output.file->private_data;
5050                         ret = perf_event_set_output(event, output_event);
5051                         fdput(output);
5052                 } else {
5053                         ret = perf_event_set_output(event, NULL);
5054                 }
5055                 return ret;
5056         }
5057
5058         case PERF_EVENT_IOC_SET_FILTER:
5059                 return perf_event_set_filter(event, (void __user *)arg);
5060
5061         case PERF_EVENT_IOC_SET_BPF:
5062                 return perf_event_set_bpf_prog(event, arg);
5063
5064         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5065                 struct ring_buffer *rb;
5066
5067                 rcu_read_lock();
5068                 rb = rcu_dereference(event->rb);
5069                 if (!rb || !rb->nr_pages) {
5070                         rcu_read_unlock();
5071                         return -EINVAL;
5072                 }
5073                 rb_toggle_paused(rb, !!arg);
5074                 rcu_read_unlock();
5075                 return 0;
5076         }
5077
5078         case PERF_EVENT_IOC_QUERY_BPF:
5079                 return perf_event_query_prog_array(event, (void __user *)arg);
5080
5081         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5082                 struct perf_event_attr new_attr;
5083                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5084                                          &new_attr);
5085
5086                 if (err)
5087                         return err;
5088
5089                 return perf_event_modify_attr(event,  &new_attr);
5090         }
5091         default:
5092                 return -ENOTTY;
5093         }
5094
5095         if (flags & PERF_IOC_FLAG_GROUP)
5096                 perf_event_for_each(event, func);
5097         else
5098                 perf_event_for_each_child(event, func);
5099
5100         return 0;
5101 }
5102
5103 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5104 {
5105         struct perf_event *event = file->private_data;
5106         struct perf_event_context *ctx;
5107         long ret;
5108
5109         ctx = perf_event_ctx_lock(event);
5110         ret = _perf_ioctl(event, cmd, arg);
5111         perf_event_ctx_unlock(event, ctx);
5112
5113         return ret;
5114 }
5115
5116 #ifdef CONFIG_COMPAT
5117 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5118                                 unsigned long arg)
5119 {
5120         switch (_IOC_NR(cmd)) {
5121         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5122         case _IOC_NR(PERF_EVENT_IOC_ID):
5123                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5124                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5125                         cmd &= ~IOCSIZE_MASK;
5126                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5127                 }
5128                 break;
5129         }
5130         return perf_ioctl(file, cmd, arg);
5131 }
5132 #else
5133 # define perf_compat_ioctl NULL
5134 #endif
5135
5136 int perf_event_task_enable(void)
5137 {
5138         struct perf_event_context *ctx;
5139         struct perf_event *event;
5140
5141         mutex_lock(&current->perf_event_mutex);
5142         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5143                 ctx = perf_event_ctx_lock(event);
5144                 perf_event_for_each_child(event, _perf_event_enable);
5145                 perf_event_ctx_unlock(event, ctx);
5146         }
5147         mutex_unlock(&current->perf_event_mutex);
5148
5149         return 0;
5150 }
5151
5152 int perf_event_task_disable(void)
5153 {
5154         struct perf_event_context *ctx;
5155         struct perf_event *event;
5156
5157         mutex_lock(&current->perf_event_mutex);
5158         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5159                 ctx = perf_event_ctx_lock(event);
5160                 perf_event_for_each_child(event, _perf_event_disable);
5161                 perf_event_ctx_unlock(event, ctx);
5162         }
5163         mutex_unlock(&current->perf_event_mutex);
5164
5165         return 0;
5166 }
5167
5168 static int perf_event_index(struct perf_event *event)
5169 {
5170         if (event->hw.state & PERF_HES_STOPPED)
5171                 return 0;
5172
5173         if (event->state != PERF_EVENT_STATE_ACTIVE)
5174                 return 0;
5175
5176         return event->pmu->event_idx(event);
5177 }
5178
5179 static void calc_timer_values(struct perf_event *event,
5180                                 u64 *now,
5181                                 u64 *enabled,
5182                                 u64 *running)
5183 {
5184         u64 ctx_time;
5185
5186         *now = perf_clock();
5187         ctx_time = event->shadow_ctx_time + *now;
5188         __perf_update_times(event, ctx_time, enabled, running);
5189 }
5190
5191 static void perf_event_init_userpage(struct perf_event *event)
5192 {
5193         struct perf_event_mmap_page *userpg;
5194         struct ring_buffer *rb;
5195
5196         rcu_read_lock();
5197         rb = rcu_dereference(event->rb);
5198         if (!rb)
5199                 goto unlock;
5200
5201         userpg = rb->user_page;
5202
5203         /* Allow new userspace to detect that bit 0 is deprecated */
5204         userpg->cap_bit0_is_deprecated = 1;
5205         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5206         userpg->data_offset = PAGE_SIZE;
5207         userpg->data_size = perf_data_size(rb);
5208
5209 unlock:
5210         rcu_read_unlock();
5211 }
5212
5213 void __weak arch_perf_update_userpage(
5214         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5215 {
5216 }
5217
5218 /*
5219  * Callers need to ensure there can be no nesting of this function, otherwise
5220  * the seqlock logic goes bad. We can not serialize this because the arch
5221  * code calls this from NMI context.
5222  */
5223 void perf_event_update_userpage(struct perf_event *event)
5224 {
5225         struct perf_event_mmap_page *userpg;
5226         struct ring_buffer *rb;
5227         u64 enabled, running, now;
5228
5229         rcu_read_lock();
5230         rb = rcu_dereference(event->rb);
5231         if (!rb)
5232                 goto unlock;
5233
5234         /*
5235          * compute total_time_enabled, total_time_running
5236          * based on snapshot values taken when the event
5237          * was last scheduled in.
5238          *
5239          * we cannot simply called update_context_time()
5240          * because of locking issue as we can be called in
5241          * NMI context
5242          */
5243         calc_timer_values(event, &now, &enabled, &running);
5244
5245         userpg = rb->user_page;
5246         /*
5247          * Disable preemption so as to not let the corresponding user-space
5248          * spin too long if we get preempted.
5249          */
5250         preempt_disable();
5251         ++userpg->lock;
5252         barrier();
5253         userpg->index = perf_event_index(event);
5254         userpg->offset = perf_event_count(event);
5255         if (userpg->index)
5256                 userpg->offset -= local64_read(&event->hw.prev_count);
5257
5258         userpg->time_enabled = enabled +
5259                         atomic64_read(&event->child_total_time_enabled);
5260
5261         userpg->time_running = running +
5262                         atomic64_read(&event->child_total_time_running);
5263
5264         arch_perf_update_userpage(event, userpg, now);
5265
5266         barrier();
5267         ++userpg->lock;
5268         preempt_enable();
5269 unlock:
5270         rcu_read_unlock();
5271 }
5272 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5273
5274 static int perf_mmap_fault(struct vm_fault *vmf)
5275 {
5276         struct perf_event *event = vmf->vma->vm_file->private_data;
5277         struct ring_buffer *rb;
5278         int ret = VM_FAULT_SIGBUS;
5279
5280         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5281                 if (vmf->pgoff == 0)
5282                         ret = 0;
5283                 return ret;
5284         }
5285
5286         rcu_read_lock();
5287         rb = rcu_dereference(event->rb);
5288         if (!rb)
5289                 goto unlock;
5290
5291         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5292                 goto unlock;
5293
5294         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5295         if (!vmf->page)
5296                 goto unlock;
5297
5298         get_page(vmf->page);
5299         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5300         vmf->page->index   = vmf->pgoff;
5301
5302         ret = 0;
5303 unlock:
5304         rcu_read_unlock();
5305
5306         return ret;
5307 }
5308
5309 static void ring_buffer_attach(struct perf_event *event,
5310                                struct ring_buffer *rb)
5311 {
5312         struct ring_buffer *old_rb = NULL;
5313         unsigned long flags;
5314
5315         if (event->rb) {
5316                 /*
5317                  * Should be impossible, we set this when removing
5318                  * event->rb_entry and wait/clear when adding event->rb_entry.
5319                  */
5320                 WARN_ON_ONCE(event->rcu_pending);
5321
5322                 old_rb = event->rb;
5323                 spin_lock_irqsave(&old_rb->event_lock, flags);
5324                 list_del_rcu(&event->rb_entry);
5325                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5326
5327                 event->rcu_batches = get_state_synchronize_rcu();
5328                 event->rcu_pending = 1;
5329         }
5330
5331         if (rb) {
5332                 if (event->rcu_pending) {
5333                         cond_synchronize_rcu(event->rcu_batches);
5334                         event->rcu_pending = 0;
5335                 }
5336
5337                 spin_lock_irqsave(&rb->event_lock, flags);
5338                 list_add_rcu(&event->rb_entry, &rb->event_list);
5339                 spin_unlock_irqrestore(&rb->event_lock, flags);
5340         }
5341
5342         /*
5343          * Avoid racing with perf_mmap_close(AUX): stop the event
5344          * before swizzling the event::rb pointer; if it's getting
5345          * unmapped, its aux_mmap_count will be 0 and it won't
5346          * restart. See the comment in __perf_pmu_output_stop().
5347          *
5348          * Data will inevitably be lost when set_output is done in
5349          * mid-air, but then again, whoever does it like this is
5350          * not in for the data anyway.
5351          */
5352         if (has_aux(event))
5353                 perf_event_stop(event, 0);
5354
5355         rcu_assign_pointer(event->rb, rb);
5356
5357         if (old_rb) {
5358                 ring_buffer_put(old_rb);
5359                 /*
5360                  * Since we detached before setting the new rb, so that we
5361                  * could attach the new rb, we could have missed a wakeup.
5362                  * Provide it now.
5363                  */
5364                 wake_up_all(&event->waitq);
5365         }
5366 }
5367
5368 static void ring_buffer_wakeup(struct perf_event *event)
5369 {
5370         struct ring_buffer *rb;
5371
5372         rcu_read_lock();
5373         rb = rcu_dereference(event->rb);
5374         if (rb) {
5375                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5376                         wake_up_all(&event->waitq);
5377         }
5378         rcu_read_unlock();
5379 }
5380
5381 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5382 {
5383         struct ring_buffer *rb;
5384
5385         rcu_read_lock();
5386         rb = rcu_dereference(event->rb);
5387         if (rb) {
5388                 if (!atomic_inc_not_zero(&rb->refcount))
5389                         rb = NULL;
5390         }
5391         rcu_read_unlock();
5392
5393         return rb;
5394 }
5395
5396 void ring_buffer_put(struct ring_buffer *rb)
5397 {
5398         if (!atomic_dec_and_test(&rb->refcount))
5399                 return;
5400
5401         WARN_ON_ONCE(!list_empty(&rb->event_list));
5402
5403         call_rcu(&rb->rcu_head, rb_free_rcu);
5404 }
5405
5406 static void perf_mmap_open(struct vm_area_struct *vma)
5407 {
5408         struct perf_event *event = vma->vm_file->private_data;
5409
5410         atomic_inc(&event->mmap_count);
5411         atomic_inc(&event->rb->mmap_count);
5412
5413         if (vma->vm_pgoff)
5414                 atomic_inc(&event->rb->aux_mmap_count);
5415
5416         if (event->pmu->event_mapped)
5417                 event->pmu->event_mapped(event, vma->vm_mm);
5418 }
5419
5420 static void perf_pmu_output_stop(struct perf_event *event);
5421
5422 /*
5423  * A buffer can be mmap()ed multiple times; either directly through the same
5424  * event, or through other events by use of perf_event_set_output().
5425  *
5426  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5427  * the buffer here, where we still have a VM context. This means we need
5428  * to detach all events redirecting to us.
5429  */
5430 static void perf_mmap_close(struct vm_area_struct *vma)
5431 {
5432         struct perf_event *event = vma->vm_file->private_data;
5433
5434         struct ring_buffer *rb = ring_buffer_get(event);
5435         struct user_struct *mmap_user = rb->mmap_user;
5436         int mmap_locked = rb->mmap_locked;
5437         unsigned long size = perf_data_size(rb);
5438
5439         if (event->pmu->event_unmapped)
5440                 event->pmu->event_unmapped(event, vma->vm_mm);
5441
5442         /*
5443          * rb->aux_mmap_count will always drop before rb->mmap_count and
5444          * event->mmap_count, so it is ok to use event->mmap_mutex to
5445          * serialize with perf_mmap here.
5446          */
5447         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5448             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5449                 /*
5450                  * Stop all AUX events that are writing to this buffer,
5451                  * so that we can free its AUX pages and corresponding PMU
5452                  * data. Note that after rb::aux_mmap_count dropped to zero,
5453                  * they won't start any more (see perf_aux_output_begin()).
5454                  */
5455                 perf_pmu_output_stop(event);
5456
5457                 /* now it's safe to free the pages */
5458                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5459                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5460
5461                 /* this has to be the last one */
5462                 rb_free_aux(rb);
5463                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5464
5465                 mutex_unlock(&event->mmap_mutex);
5466         }
5467
5468         atomic_dec(&rb->mmap_count);
5469
5470         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5471                 goto out_put;
5472
5473         ring_buffer_attach(event, NULL);
5474         mutex_unlock(&event->mmap_mutex);
5475
5476         /* If there's still other mmap()s of this buffer, we're done. */
5477         if (atomic_read(&rb->mmap_count))
5478                 goto out_put;
5479
5480         /*
5481          * No other mmap()s, detach from all other events that might redirect
5482          * into the now unreachable buffer. Somewhat complicated by the
5483          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5484          */
5485 again:
5486         rcu_read_lock();
5487         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5488                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5489                         /*
5490                          * This event is en-route to free_event() which will
5491                          * detach it and remove it from the list.
5492                          */
5493                         continue;
5494                 }
5495                 rcu_read_unlock();
5496
5497                 mutex_lock(&event->mmap_mutex);
5498                 /*
5499                  * Check we didn't race with perf_event_set_output() which can
5500                  * swizzle the rb from under us while we were waiting to
5501                  * acquire mmap_mutex.
5502                  *
5503                  * If we find a different rb; ignore this event, a next
5504                  * iteration will no longer find it on the list. We have to
5505                  * still restart the iteration to make sure we're not now
5506                  * iterating the wrong list.
5507                  */
5508                 if (event->rb == rb)
5509                         ring_buffer_attach(event, NULL);
5510
5511                 mutex_unlock(&event->mmap_mutex);
5512                 put_event(event);
5513
5514                 /*
5515                  * Restart the iteration; either we're on the wrong list or
5516                  * destroyed its integrity by doing a deletion.
5517                  */
5518                 goto again;
5519         }
5520         rcu_read_unlock();
5521
5522         /*
5523          * It could be there's still a few 0-ref events on the list; they'll
5524          * get cleaned up by free_event() -- they'll also still have their
5525          * ref on the rb and will free it whenever they are done with it.
5526          *
5527          * Aside from that, this buffer is 'fully' detached and unmapped,
5528          * undo the VM accounting.
5529          */
5530
5531         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5532         vma->vm_mm->pinned_vm -= mmap_locked;
5533         free_uid(mmap_user);
5534
5535 out_put:
5536         ring_buffer_put(rb); /* could be last */
5537 }
5538
5539 static const struct vm_operations_struct perf_mmap_vmops = {
5540         .open           = perf_mmap_open,
5541         .close          = perf_mmap_close, /* non mergable */
5542         .fault          = perf_mmap_fault,
5543         .page_mkwrite   = perf_mmap_fault,
5544 };
5545
5546 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5547 {
5548         struct perf_event *event = file->private_data;
5549         unsigned long user_locked, user_lock_limit;
5550         struct user_struct *user = current_user();
5551         unsigned long locked, lock_limit;
5552         struct ring_buffer *rb = NULL;
5553         unsigned long vma_size;
5554         unsigned long nr_pages;
5555         long user_extra = 0, extra = 0;
5556         int ret = 0, flags = 0;
5557
5558         /*
5559          * Don't allow mmap() of inherited per-task counters. This would
5560          * create a performance issue due to all children writing to the
5561          * same rb.
5562          */
5563         if (event->cpu == -1 && event->attr.inherit)
5564                 return -EINVAL;
5565
5566         if (!(vma->vm_flags & VM_SHARED))
5567                 return -EINVAL;
5568
5569         vma_size = vma->vm_end - vma->vm_start;
5570
5571         if (vma->vm_pgoff == 0) {
5572                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5573         } else {
5574                 /*
5575                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5576                  * mapped, all subsequent mappings should have the same size
5577                  * and offset. Must be above the normal perf buffer.
5578                  */
5579                 u64 aux_offset, aux_size;
5580
5581                 if (!event->rb)
5582                         return -EINVAL;
5583
5584                 nr_pages = vma_size / PAGE_SIZE;
5585
5586                 mutex_lock(&event->mmap_mutex);
5587                 ret = -EINVAL;
5588
5589                 rb = event->rb;
5590                 if (!rb)
5591                         goto aux_unlock;
5592
5593                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5594                 aux_size = READ_ONCE(rb->user_page->aux_size);
5595
5596                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5597                         goto aux_unlock;
5598
5599                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5600                         goto aux_unlock;
5601
5602                 /* already mapped with a different offset */
5603                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5604                         goto aux_unlock;
5605
5606                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5607                         goto aux_unlock;
5608
5609                 /* already mapped with a different size */
5610                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5611                         goto aux_unlock;
5612
5613                 if (!is_power_of_2(nr_pages))
5614                         goto aux_unlock;
5615
5616                 if (!atomic_inc_not_zero(&rb->mmap_count))
5617                         goto aux_unlock;
5618
5619                 if (rb_has_aux(rb)) {
5620                         atomic_inc(&rb->aux_mmap_count);
5621                         ret = 0;
5622                         goto unlock;
5623                 }
5624
5625                 atomic_set(&rb->aux_mmap_count, 1);
5626                 user_extra = nr_pages;
5627
5628                 goto accounting;
5629         }
5630
5631         /*
5632          * If we have rb pages ensure they're a power-of-two number, so we
5633          * can do bitmasks instead of modulo.
5634          */
5635         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5636                 return -EINVAL;
5637
5638         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5639                 return -EINVAL;
5640
5641         WARN_ON_ONCE(event->ctx->parent_ctx);
5642 again:
5643         mutex_lock(&event->mmap_mutex);
5644         if (event->rb) {
5645                 if (event->rb->nr_pages != nr_pages) {
5646                         ret = -EINVAL;
5647                         goto unlock;
5648                 }
5649
5650                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5651                         /*
5652                          * Raced against perf_mmap_close() through
5653                          * perf_event_set_output(). Try again, hope for better
5654                          * luck.
5655                          */
5656                         mutex_unlock(&event->mmap_mutex);
5657                         goto again;
5658                 }
5659
5660                 goto unlock;
5661         }
5662
5663         user_extra = nr_pages + 1;
5664
5665 accounting:
5666         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5667
5668         /*
5669          * Increase the limit linearly with more CPUs:
5670          */
5671         user_lock_limit *= num_online_cpus();
5672
5673         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5674
5675         if (user_locked > user_lock_limit)
5676                 extra = user_locked - user_lock_limit;
5677
5678         lock_limit = rlimit(RLIMIT_MEMLOCK);
5679         lock_limit >>= PAGE_SHIFT;
5680         locked = vma->vm_mm->pinned_vm + extra;
5681
5682         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5683                 !capable(CAP_IPC_LOCK)) {
5684                 ret = -EPERM;
5685                 goto unlock;
5686         }
5687
5688         WARN_ON(!rb && event->rb);
5689
5690         if (vma->vm_flags & VM_WRITE)
5691                 flags |= RING_BUFFER_WRITABLE;
5692
5693         if (!rb) {
5694                 rb = rb_alloc(nr_pages,
5695                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5696                               event->cpu, flags);
5697
5698                 if (!rb) {
5699                         ret = -ENOMEM;
5700                         goto unlock;
5701                 }
5702
5703                 atomic_set(&rb->mmap_count, 1);
5704                 rb->mmap_user = get_current_user();
5705                 rb->mmap_locked = extra;
5706
5707                 ring_buffer_attach(event, rb);
5708
5709                 perf_event_init_userpage(event);
5710                 perf_event_update_userpage(event);
5711         } else {
5712                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5713                                    event->attr.aux_watermark, flags);
5714                 if (!ret)
5715                         rb->aux_mmap_locked = extra;
5716         }
5717
5718 unlock:
5719         if (!ret) {
5720                 atomic_long_add(user_extra, &user->locked_vm);
5721                 vma->vm_mm->pinned_vm += extra;
5722
5723                 atomic_inc(&event->mmap_count);
5724         } else if (rb) {
5725                 atomic_dec(&rb->mmap_count);
5726         }
5727 aux_unlock:
5728         mutex_unlock(&event->mmap_mutex);
5729
5730         /*
5731          * Since pinned accounting is per vm we cannot allow fork() to copy our
5732          * vma.
5733          */
5734         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5735         vma->vm_ops = &perf_mmap_vmops;
5736
5737         if (event->pmu->event_mapped)
5738                 event->pmu->event_mapped(event, vma->vm_mm);
5739
5740         return ret;
5741 }
5742
5743 static int perf_fasync(int fd, struct file *filp, int on)
5744 {
5745         struct inode *inode = file_inode(filp);
5746         struct perf_event *event = filp->private_data;
5747         int retval;
5748
5749         inode_lock(inode);
5750         retval = fasync_helper(fd, filp, on, &event->fasync);
5751         inode_unlock(inode);
5752
5753         if (retval < 0)
5754                 return retval;
5755
5756         return 0;
5757 }
5758
5759 static const struct file_operations perf_fops = {
5760         .llseek                 = no_llseek,
5761         .release                = perf_release,
5762         .read                   = perf_read,
5763         .poll                   = perf_poll,
5764         .unlocked_ioctl         = perf_ioctl,
5765         .compat_ioctl           = perf_compat_ioctl,
5766         .mmap                   = perf_mmap,
5767         .fasync                 = perf_fasync,
5768 };
5769
5770 /*
5771  * Perf event wakeup
5772  *
5773  * If there's data, ensure we set the poll() state and publish everything
5774  * to user-space before waking everybody up.
5775  */
5776
5777 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5778 {
5779         /* only the parent has fasync state */
5780         if (event->parent)
5781                 event = event->parent;
5782         return &event->fasync;
5783 }
5784
5785 void perf_event_wakeup(struct perf_event *event)
5786 {
5787         ring_buffer_wakeup(event);
5788
5789         if (event->pending_kill) {
5790                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5791                 event->pending_kill = 0;
5792         }
5793 }
5794
5795 static void perf_pending_event(struct irq_work *entry)
5796 {
5797         struct perf_event *event = container_of(entry,
5798                         struct perf_event, pending);
5799         int rctx;
5800
5801         rctx = perf_swevent_get_recursion_context();
5802         /*
5803          * If we 'fail' here, that's OK, it means recursion is already disabled
5804          * and we won't recurse 'further'.
5805          */
5806
5807         if (event->pending_disable) {
5808                 event->pending_disable = 0;
5809                 perf_event_disable_local(event);
5810         }
5811
5812         if (event->pending_wakeup) {
5813                 event->pending_wakeup = 0;
5814                 perf_event_wakeup(event);
5815         }
5816
5817         if (rctx >= 0)
5818                 perf_swevent_put_recursion_context(rctx);
5819 }
5820
5821 /*
5822  * We assume there is only KVM supporting the callbacks.
5823  * Later on, we might change it to a list if there is
5824  * another virtualization implementation supporting the callbacks.
5825  */
5826 struct perf_guest_info_callbacks *perf_guest_cbs;
5827
5828 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5829 {
5830         perf_guest_cbs = cbs;
5831         return 0;
5832 }
5833 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5834
5835 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5836 {
5837         perf_guest_cbs = NULL;
5838         return 0;
5839 }
5840 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5841
5842 static void
5843 perf_output_sample_regs(struct perf_output_handle *handle,
5844                         struct pt_regs *regs, u64 mask)
5845 {
5846         int bit;
5847         DECLARE_BITMAP(_mask, 64);
5848
5849         bitmap_from_u64(_mask, mask);
5850         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5851                 u64 val;
5852
5853                 val = perf_reg_value(regs, bit);
5854                 perf_output_put(handle, val);
5855         }
5856 }
5857
5858 static void perf_sample_regs_user(struct perf_regs *regs_user,
5859                                   struct pt_regs *regs,
5860                                   struct pt_regs *regs_user_copy)
5861 {
5862         if (user_mode(regs)) {
5863                 regs_user->abi = perf_reg_abi(current);
5864                 regs_user->regs = regs;
5865         } else if (current->mm) {
5866                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5867         } else {
5868                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5869                 regs_user->regs = NULL;
5870         }
5871 }
5872
5873 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5874                                   struct pt_regs *regs)
5875 {
5876         regs_intr->regs = regs;
5877         regs_intr->abi  = perf_reg_abi(current);
5878 }
5879
5880
5881 /*
5882  * Get remaining task size from user stack pointer.
5883  *
5884  * It'd be better to take stack vma map and limit this more
5885  * precisly, but there's no way to get it safely under interrupt,
5886  * so using TASK_SIZE as limit.
5887  */
5888 static u64 perf_ustack_task_size(struct pt_regs *regs)
5889 {
5890         unsigned long addr = perf_user_stack_pointer(regs);
5891
5892         if (!addr || addr >= TASK_SIZE)
5893                 return 0;
5894
5895         return TASK_SIZE - addr;
5896 }
5897
5898 static u16
5899 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5900                         struct pt_regs *regs)
5901 {
5902         u64 task_size;
5903
5904         /* No regs, no stack pointer, no dump. */
5905         if (!regs)
5906                 return 0;
5907
5908         /*
5909          * Check if we fit in with the requested stack size into the:
5910          * - TASK_SIZE
5911          *   If we don't, we limit the size to the TASK_SIZE.
5912          *
5913          * - remaining sample size
5914          *   If we don't, we customize the stack size to
5915          *   fit in to the remaining sample size.
5916          */
5917
5918         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5919         stack_size = min(stack_size, (u16) task_size);
5920
5921         /* Current header size plus static size and dynamic size. */
5922         header_size += 2 * sizeof(u64);
5923
5924         /* Do we fit in with the current stack dump size? */
5925         if ((u16) (header_size + stack_size) < header_size) {
5926                 /*
5927                  * If we overflow the maximum size for the sample,
5928                  * we customize the stack dump size to fit in.
5929                  */
5930                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5931                 stack_size = round_up(stack_size, sizeof(u64));
5932         }
5933
5934         return stack_size;
5935 }
5936
5937 static void
5938 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5939                           struct pt_regs *regs)
5940 {
5941         /* Case of a kernel thread, nothing to dump */
5942         if (!regs) {
5943                 u64 size = 0;
5944                 perf_output_put(handle, size);
5945         } else {
5946                 unsigned long sp;
5947                 unsigned int rem;
5948                 u64 dyn_size;
5949
5950                 /*
5951                  * We dump:
5952                  * static size
5953                  *   - the size requested by user or the best one we can fit
5954                  *     in to the sample max size
5955                  * data
5956                  *   - user stack dump data
5957                  * dynamic size
5958                  *   - the actual dumped size
5959                  */
5960
5961                 /* Static size. */
5962                 perf_output_put(handle, dump_size);
5963
5964                 /* Data. */
5965                 sp = perf_user_stack_pointer(regs);
5966                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5967                 dyn_size = dump_size - rem;
5968
5969                 perf_output_skip(handle, rem);
5970
5971                 /* Dynamic size. */
5972                 perf_output_put(handle, dyn_size);
5973         }
5974 }
5975
5976 static void __perf_event_header__init_id(struct perf_event_header *header,
5977                                          struct perf_sample_data *data,
5978                                          struct perf_event *event)
5979 {
5980         u64 sample_type = event->attr.sample_type;
5981
5982         data->type = sample_type;
5983         header->size += event->id_header_size;
5984
5985         if (sample_type & PERF_SAMPLE_TID) {
5986                 /* namespace issues */
5987                 data->tid_entry.pid = perf_event_pid(event, current);
5988                 data->tid_entry.tid = perf_event_tid(event, current);
5989         }
5990
5991         if (sample_type & PERF_SAMPLE_TIME)
5992                 data->time = perf_event_clock(event);
5993
5994         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5995                 data->id = primary_event_id(event);
5996
5997         if (sample_type & PERF_SAMPLE_STREAM_ID)
5998                 data->stream_id = event->id;
5999
6000         if (sample_type & PERF_SAMPLE_CPU) {
6001                 data->cpu_entry.cpu      = raw_smp_processor_id();
6002                 data->cpu_entry.reserved = 0;
6003         }
6004 }
6005
6006 void perf_event_header__init_id(struct perf_event_header *header,
6007                                 struct perf_sample_data *data,
6008                                 struct perf_event *event)
6009 {
6010         if (event->attr.sample_id_all)
6011                 __perf_event_header__init_id(header, data, event);
6012 }
6013
6014 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6015                                            struct perf_sample_data *data)
6016 {
6017         u64 sample_type = data->type;
6018
6019         if (sample_type & PERF_SAMPLE_TID)
6020                 perf_output_put(handle, data->tid_entry);
6021
6022         if (sample_type & PERF_SAMPLE_TIME)
6023                 perf_output_put(handle, data->time);
6024
6025         if (sample_type & PERF_SAMPLE_ID)
6026                 perf_output_put(handle, data->id);
6027
6028         if (sample_type & PERF_SAMPLE_STREAM_ID)
6029                 perf_output_put(handle, data->stream_id);
6030
6031         if (sample_type & PERF_SAMPLE_CPU)
6032                 perf_output_put(handle, data->cpu_entry);
6033
6034         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6035                 perf_output_put(handle, data->id);
6036 }
6037
6038 void perf_event__output_id_sample(struct perf_event *event,
6039                                   struct perf_output_handle *handle,
6040                                   struct perf_sample_data *sample)
6041 {
6042         if (event->attr.sample_id_all)
6043                 __perf_event__output_id_sample(handle, sample);
6044 }
6045
6046 static void perf_output_read_one(struct perf_output_handle *handle,
6047                                  struct perf_event *event,
6048                                  u64 enabled, u64 running)
6049 {
6050         u64 read_format = event->attr.read_format;
6051         u64 values[4];
6052         int n = 0;
6053
6054         values[n++] = perf_event_count(event);
6055         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6056                 values[n++] = enabled +
6057                         atomic64_read(&event->child_total_time_enabled);
6058         }
6059         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6060                 values[n++] = running +
6061                         atomic64_read(&event->child_total_time_running);
6062         }
6063         if (read_format & PERF_FORMAT_ID)
6064                 values[n++] = primary_event_id(event);
6065
6066         __output_copy(handle, values, n * sizeof(u64));
6067 }
6068
6069 static void perf_output_read_group(struct perf_output_handle *handle,
6070                             struct perf_event *event,
6071                             u64 enabled, u64 running)
6072 {
6073         struct perf_event *leader = event->group_leader, *sub;
6074         u64 read_format = event->attr.read_format;
6075         u64 values[5];
6076         int n = 0;
6077
6078         values[n++] = 1 + leader->nr_siblings;
6079
6080         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6081                 values[n++] = enabled;
6082
6083         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6084                 values[n++] = running;
6085
6086         if ((leader != event) &&
6087             (leader->state == PERF_EVENT_STATE_ACTIVE))
6088                 leader->pmu->read(leader);
6089
6090         values[n++] = perf_event_count(leader);
6091         if (read_format & PERF_FORMAT_ID)
6092                 values[n++] = primary_event_id(leader);
6093
6094         __output_copy(handle, values, n * sizeof(u64));
6095
6096         for_each_sibling_event(sub, leader) {
6097                 n = 0;
6098
6099                 if ((sub != event) &&
6100                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6101                         sub->pmu->read(sub);
6102
6103                 values[n++] = perf_event_count(sub);
6104                 if (read_format & PERF_FORMAT_ID)
6105                         values[n++] = primary_event_id(sub);
6106
6107                 __output_copy(handle, values, n * sizeof(u64));
6108         }
6109 }
6110
6111 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6112                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6113
6114 /*
6115  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6116  *
6117  * The problem is that its both hard and excessively expensive to iterate the
6118  * child list, not to mention that its impossible to IPI the children running
6119  * on another CPU, from interrupt/NMI context.
6120  */
6121 static void perf_output_read(struct perf_output_handle *handle,
6122                              struct perf_event *event)
6123 {
6124         u64 enabled = 0, running = 0, now;
6125         u64 read_format = event->attr.read_format;
6126
6127         /*
6128          * compute total_time_enabled, total_time_running
6129          * based on snapshot values taken when the event
6130          * was last scheduled in.
6131          *
6132          * we cannot simply called update_context_time()
6133          * because of locking issue as we are called in
6134          * NMI context
6135          */
6136         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6137                 calc_timer_values(event, &now, &enabled, &running);
6138
6139         if (event->attr.read_format & PERF_FORMAT_GROUP)
6140                 perf_output_read_group(handle, event, enabled, running);
6141         else
6142                 perf_output_read_one(handle, event, enabled, running);
6143 }
6144
6145 void perf_output_sample(struct perf_output_handle *handle,
6146                         struct perf_event_header *header,
6147                         struct perf_sample_data *data,
6148                         struct perf_event *event)
6149 {
6150         u64 sample_type = data->type;
6151
6152         perf_output_put(handle, *header);
6153
6154         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6155                 perf_output_put(handle, data->id);
6156
6157         if (sample_type & PERF_SAMPLE_IP)
6158                 perf_output_put(handle, data->ip);
6159
6160         if (sample_type & PERF_SAMPLE_TID)
6161                 perf_output_put(handle, data->tid_entry);
6162
6163         if (sample_type & PERF_SAMPLE_TIME)
6164                 perf_output_put(handle, data->time);
6165
6166         if (sample_type & PERF_SAMPLE_ADDR)
6167                 perf_output_put(handle, data->addr);
6168
6169         if (sample_type & PERF_SAMPLE_ID)
6170                 perf_output_put(handle, data->id);
6171
6172         if (sample_type & PERF_SAMPLE_STREAM_ID)
6173                 perf_output_put(handle, data->stream_id);
6174
6175         if (sample_type & PERF_SAMPLE_CPU)
6176                 perf_output_put(handle, data->cpu_entry);
6177
6178         if (sample_type & PERF_SAMPLE_PERIOD)
6179                 perf_output_put(handle, data->period);
6180
6181         if (sample_type & PERF_SAMPLE_READ)
6182                 perf_output_read(handle, event);
6183
6184         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6185                 int size = 1;
6186
6187                 size += data->callchain->nr;
6188                 size *= sizeof(u64);
6189                 __output_copy(handle, data->callchain, size);
6190         }
6191
6192         if (sample_type & PERF_SAMPLE_RAW) {
6193                 struct perf_raw_record *raw = data->raw;
6194
6195                 if (raw) {
6196                         struct perf_raw_frag *frag = &raw->frag;
6197
6198                         perf_output_put(handle, raw->size);
6199                         do {
6200                                 if (frag->copy) {
6201                                         __output_custom(handle, frag->copy,
6202                                                         frag->data, frag->size);
6203                                 } else {
6204                                         __output_copy(handle, frag->data,
6205                                                       frag->size);
6206                                 }
6207                                 if (perf_raw_frag_last(frag))
6208                                         break;
6209                                 frag = frag->next;
6210                         } while (1);
6211                         if (frag->pad)
6212                                 __output_skip(handle, NULL, frag->pad);
6213                 } else {
6214                         struct {
6215                                 u32     size;
6216                                 u32     data;
6217                         } raw = {
6218                                 .size = sizeof(u32),
6219                                 .data = 0,
6220                         };
6221                         perf_output_put(handle, raw);
6222                 }
6223         }
6224
6225         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6226                 if (data->br_stack) {
6227                         size_t size;
6228
6229                         size = data->br_stack->nr
6230                              * sizeof(struct perf_branch_entry);
6231
6232                         perf_output_put(handle, data->br_stack->nr);
6233                         perf_output_copy(handle, data->br_stack->entries, size);
6234                 } else {
6235                         /*
6236                          * we always store at least the value of nr
6237                          */
6238                         u64 nr = 0;
6239                         perf_output_put(handle, nr);
6240                 }
6241         }
6242
6243         if (sample_type & PERF_SAMPLE_REGS_USER) {
6244                 u64 abi = data->regs_user.abi;
6245
6246                 /*
6247                  * If there are no regs to dump, notice it through
6248                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6249                  */
6250                 perf_output_put(handle, abi);
6251
6252                 if (abi) {
6253                         u64 mask = event->attr.sample_regs_user;
6254                         perf_output_sample_regs(handle,
6255                                                 data->regs_user.regs,
6256                                                 mask);
6257                 }
6258         }
6259
6260         if (sample_type & PERF_SAMPLE_STACK_USER) {
6261                 perf_output_sample_ustack(handle,
6262                                           data->stack_user_size,
6263                                           data->regs_user.regs);
6264         }
6265
6266         if (sample_type & PERF_SAMPLE_WEIGHT)
6267                 perf_output_put(handle, data->weight);
6268
6269         if (sample_type & PERF_SAMPLE_DATA_SRC)
6270                 perf_output_put(handle, data->data_src.val);
6271
6272         if (sample_type & PERF_SAMPLE_TRANSACTION)
6273                 perf_output_put(handle, data->txn);
6274
6275         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6276                 u64 abi = data->regs_intr.abi;
6277                 /*
6278                  * If there are no regs to dump, notice it through
6279                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6280                  */
6281                 perf_output_put(handle, abi);
6282
6283                 if (abi) {
6284                         u64 mask = event->attr.sample_regs_intr;
6285
6286                         perf_output_sample_regs(handle,
6287                                                 data->regs_intr.regs,
6288                                                 mask);
6289                 }
6290         }
6291
6292         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6293                 perf_output_put(handle, data->phys_addr);
6294
6295         if (!event->attr.watermark) {
6296                 int wakeup_events = event->attr.wakeup_events;
6297
6298                 if (wakeup_events) {
6299                         struct ring_buffer *rb = handle->rb;
6300                         int events = local_inc_return(&rb->events);
6301
6302                         if (events >= wakeup_events) {
6303                                 local_sub(wakeup_events, &rb->events);
6304                                 local_inc(&rb->wakeup);
6305                         }
6306                 }
6307         }
6308 }
6309
6310 static u64 perf_virt_to_phys(u64 virt)
6311 {
6312         u64 phys_addr = 0;
6313         struct page *p = NULL;
6314
6315         if (!virt)
6316                 return 0;
6317
6318         if (virt >= TASK_SIZE) {
6319                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6320                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6321                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6322                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6323         } else {
6324                 /*
6325                  * Walking the pages tables for user address.
6326                  * Interrupts are disabled, so it prevents any tear down
6327                  * of the page tables.
6328                  * Try IRQ-safe __get_user_pages_fast first.
6329                  * If failed, leave phys_addr as 0.
6330                  */
6331                 if ((current->mm != NULL) &&
6332                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6333                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6334
6335                 if (p)
6336                         put_page(p);
6337         }
6338
6339         return phys_addr;
6340 }
6341
6342 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6343
6344 static struct perf_callchain_entry *
6345 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6346 {
6347         bool kernel = !event->attr.exclude_callchain_kernel;
6348         bool user   = !event->attr.exclude_callchain_user;
6349         /* Disallow cross-task user callchains. */
6350         bool crosstask = event->ctx->task && event->ctx->task != current;
6351         const u32 max_stack = event->attr.sample_max_stack;
6352         struct perf_callchain_entry *callchain;
6353
6354         if (!kernel && !user)
6355                 return &__empty_callchain;
6356
6357         callchain = get_perf_callchain(regs, 0, kernel, user,
6358                                        max_stack, crosstask, true);
6359         return callchain ?: &__empty_callchain;
6360 }
6361
6362 void perf_prepare_sample(struct perf_event_header *header,
6363                          struct perf_sample_data *data,
6364                          struct perf_event *event,
6365                          struct pt_regs *regs)
6366 {
6367         u64 sample_type = event->attr.sample_type;
6368
6369         header->type = PERF_RECORD_SAMPLE;
6370         header->size = sizeof(*header) + event->header_size;
6371
6372         header->misc = 0;
6373         header->misc |= perf_misc_flags(regs);
6374
6375         __perf_event_header__init_id(header, data, event);
6376
6377         if (sample_type & PERF_SAMPLE_IP)
6378                 data->ip = perf_instruction_pointer(regs);
6379
6380         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6381                 int size = 1;
6382
6383                 data->callchain = perf_callchain(event, regs);
6384                 size += data->callchain->nr;
6385
6386                 header->size += size * sizeof(u64);
6387         }
6388
6389         if (sample_type & PERF_SAMPLE_RAW) {
6390                 struct perf_raw_record *raw = data->raw;
6391                 int size;
6392
6393                 if (raw) {
6394                         struct perf_raw_frag *frag = &raw->frag;
6395                         u32 sum = 0;
6396
6397                         do {
6398                                 sum += frag->size;
6399                                 if (perf_raw_frag_last(frag))
6400                                         break;
6401                                 frag = frag->next;
6402                         } while (1);
6403
6404                         size = round_up(sum + sizeof(u32), sizeof(u64));
6405                         raw->size = size - sizeof(u32);
6406                         frag->pad = raw->size - sum;
6407                 } else {
6408                         size = sizeof(u64);
6409                 }
6410
6411                 header->size += size;
6412         }
6413
6414         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6415                 int size = sizeof(u64); /* nr */
6416                 if (data->br_stack) {
6417                         size += data->br_stack->nr
6418                               * sizeof(struct perf_branch_entry);
6419                 }
6420                 header->size += size;
6421         }
6422
6423         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6424                 perf_sample_regs_user(&data->regs_user, regs,
6425                                       &data->regs_user_copy);
6426
6427         if (sample_type & PERF_SAMPLE_REGS_USER) {
6428                 /* regs dump ABI info */
6429                 int size = sizeof(u64);
6430
6431                 if (data->regs_user.regs) {
6432                         u64 mask = event->attr.sample_regs_user;
6433                         size += hweight64(mask) * sizeof(u64);
6434                 }
6435
6436                 header->size += size;
6437         }
6438
6439         if (sample_type & PERF_SAMPLE_STACK_USER) {
6440                 /*
6441                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6442                  * processed as the last one or have additional check added
6443                  * in case new sample type is added, because we could eat
6444                  * up the rest of the sample size.
6445                  */
6446                 u16 stack_size = event->attr.sample_stack_user;
6447                 u16 size = sizeof(u64);
6448
6449                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6450                                                      data->regs_user.regs);
6451
6452                 /*
6453                  * If there is something to dump, add space for the dump
6454                  * itself and for the field that tells the dynamic size,
6455                  * which is how many have been actually dumped.
6456                  */
6457                 if (stack_size)
6458                         size += sizeof(u64) + stack_size;
6459
6460                 data->stack_user_size = stack_size;
6461                 header->size += size;
6462         }
6463
6464         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6465                 /* regs dump ABI info */
6466                 int size = sizeof(u64);
6467
6468                 perf_sample_regs_intr(&data->regs_intr, regs);
6469
6470                 if (data->regs_intr.regs) {
6471                         u64 mask = event->attr.sample_regs_intr;
6472
6473                         size += hweight64(mask) * sizeof(u64);
6474                 }
6475
6476                 header->size += size;
6477         }
6478
6479         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6480                 data->phys_addr = perf_virt_to_phys(data->addr);
6481 }
6482
6483 static void __always_inline
6484 __perf_event_output(struct perf_event *event,
6485                     struct perf_sample_data *data,
6486                     struct pt_regs *regs,
6487                     int (*output_begin)(struct perf_output_handle *,
6488                                         struct perf_event *,
6489                                         unsigned int))
6490 {
6491         struct perf_output_handle handle;
6492         struct perf_event_header header;
6493
6494         /* protect the callchain buffers */
6495         rcu_read_lock();
6496
6497         perf_prepare_sample(&header, data, event, regs);
6498
6499         if (output_begin(&handle, event, header.size))
6500                 goto exit;
6501
6502         perf_output_sample(&handle, &header, data, event);
6503
6504         perf_output_end(&handle);
6505
6506 exit:
6507         rcu_read_unlock();
6508 }
6509
6510 void
6511 perf_event_output_forward(struct perf_event *event,
6512                          struct perf_sample_data *data,
6513                          struct pt_regs *regs)
6514 {
6515         __perf_event_output(event, data, regs, perf_output_begin_forward);
6516 }
6517
6518 void
6519 perf_event_output_backward(struct perf_event *event,
6520                            struct perf_sample_data *data,
6521                            struct pt_regs *regs)
6522 {
6523         __perf_event_output(event, data, regs, perf_output_begin_backward);
6524 }
6525
6526 void
6527 perf_event_output(struct perf_event *event,
6528                   struct perf_sample_data *data,
6529                   struct pt_regs *regs)
6530 {
6531         __perf_event_output(event, data, regs, perf_output_begin);
6532 }
6533
6534 /*
6535  * read event_id
6536  */
6537
6538 struct perf_read_event {
6539         struct perf_event_header        header;
6540
6541         u32                             pid;
6542         u32                             tid;
6543 };
6544
6545 static void
6546 perf_event_read_event(struct perf_event *event,
6547                         struct task_struct *task)
6548 {
6549         struct perf_output_handle handle;
6550         struct perf_sample_data sample;
6551         struct perf_read_event read_event = {
6552                 .header = {
6553                         .type = PERF_RECORD_READ,
6554                         .misc = 0,
6555                         .size = sizeof(read_event) + event->read_size,
6556                 },
6557                 .pid = perf_event_pid(event, task),
6558                 .tid = perf_event_tid(event, task),
6559         };
6560         int ret;
6561
6562         perf_event_header__init_id(&read_event.header, &sample, event);
6563         ret = perf_output_begin(&handle, event, read_event.header.size);
6564         if (ret)
6565                 return;
6566
6567         perf_output_put(&handle, read_event);
6568         perf_output_read(&handle, event);
6569         perf_event__output_id_sample(event, &handle, &sample);
6570
6571         perf_output_end(&handle);
6572 }
6573
6574 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6575
6576 static void
6577 perf_iterate_ctx(struct perf_event_context *ctx,
6578                    perf_iterate_f output,
6579                    void *data, bool all)
6580 {
6581         struct perf_event *event;
6582
6583         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6584                 if (!all) {
6585                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6586                                 continue;
6587                         if (!event_filter_match(event))
6588                                 continue;
6589                 }
6590
6591                 output(event, data);
6592         }
6593 }
6594
6595 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6596 {
6597         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6598         struct perf_event *event;
6599
6600         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6601                 /*
6602                  * Skip events that are not fully formed yet; ensure that
6603                  * if we observe event->ctx, both event and ctx will be
6604                  * complete enough. See perf_install_in_context().
6605                  */
6606                 if (!smp_load_acquire(&event->ctx))
6607                         continue;
6608
6609                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6610                         continue;
6611                 if (!event_filter_match(event))
6612                         continue;
6613                 output(event, data);
6614         }
6615 }
6616
6617 /*
6618  * Iterate all events that need to receive side-band events.
6619  *
6620  * For new callers; ensure that account_pmu_sb_event() includes
6621  * your event, otherwise it might not get delivered.
6622  */
6623 static void
6624 perf_iterate_sb(perf_iterate_f output, void *data,
6625                struct perf_event_context *task_ctx)
6626 {
6627         struct perf_event_context *ctx;
6628         int ctxn;
6629
6630         rcu_read_lock();
6631         preempt_disable();
6632
6633         /*
6634          * If we have task_ctx != NULL we only notify the task context itself.
6635          * The task_ctx is set only for EXIT events before releasing task
6636          * context.
6637          */
6638         if (task_ctx) {
6639                 perf_iterate_ctx(task_ctx, output, data, false);
6640                 goto done;
6641         }
6642
6643         perf_iterate_sb_cpu(output, data);
6644
6645         for_each_task_context_nr(ctxn) {
6646                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6647                 if (ctx)
6648                         perf_iterate_ctx(ctx, output, data, false);
6649         }
6650 done:
6651         preempt_enable();
6652         rcu_read_unlock();
6653 }
6654
6655 /*
6656  * Clear all file-based filters at exec, they'll have to be
6657  * re-instated when/if these objects are mmapped again.
6658  */
6659 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6660 {
6661         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6662         struct perf_addr_filter *filter;
6663         unsigned int restart = 0, count = 0;
6664         unsigned long flags;
6665
6666         if (!has_addr_filter(event))
6667                 return;
6668
6669         raw_spin_lock_irqsave(&ifh->lock, flags);
6670         list_for_each_entry(filter, &ifh->list, entry) {
6671                 if (filter->inode) {
6672                         event->addr_filters_offs[count] = 0;
6673                         restart++;
6674                 }
6675
6676                 count++;
6677         }
6678
6679         if (restart)
6680                 event->addr_filters_gen++;
6681         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6682
6683         if (restart)
6684                 perf_event_stop(event, 1);
6685 }
6686
6687 void perf_event_exec(void)
6688 {
6689         struct perf_event_context *ctx;
6690         int ctxn;
6691
6692         rcu_read_lock();
6693         for_each_task_context_nr(ctxn) {
6694                 ctx = current->perf_event_ctxp[ctxn];
6695                 if (!ctx)
6696                         continue;
6697
6698                 perf_event_enable_on_exec(ctxn);
6699
6700                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6701                                    true);
6702         }
6703         rcu_read_unlock();
6704 }
6705
6706 struct remote_output {
6707         struct ring_buffer      *rb;
6708         int                     err;
6709 };
6710
6711 static void __perf_event_output_stop(struct perf_event *event, void *data)
6712 {
6713         struct perf_event *parent = event->parent;
6714         struct remote_output *ro = data;
6715         struct ring_buffer *rb = ro->rb;
6716         struct stop_event_data sd = {
6717                 .event  = event,
6718         };
6719
6720         if (!has_aux(event))
6721                 return;
6722
6723         if (!parent)
6724                 parent = event;
6725
6726         /*
6727          * In case of inheritance, it will be the parent that links to the
6728          * ring-buffer, but it will be the child that's actually using it.
6729          *
6730          * We are using event::rb to determine if the event should be stopped,
6731          * however this may race with ring_buffer_attach() (through set_output),
6732          * which will make us skip the event that actually needs to be stopped.
6733          * So ring_buffer_attach() has to stop an aux event before re-assigning
6734          * its rb pointer.
6735          */
6736         if (rcu_dereference(parent->rb) == rb)
6737                 ro->err = __perf_event_stop(&sd);
6738 }
6739
6740 static int __perf_pmu_output_stop(void *info)
6741 {
6742         struct perf_event *event = info;
6743         struct pmu *pmu = event->pmu;
6744         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6745         struct remote_output ro = {
6746                 .rb     = event->rb,
6747         };
6748
6749         rcu_read_lock();
6750         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6751         if (cpuctx->task_ctx)
6752                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6753                                    &ro, false);
6754         rcu_read_unlock();
6755
6756         return ro.err;
6757 }
6758
6759 static void perf_pmu_output_stop(struct perf_event *event)
6760 {
6761         struct perf_event *iter;
6762         int err, cpu;
6763
6764 restart:
6765         rcu_read_lock();
6766         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6767                 /*
6768                  * For per-CPU events, we need to make sure that neither they
6769                  * nor their children are running; for cpu==-1 events it's
6770                  * sufficient to stop the event itself if it's active, since
6771                  * it can't have children.
6772                  */
6773                 cpu = iter->cpu;
6774                 if (cpu == -1)
6775                         cpu = READ_ONCE(iter->oncpu);
6776
6777                 if (cpu == -1)
6778                         continue;
6779
6780                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6781                 if (err == -EAGAIN) {
6782                         rcu_read_unlock();
6783                         goto restart;
6784                 }
6785         }
6786         rcu_read_unlock();
6787 }
6788
6789 /*
6790  * task tracking -- fork/exit
6791  *
6792  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6793  */
6794
6795 struct perf_task_event {
6796         struct task_struct              *task;
6797         struct perf_event_context       *task_ctx;
6798
6799         struct {
6800                 struct perf_event_header        header;
6801
6802                 u32                             pid;
6803                 u32                             ppid;
6804                 u32                             tid;
6805                 u32                             ptid;
6806                 u64                             time;
6807         } event_id;
6808 };
6809
6810 static int perf_event_task_match(struct perf_event *event)
6811 {
6812         return event->attr.comm  || event->attr.mmap ||
6813                event->attr.mmap2 || event->attr.mmap_data ||
6814                event->attr.task;
6815 }
6816
6817 static void perf_event_task_output(struct perf_event *event,
6818                                    void *data)
6819 {
6820         struct perf_task_event *task_event = data;
6821         struct perf_output_handle handle;
6822         struct perf_sample_data sample;
6823         struct task_struct *task = task_event->task;
6824         int ret, size = task_event->event_id.header.size;
6825
6826         if (!perf_event_task_match(event))
6827                 return;
6828
6829         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6830
6831         ret = perf_output_begin(&handle, event,
6832                                 task_event->event_id.header.size);
6833         if (ret)
6834                 goto out;
6835
6836         task_event->event_id.pid = perf_event_pid(event, task);
6837         task_event->event_id.ppid = perf_event_pid(event, current);
6838
6839         task_event->event_id.tid = perf_event_tid(event, task);
6840         task_event->event_id.ptid = perf_event_tid(event, current);
6841
6842         task_event->event_id.time = perf_event_clock(event);
6843
6844         perf_output_put(&handle, task_event->event_id);
6845
6846         perf_event__output_id_sample(event, &handle, &sample);
6847
6848         perf_output_end(&handle);
6849 out:
6850         task_event->event_id.header.size = size;
6851 }
6852
6853 static void perf_event_task(struct task_struct *task,
6854                               struct perf_event_context *task_ctx,
6855                               int new)
6856 {
6857         struct perf_task_event task_event;
6858
6859         if (!atomic_read(&nr_comm_events) &&
6860             !atomic_read(&nr_mmap_events) &&
6861             !atomic_read(&nr_task_events))
6862                 return;
6863
6864         task_event = (struct perf_task_event){
6865                 .task     = task,
6866                 .task_ctx = task_ctx,
6867                 .event_id    = {
6868                         .header = {
6869                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6870                                 .misc = 0,
6871                                 .size = sizeof(task_event.event_id),
6872                         },
6873                         /* .pid  */
6874                         /* .ppid */
6875                         /* .tid  */
6876                         /* .ptid */
6877                         /* .time */
6878                 },
6879         };
6880
6881         perf_iterate_sb(perf_event_task_output,
6882                        &task_event,
6883                        task_ctx);
6884 }
6885
6886 void perf_event_fork(struct task_struct *task)
6887 {
6888         perf_event_task(task, NULL, 1);
6889         perf_event_namespaces(task);
6890 }
6891
6892 /*
6893  * comm tracking
6894  */
6895
6896 struct perf_comm_event {
6897         struct task_struct      *task;
6898         char                    *comm;
6899         int                     comm_size;
6900
6901         struct {
6902                 struct perf_event_header        header;
6903
6904                 u32                             pid;
6905                 u32                             tid;
6906         } event_id;
6907 };
6908
6909 static int perf_event_comm_match(struct perf_event *event)
6910 {
6911         return event->attr.comm;
6912 }
6913
6914 static void perf_event_comm_output(struct perf_event *event,
6915                                    void *data)
6916 {
6917         struct perf_comm_event *comm_event = data;
6918         struct perf_output_handle handle;
6919         struct perf_sample_data sample;
6920         int size = comm_event->event_id.header.size;
6921         int ret;
6922
6923         if (!perf_event_comm_match(event))
6924                 return;
6925
6926         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6927         ret = perf_output_begin(&handle, event,
6928                                 comm_event->event_id.header.size);
6929
6930         if (ret)
6931                 goto out;
6932
6933         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6934         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6935
6936         perf_output_put(&handle, comm_event->event_id);
6937         __output_copy(&handle, comm_event->comm,
6938                                    comm_event->comm_size);
6939
6940         perf_event__output_id_sample(event, &handle, &sample);
6941
6942         perf_output_end(&handle);
6943 out:
6944         comm_event->event_id.header.size = size;
6945 }
6946
6947 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6948 {
6949         char comm[TASK_COMM_LEN];
6950         unsigned int size;
6951
6952         memset(comm, 0, sizeof(comm));
6953         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6954         size = ALIGN(strlen(comm)+1, sizeof(u64));
6955
6956         comm_event->comm = comm;
6957         comm_event->comm_size = size;
6958
6959         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6960
6961         perf_iterate_sb(perf_event_comm_output,
6962                        comm_event,
6963                        NULL);
6964 }
6965
6966 void perf_event_comm(struct task_struct *task, bool exec)
6967 {
6968         struct perf_comm_event comm_event;
6969
6970         if (!atomic_read(&nr_comm_events))
6971                 return;
6972
6973         comm_event = (struct perf_comm_event){
6974                 .task   = task,
6975                 /* .comm      */
6976                 /* .comm_size */
6977                 .event_id  = {
6978                         .header = {
6979                                 .type = PERF_RECORD_COMM,
6980                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6981                                 /* .size */
6982                         },
6983                         /* .pid */
6984                         /* .tid */
6985                 },
6986         };
6987
6988         perf_event_comm_event(&comm_event);
6989 }
6990
6991 /*
6992  * namespaces tracking
6993  */
6994
6995 struct perf_namespaces_event {
6996         struct task_struct              *task;
6997
6998         struct {
6999                 struct perf_event_header        header;
7000
7001                 u32                             pid;
7002                 u32                             tid;
7003                 u64                             nr_namespaces;
7004                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7005         } event_id;
7006 };
7007
7008 static int perf_event_namespaces_match(struct perf_event *event)
7009 {
7010         return event->attr.namespaces;
7011 }
7012
7013 static void perf_event_namespaces_output(struct perf_event *event,
7014                                          void *data)
7015 {
7016         struct perf_namespaces_event *namespaces_event = data;
7017         struct perf_output_handle handle;
7018         struct perf_sample_data sample;
7019         u16 header_size = namespaces_event->event_id.header.size;
7020         int ret;
7021
7022         if (!perf_event_namespaces_match(event))
7023                 return;
7024
7025         perf_event_header__init_id(&namespaces_event->event_id.header,
7026                                    &sample, event);
7027         ret = perf_output_begin(&handle, event,
7028                                 namespaces_event->event_id.header.size);
7029         if (ret)
7030                 goto out;
7031
7032         namespaces_event->event_id.pid = perf_event_pid(event,
7033                                                         namespaces_event->task);
7034         namespaces_event->event_id.tid = perf_event_tid(event,
7035                                                         namespaces_event->task);
7036
7037         perf_output_put(&handle, namespaces_event->event_id);
7038
7039         perf_event__output_id_sample(event, &handle, &sample);
7040
7041         perf_output_end(&handle);
7042 out:
7043         namespaces_event->event_id.header.size = header_size;
7044 }
7045
7046 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7047                                    struct task_struct *task,
7048                                    const struct proc_ns_operations *ns_ops)
7049 {
7050         struct path ns_path;
7051         struct inode *ns_inode;
7052         void *error;
7053
7054         error = ns_get_path(&ns_path, task, ns_ops);
7055         if (!error) {
7056                 ns_inode = ns_path.dentry->d_inode;
7057                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7058                 ns_link_info->ino = ns_inode->i_ino;
7059                 path_put(&ns_path);
7060         }
7061 }
7062
7063 void perf_event_namespaces(struct task_struct *task)
7064 {
7065         struct perf_namespaces_event namespaces_event;
7066         struct perf_ns_link_info *ns_link_info;
7067
7068         if (!atomic_read(&nr_namespaces_events))
7069                 return;
7070
7071         namespaces_event = (struct perf_namespaces_event){
7072                 .task   = task,
7073                 .event_id  = {
7074                         .header = {
7075                                 .type = PERF_RECORD_NAMESPACES,
7076                                 .misc = 0,
7077                                 .size = sizeof(namespaces_event.event_id),
7078                         },
7079                         /* .pid */
7080                         /* .tid */
7081                         .nr_namespaces = NR_NAMESPACES,
7082                         /* .link_info[NR_NAMESPACES] */
7083                 },
7084         };
7085
7086         ns_link_info = namespaces_event.event_id.link_info;
7087
7088         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7089                                task, &mntns_operations);
7090
7091 #ifdef CONFIG_USER_NS
7092         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7093                                task, &userns_operations);
7094 #endif
7095 #ifdef CONFIG_NET_NS
7096         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7097                                task, &netns_operations);
7098 #endif
7099 #ifdef CONFIG_UTS_NS
7100         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7101                                task, &utsns_operations);
7102 #endif
7103 #ifdef CONFIG_IPC_NS
7104         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7105                                task, &ipcns_operations);
7106 #endif
7107 #ifdef CONFIG_PID_NS
7108         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7109                                task, &pidns_operations);
7110 #endif
7111 #ifdef CONFIG_CGROUPS
7112         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7113                                task, &cgroupns_operations);
7114 #endif
7115
7116         perf_iterate_sb(perf_event_namespaces_output,
7117                         &namespaces_event,
7118                         NULL);
7119 }
7120
7121 /*
7122  * mmap tracking
7123  */
7124
7125 struct perf_mmap_event {
7126         struct vm_area_struct   *vma;
7127
7128         const char              *file_name;
7129         int                     file_size;
7130         int                     maj, min;
7131         u64                     ino;
7132         u64                     ino_generation;
7133         u32                     prot, flags;
7134
7135         struct {
7136                 struct perf_event_header        header;
7137
7138                 u32                             pid;
7139                 u32                             tid;
7140                 u64                             start;
7141                 u64                             len;
7142                 u64                             pgoff;
7143         } event_id;
7144 };
7145
7146 static int perf_event_mmap_match(struct perf_event *event,
7147                                  void *data)
7148 {
7149         struct perf_mmap_event *mmap_event = data;
7150         struct vm_area_struct *vma = mmap_event->vma;
7151         int executable = vma->vm_flags & VM_EXEC;
7152
7153         return (!executable && event->attr.mmap_data) ||
7154                (executable && (event->attr.mmap || event->attr.mmap2));
7155 }
7156
7157 static void perf_event_mmap_output(struct perf_event *event,
7158                                    void *data)
7159 {
7160         struct perf_mmap_event *mmap_event = data;
7161         struct perf_output_handle handle;
7162         struct perf_sample_data sample;
7163         int size = mmap_event->event_id.header.size;
7164         int ret;
7165
7166         if (!perf_event_mmap_match(event, data))
7167                 return;
7168
7169         if (event->attr.mmap2) {
7170                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7171                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7172                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7173                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7174                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7175                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7176                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7177         }
7178
7179         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7180         ret = perf_output_begin(&handle, event,
7181                                 mmap_event->event_id.header.size);
7182         if (ret)
7183                 goto out;
7184
7185         mmap_event->event_id.pid = perf_event_pid(event, current);
7186         mmap_event->event_id.tid = perf_event_tid(event, current);
7187
7188         perf_output_put(&handle, mmap_event->event_id);
7189
7190         if (event->attr.mmap2) {
7191                 perf_output_put(&handle, mmap_event->maj);
7192                 perf_output_put(&handle, mmap_event->min);
7193                 perf_output_put(&handle, mmap_event->ino);
7194                 perf_output_put(&handle, mmap_event->ino_generation);
7195                 perf_output_put(&handle, mmap_event->prot);
7196                 perf_output_put(&handle, mmap_event->flags);
7197         }
7198
7199         __output_copy(&handle, mmap_event->file_name,
7200                                    mmap_event->file_size);
7201
7202         perf_event__output_id_sample(event, &handle, &sample);
7203
7204         perf_output_end(&handle);
7205 out:
7206         mmap_event->event_id.header.size = size;
7207 }
7208
7209 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7210 {
7211         struct vm_area_struct *vma = mmap_event->vma;
7212         struct file *file = vma->vm_file;
7213         int maj = 0, min = 0;
7214         u64 ino = 0, gen = 0;
7215         u32 prot = 0, flags = 0;
7216         unsigned int size;
7217         char tmp[16];
7218         char *buf = NULL;
7219         char *name;
7220
7221         if (vma->vm_flags & VM_READ)
7222                 prot |= PROT_READ;
7223         if (vma->vm_flags & VM_WRITE)
7224                 prot |= PROT_WRITE;
7225         if (vma->vm_flags & VM_EXEC)
7226                 prot |= PROT_EXEC;
7227
7228         if (vma->vm_flags & VM_MAYSHARE)
7229                 flags = MAP_SHARED;
7230         else
7231                 flags = MAP_PRIVATE;
7232
7233         if (vma->vm_flags & VM_DENYWRITE)
7234                 flags |= MAP_DENYWRITE;
7235         if (vma->vm_flags & VM_MAYEXEC)
7236                 flags |= MAP_EXECUTABLE;
7237         if (vma->vm_flags & VM_LOCKED)
7238                 flags |= MAP_LOCKED;
7239         if (vma->vm_flags & VM_HUGETLB)
7240                 flags |= MAP_HUGETLB;
7241
7242         if (file) {
7243                 struct inode *inode;
7244                 dev_t dev;
7245
7246                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7247                 if (!buf) {
7248                         name = "//enomem";
7249                         goto cpy_name;
7250                 }
7251                 /*
7252                  * d_path() works from the end of the rb backwards, so we
7253                  * need to add enough zero bytes after the string to handle
7254                  * the 64bit alignment we do later.
7255                  */
7256                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7257                 if (IS_ERR(name)) {
7258                         name = "//toolong";
7259                         goto cpy_name;
7260                 }
7261                 inode = file_inode(vma->vm_file);
7262                 dev = inode->i_sb->s_dev;
7263                 ino = inode->i_ino;
7264                 gen = inode->i_generation;
7265                 maj = MAJOR(dev);
7266                 min = MINOR(dev);
7267
7268                 goto got_name;
7269         } else {
7270                 if (vma->vm_ops && vma->vm_ops->name) {
7271                         name = (char *) vma->vm_ops->name(vma);
7272                         if (name)
7273                                 goto cpy_name;
7274                 }
7275
7276                 name = (char *)arch_vma_name(vma);
7277                 if (name)
7278                         goto cpy_name;
7279
7280                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7281                                 vma->vm_end >= vma->vm_mm->brk) {
7282                         name = "[heap]";
7283                         goto cpy_name;
7284                 }
7285                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7286                                 vma->vm_end >= vma->vm_mm->start_stack) {
7287                         name = "[stack]";
7288                         goto cpy_name;
7289                 }
7290
7291                 name = "//anon";
7292                 goto cpy_name;
7293         }
7294
7295 cpy_name:
7296         strlcpy(tmp, name, sizeof(tmp));
7297         name = tmp;
7298 got_name:
7299         /*
7300          * Since our buffer works in 8 byte units we need to align our string
7301          * size to a multiple of 8. However, we must guarantee the tail end is
7302          * zero'd out to avoid leaking random bits to userspace.
7303          */
7304         size = strlen(name)+1;
7305         while (!IS_ALIGNED(size, sizeof(u64)))
7306                 name[size++] = '\0';
7307
7308         mmap_event->file_name = name;
7309         mmap_event->file_size = size;
7310         mmap_event->maj = maj;
7311         mmap_event->min = min;
7312         mmap_event->ino = ino;
7313         mmap_event->ino_generation = gen;
7314         mmap_event->prot = prot;
7315         mmap_event->flags = flags;
7316
7317         if (!(vma->vm_flags & VM_EXEC))
7318                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7319
7320         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7321
7322         perf_iterate_sb(perf_event_mmap_output,
7323                        mmap_event,
7324                        NULL);
7325
7326         kfree(buf);
7327 }
7328
7329 /*
7330  * Check whether inode and address range match filter criteria.
7331  */
7332 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7333                                      struct file *file, unsigned long offset,
7334                                      unsigned long size)
7335 {
7336         if (filter->inode != file_inode(file))
7337                 return false;
7338
7339         if (filter->offset > offset + size)
7340                 return false;
7341
7342         if (filter->offset + filter->size < offset)
7343                 return false;
7344
7345         return true;
7346 }
7347
7348 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7349 {
7350         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7351         struct vm_area_struct *vma = data;
7352         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7353         struct file *file = vma->vm_file;
7354         struct perf_addr_filter *filter;
7355         unsigned int restart = 0, count = 0;
7356
7357         if (!has_addr_filter(event))
7358                 return;
7359
7360         if (!file)
7361                 return;
7362
7363         raw_spin_lock_irqsave(&ifh->lock, flags);
7364         list_for_each_entry(filter, &ifh->list, entry) {
7365                 if (perf_addr_filter_match(filter, file, off,
7366                                              vma->vm_end - vma->vm_start)) {
7367                         event->addr_filters_offs[count] = vma->vm_start;
7368                         restart++;
7369                 }
7370
7371                 count++;
7372         }
7373
7374         if (restart)
7375                 event->addr_filters_gen++;
7376         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7377
7378         if (restart)
7379                 perf_event_stop(event, 1);
7380 }
7381
7382 /*
7383  * Adjust all task's events' filters to the new vma
7384  */
7385 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7386 {
7387         struct perf_event_context *ctx;
7388         int ctxn;
7389
7390         /*
7391          * Data tracing isn't supported yet and as such there is no need
7392          * to keep track of anything that isn't related to executable code:
7393          */
7394         if (!(vma->vm_flags & VM_EXEC))
7395                 return;
7396
7397         rcu_read_lock();
7398         for_each_task_context_nr(ctxn) {
7399                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7400                 if (!ctx)
7401                         continue;
7402
7403                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7404         }
7405         rcu_read_unlock();
7406 }
7407
7408 void perf_event_mmap(struct vm_area_struct *vma)
7409 {
7410         struct perf_mmap_event mmap_event;
7411
7412         if (!atomic_read(&nr_mmap_events))
7413                 return;
7414
7415         mmap_event = (struct perf_mmap_event){
7416                 .vma    = vma,
7417                 /* .file_name */
7418                 /* .file_size */
7419                 .event_id  = {
7420                         .header = {
7421                                 .type = PERF_RECORD_MMAP,
7422                                 .misc = PERF_RECORD_MISC_USER,
7423                                 /* .size */
7424                         },
7425                         /* .pid */
7426                         /* .tid */
7427                         .start  = vma->vm_start,
7428                         .len    = vma->vm_end - vma->vm_start,
7429                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7430                 },
7431                 /* .maj (attr_mmap2 only) */
7432                 /* .min (attr_mmap2 only) */
7433                 /* .ino (attr_mmap2 only) */
7434                 /* .ino_generation (attr_mmap2 only) */
7435                 /* .prot (attr_mmap2 only) */
7436                 /* .flags (attr_mmap2 only) */
7437         };
7438
7439         perf_addr_filters_adjust(vma);
7440         perf_event_mmap_event(&mmap_event);
7441 }
7442
7443 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7444                           unsigned long size, u64 flags)
7445 {
7446         struct perf_output_handle handle;
7447         struct perf_sample_data sample;
7448         struct perf_aux_event {
7449                 struct perf_event_header        header;
7450                 u64                             offset;
7451                 u64                             size;
7452                 u64                             flags;
7453         } rec = {
7454                 .header = {
7455                         .type = PERF_RECORD_AUX,
7456                         .misc = 0,
7457                         .size = sizeof(rec),
7458                 },
7459                 .offset         = head,
7460                 .size           = size,
7461                 .flags          = flags,
7462         };
7463         int ret;
7464
7465         perf_event_header__init_id(&rec.header, &sample, event);
7466         ret = perf_output_begin(&handle, event, rec.header.size);
7467
7468         if (ret)
7469                 return;
7470
7471         perf_output_put(&handle, rec);
7472         perf_event__output_id_sample(event, &handle, &sample);
7473
7474         perf_output_end(&handle);
7475 }
7476
7477 /*
7478  * Lost/dropped samples logging
7479  */
7480 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7481 {
7482         struct perf_output_handle handle;
7483         struct perf_sample_data sample;
7484         int ret;
7485
7486         struct {
7487                 struct perf_event_header        header;
7488                 u64                             lost;
7489         } lost_samples_event = {
7490                 .header = {
7491                         .type = PERF_RECORD_LOST_SAMPLES,
7492                         .misc = 0,
7493                         .size = sizeof(lost_samples_event),
7494                 },
7495                 .lost           = lost,
7496         };
7497
7498         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7499
7500         ret = perf_output_begin(&handle, event,
7501                                 lost_samples_event.header.size);
7502         if (ret)
7503                 return;
7504
7505         perf_output_put(&handle, lost_samples_event);
7506         perf_event__output_id_sample(event, &handle, &sample);
7507         perf_output_end(&handle);
7508 }
7509
7510 /*
7511  * context_switch tracking
7512  */
7513
7514 struct perf_switch_event {
7515         struct task_struct      *task;
7516         struct task_struct      *next_prev;
7517
7518         struct {
7519                 struct perf_event_header        header;
7520                 u32                             next_prev_pid;
7521                 u32                             next_prev_tid;
7522         } event_id;
7523 };
7524
7525 static int perf_event_switch_match(struct perf_event *event)
7526 {
7527         return event->attr.context_switch;
7528 }
7529
7530 static void perf_event_switch_output(struct perf_event *event, void *data)
7531 {
7532         struct perf_switch_event *se = data;
7533         struct perf_output_handle handle;
7534         struct perf_sample_data sample;
7535         int ret;
7536
7537         if (!perf_event_switch_match(event))
7538                 return;
7539
7540         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7541         if (event->ctx->task) {
7542                 se->event_id.header.type = PERF_RECORD_SWITCH;
7543                 se->event_id.header.size = sizeof(se->event_id.header);
7544         } else {
7545                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7546                 se->event_id.header.size = sizeof(se->event_id);
7547                 se->event_id.next_prev_pid =
7548                                         perf_event_pid(event, se->next_prev);
7549                 se->event_id.next_prev_tid =
7550                                         perf_event_tid(event, se->next_prev);
7551         }
7552
7553         perf_event_header__init_id(&se->event_id.header, &sample, event);
7554
7555         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7556         if (ret)
7557                 return;
7558
7559         if (event->ctx->task)
7560                 perf_output_put(&handle, se->event_id.header);
7561         else
7562                 perf_output_put(&handle, se->event_id);
7563
7564         perf_event__output_id_sample(event, &handle, &sample);
7565
7566         perf_output_end(&handle);
7567 }
7568
7569 static void perf_event_switch(struct task_struct *task,
7570                               struct task_struct *next_prev, bool sched_in)
7571 {
7572         struct perf_switch_event switch_event;
7573
7574         /* N.B. caller checks nr_switch_events != 0 */
7575
7576         switch_event = (struct perf_switch_event){
7577                 .task           = task,
7578                 .next_prev      = next_prev,
7579                 .event_id       = {
7580                         .header = {
7581                                 /* .type */
7582                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7583                                 /* .size */
7584                         },
7585                         /* .next_prev_pid */
7586                         /* .next_prev_tid */
7587                 },
7588         };
7589
7590         perf_iterate_sb(perf_event_switch_output,
7591                        &switch_event,
7592                        NULL);
7593 }
7594
7595 /*
7596  * IRQ throttle logging
7597  */
7598
7599 static void perf_log_throttle(struct perf_event *event, int enable)
7600 {
7601         struct perf_output_handle handle;
7602         struct perf_sample_data sample;
7603         int ret;
7604
7605         struct {
7606                 struct perf_event_header        header;
7607                 u64                             time;
7608                 u64                             id;
7609                 u64                             stream_id;
7610         } throttle_event = {
7611                 .header = {
7612                         .type = PERF_RECORD_THROTTLE,
7613                         .misc = 0,
7614                         .size = sizeof(throttle_event),
7615                 },
7616                 .time           = perf_event_clock(event),
7617                 .id             = primary_event_id(event),
7618                 .stream_id      = event->id,
7619         };
7620
7621         if (enable)
7622                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7623
7624         perf_event_header__init_id(&throttle_event.header, &sample, event);
7625
7626         ret = perf_output_begin(&handle, event,
7627                                 throttle_event.header.size);
7628         if (ret)
7629                 return;
7630
7631         perf_output_put(&handle, throttle_event);
7632         perf_event__output_id_sample(event, &handle, &sample);
7633         perf_output_end(&handle);
7634 }
7635
7636 void perf_event_itrace_started(struct perf_event *event)
7637 {
7638         event->attach_state |= PERF_ATTACH_ITRACE;
7639 }
7640
7641 static void perf_log_itrace_start(struct perf_event *event)
7642 {
7643         struct perf_output_handle handle;
7644         struct perf_sample_data sample;
7645         struct perf_aux_event {
7646                 struct perf_event_header        header;
7647                 u32                             pid;
7648                 u32                             tid;
7649         } rec;
7650         int ret;
7651
7652         if (event->parent)
7653                 event = event->parent;
7654
7655         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7656             event->attach_state & PERF_ATTACH_ITRACE)
7657                 return;
7658
7659         rec.header.type = PERF_RECORD_ITRACE_START;
7660         rec.header.misc = 0;
7661         rec.header.size = sizeof(rec);
7662         rec.pid = perf_event_pid(event, current);
7663         rec.tid = perf_event_tid(event, current);
7664
7665         perf_event_header__init_id(&rec.header, &sample, event);
7666         ret = perf_output_begin(&handle, event, rec.header.size);
7667
7668         if (ret)
7669                 return;
7670
7671         perf_output_put(&handle, rec);
7672         perf_event__output_id_sample(event, &handle, &sample);
7673
7674         perf_output_end(&handle);
7675 }
7676
7677 static int
7678 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7679 {
7680         struct hw_perf_event *hwc = &event->hw;
7681         int ret = 0;
7682         u64 seq;
7683
7684         seq = __this_cpu_read(perf_throttled_seq);
7685         if (seq != hwc->interrupts_seq) {
7686                 hwc->interrupts_seq = seq;
7687                 hwc->interrupts = 1;
7688         } else {
7689                 hwc->interrupts++;
7690                 if (unlikely(throttle
7691                              && hwc->interrupts >= max_samples_per_tick)) {
7692                         __this_cpu_inc(perf_throttled_count);
7693                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7694                         hwc->interrupts = MAX_INTERRUPTS;
7695                         perf_log_throttle(event, 0);
7696                         ret = 1;
7697                 }
7698         }
7699
7700         if (event->attr.freq) {
7701                 u64 now = perf_clock();
7702                 s64 delta = now - hwc->freq_time_stamp;
7703
7704                 hwc->freq_time_stamp = now;
7705
7706                 if (delta > 0 && delta < 2*TICK_NSEC)
7707                         perf_adjust_period(event, delta, hwc->last_period, true);
7708         }
7709
7710         return ret;
7711 }
7712
7713 int perf_event_account_interrupt(struct perf_event *event)
7714 {
7715         return __perf_event_account_interrupt(event, 1);
7716 }
7717
7718 /*
7719  * Generic event overflow handling, sampling.
7720  */
7721
7722 static int __perf_event_overflow(struct perf_event *event,
7723                                    int throttle, struct perf_sample_data *data,
7724                                    struct pt_regs *regs)
7725 {
7726         int events = atomic_read(&event->event_limit);
7727         int ret = 0;
7728
7729         /*
7730          * Non-sampling counters might still use the PMI to fold short
7731          * hardware counters, ignore those.
7732          */
7733         if (unlikely(!is_sampling_event(event)))
7734                 return 0;
7735
7736         ret = __perf_event_account_interrupt(event, throttle);
7737
7738         /*
7739          * XXX event_limit might not quite work as expected on inherited
7740          * events
7741          */
7742
7743         event->pending_kill = POLL_IN;
7744         if (events && atomic_dec_and_test(&event->event_limit)) {
7745                 ret = 1;
7746                 event->pending_kill = POLL_HUP;
7747
7748                 perf_event_disable_inatomic(event);
7749         }
7750
7751         READ_ONCE(event->overflow_handler)(event, data, regs);
7752
7753         if (*perf_event_fasync(event) && event->pending_kill) {
7754                 event->pending_wakeup = 1;
7755                 irq_work_queue(&event->pending);
7756         }
7757
7758         return ret;
7759 }
7760
7761 int perf_event_overflow(struct perf_event *event,
7762                           struct perf_sample_data *data,
7763                           struct pt_regs *regs)
7764 {
7765         return __perf_event_overflow(event, 1, data, regs);
7766 }
7767
7768 /*
7769  * Generic software event infrastructure
7770  */
7771
7772 struct swevent_htable {
7773         struct swevent_hlist            *swevent_hlist;
7774         struct mutex                    hlist_mutex;
7775         int                             hlist_refcount;
7776
7777         /* Recursion avoidance in each contexts */
7778         int                             recursion[PERF_NR_CONTEXTS];
7779 };
7780
7781 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7782
7783 /*
7784  * We directly increment event->count and keep a second value in
7785  * event->hw.period_left to count intervals. This period event
7786  * is kept in the range [-sample_period, 0] so that we can use the
7787  * sign as trigger.
7788  */
7789
7790 u64 perf_swevent_set_period(struct perf_event *event)
7791 {
7792         struct hw_perf_event *hwc = &event->hw;
7793         u64 period = hwc->last_period;
7794         u64 nr, offset;
7795         s64 old, val;
7796
7797         hwc->last_period = hwc->sample_period;
7798
7799 again:
7800         old = val = local64_read(&hwc->period_left);
7801         if (val < 0)
7802                 return 0;
7803
7804         nr = div64_u64(period + val, period);
7805         offset = nr * period;
7806         val -= offset;
7807         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7808                 goto again;
7809
7810         return nr;
7811 }
7812
7813 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7814                                     struct perf_sample_data *data,
7815                                     struct pt_regs *regs)
7816 {
7817         struct hw_perf_event *hwc = &event->hw;
7818         int throttle = 0;
7819
7820         if (!overflow)
7821                 overflow = perf_swevent_set_period(event);
7822
7823         if (hwc->interrupts == MAX_INTERRUPTS)
7824                 return;
7825
7826         for (; overflow; overflow--) {
7827                 if (__perf_event_overflow(event, throttle,
7828                                             data, regs)) {
7829                         /*
7830                          * We inhibit the overflow from happening when
7831                          * hwc->interrupts == MAX_INTERRUPTS.
7832                          */
7833                         break;
7834                 }
7835                 throttle = 1;
7836         }
7837 }
7838
7839 static void perf_swevent_event(struct perf_event *event, u64 nr,
7840                                struct perf_sample_data *data,
7841                                struct pt_regs *regs)
7842 {
7843         struct hw_perf_event *hwc = &event->hw;
7844
7845         local64_add(nr, &event->count);
7846
7847         if (!regs)
7848                 return;
7849
7850         if (!is_sampling_event(event))
7851                 return;
7852
7853         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7854                 data->period = nr;
7855                 return perf_swevent_overflow(event, 1, data, regs);
7856         } else
7857                 data->period = event->hw.last_period;
7858
7859         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7860                 return perf_swevent_overflow(event, 1, data, regs);
7861
7862         if (local64_add_negative(nr, &hwc->period_left))
7863                 return;
7864
7865         perf_swevent_overflow(event, 0, data, regs);
7866 }
7867
7868 static int perf_exclude_event(struct perf_event *event,
7869                               struct pt_regs *regs)
7870 {
7871         if (event->hw.state & PERF_HES_STOPPED)
7872                 return 1;
7873
7874         if (regs) {
7875                 if (event->attr.exclude_user && user_mode(regs))
7876                         return 1;
7877
7878                 if (event->attr.exclude_kernel && !user_mode(regs))
7879                         return 1;
7880         }
7881
7882         return 0;
7883 }
7884
7885 static int perf_swevent_match(struct perf_event *event,
7886                                 enum perf_type_id type,
7887                                 u32 event_id,
7888                                 struct perf_sample_data *data,
7889                                 struct pt_regs *regs)
7890 {
7891         if (event->attr.type != type)
7892                 return 0;
7893
7894         if (event->attr.config != event_id)
7895                 return 0;
7896
7897         if (perf_exclude_event(event, regs))
7898                 return 0;
7899
7900         return 1;
7901 }
7902
7903 static inline u64 swevent_hash(u64 type, u32 event_id)
7904 {
7905         u64 val = event_id | (type << 32);
7906
7907         return hash_64(val, SWEVENT_HLIST_BITS);
7908 }
7909
7910 static inline struct hlist_head *
7911 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7912 {
7913         u64 hash = swevent_hash(type, event_id);
7914
7915         return &hlist->heads[hash];
7916 }
7917
7918 /* For the read side: events when they trigger */
7919 static inline struct hlist_head *
7920 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7921 {
7922         struct swevent_hlist *hlist;
7923
7924         hlist = rcu_dereference(swhash->swevent_hlist);
7925         if (!hlist)
7926                 return NULL;
7927
7928         return __find_swevent_head(hlist, type, event_id);
7929 }
7930
7931 /* For the event head insertion and removal in the hlist */
7932 static inline struct hlist_head *
7933 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7934 {
7935         struct swevent_hlist *hlist;
7936         u32 event_id = event->attr.config;
7937         u64 type = event->attr.type;
7938
7939         /*
7940          * Event scheduling is always serialized against hlist allocation
7941          * and release. Which makes the protected version suitable here.
7942          * The context lock guarantees that.
7943          */
7944         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7945                                           lockdep_is_held(&event->ctx->lock));
7946         if (!hlist)
7947                 return NULL;
7948
7949         return __find_swevent_head(hlist, type, event_id);
7950 }
7951
7952 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7953                                     u64 nr,
7954                                     struct perf_sample_data *data,
7955                                     struct pt_regs *regs)
7956 {
7957         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7958         struct perf_event *event;
7959         struct hlist_head *head;
7960
7961         rcu_read_lock();
7962         head = find_swevent_head_rcu(swhash, type, event_id);
7963         if (!head)
7964                 goto end;
7965
7966         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7967                 if (perf_swevent_match(event, type, event_id, data, regs))
7968                         perf_swevent_event(event, nr, data, regs);
7969         }
7970 end:
7971         rcu_read_unlock();
7972 }
7973
7974 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7975
7976 int perf_swevent_get_recursion_context(void)
7977 {
7978         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7979
7980         return get_recursion_context(swhash->recursion);
7981 }
7982 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7983
7984 void perf_swevent_put_recursion_context(int rctx)
7985 {
7986         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7987
7988         put_recursion_context(swhash->recursion, rctx);
7989 }
7990
7991 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7992 {
7993         struct perf_sample_data data;
7994
7995         if (WARN_ON_ONCE(!regs))
7996                 return;
7997
7998         perf_sample_data_init(&data, addr, 0);
7999         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8000 }
8001
8002 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8003 {
8004         int rctx;
8005
8006         preempt_disable_notrace();
8007         rctx = perf_swevent_get_recursion_context();
8008         if (unlikely(rctx < 0))
8009                 goto fail;
8010
8011         ___perf_sw_event(event_id, nr, regs, addr);
8012
8013         perf_swevent_put_recursion_context(rctx);
8014 fail:
8015         preempt_enable_notrace();
8016 }
8017
8018 static void perf_swevent_read(struct perf_event *event)
8019 {
8020 }
8021
8022 static int perf_swevent_add(struct perf_event *event, int flags)
8023 {
8024         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8025         struct hw_perf_event *hwc = &event->hw;
8026         struct hlist_head *head;
8027
8028         if (is_sampling_event(event)) {
8029                 hwc->last_period = hwc->sample_period;
8030                 perf_swevent_set_period(event);
8031         }
8032
8033         hwc->state = !(flags & PERF_EF_START);
8034
8035         head = find_swevent_head(swhash, event);
8036         if (WARN_ON_ONCE(!head))
8037                 return -EINVAL;
8038
8039         hlist_add_head_rcu(&event->hlist_entry, head);
8040         perf_event_update_userpage(event);
8041
8042         return 0;
8043 }
8044
8045 static void perf_swevent_del(struct perf_event *event, int flags)
8046 {
8047         hlist_del_rcu(&event->hlist_entry);
8048 }
8049
8050 static void perf_swevent_start(struct perf_event *event, int flags)
8051 {
8052         event->hw.state = 0;
8053 }
8054
8055 static void perf_swevent_stop(struct perf_event *event, int flags)
8056 {
8057         event->hw.state = PERF_HES_STOPPED;
8058 }
8059
8060 /* Deref the hlist from the update side */
8061 static inline struct swevent_hlist *
8062 swevent_hlist_deref(struct swevent_htable *swhash)
8063 {
8064         return rcu_dereference_protected(swhash->swevent_hlist,
8065                                          lockdep_is_held(&swhash->hlist_mutex));
8066 }
8067
8068 static void swevent_hlist_release(struct swevent_htable *swhash)
8069 {
8070         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8071
8072         if (!hlist)
8073                 return;
8074
8075         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8076         kfree_rcu(hlist, rcu_head);
8077 }
8078
8079 static void swevent_hlist_put_cpu(int cpu)
8080 {
8081         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8082
8083         mutex_lock(&swhash->hlist_mutex);
8084
8085         if (!--swhash->hlist_refcount)
8086                 swevent_hlist_release(swhash);
8087
8088         mutex_unlock(&swhash->hlist_mutex);
8089 }
8090
8091 static void swevent_hlist_put(void)
8092 {
8093         int cpu;
8094
8095         for_each_possible_cpu(cpu)
8096                 swevent_hlist_put_cpu(cpu);
8097 }
8098
8099 static int swevent_hlist_get_cpu(int cpu)
8100 {
8101         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8102         int err = 0;
8103
8104         mutex_lock(&swhash->hlist_mutex);
8105         if (!swevent_hlist_deref(swhash) &&
8106             cpumask_test_cpu(cpu, perf_online_mask)) {
8107                 struct swevent_hlist *hlist;
8108
8109                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8110                 if (!hlist) {
8111                         err = -ENOMEM;
8112                         goto exit;
8113                 }
8114                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8115         }
8116         swhash->hlist_refcount++;
8117 exit:
8118         mutex_unlock(&swhash->hlist_mutex);
8119
8120         return err;
8121 }
8122
8123 static int swevent_hlist_get(void)
8124 {
8125         int err, cpu, failed_cpu;
8126
8127         mutex_lock(&pmus_lock);
8128         for_each_possible_cpu(cpu) {
8129                 err = swevent_hlist_get_cpu(cpu);
8130                 if (err) {
8131                         failed_cpu = cpu;
8132                         goto fail;
8133                 }
8134         }
8135         mutex_unlock(&pmus_lock);
8136         return 0;
8137 fail:
8138         for_each_possible_cpu(cpu) {
8139                 if (cpu == failed_cpu)
8140                         break;
8141                 swevent_hlist_put_cpu(cpu);
8142         }
8143         mutex_unlock(&pmus_lock);
8144         return err;
8145 }
8146
8147 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8148
8149 static void sw_perf_event_destroy(struct perf_event *event)
8150 {
8151         u64 event_id = event->attr.config;
8152
8153         WARN_ON(event->parent);
8154
8155         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8156         swevent_hlist_put();
8157 }
8158
8159 static int perf_swevent_init(struct perf_event *event)
8160 {
8161         u64 event_id = event->attr.config;
8162
8163         if (event->attr.type != PERF_TYPE_SOFTWARE)
8164                 return -ENOENT;
8165
8166         /*
8167          * no branch sampling for software events
8168          */
8169         if (has_branch_stack(event))
8170                 return -EOPNOTSUPP;
8171
8172         switch (event_id) {
8173         case PERF_COUNT_SW_CPU_CLOCK:
8174         case PERF_COUNT_SW_TASK_CLOCK:
8175                 return -ENOENT;
8176
8177         default:
8178                 break;
8179         }
8180
8181         if (event_id >= PERF_COUNT_SW_MAX)
8182                 return -ENOENT;
8183
8184         if (!event->parent) {
8185                 int err;
8186
8187                 err = swevent_hlist_get();
8188                 if (err)
8189                         return err;
8190
8191                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8192                 event->destroy = sw_perf_event_destroy;
8193         }
8194
8195         return 0;
8196 }
8197
8198 static struct pmu perf_swevent = {
8199         .task_ctx_nr    = perf_sw_context,
8200
8201         .capabilities   = PERF_PMU_CAP_NO_NMI,
8202
8203         .event_init     = perf_swevent_init,
8204         .add            = perf_swevent_add,
8205         .del            = perf_swevent_del,
8206         .start          = perf_swevent_start,
8207         .stop           = perf_swevent_stop,
8208         .read           = perf_swevent_read,
8209 };
8210
8211 #ifdef CONFIG_EVENT_TRACING
8212
8213 static int perf_tp_filter_match(struct perf_event *event,
8214                                 struct perf_sample_data *data)
8215 {
8216         void *record = data->raw->frag.data;
8217
8218         /* only top level events have filters set */
8219         if (event->parent)
8220                 event = event->parent;
8221
8222         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8223                 return 1;
8224         return 0;
8225 }
8226
8227 static int perf_tp_event_match(struct perf_event *event,
8228                                 struct perf_sample_data *data,
8229                                 struct pt_regs *regs)
8230 {
8231         if (event->hw.state & PERF_HES_STOPPED)
8232                 return 0;
8233         /*
8234          * All tracepoints are from kernel-space.
8235          */
8236         if (event->attr.exclude_kernel)
8237                 return 0;
8238
8239         if (!perf_tp_filter_match(event, data))
8240                 return 0;
8241
8242         return 1;
8243 }
8244
8245 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8246                                struct trace_event_call *call, u64 count,
8247                                struct pt_regs *regs, struct hlist_head *head,
8248                                struct task_struct *task)
8249 {
8250         if (bpf_prog_array_valid(call)) {
8251                 *(struct pt_regs **)raw_data = regs;
8252                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8253                         perf_swevent_put_recursion_context(rctx);
8254                         return;
8255                 }
8256         }
8257         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8258                       rctx, task);
8259 }
8260 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8261
8262 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8263                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8264                    struct task_struct *task)
8265 {
8266         struct perf_sample_data data;
8267         struct perf_event *event;
8268
8269         struct perf_raw_record raw = {
8270                 .frag = {
8271                         .size = entry_size,
8272                         .data = record,
8273                 },
8274         };
8275
8276         perf_sample_data_init(&data, 0, 0);
8277         data.raw = &raw;
8278
8279         perf_trace_buf_update(record, event_type);
8280
8281         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8282                 if (perf_tp_event_match(event, &data, regs))
8283                         perf_swevent_event(event, count, &data, regs);
8284         }
8285
8286         /*
8287          * If we got specified a target task, also iterate its context and
8288          * deliver this event there too.
8289          */
8290         if (task && task != current) {
8291                 struct perf_event_context *ctx;
8292                 struct trace_entry *entry = record;
8293
8294                 rcu_read_lock();
8295                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8296                 if (!ctx)
8297                         goto unlock;
8298
8299                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8300                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8301                                 continue;
8302                         if (event->attr.config != entry->type)
8303                                 continue;
8304                         if (perf_tp_event_match(event, &data, regs))
8305                                 perf_swevent_event(event, count, &data, regs);
8306                 }
8307 unlock:
8308                 rcu_read_unlock();
8309         }
8310
8311         perf_swevent_put_recursion_context(rctx);
8312 }
8313 EXPORT_SYMBOL_GPL(perf_tp_event);
8314
8315 static void tp_perf_event_destroy(struct perf_event *event)
8316 {
8317         perf_trace_destroy(event);
8318 }
8319
8320 static int perf_tp_event_init(struct perf_event *event)
8321 {
8322         int err;
8323
8324         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8325                 return -ENOENT;
8326
8327         /*
8328          * no branch sampling for tracepoint events
8329          */
8330         if (has_branch_stack(event))
8331                 return -EOPNOTSUPP;
8332
8333         err = perf_trace_init(event);
8334         if (err)
8335                 return err;
8336
8337         event->destroy = tp_perf_event_destroy;
8338
8339         return 0;
8340 }
8341
8342 static struct pmu perf_tracepoint = {
8343         .task_ctx_nr    = perf_sw_context,
8344
8345         .event_init     = perf_tp_event_init,
8346         .add            = perf_trace_add,
8347         .del            = perf_trace_del,
8348         .start          = perf_swevent_start,
8349         .stop           = perf_swevent_stop,
8350         .read           = perf_swevent_read,
8351 };
8352
8353 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8354 /*
8355  * Flags in config, used by dynamic PMU kprobe and uprobe
8356  * The flags should match following PMU_FORMAT_ATTR().
8357  *
8358  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8359  *                               if not set, create kprobe/uprobe
8360  */
8361 enum perf_probe_config {
8362         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8363 };
8364
8365 PMU_FORMAT_ATTR(retprobe, "config:0");
8366
8367 static struct attribute *probe_attrs[] = {
8368         &format_attr_retprobe.attr,
8369         NULL,
8370 };
8371
8372 static struct attribute_group probe_format_group = {
8373         .name = "format",
8374         .attrs = probe_attrs,
8375 };
8376
8377 static const struct attribute_group *probe_attr_groups[] = {
8378         &probe_format_group,
8379         NULL,
8380 };
8381 #endif
8382
8383 #ifdef CONFIG_KPROBE_EVENTS
8384 static int perf_kprobe_event_init(struct perf_event *event);
8385 static struct pmu perf_kprobe = {
8386         .task_ctx_nr    = perf_sw_context,
8387         .event_init     = perf_kprobe_event_init,
8388         .add            = perf_trace_add,
8389         .del            = perf_trace_del,
8390         .start          = perf_swevent_start,
8391         .stop           = perf_swevent_stop,
8392         .read           = perf_swevent_read,
8393         .attr_groups    = probe_attr_groups,
8394 };
8395
8396 static int perf_kprobe_event_init(struct perf_event *event)
8397 {
8398         int err;
8399         bool is_retprobe;
8400
8401         if (event->attr.type != perf_kprobe.type)
8402                 return -ENOENT;
8403         /*
8404          * no branch sampling for probe events
8405          */
8406         if (has_branch_stack(event))
8407                 return -EOPNOTSUPP;
8408
8409         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8410         err = perf_kprobe_init(event, is_retprobe);
8411         if (err)
8412                 return err;
8413
8414         event->destroy = perf_kprobe_destroy;
8415
8416         return 0;
8417 }
8418 #endif /* CONFIG_KPROBE_EVENTS */
8419
8420 #ifdef CONFIG_UPROBE_EVENTS
8421 static int perf_uprobe_event_init(struct perf_event *event);
8422 static struct pmu perf_uprobe = {
8423         .task_ctx_nr    = perf_sw_context,
8424         .event_init     = perf_uprobe_event_init,
8425         .add            = perf_trace_add,
8426         .del            = perf_trace_del,
8427         .start          = perf_swevent_start,
8428         .stop           = perf_swevent_stop,
8429         .read           = perf_swevent_read,
8430         .attr_groups    = probe_attr_groups,
8431 };
8432
8433 static int perf_uprobe_event_init(struct perf_event *event)
8434 {
8435         int err;
8436         bool is_retprobe;
8437
8438         if (event->attr.type != perf_uprobe.type)
8439                 return -ENOENT;
8440         /*
8441          * no branch sampling for probe events
8442          */
8443         if (has_branch_stack(event))
8444                 return -EOPNOTSUPP;
8445
8446         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8447         err = perf_uprobe_init(event, is_retprobe);
8448         if (err)
8449                 return err;
8450
8451         event->destroy = perf_uprobe_destroy;
8452
8453         return 0;
8454 }
8455 #endif /* CONFIG_UPROBE_EVENTS */
8456
8457 static inline void perf_tp_register(void)
8458 {
8459         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8460 #ifdef CONFIG_KPROBE_EVENTS
8461         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8462 #endif
8463 #ifdef CONFIG_UPROBE_EVENTS
8464         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8465 #endif
8466 }
8467
8468 static void perf_event_free_filter(struct perf_event *event)
8469 {
8470         ftrace_profile_free_filter(event);
8471 }
8472
8473 #ifdef CONFIG_BPF_SYSCALL
8474 static void bpf_overflow_handler(struct perf_event *event,
8475                                  struct perf_sample_data *data,
8476                                  struct pt_regs *regs)
8477 {
8478         struct bpf_perf_event_data_kern ctx = {
8479                 .data = data,
8480                 .event = event,
8481         };
8482         int ret = 0;
8483
8484         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8485         preempt_disable();
8486         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8487                 goto out;
8488         rcu_read_lock();
8489         ret = BPF_PROG_RUN(event->prog, &ctx);
8490         rcu_read_unlock();
8491 out:
8492         __this_cpu_dec(bpf_prog_active);
8493         preempt_enable();
8494         if (!ret)
8495                 return;
8496
8497         event->orig_overflow_handler(event, data, regs);
8498 }
8499
8500 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8501 {
8502         struct bpf_prog *prog;
8503
8504         if (event->overflow_handler_context)
8505                 /* hw breakpoint or kernel counter */
8506                 return -EINVAL;
8507
8508         if (event->prog)
8509                 return -EEXIST;
8510
8511         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8512         if (IS_ERR(prog))
8513                 return PTR_ERR(prog);
8514
8515         event->prog = prog;
8516         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8517         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8518         return 0;
8519 }
8520
8521 static void perf_event_free_bpf_handler(struct perf_event *event)
8522 {
8523         struct bpf_prog *prog = event->prog;
8524
8525         if (!prog)
8526                 return;
8527
8528         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8529         event->prog = NULL;
8530         bpf_prog_put(prog);
8531 }
8532 #else
8533 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8534 {
8535         return -EOPNOTSUPP;
8536 }
8537 static void perf_event_free_bpf_handler(struct perf_event *event)
8538 {
8539 }
8540 #endif
8541
8542 /*
8543  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8544  * with perf_event_open()
8545  */
8546 static inline bool perf_event_is_tracing(struct perf_event *event)
8547 {
8548         if (event->pmu == &perf_tracepoint)
8549                 return true;
8550 #ifdef CONFIG_KPROBE_EVENTS
8551         if (event->pmu == &perf_kprobe)
8552                 return true;
8553 #endif
8554 #ifdef CONFIG_UPROBE_EVENTS
8555         if (event->pmu == &perf_uprobe)
8556                 return true;
8557 #endif
8558         return false;
8559 }
8560
8561 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8562 {
8563         bool is_kprobe, is_tracepoint, is_syscall_tp;
8564         struct bpf_prog *prog;
8565         int ret;
8566
8567         if (!perf_event_is_tracing(event))
8568                 return perf_event_set_bpf_handler(event, prog_fd);
8569
8570         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8571         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8572         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8573         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8574                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8575                 return -EINVAL;
8576
8577         prog = bpf_prog_get(prog_fd);
8578         if (IS_ERR(prog))
8579                 return PTR_ERR(prog);
8580
8581         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8582             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8583             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8584                 /* valid fd, but invalid bpf program type */
8585                 bpf_prog_put(prog);
8586                 return -EINVAL;
8587         }
8588
8589         /* Kprobe override only works for kprobes, not uprobes. */
8590         if (prog->kprobe_override &&
8591             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8592                 bpf_prog_put(prog);
8593                 return -EINVAL;
8594         }
8595
8596         if (is_tracepoint || is_syscall_tp) {
8597                 int off = trace_event_get_offsets(event->tp_event);
8598
8599                 if (prog->aux->max_ctx_offset > off) {
8600                         bpf_prog_put(prog);
8601                         return -EACCES;
8602                 }
8603         }
8604
8605         ret = perf_event_attach_bpf_prog(event, prog);
8606         if (ret)
8607                 bpf_prog_put(prog);
8608         return ret;
8609 }
8610
8611 static void perf_event_free_bpf_prog(struct perf_event *event)
8612 {
8613         if (!perf_event_is_tracing(event)) {
8614                 perf_event_free_bpf_handler(event);
8615                 return;
8616         }
8617         perf_event_detach_bpf_prog(event);
8618 }
8619
8620 #else
8621
8622 static inline void perf_tp_register(void)
8623 {
8624 }
8625
8626 static void perf_event_free_filter(struct perf_event *event)
8627 {
8628 }
8629
8630 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8631 {
8632         return -ENOENT;
8633 }
8634
8635 static void perf_event_free_bpf_prog(struct perf_event *event)
8636 {
8637 }
8638 #endif /* CONFIG_EVENT_TRACING */
8639
8640 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8641 void perf_bp_event(struct perf_event *bp, void *data)
8642 {
8643         struct perf_sample_data sample;
8644         struct pt_regs *regs = data;
8645
8646         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8647
8648         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8649                 perf_swevent_event(bp, 1, &sample, regs);
8650 }
8651 #endif
8652
8653 /*
8654  * Allocate a new address filter
8655  */
8656 static struct perf_addr_filter *
8657 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8658 {
8659         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8660         struct perf_addr_filter *filter;
8661
8662         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8663         if (!filter)
8664                 return NULL;
8665
8666         INIT_LIST_HEAD(&filter->entry);
8667         list_add_tail(&filter->entry, filters);
8668
8669         return filter;
8670 }
8671
8672 static void free_filters_list(struct list_head *filters)
8673 {
8674         struct perf_addr_filter *filter, *iter;
8675
8676         list_for_each_entry_safe(filter, iter, filters, entry) {
8677                 if (filter->inode)
8678                         iput(filter->inode);
8679                 list_del(&filter->entry);
8680                 kfree(filter);
8681         }
8682 }
8683
8684 /*
8685  * Free existing address filters and optionally install new ones
8686  */
8687 static void perf_addr_filters_splice(struct perf_event *event,
8688                                      struct list_head *head)
8689 {
8690         unsigned long flags;
8691         LIST_HEAD(list);
8692
8693         if (!has_addr_filter(event))
8694                 return;
8695
8696         /* don't bother with children, they don't have their own filters */
8697         if (event->parent)
8698                 return;
8699
8700         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8701
8702         list_splice_init(&event->addr_filters.list, &list);
8703         if (head)
8704                 list_splice(head, &event->addr_filters.list);
8705
8706         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8707
8708         free_filters_list(&list);
8709 }
8710
8711 /*
8712  * Scan through mm's vmas and see if one of them matches the
8713  * @filter; if so, adjust filter's address range.
8714  * Called with mm::mmap_sem down for reading.
8715  */
8716 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8717                                             struct mm_struct *mm)
8718 {
8719         struct vm_area_struct *vma;
8720
8721         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8722                 struct file *file = vma->vm_file;
8723                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8724                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8725
8726                 if (!file)
8727                         continue;
8728
8729                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8730                         continue;
8731
8732                 return vma->vm_start;
8733         }
8734
8735         return 0;
8736 }
8737
8738 /*
8739  * Update event's address range filters based on the
8740  * task's existing mappings, if any.
8741  */
8742 static void perf_event_addr_filters_apply(struct perf_event *event)
8743 {
8744         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8745         struct task_struct *task = READ_ONCE(event->ctx->task);
8746         struct perf_addr_filter *filter;
8747         struct mm_struct *mm = NULL;
8748         unsigned int count = 0;
8749         unsigned long flags;
8750
8751         /*
8752          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8753          * will stop on the parent's child_mutex that our caller is also holding
8754          */
8755         if (task == TASK_TOMBSTONE)
8756                 return;
8757
8758         if (!ifh->nr_file_filters)
8759                 return;
8760
8761         mm = get_task_mm(event->ctx->task);
8762         if (!mm)
8763                 goto restart;
8764
8765         down_read(&mm->mmap_sem);
8766
8767         raw_spin_lock_irqsave(&ifh->lock, flags);
8768         list_for_each_entry(filter, &ifh->list, entry) {
8769                 event->addr_filters_offs[count] = 0;
8770
8771                 /*
8772                  * Adjust base offset if the filter is associated to a binary
8773                  * that needs to be mapped:
8774                  */
8775                 if (filter->inode)
8776                         event->addr_filters_offs[count] =
8777                                 perf_addr_filter_apply(filter, mm);
8778
8779                 count++;
8780         }
8781
8782         event->addr_filters_gen++;
8783         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8784
8785         up_read(&mm->mmap_sem);
8786
8787         mmput(mm);
8788
8789 restart:
8790         perf_event_stop(event, 1);
8791 }
8792
8793 /*
8794  * Address range filtering: limiting the data to certain
8795  * instruction address ranges. Filters are ioctl()ed to us from
8796  * userspace as ascii strings.
8797  *
8798  * Filter string format:
8799  *
8800  * ACTION RANGE_SPEC
8801  * where ACTION is one of the
8802  *  * "filter": limit the trace to this region
8803  *  * "start": start tracing from this address
8804  *  * "stop": stop tracing at this address/region;
8805  * RANGE_SPEC is
8806  *  * for kernel addresses: <start address>[/<size>]
8807  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8808  *
8809  * if <size> is not specified or is zero, the range is treated as a single
8810  * address; not valid for ACTION=="filter".
8811  */
8812 enum {
8813         IF_ACT_NONE = -1,
8814         IF_ACT_FILTER,
8815         IF_ACT_START,
8816         IF_ACT_STOP,
8817         IF_SRC_FILE,
8818         IF_SRC_KERNEL,
8819         IF_SRC_FILEADDR,
8820         IF_SRC_KERNELADDR,
8821 };
8822
8823 enum {
8824         IF_STATE_ACTION = 0,
8825         IF_STATE_SOURCE,
8826         IF_STATE_END,
8827 };
8828
8829 static const match_table_t if_tokens = {
8830         { IF_ACT_FILTER,        "filter" },
8831         { IF_ACT_START,         "start" },
8832         { IF_ACT_STOP,          "stop" },
8833         { IF_SRC_FILE,          "%u/%u@%s" },
8834         { IF_SRC_KERNEL,        "%u/%u" },
8835         { IF_SRC_FILEADDR,      "%u@%s" },
8836         { IF_SRC_KERNELADDR,    "%u" },
8837         { IF_ACT_NONE,          NULL },
8838 };
8839
8840 /*
8841  * Address filter string parser
8842  */
8843 static int
8844 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8845                              struct list_head *filters)
8846 {
8847         struct perf_addr_filter *filter = NULL;
8848         char *start, *orig, *filename = NULL;
8849         struct path path;
8850         substring_t args[MAX_OPT_ARGS];
8851         int state = IF_STATE_ACTION, token;
8852         unsigned int kernel = 0;
8853         int ret = -EINVAL;
8854
8855         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8856         if (!fstr)
8857                 return -ENOMEM;
8858
8859         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8860                 static const enum perf_addr_filter_action_t actions[] = {
8861                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8862                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
8863                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
8864                 };
8865                 ret = -EINVAL;
8866
8867                 if (!*start)
8868                         continue;
8869
8870                 /* filter definition begins */
8871                 if (state == IF_STATE_ACTION) {
8872                         filter = perf_addr_filter_new(event, filters);
8873                         if (!filter)
8874                                 goto fail;
8875                 }
8876
8877                 token = match_token(start, if_tokens, args);
8878                 switch (token) {
8879                 case IF_ACT_FILTER:
8880                 case IF_ACT_START:
8881                 case IF_ACT_STOP:
8882                         if (state != IF_STATE_ACTION)
8883                                 goto fail;
8884
8885                         filter->action = actions[token];
8886                         state = IF_STATE_SOURCE;
8887                         break;
8888
8889                 case IF_SRC_KERNELADDR:
8890                 case IF_SRC_KERNEL:
8891                         kernel = 1;
8892
8893                 case IF_SRC_FILEADDR:
8894                 case IF_SRC_FILE:
8895                         if (state != IF_STATE_SOURCE)
8896                                 goto fail;
8897
8898                         *args[0].to = 0;
8899                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8900                         if (ret)
8901                                 goto fail;
8902
8903                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8904                                 *args[1].to = 0;
8905                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8906                                 if (ret)
8907                                         goto fail;
8908                         }
8909
8910                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8911                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
8912
8913                                 filename = match_strdup(&args[fpos]);
8914                                 if (!filename) {
8915                                         ret = -ENOMEM;
8916                                         goto fail;
8917                                 }
8918                         }
8919
8920                         state = IF_STATE_END;
8921                         break;
8922
8923                 default:
8924                         goto fail;
8925                 }
8926
8927                 /*
8928                  * Filter definition is fully parsed, validate and install it.
8929                  * Make sure that it doesn't contradict itself or the event's
8930                  * attribute.
8931                  */
8932                 if (state == IF_STATE_END) {
8933                         ret = -EINVAL;
8934                         if (kernel && event->attr.exclude_kernel)
8935                                 goto fail;
8936
8937                         /*
8938                          * ACTION "filter" must have a non-zero length region
8939                          * specified.
8940                          */
8941                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8942                             !filter->size)
8943                                 goto fail;
8944
8945                         if (!kernel) {
8946                                 if (!filename)
8947                                         goto fail;
8948
8949                                 /*
8950                                  * For now, we only support file-based filters
8951                                  * in per-task events; doing so for CPU-wide
8952                                  * events requires additional context switching
8953                                  * trickery, since same object code will be
8954                                  * mapped at different virtual addresses in
8955                                  * different processes.
8956                                  */
8957                                 ret = -EOPNOTSUPP;
8958                                 if (!event->ctx->task)
8959                                         goto fail_free_name;
8960
8961                                 /* look up the path and grab its inode */
8962                                 ret = kern_path(filename, LOOKUP_FOLLOW, &path);
8963                                 if (ret)
8964                                         goto fail_free_name;
8965
8966                                 filter->inode = igrab(d_inode(path.dentry));
8967                                 path_put(&path);
8968                                 kfree(filename);
8969                                 filename = NULL;
8970
8971                                 ret = -EINVAL;
8972                                 if (!filter->inode ||
8973                                     !S_ISREG(filter->inode->i_mode))
8974                                         /* free_filters_list() will iput() */
8975                                         goto fail;
8976
8977                                 event->addr_filters.nr_file_filters++;
8978                         }
8979
8980                         /* ready to consume more filters */
8981                         state = IF_STATE_ACTION;
8982                         filter = NULL;
8983                 }
8984         }
8985
8986         if (state != IF_STATE_ACTION)
8987                 goto fail;
8988
8989         kfree(orig);
8990
8991         return 0;
8992
8993 fail_free_name:
8994         kfree(filename);
8995 fail:
8996         free_filters_list(filters);
8997         kfree(orig);
8998
8999         return ret;
9000 }
9001
9002 static int
9003 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9004 {
9005         LIST_HEAD(filters);
9006         int ret;
9007
9008         /*
9009          * Since this is called in perf_ioctl() path, we're already holding
9010          * ctx::mutex.
9011          */
9012         lockdep_assert_held(&event->ctx->mutex);
9013
9014         if (WARN_ON_ONCE(event->parent))
9015                 return -EINVAL;
9016
9017         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9018         if (ret)
9019                 goto fail_clear_files;
9020
9021         ret = event->pmu->addr_filters_validate(&filters);
9022         if (ret)
9023                 goto fail_free_filters;
9024
9025         /* remove existing filters, if any */
9026         perf_addr_filters_splice(event, &filters);
9027
9028         /* install new filters */
9029         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9030
9031         return ret;
9032
9033 fail_free_filters:
9034         free_filters_list(&filters);
9035
9036 fail_clear_files:
9037         event->addr_filters.nr_file_filters = 0;
9038
9039         return ret;
9040 }
9041
9042 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9043 {
9044         int ret = -EINVAL;
9045         char *filter_str;
9046
9047         filter_str = strndup_user(arg, PAGE_SIZE);
9048         if (IS_ERR(filter_str))
9049                 return PTR_ERR(filter_str);
9050
9051 #ifdef CONFIG_EVENT_TRACING
9052         if (perf_event_is_tracing(event)) {
9053                 struct perf_event_context *ctx = event->ctx;
9054
9055                 /*
9056                  * Beware, here be dragons!!
9057                  *
9058                  * the tracepoint muck will deadlock against ctx->mutex, but
9059                  * the tracepoint stuff does not actually need it. So
9060                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9061                  * already have a reference on ctx.
9062                  *
9063                  * This can result in event getting moved to a different ctx,
9064                  * but that does not affect the tracepoint state.
9065                  */
9066                 mutex_unlock(&ctx->mutex);
9067                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9068                 mutex_lock(&ctx->mutex);
9069         } else
9070 #endif
9071         if (has_addr_filter(event))
9072                 ret = perf_event_set_addr_filter(event, filter_str);
9073
9074         kfree(filter_str);
9075         return ret;
9076 }
9077
9078 /*
9079  * hrtimer based swevent callback
9080  */
9081
9082 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9083 {
9084         enum hrtimer_restart ret = HRTIMER_RESTART;
9085         struct perf_sample_data data;
9086         struct pt_regs *regs;
9087         struct perf_event *event;
9088         u64 period;
9089
9090         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9091
9092         if (event->state != PERF_EVENT_STATE_ACTIVE)
9093                 return HRTIMER_NORESTART;
9094
9095         event->pmu->read(event);
9096
9097         perf_sample_data_init(&data, 0, event->hw.last_period);
9098         regs = get_irq_regs();
9099
9100         if (regs && !perf_exclude_event(event, regs)) {
9101                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9102                         if (__perf_event_overflow(event, 1, &data, regs))
9103                                 ret = HRTIMER_NORESTART;
9104         }
9105
9106         period = max_t(u64, 10000, event->hw.sample_period);
9107         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9108
9109         return ret;
9110 }
9111
9112 static void perf_swevent_start_hrtimer(struct perf_event *event)
9113 {
9114         struct hw_perf_event *hwc = &event->hw;
9115         s64 period;
9116
9117         if (!is_sampling_event(event))
9118                 return;
9119
9120         period = local64_read(&hwc->period_left);
9121         if (period) {
9122                 if (period < 0)
9123                         period = 10000;
9124
9125                 local64_set(&hwc->period_left, 0);
9126         } else {
9127                 period = max_t(u64, 10000, hwc->sample_period);
9128         }
9129         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9130                       HRTIMER_MODE_REL_PINNED);
9131 }
9132
9133 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9134 {
9135         struct hw_perf_event *hwc = &event->hw;
9136
9137         if (is_sampling_event(event)) {
9138                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9139                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9140
9141                 hrtimer_cancel(&hwc->hrtimer);
9142         }
9143 }
9144
9145 static void perf_swevent_init_hrtimer(struct perf_event *event)
9146 {
9147         struct hw_perf_event *hwc = &event->hw;
9148
9149         if (!is_sampling_event(event))
9150                 return;
9151
9152         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9153         hwc->hrtimer.function = perf_swevent_hrtimer;
9154
9155         /*
9156          * Since hrtimers have a fixed rate, we can do a static freq->period
9157          * mapping and avoid the whole period adjust feedback stuff.
9158          */
9159         if (event->attr.freq) {
9160                 long freq = event->attr.sample_freq;
9161
9162                 event->attr.sample_period = NSEC_PER_SEC / freq;
9163                 hwc->sample_period = event->attr.sample_period;
9164                 local64_set(&hwc->period_left, hwc->sample_period);
9165                 hwc->last_period = hwc->sample_period;
9166                 event->attr.freq = 0;
9167         }
9168 }
9169
9170 /*
9171  * Software event: cpu wall time clock
9172  */
9173
9174 static void cpu_clock_event_update(struct perf_event *event)
9175 {
9176         s64 prev;
9177         u64 now;
9178
9179         now = local_clock();
9180         prev = local64_xchg(&event->hw.prev_count, now);
9181         local64_add(now - prev, &event->count);
9182 }
9183
9184 static void cpu_clock_event_start(struct perf_event *event, int flags)
9185 {
9186         local64_set(&event->hw.prev_count, local_clock());
9187         perf_swevent_start_hrtimer(event);
9188 }
9189
9190 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9191 {
9192         perf_swevent_cancel_hrtimer(event);
9193         cpu_clock_event_update(event);
9194 }
9195
9196 static int cpu_clock_event_add(struct perf_event *event, int flags)
9197 {
9198         if (flags & PERF_EF_START)
9199                 cpu_clock_event_start(event, flags);
9200         perf_event_update_userpage(event);
9201
9202         return 0;
9203 }
9204
9205 static void cpu_clock_event_del(struct perf_event *event, int flags)
9206 {
9207         cpu_clock_event_stop(event, flags);
9208 }
9209
9210 static void cpu_clock_event_read(struct perf_event *event)
9211 {
9212         cpu_clock_event_update(event);
9213 }
9214
9215 static int cpu_clock_event_init(struct perf_event *event)
9216 {
9217         if (event->attr.type != PERF_TYPE_SOFTWARE)
9218                 return -ENOENT;
9219
9220         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9221                 return -ENOENT;
9222
9223         /*
9224          * no branch sampling for software events
9225          */
9226         if (has_branch_stack(event))
9227                 return -EOPNOTSUPP;
9228
9229         perf_swevent_init_hrtimer(event);
9230
9231         return 0;
9232 }
9233
9234 static struct pmu perf_cpu_clock = {
9235         .task_ctx_nr    = perf_sw_context,
9236
9237         .capabilities   = PERF_PMU_CAP_NO_NMI,
9238
9239         .event_init     = cpu_clock_event_init,
9240         .add            = cpu_clock_event_add,
9241         .del            = cpu_clock_event_del,
9242         .start          = cpu_clock_event_start,
9243         .stop           = cpu_clock_event_stop,
9244         .read           = cpu_clock_event_read,
9245 };
9246
9247 /*
9248  * Software event: task time clock
9249  */
9250
9251 static void task_clock_event_update(struct perf_event *event, u64 now)
9252 {
9253         u64 prev;
9254         s64 delta;
9255
9256         prev = local64_xchg(&event->hw.prev_count, now);
9257         delta = now - prev;
9258         local64_add(delta, &event->count);
9259 }
9260
9261 static void task_clock_event_start(struct perf_event *event, int flags)
9262 {
9263         local64_set(&event->hw.prev_count, event->ctx->time);
9264         perf_swevent_start_hrtimer(event);
9265 }
9266
9267 static void task_clock_event_stop(struct perf_event *event, int flags)
9268 {
9269         perf_swevent_cancel_hrtimer(event);
9270         task_clock_event_update(event, event->ctx->time);
9271 }
9272
9273 static int task_clock_event_add(struct perf_event *event, int flags)
9274 {
9275         if (flags & PERF_EF_START)
9276                 task_clock_event_start(event, flags);
9277         perf_event_update_userpage(event);
9278
9279         return 0;
9280 }
9281
9282 static void task_clock_event_del(struct perf_event *event, int flags)
9283 {
9284         task_clock_event_stop(event, PERF_EF_UPDATE);
9285 }
9286
9287 static void task_clock_event_read(struct perf_event *event)
9288 {
9289         u64 now = perf_clock();
9290         u64 delta = now - event->ctx->timestamp;
9291         u64 time = event->ctx->time + delta;
9292
9293         task_clock_event_update(event, time);
9294 }
9295
9296 static int task_clock_event_init(struct perf_event *event)
9297 {
9298         if (event->attr.type != PERF_TYPE_SOFTWARE)
9299                 return -ENOENT;
9300
9301         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9302                 return -ENOENT;
9303
9304         /*
9305          * no branch sampling for software events
9306          */
9307         if (has_branch_stack(event))
9308                 return -EOPNOTSUPP;
9309
9310         perf_swevent_init_hrtimer(event);
9311
9312         return 0;
9313 }
9314
9315 static struct pmu perf_task_clock = {
9316         .task_ctx_nr    = perf_sw_context,
9317
9318         .capabilities   = PERF_PMU_CAP_NO_NMI,
9319
9320         .event_init     = task_clock_event_init,
9321         .add            = task_clock_event_add,
9322         .del            = task_clock_event_del,
9323         .start          = task_clock_event_start,
9324         .stop           = task_clock_event_stop,
9325         .read           = task_clock_event_read,
9326 };
9327
9328 static void perf_pmu_nop_void(struct pmu *pmu)
9329 {
9330 }
9331
9332 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9333 {
9334 }
9335
9336 static int perf_pmu_nop_int(struct pmu *pmu)
9337 {
9338         return 0;
9339 }
9340
9341 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9342
9343 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9344 {
9345         __this_cpu_write(nop_txn_flags, flags);
9346
9347         if (flags & ~PERF_PMU_TXN_ADD)
9348                 return;
9349
9350         perf_pmu_disable(pmu);
9351 }
9352
9353 static int perf_pmu_commit_txn(struct pmu *pmu)
9354 {
9355         unsigned int flags = __this_cpu_read(nop_txn_flags);
9356
9357         __this_cpu_write(nop_txn_flags, 0);
9358
9359         if (flags & ~PERF_PMU_TXN_ADD)
9360                 return 0;
9361
9362         perf_pmu_enable(pmu);
9363         return 0;
9364 }
9365
9366 static void perf_pmu_cancel_txn(struct pmu *pmu)
9367 {
9368         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9369
9370         __this_cpu_write(nop_txn_flags, 0);
9371
9372         if (flags & ~PERF_PMU_TXN_ADD)
9373                 return;
9374
9375         perf_pmu_enable(pmu);
9376 }
9377
9378 static int perf_event_idx_default(struct perf_event *event)
9379 {
9380         return 0;
9381 }
9382
9383 /*
9384  * Ensures all contexts with the same task_ctx_nr have the same
9385  * pmu_cpu_context too.
9386  */
9387 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9388 {
9389         struct pmu *pmu;
9390
9391         if (ctxn < 0)
9392                 return NULL;
9393
9394         list_for_each_entry(pmu, &pmus, entry) {
9395                 if (pmu->task_ctx_nr == ctxn)
9396                         return pmu->pmu_cpu_context;
9397         }
9398
9399         return NULL;
9400 }
9401
9402 static void free_pmu_context(struct pmu *pmu)
9403 {
9404         /*
9405          * Static contexts such as perf_sw_context have a global lifetime
9406          * and may be shared between different PMUs. Avoid freeing them
9407          * when a single PMU is going away.
9408          */
9409         if (pmu->task_ctx_nr > perf_invalid_context)
9410                 return;
9411
9412         mutex_lock(&pmus_lock);
9413         free_percpu(pmu->pmu_cpu_context);
9414         mutex_unlock(&pmus_lock);
9415 }
9416
9417 /*
9418  * Let userspace know that this PMU supports address range filtering:
9419  */
9420 static ssize_t nr_addr_filters_show(struct device *dev,
9421                                     struct device_attribute *attr,
9422                                     char *page)
9423 {
9424         struct pmu *pmu = dev_get_drvdata(dev);
9425
9426         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9427 }
9428 DEVICE_ATTR_RO(nr_addr_filters);
9429
9430 static struct idr pmu_idr;
9431
9432 static ssize_t
9433 type_show(struct device *dev, struct device_attribute *attr, char *page)
9434 {
9435         struct pmu *pmu = dev_get_drvdata(dev);
9436
9437         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9438 }
9439 static DEVICE_ATTR_RO(type);
9440
9441 static ssize_t
9442 perf_event_mux_interval_ms_show(struct device *dev,
9443                                 struct device_attribute *attr,
9444                                 char *page)
9445 {
9446         struct pmu *pmu = dev_get_drvdata(dev);
9447
9448         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9449 }
9450
9451 static DEFINE_MUTEX(mux_interval_mutex);
9452
9453 static ssize_t
9454 perf_event_mux_interval_ms_store(struct device *dev,
9455                                  struct device_attribute *attr,
9456                                  const char *buf, size_t count)
9457 {
9458         struct pmu *pmu = dev_get_drvdata(dev);
9459         int timer, cpu, ret;
9460
9461         ret = kstrtoint(buf, 0, &timer);
9462         if (ret)
9463                 return ret;
9464
9465         if (timer < 1)
9466                 return -EINVAL;
9467
9468         /* same value, noting to do */
9469         if (timer == pmu->hrtimer_interval_ms)
9470                 return count;
9471
9472         mutex_lock(&mux_interval_mutex);
9473         pmu->hrtimer_interval_ms = timer;
9474
9475         /* update all cpuctx for this PMU */
9476         cpus_read_lock();
9477         for_each_online_cpu(cpu) {
9478                 struct perf_cpu_context *cpuctx;
9479                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9480                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9481
9482                 cpu_function_call(cpu,
9483                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9484         }
9485         cpus_read_unlock();
9486         mutex_unlock(&mux_interval_mutex);
9487
9488         return count;
9489 }
9490 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9491
9492 static struct attribute *pmu_dev_attrs[] = {
9493         &dev_attr_type.attr,
9494         &dev_attr_perf_event_mux_interval_ms.attr,
9495         NULL,
9496 };
9497 ATTRIBUTE_GROUPS(pmu_dev);
9498
9499 static int pmu_bus_running;
9500 static struct bus_type pmu_bus = {
9501         .name           = "event_source",
9502         .dev_groups     = pmu_dev_groups,
9503 };
9504
9505 static void pmu_dev_release(struct device *dev)
9506 {
9507         kfree(dev);
9508 }
9509
9510 static int pmu_dev_alloc(struct pmu *pmu)
9511 {
9512         int ret = -ENOMEM;
9513
9514         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9515         if (!pmu->dev)
9516                 goto out;
9517
9518         pmu->dev->groups = pmu->attr_groups;
9519         device_initialize(pmu->dev);
9520         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9521         if (ret)
9522                 goto free_dev;
9523
9524         dev_set_drvdata(pmu->dev, pmu);
9525         pmu->dev->bus = &pmu_bus;
9526         pmu->dev->release = pmu_dev_release;
9527         ret = device_add(pmu->dev);
9528         if (ret)
9529                 goto free_dev;
9530
9531         /* For PMUs with address filters, throw in an extra attribute: */
9532         if (pmu->nr_addr_filters)
9533                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9534
9535         if (ret)
9536                 goto del_dev;
9537
9538 out:
9539         return ret;
9540
9541 del_dev:
9542         device_del(pmu->dev);
9543
9544 free_dev:
9545         put_device(pmu->dev);
9546         goto out;
9547 }
9548
9549 static struct lock_class_key cpuctx_mutex;
9550 static struct lock_class_key cpuctx_lock;
9551
9552 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9553 {
9554         int cpu, ret;
9555
9556         mutex_lock(&pmus_lock);
9557         ret = -ENOMEM;
9558         pmu->pmu_disable_count = alloc_percpu(int);
9559         if (!pmu->pmu_disable_count)
9560                 goto unlock;
9561
9562         pmu->type = -1;
9563         if (!name)
9564                 goto skip_type;
9565         pmu->name = name;
9566
9567         if (type < 0) {
9568                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9569                 if (type < 0) {
9570                         ret = type;
9571                         goto free_pdc;
9572                 }
9573         }
9574         pmu->type = type;
9575
9576         if (pmu_bus_running) {
9577                 ret = pmu_dev_alloc(pmu);
9578                 if (ret)
9579                         goto free_idr;
9580         }
9581
9582 skip_type:
9583         if (pmu->task_ctx_nr == perf_hw_context) {
9584                 static int hw_context_taken = 0;
9585
9586                 /*
9587                  * Other than systems with heterogeneous CPUs, it never makes
9588                  * sense for two PMUs to share perf_hw_context. PMUs which are
9589                  * uncore must use perf_invalid_context.
9590                  */
9591                 if (WARN_ON_ONCE(hw_context_taken &&
9592                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9593                         pmu->task_ctx_nr = perf_invalid_context;
9594
9595                 hw_context_taken = 1;
9596         }
9597
9598         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9599         if (pmu->pmu_cpu_context)
9600                 goto got_cpu_context;
9601
9602         ret = -ENOMEM;
9603         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9604         if (!pmu->pmu_cpu_context)
9605                 goto free_dev;
9606
9607         for_each_possible_cpu(cpu) {
9608                 struct perf_cpu_context *cpuctx;
9609
9610                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9611                 __perf_event_init_context(&cpuctx->ctx);
9612                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9613                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9614                 cpuctx->ctx.pmu = pmu;
9615                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9616
9617                 __perf_mux_hrtimer_init(cpuctx, cpu);
9618         }
9619
9620 got_cpu_context:
9621         if (!pmu->start_txn) {
9622                 if (pmu->pmu_enable) {
9623                         /*
9624                          * If we have pmu_enable/pmu_disable calls, install
9625                          * transaction stubs that use that to try and batch
9626                          * hardware accesses.
9627                          */
9628                         pmu->start_txn  = perf_pmu_start_txn;
9629                         pmu->commit_txn = perf_pmu_commit_txn;
9630                         pmu->cancel_txn = perf_pmu_cancel_txn;
9631                 } else {
9632                         pmu->start_txn  = perf_pmu_nop_txn;
9633                         pmu->commit_txn = perf_pmu_nop_int;
9634                         pmu->cancel_txn = perf_pmu_nop_void;
9635                 }
9636         }
9637
9638         if (!pmu->pmu_enable) {
9639                 pmu->pmu_enable  = perf_pmu_nop_void;
9640                 pmu->pmu_disable = perf_pmu_nop_void;
9641         }
9642
9643         if (!pmu->event_idx)
9644                 pmu->event_idx = perf_event_idx_default;
9645
9646         list_add_rcu(&pmu->entry, &pmus);
9647         atomic_set(&pmu->exclusive_cnt, 0);
9648         ret = 0;
9649 unlock:
9650         mutex_unlock(&pmus_lock);
9651
9652         return ret;
9653
9654 free_dev:
9655         device_del(pmu->dev);
9656         put_device(pmu->dev);
9657
9658 free_idr:
9659         if (pmu->type >= PERF_TYPE_MAX)
9660                 idr_remove(&pmu_idr, pmu->type);
9661
9662 free_pdc:
9663         free_percpu(pmu->pmu_disable_count);
9664         goto unlock;
9665 }
9666 EXPORT_SYMBOL_GPL(perf_pmu_register);
9667
9668 void perf_pmu_unregister(struct pmu *pmu)
9669 {
9670         int remove_device;
9671
9672         mutex_lock(&pmus_lock);
9673         remove_device = pmu_bus_running;
9674         list_del_rcu(&pmu->entry);
9675         mutex_unlock(&pmus_lock);
9676
9677         /*
9678          * We dereference the pmu list under both SRCU and regular RCU, so
9679          * synchronize against both of those.
9680          */
9681         synchronize_srcu(&pmus_srcu);
9682         synchronize_rcu();
9683
9684         free_percpu(pmu->pmu_disable_count);
9685         if (pmu->type >= PERF_TYPE_MAX)
9686                 idr_remove(&pmu_idr, pmu->type);
9687         if (remove_device) {
9688                 if (pmu->nr_addr_filters)
9689                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9690                 device_del(pmu->dev);
9691                 put_device(pmu->dev);
9692         }
9693         free_pmu_context(pmu);
9694 }
9695 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9696
9697 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9698 {
9699         struct perf_event_context *ctx = NULL;
9700         int ret;
9701
9702         if (!try_module_get(pmu->module))
9703                 return -ENODEV;
9704
9705         /*
9706          * A number of pmu->event_init() methods iterate the sibling_list to,
9707          * for example, validate if the group fits on the PMU. Therefore,
9708          * if this is a sibling event, acquire the ctx->mutex to protect
9709          * the sibling_list.
9710          */
9711         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9712                 /*
9713                  * This ctx->mutex can nest when we're called through
9714                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9715                  */
9716                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9717                                                  SINGLE_DEPTH_NESTING);
9718                 BUG_ON(!ctx);
9719         }
9720
9721         event->pmu = pmu;
9722         ret = pmu->event_init(event);
9723
9724         if (ctx)
9725                 perf_event_ctx_unlock(event->group_leader, ctx);
9726
9727         if (ret)
9728                 module_put(pmu->module);
9729
9730         return ret;
9731 }
9732
9733 static struct pmu *perf_init_event(struct perf_event *event)
9734 {
9735         struct pmu *pmu;
9736         int idx;
9737         int ret;
9738
9739         idx = srcu_read_lock(&pmus_srcu);
9740
9741         /* Try parent's PMU first: */
9742         if (event->parent && event->parent->pmu) {
9743                 pmu = event->parent->pmu;
9744                 ret = perf_try_init_event(pmu, event);
9745                 if (!ret)
9746                         goto unlock;
9747         }
9748
9749         rcu_read_lock();
9750         pmu = idr_find(&pmu_idr, event->attr.type);
9751         rcu_read_unlock();
9752         if (pmu) {
9753                 ret = perf_try_init_event(pmu, event);
9754                 if (ret)
9755                         pmu = ERR_PTR(ret);
9756                 goto unlock;
9757         }
9758
9759         list_for_each_entry_rcu(pmu, &pmus, entry) {
9760                 ret = perf_try_init_event(pmu, event);
9761                 if (!ret)
9762                         goto unlock;
9763
9764                 if (ret != -ENOENT) {
9765                         pmu = ERR_PTR(ret);
9766                         goto unlock;
9767                 }
9768         }
9769         pmu = ERR_PTR(-ENOENT);
9770 unlock:
9771         srcu_read_unlock(&pmus_srcu, idx);
9772
9773         return pmu;
9774 }
9775
9776 static void attach_sb_event(struct perf_event *event)
9777 {
9778         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9779
9780         raw_spin_lock(&pel->lock);
9781         list_add_rcu(&event->sb_list, &pel->list);
9782         raw_spin_unlock(&pel->lock);
9783 }
9784
9785 /*
9786  * We keep a list of all !task (and therefore per-cpu) events
9787  * that need to receive side-band records.
9788  *
9789  * This avoids having to scan all the various PMU per-cpu contexts
9790  * looking for them.
9791  */
9792 static void account_pmu_sb_event(struct perf_event *event)
9793 {
9794         if (is_sb_event(event))
9795                 attach_sb_event(event);
9796 }
9797
9798 static void account_event_cpu(struct perf_event *event, int cpu)
9799 {
9800         if (event->parent)
9801                 return;
9802
9803         if (is_cgroup_event(event))
9804                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9805 }
9806
9807 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9808 static void account_freq_event_nohz(void)
9809 {
9810 #ifdef CONFIG_NO_HZ_FULL
9811         /* Lock so we don't race with concurrent unaccount */
9812         spin_lock(&nr_freq_lock);
9813         if (atomic_inc_return(&nr_freq_events) == 1)
9814                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9815         spin_unlock(&nr_freq_lock);
9816 #endif
9817 }
9818
9819 static void account_freq_event(void)
9820 {
9821         if (tick_nohz_full_enabled())
9822                 account_freq_event_nohz();
9823         else
9824                 atomic_inc(&nr_freq_events);
9825 }
9826
9827
9828 static void account_event(struct perf_event *event)
9829 {
9830         bool inc = false;
9831
9832         if (event->parent)
9833                 return;
9834
9835         if (event->attach_state & PERF_ATTACH_TASK)
9836                 inc = true;
9837         if (event->attr.mmap || event->attr.mmap_data)
9838                 atomic_inc(&nr_mmap_events);
9839         if (event->attr.comm)
9840                 atomic_inc(&nr_comm_events);
9841         if (event->attr.namespaces)
9842                 atomic_inc(&nr_namespaces_events);
9843         if (event->attr.task)
9844                 atomic_inc(&nr_task_events);
9845         if (event->attr.freq)
9846                 account_freq_event();
9847         if (event->attr.context_switch) {
9848                 atomic_inc(&nr_switch_events);
9849                 inc = true;
9850         }
9851         if (has_branch_stack(event))
9852                 inc = true;
9853         if (is_cgroup_event(event))
9854                 inc = true;
9855
9856         if (inc) {
9857                 /*
9858                  * We need the mutex here because static_branch_enable()
9859                  * must complete *before* the perf_sched_count increment
9860                  * becomes visible.
9861                  */
9862                 if (atomic_inc_not_zero(&perf_sched_count))
9863                         goto enabled;
9864
9865                 mutex_lock(&perf_sched_mutex);
9866                 if (!atomic_read(&perf_sched_count)) {
9867                         static_branch_enable(&perf_sched_events);
9868                         /*
9869                          * Guarantee that all CPUs observe they key change and
9870                          * call the perf scheduling hooks before proceeding to
9871                          * install events that need them.
9872                          */
9873                         synchronize_sched();
9874                 }
9875                 /*
9876                  * Now that we have waited for the sync_sched(), allow further
9877                  * increments to by-pass the mutex.
9878                  */
9879                 atomic_inc(&perf_sched_count);
9880                 mutex_unlock(&perf_sched_mutex);
9881         }
9882 enabled:
9883
9884         account_event_cpu(event, event->cpu);
9885
9886         account_pmu_sb_event(event);
9887 }
9888
9889 /*
9890  * Allocate and initialize a event structure
9891  */
9892 static struct perf_event *
9893 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9894                  struct task_struct *task,
9895                  struct perf_event *group_leader,
9896                  struct perf_event *parent_event,
9897                  perf_overflow_handler_t overflow_handler,
9898                  void *context, int cgroup_fd)
9899 {
9900         struct pmu *pmu;
9901         struct perf_event *event;
9902         struct hw_perf_event *hwc;
9903         long err = -EINVAL;
9904
9905         if ((unsigned)cpu >= nr_cpu_ids) {
9906                 if (!task || cpu != -1)
9907                         return ERR_PTR(-EINVAL);
9908         }
9909
9910         event = kzalloc(sizeof(*event), GFP_KERNEL);
9911         if (!event)
9912                 return ERR_PTR(-ENOMEM);
9913
9914         /*
9915          * Single events are their own group leaders, with an
9916          * empty sibling list:
9917          */
9918         if (!group_leader)
9919                 group_leader = event;
9920
9921         mutex_init(&event->child_mutex);
9922         INIT_LIST_HEAD(&event->child_list);
9923
9924         INIT_LIST_HEAD(&event->event_entry);
9925         INIT_LIST_HEAD(&event->sibling_list);
9926         INIT_LIST_HEAD(&event->active_list);
9927         init_event_group(event);
9928         INIT_LIST_HEAD(&event->rb_entry);
9929         INIT_LIST_HEAD(&event->active_entry);
9930         INIT_LIST_HEAD(&event->addr_filters.list);
9931         INIT_HLIST_NODE(&event->hlist_entry);
9932
9933
9934         init_waitqueue_head(&event->waitq);
9935         init_irq_work(&event->pending, perf_pending_event);
9936
9937         mutex_init(&event->mmap_mutex);
9938         raw_spin_lock_init(&event->addr_filters.lock);
9939
9940         atomic_long_set(&event->refcount, 1);
9941         event->cpu              = cpu;
9942         event->attr             = *attr;
9943         event->group_leader     = group_leader;
9944         event->pmu              = NULL;
9945         event->oncpu            = -1;
9946
9947         event->parent           = parent_event;
9948
9949         event->ns               = get_pid_ns(task_active_pid_ns(current));
9950         event->id               = atomic64_inc_return(&perf_event_id);
9951
9952         event->state            = PERF_EVENT_STATE_INACTIVE;
9953
9954         if (task) {
9955                 event->attach_state = PERF_ATTACH_TASK;
9956                 /*
9957                  * XXX pmu::event_init needs to know what task to account to
9958                  * and we cannot use the ctx information because we need the
9959                  * pmu before we get a ctx.
9960                  */
9961                 get_task_struct(task);
9962                 event->hw.target = task;
9963         }
9964
9965         event->clock = &local_clock;
9966         if (parent_event)
9967                 event->clock = parent_event->clock;
9968
9969         if (!overflow_handler && parent_event) {
9970                 overflow_handler = parent_event->overflow_handler;
9971                 context = parent_event->overflow_handler_context;
9972 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9973                 if (overflow_handler == bpf_overflow_handler) {
9974                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9975
9976                         if (IS_ERR(prog)) {
9977                                 err = PTR_ERR(prog);
9978                                 goto err_ns;
9979                         }
9980                         event->prog = prog;
9981                         event->orig_overflow_handler =
9982                                 parent_event->orig_overflow_handler;
9983                 }
9984 #endif
9985         }
9986
9987         if (overflow_handler) {
9988                 event->overflow_handler = overflow_handler;
9989                 event->overflow_handler_context = context;
9990         } else if (is_write_backward(event)){
9991                 event->overflow_handler = perf_event_output_backward;
9992                 event->overflow_handler_context = NULL;
9993         } else {
9994                 event->overflow_handler = perf_event_output_forward;
9995                 event->overflow_handler_context = NULL;
9996         }
9997
9998         perf_event__state_init(event);
9999
10000         pmu = NULL;
10001
10002         hwc = &event->hw;
10003         hwc->sample_period = attr->sample_period;
10004         if (attr->freq && attr->sample_freq)
10005                 hwc->sample_period = 1;
10006         hwc->last_period = hwc->sample_period;
10007
10008         local64_set(&hwc->period_left, hwc->sample_period);
10009
10010         /*
10011          * We currently do not support PERF_SAMPLE_READ on inherited events.
10012          * See perf_output_read().
10013          */
10014         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10015                 goto err_ns;
10016
10017         if (!has_branch_stack(event))
10018                 event->attr.branch_sample_type = 0;
10019
10020         if (cgroup_fd != -1) {
10021                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10022                 if (err)
10023                         goto err_ns;
10024         }
10025
10026         pmu = perf_init_event(event);
10027         if (IS_ERR(pmu)) {
10028                 err = PTR_ERR(pmu);
10029                 goto err_ns;
10030         }
10031
10032         err = exclusive_event_init(event);
10033         if (err)
10034                 goto err_pmu;
10035
10036         if (has_addr_filter(event)) {
10037                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10038                                                    sizeof(unsigned long),
10039                                                    GFP_KERNEL);
10040                 if (!event->addr_filters_offs) {
10041                         err = -ENOMEM;
10042                         goto err_per_task;
10043                 }
10044
10045                 /* force hw sync on the address filters */
10046                 event->addr_filters_gen = 1;
10047         }
10048
10049         if (!event->parent) {
10050                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10051                         err = get_callchain_buffers(attr->sample_max_stack);
10052                         if (err)
10053                                 goto err_addr_filters;
10054                 }
10055         }
10056
10057         /* symmetric to unaccount_event() in _free_event() */
10058         account_event(event);
10059
10060         return event;
10061
10062 err_addr_filters:
10063         kfree(event->addr_filters_offs);
10064
10065 err_per_task:
10066         exclusive_event_destroy(event);
10067
10068 err_pmu:
10069         if (event->destroy)
10070                 event->destroy(event);
10071         module_put(pmu->module);
10072 err_ns:
10073         if (is_cgroup_event(event))
10074                 perf_detach_cgroup(event);
10075         if (event->ns)
10076                 put_pid_ns(event->ns);
10077         if (event->hw.target)
10078                 put_task_struct(event->hw.target);
10079         kfree(event);
10080
10081         return ERR_PTR(err);
10082 }
10083
10084 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10085                           struct perf_event_attr *attr)
10086 {
10087         u32 size;
10088         int ret;
10089
10090         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10091                 return -EFAULT;
10092
10093         /*
10094          * zero the full structure, so that a short copy will be nice.
10095          */
10096         memset(attr, 0, sizeof(*attr));
10097
10098         ret = get_user(size, &uattr->size);
10099         if (ret)
10100                 return ret;
10101
10102         if (size > PAGE_SIZE)   /* silly large */
10103                 goto err_size;
10104
10105         if (!size)              /* abi compat */
10106                 size = PERF_ATTR_SIZE_VER0;
10107
10108         if (size < PERF_ATTR_SIZE_VER0)
10109                 goto err_size;
10110
10111         /*
10112          * If we're handed a bigger struct than we know of,
10113          * ensure all the unknown bits are 0 - i.e. new
10114          * user-space does not rely on any kernel feature
10115          * extensions we dont know about yet.
10116          */
10117         if (size > sizeof(*attr)) {
10118                 unsigned char __user *addr;
10119                 unsigned char __user *end;
10120                 unsigned char val;
10121
10122                 addr = (void __user *)uattr + sizeof(*attr);
10123                 end  = (void __user *)uattr + size;
10124
10125                 for (; addr < end; addr++) {
10126                         ret = get_user(val, addr);
10127                         if (ret)
10128                                 return ret;
10129                         if (val)
10130                                 goto err_size;
10131                 }
10132                 size = sizeof(*attr);
10133         }
10134
10135         ret = copy_from_user(attr, uattr, size);
10136         if (ret)
10137                 return -EFAULT;
10138
10139         attr->size = size;
10140
10141         if (attr->__reserved_1)
10142                 return -EINVAL;
10143
10144         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10145                 return -EINVAL;
10146
10147         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10148                 return -EINVAL;
10149
10150         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10151                 u64 mask = attr->branch_sample_type;
10152
10153                 /* only using defined bits */
10154                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10155                         return -EINVAL;
10156
10157                 /* at least one branch bit must be set */
10158                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10159                         return -EINVAL;
10160
10161                 /* propagate priv level, when not set for branch */
10162                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10163
10164                         /* exclude_kernel checked on syscall entry */
10165                         if (!attr->exclude_kernel)
10166                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10167
10168                         if (!attr->exclude_user)
10169                                 mask |= PERF_SAMPLE_BRANCH_USER;
10170
10171                         if (!attr->exclude_hv)
10172                                 mask |= PERF_SAMPLE_BRANCH_HV;
10173                         /*
10174                          * adjust user setting (for HW filter setup)
10175                          */
10176                         attr->branch_sample_type = mask;
10177                 }
10178                 /* privileged levels capture (kernel, hv): check permissions */
10179                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10180                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10181                         return -EACCES;
10182         }
10183
10184         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10185                 ret = perf_reg_validate(attr->sample_regs_user);
10186                 if (ret)
10187                         return ret;
10188         }
10189
10190         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10191                 if (!arch_perf_have_user_stack_dump())
10192                         return -ENOSYS;
10193
10194                 /*
10195                  * We have __u32 type for the size, but so far
10196                  * we can only use __u16 as maximum due to the
10197                  * __u16 sample size limit.
10198                  */
10199                 if (attr->sample_stack_user >= USHRT_MAX)
10200                         ret = -EINVAL;
10201                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10202                         ret = -EINVAL;
10203         }
10204
10205         if (!attr->sample_max_stack)
10206                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10207
10208         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10209                 ret = perf_reg_validate(attr->sample_regs_intr);
10210 out:
10211         return ret;
10212
10213 err_size:
10214         put_user(sizeof(*attr), &uattr->size);
10215         ret = -E2BIG;
10216         goto out;
10217 }
10218
10219 static int
10220 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10221 {
10222         struct ring_buffer *rb = NULL;
10223         int ret = -EINVAL;
10224
10225         if (!output_event)
10226                 goto set;
10227
10228         /* don't allow circular references */
10229         if (event == output_event)
10230                 goto out;
10231
10232         /*
10233          * Don't allow cross-cpu buffers
10234          */
10235         if (output_event->cpu != event->cpu)
10236                 goto out;
10237
10238         /*
10239          * If its not a per-cpu rb, it must be the same task.
10240          */
10241         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10242                 goto out;
10243
10244         /*
10245          * Mixing clocks in the same buffer is trouble you don't need.
10246          */
10247         if (output_event->clock != event->clock)
10248                 goto out;
10249
10250         /*
10251          * Either writing ring buffer from beginning or from end.
10252          * Mixing is not allowed.
10253          */
10254         if (is_write_backward(output_event) != is_write_backward(event))
10255                 goto out;
10256
10257         /*
10258          * If both events generate aux data, they must be on the same PMU
10259          */
10260         if (has_aux(event) && has_aux(output_event) &&
10261             event->pmu != output_event->pmu)
10262                 goto out;
10263
10264 set:
10265         mutex_lock(&event->mmap_mutex);
10266         /* Can't redirect output if we've got an active mmap() */
10267         if (atomic_read(&event->mmap_count))
10268                 goto unlock;
10269
10270         if (output_event) {
10271                 /* get the rb we want to redirect to */
10272                 rb = ring_buffer_get(output_event);
10273                 if (!rb)
10274                         goto unlock;
10275         }
10276
10277         ring_buffer_attach(event, rb);
10278
10279         ret = 0;
10280 unlock:
10281         mutex_unlock(&event->mmap_mutex);
10282
10283 out:
10284         return ret;
10285 }
10286
10287 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10288 {
10289         if (b < a)
10290                 swap(a, b);
10291
10292         mutex_lock(a);
10293         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10294 }
10295
10296 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10297 {
10298         bool nmi_safe = false;
10299
10300         switch (clk_id) {
10301         case CLOCK_MONOTONIC:
10302                 event->clock = &ktime_get_mono_fast_ns;
10303                 nmi_safe = true;
10304                 break;
10305
10306         case CLOCK_MONOTONIC_RAW:
10307                 event->clock = &ktime_get_raw_fast_ns;
10308                 nmi_safe = true;
10309                 break;
10310
10311         case CLOCK_REALTIME:
10312                 event->clock = &ktime_get_real_ns;
10313                 break;
10314
10315         case CLOCK_BOOTTIME:
10316                 event->clock = &ktime_get_boot_ns;
10317                 break;
10318
10319         case CLOCK_TAI:
10320                 event->clock = &ktime_get_tai_ns;
10321                 break;
10322
10323         default:
10324                 return -EINVAL;
10325         }
10326
10327         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10328                 return -EINVAL;
10329
10330         return 0;
10331 }
10332
10333 /*
10334  * Variation on perf_event_ctx_lock_nested(), except we take two context
10335  * mutexes.
10336  */
10337 static struct perf_event_context *
10338 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10339                              struct perf_event_context *ctx)
10340 {
10341         struct perf_event_context *gctx;
10342
10343 again:
10344         rcu_read_lock();
10345         gctx = READ_ONCE(group_leader->ctx);
10346         if (!atomic_inc_not_zero(&gctx->refcount)) {
10347                 rcu_read_unlock();
10348                 goto again;
10349         }
10350         rcu_read_unlock();
10351
10352         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10353
10354         if (group_leader->ctx != gctx) {
10355                 mutex_unlock(&ctx->mutex);
10356                 mutex_unlock(&gctx->mutex);
10357                 put_ctx(gctx);
10358                 goto again;
10359         }
10360
10361         return gctx;
10362 }
10363
10364 /**
10365  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10366  *
10367  * @attr_uptr:  event_id type attributes for monitoring/sampling
10368  * @pid:                target pid
10369  * @cpu:                target cpu
10370  * @group_fd:           group leader event fd
10371  */
10372 SYSCALL_DEFINE5(perf_event_open,
10373                 struct perf_event_attr __user *, attr_uptr,
10374                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10375 {
10376         struct perf_event *group_leader = NULL, *output_event = NULL;
10377         struct perf_event *event, *sibling;
10378         struct perf_event_attr attr;
10379         struct perf_event_context *ctx, *uninitialized_var(gctx);
10380         struct file *event_file = NULL;
10381         struct fd group = {NULL, 0};
10382         struct task_struct *task = NULL;
10383         struct pmu *pmu;
10384         int event_fd;
10385         int move_group = 0;
10386         int err;
10387         int f_flags = O_RDWR;
10388         int cgroup_fd = -1;
10389
10390         /* for future expandability... */
10391         if (flags & ~PERF_FLAG_ALL)
10392                 return -EINVAL;
10393
10394         err = perf_copy_attr(attr_uptr, &attr);
10395         if (err)
10396                 return err;
10397
10398         if (!attr.exclude_kernel) {
10399                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10400                         return -EACCES;
10401         }
10402
10403         if (attr.namespaces) {
10404                 if (!capable(CAP_SYS_ADMIN))
10405                         return -EACCES;
10406         }
10407
10408         if (attr.freq) {
10409                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10410                         return -EINVAL;
10411         } else {
10412                 if (attr.sample_period & (1ULL << 63))
10413                         return -EINVAL;
10414         }
10415
10416         /* Only privileged users can get physical addresses */
10417         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10418             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10419                 return -EACCES;
10420
10421         /*
10422          * In cgroup mode, the pid argument is used to pass the fd
10423          * opened to the cgroup directory in cgroupfs. The cpu argument
10424          * designates the cpu on which to monitor threads from that
10425          * cgroup.
10426          */
10427         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10428                 return -EINVAL;
10429
10430         if (flags & PERF_FLAG_FD_CLOEXEC)
10431                 f_flags |= O_CLOEXEC;
10432
10433         event_fd = get_unused_fd_flags(f_flags);
10434         if (event_fd < 0)
10435                 return event_fd;
10436
10437         if (group_fd != -1) {
10438                 err = perf_fget_light(group_fd, &group);
10439                 if (err)
10440                         goto err_fd;
10441                 group_leader = group.file->private_data;
10442                 if (flags & PERF_FLAG_FD_OUTPUT)
10443                         output_event = group_leader;
10444                 if (flags & PERF_FLAG_FD_NO_GROUP)
10445                         group_leader = NULL;
10446         }
10447
10448         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10449                 task = find_lively_task_by_vpid(pid);
10450                 if (IS_ERR(task)) {
10451                         err = PTR_ERR(task);
10452                         goto err_group_fd;
10453                 }
10454         }
10455
10456         if (task && group_leader &&
10457             group_leader->attr.inherit != attr.inherit) {
10458                 err = -EINVAL;
10459                 goto err_task;
10460         }
10461
10462         if (task) {
10463                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10464                 if (err)
10465                         goto err_task;
10466
10467                 /*
10468                  * Reuse ptrace permission checks for now.
10469                  *
10470                  * We must hold cred_guard_mutex across this and any potential
10471                  * perf_install_in_context() call for this new event to
10472                  * serialize against exec() altering our credentials (and the
10473                  * perf_event_exit_task() that could imply).
10474                  */
10475                 err = -EACCES;
10476                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10477                         goto err_cred;
10478         }
10479
10480         if (flags & PERF_FLAG_PID_CGROUP)
10481                 cgroup_fd = pid;
10482
10483         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10484                                  NULL, NULL, cgroup_fd);
10485         if (IS_ERR(event)) {
10486                 err = PTR_ERR(event);
10487                 goto err_cred;
10488         }
10489
10490         if (is_sampling_event(event)) {
10491                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10492                         err = -EOPNOTSUPP;
10493                         goto err_alloc;
10494                 }
10495         }
10496
10497         /*
10498          * Special case software events and allow them to be part of
10499          * any hardware group.
10500          */
10501         pmu = event->pmu;
10502
10503         if (attr.use_clockid) {
10504                 err = perf_event_set_clock(event, attr.clockid);
10505                 if (err)
10506                         goto err_alloc;
10507         }
10508
10509         if (pmu->task_ctx_nr == perf_sw_context)
10510                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10511
10512         if (group_leader &&
10513             (is_software_event(event) != is_software_event(group_leader))) {
10514                 if (is_software_event(event)) {
10515                         /*
10516                          * If event and group_leader are not both a software
10517                          * event, and event is, then group leader is not.
10518                          *
10519                          * Allow the addition of software events to !software
10520                          * groups, this is safe because software events never
10521                          * fail to schedule.
10522                          */
10523                         pmu = group_leader->pmu;
10524                 } else if (is_software_event(group_leader) &&
10525                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10526                         /*
10527                          * In case the group is a pure software group, and we
10528                          * try to add a hardware event, move the whole group to
10529                          * the hardware context.
10530                          */
10531                         move_group = 1;
10532                 }
10533         }
10534
10535         /*
10536          * Get the target context (task or percpu):
10537          */
10538         ctx = find_get_context(pmu, task, event);
10539         if (IS_ERR(ctx)) {
10540                 err = PTR_ERR(ctx);
10541                 goto err_alloc;
10542         }
10543
10544         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10545                 err = -EBUSY;
10546                 goto err_context;
10547         }
10548
10549         /*
10550          * Look up the group leader (we will attach this event to it):
10551          */
10552         if (group_leader) {
10553                 err = -EINVAL;
10554
10555                 /*
10556                  * Do not allow a recursive hierarchy (this new sibling
10557                  * becoming part of another group-sibling):
10558                  */
10559                 if (group_leader->group_leader != group_leader)
10560                         goto err_context;
10561
10562                 /* All events in a group should have the same clock */
10563                 if (group_leader->clock != event->clock)
10564                         goto err_context;
10565
10566                 /*
10567                  * Make sure we're both events for the same CPU;
10568                  * grouping events for different CPUs is broken; since
10569                  * you can never concurrently schedule them anyhow.
10570                  */
10571                 if (group_leader->cpu != event->cpu)
10572                         goto err_context;
10573
10574                 /*
10575                  * Make sure we're both on the same task, or both
10576                  * per-CPU events.
10577                  */
10578                 if (group_leader->ctx->task != ctx->task)
10579                         goto err_context;
10580
10581                 /*
10582                  * Do not allow to attach to a group in a different task
10583                  * or CPU context. If we're moving SW events, we'll fix
10584                  * this up later, so allow that.
10585                  */
10586                 if (!move_group && group_leader->ctx != ctx)
10587                         goto err_context;
10588
10589                 /*
10590                  * Only a group leader can be exclusive or pinned
10591                  */
10592                 if (attr.exclusive || attr.pinned)
10593                         goto err_context;
10594         }
10595
10596         if (output_event) {
10597                 err = perf_event_set_output(event, output_event);
10598                 if (err)
10599                         goto err_context;
10600         }
10601
10602         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10603                                         f_flags);
10604         if (IS_ERR(event_file)) {
10605                 err = PTR_ERR(event_file);
10606                 event_file = NULL;
10607                 goto err_context;
10608         }
10609
10610         if (move_group) {
10611                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10612
10613                 if (gctx->task == TASK_TOMBSTONE) {
10614                         err = -ESRCH;
10615                         goto err_locked;
10616                 }
10617
10618                 /*
10619                  * Check if we raced against another sys_perf_event_open() call
10620                  * moving the software group underneath us.
10621                  */
10622                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10623                         /*
10624                          * If someone moved the group out from under us, check
10625                          * if this new event wound up on the same ctx, if so
10626                          * its the regular !move_group case, otherwise fail.
10627                          */
10628                         if (gctx != ctx) {
10629                                 err = -EINVAL;
10630                                 goto err_locked;
10631                         } else {
10632                                 perf_event_ctx_unlock(group_leader, gctx);
10633                                 move_group = 0;
10634                         }
10635                 }
10636         } else {
10637                 mutex_lock(&ctx->mutex);
10638         }
10639
10640         if (ctx->task == TASK_TOMBSTONE) {
10641                 err = -ESRCH;
10642                 goto err_locked;
10643         }
10644
10645         if (!perf_event_validate_size(event)) {
10646                 err = -E2BIG;
10647                 goto err_locked;
10648         }
10649
10650         if (!task) {
10651                 /*
10652                  * Check if the @cpu we're creating an event for is online.
10653                  *
10654                  * We use the perf_cpu_context::ctx::mutex to serialize against
10655                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10656                  */
10657                 struct perf_cpu_context *cpuctx =
10658                         container_of(ctx, struct perf_cpu_context, ctx);
10659
10660                 if (!cpuctx->online) {
10661                         err = -ENODEV;
10662                         goto err_locked;
10663                 }
10664         }
10665
10666
10667         /*
10668          * Must be under the same ctx::mutex as perf_install_in_context(),
10669          * because we need to serialize with concurrent event creation.
10670          */
10671         if (!exclusive_event_installable(event, ctx)) {
10672                 /* exclusive and group stuff are assumed mutually exclusive */
10673                 WARN_ON_ONCE(move_group);
10674
10675                 err = -EBUSY;
10676                 goto err_locked;
10677         }
10678
10679         WARN_ON_ONCE(ctx->parent_ctx);
10680
10681         /*
10682          * This is the point on no return; we cannot fail hereafter. This is
10683          * where we start modifying current state.
10684          */
10685
10686         if (move_group) {
10687                 /*
10688                  * See perf_event_ctx_lock() for comments on the details
10689                  * of swizzling perf_event::ctx.
10690                  */
10691                 perf_remove_from_context(group_leader, 0);
10692                 put_ctx(gctx);
10693
10694                 for_each_sibling_event(sibling, group_leader) {
10695                         perf_remove_from_context(sibling, 0);
10696                         put_ctx(gctx);
10697                 }
10698
10699                 /*
10700                  * Wait for everybody to stop referencing the events through
10701                  * the old lists, before installing it on new lists.
10702                  */
10703                 synchronize_rcu();
10704
10705                 /*
10706                  * Install the group siblings before the group leader.
10707                  *
10708                  * Because a group leader will try and install the entire group
10709                  * (through the sibling list, which is still in-tact), we can
10710                  * end up with siblings installed in the wrong context.
10711                  *
10712                  * By installing siblings first we NO-OP because they're not
10713                  * reachable through the group lists.
10714                  */
10715                 for_each_sibling_event(sibling, group_leader) {
10716                         perf_event__state_init(sibling);
10717                         perf_install_in_context(ctx, sibling, sibling->cpu);
10718                         get_ctx(ctx);
10719                 }
10720
10721                 /*
10722                  * Removing from the context ends up with disabled
10723                  * event. What we want here is event in the initial
10724                  * startup state, ready to be add into new context.
10725                  */
10726                 perf_event__state_init(group_leader);
10727                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10728                 get_ctx(ctx);
10729         }
10730
10731         /*
10732          * Precalculate sample_data sizes; do while holding ctx::mutex such
10733          * that we're serialized against further additions and before
10734          * perf_install_in_context() which is the point the event is active and
10735          * can use these values.
10736          */
10737         perf_event__header_size(event);
10738         perf_event__id_header_size(event);
10739
10740         event->owner = current;
10741
10742         perf_install_in_context(ctx, event, event->cpu);
10743         perf_unpin_context(ctx);
10744
10745         if (move_group)
10746                 perf_event_ctx_unlock(group_leader, gctx);
10747         mutex_unlock(&ctx->mutex);
10748
10749         if (task) {
10750                 mutex_unlock(&task->signal->cred_guard_mutex);
10751                 put_task_struct(task);
10752         }
10753
10754         mutex_lock(&current->perf_event_mutex);
10755         list_add_tail(&event->owner_entry, &current->perf_event_list);
10756         mutex_unlock(&current->perf_event_mutex);
10757
10758         /*
10759          * Drop the reference on the group_event after placing the
10760          * new event on the sibling_list. This ensures destruction
10761          * of the group leader will find the pointer to itself in
10762          * perf_group_detach().
10763          */
10764         fdput(group);
10765         fd_install(event_fd, event_file);
10766         return event_fd;
10767
10768 err_locked:
10769         if (move_group)
10770                 perf_event_ctx_unlock(group_leader, gctx);
10771         mutex_unlock(&ctx->mutex);
10772 /* err_file: */
10773         fput(event_file);
10774 err_context:
10775         perf_unpin_context(ctx);
10776         put_ctx(ctx);
10777 err_alloc:
10778         /*
10779          * If event_file is set, the fput() above will have called ->release()
10780          * and that will take care of freeing the event.
10781          */
10782         if (!event_file)
10783                 free_event(event);
10784 err_cred:
10785         if (task)
10786                 mutex_unlock(&task->signal->cred_guard_mutex);
10787 err_task:
10788         if (task)
10789                 put_task_struct(task);
10790 err_group_fd:
10791         fdput(group);
10792 err_fd:
10793         put_unused_fd(event_fd);
10794         return err;
10795 }
10796
10797 /**
10798  * perf_event_create_kernel_counter
10799  *
10800  * @attr: attributes of the counter to create
10801  * @cpu: cpu in which the counter is bound
10802  * @task: task to profile (NULL for percpu)
10803  */
10804 struct perf_event *
10805 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10806                                  struct task_struct *task,
10807                                  perf_overflow_handler_t overflow_handler,
10808                                  void *context)
10809 {
10810         struct perf_event_context *ctx;
10811         struct perf_event *event;
10812         int err;
10813
10814         /*
10815          * Get the target context (task or percpu):
10816          */
10817
10818         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10819                                  overflow_handler, context, -1);
10820         if (IS_ERR(event)) {
10821                 err = PTR_ERR(event);
10822                 goto err;
10823         }
10824
10825         /* Mark owner so we could distinguish it from user events. */
10826         event->owner = TASK_TOMBSTONE;
10827
10828         ctx = find_get_context(event->pmu, task, event);
10829         if (IS_ERR(ctx)) {
10830                 err = PTR_ERR(ctx);
10831                 goto err_free;
10832         }
10833
10834         WARN_ON_ONCE(ctx->parent_ctx);
10835         mutex_lock(&ctx->mutex);
10836         if (ctx->task == TASK_TOMBSTONE) {
10837                 err = -ESRCH;
10838                 goto err_unlock;
10839         }
10840
10841         if (!task) {
10842                 /*
10843                  * Check if the @cpu we're creating an event for is online.
10844                  *
10845                  * We use the perf_cpu_context::ctx::mutex to serialize against
10846                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10847                  */
10848                 struct perf_cpu_context *cpuctx =
10849                         container_of(ctx, struct perf_cpu_context, ctx);
10850                 if (!cpuctx->online) {
10851                         err = -ENODEV;
10852                         goto err_unlock;
10853                 }
10854         }
10855
10856         if (!exclusive_event_installable(event, ctx)) {
10857                 err = -EBUSY;
10858                 goto err_unlock;
10859         }
10860
10861         perf_install_in_context(ctx, event, cpu);
10862         perf_unpin_context(ctx);
10863         mutex_unlock(&ctx->mutex);
10864
10865         return event;
10866
10867 err_unlock:
10868         mutex_unlock(&ctx->mutex);
10869         perf_unpin_context(ctx);
10870         put_ctx(ctx);
10871 err_free:
10872         free_event(event);
10873 err:
10874         return ERR_PTR(err);
10875 }
10876 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10877
10878 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10879 {
10880         struct perf_event_context *src_ctx;
10881         struct perf_event_context *dst_ctx;
10882         struct perf_event *event, *tmp;
10883         LIST_HEAD(events);
10884
10885         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10886         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10887
10888         /*
10889          * See perf_event_ctx_lock() for comments on the details
10890          * of swizzling perf_event::ctx.
10891          */
10892         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10893         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10894                                  event_entry) {
10895                 perf_remove_from_context(event, 0);
10896                 unaccount_event_cpu(event, src_cpu);
10897                 put_ctx(src_ctx);
10898                 list_add(&event->migrate_entry, &events);
10899         }
10900
10901         /*
10902          * Wait for the events to quiesce before re-instating them.
10903          */
10904         synchronize_rcu();
10905
10906         /*
10907          * Re-instate events in 2 passes.
10908          *
10909          * Skip over group leaders and only install siblings on this first
10910          * pass, siblings will not get enabled without a leader, however a
10911          * leader will enable its siblings, even if those are still on the old
10912          * context.
10913          */
10914         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10915                 if (event->group_leader == event)
10916                         continue;
10917
10918                 list_del(&event->migrate_entry);
10919                 if (event->state >= PERF_EVENT_STATE_OFF)
10920                         event->state = PERF_EVENT_STATE_INACTIVE;
10921                 account_event_cpu(event, dst_cpu);
10922                 perf_install_in_context(dst_ctx, event, dst_cpu);
10923                 get_ctx(dst_ctx);
10924         }
10925
10926         /*
10927          * Once all the siblings are setup properly, install the group leaders
10928          * to make it go.
10929          */
10930         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10931                 list_del(&event->migrate_entry);
10932                 if (event->state >= PERF_EVENT_STATE_OFF)
10933                         event->state = PERF_EVENT_STATE_INACTIVE;
10934                 account_event_cpu(event, dst_cpu);
10935                 perf_install_in_context(dst_ctx, event, dst_cpu);
10936                 get_ctx(dst_ctx);
10937         }
10938         mutex_unlock(&dst_ctx->mutex);
10939         mutex_unlock(&src_ctx->mutex);
10940 }
10941 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10942
10943 static void sync_child_event(struct perf_event *child_event,
10944                                struct task_struct *child)
10945 {
10946         struct perf_event *parent_event = child_event->parent;
10947         u64 child_val;
10948
10949         if (child_event->attr.inherit_stat)
10950                 perf_event_read_event(child_event, child);
10951
10952         child_val = perf_event_count(child_event);
10953
10954         /*
10955          * Add back the child's count to the parent's count:
10956          */
10957         atomic64_add(child_val, &parent_event->child_count);
10958         atomic64_add(child_event->total_time_enabled,
10959                      &parent_event->child_total_time_enabled);
10960         atomic64_add(child_event->total_time_running,
10961                      &parent_event->child_total_time_running);
10962 }
10963
10964 static void
10965 perf_event_exit_event(struct perf_event *child_event,
10966                       struct perf_event_context *child_ctx,
10967                       struct task_struct *child)
10968 {
10969         struct perf_event *parent_event = child_event->parent;
10970
10971         /*
10972          * Do not destroy the 'original' grouping; because of the context
10973          * switch optimization the original events could've ended up in a
10974          * random child task.
10975          *
10976          * If we were to destroy the original group, all group related
10977          * operations would cease to function properly after this random
10978          * child dies.
10979          *
10980          * Do destroy all inherited groups, we don't care about those
10981          * and being thorough is better.
10982          */
10983         raw_spin_lock_irq(&child_ctx->lock);
10984         WARN_ON_ONCE(child_ctx->is_active);
10985
10986         if (parent_event)
10987                 perf_group_detach(child_event);
10988         list_del_event(child_event, child_ctx);
10989         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
10990         raw_spin_unlock_irq(&child_ctx->lock);
10991
10992         /*
10993          * Parent events are governed by their filedesc, retain them.
10994          */
10995         if (!parent_event) {
10996                 perf_event_wakeup(child_event);
10997                 return;
10998         }
10999         /*
11000          * Child events can be cleaned up.
11001          */
11002
11003         sync_child_event(child_event, child);
11004
11005         /*
11006          * Remove this event from the parent's list
11007          */
11008         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11009         mutex_lock(&parent_event->child_mutex);
11010         list_del_init(&child_event->child_list);
11011         mutex_unlock(&parent_event->child_mutex);
11012
11013         /*
11014          * Kick perf_poll() for is_event_hup().
11015          */
11016         perf_event_wakeup(parent_event);
11017         free_event(child_event);
11018         put_event(parent_event);
11019 }
11020
11021 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11022 {
11023         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11024         struct perf_event *child_event, *next;
11025
11026         WARN_ON_ONCE(child != current);
11027
11028         child_ctx = perf_pin_task_context(child, ctxn);
11029         if (!child_ctx)
11030                 return;
11031
11032         /*
11033          * In order to reduce the amount of tricky in ctx tear-down, we hold
11034          * ctx::mutex over the entire thing. This serializes against almost
11035          * everything that wants to access the ctx.
11036          *
11037          * The exception is sys_perf_event_open() /
11038          * perf_event_create_kernel_count() which does find_get_context()
11039          * without ctx::mutex (it cannot because of the move_group double mutex
11040          * lock thing). See the comments in perf_install_in_context().
11041          */
11042         mutex_lock(&child_ctx->mutex);
11043
11044         /*
11045          * In a single ctx::lock section, de-schedule the events and detach the
11046          * context from the task such that we cannot ever get it scheduled back
11047          * in.
11048          */
11049         raw_spin_lock_irq(&child_ctx->lock);
11050         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11051
11052         /*
11053          * Now that the context is inactive, destroy the task <-> ctx relation
11054          * and mark the context dead.
11055          */
11056         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11057         put_ctx(child_ctx); /* cannot be last */
11058         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11059         put_task_struct(current); /* cannot be last */
11060
11061         clone_ctx = unclone_ctx(child_ctx);
11062         raw_spin_unlock_irq(&child_ctx->lock);
11063
11064         if (clone_ctx)
11065                 put_ctx(clone_ctx);
11066
11067         /*
11068          * Report the task dead after unscheduling the events so that we
11069          * won't get any samples after PERF_RECORD_EXIT. We can however still
11070          * get a few PERF_RECORD_READ events.
11071          */
11072         perf_event_task(child, child_ctx, 0);
11073
11074         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11075                 perf_event_exit_event(child_event, child_ctx, child);
11076
11077         mutex_unlock(&child_ctx->mutex);
11078
11079         put_ctx(child_ctx);
11080 }
11081
11082 /*
11083  * When a child task exits, feed back event values to parent events.
11084  *
11085  * Can be called with cred_guard_mutex held when called from
11086  * install_exec_creds().
11087  */
11088 void perf_event_exit_task(struct task_struct *child)
11089 {
11090         struct perf_event *event, *tmp;
11091         int ctxn;
11092
11093         mutex_lock(&child->perf_event_mutex);
11094         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11095                                  owner_entry) {
11096                 list_del_init(&event->owner_entry);
11097
11098                 /*
11099                  * Ensure the list deletion is visible before we clear
11100                  * the owner, closes a race against perf_release() where
11101                  * we need to serialize on the owner->perf_event_mutex.
11102                  */
11103                 smp_store_release(&event->owner, NULL);
11104         }
11105         mutex_unlock(&child->perf_event_mutex);
11106
11107         for_each_task_context_nr(ctxn)
11108                 perf_event_exit_task_context(child, ctxn);
11109
11110         /*
11111          * The perf_event_exit_task_context calls perf_event_task
11112          * with child's task_ctx, which generates EXIT events for
11113          * child contexts and sets child->perf_event_ctxp[] to NULL.
11114          * At this point we need to send EXIT events to cpu contexts.
11115          */
11116         perf_event_task(child, NULL, 0);
11117 }
11118
11119 static void perf_free_event(struct perf_event *event,
11120                             struct perf_event_context *ctx)
11121 {
11122         struct perf_event *parent = event->parent;
11123
11124         if (WARN_ON_ONCE(!parent))
11125                 return;
11126
11127         mutex_lock(&parent->child_mutex);
11128         list_del_init(&event->child_list);
11129         mutex_unlock(&parent->child_mutex);
11130
11131         put_event(parent);
11132
11133         raw_spin_lock_irq(&ctx->lock);
11134         perf_group_detach(event);
11135         list_del_event(event, ctx);
11136         raw_spin_unlock_irq(&ctx->lock);
11137         free_event(event);
11138 }
11139
11140 /*
11141  * Free an unexposed, unused context as created by inheritance by
11142  * perf_event_init_task below, used by fork() in case of fail.
11143  *
11144  * Not all locks are strictly required, but take them anyway to be nice and
11145  * help out with the lockdep assertions.
11146  */
11147 void perf_event_free_task(struct task_struct *task)
11148 {
11149         struct perf_event_context *ctx;
11150         struct perf_event *event, *tmp;
11151         int ctxn;
11152
11153         for_each_task_context_nr(ctxn) {
11154                 ctx = task->perf_event_ctxp[ctxn];
11155                 if (!ctx)
11156                         continue;
11157
11158                 mutex_lock(&ctx->mutex);
11159                 raw_spin_lock_irq(&ctx->lock);
11160                 /*
11161                  * Destroy the task <-> ctx relation and mark the context dead.
11162                  *
11163                  * This is important because even though the task hasn't been
11164                  * exposed yet the context has been (through child_list).
11165                  */
11166                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11167                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11168                 put_task_struct(task); /* cannot be last */
11169                 raw_spin_unlock_irq(&ctx->lock);
11170
11171                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11172                         perf_free_event(event, ctx);
11173
11174                 mutex_unlock(&ctx->mutex);
11175                 put_ctx(ctx);
11176         }
11177 }
11178
11179 void perf_event_delayed_put(struct task_struct *task)
11180 {
11181         int ctxn;
11182
11183         for_each_task_context_nr(ctxn)
11184                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11185 }
11186
11187 struct file *perf_event_get(unsigned int fd)
11188 {
11189         struct file *file;
11190
11191         file = fget_raw(fd);
11192         if (!file)
11193                 return ERR_PTR(-EBADF);
11194
11195         if (file->f_op != &perf_fops) {
11196                 fput(file);
11197                 return ERR_PTR(-EBADF);
11198         }
11199
11200         return file;
11201 }
11202
11203 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11204 {
11205         if (!event)
11206                 return ERR_PTR(-EINVAL);
11207
11208         return &event->attr;
11209 }
11210
11211 /*
11212  * Inherit a event from parent task to child task.
11213  *
11214  * Returns:
11215  *  - valid pointer on success
11216  *  - NULL for orphaned events
11217  *  - IS_ERR() on error
11218  */
11219 static struct perf_event *
11220 inherit_event(struct perf_event *parent_event,
11221               struct task_struct *parent,
11222               struct perf_event_context *parent_ctx,
11223               struct task_struct *child,
11224               struct perf_event *group_leader,
11225               struct perf_event_context *child_ctx)
11226 {
11227         enum perf_event_state parent_state = parent_event->state;
11228         struct perf_event *child_event;
11229         unsigned long flags;
11230
11231         /*
11232          * Instead of creating recursive hierarchies of events,
11233          * we link inherited events back to the original parent,
11234          * which has a filp for sure, which we use as the reference
11235          * count:
11236          */
11237         if (parent_event->parent)
11238                 parent_event = parent_event->parent;
11239
11240         child_event = perf_event_alloc(&parent_event->attr,
11241                                            parent_event->cpu,
11242                                            child,
11243                                            group_leader, parent_event,
11244                                            NULL, NULL, -1);
11245         if (IS_ERR(child_event))
11246                 return child_event;
11247
11248
11249         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11250             !child_ctx->task_ctx_data) {
11251                 struct pmu *pmu = child_event->pmu;
11252
11253                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11254                                                    GFP_KERNEL);
11255                 if (!child_ctx->task_ctx_data) {
11256                         free_event(child_event);
11257                         return NULL;
11258                 }
11259         }
11260
11261         /*
11262          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11263          * must be under the same lock in order to serialize against
11264          * perf_event_release_kernel(), such that either we must observe
11265          * is_orphaned_event() or they will observe us on the child_list.
11266          */
11267         mutex_lock(&parent_event->child_mutex);
11268         if (is_orphaned_event(parent_event) ||
11269             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11270                 mutex_unlock(&parent_event->child_mutex);
11271                 /* task_ctx_data is freed with child_ctx */
11272                 free_event(child_event);
11273                 return NULL;
11274         }
11275
11276         get_ctx(child_ctx);
11277
11278         /*
11279          * Make the child state follow the state of the parent event,
11280          * not its attr.disabled bit.  We hold the parent's mutex,
11281          * so we won't race with perf_event_{en, dis}able_family.
11282          */
11283         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11284                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11285         else
11286                 child_event->state = PERF_EVENT_STATE_OFF;
11287
11288         if (parent_event->attr.freq) {
11289                 u64 sample_period = parent_event->hw.sample_period;
11290                 struct hw_perf_event *hwc = &child_event->hw;
11291
11292                 hwc->sample_period = sample_period;
11293                 hwc->last_period   = sample_period;
11294
11295                 local64_set(&hwc->period_left, sample_period);
11296         }
11297
11298         child_event->ctx = child_ctx;
11299         child_event->overflow_handler = parent_event->overflow_handler;
11300         child_event->overflow_handler_context
11301                 = parent_event->overflow_handler_context;
11302
11303         /*
11304          * Precalculate sample_data sizes
11305          */
11306         perf_event__header_size(child_event);
11307         perf_event__id_header_size(child_event);
11308
11309         /*
11310          * Link it up in the child's context:
11311          */
11312         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11313         add_event_to_ctx(child_event, child_ctx);
11314         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11315
11316         /*
11317          * Link this into the parent event's child list
11318          */
11319         list_add_tail(&child_event->child_list, &parent_event->child_list);
11320         mutex_unlock(&parent_event->child_mutex);
11321
11322         return child_event;
11323 }
11324
11325 /*
11326  * Inherits an event group.
11327  *
11328  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11329  * This matches with perf_event_release_kernel() removing all child events.
11330  *
11331  * Returns:
11332  *  - 0 on success
11333  *  - <0 on error
11334  */
11335 static int inherit_group(struct perf_event *parent_event,
11336               struct task_struct *parent,
11337               struct perf_event_context *parent_ctx,
11338               struct task_struct *child,
11339               struct perf_event_context *child_ctx)
11340 {
11341         struct perf_event *leader;
11342         struct perf_event *sub;
11343         struct perf_event *child_ctr;
11344
11345         leader = inherit_event(parent_event, parent, parent_ctx,
11346                                  child, NULL, child_ctx);
11347         if (IS_ERR(leader))
11348                 return PTR_ERR(leader);
11349         /*
11350          * @leader can be NULL here because of is_orphaned_event(). In this
11351          * case inherit_event() will create individual events, similar to what
11352          * perf_group_detach() would do anyway.
11353          */
11354         for_each_sibling_event(sub, parent_event) {
11355                 child_ctr = inherit_event(sub, parent, parent_ctx,
11356                                             child, leader, child_ctx);
11357                 if (IS_ERR(child_ctr))
11358                         return PTR_ERR(child_ctr);
11359         }
11360         return 0;
11361 }
11362
11363 /*
11364  * Creates the child task context and tries to inherit the event-group.
11365  *
11366  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11367  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11368  * consistent with perf_event_release_kernel() removing all child events.
11369  *
11370  * Returns:
11371  *  - 0 on success
11372  *  - <0 on error
11373  */
11374 static int
11375 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11376                    struct perf_event_context *parent_ctx,
11377                    struct task_struct *child, int ctxn,
11378                    int *inherited_all)
11379 {
11380         int ret;
11381         struct perf_event_context *child_ctx;
11382
11383         if (!event->attr.inherit) {
11384                 *inherited_all = 0;
11385                 return 0;
11386         }
11387
11388         child_ctx = child->perf_event_ctxp[ctxn];
11389         if (!child_ctx) {
11390                 /*
11391                  * This is executed from the parent task context, so
11392                  * inherit events that have been marked for cloning.
11393                  * First allocate and initialize a context for the
11394                  * child.
11395                  */
11396                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11397                 if (!child_ctx)
11398                         return -ENOMEM;
11399
11400                 child->perf_event_ctxp[ctxn] = child_ctx;
11401         }
11402
11403         ret = inherit_group(event, parent, parent_ctx,
11404                             child, child_ctx);
11405
11406         if (ret)
11407                 *inherited_all = 0;
11408
11409         return ret;
11410 }
11411
11412 /*
11413  * Initialize the perf_event context in task_struct
11414  */
11415 static int perf_event_init_context(struct task_struct *child, int ctxn)
11416 {
11417         struct perf_event_context *child_ctx, *parent_ctx;
11418         struct perf_event_context *cloned_ctx;
11419         struct perf_event *event;
11420         struct task_struct *parent = current;
11421         int inherited_all = 1;
11422         unsigned long flags;
11423         int ret = 0;
11424
11425         if (likely(!parent->perf_event_ctxp[ctxn]))
11426                 return 0;
11427
11428         /*
11429          * If the parent's context is a clone, pin it so it won't get
11430          * swapped under us.
11431          */
11432         parent_ctx = perf_pin_task_context(parent, ctxn);
11433         if (!parent_ctx)
11434                 return 0;
11435
11436         /*
11437          * No need to check if parent_ctx != NULL here; since we saw
11438          * it non-NULL earlier, the only reason for it to become NULL
11439          * is if we exit, and since we're currently in the middle of
11440          * a fork we can't be exiting at the same time.
11441          */
11442
11443         /*
11444          * Lock the parent list. No need to lock the child - not PID
11445          * hashed yet and not running, so nobody can access it.
11446          */
11447         mutex_lock(&parent_ctx->mutex);
11448
11449         /*
11450          * We dont have to disable NMIs - we are only looking at
11451          * the list, not manipulating it:
11452          */
11453         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11454                 ret = inherit_task_group(event, parent, parent_ctx,
11455                                          child, ctxn, &inherited_all);
11456                 if (ret)
11457                         goto out_unlock;
11458         }
11459
11460         /*
11461          * We can't hold ctx->lock when iterating the ->flexible_group list due
11462          * to allocations, but we need to prevent rotation because
11463          * rotate_ctx() will change the list from interrupt context.
11464          */
11465         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11466         parent_ctx->rotate_disable = 1;
11467         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11468
11469         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11470                 ret = inherit_task_group(event, parent, parent_ctx,
11471                                          child, ctxn, &inherited_all);
11472                 if (ret)
11473                         goto out_unlock;
11474         }
11475
11476         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11477         parent_ctx->rotate_disable = 0;
11478
11479         child_ctx = child->perf_event_ctxp[ctxn];
11480
11481         if (child_ctx && inherited_all) {
11482                 /*
11483                  * Mark the child context as a clone of the parent
11484                  * context, or of whatever the parent is a clone of.
11485                  *
11486                  * Note that if the parent is a clone, the holding of
11487                  * parent_ctx->lock avoids it from being uncloned.
11488                  */
11489                 cloned_ctx = parent_ctx->parent_ctx;
11490                 if (cloned_ctx) {
11491                         child_ctx->parent_ctx = cloned_ctx;
11492                         child_ctx->parent_gen = parent_ctx->parent_gen;
11493                 } else {
11494                         child_ctx->parent_ctx = parent_ctx;
11495                         child_ctx->parent_gen = parent_ctx->generation;
11496                 }
11497                 get_ctx(child_ctx->parent_ctx);
11498         }
11499
11500         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11501 out_unlock:
11502         mutex_unlock(&parent_ctx->mutex);
11503
11504         perf_unpin_context(parent_ctx);
11505         put_ctx(parent_ctx);
11506
11507         return ret;
11508 }
11509
11510 /*
11511  * Initialize the perf_event context in task_struct
11512  */
11513 int perf_event_init_task(struct task_struct *child)
11514 {
11515         int ctxn, ret;
11516
11517         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11518         mutex_init(&child->perf_event_mutex);
11519         INIT_LIST_HEAD(&child->perf_event_list);
11520
11521         for_each_task_context_nr(ctxn) {
11522                 ret = perf_event_init_context(child, ctxn);
11523                 if (ret) {
11524                         perf_event_free_task(child);
11525                         return ret;
11526                 }
11527         }
11528
11529         return 0;
11530 }
11531
11532 static void __init perf_event_init_all_cpus(void)
11533 {
11534         struct swevent_htable *swhash;
11535         int cpu;
11536
11537         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11538
11539         for_each_possible_cpu(cpu) {
11540                 swhash = &per_cpu(swevent_htable, cpu);
11541                 mutex_init(&swhash->hlist_mutex);
11542                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11543
11544                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11545                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11546
11547 #ifdef CONFIG_CGROUP_PERF
11548                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11549 #endif
11550                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11551         }
11552 }
11553
11554 void perf_swevent_init_cpu(unsigned int cpu)
11555 {
11556         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11557
11558         mutex_lock(&swhash->hlist_mutex);
11559         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11560                 struct swevent_hlist *hlist;
11561
11562                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11563                 WARN_ON(!hlist);
11564                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11565         }
11566         mutex_unlock(&swhash->hlist_mutex);
11567 }
11568
11569 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11570 static void __perf_event_exit_context(void *__info)
11571 {
11572         struct perf_event_context *ctx = __info;
11573         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11574         struct perf_event *event;
11575
11576         raw_spin_lock(&ctx->lock);
11577         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11578         list_for_each_entry(event, &ctx->event_list, event_entry)
11579                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11580         raw_spin_unlock(&ctx->lock);
11581 }
11582
11583 static void perf_event_exit_cpu_context(int cpu)
11584 {
11585         struct perf_cpu_context *cpuctx;
11586         struct perf_event_context *ctx;
11587         struct pmu *pmu;
11588
11589         mutex_lock(&pmus_lock);
11590         list_for_each_entry(pmu, &pmus, entry) {
11591                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11592                 ctx = &cpuctx->ctx;
11593
11594                 mutex_lock(&ctx->mutex);
11595                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11596                 cpuctx->online = 0;
11597                 mutex_unlock(&ctx->mutex);
11598         }
11599         cpumask_clear_cpu(cpu, perf_online_mask);
11600         mutex_unlock(&pmus_lock);
11601 }
11602 #else
11603
11604 static void perf_event_exit_cpu_context(int cpu) { }
11605
11606 #endif
11607
11608 int perf_event_init_cpu(unsigned int cpu)
11609 {
11610         struct perf_cpu_context *cpuctx;
11611         struct perf_event_context *ctx;
11612         struct pmu *pmu;
11613
11614         perf_swevent_init_cpu(cpu);
11615
11616         mutex_lock(&pmus_lock);
11617         cpumask_set_cpu(cpu, perf_online_mask);
11618         list_for_each_entry(pmu, &pmus, entry) {
11619                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11620                 ctx = &cpuctx->ctx;
11621
11622                 mutex_lock(&ctx->mutex);
11623                 cpuctx->online = 1;
11624                 mutex_unlock(&ctx->mutex);
11625         }
11626         mutex_unlock(&pmus_lock);
11627
11628         return 0;
11629 }
11630
11631 int perf_event_exit_cpu(unsigned int cpu)
11632 {
11633         perf_event_exit_cpu_context(cpu);
11634         return 0;
11635 }
11636
11637 static int
11638 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11639 {
11640         int cpu;
11641
11642         for_each_online_cpu(cpu)
11643                 perf_event_exit_cpu(cpu);
11644
11645         return NOTIFY_OK;
11646 }
11647
11648 /*
11649  * Run the perf reboot notifier at the very last possible moment so that
11650  * the generic watchdog code runs as long as possible.
11651  */
11652 static struct notifier_block perf_reboot_notifier = {
11653         .notifier_call = perf_reboot,
11654         .priority = INT_MIN,
11655 };
11656
11657 void __init perf_event_init(void)
11658 {
11659         int ret;
11660
11661         idr_init(&pmu_idr);
11662
11663         perf_event_init_all_cpus();
11664         init_srcu_struct(&pmus_srcu);
11665         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11666         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11667         perf_pmu_register(&perf_task_clock, NULL, -1);
11668         perf_tp_register();
11669         perf_event_init_cpu(smp_processor_id());
11670         register_reboot_notifier(&perf_reboot_notifier);
11671
11672         ret = init_hw_breakpoint();
11673         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11674
11675         /*
11676          * Build time assertion that we keep the data_head at the intended
11677          * location.  IOW, validation we got the __reserved[] size right.
11678          */
11679         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11680                      != 1024);
11681 }
11682
11683 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11684                               char *page)
11685 {
11686         struct perf_pmu_events_attr *pmu_attr =
11687                 container_of(attr, struct perf_pmu_events_attr, attr);
11688
11689         if (pmu_attr->event_str)
11690                 return sprintf(page, "%s\n", pmu_attr->event_str);
11691
11692         return 0;
11693 }
11694 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11695
11696 static int __init perf_event_sysfs_init(void)
11697 {
11698         struct pmu *pmu;
11699         int ret;
11700
11701         mutex_lock(&pmus_lock);
11702
11703         ret = bus_register(&pmu_bus);
11704         if (ret)
11705                 goto unlock;
11706
11707         list_for_each_entry(pmu, &pmus, entry) {
11708                 if (!pmu->name || pmu->type < 0)
11709                         continue;
11710
11711                 ret = pmu_dev_alloc(pmu);
11712                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11713         }
11714         pmu_bus_running = 1;
11715         ret = 0;
11716
11717 unlock:
11718         mutex_unlock(&pmus_lock);
11719
11720         return ret;
11721 }
11722 device_initcall(perf_event_sysfs_init);
11723
11724 #ifdef CONFIG_CGROUP_PERF
11725 static struct cgroup_subsys_state *
11726 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11727 {
11728         struct perf_cgroup *jc;
11729
11730         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11731         if (!jc)
11732                 return ERR_PTR(-ENOMEM);
11733
11734         jc->info = alloc_percpu(struct perf_cgroup_info);
11735         if (!jc->info) {
11736                 kfree(jc);
11737                 return ERR_PTR(-ENOMEM);
11738         }
11739
11740         return &jc->css;
11741 }
11742
11743 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11744 {
11745         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11746
11747         free_percpu(jc->info);
11748         kfree(jc);
11749 }
11750
11751 static int __perf_cgroup_move(void *info)
11752 {
11753         struct task_struct *task = info;
11754         rcu_read_lock();
11755         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11756         rcu_read_unlock();
11757         return 0;
11758 }
11759
11760 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11761 {
11762         struct task_struct *task;
11763         struct cgroup_subsys_state *css;
11764
11765         cgroup_taskset_for_each(task, css, tset)
11766                 task_function_call(task, __perf_cgroup_move, task);
11767 }
11768
11769 struct cgroup_subsys perf_event_cgrp_subsys = {
11770         .css_alloc      = perf_cgroup_css_alloc,
11771         .css_free       = perf_cgroup_css_free,
11772         .attach         = perf_cgroup_attach,
11773         /*
11774          * Implicitly enable on dfl hierarchy so that perf events can
11775          * always be filtered by cgroup2 path as long as perf_event
11776          * controller is not mounted on a legacy hierarchy.
11777          */
11778         .implicit_on_dfl = true,
11779         .threaded       = true,
11780 };
11781 #endif /* CONFIG_CGROUP_PERF */