Merge tag 'perf-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / kernel / events / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events core code:
4  *
5  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9  */
10
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
54 #include <linux/highmem.h>
55 #include <linux/pgtable.h>
56 #include <linux/buildid.h>
57
58 #include "internal.h"
59
60 #include <asm/irq_regs.h>
61
62 typedef int (*remote_function_f)(void *);
63
64 struct remote_function_call {
65         struct task_struct      *p;
66         remote_function_f       func;
67         void                    *info;
68         int                     ret;
69 };
70
71 static void remote_function(void *data)
72 {
73         struct remote_function_call *tfc = data;
74         struct task_struct *p = tfc->p;
75
76         if (p) {
77                 /* -EAGAIN */
78                 if (task_cpu(p) != smp_processor_id())
79                         return;
80
81                 /*
82                  * Now that we're on right CPU with IRQs disabled, we can test
83                  * if we hit the right task without races.
84                  */
85
86                 tfc->ret = -ESRCH; /* No such (running) process */
87                 if (p != current)
88                         return;
89         }
90
91         tfc->ret = tfc->func(tfc->info);
92 }
93
94 /**
95  * task_function_call - call a function on the cpu on which a task runs
96  * @p:          the task to evaluate
97  * @func:       the function to be called
98  * @info:       the function call argument
99  *
100  * Calls the function @func when the task is currently running. This might
101  * be on the current CPU, which just calls the function directly.  This will
102  * retry due to any failures in smp_call_function_single(), such as if the
103  * task_cpu() goes offline concurrently.
104  *
105  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
106  */
107 static int
108 task_function_call(struct task_struct *p, remote_function_f func, void *info)
109 {
110         struct remote_function_call data = {
111                 .p      = p,
112                 .func   = func,
113                 .info   = info,
114                 .ret    = -EAGAIN,
115         };
116         int ret;
117
118         for (;;) {
119                 ret = smp_call_function_single(task_cpu(p), remote_function,
120                                                &data, 1);
121                 if (!ret)
122                         ret = data.ret;
123
124                 if (ret != -EAGAIN)
125                         break;
126
127                 cond_resched();
128         }
129
130         return ret;
131 }
132
133 /**
134  * cpu_function_call - call a function on the cpu
135  * @cpu:        target cpu to queue this function
136  * @func:       the function to be called
137  * @info:       the function call argument
138  *
139  * Calls the function @func on the remote cpu.
140  *
141  * returns: @func return value or -ENXIO when the cpu is offline
142  */
143 static int cpu_function_call(int cpu, remote_function_f func, void *info)
144 {
145         struct remote_function_call data = {
146                 .p      = NULL,
147                 .func   = func,
148                 .info   = info,
149                 .ret    = -ENXIO, /* No such CPU */
150         };
151
152         smp_call_function_single(cpu, remote_function, &data, 1);
153
154         return data.ret;
155 }
156
157 static inline struct perf_cpu_context *
158 __get_cpu_context(struct perf_event_context *ctx)
159 {
160         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
161 }
162
163 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
164                           struct perf_event_context *ctx)
165 {
166         raw_spin_lock(&cpuctx->ctx.lock);
167         if (ctx)
168                 raw_spin_lock(&ctx->lock);
169 }
170
171 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
172                             struct perf_event_context *ctx)
173 {
174         if (ctx)
175                 raw_spin_unlock(&ctx->lock);
176         raw_spin_unlock(&cpuctx->ctx.lock);
177 }
178
179 #define TASK_TOMBSTONE ((void *)-1L)
180
181 static bool is_kernel_event(struct perf_event *event)
182 {
183         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
184 }
185
186 /*
187  * On task ctx scheduling...
188  *
189  * When !ctx->nr_events a task context will not be scheduled. This means
190  * we can disable the scheduler hooks (for performance) without leaving
191  * pending task ctx state.
192  *
193  * This however results in two special cases:
194  *
195  *  - removing the last event from a task ctx; this is relatively straight
196  *    forward and is done in __perf_remove_from_context.
197  *
198  *  - adding the first event to a task ctx; this is tricky because we cannot
199  *    rely on ctx->is_active and therefore cannot use event_function_call().
200  *    See perf_install_in_context().
201  *
202  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
203  */
204
205 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
206                         struct perf_event_context *, void *);
207
208 struct event_function_struct {
209         struct perf_event *event;
210         event_f func;
211         void *data;
212 };
213
214 static int event_function(void *info)
215 {
216         struct event_function_struct *efs = info;
217         struct perf_event *event = efs->event;
218         struct perf_event_context *ctx = event->ctx;
219         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
220         struct perf_event_context *task_ctx = cpuctx->task_ctx;
221         int ret = 0;
222
223         lockdep_assert_irqs_disabled();
224
225         perf_ctx_lock(cpuctx, task_ctx);
226         /*
227          * Since we do the IPI call without holding ctx->lock things can have
228          * changed, double check we hit the task we set out to hit.
229          */
230         if (ctx->task) {
231                 if (ctx->task != current) {
232                         ret = -ESRCH;
233                         goto unlock;
234                 }
235
236                 /*
237                  * We only use event_function_call() on established contexts,
238                  * and event_function() is only ever called when active (or
239                  * rather, we'll have bailed in task_function_call() or the
240                  * above ctx->task != current test), therefore we must have
241                  * ctx->is_active here.
242                  */
243                 WARN_ON_ONCE(!ctx->is_active);
244                 /*
245                  * And since we have ctx->is_active, cpuctx->task_ctx must
246                  * match.
247                  */
248                 WARN_ON_ONCE(task_ctx != ctx);
249         } else {
250                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
251         }
252
253         efs->func(event, cpuctx, ctx, efs->data);
254 unlock:
255         perf_ctx_unlock(cpuctx, task_ctx);
256
257         return ret;
258 }
259
260 static void event_function_call(struct perf_event *event, event_f func, void *data)
261 {
262         struct perf_event_context *ctx = event->ctx;
263         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
264         struct event_function_struct efs = {
265                 .event = event,
266                 .func = func,
267                 .data = data,
268         };
269
270         if (!event->parent) {
271                 /*
272                  * If this is a !child event, we must hold ctx::mutex to
273                  * stabilize the event->ctx relation. See
274                  * perf_event_ctx_lock().
275                  */
276                 lockdep_assert_held(&ctx->mutex);
277         }
278
279         if (!task) {
280                 cpu_function_call(event->cpu, event_function, &efs);
281                 return;
282         }
283
284         if (task == TASK_TOMBSTONE)
285                 return;
286
287 again:
288         if (!task_function_call(task, event_function, &efs))
289                 return;
290
291         raw_spin_lock_irq(&ctx->lock);
292         /*
293          * Reload the task pointer, it might have been changed by
294          * a concurrent perf_event_context_sched_out().
295          */
296         task = ctx->task;
297         if (task == TASK_TOMBSTONE) {
298                 raw_spin_unlock_irq(&ctx->lock);
299                 return;
300         }
301         if (ctx->is_active) {
302                 raw_spin_unlock_irq(&ctx->lock);
303                 goto again;
304         }
305         func(event, NULL, ctx, data);
306         raw_spin_unlock_irq(&ctx->lock);
307 }
308
309 /*
310  * Similar to event_function_call() + event_function(), but hard assumes IRQs
311  * are already disabled and we're on the right CPU.
312  */
313 static void event_function_local(struct perf_event *event, event_f func, void *data)
314 {
315         struct perf_event_context *ctx = event->ctx;
316         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
317         struct task_struct *task = READ_ONCE(ctx->task);
318         struct perf_event_context *task_ctx = NULL;
319
320         lockdep_assert_irqs_disabled();
321
322         if (task) {
323                 if (task == TASK_TOMBSTONE)
324                         return;
325
326                 task_ctx = ctx;
327         }
328
329         perf_ctx_lock(cpuctx, task_ctx);
330
331         task = ctx->task;
332         if (task == TASK_TOMBSTONE)
333                 goto unlock;
334
335         if (task) {
336                 /*
337                  * We must be either inactive or active and the right task,
338                  * otherwise we're screwed, since we cannot IPI to somewhere
339                  * else.
340                  */
341                 if (ctx->is_active) {
342                         if (WARN_ON_ONCE(task != current))
343                                 goto unlock;
344
345                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
346                                 goto unlock;
347                 }
348         } else {
349                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
350         }
351
352         func(event, cpuctx, ctx, data);
353 unlock:
354         perf_ctx_unlock(cpuctx, task_ctx);
355 }
356
357 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
358                        PERF_FLAG_FD_OUTPUT  |\
359                        PERF_FLAG_PID_CGROUP |\
360                        PERF_FLAG_FD_CLOEXEC)
361
362 /*
363  * branch priv levels that need permission checks
364  */
365 #define PERF_SAMPLE_BRANCH_PERM_PLM \
366         (PERF_SAMPLE_BRANCH_KERNEL |\
367          PERF_SAMPLE_BRANCH_HV)
368
369 enum event_type_t {
370         EVENT_FLEXIBLE = 0x1,
371         EVENT_PINNED = 0x2,
372         EVENT_TIME = 0x4,
373         /* see ctx_resched() for details */
374         EVENT_CPU = 0x8,
375         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
376 };
377
378 /*
379  * perf_sched_events : >0 events exist
380  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
381  */
382
383 static void perf_sched_delayed(struct work_struct *work);
384 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
385 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
386 static DEFINE_MUTEX(perf_sched_mutex);
387 static atomic_t perf_sched_count;
388
389 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
390 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
391 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
392
393 static atomic_t nr_mmap_events __read_mostly;
394 static atomic_t nr_comm_events __read_mostly;
395 static atomic_t nr_namespaces_events __read_mostly;
396 static atomic_t nr_task_events __read_mostly;
397 static atomic_t nr_freq_events __read_mostly;
398 static atomic_t nr_switch_events __read_mostly;
399 static atomic_t nr_ksymbol_events __read_mostly;
400 static atomic_t nr_bpf_events __read_mostly;
401 static atomic_t nr_cgroup_events __read_mostly;
402 static atomic_t nr_text_poke_events __read_mostly;
403 static atomic_t nr_build_id_events __read_mostly;
404
405 static LIST_HEAD(pmus);
406 static DEFINE_MUTEX(pmus_lock);
407 static struct srcu_struct pmus_srcu;
408 static cpumask_var_t perf_online_mask;
409 static struct kmem_cache *perf_event_cache;
410
411 /*
412  * perf event paranoia level:
413  *  -1 - not paranoid at all
414  *   0 - disallow raw tracepoint access for unpriv
415  *   1 - disallow cpu events for unpriv
416  *   2 - disallow kernel profiling for unpriv
417  */
418 int sysctl_perf_event_paranoid __read_mostly = 2;
419
420 /* Minimum for 512 kiB + 1 user control page */
421 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
422
423 /*
424  * max perf event sample rate
425  */
426 #define DEFAULT_MAX_SAMPLE_RATE         100000
427 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
428 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
429
430 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
431
432 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
433 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
434
435 static int perf_sample_allowed_ns __read_mostly =
436         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
437
438 static void update_perf_cpu_limits(void)
439 {
440         u64 tmp = perf_sample_period_ns;
441
442         tmp *= sysctl_perf_cpu_time_max_percent;
443         tmp = div_u64(tmp, 100);
444         if (!tmp)
445                 tmp = 1;
446
447         WRITE_ONCE(perf_sample_allowed_ns, tmp);
448 }
449
450 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
451
452 int perf_proc_update_handler(struct ctl_table *table, int write,
453                 void *buffer, size_t *lenp, loff_t *ppos)
454 {
455         int ret;
456         int perf_cpu = sysctl_perf_cpu_time_max_percent;
457         /*
458          * If throttling is disabled don't allow the write:
459          */
460         if (write && (perf_cpu == 100 || perf_cpu == 0))
461                 return -EINVAL;
462
463         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
464         if (ret || !write)
465                 return ret;
466
467         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
468         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
469         update_perf_cpu_limits();
470
471         return 0;
472 }
473
474 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
475
476 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
477                 void *buffer, size_t *lenp, loff_t *ppos)
478 {
479         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
480
481         if (ret || !write)
482                 return ret;
483
484         if (sysctl_perf_cpu_time_max_percent == 100 ||
485             sysctl_perf_cpu_time_max_percent == 0) {
486                 printk(KERN_WARNING
487                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
488                 WRITE_ONCE(perf_sample_allowed_ns, 0);
489         } else {
490                 update_perf_cpu_limits();
491         }
492
493         return 0;
494 }
495
496 /*
497  * perf samples are done in some very critical code paths (NMIs).
498  * If they take too much CPU time, the system can lock up and not
499  * get any real work done.  This will drop the sample rate when
500  * we detect that events are taking too long.
501  */
502 #define NR_ACCUMULATED_SAMPLES 128
503 static DEFINE_PER_CPU(u64, running_sample_length);
504
505 static u64 __report_avg;
506 static u64 __report_allowed;
507
508 static void perf_duration_warn(struct irq_work *w)
509 {
510         printk_ratelimited(KERN_INFO
511                 "perf: interrupt took too long (%lld > %lld), lowering "
512                 "kernel.perf_event_max_sample_rate to %d\n",
513                 __report_avg, __report_allowed,
514                 sysctl_perf_event_sample_rate);
515 }
516
517 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
518
519 void perf_sample_event_took(u64 sample_len_ns)
520 {
521         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
522         u64 running_len;
523         u64 avg_len;
524         u32 max;
525
526         if (max_len == 0)
527                 return;
528
529         /* Decay the counter by 1 average sample. */
530         running_len = __this_cpu_read(running_sample_length);
531         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
532         running_len += sample_len_ns;
533         __this_cpu_write(running_sample_length, running_len);
534
535         /*
536          * Note: this will be biased artifically low until we have
537          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
538          * from having to maintain a count.
539          */
540         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
541         if (avg_len <= max_len)
542                 return;
543
544         __report_avg = avg_len;
545         __report_allowed = max_len;
546
547         /*
548          * Compute a throttle threshold 25% below the current duration.
549          */
550         avg_len += avg_len / 4;
551         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
552         if (avg_len < max)
553                 max /= (u32)avg_len;
554         else
555                 max = 1;
556
557         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
558         WRITE_ONCE(max_samples_per_tick, max);
559
560         sysctl_perf_event_sample_rate = max * HZ;
561         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
562
563         if (!irq_work_queue(&perf_duration_work)) {
564                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
565                              "kernel.perf_event_max_sample_rate to %d\n",
566                              __report_avg, __report_allowed,
567                              sysctl_perf_event_sample_rate);
568         }
569 }
570
571 static atomic64_t perf_event_id;
572
573 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
574                               enum event_type_t event_type);
575
576 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
577                              enum event_type_t event_type,
578                              struct task_struct *task);
579
580 static void update_context_time(struct perf_event_context *ctx);
581 static u64 perf_event_time(struct perf_event *event);
582
583 void __weak perf_event_print_debug(void)        { }
584
585 static inline u64 perf_clock(void)
586 {
587         return local_clock();
588 }
589
590 static inline u64 perf_event_clock(struct perf_event *event)
591 {
592         return event->clock();
593 }
594
595 /*
596  * State based event timekeeping...
597  *
598  * The basic idea is to use event->state to determine which (if any) time
599  * fields to increment with the current delta. This means we only need to
600  * update timestamps when we change state or when they are explicitly requested
601  * (read).
602  *
603  * Event groups make things a little more complicated, but not terribly so. The
604  * rules for a group are that if the group leader is OFF the entire group is
605  * OFF, irrespecive of what the group member states are. This results in
606  * __perf_effective_state().
607  *
608  * A futher ramification is that when a group leader flips between OFF and
609  * !OFF, we need to update all group member times.
610  *
611  *
612  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
613  * need to make sure the relevant context time is updated before we try and
614  * update our timestamps.
615  */
616
617 static __always_inline enum perf_event_state
618 __perf_effective_state(struct perf_event *event)
619 {
620         struct perf_event *leader = event->group_leader;
621
622         if (leader->state <= PERF_EVENT_STATE_OFF)
623                 return leader->state;
624
625         return event->state;
626 }
627
628 static __always_inline void
629 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
630 {
631         enum perf_event_state state = __perf_effective_state(event);
632         u64 delta = now - event->tstamp;
633
634         *enabled = event->total_time_enabled;
635         if (state >= PERF_EVENT_STATE_INACTIVE)
636                 *enabled += delta;
637
638         *running = event->total_time_running;
639         if (state >= PERF_EVENT_STATE_ACTIVE)
640                 *running += delta;
641 }
642
643 static void perf_event_update_time(struct perf_event *event)
644 {
645         u64 now = perf_event_time(event);
646
647         __perf_update_times(event, now, &event->total_time_enabled,
648                                         &event->total_time_running);
649         event->tstamp = now;
650 }
651
652 static void perf_event_update_sibling_time(struct perf_event *leader)
653 {
654         struct perf_event *sibling;
655
656         for_each_sibling_event(sibling, leader)
657                 perf_event_update_time(sibling);
658 }
659
660 static void
661 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
662 {
663         if (event->state == state)
664                 return;
665
666         perf_event_update_time(event);
667         /*
668          * If a group leader gets enabled/disabled all its siblings
669          * are affected too.
670          */
671         if ((event->state < 0) ^ (state < 0))
672                 perf_event_update_sibling_time(event);
673
674         WRITE_ONCE(event->state, state);
675 }
676
677 #ifdef CONFIG_CGROUP_PERF
678
679 static inline bool
680 perf_cgroup_match(struct perf_event *event)
681 {
682         struct perf_event_context *ctx = event->ctx;
683         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
684
685         /* @event doesn't care about cgroup */
686         if (!event->cgrp)
687                 return true;
688
689         /* wants specific cgroup scope but @cpuctx isn't associated with any */
690         if (!cpuctx->cgrp)
691                 return false;
692
693         /*
694          * Cgroup scoping is recursive.  An event enabled for a cgroup is
695          * also enabled for all its descendant cgroups.  If @cpuctx's
696          * cgroup is a descendant of @event's (the test covers identity
697          * case), it's a match.
698          */
699         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
700                                     event->cgrp->css.cgroup);
701 }
702
703 static inline void perf_detach_cgroup(struct perf_event *event)
704 {
705         css_put(&event->cgrp->css);
706         event->cgrp = NULL;
707 }
708
709 static inline int is_cgroup_event(struct perf_event *event)
710 {
711         return event->cgrp != NULL;
712 }
713
714 static inline u64 perf_cgroup_event_time(struct perf_event *event)
715 {
716         struct perf_cgroup_info *t;
717
718         t = per_cpu_ptr(event->cgrp->info, event->cpu);
719         return t->time;
720 }
721
722 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
723 {
724         struct perf_cgroup_info *info;
725         u64 now;
726
727         now = perf_clock();
728
729         info = this_cpu_ptr(cgrp->info);
730
731         info->time += now - info->timestamp;
732         info->timestamp = now;
733 }
734
735 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
736 {
737         struct perf_cgroup *cgrp = cpuctx->cgrp;
738         struct cgroup_subsys_state *css;
739
740         if (cgrp) {
741                 for (css = &cgrp->css; css; css = css->parent) {
742                         cgrp = container_of(css, struct perf_cgroup, css);
743                         __update_cgrp_time(cgrp);
744                 }
745         }
746 }
747
748 static inline void update_cgrp_time_from_event(struct perf_event *event)
749 {
750         struct perf_cgroup *cgrp;
751
752         /*
753          * ensure we access cgroup data only when needed and
754          * when we know the cgroup is pinned (css_get)
755          */
756         if (!is_cgroup_event(event))
757                 return;
758
759         cgrp = perf_cgroup_from_task(current, event->ctx);
760         /*
761          * Do not update time when cgroup is not active
762          */
763         if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
764                 __update_cgrp_time(event->cgrp);
765 }
766
767 static inline void
768 perf_cgroup_set_timestamp(struct task_struct *task,
769                           struct perf_event_context *ctx)
770 {
771         struct perf_cgroup *cgrp;
772         struct perf_cgroup_info *info;
773         struct cgroup_subsys_state *css;
774
775         /*
776          * ctx->lock held by caller
777          * ensure we do not access cgroup data
778          * unless we have the cgroup pinned (css_get)
779          */
780         if (!task || !ctx->nr_cgroups)
781                 return;
782
783         cgrp = perf_cgroup_from_task(task, ctx);
784
785         for (css = &cgrp->css; css; css = css->parent) {
786                 cgrp = container_of(css, struct perf_cgroup, css);
787                 info = this_cpu_ptr(cgrp->info);
788                 info->timestamp = ctx->timestamp;
789         }
790 }
791
792 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
793
794 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
795 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
796
797 /*
798  * reschedule events based on the cgroup constraint of task.
799  *
800  * mode SWOUT : schedule out everything
801  * mode SWIN : schedule in based on cgroup for next
802  */
803 static void perf_cgroup_switch(struct task_struct *task, int mode)
804 {
805         struct perf_cpu_context *cpuctx;
806         struct list_head *list;
807         unsigned long flags;
808
809         /*
810          * Disable interrupts and preemption to avoid this CPU's
811          * cgrp_cpuctx_entry to change under us.
812          */
813         local_irq_save(flags);
814
815         list = this_cpu_ptr(&cgrp_cpuctx_list);
816         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
817                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
818
819                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
820                 perf_pmu_disable(cpuctx->ctx.pmu);
821
822                 if (mode & PERF_CGROUP_SWOUT) {
823                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
824                         /*
825                          * must not be done before ctxswout due
826                          * to event_filter_match() in event_sched_out()
827                          */
828                         cpuctx->cgrp = NULL;
829                 }
830
831                 if (mode & PERF_CGROUP_SWIN) {
832                         WARN_ON_ONCE(cpuctx->cgrp);
833                         /*
834                          * set cgrp before ctxsw in to allow
835                          * event_filter_match() to not have to pass
836                          * task around
837                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
838                          * because cgorup events are only per-cpu
839                          */
840                         cpuctx->cgrp = perf_cgroup_from_task(task,
841                                                              &cpuctx->ctx);
842                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
843                 }
844                 perf_pmu_enable(cpuctx->ctx.pmu);
845                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
846         }
847
848         local_irq_restore(flags);
849 }
850
851 static inline void perf_cgroup_sched_out(struct task_struct *task,
852                                          struct task_struct *next)
853 {
854         struct perf_cgroup *cgrp1;
855         struct perf_cgroup *cgrp2 = NULL;
856
857         rcu_read_lock();
858         /*
859          * we come here when we know perf_cgroup_events > 0
860          * we do not need to pass the ctx here because we know
861          * we are holding the rcu lock
862          */
863         cgrp1 = perf_cgroup_from_task(task, NULL);
864         cgrp2 = perf_cgroup_from_task(next, NULL);
865
866         /*
867          * only schedule out current cgroup events if we know
868          * that we are switching to a different cgroup. Otherwise,
869          * do no touch the cgroup events.
870          */
871         if (cgrp1 != cgrp2)
872                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
873
874         rcu_read_unlock();
875 }
876
877 static inline void perf_cgroup_sched_in(struct task_struct *prev,
878                                         struct task_struct *task)
879 {
880         struct perf_cgroup *cgrp1;
881         struct perf_cgroup *cgrp2 = NULL;
882
883         rcu_read_lock();
884         /*
885          * we come here when we know perf_cgroup_events > 0
886          * we do not need to pass the ctx here because we know
887          * we are holding the rcu lock
888          */
889         cgrp1 = perf_cgroup_from_task(task, NULL);
890         cgrp2 = perf_cgroup_from_task(prev, NULL);
891
892         /*
893          * only need to schedule in cgroup events if we are changing
894          * cgroup during ctxsw. Cgroup events were not scheduled
895          * out of ctxsw out if that was not the case.
896          */
897         if (cgrp1 != cgrp2)
898                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
899
900         rcu_read_unlock();
901 }
902
903 static int perf_cgroup_ensure_storage(struct perf_event *event,
904                                 struct cgroup_subsys_state *css)
905 {
906         struct perf_cpu_context *cpuctx;
907         struct perf_event **storage;
908         int cpu, heap_size, ret = 0;
909
910         /*
911          * Allow storage to have sufficent space for an iterator for each
912          * possibly nested cgroup plus an iterator for events with no cgroup.
913          */
914         for (heap_size = 1; css; css = css->parent)
915                 heap_size++;
916
917         for_each_possible_cpu(cpu) {
918                 cpuctx = per_cpu_ptr(event->pmu->pmu_cpu_context, cpu);
919                 if (heap_size <= cpuctx->heap_size)
920                         continue;
921
922                 storage = kmalloc_node(heap_size * sizeof(struct perf_event *),
923                                        GFP_KERNEL, cpu_to_node(cpu));
924                 if (!storage) {
925                         ret = -ENOMEM;
926                         break;
927                 }
928
929                 raw_spin_lock_irq(&cpuctx->ctx.lock);
930                 if (cpuctx->heap_size < heap_size) {
931                         swap(cpuctx->heap, storage);
932                         if (storage == cpuctx->heap_default)
933                                 storage = NULL;
934                         cpuctx->heap_size = heap_size;
935                 }
936                 raw_spin_unlock_irq(&cpuctx->ctx.lock);
937
938                 kfree(storage);
939         }
940
941         return ret;
942 }
943
944 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
945                                       struct perf_event_attr *attr,
946                                       struct perf_event *group_leader)
947 {
948         struct perf_cgroup *cgrp;
949         struct cgroup_subsys_state *css;
950         struct fd f = fdget(fd);
951         int ret = 0;
952
953         if (!f.file)
954                 return -EBADF;
955
956         css = css_tryget_online_from_dir(f.file->f_path.dentry,
957                                          &perf_event_cgrp_subsys);
958         if (IS_ERR(css)) {
959                 ret = PTR_ERR(css);
960                 goto out;
961         }
962
963         ret = perf_cgroup_ensure_storage(event, css);
964         if (ret)
965                 goto out;
966
967         cgrp = container_of(css, struct perf_cgroup, css);
968         event->cgrp = cgrp;
969
970         /*
971          * all events in a group must monitor
972          * the same cgroup because a task belongs
973          * to only one perf cgroup at a time
974          */
975         if (group_leader && group_leader->cgrp != cgrp) {
976                 perf_detach_cgroup(event);
977                 ret = -EINVAL;
978         }
979 out:
980         fdput(f);
981         return ret;
982 }
983
984 static inline void
985 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
986 {
987         struct perf_cgroup_info *t;
988         t = per_cpu_ptr(event->cgrp->info, event->cpu);
989         event->shadow_ctx_time = now - t->timestamp;
990 }
991
992 static inline void
993 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
994 {
995         struct perf_cpu_context *cpuctx;
996
997         if (!is_cgroup_event(event))
998                 return;
999
1000         /*
1001          * Because cgroup events are always per-cpu events,
1002          * @ctx == &cpuctx->ctx.
1003          */
1004         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1005
1006         /*
1007          * Since setting cpuctx->cgrp is conditional on the current @cgrp
1008          * matching the event's cgroup, we must do this for every new event,
1009          * because if the first would mismatch, the second would not try again
1010          * and we would leave cpuctx->cgrp unset.
1011          */
1012         if (ctx->is_active && !cpuctx->cgrp) {
1013                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
1014
1015                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
1016                         cpuctx->cgrp = cgrp;
1017         }
1018
1019         if (ctx->nr_cgroups++)
1020                 return;
1021
1022         list_add(&cpuctx->cgrp_cpuctx_entry,
1023                         per_cpu_ptr(&cgrp_cpuctx_list, event->cpu));
1024 }
1025
1026 static inline void
1027 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1028 {
1029         struct perf_cpu_context *cpuctx;
1030
1031         if (!is_cgroup_event(event))
1032                 return;
1033
1034         /*
1035          * Because cgroup events are always per-cpu events,
1036          * @ctx == &cpuctx->ctx.
1037          */
1038         cpuctx = container_of(ctx, struct perf_cpu_context, ctx);
1039
1040         if (--ctx->nr_cgroups)
1041                 return;
1042
1043         if (ctx->is_active && cpuctx->cgrp)
1044                 cpuctx->cgrp = NULL;
1045
1046         list_del(&cpuctx->cgrp_cpuctx_entry);
1047 }
1048
1049 #else /* !CONFIG_CGROUP_PERF */
1050
1051 static inline bool
1052 perf_cgroup_match(struct perf_event *event)
1053 {
1054         return true;
1055 }
1056
1057 static inline void perf_detach_cgroup(struct perf_event *event)
1058 {}
1059
1060 static inline int is_cgroup_event(struct perf_event *event)
1061 {
1062         return 0;
1063 }
1064
1065 static inline void update_cgrp_time_from_event(struct perf_event *event)
1066 {
1067 }
1068
1069 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1070 {
1071 }
1072
1073 static inline void perf_cgroup_sched_out(struct task_struct *task,
1074                                          struct task_struct *next)
1075 {
1076 }
1077
1078 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1079                                         struct task_struct *task)
1080 {
1081 }
1082
1083 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1084                                       struct perf_event_attr *attr,
1085                                       struct perf_event *group_leader)
1086 {
1087         return -EINVAL;
1088 }
1089
1090 static inline void
1091 perf_cgroup_set_timestamp(struct task_struct *task,
1092                           struct perf_event_context *ctx)
1093 {
1094 }
1095
1096 static inline void
1097 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1098 {
1099 }
1100
1101 static inline void
1102 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1103 {
1104 }
1105
1106 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1107 {
1108         return 0;
1109 }
1110
1111 static inline void
1112 perf_cgroup_event_enable(struct perf_event *event, struct perf_event_context *ctx)
1113 {
1114 }
1115
1116 static inline void
1117 perf_cgroup_event_disable(struct perf_event *event, struct perf_event_context *ctx)
1118 {
1119 }
1120 #endif
1121
1122 /*
1123  * set default to be dependent on timer tick just
1124  * like original code
1125  */
1126 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 /*
1128  * function must be called with interrupts disabled
1129  */
1130 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1131 {
1132         struct perf_cpu_context *cpuctx;
1133         bool rotations;
1134
1135         lockdep_assert_irqs_disabled();
1136
1137         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1138         rotations = perf_rotate_context(cpuctx);
1139
1140         raw_spin_lock(&cpuctx->hrtimer_lock);
1141         if (rotations)
1142                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1143         else
1144                 cpuctx->hrtimer_active = 0;
1145         raw_spin_unlock(&cpuctx->hrtimer_lock);
1146
1147         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1148 }
1149
1150 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1151 {
1152         struct hrtimer *timer = &cpuctx->hrtimer;
1153         struct pmu *pmu = cpuctx->ctx.pmu;
1154         u64 interval;
1155
1156         /* no multiplexing needed for SW PMU */
1157         if (pmu->task_ctx_nr == perf_sw_context)
1158                 return;
1159
1160         /*
1161          * check default is sane, if not set then force to
1162          * default interval (1/tick)
1163          */
1164         interval = pmu->hrtimer_interval_ms;
1165         if (interval < 1)
1166                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1167
1168         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1169
1170         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1171         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED_HARD);
1172         timer->function = perf_mux_hrtimer_handler;
1173 }
1174
1175 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1176 {
1177         struct hrtimer *timer = &cpuctx->hrtimer;
1178         struct pmu *pmu = cpuctx->ctx.pmu;
1179         unsigned long flags;
1180
1181         /* not for SW PMU */
1182         if (pmu->task_ctx_nr == perf_sw_context)
1183                 return 0;
1184
1185         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1186         if (!cpuctx->hrtimer_active) {
1187                 cpuctx->hrtimer_active = 1;
1188                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1189                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED_HARD);
1190         }
1191         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1192
1193         return 0;
1194 }
1195
1196 void perf_pmu_disable(struct pmu *pmu)
1197 {
1198         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1199         if (!(*count)++)
1200                 pmu->pmu_disable(pmu);
1201 }
1202
1203 void perf_pmu_enable(struct pmu *pmu)
1204 {
1205         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1206         if (!--(*count))
1207                 pmu->pmu_enable(pmu);
1208 }
1209
1210 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1211
1212 /*
1213  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1214  * perf_event_task_tick() are fully serialized because they're strictly cpu
1215  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1216  * disabled, while perf_event_task_tick is called from IRQ context.
1217  */
1218 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1219 {
1220         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1221
1222         lockdep_assert_irqs_disabled();
1223
1224         WARN_ON(!list_empty(&ctx->active_ctx_list));
1225
1226         list_add(&ctx->active_ctx_list, head);
1227 }
1228
1229 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1230 {
1231         lockdep_assert_irqs_disabled();
1232
1233         WARN_ON(list_empty(&ctx->active_ctx_list));
1234
1235         list_del_init(&ctx->active_ctx_list);
1236 }
1237
1238 static void get_ctx(struct perf_event_context *ctx)
1239 {
1240         refcount_inc(&ctx->refcount);
1241 }
1242
1243 static void *alloc_task_ctx_data(struct pmu *pmu)
1244 {
1245         if (pmu->task_ctx_cache)
1246                 return kmem_cache_zalloc(pmu->task_ctx_cache, GFP_KERNEL);
1247
1248         return NULL;
1249 }
1250
1251 static void free_task_ctx_data(struct pmu *pmu, void *task_ctx_data)
1252 {
1253         if (pmu->task_ctx_cache && task_ctx_data)
1254                 kmem_cache_free(pmu->task_ctx_cache, task_ctx_data);
1255 }
1256
1257 static void free_ctx(struct rcu_head *head)
1258 {
1259         struct perf_event_context *ctx;
1260
1261         ctx = container_of(head, struct perf_event_context, rcu_head);
1262         free_task_ctx_data(ctx->pmu, ctx->task_ctx_data);
1263         kfree(ctx);
1264 }
1265
1266 static void put_ctx(struct perf_event_context *ctx)
1267 {
1268         if (refcount_dec_and_test(&ctx->refcount)) {
1269                 if (ctx->parent_ctx)
1270                         put_ctx(ctx->parent_ctx);
1271                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1272                         put_task_struct(ctx->task);
1273                 call_rcu(&ctx->rcu_head, free_ctx);
1274         }
1275 }
1276
1277 /*
1278  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1279  * perf_pmu_migrate_context() we need some magic.
1280  *
1281  * Those places that change perf_event::ctx will hold both
1282  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283  *
1284  * Lock ordering is by mutex address. There are two other sites where
1285  * perf_event_context::mutex nests and those are:
1286  *
1287  *  - perf_event_exit_task_context()    [ child , 0 ]
1288  *      perf_event_exit_event()
1289  *        put_event()                   [ parent, 1 ]
1290  *
1291  *  - perf_event_init_context()         [ parent, 0 ]
1292  *      inherit_task_group()
1293  *        inherit_group()
1294  *          inherit_event()
1295  *            perf_event_alloc()
1296  *              perf_init_event()
1297  *                perf_try_init_event() [ child , 1 ]
1298  *
1299  * While it appears there is an obvious deadlock here -- the parent and child
1300  * nesting levels are inverted between the two. This is in fact safe because
1301  * life-time rules separate them. That is an exiting task cannot fork, and a
1302  * spawning task cannot (yet) exit.
1303  *
1304  * But remember that these are parent<->child context relations, and
1305  * migration does not affect children, therefore these two orderings should not
1306  * interact.
1307  *
1308  * The change in perf_event::ctx does not affect children (as claimed above)
1309  * because the sys_perf_event_open() case will install a new event and break
1310  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1311  * concerned with cpuctx and that doesn't have children.
1312  *
1313  * The places that change perf_event::ctx will issue:
1314  *
1315  *   perf_remove_from_context();
1316  *   synchronize_rcu();
1317  *   perf_install_in_context();
1318  *
1319  * to affect the change. The remove_from_context() + synchronize_rcu() should
1320  * quiesce the event, after which we can install it in the new location. This
1321  * means that only external vectors (perf_fops, prctl) can perturb the event
1322  * while in transit. Therefore all such accessors should also acquire
1323  * perf_event_context::mutex to serialize against this.
1324  *
1325  * However; because event->ctx can change while we're waiting to acquire
1326  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1327  * function.
1328  *
1329  * Lock order:
1330  *    exec_update_lock
1331  *      task_struct::perf_event_mutex
1332  *        perf_event_context::mutex
1333  *          perf_event::child_mutex;
1334  *            perf_event_context::lock
1335  *          perf_event::mmap_mutex
1336  *          mmap_lock
1337  *            perf_addr_filters_head::lock
1338  *
1339  *    cpu_hotplug_lock
1340  *      pmus_lock
1341  *        cpuctx->mutex / perf_event_context::mutex
1342  */
1343 static struct perf_event_context *
1344 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1345 {
1346         struct perf_event_context *ctx;
1347
1348 again:
1349         rcu_read_lock();
1350         ctx = READ_ONCE(event->ctx);
1351         if (!refcount_inc_not_zero(&ctx->refcount)) {
1352                 rcu_read_unlock();
1353                 goto again;
1354         }
1355         rcu_read_unlock();
1356
1357         mutex_lock_nested(&ctx->mutex, nesting);
1358         if (event->ctx != ctx) {
1359                 mutex_unlock(&ctx->mutex);
1360                 put_ctx(ctx);
1361                 goto again;
1362         }
1363
1364         return ctx;
1365 }
1366
1367 static inline struct perf_event_context *
1368 perf_event_ctx_lock(struct perf_event *event)
1369 {
1370         return perf_event_ctx_lock_nested(event, 0);
1371 }
1372
1373 static void perf_event_ctx_unlock(struct perf_event *event,
1374                                   struct perf_event_context *ctx)
1375 {
1376         mutex_unlock(&ctx->mutex);
1377         put_ctx(ctx);
1378 }
1379
1380 /*
1381  * This must be done under the ctx->lock, such as to serialize against
1382  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1383  * calling scheduler related locks and ctx->lock nests inside those.
1384  */
1385 static __must_check struct perf_event_context *
1386 unclone_ctx(struct perf_event_context *ctx)
1387 {
1388         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1389
1390         lockdep_assert_held(&ctx->lock);
1391
1392         if (parent_ctx)
1393                 ctx->parent_ctx = NULL;
1394         ctx->generation++;
1395
1396         return parent_ctx;
1397 }
1398
1399 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1400                                 enum pid_type type)
1401 {
1402         u32 nr;
1403         /*
1404          * only top level events have the pid namespace they were created in
1405          */
1406         if (event->parent)
1407                 event = event->parent;
1408
1409         nr = __task_pid_nr_ns(p, type, event->ns);
1410         /* avoid -1 if it is idle thread or runs in another ns */
1411         if (!nr && !pid_alive(p))
1412                 nr = -1;
1413         return nr;
1414 }
1415
1416 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1417 {
1418         return perf_event_pid_type(event, p, PIDTYPE_TGID);
1419 }
1420
1421 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1422 {
1423         return perf_event_pid_type(event, p, PIDTYPE_PID);
1424 }
1425
1426 /*
1427  * If we inherit events we want to return the parent event id
1428  * to userspace.
1429  */
1430 static u64 primary_event_id(struct perf_event *event)
1431 {
1432         u64 id = event->id;
1433
1434         if (event->parent)
1435                 id = event->parent->id;
1436
1437         return id;
1438 }
1439
1440 /*
1441  * Get the perf_event_context for a task and lock it.
1442  *
1443  * This has to cope with the fact that until it is locked,
1444  * the context could get moved to another task.
1445  */
1446 static struct perf_event_context *
1447 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1448 {
1449         struct perf_event_context *ctx;
1450
1451 retry:
1452         /*
1453          * One of the few rules of preemptible RCU is that one cannot do
1454          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1455          * part of the read side critical section was irqs-enabled -- see
1456          * rcu_read_unlock_special().
1457          *
1458          * Since ctx->lock nests under rq->lock we must ensure the entire read
1459          * side critical section has interrupts disabled.
1460          */
1461         local_irq_save(*flags);
1462         rcu_read_lock();
1463         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1464         if (ctx) {
1465                 /*
1466                  * If this context is a clone of another, it might
1467                  * get swapped for another underneath us by
1468                  * perf_event_task_sched_out, though the
1469                  * rcu_read_lock() protects us from any context
1470                  * getting freed.  Lock the context and check if it
1471                  * got swapped before we could get the lock, and retry
1472                  * if so.  If we locked the right context, then it
1473                  * can't get swapped on us any more.
1474                  */
1475                 raw_spin_lock(&ctx->lock);
1476                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1477                         raw_spin_unlock(&ctx->lock);
1478                         rcu_read_unlock();
1479                         local_irq_restore(*flags);
1480                         goto retry;
1481                 }
1482
1483                 if (ctx->task == TASK_TOMBSTONE ||
1484                     !refcount_inc_not_zero(&ctx->refcount)) {
1485                         raw_spin_unlock(&ctx->lock);
1486                         ctx = NULL;
1487                 } else {
1488                         WARN_ON_ONCE(ctx->task != task);
1489                 }
1490         }
1491         rcu_read_unlock();
1492         if (!ctx)
1493                 local_irq_restore(*flags);
1494         return ctx;
1495 }
1496
1497 /*
1498  * Get the context for a task and increment its pin_count so it
1499  * can't get swapped to another task.  This also increments its
1500  * reference count so that the context can't get freed.
1501  */
1502 static struct perf_event_context *
1503 perf_pin_task_context(struct task_struct *task, int ctxn)
1504 {
1505         struct perf_event_context *ctx;
1506         unsigned long flags;
1507
1508         ctx = perf_lock_task_context(task, ctxn, &flags);
1509         if (ctx) {
1510                 ++ctx->pin_count;
1511                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1512         }
1513         return ctx;
1514 }
1515
1516 static void perf_unpin_context(struct perf_event_context *ctx)
1517 {
1518         unsigned long flags;
1519
1520         raw_spin_lock_irqsave(&ctx->lock, flags);
1521         --ctx->pin_count;
1522         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1523 }
1524
1525 /*
1526  * Update the record of the current time in a context.
1527  */
1528 static void update_context_time(struct perf_event_context *ctx)
1529 {
1530         u64 now = perf_clock();
1531
1532         ctx->time += now - ctx->timestamp;
1533         ctx->timestamp = now;
1534 }
1535
1536 static u64 perf_event_time(struct perf_event *event)
1537 {
1538         struct perf_event_context *ctx = event->ctx;
1539
1540         if (is_cgroup_event(event))
1541                 return perf_cgroup_event_time(event);
1542
1543         return ctx ? ctx->time : 0;
1544 }
1545
1546 static enum event_type_t get_event_type(struct perf_event *event)
1547 {
1548         struct perf_event_context *ctx = event->ctx;
1549         enum event_type_t event_type;
1550
1551         lockdep_assert_held(&ctx->lock);
1552
1553         /*
1554          * It's 'group type', really, because if our group leader is
1555          * pinned, so are we.
1556          */
1557         if (event->group_leader != event)
1558                 event = event->group_leader;
1559
1560         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1561         if (!ctx->task)
1562                 event_type |= EVENT_CPU;
1563
1564         return event_type;
1565 }
1566
1567 /*
1568  * Helper function to initialize event group nodes.
1569  */
1570 static void init_event_group(struct perf_event *event)
1571 {
1572         RB_CLEAR_NODE(&event->group_node);
1573         event->group_index = 0;
1574 }
1575
1576 /*
1577  * Extract pinned or flexible groups from the context
1578  * based on event attrs bits.
1579  */
1580 static struct perf_event_groups *
1581 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1582 {
1583         if (event->attr.pinned)
1584                 return &ctx->pinned_groups;
1585         else
1586                 return &ctx->flexible_groups;
1587 }
1588
1589 /*
1590  * Helper function to initializes perf_event_group trees.
1591  */
1592 static void perf_event_groups_init(struct perf_event_groups *groups)
1593 {
1594         groups->tree = RB_ROOT;
1595         groups->index = 0;
1596 }
1597
1598 static inline struct cgroup *event_cgroup(const struct perf_event *event)
1599 {
1600         struct cgroup *cgroup = NULL;
1601
1602 #ifdef CONFIG_CGROUP_PERF
1603         if (event->cgrp)
1604                 cgroup = event->cgrp->css.cgroup;
1605 #endif
1606
1607         return cgroup;
1608 }
1609
1610 /*
1611  * Compare function for event groups;
1612  *
1613  * Implements complex key that first sorts by CPU and then by virtual index
1614  * which provides ordering when rotating groups for the same CPU.
1615  */
1616 static __always_inline int
1617 perf_event_groups_cmp(const int left_cpu, const struct cgroup *left_cgroup,
1618                       const u64 left_group_index, const struct perf_event *right)
1619 {
1620         if (left_cpu < right->cpu)
1621                 return -1;
1622         if (left_cpu > right->cpu)
1623                 return 1;
1624
1625 #ifdef CONFIG_CGROUP_PERF
1626         {
1627                 const struct cgroup *right_cgroup = event_cgroup(right);
1628
1629                 if (left_cgroup != right_cgroup) {
1630                         if (!left_cgroup) {
1631                                 /*
1632                                  * Left has no cgroup but right does, no
1633                                  * cgroups come first.
1634                                  */
1635                                 return -1;
1636                         }
1637                         if (!right_cgroup) {
1638                                 /*
1639                                  * Right has no cgroup but left does, no
1640                                  * cgroups come first.
1641                                  */
1642                                 return 1;
1643                         }
1644                         /* Two dissimilar cgroups, order by id. */
1645                         if (cgroup_id(left_cgroup) < cgroup_id(right_cgroup))
1646                                 return -1;
1647
1648                         return 1;
1649                 }
1650         }
1651 #endif
1652
1653         if (left_group_index < right->group_index)
1654                 return -1;
1655         if (left_group_index > right->group_index)
1656                 return 1;
1657
1658         return 0;
1659 }
1660
1661 #define __node_2_pe(node) \
1662         rb_entry((node), struct perf_event, group_node)
1663
1664 static inline bool __group_less(struct rb_node *a, const struct rb_node *b)
1665 {
1666         struct perf_event *e = __node_2_pe(a);
1667         return perf_event_groups_cmp(e->cpu, event_cgroup(e), e->group_index,
1668                                      __node_2_pe(b)) < 0;
1669 }
1670
1671 struct __group_key {
1672         int cpu;
1673         struct cgroup *cgroup;
1674 };
1675
1676 static inline int __group_cmp(const void *key, const struct rb_node *node)
1677 {
1678         const struct __group_key *a = key;
1679         const struct perf_event *b = __node_2_pe(node);
1680
1681         /* partial/subtree match: @cpu, @cgroup; ignore: @group_index */
1682         return perf_event_groups_cmp(a->cpu, a->cgroup, b->group_index, b);
1683 }
1684
1685 /*
1686  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1687  * key (see perf_event_groups_less). This places it last inside the CPU
1688  * subtree.
1689  */
1690 static void
1691 perf_event_groups_insert(struct perf_event_groups *groups,
1692                          struct perf_event *event)
1693 {
1694         event->group_index = ++groups->index;
1695
1696         rb_add(&event->group_node, &groups->tree, __group_less);
1697 }
1698
1699 /*
1700  * Helper function to insert event into the pinned or flexible groups.
1701  */
1702 static void
1703 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1704 {
1705         struct perf_event_groups *groups;
1706
1707         groups = get_event_groups(event, ctx);
1708         perf_event_groups_insert(groups, event);
1709 }
1710
1711 /*
1712  * Delete a group from a tree.
1713  */
1714 static void
1715 perf_event_groups_delete(struct perf_event_groups *groups,
1716                          struct perf_event *event)
1717 {
1718         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1719                      RB_EMPTY_ROOT(&groups->tree));
1720
1721         rb_erase(&event->group_node, &groups->tree);
1722         init_event_group(event);
1723 }
1724
1725 /*
1726  * Helper function to delete event from its groups.
1727  */
1728 static void
1729 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1730 {
1731         struct perf_event_groups *groups;
1732
1733         groups = get_event_groups(event, ctx);
1734         perf_event_groups_delete(groups, event);
1735 }
1736
1737 /*
1738  * Get the leftmost event in the cpu/cgroup subtree.
1739  */
1740 static struct perf_event *
1741 perf_event_groups_first(struct perf_event_groups *groups, int cpu,
1742                         struct cgroup *cgrp)
1743 {
1744         struct __group_key key = {
1745                 .cpu = cpu,
1746                 .cgroup = cgrp,
1747         };
1748         struct rb_node *node;
1749
1750         node = rb_find_first(&key, &groups->tree, __group_cmp);
1751         if (node)
1752                 return __node_2_pe(node);
1753
1754         return NULL;
1755 }
1756
1757 /*
1758  * Like rb_entry_next_safe() for the @cpu subtree.
1759  */
1760 static struct perf_event *
1761 perf_event_groups_next(struct perf_event *event)
1762 {
1763         struct __group_key key = {
1764                 .cpu = event->cpu,
1765                 .cgroup = event_cgroup(event),
1766         };
1767         struct rb_node *next;
1768
1769         next = rb_next_match(&key, &event->group_node, __group_cmp);
1770         if (next)
1771                 return __node_2_pe(next);
1772
1773         return NULL;
1774 }
1775
1776 /*
1777  * Iterate through the whole groups tree.
1778  */
1779 #define perf_event_groups_for_each(event, groups)                       \
1780         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1781                                 typeof(*event), group_node); event;     \
1782                 event = rb_entry_safe(rb_next(&event->group_node),      \
1783                                 typeof(*event), group_node))
1784
1785 /*
1786  * Add an event from the lists for its context.
1787  * Must be called with ctx->mutex and ctx->lock held.
1788  */
1789 static void
1790 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1791 {
1792         lockdep_assert_held(&ctx->lock);
1793
1794         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1795         event->attach_state |= PERF_ATTACH_CONTEXT;
1796
1797         event->tstamp = perf_event_time(event);
1798
1799         /*
1800          * If we're a stand alone event or group leader, we go to the context
1801          * list, group events are kept attached to the group so that
1802          * perf_group_detach can, at all times, locate all siblings.
1803          */
1804         if (event->group_leader == event) {
1805                 event->group_caps = event->event_caps;
1806                 add_event_to_groups(event, ctx);
1807         }
1808
1809         list_add_rcu(&event->event_entry, &ctx->event_list);
1810         ctx->nr_events++;
1811         if (event->attr.inherit_stat)
1812                 ctx->nr_stat++;
1813
1814         if (event->state > PERF_EVENT_STATE_OFF)
1815                 perf_cgroup_event_enable(event, ctx);
1816
1817         ctx->generation++;
1818 }
1819
1820 /*
1821  * Initialize event state based on the perf_event_attr::disabled.
1822  */
1823 static inline void perf_event__state_init(struct perf_event *event)
1824 {
1825         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1826                                               PERF_EVENT_STATE_INACTIVE;
1827 }
1828
1829 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1830 {
1831         int entry = sizeof(u64); /* value */
1832         int size = 0;
1833         int nr = 1;
1834
1835         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1836                 size += sizeof(u64);
1837
1838         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1839                 size += sizeof(u64);
1840
1841         if (event->attr.read_format & PERF_FORMAT_ID)
1842                 entry += sizeof(u64);
1843
1844         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1845                 nr += nr_siblings;
1846                 size += sizeof(u64);
1847         }
1848
1849         size += entry * nr;
1850         event->read_size = size;
1851 }
1852
1853 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1854 {
1855         struct perf_sample_data *data;
1856         u16 size = 0;
1857
1858         if (sample_type & PERF_SAMPLE_IP)
1859                 size += sizeof(data->ip);
1860
1861         if (sample_type & PERF_SAMPLE_ADDR)
1862                 size += sizeof(data->addr);
1863
1864         if (sample_type & PERF_SAMPLE_PERIOD)
1865                 size += sizeof(data->period);
1866
1867         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
1868                 size += sizeof(data->weight.full);
1869
1870         if (sample_type & PERF_SAMPLE_READ)
1871                 size += event->read_size;
1872
1873         if (sample_type & PERF_SAMPLE_DATA_SRC)
1874                 size += sizeof(data->data_src.val);
1875
1876         if (sample_type & PERF_SAMPLE_TRANSACTION)
1877                 size += sizeof(data->txn);
1878
1879         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1880                 size += sizeof(data->phys_addr);
1881
1882         if (sample_type & PERF_SAMPLE_CGROUP)
1883                 size += sizeof(data->cgroup);
1884
1885         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
1886                 size += sizeof(data->data_page_size);
1887
1888         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
1889                 size += sizeof(data->code_page_size);
1890
1891         event->header_size = size;
1892 }
1893
1894 /*
1895  * Called at perf_event creation and when events are attached/detached from a
1896  * group.
1897  */
1898 static void perf_event__header_size(struct perf_event *event)
1899 {
1900         __perf_event_read_size(event,
1901                                event->group_leader->nr_siblings);
1902         __perf_event_header_size(event, event->attr.sample_type);
1903 }
1904
1905 static void perf_event__id_header_size(struct perf_event *event)
1906 {
1907         struct perf_sample_data *data;
1908         u64 sample_type = event->attr.sample_type;
1909         u16 size = 0;
1910
1911         if (sample_type & PERF_SAMPLE_TID)
1912                 size += sizeof(data->tid_entry);
1913
1914         if (sample_type & PERF_SAMPLE_TIME)
1915                 size += sizeof(data->time);
1916
1917         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1918                 size += sizeof(data->id);
1919
1920         if (sample_type & PERF_SAMPLE_ID)
1921                 size += sizeof(data->id);
1922
1923         if (sample_type & PERF_SAMPLE_STREAM_ID)
1924                 size += sizeof(data->stream_id);
1925
1926         if (sample_type & PERF_SAMPLE_CPU)
1927                 size += sizeof(data->cpu_entry);
1928
1929         event->id_header_size = size;
1930 }
1931
1932 static bool perf_event_validate_size(struct perf_event *event)
1933 {
1934         /*
1935          * The values computed here will be over-written when we actually
1936          * attach the event.
1937          */
1938         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1939         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1940         perf_event__id_header_size(event);
1941
1942         /*
1943          * Sum the lot; should not exceed the 64k limit we have on records.
1944          * Conservative limit to allow for callchains and other variable fields.
1945          */
1946         if (event->read_size + event->header_size +
1947             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1948                 return false;
1949
1950         return true;
1951 }
1952
1953 static void perf_group_attach(struct perf_event *event)
1954 {
1955         struct perf_event *group_leader = event->group_leader, *pos;
1956
1957         lockdep_assert_held(&event->ctx->lock);
1958
1959         /*
1960          * We can have double attach due to group movement in perf_event_open.
1961          */
1962         if (event->attach_state & PERF_ATTACH_GROUP)
1963                 return;
1964
1965         event->attach_state |= PERF_ATTACH_GROUP;
1966
1967         if (group_leader == event)
1968                 return;
1969
1970         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1971
1972         group_leader->group_caps &= event->event_caps;
1973
1974         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1975         group_leader->nr_siblings++;
1976
1977         perf_event__header_size(group_leader);
1978
1979         for_each_sibling_event(pos, group_leader)
1980                 perf_event__header_size(pos);
1981 }
1982
1983 /*
1984  * Remove an event from the lists for its context.
1985  * Must be called with ctx->mutex and ctx->lock held.
1986  */
1987 static void
1988 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1989 {
1990         WARN_ON_ONCE(event->ctx != ctx);
1991         lockdep_assert_held(&ctx->lock);
1992
1993         /*
1994          * We can have double detach due to exit/hot-unplug + close.
1995          */
1996         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1997                 return;
1998
1999         event->attach_state &= ~PERF_ATTACH_CONTEXT;
2000
2001         ctx->nr_events--;
2002         if (event->attr.inherit_stat)
2003                 ctx->nr_stat--;
2004
2005         list_del_rcu(&event->event_entry);
2006
2007         if (event->group_leader == event)
2008                 del_event_from_groups(event, ctx);
2009
2010         /*
2011          * If event was in error state, then keep it
2012          * that way, otherwise bogus counts will be
2013          * returned on read(). The only way to get out
2014          * of error state is by explicit re-enabling
2015          * of the event
2016          */
2017         if (event->state > PERF_EVENT_STATE_OFF) {
2018                 perf_cgroup_event_disable(event, ctx);
2019                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2020         }
2021
2022         ctx->generation++;
2023 }
2024
2025 static int
2026 perf_aux_output_match(struct perf_event *event, struct perf_event *aux_event)
2027 {
2028         if (!has_aux(aux_event))
2029                 return 0;
2030
2031         if (!event->pmu->aux_output_match)
2032                 return 0;
2033
2034         return event->pmu->aux_output_match(aux_event);
2035 }
2036
2037 static void put_event(struct perf_event *event);
2038 static void event_sched_out(struct perf_event *event,
2039                             struct perf_cpu_context *cpuctx,
2040                             struct perf_event_context *ctx);
2041
2042 static void perf_put_aux_event(struct perf_event *event)
2043 {
2044         struct perf_event_context *ctx = event->ctx;
2045         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2046         struct perf_event *iter;
2047
2048         /*
2049          * If event uses aux_event tear down the link
2050          */
2051         if (event->aux_event) {
2052                 iter = event->aux_event;
2053                 event->aux_event = NULL;
2054                 put_event(iter);
2055                 return;
2056         }
2057
2058         /*
2059          * If the event is an aux_event, tear down all links to
2060          * it from other events.
2061          */
2062         for_each_sibling_event(iter, event->group_leader) {
2063                 if (iter->aux_event != event)
2064                         continue;
2065
2066                 iter->aux_event = NULL;
2067                 put_event(event);
2068
2069                 /*
2070                  * If it's ACTIVE, schedule it out and put it into ERROR
2071                  * state so that we don't try to schedule it again. Note
2072                  * that perf_event_enable() will clear the ERROR status.
2073                  */
2074                 event_sched_out(iter, cpuctx, ctx);
2075                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2076         }
2077 }
2078
2079 static bool perf_need_aux_event(struct perf_event *event)
2080 {
2081         return !!event->attr.aux_output || !!event->attr.aux_sample_size;
2082 }
2083
2084 static int perf_get_aux_event(struct perf_event *event,
2085                               struct perf_event *group_leader)
2086 {
2087         /*
2088          * Our group leader must be an aux event if we want to be
2089          * an aux_output. This way, the aux event will precede its
2090          * aux_output events in the group, and therefore will always
2091          * schedule first.
2092          */
2093         if (!group_leader)
2094                 return 0;
2095
2096         /*
2097          * aux_output and aux_sample_size are mutually exclusive.
2098          */
2099         if (event->attr.aux_output && event->attr.aux_sample_size)
2100                 return 0;
2101
2102         if (event->attr.aux_output &&
2103             !perf_aux_output_match(event, group_leader))
2104                 return 0;
2105
2106         if (event->attr.aux_sample_size && !group_leader->pmu->snapshot_aux)
2107                 return 0;
2108
2109         if (!atomic_long_inc_not_zero(&group_leader->refcount))
2110                 return 0;
2111
2112         /*
2113          * Link aux_outputs to their aux event; this is undone in
2114          * perf_group_detach() by perf_put_aux_event(). When the
2115          * group in torn down, the aux_output events loose their
2116          * link to the aux_event and can't schedule any more.
2117          */
2118         event->aux_event = group_leader;
2119
2120         return 1;
2121 }
2122
2123 static inline struct list_head *get_event_list(struct perf_event *event)
2124 {
2125         struct perf_event_context *ctx = event->ctx;
2126         return event->attr.pinned ? &ctx->pinned_active : &ctx->flexible_active;
2127 }
2128
2129 /*
2130  * Events that have PERF_EV_CAP_SIBLING require being part of a group and
2131  * cannot exist on their own, schedule them out and move them into the ERROR
2132  * state. Also see _perf_event_enable(), it will not be able to recover
2133  * this ERROR state.
2134  */
2135 static inline void perf_remove_sibling_event(struct perf_event *event)
2136 {
2137         struct perf_event_context *ctx = event->ctx;
2138         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2139
2140         event_sched_out(event, cpuctx, ctx);
2141         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
2142 }
2143
2144 static void perf_group_detach(struct perf_event *event)
2145 {
2146         struct perf_event *leader = event->group_leader;
2147         struct perf_event *sibling, *tmp;
2148         struct perf_event_context *ctx = event->ctx;
2149
2150         lockdep_assert_held(&ctx->lock);
2151
2152         /*
2153          * We can have double detach due to exit/hot-unplug + close.
2154          */
2155         if (!(event->attach_state & PERF_ATTACH_GROUP))
2156                 return;
2157
2158         event->attach_state &= ~PERF_ATTACH_GROUP;
2159
2160         perf_put_aux_event(event);
2161
2162         /*
2163          * If this is a sibling, remove it from its group.
2164          */
2165         if (leader != event) {
2166                 list_del_init(&event->sibling_list);
2167                 event->group_leader->nr_siblings--;
2168                 goto out;
2169         }
2170
2171         /*
2172          * If this was a group event with sibling events then
2173          * upgrade the siblings to singleton events by adding them
2174          * to whatever list we are on.
2175          */
2176         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
2177
2178                 if (sibling->event_caps & PERF_EV_CAP_SIBLING)
2179                         perf_remove_sibling_event(sibling);
2180
2181                 sibling->group_leader = sibling;
2182                 list_del_init(&sibling->sibling_list);
2183
2184                 /* Inherit group flags from the previous leader */
2185                 sibling->group_caps = event->group_caps;
2186
2187                 if (!RB_EMPTY_NODE(&event->group_node)) {
2188                         add_event_to_groups(sibling, event->ctx);
2189
2190                         if (sibling->state == PERF_EVENT_STATE_ACTIVE)
2191                                 list_add_tail(&sibling->active_list, get_event_list(sibling));
2192                 }
2193
2194                 WARN_ON_ONCE(sibling->ctx != event->ctx);
2195         }
2196
2197 out:
2198         for_each_sibling_event(tmp, leader)
2199                 perf_event__header_size(tmp);
2200
2201         perf_event__header_size(leader);
2202 }
2203
2204 static void sync_child_event(struct perf_event *child_event);
2205
2206 static void perf_child_detach(struct perf_event *event)
2207 {
2208         struct perf_event *parent_event = event->parent;
2209
2210         if (!(event->attach_state & PERF_ATTACH_CHILD))
2211                 return;
2212
2213         event->attach_state &= ~PERF_ATTACH_CHILD;
2214
2215         if (WARN_ON_ONCE(!parent_event))
2216                 return;
2217
2218         lockdep_assert_held(&parent_event->child_mutex);
2219
2220         sync_child_event(event);
2221         list_del_init(&event->child_list);
2222 }
2223
2224 static bool is_orphaned_event(struct perf_event *event)
2225 {
2226         return event->state == PERF_EVENT_STATE_DEAD;
2227 }
2228
2229 static inline int __pmu_filter_match(struct perf_event *event)
2230 {
2231         struct pmu *pmu = event->pmu;
2232         return pmu->filter_match ? pmu->filter_match(event) : 1;
2233 }
2234
2235 /*
2236  * Check whether we should attempt to schedule an event group based on
2237  * PMU-specific filtering. An event group can consist of HW and SW events,
2238  * potentially with a SW leader, so we must check all the filters, to
2239  * determine whether a group is schedulable:
2240  */
2241 static inline int pmu_filter_match(struct perf_event *event)
2242 {
2243         struct perf_event *sibling;
2244
2245         if (!__pmu_filter_match(event))
2246                 return 0;
2247
2248         for_each_sibling_event(sibling, event) {
2249                 if (!__pmu_filter_match(sibling))
2250                         return 0;
2251         }
2252
2253         return 1;
2254 }
2255
2256 static inline int
2257 event_filter_match(struct perf_event *event)
2258 {
2259         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
2260                perf_cgroup_match(event) && pmu_filter_match(event);
2261 }
2262
2263 static void
2264 event_sched_out(struct perf_event *event,
2265                   struct perf_cpu_context *cpuctx,
2266                   struct perf_event_context *ctx)
2267 {
2268         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
2269
2270         WARN_ON_ONCE(event->ctx != ctx);
2271         lockdep_assert_held(&ctx->lock);
2272
2273         if (event->state != PERF_EVENT_STATE_ACTIVE)
2274                 return;
2275
2276         /*
2277          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2278          * we can schedule events _OUT_ individually through things like
2279          * __perf_remove_from_context().
2280          */
2281         list_del_init(&event->active_list);
2282
2283         perf_pmu_disable(event->pmu);
2284
2285         event->pmu->del(event, 0);
2286         event->oncpu = -1;
2287
2288         if (READ_ONCE(event->pending_disable) >= 0) {
2289                 WRITE_ONCE(event->pending_disable, -1);
2290                 perf_cgroup_event_disable(event, ctx);
2291                 state = PERF_EVENT_STATE_OFF;
2292         }
2293         perf_event_set_state(event, state);
2294
2295         if (!is_software_event(event))
2296                 cpuctx->active_oncpu--;
2297         if (!--ctx->nr_active)
2298                 perf_event_ctx_deactivate(ctx);
2299         if (event->attr.freq && event->attr.sample_freq)
2300                 ctx->nr_freq--;
2301         if (event->attr.exclusive || !cpuctx->active_oncpu)
2302                 cpuctx->exclusive = 0;
2303
2304         perf_pmu_enable(event->pmu);
2305 }
2306
2307 static void
2308 group_sched_out(struct perf_event *group_event,
2309                 struct perf_cpu_context *cpuctx,
2310                 struct perf_event_context *ctx)
2311 {
2312         struct perf_event *event;
2313
2314         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2315                 return;
2316
2317         perf_pmu_disable(ctx->pmu);
2318
2319         event_sched_out(group_event, cpuctx, ctx);
2320
2321         /*
2322          * Schedule out siblings (if any):
2323          */
2324         for_each_sibling_event(event, group_event)
2325                 event_sched_out(event, cpuctx, ctx);
2326
2327         perf_pmu_enable(ctx->pmu);
2328 }
2329
2330 #define DETACH_GROUP    0x01UL
2331 #define DETACH_CHILD    0x02UL
2332
2333 /*
2334  * Cross CPU call to remove a performance event
2335  *
2336  * We disable the event on the hardware level first. After that we
2337  * remove it from the context list.
2338  */
2339 static void
2340 __perf_remove_from_context(struct perf_event *event,
2341                            struct perf_cpu_context *cpuctx,
2342                            struct perf_event_context *ctx,
2343                            void *info)
2344 {
2345         unsigned long flags = (unsigned long)info;
2346
2347         if (ctx->is_active & EVENT_TIME) {
2348                 update_context_time(ctx);
2349                 update_cgrp_time_from_cpuctx(cpuctx);
2350         }
2351
2352         event_sched_out(event, cpuctx, ctx);
2353         if (flags & DETACH_GROUP)
2354                 perf_group_detach(event);
2355         if (flags & DETACH_CHILD)
2356                 perf_child_detach(event);
2357         list_del_event(event, ctx);
2358
2359         if (!ctx->nr_events && ctx->is_active) {
2360                 ctx->is_active = 0;
2361                 ctx->rotate_necessary = 0;
2362                 if (ctx->task) {
2363                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2364                         cpuctx->task_ctx = NULL;
2365                 }
2366         }
2367 }
2368
2369 /*
2370  * Remove the event from a task's (or a CPU's) list of events.
2371  *
2372  * If event->ctx is a cloned context, callers must make sure that
2373  * every task struct that event->ctx->task could possibly point to
2374  * remains valid.  This is OK when called from perf_release since
2375  * that only calls us on the top-level context, which can't be a clone.
2376  * When called from perf_event_exit_task, it's OK because the
2377  * context has been detached from its task.
2378  */
2379 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2380 {
2381         struct perf_event_context *ctx = event->ctx;
2382
2383         lockdep_assert_held(&ctx->mutex);
2384
2385         /*
2386          * Because of perf_event_exit_task(), perf_remove_from_context() ought
2387          * to work in the face of TASK_TOMBSTONE, unlike every other
2388          * event_function_call() user.
2389          */
2390         raw_spin_lock_irq(&ctx->lock);
2391         if (!ctx->is_active) {
2392                 __perf_remove_from_context(event, __get_cpu_context(ctx),
2393                                            ctx, (void *)flags);
2394                 raw_spin_unlock_irq(&ctx->lock);
2395                 return;
2396         }
2397         raw_spin_unlock_irq(&ctx->lock);
2398
2399         event_function_call(event, __perf_remove_from_context, (void *)flags);
2400 }
2401
2402 /*
2403  * Cross CPU call to disable a performance event
2404  */
2405 static void __perf_event_disable(struct perf_event *event,
2406                                  struct perf_cpu_context *cpuctx,
2407                                  struct perf_event_context *ctx,
2408                                  void *info)
2409 {
2410         if (event->state < PERF_EVENT_STATE_INACTIVE)
2411                 return;
2412
2413         if (ctx->is_active & EVENT_TIME) {
2414                 update_context_time(ctx);
2415                 update_cgrp_time_from_event(event);
2416         }
2417
2418         if (event == event->group_leader)
2419                 group_sched_out(event, cpuctx, ctx);
2420         else
2421                 event_sched_out(event, cpuctx, ctx);
2422
2423         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2424         perf_cgroup_event_disable(event, ctx);
2425 }
2426
2427 /*
2428  * Disable an event.
2429  *
2430  * If event->ctx is a cloned context, callers must make sure that
2431  * every task struct that event->ctx->task could possibly point to
2432  * remains valid.  This condition is satisfied when called through
2433  * perf_event_for_each_child or perf_event_for_each because they
2434  * hold the top-level event's child_mutex, so any descendant that
2435  * goes to exit will block in perf_event_exit_event().
2436  *
2437  * When called from perf_pending_event it's OK because event->ctx
2438  * is the current context on this CPU and preemption is disabled,
2439  * hence we can't get into perf_event_task_sched_out for this context.
2440  */
2441 static void _perf_event_disable(struct perf_event *event)
2442 {
2443         struct perf_event_context *ctx = event->ctx;
2444
2445         raw_spin_lock_irq(&ctx->lock);
2446         if (event->state <= PERF_EVENT_STATE_OFF) {
2447                 raw_spin_unlock_irq(&ctx->lock);
2448                 return;
2449         }
2450         raw_spin_unlock_irq(&ctx->lock);
2451
2452         event_function_call(event, __perf_event_disable, NULL);
2453 }
2454
2455 void perf_event_disable_local(struct perf_event *event)
2456 {
2457         event_function_local(event, __perf_event_disable, NULL);
2458 }
2459
2460 /*
2461  * Strictly speaking kernel users cannot create groups and therefore this
2462  * interface does not need the perf_event_ctx_lock() magic.
2463  */
2464 void perf_event_disable(struct perf_event *event)
2465 {
2466         struct perf_event_context *ctx;
2467
2468         ctx = perf_event_ctx_lock(event);
2469         _perf_event_disable(event);
2470         perf_event_ctx_unlock(event, ctx);
2471 }
2472 EXPORT_SYMBOL_GPL(perf_event_disable);
2473
2474 void perf_event_disable_inatomic(struct perf_event *event)
2475 {
2476         WRITE_ONCE(event->pending_disable, smp_processor_id());
2477         /* can fail, see perf_pending_event_disable() */
2478         irq_work_queue(&event->pending);
2479 }
2480
2481 static void perf_set_shadow_time(struct perf_event *event,
2482                                  struct perf_event_context *ctx)
2483 {
2484         /*
2485          * use the correct time source for the time snapshot
2486          *
2487          * We could get by without this by leveraging the
2488          * fact that to get to this function, the caller
2489          * has most likely already called update_context_time()
2490          * and update_cgrp_time_xx() and thus both timestamp
2491          * are identical (or very close). Given that tstamp is,
2492          * already adjusted for cgroup, we could say that:
2493          *    tstamp - ctx->timestamp
2494          * is equivalent to
2495          *    tstamp - cgrp->timestamp.
2496          *
2497          * Then, in perf_output_read(), the calculation would
2498          * work with no changes because:
2499          * - event is guaranteed scheduled in
2500          * - no scheduled out in between
2501          * - thus the timestamp would be the same
2502          *
2503          * But this is a bit hairy.
2504          *
2505          * So instead, we have an explicit cgroup call to remain
2506          * within the time source all along. We believe it
2507          * is cleaner and simpler to understand.
2508          */
2509         if (is_cgroup_event(event))
2510                 perf_cgroup_set_shadow_time(event, event->tstamp);
2511         else
2512                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2513 }
2514
2515 #define MAX_INTERRUPTS (~0ULL)
2516
2517 static void perf_log_throttle(struct perf_event *event, int enable);
2518 static void perf_log_itrace_start(struct perf_event *event);
2519
2520 static int
2521 event_sched_in(struct perf_event *event,
2522                  struct perf_cpu_context *cpuctx,
2523                  struct perf_event_context *ctx)
2524 {
2525         int ret = 0;
2526
2527         WARN_ON_ONCE(event->ctx != ctx);
2528
2529         lockdep_assert_held(&ctx->lock);
2530
2531         if (event->state <= PERF_EVENT_STATE_OFF)
2532                 return 0;
2533
2534         WRITE_ONCE(event->oncpu, smp_processor_id());
2535         /*
2536          * Order event::oncpu write to happen before the ACTIVE state is
2537          * visible. This allows perf_event_{stop,read}() to observe the correct
2538          * ->oncpu if it sees ACTIVE.
2539          */
2540         smp_wmb();
2541         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2542
2543         /*
2544          * Unthrottle events, since we scheduled we might have missed several
2545          * ticks already, also for a heavily scheduling task there is little
2546          * guarantee it'll get a tick in a timely manner.
2547          */
2548         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2549                 perf_log_throttle(event, 1);
2550                 event->hw.interrupts = 0;
2551         }
2552
2553         perf_pmu_disable(event->pmu);
2554
2555         perf_set_shadow_time(event, ctx);
2556
2557         perf_log_itrace_start(event);
2558
2559         if (event->pmu->add(event, PERF_EF_START)) {
2560                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2561                 event->oncpu = -1;
2562                 ret = -EAGAIN;
2563                 goto out;
2564         }
2565
2566         if (!is_software_event(event))
2567                 cpuctx->active_oncpu++;
2568         if (!ctx->nr_active++)
2569                 perf_event_ctx_activate(ctx);
2570         if (event->attr.freq && event->attr.sample_freq)
2571                 ctx->nr_freq++;
2572
2573         if (event->attr.exclusive)
2574                 cpuctx->exclusive = 1;
2575
2576 out:
2577         perf_pmu_enable(event->pmu);
2578
2579         return ret;
2580 }
2581
2582 static int
2583 group_sched_in(struct perf_event *group_event,
2584                struct perf_cpu_context *cpuctx,
2585                struct perf_event_context *ctx)
2586 {
2587         struct perf_event *event, *partial_group = NULL;
2588         struct pmu *pmu = ctx->pmu;
2589
2590         if (group_event->state == PERF_EVENT_STATE_OFF)
2591                 return 0;
2592
2593         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2594
2595         if (event_sched_in(group_event, cpuctx, ctx))
2596                 goto error;
2597
2598         /*
2599          * Schedule in siblings as one group (if any):
2600          */
2601         for_each_sibling_event(event, group_event) {
2602                 if (event_sched_in(event, cpuctx, ctx)) {
2603                         partial_group = event;
2604                         goto group_error;
2605                 }
2606         }
2607
2608         if (!pmu->commit_txn(pmu))
2609                 return 0;
2610
2611 group_error:
2612         /*
2613          * Groups can be scheduled in as one unit only, so undo any
2614          * partial group before returning:
2615          * The events up to the failed event are scheduled out normally.
2616          */
2617         for_each_sibling_event(event, group_event) {
2618                 if (event == partial_group)
2619                         break;
2620
2621                 event_sched_out(event, cpuctx, ctx);
2622         }
2623         event_sched_out(group_event, cpuctx, ctx);
2624
2625 error:
2626         pmu->cancel_txn(pmu);
2627         return -EAGAIN;
2628 }
2629
2630 /*
2631  * Work out whether we can put this event group on the CPU now.
2632  */
2633 static int group_can_go_on(struct perf_event *event,
2634                            struct perf_cpu_context *cpuctx,
2635                            int can_add_hw)
2636 {
2637         /*
2638          * Groups consisting entirely of software events can always go on.
2639          */
2640         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2641                 return 1;
2642         /*
2643          * If an exclusive group is already on, no other hardware
2644          * events can go on.
2645          */
2646         if (cpuctx->exclusive)
2647                 return 0;
2648         /*
2649          * If this group is exclusive and there are already
2650          * events on the CPU, it can't go on.
2651          */
2652         if (event->attr.exclusive && !list_empty(get_event_list(event)))
2653                 return 0;
2654         /*
2655          * Otherwise, try to add it if all previous groups were able
2656          * to go on.
2657          */
2658         return can_add_hw;
2659 }
2660
2661 static void add_event_to_ctx(struct perf_event *event,
2662                                struct perf_event_context *ctx)
2663 {
2664         list_add_event(event, ctx);
2665         perf_group_attach(event);
2666 }
2667
2668 static void ctx_sched_out(struct perf_event_context *ctx,
2669                           struct perf_cpu_context *cpuctx,
2670                           enum event_type_t event_type);
2671 static void
2672 ctx_sched_in(struct perf_event_context *ctx,
2673              struct perf_cpu_context *cpuctx,
2674              enum event_type_t event_type,
2675              struct task_struct *task);
2676
2677 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2678                                struct perf_event_context *ctx,
2679                                enum event_type_t event_type)
2680 {
2681         if (!cpuctx->task_ctx)
2682                 return;
2683
2684         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2685                 return;
2686
2687         ctx_sched_out(ctx, cpuctx, event_type);
2688 }
2689
2690 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2691                                 struct perf_event_context *ctx,
2692                                 struct task_struct *task)
2693 {
2694         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2695         if (ctx)
2696                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2697         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2698         if (ctx)
2699                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2700 }
2701
2702 /*
2703  * We want to maintain the following priority of scheduling:
2704  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2705  *  - task pinned (EVENT_PINNED)
2706  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2707  *  - task flexible (EVENT_FLEXIBLE).
2708  *
2709  * In order to avoid unscheduling and scheduling back in everything every
2710  * time an event is added, only do it for the groups of equal priority and
2711  * below.
2712  *
2713  * This can be called after a batch operation on task events, in which case
2714  * event_type is a bit mask of the types of events involved. For CPU events,
2715  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2716  */
2717 static void ctx_resched(struct perf_cpu_context *cpuctx,
2718                         struct perf_event_context *task_ctx,
2719                         enum event_type_t event_type)
2720 {
2721         enum event_type_t ctx_event_type;
2722         bool cpu_event = !!(event_type & EVENT_CPU);
2723
2724         /*
2725          * If pinned groups are involved, flexible groups also need to be
2726          * scheduled out.
2727          */
2728         if (event_type & EVENT_PINNED)
2729                 event_type |= EVENT_FLEXIBLE;
2730
2731         ctx_event_type = event_type & EVENT_ALL;
2732
2733         perf_pmu_disable(cpuctx->ctx.pmu);
2734         if (task_ctx)
2735                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2736
2737         /*
2738          * Decide which cpu ctx groups to schedule out based on the types
2739          * of events that caused rescheduling:
2740          *  - EVENT_CPU: schedule out corresponding groups;
2741          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2742          *  - otherwise, do nothing more.
2743          */
2744         if (cpu_event)
2745                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2746         else if (ctx_event_type & EVENT_PINNED)
2747                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2748
2749         perf_event_sched_in(cpuctx, task_ctx, current);
2750         perf_pmu_enable(cpuctx->ctx.pmu);
2751 }
2752
2753 void perf_pmu_resched(struct pmu *pmu)
2754 {
2755         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2756         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2757
2758         perf_ctx_lock(cpuctx, task_ctx);
2759         ctx_resched(cpuctx, task_ctx, EVENT_ALL|EVENT_CPU);
2760         perf_ctx_unlock(cpuctx, task_ctx);
2761 }
2762
2763 /*
2764  * Cross CPU call to install and enable a performance event
2765  *
2766  * Very similar to remote_function() + event_function() but cannot assume that
2767  * things like ctx->is_active and cpuctx->task_ctx are set.
2768  */
2769 static int  __perf_install_in_context(void *info)
2770 {
2771         struct perf_event *event = info;
2772         struct perf_event_context *ctx = event->ctx;
2773         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2774         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2775         bool reprogram = true;
2776         int ret = 0;
2777
2778         raw_spin_lock(&cpuctx->ctx.lock);
2779         if (ctx->task) {
2780                 raw_spin_lock(&ctx->lock);
2781                 task_ctx = ctx;
2782
2783                 reprogram = (ctx->task == current);
2784
2785                 /*
2786                  * If the task is running, it must be running on this CPU,
2787                  * otherwise we cannot reprogram things.
2788                  *
2789                  * If its not running, we don't care, ctx->lock will
2790                  * serialize against it becoming runnable.
2791                  */
2792                 if (task_curr(ctx->task) && !reprogram) {
2793                         ret = -ESRCH;
2794                         goto unlock;
2795                 }
2796
2797                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2798         } else if (task_ctx) {
2799                 raw_spin_lock(&task_ctx->lock);
2800         }
2801
2802 #ifdef CONFIG_CGROUP_PERF
2803         if (event->state > PERF_EVENT_STATE_OFF && is_cgroup_event(event)) {
2804                 /*
2805                  * If the current cgroup doesn't match the event's
2806                  * cgroup, we should not try to schedule it.
2807                  */
2808                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2809                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2810                                         event->cgrp->css.cgroup);
2811         }
2812 #endif
2813
2814         if (reprogram) {
2815                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2816                 add_event_to_ctx(event, ctx);
2817                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2818         } else {
2819                 add_event_to_ctx(event, ctx);
2820         }
2821
2822 unlock:
2823         perf_ctx_unlock(cpuctx, task_ctx);
2824
2825         return ret;
2826 }
2827
2828 static bool exclusive_event_installable(struct perf_event *event,
2829                                         struct perf_event_context *ctx);
2830
2831 /*
2832  * Attach a performance event to a context.
2833  *
2834  * Very similar to event_function_call, see comment there.
2835  */
2836 static void
2837 perf_install_in_context(struct perf_event_context *ctx,
2838                         struct perf_event *event,
2839                         int cpu)
2840 {
2841         struct task_struct *task = READ_ONCE(ctx->task);
2842
2843         lockdep_assert_held(&ctx->mutex);
2844
2845         WARN_ON_ONCE(!exclusive_event_installable(event, ctx));
2846
2847         if (event->cpu != -1)
2848                 event->cpu = cpu;
2849
2850         /*
2851          * Ensures that if we can observe event->ctx, both the event and ctx
2852          * will be 'complete'. See perf_iterate_sb_cpu().
2853          */
2854         smp_store_release(&event->ctx, ctx);
2855
2856         /*
2857          * perf_event_attr::disabled events will not run and can be initialized
2858          * without IPI. Except when this is the first event for the context, in
2859          * that case we need the magic of the IPI to set ctx->is_active.
2860          *
2861          * The IOC_ENABLE that is sure to follow the creation of a disabled
2862          * event will issue the IPI and reprogram the hardware.
2863          */
2864         if (__perf_effective_state(event) == PERF_EVENT_STATE_OFF && ctx->nr_events) {
2865                 raw_spin_lock_irq(&ctx->lock);
2866                 if (ctx->task == TASK_TOMBSTONE) {
2867                         raw_spin_unlock_irq(&ctx->lock);
2868                         return;
2869                 }
2870                 add_event_to_ctx(event, ctx);
2871                 raw_spin_unlock_irq(&ctx->lock);
2872                 return;
2873         }
2874
2875         if (!task) {
2876                 cpu_function_call(cpu, __perf_install_in_context, event);
2877                 return;
2878         }
2879
2880         /*
2881          * Should not happen, we validate the ctx is still alive before calling.
2882          */
2883         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2884                 return;
2885
2886         /*
2887          * Installing events is tricky because we cannot rely on ctx->is_active
2888          * to be set in case this is the nr_events 0 -> 1 transition.
2889          *
2890          * Instead we use task_curr(), which tells us if the task is running.
2891          * However, since we use task_curr() outside of rq::lock, we can race
2892          * against the actual state. This means the result can be wrong.
2893          *
2894          * If we get a false positive, we retry, this is harmless.
2895          *
2896          * If we get a false negative, things are complicated. If we are after
2897          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2898          * value must be correct. If we're before, it doesn't matter since
2899          * perf_event_context_sched_in() will program the counter.
2900          *
2901          * However, this hinges on the remote context switch having observed
2902          * our task->perf_event_ctxp[] store, such that it will in fact take
2903          * ctx::lock in perf_event_context_sched_in().
2904          *
2905          * We do this by task_function_call(), if the IPI fails to hit the task
2906          * we know any future context switch of task must see the
2907          * perf_event_ctpx[] store.
2908          */
2909
2910         /*
2911          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2912          * task_cpu() load, such that if the IPI then does not find the task
2913          * running, a future context switch of that task must observe the
2914          * store.
2915          */
2916         smp_mb();
2917 again:
2918         if (!task_function_call(task, __perf_install_in_context, event))
2919                 return;
2920
2921         raw_spin_lock_irq(&ctx->lock);
2922         task = ctx->task;
2923         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2924                 /*
2925                  * Cannot happen because we already checked above (which also
2926                  * cannot happen), and we hold ctx->mutex, which serializes us
2927                  * against perf_event_exit_task_context().
2928                  */
2929                 raw_spin_unlock_irq(&ctx->lock);
2930                 return;
2931         }
2932         /*
2933          * If the task is not running, ctx->lock will avoid it becoming so,
2934          * thus we can safely install the event.
2935          */
2936         if (task_curr(task)) {
2937                 raw_spin_unlock_irq(&ctx->lock);
2938                 goto again;
2939         }
2940         add_event_to_ctx(event, ctx);
2941         raw_spin_unlock_irq(&ctx->lock);
2942 }
2943
2944 /*
2945  * Cross CPU call to enable a performance event
2946  */
2947 static void __perf_event_enable(struct perf_event *event,
2948                                 struct perf_cpu_context *cpuctx,
2949                                 struct perf_event_context *ctx,
2950                                 void *info)
2951 {
2952         struct perf_event *leader = event->group_leader;
2953         struct perf_event_context *task_ctx;
2954
2955         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2956             event->state <= PERF_EVENT_STATE_ERROR)
2957                 return;
2958
2959         if (ctx->is_active)
2960                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2961
2962         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2963         perf_cgroup_event_enable(event, ctx);
2964
2965         if (!ctx->is_active)
2966                 return;
2967
2968         if (!event_filter_match(event)) {
2969                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2970                 return;
2971         }
2972
2973         /*
2974          * If the event is in a group and isn't the group leader,
2975          * then don't put it on unless the group is on.
2976          */
2977         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2978                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2979                 return;
2980         }
2981
2982         task_ctx = cpuctx->task_ctx;
2983         if (ctx->task)
2984                 WARN_ON_ONCE(task_ctx != ctx);
2985
2986         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2987 }
2988
2989 /*
2990  * Enable an event.
2991  *
2992  * If event->ctx is a cloned context, callers must make sure that
2993  * every task struct that event->ctx->task could possibly point to
2994  * remains valid.  This condition is satisfied when called through
2995  * perf_event_for_each_child or perf_event_for_each as described
2996  * for perf_event_disable.
2997  */
2998 static void _perf_event_enable(struct perf_event *event)
2999 {
3000         struct perf_event_context *ctx = event->ctx;
3001
3002         raw_spin_lock_irq(&ctx->lock);
3003         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
3004             event->state <  PERF_EVENT_STATE_ERROR) {
3005 out:
3006                 raw_spin_unlock_irq(&ctx->lock);
3007                 return;
3008         }
3009
3010         /*
3011          * If the event is in error state, clear that first.
3012          *
3013          * That way, if we see the event in error state below, we know that it
3014          * has gone back into error state, as distinct from the task having
3015          * been scheduled away before the cross-call arrived.
3016          */
3017         if (event->state == PERF_EVENT_STATE_ERROR) {
3018                 /*
3019                  * Detached SIBLING events cannot leave ERROR state.
3020                  */
3021                 if (event->event_caps & PERF_EV_CAP_SIBLING &&
3022                     event->group_leader == event)
3023                         goto out;
3024
3025                 event->state = PERF_EVENT_STATE_OFF;
3026         }
3027         raw_spin_unlock_irq(&ctx->lock);
3028
3029         event_function_call(event, __perf_event_enable, NULL);
3030 }
3031
3032 /*
3033  * See perf_event_disable();
3034  */
3035 void perf_event_enable(struct perf_event *event)
3036 {
3037         struct perf_event_context *ctx;
3038
3039         ctx = perf_event_ctx_lock(event);
3040         _perf_event_enable(event);
3041         perf_event_ctx_unlock(event, ctx);
3042 }
3043 EXPORT_SYMBOL_GPL(perf_event_enable);
3044
3045 struct stop_event_data {
3046         struct perf_event       *event;
3047         unsigned int            restart;
3048 };
3049
3050 static int __perf_event_stop(void *info)
3051 {
3052         struct stop_event_data *sd = info;
3053         struct perf_event *event = sd->event;
3054
3055         /* if it's already INACTIVE, do nothing */
3056         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3057                 return 0;
3058
3059         /* matches smp_wmb() in event_sched_in() */
3060         smp_rmb();
3061
3062         /*
3063          * There is a window with interrupts enabled before we get here,
3064          * so we need to check again lest we try to stop another CPU's event.
3065          */
3066         if (READ_ONCE(event->oncpu) != smp_processor_id())
3067                 return -EAGAIN;
3068
3069         event->pmu->stop(event, PERF_EF_UPDATE);
3070
3071         /*
3072          * May race with the actual stop (through perf_pmu_output_stop()),
3073          * but it is only used for events with AUX ring buffer, and such
3074          * events will refuse to restart because of rb::aux_mmap_count==0,
3075          * see comments in perf_aux_output_begin().
3076          *
3077          * Since this is happening on an event-local CPU, no trace is lost
3078          * while restarting.
3079          */
3080         if (sd->restart)
3081                 event->pmu->start(event, 0);
3082
3083         return 0;
3084 }
3085
3086 static int perf_event_stop(struct perf_event *event, int restart)
3087 {
3088         struct stop_event_data sd = {
3089                 .event          = event,
3090                 .restart        = restart,
3091         };
3092         int ret = 0;
3093
3094         do {
3095                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
3096                         return 0;
3097
3098                 /* matches smp_wmb() in event_sched_in() */
3099                 smp_rmb();
3100
3101                 /*
3102                  * We only want to restart ACTIVE events, so if the event goes
3103                  * inactive here (event->oncpu==-1), there's nothing more to do;
3104                  * fall through with ret==-ENXIO.
3105                  */
3106                 ret = cpu_function_call(READ_ONCE(event->oncpu),
3107                                         __perf_event_stop, &sd);
3108         } while (ret == -EAGAIN);
3109
3110         return ret;
3111 }
3112
3113 /*
3114  * In order to contain the amount of racy and tricky in the address filter
3115  * configuration management, it is a two part process:
3116  *
3117  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3118  *      we update the addresses of corresponding vmas in
3119  *      event::addr_filter_ranges array and bump the event::addr_filters_gen;
3120  * (p2) when an event is scheduled in (pmu::add), it calls
3121  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3122  *      if the generation has changed since the previous call.
3123  *
3124  * If (p1) happens while the event is active, we restart it to force (p2).
3125  *
3126  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3127  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
3128  *     ioctl;
3129  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3130  *     registered mapping, called for every new mmap(), with mm::mmap_lock down
3131  *     for reading;
3132  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3133  *     of exec.
3134  */
3135 void perf_event_addr_filters_sync(struct perf_event *event)
3136 {
3137         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
3138
3139         if (!has_addr_filter(event))
3140                 return;
3141
3142         raw_spin_lock(&ifh->lock);
3143         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
3144                 event->pmu->addr_filters_sync(event);
3145                 event->hw.addr_filters_gen = event->addr_filters_gen;
3146         }
3147         raw_spin_unlock(&ifh->lock);
3148 }
3149 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
3150
3151 static int _perf_event_refresh(struct perf_event *event, int refresh)
3152 {
3153         /*
3154          * not supported on inherited events
3155          */
3156         if (event->attr.inherit || !is_sampling_event(event))
3157                 return -EINVAL;
3158
3159         atomic_add(refresh, &event->event_limit);
3160         _perf_event_enable(event);
3161
3162         return 0;
3163 }
3164
3165 /*
3166  * See perf_event_disable()
3167  */
3168 int perf_event_refresh(struct perf_event *event, int refresh)
3169 {
3170         struct perf_event_context *ctx;
3171         int ret;
3172
3173         ctx = perf_event_ctx_lock(event);
3174         ret = _perf_event_refresh(event, refresh);
3175         perf_event_ctx_unlock(event, ctx);
3176
3177         return ret;
3178 }
3179 EXPORT_SYMBOL_GPL(perf_event_refresh);
3180
3181 static int perf_event_modify_breakpoint(struct perf_event *bp,
3182                                          struct perf_event_attr *attr)
3183 {
3184         int err;
3185
3186         _perf_event_disable(bp);
3187
3188         err = modify_user_hw_breakpoint_check(bp, attr, true);
3189
3190         if (!bp->attr.disabled)
3191                 _perf_event_enable(bp);
3192
3193         return err;
3194 }
3195
3196 static int perf_event_modify_attr(struct perf_event *event,
3197                                   struct perf_event_attr *attr)
3198 {
3199         int (*func)(struct perf_event *, struct perf_event_attr *);
3200         struct perf_event *child;
3201         int err;
3202
3203         if (event->attr.type != attr->type)
3204                 return -EINVAL;
3205
3206         switch (event->attr.type) {
3207         case PERF_TYPE_BREAKPOINT:
3208                 func = perf_event_modify_breakpoint;
3209                 break;
3210         default:
3211                 /* Place holder for future additions. */
3212                 return -EOPNOTSUPP;
3213         }
3214
3215         WARN_ON_ONCE(event->ctx->parent_ctx);
3216
3217         mutex_lock(&event->child_mutex);
3218         err = func(event, attr);
3219         if (err)
3220                 goto out;
3221         list_for_each_entry(child, &event->child_list, child_list) {
3222                 err = func(child, attr);
3223                 if (err)
3224                         goto out;
3225         }
3226 out:
3227         mutex_unlock(&event->child_mutex);
3228         return err;
3229 }
3230
3231 static void ctx_sched_out(struct perf_event_context *ctx,
3232                           struct perf_cpu_context *cpuctx,
3233                           enum event_type_t event_type)
3234 {
3235         struct perf_event *event, *tmp;
3236         int is_active = ctx->is_active;
3237
3238         lockdep_assert_held(&ctx->lock);
3239
3240         if (likely(!ctx->nr_events)) {
3241                 /*
3242                  * See __perf_remove_from_context().
3243                  */
3244                 WARN_ON_ONCE(ctx->is_active);
3245                 if (ctx->task)
3246                         WARN_ON_ONCE(cpuctx->task_ctx);
3247                 return;
3248         }
3249
3250         ctx->is_active &= ~event_type;
3251         if (!(ctx->is_active & EVENT_ALL))
3252                 ctx->is_active = 0;
3253
3254         if (ctx->task) {
3255                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3256                 if (!ctx->is_active)
3257                         cpuctx->task_ctx = NULL;
3258         }
3259
3260         /*
3261          * Always update time if it was set; not only when it changes.
3262          * Otherwise we can 'forget' to update time for any but the last
3263          * context we sched out. For example:
3264          *
3265          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3266          *   ctx_sched_out(.event_type = EVENT_PINNED)
3267          *
3268          * would only update time for the pinned events.
3269          */
3270         if (is_active & EVENT_TIME) {
3271                 /* update (and stop) ctx time */
3272                 update_context_time(ctx);
3273                 update_cgrp_time_from_cpuctx(cpuctx);
3274         }
3275
3276         is_active ^= ctx->is_active; /* changed bits */
3277
3278         if (!ctx->nr_active || !(is_active & EVENT_ALL))
3279                 return;
3280
3281         perf_pmu_disable(ctx->pmu);
3282         if (is_active & EVENT_PINNED) {
3283                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
3284                         group_sched_out(event, cpuctx, ctx);
3285         }
3286
3287         if (is_active & EVENT_FLEXIBLE) {
3288                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
3289                         group_sched_out(event, cpuctx, ctx);
3290
3291                 /*
3292                  * Since we cleared EVENT_FLEXIBLE, also clear
3293                  * rotate_necessary, is will be reset by
3294                  * ctx_flexible_sched_in() when needed.
3295                  */
3296                 ctx->rotate_necessary = 0;
3297         }
3298         perf_pmu_enable(ctx->pmu);
3299 }
3300
3301 /*
3302  * Test whether two contexts are equivalent, i.e. whether they have both been
3303  * cloned from the same version of the same context.
3304  *
3305  * Equivalence is measured using a generation number in the context that is
3306  * incremented on each modification to it; see unclone_ctx(), list_add_event()
3307  * and list_del_event().
3308  */
3309 static int context_equiv(struct perf_event_context *ctx1,
3310                          struct perf_event_context *ctx2)
3311 {
3312         lockdep_assert_held(&ctx1->lock);
3313         lockdep_assert_held(&ctx2->lock);
3314
3315         /* Pinning disables the swap optimization */
3316         if (ctx1->pin_count || ctx2->pin_count)
3317                 return 0;
3318
3319         /* If ctx1 is the parent of ctx2 */
3320         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
3321                 return 1;
3322
3323         /* If ctx2 is the parent of ctx1 */
3324         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
3325                 return 1;
3326
3327         /*
3328          * If ctx1 and ctx2 have the same parent; we flatten the parent
3329          * hierarchy, see perf_event_init_context().
3330          */
3331         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
3332                         ctx1->parent_gen == ctx2->parent_gen)
3333                 return 1;
3334
3335         /* Unmatched */
3336         return 0;
3337 }
3338
3339 static void __perf_event_sync_stat(struct perf_event *event,
3340                                      struct perf_event *next_event)
3341 {
3342         u64 value;
3343
3344         if (!event->attr.inherit_stat)
3345                 return;
3346
3347         /*
3348          * Update the event value, we cannot use perf_event_read()
3349          * because we're in the middle of a context switch and have IRQs
3350          * disabled, which upsets smp_call_function_single(), however
3351          * we know the event must be on the current CPU, therefore we
3352          * don't need to use it.
3353          */
3354         if (event->state == PERF_EVENT_STATE_ACTIVE)
3355                 event->pmu->read(event);
3356
3357         perf_event_update_time(event);
3358
3359         /*
3360          * In order to keep per-task stats reliable we need to flip the event
3361          * values when we flip the contexts.
3362          */
3363         value = local64_read(&next_event->count);
3364         value = local64_xchg(&event->count, value);
3365         local64_set(&next_event->count, value);
3366
3367         swap(event->total_time_enabled, next_event->total_time_enabled);
3368         swap(event->total_time_running, next_event->total_time_running);
3369
3370         /*
3371          * Since we swizzled the values, update the user visible data too.
3372          */
3373         perf_event_update_userpage(event);
3374         perf_event_update_userpage(next_event);
3375 }
3376
3377 static void perf_event_sync_stat(struct perf_event_context *ctx,
3378                                    struct perf_event_context *next_ctx)
3379 {
3380         struct perf_event *event, *next_event;
3381
3382         if (!ctx->nr_stat)
3383                 return;
3384
3385         update_context_time(ctx);
3386
3387         event = list_first_entry(&ctx->event_list,
3388                                    struct perf_event, event_entry);
3389
3390         next_event = list_first_entry(&next_ctx->event_list,
3391                                         struct perf_event, event_entry);
3392
3393         while (&event->event_entry != &ctx->event_list &&
3394                &next_event->event_entry != &next_ctx->event_list) {
3395
3396                 __perf_event_sync_stat(event, next_event);
3397
3398                 event = list_next_entry(event, event_entry);
3399                 next_event = list_next_entry(next_event, event_entry);
3400         }
3401 }
3402
3403 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3404                                          struct task_struct *next)
3405 {
3406         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3407         struct perf_event_context *next_ctx;
3408         struct perf_event_context *parent, *next_parent;
3409         struct perf_cpu_context *cpuctx;
3410         int do_switch = 1;
3411         struct pmu *pmu;
3412
3413         if (likely(!ctx))
3414                 return;
3415
3416         pmu = ctx->pmu;
3417         cpuctx = __get_cpu_context(ctx);
3418         if (!cpuctx->task_ctx)
3419                 return;
3420
3421         rcu_read_lock();
3422         next_ctx = next->perf_event_ctxp[ctxn];
3423         if (!next_ctx)
3424                 goto unlock;
3425
3426         parent = rcu_dereference(ctx->parent_ctx);
3427         next_parent = rcu_dereference(next_ctx->parent_ctx);
3428
3429         /* If neither context have a parent context; they cannot be clones. */
3430         if (!parent && !next_parent)
3431                 goto unlock;
3432
3433         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3434                 /*
3435                  * Looks like the two contexts are clones, so we might be
3436                  * able to optimize the context switch.  We lock both
3437                  * contexts and check that they are clones under the
3438                  * lock (including re-checking that neither has been
3439                  * uncloned in the meantime).  It doesn't matter which
3440                  * order we take the locks because no other cpu could
3441                  * be trying to lock both of these tasks.
3442                  */
3443                 raw_spin_lock(&ctx->lock);
3444                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3445                 if (context_equiv(ctx, next_ctx)) {
3446
3447                         WRITE_ONCE(ctx->task, next);
3448                         WRITE_ONCE(next_ctx->task, task);
3449
3450                         perf_pmu_disable(pmu);
3451
3452                         if (cpuctx->sched_cb_usage && pmu->sched_task)
3453                                 pmu->sched_task(ctx, false);
3454
3455                         /*
3456                          * PMU specific parts of task perf context can require
3457                          * additional synchronization. As an example of such
3458                          * synchronization see implementation details of Intel
3459                          * LBR call stack data profiling;
3460                          */
3461                         if (pmu->swap_task_ctx)
3462                                 pmu->swap_task_ctx(ctx, next_ctx);
3463                         else
3464                                 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3465
3466                         perf_pmu_enable(pmu);
3467
3468                         /*
3469                          * RCU_INIT_POINTER here is safe because we've not
3470                          * modified the ctx and the above modification of
3471                          * ctx->task and ctx->task_ctx_data are immaterial
3472                          * since those values are always verified under
3473                          * ctx->lock which we're now holding.
3474                          */
3475                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3476                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3477
3478                         do_switch = 0;
3479
3480                         perf_event_sync_stat(ctx, next_ctx);
3481                 }
3482                 raw_spin_unlock(&next_ctx->lock);
3483                 raw_spin_unlock(&ctx->lock);
3484         }
3485 unlock:
3486         rcu_read_unlock();
3487
3488         if (do_switch) {
3489                 raw_spin_lock(&ctx->lock);
3490                 perf_pmu_disable(pmu);
3491
3492                 if (cpuctx->sched_cb_usage && pmu->sched_task)
3493                         pmu->sched_task(ctx, false);
3494                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3495
3496                 perf_pmu_enable(pmu);
3497                 raw_spin_unlock(&ctx->lock);
3498         }
3499 }
3500
3501 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3502
3503 void perf_sched_cb_dec(struct pmu *pmu)
3504 {
3505         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3506
3507         this_cpu_dec(perf_sched_cb_usages);
3508
3509         if (!--cpuctx->sched_cb_usage)
3510                 list_del(&cpuctx->sched_cb_entry);
3511 }
3512
3513
3514 void perf_sched_cb_inc(struct pmu *pmu)
3515 {
3516         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3517
3518         if (!cpuctx->sched_cb_usage++)
3519                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3520
3521         this_cpu_inc(perf_sched_cb_usages);
3522 }
3523
3524 /*
3525  * This function provides the context switch callback to the lower code
3526  * layer. It is invoked ONLY when the context switch callback is enabled.
3527  *
3528  * This callback is relevant even to per-cpu events; for example multi event
3529  * PEBS requires this to provide PID/TID information. This requires we flush
3530  * all queued PEBS records before we context switch to a new task.
3531  */
3532 static void __perf_pmu_sched_task(struct perf_cpu_context *cpuctx, bool sched_in)
3533 {
3534         struct pmu *pmu;
3535
3536         pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3537
3538         if (WARN_ON_ONCE(!pmu->sched_task))
3539                 return;
3540
3541         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3542         perf_pmu_disable(pmu);
3543
3544         pmu->sched_task(cpuctx->task_ctx, sched_in);
3545
3546         perf_pmu_enable(pmu);
3547         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3548 }
3549
3550 static void perf_pmu_sched_task(struct task_struct *prev,
3551                                 struct task_struct *next,
3552                                 bool sched_in)
3553 {
3554         struct perf_cpu_context *cpuctx;
3555
3556         if (prev == next)
3557                 return;
3558
3559         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3560                 /* will be handled in perf_event_context_sched_in/out */
3561                 if (cpuctx->task_ctx)
3562                         continue;
3563
3564                 __perf_pmu_sched_task(cpuctx, sched_in);
3565         }
3566 }
3567
3568 static void perf_event_switch(struct task_struct *task,
3569                               struct task_struct *next_prev, bool sched_in);
3570
3571 #define for_each_task_context_nr(ctxn)                                  \
3572         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3573
3574 /*
3575  * Called from scheduler to remove the events of the current task,
3576  * with interrupts disabled.
3577  *
3578  * We stop each event and update the event value in event->count.
3579  *
3580  * This does not protect us against NMI, but disable()
3581  * sets the disabled bit in the control field of event _before_
3582  * accessing the event control register. If a NMI hits, then it will
3583  * not restart the event.
3584  */
3585 void __perf_event_task_sched_out(struct task_struct *task,
3586                                  struct task_struct *next)
3587 {
3588         int ctxn;
3589
3590         if (__this_cpu_read(perf_sched_cb_usages))
3591                 perf_pmu_sched_task(task, next, false);
3592
3593         if (atomic_read(&nr_switch_events))
3594                 perf_event_switch(task, next, false);
3595
3596         for_each_task_context_nr(ctxn)
3597                 perf_event_context_sched_out(task, ctxn, next);
3598
3599         /*
3600          * if cgroup events exist on this CPU, then we need
3601          * to check if we have to switch out PMU state.
3602          * cgroup event are system-wide mode only
3603          */
3604         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3605                 perf_cgroup_sched_out(task, next);
3606 }
3607
3608 /*
3609  * Called with IRQs disabled
3610  */
3611 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3612                               enum event_type_t event_type)
3613 {
3614         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3615 }
3616
3617 static bool perf_less_group_idx(const void *l, const void *r)
3618 {
3619         const struct perf_event *le = *(const struct perf_event **)l;
3620         const struct perf_event *re = *(const struct perf_event **)r;
3621
3622         return le->group_index < re->group_index;
3623 }
3624
3625 static void swap_ptr(void *l, void *r)
3626 {
3627         void **lp = l, **rp = r;
3628
3629         swap(*lp, *rp);
3630 }
3631
3632 static const struct min_heap_callbacks perf_min_heap = {
3633         .elem_size = sizeof(struct perf_event *),
3634         .less = perf_less_group_idx,
3635         .swp = swap_ptr,
3636 };
3637
3638 static void __heap_add(struct min_heap *heap, struct perf_event *event)
3639 {
3640         struct perf_event **itrs = heap->data;
3641
3642         if (event) {
3643                 itrs[heap->nr] = event;
3644                 heap->nr++;
3645         }
3646 }
3647
3648 static noinline int visit_groups_merge(struct perf_cpu_context *cpuctx,
3649                                 struct perf_event_groups *groups, int cpu,
3650                                 int (*func)(struct perf_event *, void *),
3651                                 void *data)
3652 {
3653 #ifdef CONFIG_CGROUP_PERF
3654         struct cgroup_subsys_state *css = NULL;
3655 #endif
3656         /* Space for per CPU and/or any CPU event iterators. */
3657         struct perf_event *itrs[2];
3658         struct min_heap event_heap;
3659         struct perf_event **evt;
3660         int ret;
3661
3662         if (cpuctx) {
3663                 event_heap = (struct min_heap){
3664                         .data = cpuctx->heap,
3665                         .nr = 0,
3666                         .size = cpuctx->heap_size,
3667                 };
3668
3669                 lockdep_assert_held(&cpuctx->ctx.lock);
3670
3671 #ifdef CONFIG_CGROUP_PERF
3672                 if (cpuctx->cgrp)
3673                         css = &cpuctx->cgrp->css;
3674 #endif
3675         } else {
3676                 event_heap = (struct min_heap){
3677                         .data = itrs,
3678                         .nr = 0,
3679                         .size = ARRAY_SIZE(itrs),
3680                 };
3681                 /* Events not within a CPU context may be on any CPU. */
3682                 __heap_add(&event_heap, perf_event_groups_first(groups, -1, NULL));
3683         }
3684         evt = event_heap.data;
3685
3686         __heap_add(&event_heap, perf_event_groups_first(groups, cpu, NULL));
3687
3688 #ifdef CONFIG_CGROUP_PERF
3689         for (; css; css = css->parent)
3690                 __heap_add(&event_heap, perf_event_groups_first(groups, cpu, css->cgroup));
3691 #endif
3692
3693         min_heapify_all(&event_heap, &perf_min_heap);
3694
3695         while (event_heap.nr) {
3696                 ret = func(*evt, data);
3697                 if (ret)
3698                         return ret;
3699
3700                 *evt = perf_event_groups_next(*evt);
3701                 if (*evt)
3702                         min_heapify(&event_heap, 0, &perf_min_heap);
3703                 else
3704                         min_heap_pop(&event_heap, &perf_min_heap);
3705         }
3706
3707         return 0;
3708 }
3709
3710 static inline bool event_update_userpage(struct perf_event *event)
3711 {
3712         if (likely(!atomic_read(&event->mmap_count)))
3713                 return false;
3714
3715         perf_event_update_time(event);
3716         perf_set_shadow_time(event, event->ctx);
3717         perf_event_update_userpage(event);
3718
3719         return true;
3720 }
3721
3722 static inline void group_update_userpage(struct perf_event *group_event)
3723 {
3724         struct perf_event *event;
3725
3726         if (!event_update_userpage(group_event))
3727                 return;
3728
3729         for_each_sibling_event(event, group_event)
3730                 event_update_userpage(event);
3731 }
3732
3733 static int merge_sched_in(struct perf_event *event, void *data)
3734 {
3735         struct perf_event_context *ctx = event->ctx;
3736         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3737         int *can_add_hw = data;
3738
3739         if (event->state <= PERF_EVENT_STATE_OFF)
3740                 return 0;
3741
3742         if (!event_filter_match(event))
3743                 return 0;
3744
3745         if (group_can_go_on(event, cpuctx, *can_add_hw)) {
3746                 if (!group_sched_in(event, cpuctx, ctx))
3747                         list_add_tail(&event->active_list, get_event_list(event));
3748         }
3749
3750         if (event->state == PERF_EVENT_STATE_INACTIVE) {
3751                 *can_add_hw = 0;
3752                 if (event->attr.pinned) {
3753                         perf_cgroup_event_disable(event, ctx);
3754                         perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3755                 } else {
3756                         ctx->rotate_necessary = 1;
3757                         perf_mux_hrtimer_restart(cpuctx);
3758                         group_update_userpage(event);
3759                 }
3760         }
3761
3762         return 0;
3763 }
3764
3765 static void
3766 ctx_pinned_sched_in(struct perf_event_context *ctx,
3767                     struct perf_cpu_context *cpuctx)
3768 {
3769         int can_add_hw = 1;
3770
3771         if (ctx != &cpuctx->ctx)
3772                 cpuctx = NULL;
3773
3774         visit_groups_merge(cpuctx, &ctx->pinned_groups,
3775                            smp_processor_id(),
3776                            merge_sched_in, &can_add_hw);
3777 }
3778
3779 static void
3780 ctx_flexible_sched_in(struct perf_event_context *ctx,
3781                       struct perf_cpu_context *cpuctx)
3782 {
3783         int can_add_hw = 1;
3784
3785         if (ctx != &cpuctx->ctx)
3786                 cpuctx = NULL;
3787
3788         visit_groups_merge(cpuctx, &ctx->flexible_groups,
3789                            smp_processor_id(),
3790                            merge_sched_in, &can_add_hw);
3791 }
3792
3793 static void
3794 ctx_sched_in(struct perf_event_context *ctx,
3795              struct perf_cpu_context *cpuctx,
3796              enum event_type_t event_type,
3797              struct task_struct *task)
3798 {
3799         int is_active = ctx->is_active;
3800         u64 now;
3801
3802         lockdep_assert_held(&ctx->lock);
3803
3804         if (likely(!ctx->nr_events))
3805                 return;
3806
3807         ctx->is_active |= (event_type | EVENT_TIME);
3808         if (ctx->task) {
3809                 if (!is_active)
3810                         cpuctx->task_ctx = ctx;
3811                 else
3812                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3813         }
3814
3815         is_active ^= ctx->is_active; /* changed bits */
3816
3817         if (is_active & EVENT_TIME) {
3818                 /* start ctx time */
3819                 now = perf_clock();
3820                 ctx->timestamp = now;
3821                 perf_cgroup_set_timestamp(task, ctx);
3822         }
3823
3824         /*
3825          * First go through the list and put on any pinned groups
3826          * in order to give them the best chance of going on.
3827          */
3828         if (is_active & EVENT_PINNED)
3829                 ctx_pinned_sched_in(ctx, cpuctx);
3830
3831         /* Then walk through the lower prio flexible groups */
3832         if (is_active & EVENT_FLEXIBLE)
3833                 ctx_flexible_sched_in(ctx, cpuctx);
3834 }
3835
3836 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3837                              enum event_type_t event_type,
3838                              struct task_struct *task)
3839 {
3840         struct perf_event_context *ctx = &cpuctx->ctx;
3841
3842         ctx_sched_in(ctx, cpuctx, event_type, task);
3843 }
3844
3845 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3846                                         struct task_struct *task)
3847 {
3848         struct perf_cpu_context *cpuctx;
3849         struct pmu *pmu;
3850
3851         cpuctx = __get_cpu_context(ctx);
3852
3853         /*
3854          * HACK: for HETEROGENEOUS the task context might have switched to a
3855          * different PMU, force (re)set the context,
3856          */
3857         pmu = ctx->pmu = cpuctx->ctx.pmu;
3858
3859         if (cpuctx->task_ctx == ctx) {
3860                 if (cpuctx->sched_cb_usage)
3861                         __perf_pmu_sched_task(cpuctx, true);
3862                 return;
3863         }
3864
3865         perf_ctx_lock(cpuctx, ctx);
3866         /*
3867          * We must check ctx->nr_events while holding ctx->lock, such
3868          * that we serialize against perf_install_in_context().
3869          */
3870         if (!ctx->nr_events)
3871                 goto unlock;
3872
3873         perf_pmu_disable(pmu);
3874         /*
3875          * We want to keep the following priority order:
3876          * cpu pinned (that don't need to move), task pinned,
3877          * cpu flexible, task flexible.
3878          *
3879          * However, if task's ctx is not carrying any pinned
3880          * events, no need to flip the cpuctx's events around.
3881          */
3882         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3883                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3884         perf_event_sched_in(cpuctx, ctx, task);
3885
3886         if (cpuctx->sched_cb_usage && pmu->sched_task)
3887                 pmu->sched_task(cpuctx->task_ctx, true);
3888
3889         perf_pmu_enable(pmu);
3890
3891 unlock:
3892         perf_ctx_unlock(cpuctx, ctx);
3893 }
3894
3895 /*
3896  * Called from scheduler to add the events of the current task
3897  * with interrupts disabled.
3898  *
3899  * We restore the event value and then enable it.
3900  *
3901  * This does not protect us against NMI, but enable()
3902  * sets the enabled bit in the control field of event _before_
3903  * accessing the event control register. If a NMI hits, then it will
3904  * keep the event running.
3905  */
3906 void __perf_event_task_sched_in(struct task_struct *prev,
3907                                 struct task_struct *task)
3908 {
3909         struct perf_event_context *ctx;
3910         int ctxn;
3911
3912         /*
3913          * If cgroup events exist on this CPU, then we need to check if we have
3914          * to switch in PMU state; cgroup event are system-wide mode only.
3915          *
3916          * Since cgroup events are CPU events, we must schedule these in before
3917          * we schedule in the task events.
3918          */
3919         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3920                 perf_cgroup_sched_in(prev, task);
3921
3922         for_each_task_context_nr(ctxn) {
3923                 ctx = task->perf_event_ctxp[ctxn];
3924                 if (likely(!ctx))
3925                         continue;
3926
3927                 perf_event_context_sched_in(ctx, task);
3928         }
3929
3930         if (atomic_read(&nr_switch_events))
3931                 perf_event_switch(task, prev, true);
3932
3933         if (__this_cpu_read(perf_sched_cb_usages))
3934                 perf_pmu_sched_task(prev, task, true);
3935 }
3936
3937 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3938 {
3939         u64 frequency = event->attr.sample_freq;
3940         u64 sec = NSEC_PER_SEC;
3941         u64 divisor, dividend;
3942
3943         int count_fls, nsec_fls, frequency_fls, sec_fls;
3944
3945         count_fls = fls64(count);
3946         nsec_fls = fls64(nsec);
3947         frequency_fls = fls64(frequency);
3948         sec_fls = 30;
3949
3950         /*
3951          * We got @count in @nsec, with a target of sample_freq HZ
3952          * the target period becomes:
3953          *
3954          *             @count * 10^9
3955          * period = -------------------
3956          *          @nsec * sample_freq
3957          *
3958          */
3959
3960         /*
3961          * Reduce accuracy by one bit such that @a and @b converge
3962          * to a similar magnitude.
3963          */
3964 #define REDUCE_FLS(a, b)                \
3965 do {                                    \
3966         if (a##_fls > b##_fls) {        \
3967                 a >>= 1;                \
3968                 a##_fls--;              \
3969         } else {                        \
3970                 b >>= 1;                \
3971                 b##_fls--;              \
3972         }                               \
3973 } while (0)
3974
3975         /*
3976          * Reduce accuracy until either term fits in a u64, then proceed with
3977          * the other, so that finally we can do a u64/u64 division.
3978          */
3979         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3980                 REDUCE_FLS(nsec, frequency);
3981                 REDUCE_FLS(sec, count);
3982         }
3983
3984         if (count_fls + sec_fls > 64) {
3985                 divisor = nsec * frequency;
3986
3987                 while (count_fls + sec_fls > 64) {
3988                         REDUCE_FLS(count, sec);
3989                         divisor >>= 1;
3990                 }
3991
3992                 dividend = count * sec;
3993         } else {
3994                 dividend = count * sec;
3995
3996                 while (nsec_fls + frequency_fls > 64) {
3997                         REDUCE_FLS(nsec, frequency);
3998                         dividend >>= 1;
3999                 }
4000
4001                 divisor = nsec * frequency;
4002         }
4003
4004         if (!divisor)
4005                 return dividend;
4006
4007         return div64_u64(dividend, divisor);
4008 }
4009
4010 static DEFINE_PER_CPU(int, perf_throttled_count);
4011 static DEFINE_PER_CPU(u64, perf_throttled_seq);
4012
4013 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
4014 {
4015         struct hw_perf_event *hwc = &event->hw;
4016         s64 period, sample_period;
4017         s64 delta;
4018
4019         period = perf_calculate_period(event, nsec, count);
4020
4021         delta = (s64)(period - hwc->sample_period);
4022         delta = (delta + 7) / 8; /* low pass filter */
4023
4024         sample_period = hwc->sample_period + delta;
4025
4026         if (!sample_period)
4027                 sample_period = 1;
4028
4029         hwc->sample_period = sample_period;
4030
4031         if (local64_read(&hwc->period_left) > 8*sample_period) {
4032                 if (disable)
4033                         event->pmu->stop(event, PERF_EF_UPDATE);
4034
4035                 local64_set(&hwc->period_left, 0);
4036
4037                 if (disable)
4038                         event->pmu->start(event, PERF_EF_RELOAD);
4039         }
4040 }
4041
4042 /*
4043  * combine freq adjustment with unthrottling to avoid two passes over the
4044  * events. At the same time, make sure, having freq events does not change
4045  * the rate of unthrottling as that would introduce bias.
4046  */
4047 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
4048                                            int needs_unthr)
4049 {
4050         struct perf_event *event;
4051         struct hw_perf_event *hwc;
4052         u64 now, period = TICK_NSEC;
4053         s64 delta;
4054
4055         /*
4056          * only need to iterate over all events iff:
4057          * - context have events in frequency mode (needs freq adjust)
4058          * - there are events to unthrottle on this cpu
4059          */
4060         if (!(ctx->nr_freq || needs_unthr))
4061                 return;
4062
4063         raw_spin_lock(&ctx->lock);
4064         perf_pmu_disable(ctx->pmu);
4065
4066         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4067                 if (event->state != PERF_EVENT_STATE_ACTIVE)
4068                         continue;
4069
4070                 if (!event_filter_match(event))
4071                         continue;
4072
4073                 perf_pmu_disable(event->pmu);
4074
4075                 hwc = &event->hw;
4076
4077                 if (hwc->interrupts == MAX_INTERRUPTS) {
4078                         hwc->interrupts = 0;
4079                         perf_log_throttle(event, 1);
4080                         event->pmu->start(event, 0);
4081                 }
4082
4083                 if (!event->attr.freq || !event->attr.sample_freq)
4084                         goto next;
4085
4086                 /*
4087                  * stop the event and update event->count
4088                  */
4089                 event->pmu->stop(event, PERF_EF_UPDATE);
4090
4091                 now = local64_read(&event->count);
4092                 delta = now - hwc->freq_count_stamp;
4093                 hwc->freq_count_stamp = now;
4094
4095                 /*
4096                  * restart the event
4097                  * reload only if value has changed
4098                  * we have stopped the event so tell that
4099                  * to perf_adjust_period() to avoid stopping it
4100                  * twice.
4101                  */
4102                 if (delta > 0)
4103                         perf_adjust_period(event, period, delta, false);
4104
4105                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
4106         next:
4107                 perf_pmu_enable(event->pmu);
4108         }
4109
4110         perf_pmu_enable(ctx->pmu);
4111         raw_spin_unlock(&ctx->lock);
4112 }
4113
4114 /*
4115  * Move @event to the tail of the @ctx's elegible events.
4116  */
4117 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
4118 {
4119         /*
4120          * Rotate the first entry last of non-pinned groups. Rotation might be
4121          * disabled by the inheritance code.
4122          */
4123         if (ctx->rotate_disable)
4124                 return;
4125
4126         perf_event_groups_delete(&ctx->flexible_groups, event);
4127         perf_event_groups_insert(&ctx->flexible_groups, event);
4128 }
4129
4130 /* pick an event from the flexible_groups to rotate */
4131 static inline struct perf_event *
4132 ctx_event_to_rotate(struct perf_event_context *ctx)
4133 {
4134         struct perf_event *event;
4135
4136         /* pick the first active flexible event */
4137         event = list_first_entry_or_null(&ctx->flexible_active,
4138                                          struct perf_event, active_list);
4139
4140         /* if no active flexible event, pick the first event */
4141         if (!event) {
4142                 event = rb_entry_safe(rb_first(&ctx->flexible_groups.tree),
4143                                       typeof(*event), group_node);
4144         }
4145
4146         /*
4147          * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4148          * finds there are unschedulable events, it will set it again.
4149          */
4150         ctx->rotate_necessary = 0;
4151
4152         return event;
4153 }
4154
4155 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
4156 {
4157         struct perf_event *cpu_event = NULL, *task_event = NULL;
4158         struct perf_event_context *task_ctx = NULL;
4159         int cpu_rotate, task_rotate;
4160
4161         /*
4162          * Since we run this from IRQ context, nobody can install new
4163          * events, thus the event count values are stable.
4164          */
4165
4166         cpu_rotate = cpuctx->ctx.rotate_necessary;
4167         task_ctx = cpuctx->task_ctx;
4168         task_rotate = task_ctx ? task_ctx->rotate_necessary : 0;
4169
4170         if (!(cpu_rotate || task_rotate))
4171                 return false;
4172
4173         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
4174         perf_pmu_disable(cpuctx->ctx.pmu);
4175
4176         if (task_rotate)
4177                 task_event = ctx_event_to_rotate(task_ctx);
4178         if (cpu_rotate)
4179                 cpu_event = ctx_event_to_rotate(&cpuctx->ctx);
4180
4181         /*
4182          * As per the order given at ctx_resched() first 'pop' task flexible
4183          * and then, if needed CPU flexible.
4184          */
4185         if (task_event || (task_ctx && cpu_event))
4186                 ctx_sched_out(task_ctx, cpuctx, EVENT_FLEXIBLE);
4187         if (cpu_event)
4188                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
4189
4190         if (task_event)
4191                 rotate_ctx(task_ctx, task_event);
4192         if (cpu_event)
4193                 rotate_ctx(&cpuctx->ctx, cpu_event);
4194
4195         perf_event_sched_in(cpuctx, task_ctx, current);
4196
4197         perf_pmu_enable(cpuctx->ctx.pmu);
4198         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
4199
4200         return true;
4201 }
4202
4203 void perf_event_task_tick(void)
4204 {
4205         struct list_head *head = this_cpu_ptr(&active_ctx_list);
4206         struct perf_event_context *ctx, *tmp;
4207         int throttled;
4208
4209         lockdep_assert_irqs_disabled();
4210
4211         __this_cpu_inc(perf_throttled_seq);
4212         throttled = __this_cpu_xchg(perf_throttled_count, 0);
4213         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
4214
4215         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
4216                 perf_adjust_freq_unthr_context(ctx, throttled);
4217 }
4218
4219 static int event_enable_on_exec(struct perf_event *event,
4220                                 struct perf_event_context *ctx)
4221 {
4222         if (!event->attr.enable_on_exec)
4223                 return 0;
4224
4225         event->attr.enable_on_exec = 0;
4226         if (event->state >= PERF_EVENT_STATE_INACTIVE)
4227                 return 0;
4228
4229         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
4230
4231         return 1;
4232 }
4233
4234 /*
4235  * Enable all of a task's events that have been marked enable-on-exec.
4236  * This expects task == current.
4237  */
4238 static void perf_event_enable_on_exec(int ctxn)
4239 {
4240         struct perf_event_context *ctx, *clone_ctx = NULL;
4241         enum event_type_t event_type = 0;
4242         struct perf_cpu_context *cpuctx;
4243         struct perf_event *event;
4244         unsigned long flags;
4245         int enabled = 0;
4246
4247         local_irq_save(flags);
4248         ctx = current->perf_event_ctxp[ctxn];
4249         if (!ctx || !ctx->nr_events)
4250                 goto out;
4251
4252         cpuctx = __get_cpu_context(ctx);
4253         perf_ctx_lock(cpuctx, ctx);
4254         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
4255         list_for_each_entry(event, &ctx->event_list, event_entry) {
4256                 enabled |= event_enable_on_exec(event, ctx);
4257                 event_type |= get_event_type(event);
4258         }
4259
4260         /*
4261          * Unclone and reschedule this context if we enabled any event.
4262          */
4263         if (enabled) {
4264                 clone_ctx = unclone_ctx(ctx);
4265                 ctx_resched(cpuctx, ctx, event_type);
4266         } else {
4267                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
4268         }
4269         perf_ctx_unlock(cpuctx, ctx);
4270
4271 out:
4272         local_irq_restore(flags);
4273
4274         if (clone_ctx)
4275                 put_ctx(clone_ctx);
4276 }
4277
4278 static void perf_remove_from_owner(struct perf_event *event);
4279 static void perf_event_exit_event(struct perf_event *event,
4280                                   struct perf_event_context *ctx);
4281
4282 /*
4283  * Removes all events from the current task that have been marked
4284  * remove-on-exec, and feeds their values back to parent events.
4285  */
4286 static void perf_event_remove_on_exec(int ctxn)
4287 {
4288         struct perf_event_context *ctx, *clone_ctx = NULL;
4289         struct perf_event *event, *next;
4290         LIST_HEAD(free_list);
4291         unsigned long flags;
4292         bool modified = false;
4293
4294         ctx = perf_pin_task_context(current, ctxn);
4295         if (!ctx)
4296                 return;
4297
4298         mutex_lock(&ctx->mutex);
4299
4300         if (WARN_ON_ONCE(ctx->task != current))
4301                 goto unlock;
4302
4303         list_for_each_entry_safe(event, next, &ctx->event_list, event_entry) {
4304                 if (!event->attr.remove_on_exec)
4305                         continue;
4306
4307                 if (!is_kernel_event(event))
4308                         perf_remove_from_owner(event);
4309
4310                 modified = true;
4311
4312                 perf_event_exit_event(event, ctx);
4313         }
4314
4315         raw_spin_lock_irqsave(&ctx->lock, flags);
4316         if (modified)
4317                 clone_ctx = unclone_ctx(ctx);
4318         --ctx->pin_count;
4319         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4320
4321 unlock:
4322         mutex_unlock(&ctx->mutex);
4323
4324         put_ctx(ctx);
4325         if (clone_ctx)
4326                 put_ctx(clone_ctx);
4327 }
4328
4329 struct perf_read_data {
4330         struct perf_event *event;
4331         bool group;
4332         int ret;
4333 };
4334
4335 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
4336 {
4337         u16 local_pkg, event_pkg;
4338
4339         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
4340                 int local_cpu = smp_processor_id();
4341
4342                 event_pkg = topology_physical_package_id(event_cpu);
4343                 local_pkg = topology_physical_package_id(local_cpu);
4344
4345                 if (event_pkg == local_pkg)
4346                         return local_cpu;
4347         }
4348
4349         return event_cpu;
4350 }
4351
4352 /*
4353  * Cross CPU call to read the hardware event
4354  */
4355 static void __perf_event_read(void *info)
4356 {
4357         struct perf_read_data *data = info;
4358         struct perf_event *sub, *event = data->event;
4359         struct perf_event_context *ctx = event->ctx;
4360         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4361         struct pmu *pmu = event->pmu;
4362
4363         /*
4364          * If this is a task context, we need to check whether it is
4365          * the current task context of this cpu.  If not it has been
4366          * scheduled out before the smp call arrived.  In that case
4367          * event->count would have been updated to a recent sample
4368          * when the event was scheduled out.
4369          */
4370         if (ctx->task && cpuctx->task_ctx != ctx)
4371                 return;
4372
4373         raw_spin_lock(&ctx->lock);
4374         if (ctx->is_active & EVENT_TIME) {
4375                 update_context_time(ctx);
4376                 update_cgrp_time_from_event(event);
4377         }
4378
4379         perf_event_update_time(event);
4380         if (data->group)
4381                 perf_event_update_sibling_time(event);
4382
4383         if (event->state != PERF_EVENT_STATE_ACTIVE)
4384                 goto unlock;
4385
4386         if (!data->group) {
4387                 pmu->read(event);
4388                 data->ret = 0;
4389                 goto unlock;
4390         }
4391
4392         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
4393
4394         pmu->read(event);
4395
4396         for_each_sibling_event(sub, event) {
4397                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
4398                         /*
4399                          * Use sibling's PMU rather than @event's since
4400                          * sibling could be on different (eg: software) PMU.
4401                          */
4402                         sub->pmu->read(sub);
4403                 }
4404         }
4405
4406         data->ret = pmu->commit_txn(pmu);
4407
4408 unlock:
4409         raw_spin_unlock(&ctx->lock);
4410 }
4411
4412 static inline u64 perf_event_count(struct perf_event *event)
4413 {
4414         return local64_read(&event->count) + atomic64_read(&event->child_count);
4415 }
4416
4417 /*
4418  * NMI-safe method to read a local event, that is an event that
4419  * is:
4420  *   - either for the current task, or for this CPU
4421  *   - does not have inherit set, for inherited task events
4422  *     will not be local and we cannot read them atomically
4423  *   - must not have a pmu::count method
4424  */
4425 int perf_event_read_local(struct perf_event *event, u64 *value,
4426                           u64 *enabled, u64 *running)
4427 {
4428         unsigned long flags;
4429         int ret = 0;
4430
4431         /*
4432          * Disabling interrupts avoids all counter scheduling (context
4433          * switches, timer based rotation and IPIs).
4434          */
4435         local_irq_save(flags);
4436
4437         /*
4438          * It must not be an event with inherit set, we cannot read
4439          * all child counters from atomic context.
4440          */
4441         if (event->attr.inherit) {
4442                 ret = -EOPNOTSUPP;
4443                 goto out;
4444         }
4445
4446         /* If this is a per-task event, it must be for current */
4447         if ((event->attach_state & PERF_ATTACH_TASK) &&
4448             event->hw.target != current) {
4449                 ret = -EINVAL;
4450                 goto out;
4451         }
4452
4453         /* If this is a per-CPU event, it must be for this CPU */
4454         if (!(event->attach_state & PERF_ATTACH_TASK) &&
4455             event->cpu != smp_processor_id()) {
4456                 ret = -EINVAL;
4457                 goto out;
4458         }
4459
4460         /* If this is a pinned event it must be running on this CPU */
4461         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
4462                 ret = -EBUSY;
4463                 goto out;
4464         }
4465
4466         /*
4467          * If the event is currently on this CPU, its either a per-task event,
4468          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4469          * oncpu == -1).
4470          */
4471         if (event->oncpu == smp_processor_id())
4472                 event->pmu->read(event);
4473
4474         *value = local64_read(&event->count);
4475         if (enabled || running) {
4476                 u64 now = event->shadow_ctx_time + perf_clock();
4477                 u64 __enabled, __running;
4478
4479                 __perf_update_times(event, now, &__enabled, &__running);
4480                 if (enabled)
4481                         *enabled = __enabled;
4482                 if (running)
4483                         *running = __running;
4484         }
4485 out:
4486         local_irq_restore(flags);
4487
4488         return ret;
4489 }
4490
4491 static int perf_event_read(struct perf_event *event, bool group)
4492 {
4493         enum perf_event_state state = READ_ONCE(event->state);
4494         int event_cpu, ret = 0;
4495
4496         /*
4497          * If event is enabled and currently active on a CPU, update the
4498          * value in the event structure:
4499          */
4500 again:
4501         if (state == PERF_EVENT_STATE_ACTIVE) {
4502                 struct perf_read_data data;
4503
4504                 /*
4505                  * Orders the ->state and ->oncpu loads such that if we see
4506                  * ACTIVE we must also see the right ->oncpu.
4507                  *
4508                  * Matches the smp_wmb() from event_sched_in().
4509                  */
4510                 smp_rmb();
4511
4512                 event_cpu = READ_ONCE(event->oncpu);
4513                 if ((unsigned)event_cpu >= nr_cpu_ids)
4514                         return 0;
4515
4516                 data = (struct perf_read_data){
4517                         .event = event,
4518                         .group = group,
4519                         .ret = 0,
4520                 };
4521
4522                 preempt_disable();
4523                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4524
4525                 /*
4526                  * Purposely ignore the smp_call_function_single() return
4527                  * value.
4528                  *
4529                  * If event_cpu isn't a valid CPU it means the event got
4530                  * scheduled out and that will have updated the event count.
4531                  *
4532                  * Therefore, either way, we'll have an up-to-date event count
4533                  * after this.
4534                  */
4535                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4536                 preempt_enable();
4537                 ret = data.ret;
4538
4539         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4540                 struct perf_event_context *ctx = event->ctx;
4541                 unsigned long flags;
4542
4543                 raw_spin_lock_irqsave(&ctx->lock, flags);
4544                 state = event->state;
4545                 if (state != PERF_EVENT_STATE_INACTIVE) {
4546                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4547                         goto again;
4548                 }
4549
4550                 /*
4551                  * May read while context is not active (e.g., thread is
4552                  * blocked), in that case we cannot update context time
4553                  */
4554                 if (ctx->is_active & EVENT_TIME) {
4555                         update_context_time(ctx);
4556                         update_cgrp_time_from_event(event);
4557                 }
4558
4559                 perf_event_update_time(event);
4560                 if (group)
4561                         perf_event_update_sibling_time(event);
4562                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4563         }
4564
4565         return ret;
4566 }
4567
4568 /*
4569  * Initialize the perf_event context in a task_struct:
4570  */
4571 static void __perf_event_init_context(struct perf_event_context *ctx)
4572 {
4573         raw_spin_lock_init(&ctx->lock);
4574         mutex_init(&ctx->mutex);
4575         INIT_LIST_HEAD(&ctx->active_ctx_list);
4576         perf_event_groups_init(&ctx->pinned_groups);
4577         perf_event_groups_init(&ctx->flexible_groups);
4578         INIT_LIST_HEAD(&ctx->event_list);
4579         INIT_LIST_HEAD(&ctx->pinned_active);
4580         INIT_LIST_HEAD(&ctx->flexible_active);
4581         refcount_set(&ctx->refcount, 1);
4582 }
4583
4584 static struct perf_event_context *
4585 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4586 {
4587         struct perf_event_context *ctx;
4588
4589         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4590         if (!ctx)
4591                 return NULL;
4592
4593         __perf_event_init_context(ctx);
4594         if (task)
4595                 ctx->task = get_task_struct(task);
4596         ctx->pmu = pmu;
4597
4598         return ctx;
4599 }
4600
4601 static struct task_struct *
4602 find_lively_task_by_vpid(pid_t vpid)
4603 {
4604         struct task_struct *task;
4605
4606         rcu_read_lock();
4607         if (!vpid)
4608                 task = current;
4609         else
4610                 task = find_task_by_vpid(vpid);
4611         if (task)
4612                 get_task_struct(task);
4613         rcu_read_unlock();
4614
4615         if (!task)
4616                 return ERR_PTR(-ESRCH);
4617
4618         return task;
4619 }
4620
4621 /*
4622  * Returns a matching context with refcount and pincount.
4623  */
4624 static struct perf_event_context *
4625 find_get_context(struct pmu *pmu, struct task_struct *task,
4626                 struct perf_event *event)
4627 {
4628         struct perf_event_context *ctx, *clone_ctx = NULL;
4629         struct perf_cpu_context *cpuctx;
4630         void *task_ctx_data = NULL;
4631         unsigned long flags;
4632         int ctxn, err;
4633         int cpu = event->cpu;
4634
4635         if (!task) {
4636                 /* Must be root to operate on a CPU event: */
4637                 err = perf_allow_cpu(&event->attr);
4638                 if (err)
4639                         return ERR_PTR(err);
4640
4641                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4642                 ctx = &cpuctx->ctx;
4643                 get_ctx(ctx);
4644                 raw_spin_lock_irqsave(&ctx->lock, flags);
4645                 ++ctx->pin_count;
4646                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4647
4648                 return ctx;
4649         }
4650
4651         err = -EINVAL;
4652         ctxn = pmu->task_ctx_nr;
4653         if (ctxn < 0)
4654                 goto errout;
4655
4656         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4657                 task_ctx_data = alloc_task_ctx_data(pmu);
4658                 if (!task_ctx_data) {
4659                         err = -ENOMEM;
4660                         goto errout;
4661                 }
4662         }
4663
4664 retry:
4665         ctx = perf_lock_task_context(task, ctxn, &flags);
4666         if (ctx) {
4667                 clone_ctx = unclone_ctx(ctx);
4668                 ++ctx->pin_count;
4669
4670                 if (task_ctx_data && !ctx->task_ctx_data) {
4671                         ctx->task_ctx_data = task_ctx_data;
4672                         task_ctx_data = NULL;
4673                 }
4674                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4675
4676                 if (clone_ctx)
4677                         put_ctx(clone_ctx);
4678         } else {
4679                 ctx = alloc_perf_context(pmu, task);
4680                 err = -ENOMEM;
4681                 if (!ctx)
4682                         goto errout;
4683
4684                 if (task_ctx_data) {
4685                         ctx->task_ctx_data = task_ctx_data;
4686                         task_ctx_data = NULL;
4687                 }
4688
4689                 err = 0;
4690                 mutex_lock(&task->perf_event_mutex);
4691                 /*
4692                  * If it has already passed perf_event_exit_task().
4693                  * we must see PF_EXITING, it takes this mutex too.
4694                  */
4695                 if (task->flags & PF_EXITING)
4696                         err = -ESRCH;
4697                 else if (task->perf_event_ctxp[ctxn])
4698                         err = -EAGAIN;
4699                 else {
4700                         get_ctx(ctx);
4701                         ++ctx->pin_count;
4702                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4703                 }
4704                 mutex_unlock(&task->perf_event_mutex);
4705
4706                 if (unlikely(err)) {
4707                         put_ctx(ctx);
4708
4709                         if (err == -EAGAIN)
4710                                 goto retry;
4711                         goto errout;
4712                 }
4713         }
4714
4715         free_task_ctx_data(pmu, task_ctx_data);
4716         return ctx;
4717
4718 errout:
4719         free_task_ctx_data(pmu, task_ctx_data);
4720         return ERR_PTR(err);
4721 }
4722
4723 static void perf_event_free_filter(struct perf_event *event);
4724
4725 static void free_event_rcu(struct rcu_head *head)
4726 {
4727         struct perf_event *event;
4728
4729         event = container_of(head, struct perf_event, rcu_head);
4730         if (event->ns)
4731                 put_pid_ns(event->ns);
4732         perf_event_free_filter(event);
4733         kmem_cache_free(perf_event_cache, event);
4734 }
4735
4736 static void ring_buffer_attach(struct perf_event *event,
4737                                struct perf_buffer *rb);
4738
4739 static void detach_sb_event(struct perf_event *event)
4740 {
4741         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4742
4743         raw_spin_lock(&pel->lock);
4744         list_del_rcu(&event->sb_list);
4745         raw_spin_unlock(&pel->lock);
4746 }
4747
4748 static bool is_sb_event(struct perf_event *event)
4749 {
4750         struct perf_event_attr *attr = &event->attr;
4751
4752         if (event->parent)
4753                 return false;
4754
4755         if (event->attach_state & PERF_ATTACH_TASK)
4756                 return false;
4757
4758         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4759             attr->comm || attr->comm_exec ||
4760             attr->task || attr->ksymbol ||
4761             attr->context_switch || attr->text_poke ||
4762             attr->bpf_event)
4763                 return true;
4764         return false;
4765 }
4766
4767 static void unaccount_pmu_sb_event(struct perf_event *event)
4768 {
4769         if (is_sb_event(event))
4770                 detach_sb_event(event);
4771 }
4772
4773 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4774 {
4775         if (event->parent)
4776                 return;
4777
4778         if (is_cgroup_event(event))
4779                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4780 }
4781
4782 #ifdef CONFIG_NO_HZ_FULL
4783 static DEFINE_SPINLOCK(nr_freq_lock);
4784 #endif
4785
4786 static void unaccount_freq_event_nohz(void)
4787 {
4788 #ifdef CONFIG_NO_HZ_FULL
4789         spin_lock(&nr_freq_lock);
4790         if (atomic_dec_and_test(&nr_freq_events))
4791                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4792         spin_unlock(&nr_freq_lock);
4793 #endif
4794 }
4795
4796 static void unaccount_freq_event(void)
4797 {
4798         if (tick_nohz_full_enabled())
4799                 unaccount_freq_event_nohz();
4800         else
4801                 atomic_dec(&nr_freq_events);
4802 }
4803
4804 static void unaccount_event(struct perf_event *event)
4805 {
4806         bool dec = false;
4807
4808         if (event->parent)
4809                 return;
4810
4811         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
4812                 dec = true;
4813         if (event->attr.mmap || event->attr.mmap_data)
4814                 atomic_dec(&nr_mmap_events);
4815         if (event->attr.build_id)
4816                 atomic_dec(&nr_build_id_events);
4817         if (event->attr.comm)
4818                 atomic_dec(&nr_comm_events);
4819         if (event->attr.namespaces)
4820                 atomic_dec(&nr_namespaces_events);
4821         if (event->attr.cgroup)
4822                 atomic_dec(&nr_cgroup_events);
4823         if (event->attr.task)
4824                 atomic_dec(&nr_task_events);
4825         if (event->attr.freq)
4826                 unaccount_freq_event();
4827         if (event->attr.context_switch) {
4828                 dec = true;
4829                 atomic_dec(&nr_switch_events);
4830         }
4831         if (is_cgroup_event(event))
4832                 dec = true;
4833         if (has_branch_stack(event))
4834                 dec = true;
4835         if (event->attr.ksymbol)
4836                 atomic_dec(&nr_ksymbol_events);
4837         if (event->attr.bpf_event)
4838                 atomic_dec(&nr_bpf_events);
4839         if (event->attr.text_poke)
4840                 atomic_dec(&nr_text_poke_events);
4841
4842         if (dec) {
4843                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4844                         schedule_delayed_work(&perf_sched_work, HZ);
4845         }
4846
4847         unaccount_event_cpu(event, event->cpu);
4848
4849         unaccount_pmu_sb_event(event);
4850 }
4851
4852 static void perf_sched_delayed(struct work_struct *work)
4853 {
4854         mutex_lock(&perf_sched_mutex);
4855         if (atomic_dec_and_test(&perf_sched_count))
4856                 static_branch_disable(&perf_sched_events);
4857         mutex_unlock(&perf_sched_mutex);
4858 }
4859
4860 /*
4861  * The following implement mutual exclusion of events on "exclusive" pmus
4862  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4863  * at a time, so we disallow creating events that might conflict, namely:
4864  *
4865  *  1) cpu-wide events in the presence of per-task events,
4866  *  2) per-task events in the presence of cpu-wide events,
4867  *  3) two matching events on the same context.
4868  *
4869  * The former two cases are handled in the allocation path (perf_event_alloc(),
4870  * _free_event()), the latter -- before the first perf_install_in_context().
4871  */
4872 static int exclusive_event_init(struct perf_event *event)
4873 {
4874         struct pmu *pmu = event->pmu;
4875
4876         if (!is_exclusive_pmu(pmu))
4877                 return 0;
4878
4879         /*
4880          * Prevent co-existence of per-task and cpu-wide events on the
4881          * same exclusive pmu.
4882          *
4883          * Negative pmu::exclusive_cnt means there are cpu-wide
4884          * events on this "exclusive" pmu, positive means there are
4885          * per-task events.
4886          *
4887          * Since this is called in perf_event_alloc() path, event::ctx
4888          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4889          * to mean "per-task event", because unlike other attach states it
4890          * never gets cleared.
4891          */
4892         if (event->attach_state & PERF_ATTACH_TASK) {
4893                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4894                         return -EBUSY;
4895         } else {
4896                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4897                         return -EBUSY;
4898         }
4899
4900         return 0;
4901 }
4902
4903 static void exclusive_event_destroy(struct perf_event *event)
4904 {
4905         struct pmu *pmu = event->pmu;
4906
4907         if (!is_exclusive_pmu(pmu))
4908                 return;
4909
4910         /* see comment in exclusive_event_init() */
4911         if (event->attach_state & PERF_ATTACH_TASK)
4912                 atomic_dec(&pmu->exclusive_cnt);
4913         else
4914                 atomic_inc(&pmu->exclusive_cnt);
4915 }
4916
4917 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4918 {
4919         if ((e1->pmu == e2->pmu) &&
4920             (e1->cpu == e2->cpu ||
4921              e1->cpu == -1 ||
4922              e2->cpu == -1))
4923                 return true;
4924         return false;
4925 }
4926
4927 static bool exclusive_event_installable(struct perf_event *event,
4928                                         struct perf_event_context *ctx)
4929 {
4930         struct perf_event *iter_event;
4931         struct pmu *pmu = event->pmu;
4932
4933         lockdep_assert_held(&ctx->mutex);
4934
4935         if (!is_exclusive_pmu(pmu))
4936                 return true;
4937
4938         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4939                 if (exclusive_event_match(iter_event, event))
4940                         return false;
4941         }
4942
4943         return true;
4944 }
4945
4946 static void perf_addr_filters_splice(struct perf_event *event,
4947                                        struct list_head *head);
4948
4949 static void _free_event(struct perf_event *event)
4950 {
4951         irq_work_sync(&event->pending);
4952
4953         unaccount_event(event);
4954
4955         security_perf_event_free(event);
4956
4957         if (event->rb) {
4958                 /*
4959                  * Can happen when we close an event with re-directed output.
4960                  *
4961                  * Since we have a 0 refcount, perf_mmap_close() will skip
4962                  * over us; possibly making our ring_buffer_put() the last.
4963                  */
4964                 mutex_lock(&event->mmap_mutex);
4965                 ring_buffer_attach(event, NULL);
4966                 mutex_unlock(&event->mmap_mutex);
4967         }
4968
4969         if (is_cgroup_event(event))
4970                 perf_detach_cgroup(event);
4971
4972         if (!event->parent) {
4973                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4974                         put_callchain_buffers();
4975         }
4976
4977         perf_event_free_bpf_prog(event);
4978         perf_addr_filters_splice(event, NULL);
4979         kfree(event->addr_filter_ranges);
4980
4981         if (event->destroy)
4982                 event->destroy(event);
4983
4984         /*
4985          * Must be after ->destroy(), due to uprobe_perf_close() using
4986          * hw.target.
4987          */
4988         if (event->hw.target)
4989                 put_task_struct(event->hw.target);
4990
4991         /*
4992          * perf_event_free_task() relies on put_ctx() being 'last', in particular
4993          * all task references must be cleaned up.
4994          */
4995         if (event->ctx)
4996                 put_ctx(event->ctx);
4997
4998         exclusive_event_destroy(event);
4999         module_put(event->pmu->module);
5000
5001         call_rcu(&event->rcu_head, free_event_rcu);
5002 }
5003
5004 /*
5005  * Used to free events which have a known refcount of 1, such as in error paths
5006  * where the event isn't exposed yet and inherited events.
5007  */
5008 static void free_event(struct perf_event *event)
5009 {
5010         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
5011                                 "unexpected event refcount: %ld; ptr=%p\n",
5012                                 atomic_long_read(&event->refcount), event)) {
5013                 /* leak to avoid use-after-free */
5014                 return;
5015         }
5016
5017         _free_event(event);
5018 }
5019
5020 /*
5021  * Remove user event from the owner task.
5022  */
5023 static void perf_remove_from_owner(struct perf_event *event)
5024 {
5025         struct task_struct *owner;
5026
5027         rcu_read_lock();
5028         /*
5029          * Matches the smp_store_release() in perf_event_exit_task(). If we
5030          * observe !owner it means the list deletion is complete and we can
5031          * indeed free this event, otherwise we need to serialize on
5032          * owner->perf_event_mutex.
5033          */
5034         owner = READ_ONCE(event->owner);
5035         if (owner) {
5036                 /*
5037                  * Since delayed_put_task_struct() also drops the last
5038                  * task reference we can safely take a new reference
5039                  * while holding the rcu_read_lock().
5040                  */
5041                 get_task_struct(owner);
5042         }
5043         rcu_read_unlock();
5044
5045         if (owner) {
5046                 /*
5047                  * If we're here through perf_event_exit_task() we're already
5048                  * holding ctx->mutex which would be an inversion wrt. the
5049                  * normal lock order.
5050                  *
5051                  * However we can safely take this lock because its the child
5052                  * ctx->mutex.
5053                  */
5054                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
5055
5056                 /*
5057                  * We have to re-check the event->owner field, if it is cleared
5058                  * we raced with perf_event_exit_task(), acquiring the mutex
5059                  * ensured they're done, and we can proceed with freeing the
5060                  * event.
5061                  */
5062                 if (event->owner) {
5063                         list_del_init(&event->owner_entry);
5064                         smp_store_release(&event->owner, NULL);
5065                 }
5066                 mutex_unlock(&owner->perf_event_mutex);
5067                 put_task_struct(owner);
5068         }
5069 }
5070
5071 static void put_event(struct perf_event *event)
5072 {
5073         if (!atomic_long_dec_and_test(&event->refcount))
5074                 return;
5075
5076         _free_event(event);
5077 }
5078
5079 /*
5080  * Kill an event dead; while event:refcount will preserve the event
5081  * object, it will not preserve its functionality. Once the last 'user'
5082  * gives up the object, we'll destroy the thing.
5083  */
5084 int perf_event_release_kernel(struct perf_event *event)
5085 {
5086         struct perf_event_context *ctx = event->ctx;
5087         struct perf_event *child, *tmp;
5088         LIST_HEAD(free_list);
5089
5090         /*
5091          * If we got here through err_file: fput(event_file); we will not have
5092          * attached to a context yet.
5093          */
5094         if (!ctx) {
5095                 WARN_ON_ONCE(event->attach_state &
5096                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
5097                 goto no_ctx;
5098         }
5099
5100         if (!is_kernel_event(event))
5101                 perf_remove_from_owner(event);
5102
5103         ctx = perf_event_ctx_lock(event);
5104         WARN_ON_ONCE(ctx->parent_ctx);
5105         perf_remove_from_context(event, DETACH_GROUP);
5106
5107         raw_spin_lock_irq(&ctx->lock);
5108         /*
5109          * Mark this event as STATE_DEAD, there is no external reference to it
5110          * anymore.
5111          *
5112          * Anybody acquiring event->child_mutex after the below loop _must_
5113          * also see this, most importantly inherit_event() which will avoid
5114          * placing more children on the list.
5115          *
5116          * Thus this guarantees that we will in fact observe and kill _ALL_
5117          * child events.
5118          */
5119         event->state = PERF_EVENT_STATE_DEAD;
5120         raw_spin_unlock_irq(&ctx->lock);
5121
5122         perf_event_ctx_unlock(event, ctx);
5123
5124 again:
5125         mutex_lock(&event->child_mutex);
5126         list_for_each_entry(child, &event->child_list, child_list) {
5127
5128                 /*
5129                  * Cannot change, child events are not migrated, see the
5130                  * comment with perf_event_ctx_lock_nested().
5131                  */
5132                 ctx = READ_ONCE(child->ctx);
5133                 /*
5134                  * Since child_mutex nests inside ctx::mutex, we must jump
5135                  * through hoops. We start by grabbing a reference on the ctx.
5136                  *
5137                  * Since the event cannot get freed while we hold the
5138                  * child_mutex, the context must also exist and have a !0
5139                  * reference count.
5140                  */
5141                 get_ctx(ctx);
5142
5143                 /*
5144                  * Now that we have a ctx ref, we can drop child_mutex, and
5145                  * acquire ctx::mutex without fear of it going away. Then we
5146                  * can re-acquire child_mutex.
5147                  */
5148                 mutex_unlock(&event->child_mutex);
5149                 mutex_lock(&ctx->mutex);
5150                 mutex_lock(&event->child_mutex);
5151
5152                 /*
5153                  * Now that we hold ctx::mutex and child_mutex, revalidate our
5154                  * state, if child is still the first entry, it didn't get freed
5155                  * and we can continue doing so.
5156                  */
5157                 tmp = list_first_entry_or_null(&event->child_list,
5158                                                struct perf_event, child_list);
5159                 if (tmp == child) {
5160                         perf_remove_from_context(child, DETACH_GROUP);
5161                         list_move(&child->child_list, &free_list);
5162                         /*
5163                          * This matches the refcount bump in inherit_event();
5164                          * this can't be the last reference.
5165                          */
5166                         put_event(event);
5167                 }
5168
5169                 mutex_unlock(&event->child_mutex);
5170                 mutex_unlock(&ctx->mutex);
5171                 put_ctx(ctx);
5172                 goto again;
5173         }
5174         mutex_unlock(&event->child_mutex);
5175
5176         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
5177                 void *var = &child->ctx->refcount;
5178
5179                 list_del(&child->child_list);
5180                 free_event(child);
5181
5182                 /*
5183                  * Wake any perf_event_free_task() waiting for this event to be
5184                  * freed.
5185                  */
5186                 smp_mb(); /* pairs with wait_var_event() */
5187                 wake_up_var(var);
5188         }
5189
5190 no_ctx:
5191         put_event(event); /* Must be the 'last' reference */
5192         return 0;
5193 }
5194 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
5195
5196 /*
5197  * Called when the last reference to the file is gone.
5198  */
5199 static int perf_release(struct inode *inode, struct file *file)
5200 {
5201         perf_event_release_kernel(file->private_data);
5202         return 0;
5203 }
5204
5205 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5206 {
5207         struct perf_event *child;
5208         u64 total = 0;
5209
5210         *enabled = 0;
5211         *running = 0;
5212
5213         mutex_lock(&event->child_mutex);
5214
5215         (void)perf_event_read(event, false);
5216         total += perf_event_count(event);
5217
5218         *enabled += event->total_time_enabled +
5219                         atomic64_read(&event->child_total_time_enabled);
5220         *running += event->total_time_running +
5221                         atomic64_read(&event->child_total_time_running);
5222
5223         list_for_each_entry(child, &event->child_list, child_list) {
5224                 (void)perf_event_read(child, false);
5225                 total += perf_event_count(child);
5226                 *enabled += child->total_time_enabled;
5227                 *running += child->total_time_running;
5228         }
5229         mutex_unlock(&event->child_mutex);
5230
5231         return total;
5232 }
5233
5234 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
5235 {
5236         struct perf_event_context *ctx;
5237         u64 count;
5238
5239         ctx = perf_event_ctx_lock(event);
5240         count = __perf_event_read_value(event, enabled, running);
5241         perf_event_ctx_unlock(event, ctx);
5242
5243         return count;
5244 }
5245 EXPORT_SYMBOL_GPL(perf_event_read_value);
5246
5247 static int __perf_read_group_add(struct perf_event *leader,
5248                                         u64 read_format, u64 *values)
5249 {
5250         struct perf_event_context *ctx = leader->ctx;
5251         struct perf_event *sub;
5252         unsigned long flags;
5253         int n = 1; /* skip @nr */
5254         int ret;
5255
5256         ret = perf_event_read(leader, true);
5257         if (ret)
5258                 return ret;
5259
5260         raw_spin_lock_irqsave(&ctx->lock, flags);
5261
5262         /*
5263          * Since we co-schedule groups, {enabled,running} times of siblings
5264          * will be identical to those of the leader, so we only publish one
5265          * set.
5266          */
5267         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5268                 values[n++] += leader->total_time_enabled +
5269                         atomic64_read(&leader->child_total_time_enabled);
5270         }
5271
5272         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5273                 values[n++] += leader->total_time_running +
5274                         atomic64_read(&leader->child_total_time_running);
5275         }
5276
5277         /*
5278          * Write {count,id} tuples for every sibling.
5279          */
5280         values[n++] += perf_event_count(leader);
5281         if (read_format & PERF_FORMAT_ID)
5282                 values[n++] = primary_event_id(leader);
5283
5284         for_each_sibling_event(sub, leader) {
5285                 values[n++] += perf_event_count(sub);
5286                 if (read_format & PERF_FORMAT_ID)
5287                         values[n++] = primary_event_id(sub);
5288         }
5289
5290         raw_spin_unlock_irqrestore(&ctx->lock, flags);
5291         return 0;
5292 }
5293
5294 static int perf_read_group(struct perf_event *event,
5295                                    u64 read_format, char __user *buf)
5296 {
5297         struct perf_event *leader = event->group_leader, *child;
5298         struct perf_event_context *ctx = leader->ctx;
5299         int ret;
5300         u64 *values;
5301
5302         lockdep_assert_held(&ctx->mutex);
5303
5304         values = kzalloc(event->read_size, GFP_KERNEL);
5305         if (!values)
5306                 return -ENOMEM;
5307
5308         values[0] = 1 + leader->nr_siblings;
5309
5310         /*
5311          * By locking the child_mutex of the leader we effectively
5312          * lock the child list of all siblings.. XXX explain how.
5313          */
5314         mutex_lock(&leader->child_mutex);
5315
5316         ret = __perf_read_group_add(leader, read_format, values);
5317         if (ret)
5318                 goto unlock;
5319
5320         list_for_each_entry(child, &leader->child_list, child_list) {
5321                 ret = __perf_read_group_add(child, read_format, values);
5322                 if (ret)
5323                         goto unlock;
5324         }
5325
5326         mutex_unlock(&leader->child_mutex);
5327
5328         ret = event->read_size;
5329         if (copy_to_user(buf, values, event->read_size))
5330                 ret = -EFAULT;
5331         goto out;
5332
5333 unlock:
5334         mutex_unlock(&leader->child_mutex);
5335 out:
5336         kfree(values);
5337         return ret;
5338 }
5339
5340 static int perf_read_one(struct perf_event *event,
5341                                  u64 read_format, char __user *buf)
5342 {
5343         u64 enabled, running;
5344         u64 values[4];
5345         int n = 0;
5346
5347         values[n++] = __perf_event_read_value(event, &enabled, &running);
5348         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5349                 values[n++] = enabled;
5350         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5351                 values[n++] = running;
5352         if (read_format & PERF_FORMAT_ID)
5353                 values[n++] = primary_event_id(event);
5354
5355         if (copy_to_user(buf, values, n * sizeof(u64)))
5356                 return -EFAULT;
5357
5358         return n * sizeof(u64);
5359 }
5360
5361 static bool is_event_hup(struct perf_event *event)
5362 {
5363         bool no_children;
5364
5365         if (event->state > PERF_EVENT_STATE_EXIT)
5366                 return false;
5367
5368         mutex_lock(&event->child_mutex);
5369         no_children = list_empty(&event->child_list);
5370         mutex_unlock(&event->child_mutex);
5371         return no_children;
5372 }
5373
5374 /*
5375  * Read the performance event - simple non blocking version for now
5376  */
5377 static ssize_t
5378 __perf_read(struct perf_event *event, char __user *buf, size_t count)
5379 {
5380         u64 read_format = event->attr.read_format;
5381         int ret;
5382
5383         /*
5384          * Return end-of-file for a read on an event that is in
5385          * error state (i.e. because it was pinned but it couldn't be
5386          * scheduled on to the CPU at some point).
5387          */
5388         if (event->state == PERF_EVENT_STATE_ERROR)
5389                 return 0;
5390
5391         if (count < event->read_size)
5392                 return -ENOSPC;
5393
5394         WARN_ON_ONCE(event->ctx->parent_ctx);
5395         if (read_format & PERF_FORMAT_GROUP)
5396                 ret = perf_read_group(event, read_format, buf);
5397         else
5398                 ret = perf_read_one(event, read_format, buf);
5399
5400         return ret;
5401 }
5402
5403 static ssize_t
5404 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
5405 {
5406         struct perf_event *event = file->private_data;
5407         struct perf_event_context *ctx;
5408         int ret;
5409
5410         ret = security_perf_event_read(event);
5411         if (ret)
5412                 return ret;
5413
5414         ctx = perf_event_ctx_lock(event);
5415         ret = __perf_read(event, buf, count);
5416         perf_event_ctx_unlock(event, ctx);
5417
5418         return ret;
5419 }
5420
5421 static __poll_t perf_poll(struct file *file, poll_table *wait)
5422 {
5423         struct perf_event *event = file->private_data;
5424         struct perf_buffer *rb;
5425         __poll_t events = EPOLLHUP;
5426
5427         poll_wait(file, &event->waitq, wait);
5428
5429         if (is_event_hup(event))
5430                 return events;
5431
5432         /*
5433          * Pin the event->rb by taking event->mmap_mutex; otherwise
5434          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5435          */
5436         mutex_lock(&event->mmap_mutex);
5437         rb = event->rb;
5438         if (rb)
5439                 events = atomic_xchg(&rb->poll, 0);
5440         mutex_unlock(&event->mmap_mutex);
5441         return events;
5442 }
5443
5444 static void _perf_event_reset(struct perf_event *event)
5445 {
5446         (void)perf_event_read(event, false);
5447         local64_set(&event->count, 0);
5448         perf_event_update_userpage(event);
5449 }
5450
5451 /* Assume it's not an event with inherit set. */
5452 u64 perf_event_pause(struct perf_event *event, bool reset)
5453 {
5454         struct perf_event_context *ctx;
5455         u64 count;
5456
5457         ctx = perf_event_ctx_lock(event);
5458         WARN_ON_ONCE(event->attr.inherit);
5459         _perf_event_disable(event);
5460         count = local64_read(&event->count);
5461         if (reset)
5462                 local64_set(&event->count, 0);
5463         perf_event_ctx_unlock(event, ctx);
5464
5465         return count;
5466 }
5467 EXPORT_SYMBOL_GPL(perf_event_pause);
5468
5469 /*
5470  * Holding the top-level event's child_mutex means that any
5471  * descendant process that has inherited this event will block
5472  * in perf_event_exit_event() if it goes to exit, thus satisfying the
5473  * task existence requirements of perf_event_enable/disable.
5474  */
5475 static void perf_event_for_each_child(struct perf_event *event,
5476                                         void (*func)(struct perf_event *))
5477 {
5478         struct perf_event *child;
5479
5480         WARN_ON_ONCE(event->ctx->parent_ctx);
5481
5482         mutex_lock(&event->child_mutex);
5483         func(event);
5484         list_for_each_entry(child, &event->child_list, child_list)
5485                 func(child);
5486         mutex_unlock(&event->child_mutex);
5487 }
5488
5489 static void perf_event_for_each(struct perf_event *event,
5490                                   void (*func)(struct perf_event *))
5491 {
5492         struct perf_event_context *ctx = event->ctx;
5493         struct perf_event *sibling;
5494
5495         lockdep_assert_held(&ctx->mutex);
5496
5497         event = event->group_leader;
5498
5499         perf_event_for_each_child(event, func);
5500         for_each_sibling_event(sibling, event)
5501                 perf_event_for_each_child(sibling, func);
5502 }
5503
5504 static void __perf_event_period(struct perf_event *event,
5505                                 struct perf_cpu_context *cpuctx,
5506                                 struct perf_event_context *ctx,
5507                                 void *info)
5508 {
5509         u64 value = *((u64 *)info);
5510         bool active;
5511
5512         if (event->attr.freq) {
5513                 event->attr.sample_freq = value;
5514         } else {
5515                 event->attr.sample_period = value;
5516                 event->hw.sample_period = value;
5517         }
5518
5519         active = (event->state == PERF_EVENT_STATE_ACTIVE);
5520         if (active) {
5521                 perf_pmu_disable(ctx->pmu);
5522                 /*
5523                  * We could be throttled; unthrottle now to avoid the tick
5524                  * trying to unthrottle while we already re-started the event.
5525                  */
5526                 if (event->hw.interrupts == MAX_INTERRUPTS) {
5527                         event->hw.interrupts = 0;
5528                         perf_log_throttle(event, 1);
5529                 }
5530                 event->pmu->stop(event, PERF_EF_UPDATE);
5531         }
5532
5533         local64_set(&event->hw.period_left, 0);
5534
5535         if (active) {
5536                 event->pmu->start(event, PERF_EF_RELOAD);
5537                 perf_pmu_enable(ctx->pmu);
5538         }
5539 }
5540
5541 static int perf_event_check_period(struct perf_event *event, u64 value)
5542 {
5543         return event->pmu->check_period(event, value);
5544 }
5545
5546 static int _perf_event_period(struct perf_event *event, u64 value)
5547 {
5548         if (!is_sampling_event(event))
5549                 return -EINVAL;
5550
5551         if (!value)
5552                 return -EINVAL;
5553
5554         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
5555                 return -EINVAL;
5556
5557         if (perf_event_check_period(event, value))
5558                 return -EINVAL;
5559
5560         if (!event->attr.freq && (value & (1ULL << 63)))
5561                 return -EINVAL;
5562
5563         event_function_call(event, __perf_event_period, &value);
5564
5565         return 0;
5566 }
5567
5568 int perf_event_period(struct perf_event *event, u64 value)
5569 {
5570         struct perf_event_context *ctx;
5571         int ret;
5572
5573         ctx = perf_event_ctx_lock(event);
5574         ret = _perf_event_period(event, value);
5575         perf_event_ctx_unlock(event, ctx);
5576
5577         return ret;
5578 }
5579 EXPORT_SYMBOL_GPL(perf_event_period);
5580
5581 static const struct file_operations perf_fops;
5582
5583 static inline int perf_fget_light(int fd, struct fd *p)
5584 {
5585         struct fd f = fdget(fd);
5586         if (!f.file)
5587                 return -EBADF;
5588
5589         if (f.file->f_op != &perf_fops) {
5590                 fdput(f);
5591                 return -EBADF;
5592         }
5593         *p = f;
5594         return 0;
5595 }
5596
5597 static int perf_event_set_output(struct perf_event *event,
5598                                  struct perf_event *output_event);
5599 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5600 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5601                           struct perf_event_attr *attr);
5602
5603 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5604 {
5605         void (*func)(struct perf_event *);
5606         u32 flags = arg;
5607
5608         switch (cmd) {
5609         case PERF_EVENT_IOC_ENABLE:
5610                 func = _perf_event_enable;
5611                 break;
5612         case PERF_EVENT_IOC_DISABLE:
5613                 func = _perf_event_disable;
5614                 break;
5615         case PERF_EVENT_IOC_RESET:
5616                 func = _perf_event_reset;
5617                 break;
5618
5619         case PERF_EVENT_IOC_REFRESH:
5620                 return _perf_event_refresh(event, arg);
5621
5622         case PERF_EVENT_IOC_PERIOD:
5623         {
5624                 u64 value;
5625
5626                 if (copy_from_user(&value, (u64 __user *)arg, sizeof(value)))
5627                         return -EFAULT;
5628
5629                 return _perf_event_period(event, value);
5630         }
5631         case PERF_EVENT_IOC_ID:
5632         {
5633                 u64 id = primary_event_id(event);
5634
5635                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5636                         return -EFAULT;
5637                 return 0;
5638         }
5639
5640         case PERF_EVENT_IOC_SET_OUTPUT:
5641         {
5642                 int ret;
5643                 if (arg != -1) {
5644                         struct perf_event *output_event;
5645                         struct fd output;
5646                         ret = perf_fget_light(arg, &output);
5647                         if (ret)
5648                                 return ret;
5649                         output_event = output.file->private_data;
5650                         ret = perf_event_set_output(event, output_event);
5651                         fdput(output);
5652                 } else {
5653                         ret = perf_event_set_output(event, NULL);
5654                 }
5655                 return ret;
5656         }
5657
5658         case PERF_EVENT_IOC_SET_FILTER:
5659                 return perf_event_set_filter(event, (void __user *)arg);
5660
5661         case PERF_EVENT_IOC_SET_BPF:
5662         {
5663                 struct bpf_prog *prog;
5664                 int err;
5665
5666                 prog = bpf_prog_get(arg);
5667                 if (IS_ERR(prog))
5668                         return PTR_ERR(prog);
5669
5670                 err = perf_event_set_bpf_prog(event, prog, 0);
5671                 if (err) {
5672                         bpf_prog_put(prog);
5673                         return err;
5674                 }
5675
5676                 return 0;
5677         }
5678
5679         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5680                 struct perf_buffer *rb;
5681
5682                 rcu_read_lock();
5683                 rb = rcu_dereference(event->rb);
5684                 if (!rb || !rb->nr_pages) {
5685                         rcu_read_unlock();
5686                         return -EINVAL;
5687                 }
5688                 rb_toggle_paused(rb, !!arg);
5689                 rcu_read_unlock();
5690                 return 0;
5691         }
5692
5693         case PERF_EVENT_IOC_QUERY_BPF:
5694                 return perf_event_query_prog_array(event, (void __user *)arg);
5695
5696         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5697                 struct perf_event_attr new_attr;
5698                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5699                                          &new_attr);
5700
5701                 if (err)
5702                         return err;
5703
5704                 return perf_event_modify_attr(event,  &new_attr);
5705         }
5706         default:
5707                 return -ENOTTY;
5708         }
5709
5710         if (flags & PERF_IOC_FLAG_GROUP)
5711                 perf_event_for_each(event, func);
5712         else
5713                 perf_event_for_each_child(event, func);
5714
5715         return 0;
5716 }
5717
5718 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5719 {
5720         struct perf_event *event = file->private_data;
5721         struct perf_event_context *ctx;
5722         long ret;
5723
5724         /* Treat ioctl like writes as it is likely a mutating operation. */
5725         ret = security_perf_event_write(event);
5726         if (ret)
5727                 return ret;
5728
5729         ctx = perf_event_ctx_lock(event);
5730         ret = _perf_ioctl(event, cmd, arg);
5731         perf_event_ctx_unlock(event, ctx);
5732
5733         return ret;
5734 }
5735
5736 #ifdef CONFIG_COMPAT
5737 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5738                                 unsigned long arg)
5739 {
5740         switch (_IOC_NR(cmd)) {
5741         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5742         case _IOC_NR(PERF_EVENT_IOC_ID):
5743         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5744         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5745                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5746                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5747                         cmd &= ~IOCSIZE_MASK;
5748                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5749                 }
5750                 break;
5751         }
5752         return perf_ioctl(file, cmd, arg);
5753 }
5754 #else
5755 # define perf_compat_ioctl NULL
5756 #endif
5757
5758 int perf_event_task_enable(void)
5759 {
5760         struct perf_event_context *ctx;
5761         struct perf_event *event;
5762
5763         mutex_lock(&current->perf_event_mutex);
5764         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5765                 ctx = perf_event_ctx_lock(event);
5766                 perf_event_for_each_child(event, _perf_event_enable);
5767                 perf_event_ctx_unlock(event, ctx);
5768         }
5769         mutex_unlock(&current->perf_event_mutex);
5770
5771         return 0;
5772 }
5773
5774 int perf_event_task_disable(void)
5775 {
5776         struct perf_event_context *ctx;
5777         struct perf_event *event;
5778
5779         mutex_lock(&current->perf_event_mutex);
5780         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5781                 ctx = perf_event_ctx_lock(event);
5782                 perf_event_for_each_child(event, _perf_event_disable);
5783                 perf_event_ctx_unlock(event, ctx);
5784         }
5785         mutex_unlock(&current->perf_event_mutex);
5786
5787         return 0;
5788 }
5789
5790 static int perf_event_index(struct perf_event *event)
5791 {
5792         if (event->hw.state & PERF_HES_STOPPED)
5793                 return 0;
5794
5795         if (event->state != PERF_EVENT_STATE_ACTIVE)
5796                 return 0;
5797
5798         return event->pmu->event_idx(event);
5799 }
5800
5801 static void calc_timer_values(struct perf_event *event,
5802                                 u64 *now,
5803                                 u64 *enabled,
5804                                 u64 *running)
5805 {
5806         u64 ctx_time;
5807
5808         *now = perf_clock();
5809         ctx_time = event->shadow_ctx_time + *now;
5810         __perf_update_times(event, ctx_time, enabled, running);
5811 }
5812
5813 static void perf_event_init_userpage(struct perf_event *event)
5814 {
5815         struct perf_event_mmap_page *userpg;
5816         struct perf_buffer *rb;
5817
5818         rcu_read_lock();
5819         rb = rcu_dereference(event->rb);
5820         if (!rb)
5821                 goto unlock;
5822
5823         userpg = rb->user_page;
5824
5825         /* Allow new userspace to detect that bit 0 is deprecated */
5826         userpg->cap_bit0_is_deprecated = 1;
5827         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5828         userpg->data_offset = PAGE_SIZE;
5829         userpg->data_size = perf_data_size(rb);
5830
5831 unlock:
5832         rcu_read_unlock();
5833 }
5834
5835 void __weak arch_perf_update_userpage(
5836         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5837 {
5838 }
5839
5840 /*
5841  * Callers need to ensure there can be no nesting of this function, otherwise
5842  * the seqlock logic goes bad. We can not serialize this because the arch
5843  * code calls this from NMI context.
5844  */
5845 void perf_event_update_userpage(struct perf_event *event)
5846 {
5847         struct perf_event_mmap_page *userpg;
5848         struct perf_buffer *rb;
5849         u64 enabled, running, now;
5850
5851         rcu_read_lock();
5852         rb = rcu_dereference(event->rb);
5853         if (!rb)
5854                 goto unlock;
5855
5856         /*
5857          * compute total_time_enabled, total_time_running
5858          * based on snapshot values taken when the event
5859          * was last scheduled in.
5860          *
5861          * we cannot simply called update_context_time()
5862          * because of locking issue as we can be called in
5863          * NMI context
5864          */
5865         calc_timer_values(event, &now, &enabled, &running);
5866
5867         userpg = rb->user_page;
5868         /*
5869          * Disable preemption to guarantee consistent time stamps are stored to
5870          * the user page.
5871          */
5872         preempt_disable();
5873         ++userpg->lock;
5874         barrier();
5875         userpg->index = perf_event_index(event);
5876         userpg->offset = perf_event_count(event);
5877         if (userpg->index)
5878                 userpg->offset -= local64_read(&event->hw.prev_count);
5879
5880         userpg->time_enabled = enabled +
5881                         atomic64_read(&event->child_total_time_enabled);
5882
5883         userpg->time_running = running +
5884                         atomic64_read(&event->child_total_time_running);
5885
5886         arch_perf_update_userpage(event, userpg, now);
5887
5888         barrier();
5889         ++userpg->lock;
5890         preempt_enable();
5891 unlock:
5892         rcu_read_unlock();
5893 }
5894 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5895
5896 static vm_fault_t perf_mmap_fault(struct vm_fault *vmf)
5897 {
5898         struct perf_event *event = vmf->vma->vm_file->private_data;
5899         struct perf_buffer *rb;
5900         vm_fault_t ret = VM_FAULT_SIGBUS;
5901
5902         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5903                 if (vmf->pgoff == 0)
5904                         ret = 0;
5905                 return ret;
5906         }
5907
5908         rcu_read_lock();
5909         rb = rcu_dereference(event->rb);
5910         if (!rb)
5911                 goto unlock;
5912
5913         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5914                 goto unlock;
5915
5916         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5917         if (!vmf->page)
5918                 goto unlock;
5919
5920         get_page(vmf->page);
5921         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5922         vmf->page->index   = vmf->pgoff;
5923
5924         ret = 0;
5925 unlock:
5926         rcu_read_unlock();
5927
5928         return ret;
5929 }
5930
5931 static void ring_buffer_attach(struct perf_event *event,
5932                                struct perf_buffer *rb)
5933 {
5934         struct perf_buffer *old_rb = NULL;
5935         unsigned long flags;
5936
5937         if (event->rb) {
5938                 /*
5939                  * Should be impossible, we set this when removing
5940                  * event->rb_entry and wait/clear when adding event->rb_entry.
5941                  */
5942                 WARN_ON_ONCE(event->rcu_pending);
5943
5944                 old_rb = event->rb;
5945                 spin_lock_irqsave(&old_rb->event_lock, flags);
5946                 list_del_rcu(&event->rb_entry);
5947                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5948
5949                 event->rcu_batches = get_state_synchronize_rcu();
5950                 event->rcu_pending = 1;
5951         }
5952
5953         if (rb) {
5954                 if (event->rcu_pending) {
5955                         cond_synchronize_rcu(event->rcu_batches);
5956                         event->rcu_pending = 0;
5957                 }
5958
5959                 spin_lock_irqsave(&rb->event_lock, flags);
5960                 list_add_rcu(&event->rb_entry, &rb->event_list);
5961                 spin_unlock_irqrestore(&rb->event_lock, flags);
5962         }
5963
5964         /*
5965          * Avoid racing with perf_mmap_close(AUX): stop the event
5966          * before swizzling the event::rb pointer; if it's getting
5967          * unmapped, its aux_mmap_count will be 0 and it won't
5968          * restart. See the comment in __perf_pmu_output_stop().
5969          *
5970          * Data will inevitably be lost when set_output is done in
5971          * mid-air, but then again, whoever does it like this is
5972          * not in for the data anyway.
5973          */
5974         if (has_aux(event))
5975                 perf_event_stop(event, 0);
5976
5977         rcu_assign_pointer(event->rb, rb);
5978
5979         if (old_rb) {
5980                 ring_buffer_put(old_rb);
5981                 /*
5982                  * Since we detached before setting the new rb, so that we
5983                  * could attach the new rb, we could have missed a wakeup.
5984                  * Provide it now.
5985                  */
5986                 wake_up_all(&event->waitq);
5987         }
5988 }
5989
5990 static void ring_buffer_wakeup(struct perf_event *event)
5991 {
5992         struct perf_buffer *rb;
5993
5994         rcu_read_lock();
5995         rb = rcu_dereference(event->rb);
5996         if (rb) {
5997                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5998                         wake_up_all(&event->waitq);
5999         }
6000         rcu_read_unlock();
6001 }
6002
6003 struct perf_buffer *ring_buffer_get(struct perf_event *event)
6004 {
6005         struct perf_buffer *rb;
6006
6007         rcu_read_lock();
6008         rb = rcu_dereference(event->rb);
6009         if (rb) {
6010                 if (!refcount_inc_not_zero(&rb->refcount))
6011                         rb = NULL;
6012         }
6013         rcu_read_unlock();
6014
6015         return rb;
6016 }
6017
6018 void ring_buffer_put(struct perf_buffer *rb)
6019 {
6020         if (!refcount_dec_and_test(&rb->refcount))
6021                 return;
6022
6023         WARN_ON_ONCE(!list_empty(&rb->event_list));
6024
6025         call_rcu(&rb->rcu_head, rb_free_rcu);
6026 }
6027
6028 static void perf_mmap_open(struct vm_area_struct *vma)
6029 {
6030         struct perf_event *event = vma->vm_file->private_data;
6031
6032         atomic_inc(&event->mmap_count);
6033         atomic_inc(&event->rb->mmap_count);
6034
6035         if (vma->vm_pgoff)
6036                 atomic_inc(&event->rb->aux_mmap_count);
6037
6038         if (event->pmu->event_mapped)
6039                 event->pmu->event_mapped(event, vma->vm_mm);
6040 }
6041
6042 static void perf_pmu_output_stop(struct perf_event *event);
6043
6044 /*
6045  * A buffer can be mmap()ed multiple times; either directly through the same
6046  * event, or through other events by use of perf_event_set_output().
6047  *
6048  * In order to undo the VM accounting done by perf_mmap() we need to destroy
6049  * the buffer here, where we still have a VM context. This means we need
6050  * to detach all events redirecting to us.
6051  */
6052 static void perf_mmap_close(struct vm_area_struct *vma)
6053 {
6054         struct perf_event *event = vma->vm_file->private_data;
6055         struct perf_buffer *rb = ring_buffer_get(event);
6056         struct user_struct *mmap_user = rb->mmap_user;
6057         int mmap_locked = rb->mmap_locked;
6058         unsigned long size = perf_data_size(rb);
6059         bool detach_rest = false;
6060
6061         if (event->pmu->event_unmapped)
6062                 event->pmu->event_unmapped(event, vma->vm_mm);
6063
6064         /*
6065          * rb->aux_mmap_count will always drop before rb->mmap_count and
6066          * event->mmap_count, so it is ok to use event->mmap_mutex to
6067          * serialize with perf_mmap here.
6068          */
6069         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
6070             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
6071                 /*
6072                  * Stop all AUX events that are writing to this buffer,
6073                  * so that we can free its AUX pages and corresponding PMU
6074                  * data. Note that after rb::aux_mmap_count dropped to zero,
6075                  * they won't start any more (see perf_aux_output_begin()).
6076                  */
6077                 perf_pmu_output_stop(event);
6078
6079                 /* now it's safe to free the pages */
6080                 atomic_long_sub(rb->aux_nr_pages - rb->aux_mmap_locked, &mmap_user->locked_vm);
6081                 atomic64_sub(rb->aux_mmap_locked, &vma->vm_mm->pinned_vm);
6082
6083                 /* this has to be the last one */
6084                 rb_free_aux(rb);
6085                 WARN_ON_ONCE(refcount_read(&rb->aux_refcount));
6086
6087                 mutex_unlock(&event->mmap_mutex);
6088         }
6089
6090         if (atomic_dec_and_test(&rb->mmap_count))
6091                 detach_rest = true;
6092
6093         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
6094                 goto out_put;
6095
6096         ring_buffer_attach(event, NULL);
6097         mutex_unlock(&event->mmap_mutex);
6098
6099         /* If there's still other mmap()s of this buffer, we're done. */
6100         if (!detach_rest)
6101                 goto out_put;
6102
6103         /*
6104          * No other mmap()s, detach from all other events that might redirect
6105          * into the now unreachable buffer. Somewhat complicated by the
6106          * fact that rb::event_lock otherwise nests inside mmap_mutex.
6107          */
6108 again:
6109         rcu_read_lock();
6110         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
6111                 if (!atomic_long_inc_not_zero(&event->refcount)) {
6112                         /*
6113                          * This event is en-route to free_event() which will
6114                          * detach it and remove it from the list.
6115                          */
6116                         continue;
6117                 }
6118                 rcu_read_unlock();
6119
6120                 mutex_lock(&event->mmap_mutex);
6121                 /*
6122                  * Check we didn't race with perf_event_set_output() which can
6123                  * swizzle the rb from under us while we were waiting to
6124                  * acquire mmap_mutex.
6125                  *
6126                  * If we find a different rb; ignore this event, a next
6127                  * iteration will no longer find it on the list. We have to
6128                  * still restart the iteration to make sure we're not now
6129                  * iterating the wrong list.
6130                  */
6131                 if (event->rb == rb)
6132                         ring_buffer_attach(event, NULL);
6133
6134                 mutex_unlock(&event->mmap_mutex);
6135                 put_event(event);
6136
6137                 /*
6138                  * Restart the iteration; either we're on the wrong list or
6139                  * destroyed its integrity by doing a deletion.
6140                  */
6141                 goto again;
6142         }
6143         rcu_read_unlock();
6144
6145         /*
6146          * It could be there's still a few 0-ref events on the list; they'll
6147          * get cleaned up by free_event() -- they'll also still have their
6148          * ref on the rb and will free it whenever they are done with it.
6149          *
6150          * Aside from that, this buffer is 'fully' detached and unmapped,
6151          * undo the VM accounting.
6152          */
6153
6154         atomic_long_sub((size >> PAGE_SHIFT) + 1 - mmap_locked,
6155                         &mmap_user->locked_vm);
6156         atomic64_sub(mmap_locked, &vma->vm_mm->pinned_vm);
6157         free_uid(mmap_user);
6158
6159 out_put:
6160         ring_buffer_put(rb); /* could be last */
6161 }
6162
6163 static const struct vm_operations_struct perf_mmap_vmops = {
6164         .open           = perf_mmap_open,
6165         .close          = perf_mmap_close, /* non mergeable */
6166         .fault          = perf_mmap_fault,
6167         .page_mkwrite   = perf_mmap_fault,
6168 };
6169
6170 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
6171 {
6172         struct perf_event *event = file->private_data;
6173         unsigned long user_locked, user_lock_limit;
6174         struct user_struct *user = current_user();
6175         struct perf_buffer *rb = NULL;
6176         unsigned long locked, lock_limit;
6177         unsigned long vma_size;
6178         unsigned long nr_pages;
6179         long user_extra = 0, extra = 0;
6180         int ret = 0, flags = 0;
6181
6182         /*
6183          * Don't allow mmap() of inherited per-task counters. This would
6184          * create a performance issue due to all children writing to the
6185          * same rb.
6186          */
6187         if (event->cpu == -1 && event->attr.inherit)
6188                 return -EINVAL;
6189
6190         if (!(vma->vm_flags & VM_SHARED))
6191                 return -EINVAL;
6192
6193         ret = security_perf_event_read(event);
6194         if (ret)
6195                 return ret;
6196
6197         vma_size = vma->vm_end - vma->vm_start;
6198
6199         if (vma->vm_pgoff == 0) {
6200                 nr_pages = (vma_size / PAGE_SIZE) - 1;
6201         } else {
6202                 /*
6203                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6204                  * mapped, all subsequent mappings should have the same size
6205                  * and offset. Must be above the normal perf buffer.
6206                  */
6207                 u64 aux_offset, aux_size;
6208
6209                 if (!event->rb)
6210                         return -EINVAL;
6211
6212                 nr_pages = vma_size / PAGE_SIZE;
6213
6214                 mutex_lock(&event->mmap_mutex);
6215                 ret = -EINVAL;
6216
6217                 rb = event->rb;
6218                 if (!rb)
6219                         goto aux_unlock;
6220
6221                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
6222                 aux_size = READ_ONCE(rb->user_page->aux_size);
6223
6224                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
6225                         goto aux_unlock;
6226
6227                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
6228                         goto aux_unlock;
6229
6230                 /* already mapped with a different offset */
6231                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
6232                         goto aux_unlock;
6233
6234                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
6235                         goto aux_unlock;
6236
6237                 /* already mapped with a different size */
6238                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
6239                         goto aux_unlock;
6240
6241                 if (!is_power_of_2(nr_pages))
6242                         goto aux_unlock;
6243
6244                 if (!atomic_inc_not_zero(&rb->mmap_count))
6245                         goto aux_unlock;
6246
6247                 if (rb_has_aux(rb)) {
6248                         atomic_inc(&rb->aux_mmap_count);
6249                         ret = 0;
6250                         goto unlock;
6251                 }
6252
6253                 atomic_set(&rb->aux_mmap_count, 1);
6254                 user_extra = nr_pages;
6255
6256                 goto accounting;
6257         }
6258
6259         /*
6260          * If we have rb pages ensure they're a power-of-two number, so we
6261          * can do bitmasks instead of modulo.
6262          */
6263         if (nr_pages != 0 && !is_power_of_2(nr_pages))
6264                 return -EINVAL;
6265
6266         if (vma_size != PAGE_SIZE * (1 + nr_pages))
6267                 return -EINVAL;
6268
6269         WARN_ON_ONCE(event->ctx->parent_ctx);
6270 again:
6271         mutex_lock(&event->mmap_mutex);
6272         if (event->rb) {
6273                 if (event->rb->nr_pages != nr_pages) {
6274                         ret = -EINVAL;
6275                         goto unlock;
6276                 }
6277
6278                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
6279                         /*
6280                          * Raced against perf_mmap_close() through
6281                          * perf_event_set_output(). Try again, hope for better
6282                          * luck.
6283                          */
6284                         mutex_unlock(&event->mmap_mutex);
6285                         goto again;
6286                 }
6287
6288                 goto unlock;
6289         }
6290
6291         user_extra = nr_pages + 1;
6292
6293 accounting:
6294         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
6295
6296         /*
6297          * Increase the limit linearly with more CPUs:
6298          */
6299         user_lock_limit *= num_online_cpus();
6300
6301         user_locked = atomic_long_read(&user->locked_vm);
6302
6303         /*
6304          * sysctl_perf_event_mlock may have changed, so that
6305          *     user->locked_vm > user_lock_limit
6306          */
6307         if (user_locked > user_lock_limit)
6308                 user_locked = user_lock_limit;
6309         user_locked += user_extra;
6310
6311         if (user_locked > user_lock_limit) {
6312                 /*
6313                  * charge locked_vm until it hits user_lock_limit;
6314                  * charge the rest from pinned_vm
6315                  */
6316                 extra = user_locked - user_lock_limit;
6317                 user_extra -= extra;
6318         }
6319
6320         lock_limit = rlimit(RLIMIT_MEMLOCK);
6321         lock_limit >>= PAGE_SHIFT;
6322         locked = atomic64_read(&vma->vm_mm->pinned_vm) + extra;
6323
6324         if ((locked > lock_limit) && perf_is_paranoid() &&
6325                 !capable(CAP_IPC_LOCK)) {
6326                 ret = -EPERM;
6327                 goto unlock;
6328         }
6329
6330         WARN_ON(!rb && event->rb);
6331
6332         if (vma->vm_flags & VM_WRITE)
6333                 flags |= RING_BUFFER_WRITABLE;
6334
6335         if (!rb) {
6336                 rb = rb_alloc(nr_pages,
6337                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
6338                               event->cpu, flags);
6339
6340                 if (!rb) {
6341                         ret = -ENOMEM;
6342                         goto unlock;
6343                 }
6344
6345                 atomic_set(&rb->mmap_count, 1);
6346                 rb->mmap_user = get_current_user();
6347                 rb->mmap_locked = extra;
6348
6349                 ring_buffer_attach(event, rb);
6350
6351                 perf_event_update_time(event);
6352                 perf_set_shadow_time(event, event->ctx);
6353                 perf_event_init_userpage(event);
6354                 perf_event_update_userpage(event);
6355         } else {
6356                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
6357                                    event->attr.aux_watermark, flags);
6358                 if (!ret)
6359                         rb->aux_mmap_locked = extra;
6360         }
6361
6362 unlock:
6363         if (!ret) {
6364                 atomic_long_add(user_extra, &user->locked_vm);
6365                 atomic64_add(extra, &vma->vm_mm->pinned_vm);
6366
6367                 atomic_inc(&event->mmap_count);
6368         } else if (rb) {
6369                 atomic_dec(&rb->mmap_count);
6370         }
6371 aux_unlock:
6372         mutex_unlock(&event->mmap_mutex);
6373
6374         /*
6375          * Since pinned accounting is per vm we cannot allow fork() to copy our
6376          * vma.
6377          */
6378         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
6379         vma->vm_ops = &perf_mmap_vmops;
6380
6381         if (event->pmu->event_mapped)
6382                 event->pmu->event_mapped(event, vma->vm_mm);
6383
6384         return ret;
6385 }
6386
6387 static int perf_fasync(int fd, struct file *filp, int on)
6388 {
6389         struct inode *inode = file_inode(filp);
6390         struct perf_event *event = filp->private_data;
6391         int retval;
6392
6393         inode_lock(inode);
6394         retval = fasync_helper(fd, filp, on, &event->fasync);
6395         inode_unlock(inode);
6396
6397         if (retval < 0)
6398                 return retval;
6399
6400         return 0;
6401 }
6402
6403 static const struct file_operations perf_fops = {
6404         .llseek                 = no_llseek,
6405         .release                = perf_release,
6406         .read                   = perf_read,
6407         .poll                   = perf_poll,
6408         .unlocked_ioctl         = perf_ioctl,
6409         .compat_ioctl           = perf_compat_ioctl,
6410         .mmap                   = perf_mmap,
6411         .fasync                 = perf_fasync,
6412 };
6413
6414 /*
6415  * Perf event wakeup
6416  *
6417  * If there's data, ensure we set the poll() state and publish everything
6418  * to user-space before waking everybody up.
6419  */
6420
6421 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
6422 {
6423         /* only the parent has fasync state */
6424         if (event->parent)
6425                 event = event->parent;
6426         return &event->fasync;
6427 }
6428
6429 void perf_event_wakeup(struct perf_event *event)
6430 {
6431         ring_buffer_wakeup(event);
6432
6433         if (event->pending_kill) {
6434                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
6435                 event->pending_kill = 0;
6436         }
6437 }
6438
6439 static void perf_sigtrap(struct perf_event *event)
6440 {
6441         /*
6442          * We'd expect this to only occur if the irq_work is delayed and either
6443          * ctx->task or current has changed in the meantime. This can be the
6444          * case on architectures that do not implement arch_irq_work_raise().
6445          */
6446         if (WARN_ON_ONCE(event->ctx->task != current))
6447                 return;
6448
6449         /*
6450          * perf_pending_event() can race with the task exiting.
6451          */
6452         if (current->flags & PF_EXITING)
6453                 return;
6454
6455         force_sig_perf((void __user *)event->pending_addr,
6456                        event->attr.type, event->attr.sig_data);
6457 }
6458
6459 static void perf_pending_event_disable(struct perf_event *event)
6460 {
6461         int cpu = READ_ONCE(event->pending_disable);
6462
6463         if (cpu < 0)
6464                 return;
6465
6466         if (cpu == smp_processor_id()) {
6467                 WRITE_ONCE(event->pending_disable, -1);
6468
6469                 if (event->attr.sigtrap) {
6470                         perf_sigtrap(event);
6471                         atomic_set_release(&event->event_limit, 1); /* rearm event */
6472                         return;
6473                 }
6474
6475                 perf_event_disable_local(event);
6476                 return;
6477         }
6478
6479         /*
6480          *  CPU-A                       CPU-B
6481          *
6482          *  perf_event_disable_inatomic()
6483          *    @pending_disable = CPU-A;
6484          *    irq_work_queue();
6485          *
6486          *  sched-out
6487          *    @pending_disable = -1;
6488          *
6489          *                              sched-in
6490          *                              perf_event_disable_inatomic()
6491          *                                @pending_disable = CPU-B;
6492          *                                irq_work_queue(); // FAILS
6493          *
6494          *  irq_work_run()
6495          *    perf_pending_event()
6496          *
6497          * But the event runs on CPU-B and wants disabling there.
6498          */
6499         irq_work_queue_on(&event->pending, cpu);
6500 }
6501
6502 static void perf_pending_event(struct irq_work *entry)
6503 {
6504         struct perf_event *event = container_of(entry, struct perf_event, pending);
6505         int rctx;
6506
6507         rctx = perf_swevent_get_recursion_context();
6508         /*
6509          * If we 'fail' here, that's OK, it means recursion is already disabled
6510          * and we won't recurse 'further'.
6511          */
6512
6513         perf_pending_event_disable(event);
6514
6515         if (event->pending_wakeup) {
6516                 event->pending_wakeup = 0;
6517                 perf_event_wakeup(event);
6518         }
6519
6520         if (rctx >= 0)
6521                 perf_swevent_put_recursion_context(rctx);
6522 }
6523
6524 /*
6525  * We assume there is only KVM supporting the callbacks.
6526  * Later on, we might change it to a list if there is
6527  * another virtualization implementation supporting the callbacks.
6528  */
6529 struct perf_guest_info_callbacks *perf_guest_cbs;
6530
6531 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6532 {
6533         perf_guest_cbs = cbs;
6534         return 0;
6535 }
6536 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
6537
6538 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
6539 {
6540         perf_guest_cbs = NULL;
6541         return 0;
6542 }
6543 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
6544
6545 static void
6546 perf_output_sample_regs(struct perf_output_handle *handle,
6547                         struct pt_regs *regs, u64 mask)
6548 {
6549         int bit;
6550         DECLARE_BITMAP(_mask, 64);
6551
6552         bitmap_from_u64(_mask, mask);
6553         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
6554                 u64 val;
6555
6556                 val = perf_reg_value(regs, bit);
6557                 perf_output_put(handle, val);
6558         }
6559 }
6560
6561 static void perf_sample_regs_user(struct perf_regs *regs_user,
6562                                   struct pt_regs *regs)
6563 {
6564         if (user_mode(regs)) {
6565                 regs_user->abi = perf_reg_abi(current);
6566                 regs_user->regs = regs;
6567         } else if (!(current->flags & PF_KTHREAD)) {
6568                 perf_get_regs_user(regs_user, regs);
6569         } else {
6570                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
6571                 regs_user->regs = NULL;
6572         }
6573 }
6574
6575 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
6576                                   struct pt_regs *regs)
6577 {
6578         regs_intr->regs = regs;
6579         regs_intr->abi  = perf_reg_abi(current);
6580 }
6581
6582
6583 /*
6584  * Get remaining task size from user stack pointer.
6585  *
6586  * It'd be better to take stack vma map and limit this more
6587  * precisely, but there's no way to get it safely under interrupt,
6588  * so using TASK_SIZE as limit.
6589  */
6590 static u64 perf_ustack_task_size(struct pt_regs *regs)
6591 {
6592         unsigned long addr = perf_user_stack_pointer(regs);
6593
6594         if (!addr || addr >= TASK_SIZE)
6595                 return 0;
6596
6597         return TASK_SIZE - addr;
6598 }
6599
6600 static u16
6601 perf_sample_ustack_size(u16 stack_size, u16 header_size,
6602                         struct pt_regs *regs)
6603 {
6604         u64 task_size;
6605
6606         /* No regs, no stack pointer, no dump. */
6607         if (!regs)
6608                 return 0;
6609
6610         /*
6611          * Check if we fit in with the requested stack size into the:
6612          * - TASK_SIZE
6613          *   If we don't, we limit the size to the TASK_SIZE.
6614          *
6615          * - remaining sample size
6616          *   If we don't, we customize the stack size to
6617          *   fit in to the remaining sample size.
6618          */
6619
6620         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
6621         stack_size = min(stack_size, (u16) task_size);
6622
6623         /* Current header size plus static size and dynamic size. */
6624         header_size += 2 * sizeof(u64);
6625
6626         /* Do we fit in with the current stack dump size? */
6627         if ((u16) (header_size + stack_size) < header_size) {
6628                 /*
6629                  * If we overflow the maximum size for the sample,
6630                  * we customize the stack dump size to fit in.
6631                  */
6632                 stack_size = USHRT_MAX - header_size - sizeof(u64);
6633                 stack_size = round_up(stack_size, sizeof(u64));
6634         }
6635
6636         return stack_size;
6637 }
6638
6639 static void
6640 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
6641                           struct pt_regs *regs)
6642 {
6643         /* Case of a kernel thread, nothing to dump */
6644         if (!regs) {
6645                 u64 size = 0;
6646                 perf_output_put(handle, size);
6647         } else {
6648                 unsigned long sp;
6649                 unsigned int rem;
6650                 u64 dyn_size;
6651                 mm_segment_t fs;
6652
6653                 /*
6654                  * We dump:
6655                  * static size
6656                  *   - the size requested by user or the best one we can fit
6657                  *     in to the sample max size
6658                  * data
6659                  *   - user stack dump data
6660                  * dynamic size
6661                  *   - the actual dumped size
6662                  */
6663
6664                 /* Static size. */
6665                 perf_output_put(handle, dump_size);
6666
6667                 /* Data. */
6668                 sp = perf_user_stack_pointer(regs);
6669                 fs = force_uaccess_begin();
6670                 rem = __output_copy_user(handle, (void *) sp, dump_size);
6671                 force_uaccess_end(fs);
6672                 dyn_size = dump_size - rem;
6673
6674                 perf_output_skip(handle, rem);
6675
6676                 /* Dynamic size. */
6677                 perf_output_put(handle, dyn_size);
6678         }
6679 }
6680
6681 static unsigned long perf_prepare_sample_aux(struct perf_event *event,
6682                                           struct perf_sample_data *data,
6683                                           size_t size)
6684 {
6685         struct perf_event *sampler = event->aux_event;
6686         struct perf_buffer *rb;
6687
6688         data->aux_size = 0;
6689
6690         if (!sampler)
6691                 goto out;
6692
6693         if (WARN_ON_ONCE(READ_ONCE(sampler->state) != PERF_EVENT_STATE_ACTIVE))
6694                 goto out;
6695
6696         if (WARN_ON_ONCE(READ_ONCE(sampler->oncpu) != smp_processor_id()))
6697                 goto out;
6698
6699         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6700         if (!rb)
6701                 goto out;
6702
6703         /*
6704          * If this is an NMI hit inside sampling code, don't take
6705          * the sample. See also perf_aux_sample_output().
6706          */
6707         if (READ_ONCE(rb->aux_in_sampling)) {
6708                 data->aux_size = 0;
6709         } else {
6710                 size = min_t(size_t, size, perf_aux_size(rb));
6711                 data->aux_size = ALIGN(size, sizeof(u64));
6712         }
6713         ring_buffer_put(rb);
6714
6715 out:
6716         return data->aux_size;
6717 }
6718
6719 static long perf_pmu_snapshot_aux(struct perf_buffer *rb,
6720                                  struct perf_event *event,
6721                                  struct perf_output_handle *handle,
6722                                  unsigned long size)
6723 {
6724         unsigned long flags;
6725         long ret;
6726
6727         /*
6728          * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6729          * paths. If we start calling them in NMI context, they may race with
6730          * the IRQ ones, that is, for example, re-starting an event that's just
6731          * been stopped, which is why we're using a separate callback that
6732          * doesn't change the event state.
6733          *
6734          * IRQs need to be disabled to prevent IPIs from racing with us.
6735          */
6736         local_irq_save(flags);
6737         /*
6738          * Guard against NMI hits inside the critical section;
6739          * see also perf_prepare_sample_aux().
6740          */
6741         WRITE_ONCE(rb->aux_in_sampling, 1);
6742         barrier();
6743
6744         ret = event->pmu->snapshot_aux(event, handle, size);
6745
6746         barrier();
6747         WRITE_ONCE(rb->aux_in_sampling, 0);
6748         local_irq_restore(flags);
6749
6750         return ret;
6751 }
6752
6753 static void perf_aux_sample_output(struct perf_event *event,
6754                                    struct perf_output_handle *handle,
6755                                    struct perf_sample_data *data)
6756 {
6757         struct perf_event *sampler = event->aux_event;
6758         struct perf_buffer *rb;
6759         unsigned long pad;
6760         long size;
6761
6762         if (WARN_ON_ONCE(!sampler || !data->aux_size))
6763                 return;
6764
6765         rb = ring_buffer_get(sampler->parent ? sampler->parent : sampler);
6766         if (!rb)
6767                 return;
6768
6769         size = perf_pmu_snapshot_aux(rb, sampler, handle, data->aux_size);
6770
6771         /*
6772          * An error here means that perf_output_copy() failed (returned a
6773          * non-zero surplus that it didn't copy), which in its current
6774          * enlightened implementation is not possible. If that changes, we'd
6775          * like to know.
6776          */
6777         if (WARN_ON_ONCE(size < 0))
6778                 goto out_put;
6779
6780         /*
6781          * The pad comes from ALIGN()ing data->aux_size up to u64 in
6782          * perf_prepare_sample_aux(), so should not be more than that.
6783          */
6784         pad = data->aux_size - size;
6785         if (WARN_ON_ONCE(pad >= sizeof(u64)))
6786                 pad = 8;
6787
6788         if (pad) {
6789                 u64 zero = 0;
6790                 perf_output_copy(handle, &zero, pad);
6791         }
6792
6793 out_put:
6794         ring_buffer_put(rb);
6795 }
6796
6797 static void __perf_event_header__init_id(struct perf_event_header *header,
6798                                          struct perf_sample_data *data,
6799                                          struct perf_event *event)
6800 {
6801         u64 sample_type = event->attr.sample_type;
6802
6803         data->type = sample_type;
6804         header->size += event->id_header_size;
6805
6806         if (sample_type & PERF_SAMPLE_TID) {
6807                 /* namespace issues */
6808                 data->tid_entry.pid = perf_event_pid(event, current);
6809                 data->tid_entry.tid = perf_event_tid(event, current);
6810         }
6811
6812         if (sample_type & PERF_SAMPLE_TIME)
6813                 data->time = perf_event_clock(event);
6814
6815         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6816                 data->id = primary_event_id(event);
6817
6818         if (sample_type & PERF_SAMPLE_STREAM_ID)
6819                 data->stream_id = event->id;
6820
6821         if (sample_type & PERF_SAMPLE_CPU) {
6822                 data->cpu_entry.cpu      = raw_smp_processor_id();
6823                 data->cpu_entry.reserved = 0;
6824         }
6825 }
6826
6827 void perf_event_header__init_id(struct perf_event_header *header,
6828                                 struct perf_sample_data *data,
6829                                 struct perf_event *event)
6830 {
6831         if (event->attr.sample_id_all)
6832                 __perf_event_header__init_id(header, data, event);
6833 }
6834
6835 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6836                                            struct perf_sample_data *data)
6837 {
6838         u64 sample_type = data->type;
6839
6840         if (sample_type & PERF_SAMPLE_TID)
6841                 perf_output_put(handle, data->tid_entry);
6842
6843         if (sample_type & PERF_SAMPLE_TIME)
6844                 perf_output_put(handle, data->time);
6845
6846         if (sample_type & PERF_SAMPLE_ID)
6847                 perf_output_put(handle, data->id);
6848
6849         if (sample_type & PERF_SAMPLE_STREAM_ID)
6850                 perf_output_put(handle, data->stream_id);
6851
6852         if (sample_type & PERF_SAMPLE_CPU)
6853                 perf_output_put(handle, data->cpu_entry);
6854
6855         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6856                 perf_output_put(handle, data->id);
6857 }
6858
6859 void perf_event__output_id_sample(struct perf_event *event,
6860                                   struct perf_output_handle *handle,
6861                                   struct perf_sample_data *sample)
6862 {
6863         if (event->attr.sample_id_all)
6864                 __perf_event__output_id_sample(handle, sample);
6865 }
6866
6867 static void perf_output_read_one(struct perf_output_handle *handle,
6868                                  struct perf_event *event,
6869                                  u64 enabled, u64 running)
6870 {
6871         u64 read_format = event->attr.read_format;
6872         u64 values[4];
6873         int n = 0;
6874
6875         values[n++] = perf_event_count(event);
6876         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6877                 values[n++] = enabled +
6878                         atomic64_read(&event->child_total_time_enabled);
6879         }
6880         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6881                 values[n++] = running +
6882                         atomic64_read(&event->child_total_time_running);
6883         }
6884         if (read_format & PERF_FORMAT_ID)
6885                 values[n++] = primary_event_id(event);
6886
6887         __output_copy(handle, values, n * sizeof(u64));
6888 }
6889
6890 static void perf_output_read_group(struct perf_output_handle *handle,
6891                             struct perf_event *event,
6892                             u64 enabled, u64 running)
6893 {
6894         struct perf_event *leader = event->group_leader, *sub;
6895         u64 read_format = event->attr.read_format;
6896         u64 values[5];
6897         int n = 0;
6898
6899         values[n++] = 1 + leader->nr_siblings;
6900
6901         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6902                 values[n++] = enabled;
6903
6904         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6905                 values[n++] = running;
6906
6907         if ((leader != event) &&
6908             (leader->state == PERF_EVENT_STATE_ACTIVE))
6909                 leader->pmu->read(leader);
6910
6911         values[n++] = perf_event_count(leader);
6912         if (read_format & PERF_FORMAT_ID)
6913                 values[n++] = primary_event_id(leader);
6914
6915         __output_copy(handle, values, n * sizeof(u64));
6916
6917         for_each_sibling_event(sub, leader) {
6918                 n = 0;
6919
6920                 if ((sub != event) &&
6921                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6922                         sub->pmu->read(sub);
6923
6924                 values[n++] = perf_event_count(sub);
6925                 if (read_format & PERF_FORMAT_ID)
6926                         values[n++] = primary_event_id(sub);
6927
6928                 __output_copy(handle, values, n * sizeof(u64));
6929         }
6930 }
6931
6932 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6933                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6934
6935 /*
6936  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6937  *
6938  * The problem is that its both hard and excessively expensive to iterate the
6939  * child list, not to mention that its impossible to IPI the children running
6940  * on another CPU, from interrupt/NMI context.
6941  */
6942 static void perf_output_read(struct perf_output_handle *handle,
6943                              struct perf_event *event)
6944 {
6945         u64 enabled = 0, running = 0, now;
6946         u64 read_format = event->attr.read_format;
6947
6948         /*
6949          * compute total_time_enabled, total_time_running
6950          * based on snapshot values taken when the event
6951          * was last scheduled in.
6952          *
6953          * we cannot simply called update_context_time()
6954          * because of locking issue as we are called in
6955          * NMI context
6956          */
6957         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6958                 calc_timer_values(event, &now, &enabled, &running);
6959
6960         if (event->attr.read_format & PERF_FORMAT_GROUP)
6961                 perf_output_read_group(handle, event, enabled, running);
6962         else
6963                 perf_output_read_one(handle, event, enabled, running);
6964 }
6965
6966 static inline bool perf_sample_save_hw_index(struct perf_event *event)
6967 {
6968         return event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_HW_INDEX;
6969 }
6970
6971 void perf_output_sample(struct perf_output_handle *handle,
6972                         struct perf_event_header *header,
6973                         struct perf_sample_data *data,
6974                         struct perf_event *event)
6975 {
6976         u64 sample_type = data->type;
6977
6978         perf_output_put(handle, *header);
6979
6980         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6981                 perf_output_put(handle, data->id);
6982
6983         if (sample_type & PERF_SAMPLE_IP)
6984                 perf_output_put(handle, data->ip);
6985
6986         if (sample_type & PERF_SAMPLE_TID)
6987                 perf_output_put(handle, data->tid_entry);
6988
6989         if (sample_type & PERF_SAMPLE_TIME)
6990                 perf_output_put(handle, data->time);
6991
6992         if (sample_type & PERF_SAMPLE_ADDR)
6993                 perf_output_put(handle, data->addr);
6994
6995         if (sample_type & PERF_SAMPLE_ID)
6996                 perf_output_put(handle, data->id);
6997
6998         if (sample_type & PERF_SAMPLE_STREAM_ID)
6999                 perf_output_put(handle, data->stream_id);
7000
7001         if (sample_type & PERF_SAMPLE_CPU)
7002                 perf_output_put(handle, data->cpu_entry);
7003
7004         if (sample_type & PERF_SAMPLE_PERIOD)
7005                 perf_output_put(handle, data->period);
7006
7007         if (sample_type & PERF_SAMPLE_READ)
7008                 perf_output_read(handle, event);
7009
7010         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7011                 int size = 1;
7012
7013                 size += data->callchain->nr;
7014                 size *= sizeof(u64);
7015                 __output_copy(handle, data->callchain, size);
7016         }
7017
7018         if (sample_type & PERF_SAMPLE_RAW) {
7019                 struct perf_raw_record *raw = data->raw;
7020
7021                 if (raw) {
7022                         struct perf_raw_frag *frag = &raw->frag;
7023
7024                         perf_output_put(handle, raw->size);
7025                         do {
7026                                 if (frag->copy) {
7027                                         __output_custom(handle, frag->copy,
7028                                                         frag->data, frag->size);
7029                                 } else {
7030                                         __output_copy(handle, frag->data,
7031                                                       frag->size);
7032                                 }
7033                                 if (perf_raw_frag_last(frag))
7034                                         break;
7035                                 frag = frag->next;
7036                         } while (1);
7037                         if (frag->pad)
7038                                 __output_skip(handle, NULL, frag->pad);
7039                 } else {
7040                         struct {
7041                                 u32     size;
7042                                 u32     data;
7043                         } raw = {
7044                                 .size = sizeof(u32),
7045                                 .data = 0,
7046                         };
7047                         perf_output_put(handle, raw);
7048                 }
7049         }
7050
7051         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7052                 if (data->br_stack) {
7053                         size_t size;
7054
7055                         size = data->br_stack->nr
7056                              * sizeof(struct perf_branch_entry);
7057
7058                         perf_output_put(handle, data->br_stack->nr);
7059                         if (perf_sample_save_hw_index(event))
7060                                 perf_output_put(handle, data->br_stack->hw_idx);
7061                         perf_output_copy(handle, data->br_stack->entries, size);
7062                 } else {
7063                         /*
7064                          * we always store at least the value of nr
7065                          */
7066                         u64 nr = 0;
7067                         perf_output_put(handle, nr);
7068                 }
7069         }
7070
7071         if (sample_type & PERF_SAMPLE_REGS_USER) {
7072                 u64 abi = data->regs_user.abi;
7073
7074                 /*
7075                  * If there are no regs to dump, notice it through
7076                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7077                  */
7078                 perf_output_put(handle, abi);
7079
7080                 if (abi) {
7081                         u64 mask = event->attr.sample_regs_user;
7082                         perf_output_sample_regs(handle,
7083                                                 data->regs_user.regs,
7084                                                 mask);
7085                 }
7086         }
7087
7088         if (sample_type & PERF_SAMPLE_STACK_USER) {
7089                 perf_output_sample_ustack(handle,
7090                                           data->stack_user_size,
7091                                           data->regs_user.regs);
7092         }
7093
7094         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE)
7095                 perf_output_put(handle, data->weight.full);
7096
7097         if (sample_type & PERF_SAMPLE_DATA_SRC)
7098                 perf_output_put(handle, data->data_src.val);
7099
7100         if (sample_type & PERF_SAMPLE_TRANSACTION)
7101                 perf_output_put(handle, data->txn);
7102
7103         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7104                 u64 abi = data->regs_intr.abi;
7105                 /*
7106                  * If there are no regs to dump, notice it through
7107                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
7108                  */
7109                 perf_output_put(handle, abi);
7110
7111                 if (abi) {
7112                         u64 mask = event->attr.sample_regs_intr;
7113
7114                         perf_output_sample_regs(handle,
7115                                                 data->regs_intr.regs,
7116                                                 mask);
7117                 }
7118         }
7119
7120         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7121                 perf_output_put(handle, data->phys_addr);
7122
7123         if (sample_type & PERF_SAMPLE_CGROUP)
7124                 perf_output_put(handle, data->cgroup);
7125
7126         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7127                 perf_output_put(handle, data->data_page_size);
7128
7129         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7130                 perf_output_put(handle, data->code_page_size);
7131
7132         if (sample_type & PERF_SAMPLE_AUX) {
7133                 perf_output_put(handle, data->aux_size);
7134
7135                 if (data->aux_size)
7136                         perf_aux_sample_output(event, handle, data);
7137         }
7138
7139         if (!event->attr.watermark) {
7140                 int wakeup_events = event->attr.wakeup_events;
7141
7142                 if (wakeup_events) {
7143                         struct perf_buffer *rb = handle->rb;
7144                         int events = local_inc_return(&rb->events);
7145
7146                         if (events >= wakeup_events) {
7147                                 local_sub(wakeup_events, &rb->events);
7148                                 local_inc(&rb->wakeup);
7149                         }
7150                 }
7151         }
7152 }
7153
7154 static u64 perf_virt_to_phys(u64 virt)
7155 {
7156         u64 phys_addr = 0;
7157         struct page *p = NULL;
7158
7159         if (!virt)
7160                 return 0;
7161
7162         if (virt >= TASK_SIZE) {
7163                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
7164                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
7165                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
7166                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
7167         } else {
7168                 /*
7169                  * Walking the pages tables for user address.
7170                  * Interrupts are disabled, so it prevents any tear down
7171                  * of the page tables.
7172                  * Try IRQ-safe get_user_page_fast_only first.
7173                  * If failed, leave phys_addr as 0.
7174                  */
7175                 if (current->mm != NULL) {
7176                         pagefault_disable();
7177                         if (get_user_page_fast_only(virt, 0, &p))
7178                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
7179                         pagefault_enable();
7180                 }
7181
7182                 if (p)
7183                         put_page(p);
7184         }
7185
7186         return phys_addr;
7187 }
7188
7189 /*
7190  * Return the pagetable size of a given virtual address.
7191  */
7192 static u64 perf_get_pgtable_size(struct mm_struct *mm, unsigned long addr)
7193 {
7194         u64 size = 0;
7195
7196 #ifdef CONFIG_HAVE_FAST_GUP
7197         pgd_t *pgdp, pgd;
7198         p4d_t *p4dp, p4d;
7199         pud_t *pudp, pud;
7200         pmd_t *pmdp, pmd;
7201         pte_t *ptep, pte;
7202
7203         pgdp = pgd_offset(mm, addr);
7204         pgd = READ_ONCE(*pgdp);
7205         if (pgd_none(pgd))
7206                 return 0;
7207
7208         if (pgd_leaf(pgd))
7209                 return pgd_leaf_size(pgd);
7210
7211         p4dp = p4d_offset_lockless(pgdp, pgd, addr);
7212         p4d = READ_ONCE(*p4dp);
7213         if (!p4d_present(p4d))
7214                 return 0;
7215
7216         if (p4d_leaf(p4d))
7217                 return p4d_leaf_size(p4d);
7218
7219         pudp = pud_offset_lockless(p4dp, p4d, addr);
7220         pud = READ_ONCE(*pudp);
7221         if (!pud_present(pud))
7222                 return 0;
7223
7224         if (pud_leaf(pud))
7225                 return pud_leaf_size(pud);
7226
7227         pmdp = pmd_offset_lockless(pudp, pud, addr);
7228         pmd = READ_ONCE(*pmdp);
7229         if (!pmd_present(pmd))
7230                 return 0;
7231
7232         if (pmd_leaf(pmd))
7233                 return pmd_leaf_size(pmd);
7234
7235         ptep = pte_offset_map(&pmd, addr);
7236         pte = ptep_get_lockless(ptep);
7237         if (pte_present(pte))
7238                 size = pte_leaf_size(pte);
7239         pte_unmap(ptep);
7240 #endif /* CONFIG_HAVE_FAST_GUP */
7241
7242         return size;
7243 }
7244
7245 static u64 perf_get_page_size(unsigned long addr)
7246 {
7247         struct mm_struct *mm;
7248         unsigned long flags;
7249         u64 size;
7250
7251         if (!addr)
7252                 return 0;
7253
7254         /*
7255          * Software page-table walkers must disable IRQs,
7256          * which prevents any tear down of the page tables.
7257          */
7258         local_irq_save(flags);
7259
7260         mm = current->mm;
7261         if (!mm) {
7262                 /*
7263                  * For kernel threads and the like, use init_mm so that
7264                  * we can find kernel memory.
7265                  */
7266                 mm = &init_mm;
7267         }
7268
7269         size = perf_get_pgtable_size(mm, addr);
7270
7271         local_irq_restore(flags);
7272
7273         return size;
7274 }
7275
7276 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
7277
7278 struct perf_callchain_entry *
7279 perf_callchain(struct perf_event *event, struct pt_regs *regs)
7280 {
7281         bool kernel = !event->attr.exclude_callchain_kernel;
7282         bool user   = !event->attr.exclude_callchain_user;
7283         /* Disallow cross-task user callchains. */
7284         bool crosstask = event->ctx->task && event->ctx->task != current;
7285         const u32 max_stack = event->attr.sample_max_stack;
7286         struct perf_callchain_entry *callchain;
7287
7288         if (!kernel && !user)
7289                 return &__empty_callchain;
7290
7291         callchain = get_perf_callchain(regs, 0, kernel, user,
7292                                        max_stack, crosstask, true);
7293         return callchain ?: &__empty_callchain;
7294 }
7295
7296 void perf_prepare_sample(struct perf_event_header *header,
7297                          struct perf_sample_data *data,
7298                          struct perf_event *event,
7299                          struct pt_regs *regs)
7300 {
7301         u64 sample_type = event->attr.sample_type;
7302
7303         header->type = PERF_RECORD_SAMPLE;
7304         header->size = sizeof(*header) + event->header_size;
7305
7306         header->misc = 0;
7307         header->misc |= perf_misc_flags(regs);
7308
7309         __perf_event_header__init_id(header, data, event);
7310
7311         if (sample_type & (PERF_SAMPLE_IP | PERF_SAMPLE_CODE_PAGE_SIZE))
7312                 data->ip = perf_instruction_pointer(regs);
7313
7314         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
7315                 int size = 1;
7316
7317                 if (!(sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY))
7318                         data->callchain = perf_callchain(event, regs);
7319
7320                 size += data->callchain->nr;
7321
7322                 header->size += size * sizeof(u64);
7323         }
7324
7325         if (sample_type & PERF_SAMPLE_RAW) {
7326                 struct perf_raw_record *raw = data->raw;
7327                 int size;
7328
7329                 if (raw) {
7330                         struct perf_raw_frag *frag = &raw->frag;
7331                         u32 sum = 0;
7332
7333                         do {
7334                                 sum += frag->size;
7335                                 if (perf_raw_frag_last(frag))
7336                                         break;
7337                                 frag = frag->next;
7338                         } while (1);
7339
7340                         size = round_up(sum + sizeof(u32), sizeof(u64));
7341                         raw->size = size - sizeof(u32);
7342                         frag->pad = raw->size - sum;
7343                 } else {
7344                         size = sizeof(u64);
7345                 }
7346
7347                 header->size += size;
7348         }
7349
7350         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
7351                 int size = sizeof(u64); /* nr */
7352                 if (data->br_stack) {
7353                         if (perf_sample_save_hw_index(event))
7354                                 size += sizeof(u64);
7355
7356                         size += data->br_stack->nr
7357                               * sizeof(struct perf_branch_entry);
7358                 }
7359                 header->size += size;
7360         }
7361
7362         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
7363                 perf_sample_regs_user(&data->regs_user, regs);
7364
7365         if (sample_type & PERF_SAMPLE_REGS_USER) {
7366                 /* regs dump ABI info */
7367                 int size = sizeof(u64);
7368
7369                 if (data->regs_user.regs) {
7370                         u64 mask = event->attr.sample_regs_user;
7371                         size += hweight64(mask) * sizeof(u64);
7372                 }
7373
7374                 header->size += size;
7375         }
7376
7377         if (sample_type & PERF_SAMPLE_STACK_USER) {
7378                 /*
7379                  * Either we need PERF_SAMPLE_STACK_USER bit to be always
7380                  * processed as the last one or have additional check added
7381                  * in case new sample type is added, because we could eat
7382                  * up the rest of the sample size.
7383                  */
7384                 u16 stack_size = event->attr.sample_stack_user;
7385                 u16 size = sizeof(u64);
7386
7387                 stack_size = perf_sample_ustack_size(stack_size, header->size,
7388                                                      data->regs_user.regs);
7389
7390                 /*
7391                  * If there is something to dump, add space for the dump
7392                  * itself and for the field that tells the dynamic size,
7393                  * which is how many have been actually dumped.
7394                  */
7395                 if (stack_size)
7396                         size += sizeof(u64) + stack_size;
7397
7398                 data->stack_user_size = stack_size;
7399                 header->size += size;
7400         }
7401
7402         if (sample_type & PERF_SAMPLE_REGS_INTR) {
7403                 /* regs dump ABI info */
7404                 int size = sizeof(u64);
7405
7406                 perf_sample_regs_intr(&data->regs_intr, regs);
7407
7408                 if (data->regs_intr.regs) {
7409                         u64 mask = event->attr.sample_regs_intr;
7410
7411                         size += hweight64(mask) * sizeof(u64);
7412                 }
7413
7414                 header->size += size;
7415         }
7416
7417         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
7418                 data->phys_addr = perf_virt_to_phys(data->addr);
7419
7420 #ifdef CONFIG_CGROUP_PERF
7421         if (sample_type & PERF_SAMPLE_CGROUP) {
7422                 struct cgroup *cgrp;
7423
7424                 /* protected by RCU */
7425                 cgrp = task_css_check(current, perf_event_cgrp_id, 1)->cgroup;
7426                 data->cgroup = cgroup_id(cgrp);
7427         }
7428 #endif
7429
7430         /*
7431          * PERF_DATA_PAGE_SIZE requires PERF_SAMPLE_ADDR. If the user doesn't
7432          * require PERF_SAMPLE_ADDR, kernel implicitly retrieve the data->addr,
7433          * but the value will not dump to the userspace.
7434          */
7435         if (sample_type & PERF_SAMPLE_DATA_PAGE_SIZE)
7436                 data->data_page_size = perf_get_page_size(data->addr);
7437
7438         if (sample_type & PERF_SAMPLE_CODE_PAGE_SIZE)
7439                 data->code_page_size = perf_get_page_size(data->ip);
7440
7441         if (sample_type & PERF_SAMPLE_AUX) {
7442                 u64 size;
7443
7444                 header->size += sizeof(u64); /* size */
7445
7446                 /*
7447                  * Given the 16bit nature of header::size, an AUX sample can
7448                  * easily overflow it, what with all the preceding sample bits.
7449                  * Make sure this doesn't happen by using up to U16_MAX bytes
7450                  * per sample in total (rounded down to 8 byte boundary).
7451                  */
7452                 size = min_t(size_t, U16_MAX - header->size,
7453                              event->attr.aux_sample_size);
7454                 size = rounddown(size, 8);
7455                 size = perf_prepare_sample_aux(event, data, size);
7456
7457                 WARN_ON_ONCE(size + header->size > U16_MAX);
7458                 header->size += size;
7459         }
7460         /*
7461          * If you're adding more sample types here, you likely need to do
7462          * something about the overflowing header::size, like repurpose the
7463          * lowest 3 bits of size, which should be always zero at the moment.
7464          * This raises a more important question, do we really need 512k sized
7465          * samples and why, so good argumentation is in order for whatever you
7466          * do here next.
7467          */
7468         WARN_ON_ONCE(header->size & 7);
7469 }
7470
7471 static __always_inline int
7472 __perf_event_output(struct perf_event *event,
7473                     struct perf_sample_data *data,
7474                     struct pt_regs *regs,
7475                     int (*output_begin)(struct perf_output_handle *,
7476                                         struct perf_sample_data *,
7477                                         struct perf_event *,
7478                                         unsigned int))
7479 {
7480         struct perf_output_handle handle;
7481         struct perf_event_header header;
7482         int err;
7483
7484         /* protect the callchain buffers */
7485         rcu_read_lock();
7486
7487         perf_prepare_sample(&header, data, event, regs);
7488
7489         err = output_begin(&handle, data, event, header.size);
7490         if (err)
7491                 goto exit;
7492
7493         perf_output_sample(&handle, &header, data, event);
7494
7495         perf_output_end(&handle);
7496
7497 exit:
7498         rcu_read_unlock();
7499         return err;
7500 }
7501
7502 void
7503 perf_event_output_forward(struct perf_event *event,
7504                          struct perf_sample_data *data,
7505                          struct pt_regs *regs)
7506 {
7507         __perf_event_output(event, data, regs, perf_output_begin_forward);
7508 }
7509
7510 void
7511 perf_event_output_backward(struct perf_event *event,
7512                            struct perf_sample_data *data,
7513                            struct pt_regs *regs)
7514 {
7515         __perf_event_output(event, data, regs, perf_output_begin_backward);
7516 }
7517
7518 int
7519 perf_event_output(struct perf_event *event,
7520                   struct perf_sample_data *data,
7521                   struct pt_regs *regs)
7522 {
7523         return __perf_event_output(event, data, regs, perf_output_begin);
7524 }
7525
7526 /*
7527  * read event_id
7528  */
7529
7530 struct perf_read_event {
7531         struct perf_event_header        header;
7532
7533         u32                             pid;
7534         u32                             tid;
7535 };
7536
7537 static void
7538 perf_event_read_event(struct perf_event *event,
7539                         struct task_struct *task)
7540 {
7541         struct perf_output_handle handle;
7542         struct perf_sample_data sample;
7543         struct perf_read_event read_event = {
7544                 .header = {
7545                         .type = PERF_RECORD_READ,
7546                         .misc = 0,
7547                         .size = sizeof(read_event) + event->read_size,
7548                 },
7549                 .pid = perf_event_pid(event, task),
7550                 .tid = perf_event_tid(event, task),
7551         };
7552         int ret;
7553
7554         perf_event_header__init_id(&read_event.header, &sample, event);
7555         ret = perf_output_begin(&handle, &sample, event, read_event.header.size);
7556         if (ret)
7557                 return;
7558
7559         perf_output_put(&handle, read_event);
7560         perf_output_read(&handle, event);
7561         perf_event__output_id_sample(event, &handle, &sample);
7562
7563         perf_output_end(&handle);
7564 }
7565
7566 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
7567
7568 static void
7569 perf_iterate_ctx(struct perf_event_context *ctx,
7570                    perf_iterate_f output,
7571                    void *data, bool all)
7572 {
7573         struct perf_event *event;
7574
7575         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
7576                 if (!all) {
7577                         if (event->state < PERF_EVENT_STATE_INACTIVE)
7578                                 continue;
7579                         if (!event_filter_match(event))
7580                                 continue;
7581                 }
7582
7583                 output(event, data);
7584         }
7585 }
7586
7587 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
7588 {
7589         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
7590         struct perf_event *event;
7591
7592         list_for_each_entry_rcu(event, &pel->list, sb_list) {
7593                 /*
7594                  * Skip events that are not fully formed yet; ensure that
7595                  * if we observe event->ctx, both event and ctx will be
7596                  * complete enough. See perf_install_in_context().
7597                  */
7598                 if (!smp_load_acquire(&event->ctx))
7599                         continue;
7600
7601                 if (event->state < PERF_EVENT_STATE_INACTIVE)
7602                         continue;
7603                 if (!event_filter_match(event))
7604                         continue;
7605                 output(event, data);
7606         }
7607 }
7608
7609 /*
7610  * Iterate all events that need to receive side-band events.
7611  *
7612  * For new callers; ensure that account_pmu_sb_event() includes
7613  * your event, otherwise it might not get delivered.
7614  */
7615 static void
7616 perf_iterate_sb(perf_iterate_f output, void *data,
7617                struct perf_event_context *task_ctx)
7618 {
7619         struct perf_event_context *ctx;
7620         int ctxn;
7621
7622         rcu_read_lock();
7623         preempt_disable();
7624
7625         /*
7626          * If we have task_ctx != NULL we only notify the task context itself.
7627          * The task_ctx is set only for EXIT events before releasing task
7628          * context.
7629          */
7630         if (task_ctx) {
7631                 perf_iterate_ctx(task_ctx, output, data, false);
7632                 goto done;
7633         }
7634
7635         perf_iterate_sb_cpu(output, data);
7636
7637         for_each_task_context_nr(ctxn) {
7638                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7639                 if (ctx)
7640                         perf_iterate_ctx(ctx, output, data, false);
7641         }
7642 done:
7643         preempt_enable();
7644         rcu_read_unlock();
7645 }
7646
7647 /*
7648  * Clear all file-based filters at exec, they'll have to be
7649  * re-instated when/if these objects are mmapped again.
7650  */
7651 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
7652 {
7653         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7654         struct perf_addr_filter *filter;
7655         unsigned int restart = 0, count = 0;
7656         unsigned long flags;
7657
7658         if (!has_addr_filter(event))
7659                 return;
7660
7661         raw_spin_lock_irqsave(&ifh->lock, flags);
7662         list_for_each_entry(filter, &ifh->list, entry) {
7663                 if (filter->path.dentry) {
7664                         event->addr_filter_ranges[count].start = 0;
7665                         event->addr_filter_ranges[count].size = 0;
7666                         restart++;
7667                 }
7668
7669                 count++;
7670         }
7671
7672         if (restart)
7673                 event->addr_filters_gen++;
7674         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7675
7676         if (restart)
7677                 perf_event_stop(event, 1);
7678 }
7679
7680 void perf_event_exec(void)
7681 {
7682         struct perf_event_context *ctx;
7683         int ctxn;
7684
7685         for_each_task_context_nr(ctxn) {
7686                 perf_event_enable_on_exec(ctxn);
7687                 perf_event_remove_on_exec(ctxn);
7688
7689                 rcu_read_lock();
7690                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7691                 if (ctx) {
7692                         perf_iterate_ctx(ctx, perf_event_addr_filters_exec,
7693                                          NULL, true);
7694                 }
7695                 rcu_read_unlock();
7696         }
7697 }
7698
7699 struct remote_output {
7700         struct perf_buffer      *rb;
7701         int                     err;
7702 };
7703
7704 static void __perf_event_output_stop(struct perf_event *event, void *data)
7705 {
7706         struct perf_event *parent = event->parent;
7707         struct remote_output *ro = data;
7708         struct perf_buffer *rb = ro->rb;
7709         struct stop_event_data sd = {
7710                 .event  = event,
7711         };
7712
7713         if (!has_aux(event))
7714                 return;
7715
7716         if (!parent)
7717                 parent = event;
7718
7719         /*
7720          * In case of inheritance, it will be the parent that links to the
7721          * ring-buffer, but it will be the child that's actually using it.
7722          *
7723          * We are using event::rb to determine if the event should be stopped,
7724          * however this may race with ring_buffer_attach() (through set_output),
7725          * which will make us skip the event that actually needs to be stopped.
7726          * So ring_buffer_attach() has to stop an aux event before re-assigning
7727          * its rb pointer.
7728          */
7729         if (rcu_dereference(parent->rb) == rb)
7730                 ro->err = __perf_event_stop(&sd);
7731 }
7732
7733 static int __perf_pmu_output_stop(void *info)
7734 {
7735         struct perf_event *event = info;
7736         struct pmu *pmu = event->ctx->pmu;
7737         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7738         struct remote_output ro = {
7739                 .rb     = event->rb,
7740         };
7741
7742         rcu_read_lock();
7743         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
7744         if (cpuctx->task_ctx)
7745                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
7746                                    &ro, false);
7747         rcu_read_unlock();
7748
7749         return ro.err;
7750 }
7751
7752 static void perf_pmu_output_stop(struct perf_event *event)
7753 {
7754         struct perf_event *iter;
7755         int err, cpu;
7756
7757 restart:
7758         rcu_read_lock();
7759         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
7760                 /*
7761                  * For per-CPU events, we need to make sure that neither they
7762                  * nor their children are running; for cpu==-1 events it's
7763                  * sufficient to stop the event itself if it's active, since
7764                  * it can't have children.
7765                  */
7766                 cpu = iter->cpu;
7767                 if (cpu == -1)
7768                         cpu = READ_ONCE(iter->oncpu);
7769
7770                 if (cpu == -1)
7771                         continue;
7772
7773                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
7774                 if (err == -EAGAIN) {
7775                         rcu_read_unlock();
7776                         goto restart;
7777                 }
7778         }
7779         rcu_read_unlock();
7780 }
7781
7782 /*
7783  * task tracking -- fork/exit
7784  *
7785  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7786  */
7787
7788 struct perf_task_event {
7789         struct task_struct              *task;
7790         struct perf_event_context       *task_ctx;
7791
7792         struct {
7793                 struct perf_event_header        header;
7794
7795                 u32                             pid;
7796                 u32                             ppid;
7797                 u32                             tid;
7798                 u32                             ptid;
7799                 u64                             time;
7800         } event_id;
7801 };
7802
7803 static int perf_event_task_match(struct perf_event *event)
7804 {
7805         return event->attr.comm  || event->attr.mmap ||
7806                event->attr.mmap2 || event->attr.mmap_data ||
7807                event->attr.task;
7808 }
7809
7810 static void perf_event_task_output(struct perf_event *event,
7811                                    void *data)
7812 {
7813         struct perf_task_event *task_event = data;
7814         struct perf_output_handle handle;
7815         struct perf_sample_data sample;
7816         struct task_struct *task = task_event->task;
7817         int ret, size = task_event->event_id.header.size;
7818
7819         if (!perf_event_task_match(event))
7820                 return;
7821
7822         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
7823
7824         ret = perf_output_begin(&handle, &sample, event,
7825                                 task_event->event_id.header.size);
7826         if (ret)
7827                 goto out;
7828
7829         task_event->event_id.pid = perf_event_pid(event, task);
7830         task_event->event_id.tid = perf_event_tid(event, task);
7831
7832         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
7833                 task_event->event_id.ppid = perf_event_pid(event,
7834                                                         task->real_parent);
7835                 task_event->event_id.ptid = perf_event_pid(event,
7836                                                         task->real_parent);
7837         } else {  /* PERF_RECORD_FORK */
7838                 task_event->event_id.ppid = perf_event_pid(event, current);
7839                 task_event->event_id.ptid = perf_event_tid(event, current);
7840         }
7841
7842         task_event->event_id.time = perf_event_clock(event);
7843
7844         perf_output_put(&handle, task_event->event_id);
7845
7846         perf_event__output_id_sample(event, &handle, &sample);
7847
7848         perf_output_end(&handle);
7849 out:
7850         task_event->event_id.header.size = size;
7851 }
7852
7853 static void perf_event_task(struct task_struct *task,
7854                               struct perf_event_context *task_ctx,
7855                               int new)
7856 {
7857         struct perf_task_event task_event;
7858
7859         if (!atomic_read(&nr_comm_events) &&
7860             !atomic_read(&nr_mmap_events) &&
7861             !atomic_read(&nr_task_events))
7862                 return;
7863
7864         task_event = (struct perf_task_event){
7865                 .task     = task,
7866                 .task_ctx = task_ctx,
7867                 .event_id    = {
7868                         .header = {
7869                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
7870                                 .misc = 0,
7871                                 .size = sizeof(task_event.event_id),
7872                         },
7873                         /* .pid  */
7874                         /* .ppid */
7875                         /* .tid  */
7876                         /* .ptid */
7877                         /* .time */
7878                 },
7879         };
7880
7881         perf_iterate_sb(perf_event_task_output,
7882                        &task_event,
7883                        task_ctx);
7884 }
7885
7886 void perf_event_fork(struct task_struct *task)
7887 {
7888         perf_event_task(task, NULL, 1);
7889         perf_event_namespaces(task);
7890 }
7891
7892 /*
7893  * comm tracking
7894  */
7895
7896 struct perf_comm_event {
7897         struct task_struct      *task;
7898         char                    *comm;
7899         int                     comm_size;
7900
7901         struct {
7902                 struct perf_event_header        header;
7903
7904                 u32                             pid;
7905                 u32                             tid;
7906         } event_id;
7907 };
7908
7909 static int perf_event_comm_match(struct perf_event *event)
7910 {
7911         return event->attr.comm;
7912 }
7913
7914 static void perf_event_comm_output(struct perf_event *event,
7915                                    void *data)
7916 {
7917         struct perf_comm_event *comm_event = data;
7918         struct perf_output_handle handle;
7919         struct perf_sample_data sample;
7920         int size = comm_event->event_id.header.size;
7921         int ret;
7922
7923         if (!perf_event_comm_match(event))
7924                 return;
7925
7926         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
7927         ret = perf_output_begin(&handle, &sample, event,
7928                                 comm_event->event_id.header.size);
7929
7930         if (ret)
7931                 goto out;
7932
7933         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
7934         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
7935
7936         perf_output_put(&handle, comm_event->event_id);
7937         __output_copy(&handle, comm_event->comm,
7938                                    comm_event->comm_size);
7939
7940         perf_event__output_id_sample(event, &handle, &sample);
7941
7942         perf_output_end(&handle);
7943 out:
7944         comm_event->event_id.header.size = size;
7945 }
7946
7947 static void perf_event_comm_event(struct perf_comm_event *comm_event)
7948 {
7949         char comm[TASK_COMM_LEN];
7950         unsigned int size;
7951
7952         memset(comm, 0, sizeof(comm));
7953         strlcpy(comm, comm_event->task->comm, sizeof(comm));
7954         size = ALIGN(strlen(comm)+1, sizeof(u64));
7955
7956         comm_event->comm = comm;
7957         comm_event->comm_size = size;
7958
7959         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
7960
7961         perf_iterate_sb(perf_event_comm_output,
7962                        comm_event,
7963                        NULL);
7964 }
7965
7966 void perf_event_comm(struct task_struct *task, bool exec)
7967 {
7968         struct perf_comm_event comm_event;
7969
7970         if (!atomic_read(&nr_comm_events))
7971                 return;
7972
7973         comm_event = (struct perf_comm_event){
7974                 .task   = task,
7975                 /* .comm      */
7976                 /* .comm_size */
7977                 .event_id  = {
7978                         .header = {
7979                                 .type = PERF_RECORD_COMM,
7980                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
7981                                 /* .size */
7982                         },
7983                         /* .pid */
7984                         /* .tid */
7985                 },
7986         };
7987
7988         perf_event_comm_event(&comm_event);
7989 }
7990
7991 /*
7992  * namespaces tracking
7993  */
7994
7995 struct perf_namespaces_event {
7996         struct task_struct              *task;
7997
7998         struct {
7999                 struct perf_event_header        header;
8000
8001                 u32                             pid;
8002                 u32                             tid;
8003                 u64                             nr_namespaces;
8004                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
8005         } event_id;
8006 };
8007
8008 static int perf_event_namespaces_match(struct perf_event *event)
8009 {
8010         return event->attr.namespaces;
8011 }
8012
8013 static void perf_event_namespaces_output(struct perf_event *event,
8014                                          void *data)
8015 {
8016         struct perf_namespaces_event *namespaces_event = data;
8017         struct perf_output_handle handle;
8018         struct perf_sample_data sample;
8019         u16 header_size = namespaces_event->event_id.header.size;
8020         int ret;
8021
8022         if (!perf_event_namespaces_match(event))
8023                 return;
8024
8025         perf_event_header__init_id(&namespaces_event->event_id.header,
8026                                    &sample, event);
8027         ret = perf_output_begin(&handle, &sample, event,
8028                                 namespaces_event->event_id.header.size);
8029         if (ret)
8030                 goto out;
8031
8032         namespaces_event->event_id.pid = perf_event_pid(event,
8033                                                         namespaces_event->task);
8034         namespaces_event->event_id.tid = perf_event_tid(event,
8035                                                         namespaces_event->task);
8036
8037         perf_output_put(&handle, namespaces_event->event_id);
8038
8039         perf_event__output_id_sample(event, &handle, &sample);
8040
8041         perf_output_end(&handle);
8042 out:
8043         namespaces_event->event_id.header.size = header_size;
8044 }
8045
8046 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
8047                                    struct task_struct *task,
8048                                    const struct proc_ns_operations *ns_ops)
8049 {
8050         struct path ns_path;
8051         struct inode *ns_inode;
8052         int error;
8053
8054         error = ns_get_path(&ns_path, task, ns_ops);
8055         if (!error) {
8056                 ns_inode = ns_path.dentry->d_inode;
8057                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
8058                 ns_link_info->ino = ns_inode->i_ino;
8059                 path_put(&ns_path);
8060         }
8061 }
8062
8063 void perf_event_namespaces(struct task_struct *task)
8064 {
8065         struct perf_namespaces_event namespaces_event;
8066         struct perf_ns_link_info *ns_link_info;
8067
8068         if (!atomic_read(&nr_namespaces_events))
8069                 return;
8070
8071         namespaces_event = (struct perf_namespaces_event){
8072                 .task   = task,
8073                 .event_id  = {
8074                         .header = {
8075                                 .type = PERF_RECORD_NAMESPACES,
8076                                 .misc = 0,
8077                                 .size = sizeof(namespaces_event.event_id),
8078                         },
8079                         /* .pid */
8080                         /* .tid */
8081                         .nr_namespaces = NR_NAMESPACES,
8082                         /* .link_info[NR_NAMESPACES] */
8083                 },
8084         };
8085
8086         ns_link_info = namespaces_event.event_id.link_info;
8087
8088         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
8089                                task, &mntns_operations);
8090
8091 #ifdef CONFIG_USER_NS
8092         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
8093                                task, &userns_operations);
8094 #endif
8095 #ifdef CONFIG_NET_NS
8096         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
8097                                task, &netns_operations);
8098 #endif
8099 #ifdef CONFIG_UTS_NS
8100         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
8101                                task, &utsns_operations);
8102 #endif
8103 #ifdef CONFIG_IPC_NS
8104         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
8105                                task, &ipcns_operations);
8106 #endif
8107 #ifdef CONFIG_PID_NS
8108         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
8109                                task, &pidns_operations);
8110 #endif
8111 #ifdef CONFIG_CGROUPS
8112         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
8113                                task, &cgroupns_operations);
8114 #endif
8115
8116         perf_iterate_sb(perf_event_namespaces_output,
8117                         &namespaces_event,
8118                         NULL);
8119 }
8120
8121 /*
8122  * cgroup tracking
8123  */
8124 #ifdef CONFIG_CGROUP_PERF
8125
8126 struct perf_cgroup_event {
8127         char                            *path;
8128         int                             path_size;
8129         struct {
8130                 struct perf_event_header        header;
8131                 u64                             id;
8132                 char                            path[];
8133         } event_id;
8134 };
8135
8136 static int perf_event_cgroup_match(struct perf_event *event)
8137 {
8138         return event->attr.cgroup;
8139 }
8140
8141 static void perf_event_cgroup_output(struct perf_event *event, void *data)
8142 {
8143         struct perf_cgroup_event *cgroup_event = data;
8144         struct perf_output_handle handle;
8145         struct perf_sample_data sample;
8146         u16 header_size = cgroup_event->event_id.header.size;
8147         int ret;
8148
8149         if (!perf_event_cgroup_match(event))
8150                 return;
8151
8152         perf_event_header__init_id(&cgroup_event->event_id.header,
8153                                    &sample, event);
8154         ret = perf_output_begin(&handle, &sample, event,
8155                                 cgroup_event->event_id.header.size);
8156         if (ret)
8157                 goto out;
8158
8159         perf_output_put(&handle, cgroup_event->event_id);
8160         __output_copy(&handle, cgroup_event->path, cgroup_event->path_size);
8161
8162         perf_event__output_id_sample(event, &handle, &sample);
8163
8164         perf_output_end(&handle);
8165 out:
8166         cgroup_event->event_id.header.size = header_size;
8167 }
8168
8169 static void perf_event_cgroup(struct cgroup *cgrp)
8170 {
8171         struct perf_cgroup_event cgroup_event;
8172         char path_enomem[16] = "//enomem";
8173         char *pathname;
8174         size_t size;
8175
8176         if (!atomic_read(&nr_cgroup_events))
8177                 return;
8178
8179         cgroup_event = (struct perf_cgroup_event){
8180                 .event_id  = {
8181                         .header = {
8182                                 .type = PERF_RECORD_CGROUP,
8183                                 .misc = 0,
8184                                 .size = sizeof(cgroup_event.event_id),
8185                         },
8186                         .id = cgroup_id(cgrp),
8187                 },
8188         };
8189
8190         pathname = kmalloc(PATH_MAX, GFP_KERNEL);
8191         if (pathname == NULL) {
8192                 cgroup_event.path = path_enomem;
8193         } else {
8194                 /* just to be sure to have enough space for alignment */
8195                 cgroup_path(cgrp, pathname, PATH_MAX - sizeof(u64));
8196                 cgroup_event.path = pathname;
8197         }
8198
8199         /*
8200          * Since our buffer works in 8 byte units we need to align our string
8201          * size to a multiple of 8. However, we must guarantee the tail end is
8202          * zero'd out to avoid leaking random bits to userspace.
8203          */
8204         size = strlen(cgroup_event.path) + 1;
8205         while (!IS_ALIGNED(size, sizeof(u64)))
8206                 cgroup_event.path[size++] = '\0';
8207
8208         cgroup_event.event_id.header.size += size;
8209         cgroup_event.path_size = size;
8210
8211         perf_iterate_sb(perf_event_cgroup_output,
8212                         &cgroup_event,
8213                         NULL);
8214
8215         kfree(pathname);
8216 }
8217
8218 #endif
8219
8220 /*
8221  * mmap tracking
8222  */
8223
8224 struct perf_mmap_event {
8225         struct vm_area_struct   *vma;
8226
8227         const char              *file_name;
8228         int                     file_size;
8229         int                     maj, min;
8230         u64                     ino;
8231         u64                     ino_generation;
8232         u32                     prot, flags;
8233         u8                      build_id[BUILD_ID_SIZE_MAX];
8234         u32                     build_id_size;
8235
8236         struct {
8237                 struct perf_event_header        header;
8238
8239                 u32                             pid;
8240                 u32                             tid;
8241                 u64                             start;
8242                 u64                             len;
8243                 u64                             pgoff;
8244         } event_id;
8245 };
8246
8247 static int perf_event_mmap_match(struct perf_event *event,
8248                                  void *data)
8249 {
8250         struct perf_mmap_event *mmap_event = data;
8251         struct vm_area_struct *vma = mmap_event->vma;
8252         int executable = vma->vm_flags & VM_EXEC;
8253
8254         return (!executable && event->attr.mmap_data) ||
8255                (executable && (event->attr.mmap || event->attr.mmap2));
8256 }
8257
8258 static void perf_event_mmap_output(struct perf_event *event,
8259                                    void *data)
8260 {
8261         struct perf_mmap_event *mmap_event = data;
8262         struct perf_output_handle handle;
8263         struct perf_sample_data sample;
8264         int size = mmap_event->event_id.header.size;
8265         u32 type = mmap_event->event_id.header.type;
8266         bool use_build_id;
8267         int ret;
8268
8269         if (!perf_event_mmap_match(event, data))
8270                 return;
8271
8272         if (event->attr.mmap2) {
8273                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
8274                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
8275                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
8276                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
8277                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
8278                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
8279                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
8280         }
8281
8282         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
8283         ret = perf_output_begin(&handle, &sample, event,
8284                                 mmap_event->event_id.header.size);
8285         if (ret)
8286                 goto out;
8287
8288         mmap_event->event_id.pid = perf_event_pid(event, current);
8289         mmap_event->event_id.tid = perf_event_tid(event, current);
8290
8291         use_build_id = event->attr.build_id && mmap_event->build_id_size;
8292
8293         if (event->attr.mmap2 && use_build_id)
8294                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_BUILD_ID;
8295
8296         perf_output_put(&handle, mmap_event->event_id);
8297
8298         if (event->attr.mmap2) {
8299                 if (use_build_id) {
8300                         u8 size[4] = { (u8) mmap_event->build_id_size, 0, 0, 0 };
8301
8302                         __output_copy(&handle, size, 4);
8303                         __output_copy(&handle, mmap_event->build_id, BUILD_ID_SIZE_MAX);
8304                 } else {
8305                         perf_output_put(&handle, mmap_event->maj);
8306                         perf_output_put(&handle, mmap_event->min);
8307                         perf_output_put(&handle, mmap_event->ino);
8308                         perf_output_put(&handle, mmap_event->ino_generation);
8309                 }
8310                 perf_output_put(&handle, mmap_event->prot);
8311                 perf_output_put(&handle, mmap_event->flags);
8312         }
8313
8314         __output_copy(&handle, mmap_event->file_name,
8315                                    mmap_event->file_size);
8316
8317         perf_event__output_id_sample(event, &handle, &sample);
8318
8319         perf_output_end(&handle);
8320 out:
8321         mmap_event->event_id.header.size = size;
8322         mmap_event->event_id.header.type = type;
8323 }
8324
8325 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
8326 {
8327         struct vm_area_struct *vma = mmap_event->vma;
8328         struct file *file = vma->vm_file;
8329         int maj = 0, min = 0;
8330         u64 ino = 0, gen = 0;
8331         u32 prot = 0, flags = 0;
8332         unsigned int size;
8333         char tmp[16];
8334         char *buf = NULL;
8335         char *name;
8336
8337         if (vma->vm_flags & VM_READ)
8338                 prot |= PROT_READ;
8339         if (vma->vm_flags & VM_WRITE)
8340                 prot |= PROT_WRITE;
8341         if (vma->vm_flags & VM_EXEC)
8342                 prot |= PROT_EXEC;
8343
8344         if (vma->vm_flags & VM_MAYSHARE)
8345                 flags = MAP_SHARED;
8346         else
8347                 flags = MAP_PRIVATE;
8348
8349         if (vma->vm_flags & VM_LOCKED)
8350                 flags |= MAP_LOCKED;
8351         if (is_vm_hugetlb_page(vma))
8352                 flags |= MAP_HUGETLB;
8353
8354         if (file) {
8355                 struct inode *inode;
8356                 dev_t dev;
8357
8358                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
8359                 if (!buf) {
8360                         name = "//enomem";
8361                         goto cpy_name;
8362                 }
8363                 /*
8364                  * d_path() works from the end of the rb backwards, so we
8365                  * need to add enough zero bytes after the string to handle
8366                  * the 64bit alignment we do later.
8367                  */
8368                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
8369                 if (IS_ERR(name)) {
8370                         name = "//toolong";
8371                         goto cpy_name;
8372                 }
8373                 inode = file_inode(vma->vm_file);
8374                 dev = inode->i_sb->s_dev;
8375                 ino = inode->i_ino;
8376                 gen = inode->i_generation;
8377                 maj = MAJOR(dev);
8378                 min = MINOR(dev);
8379
8380                 goto got_name;
8381         } else {
8382                 if (vma->vm_ops && vma->vm_ops->name) {
8383                         name = (char *) vma->vm_ops->name(vma);
8384                         if (name)
8385                                 goto cpy_name;
8386                 }
8387
8388                 name = (char *)arch_vma_name(vma);
8389                 if (name)
8390                         goto cpy_name;
8391
8392                 if (vma->vm_start <= vma->vm_mm->start_brk &&
8393                                 vma->vm_end >= vma->vm_mm->brk) {
8394                         name = "[heap]";
8395                         goto cpy_name;
8396                 }
8397                 if (vma->vm_start <= vma->vm_mm->start_stack &&
8398                                 vma->vm_end >= vma->vm_mm->start_stack) {
8399                         name = "[stack]";
8400                         goto cpy_name;
8401                 }
8402
8403                 name = "//anon";
8404                 goto cpy_name;
8405         }
8406
8407 cpy_name:
8408         strlcpy(tmp, name, sizeof(tmp));
8409         name = tmp;
8410 got_name:
8411         /*
8412          * Since our buffer works in 8 byte units we need to align our string
8413          * size to a multiple of 8. However, we must guarantee the tail end is
8414          * zero'd out to avoid leaking random bits to userspace.
8415          */
8416         size = strlen(name)+1;
8417         while (!IS_ALIGNED(size, sizeof(u64)))
8418                 name[size++] = '\0';
8419
8420         mmap_event->file_name = name;
8421         mmap_event->file_size = size;
8422         mmap_event->maj = maj;
8423         mmap_event->min = min;
8424         mmap_event->ino = ino;
8425         mmap_event->ino_generation = gen;
8426         mmap_event->prot = prot;
8427         mmap_event->flags = flags;
8428
8429         if (!(vma->vm_flags & VM_EXEC))
8430                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
8431
8432         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
8433
8434         if (atomic_read(&nr_build_id_events))
8435                 build_id_parse(vma, mmap_event->build_id, &mmap_event->build_id_size);
8436
8437         perf_iterate_sb(perf_event_mmap_output,
8438                        mmap_event,
8439                        NULL);
8440
8441         kfree(buf);
8442 }
8443
8444 /*
8445  * Check whether inode and address range match filter criteria.
8446  */
8447 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
8448                                      struct file *file, unsigned long offset,
8449                                      unsigned long size)
8450 {
8451         /* d_inode(NULL) won't be equal to any mapped user-space file */
8452         if (!filter->path.dentry)
8453                 return false;
8454
8455         if (d_inode(filter->path.dentry) != file_inode(file))
8456                 return false;
8457
8458         if (filter->offset > offset + size)
8459                 return false;
8460
8461         if (filter->offset + filter->size < offset)
8462                 return false;
8463
8464         return true;
8465 }
8466
8467 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter *filter,
8468                                         struct vm_area_struct *vma,
8469                                         struct perf_addr_filter_range *fr)
8470 {
8471         unsigned long vma_size = vma->vm_end - vma->vm_start;
8472         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8473         struct file *file = vma->vm_file;
8474
8475         if (!perf_addr_filter_match(filter, file, off, vma_size))
8476                 return false;
8477
8478         if (filter->offset < off) {
8479                 fr->start = vma->vm_start;
8480                 fr->size = min(vma_size, filter->size - (off - filter->offset));
8481         } else {
8482                 fr->start = vma->vm_start + filter->offset - off;
8483                 fr->size = min(vma->vm_end - fr->start, filter->size);
8484         }
8485
8486         return true;
8487 }
8488
8489 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
8490 {
8491         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8492         struct vm_area_struct *vma = data;
8493         struct perf_addr_filter *filter;
8494         unsigned int restart = 0, count = 0;
8495         unsigned long flags;
8496
8497         if (!has_addr_filter(event))
8498                 return;
8499
8500         if (!vma->vm_file)
8501                 return;
8502
8503         raw_spin_lock_irqsave(&ifh->lock, flags);
8504         list_for_each_entry(filter, &ifh->list, entry) {
8505                 if (perf_addr_filter_vma_adjust(filter, vma,
8506                                                 &event->addr_filter_ranges[count]))
8507                         restart++;
8508
8509                 count++;
8510         }
8511
8512         if (restart)
8513                 event->addr_filters_gen++;
8514         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8515
8516         if (restart)
8517                 perf_event_stop(event, 1);
8518 }
8519
8520 /*
8521  * Adjust all task's events' filters to the new vma
8522  */
8523 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
8524 {
8525         struct perf_event_context *ctx;
8526         int ctxn;
8527
8528         /*
8529          * Data tracing isn't supported yet and as such there is no need
8530          * to keep track of anything that isn't related to executable code:
8531          */
8532         if (!(vma->vm_flags & VM_EXEC))
8533                 return;
8534
8535         rcu_read_lock();
8536         for_each_task_context_nr(ctxn) {
8537                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
8538                 if (!ctx)
8539                         continue;
8540
8541                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
8542         }
8543         rcu_read_unlock();
8544 }
8545
8546 void perf_event_mmap(struct vm_area_struct *vma)
8547 {
8548         struct perf_mmap_event mmap_event;
8549
8550         if (!atomic_read(&nr_mmap_events))
8551                 return;
8552
8553         mmap_event = (struct perf_mmap_event){
8554                 .vma    = vma,
8555                 /* .file_name */
8556                 /* .file_size */
8557                 .event_id  = {
8558                         .header = {
8559                                 .type = PERF_RECORD_MMAP,
8560                                 .misc = PERF_RECORD_MISC_USER,
8561                                 /* .size */
8562                         },
8563                         /* .pid */
8564                         /* .tid */
8565                         .start  = vma->vm_start,
8566                         .len    = vma->vm_end - vma->vm_start,
8567                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
8568                 },
8569                 /* .maj (attr_mmap2 only) */
8570                 /* .min (attr_mmap2 only) */
8571                 /* .ino (attr_mmap2 only) */
8572                 /* .ino_generation (attr_mmap2 only) */
8573                 /* .prot (attr_mmap2 only) */
8574                 /* .flags (attr_mmap2 only) */
8575         };
8576
8577         perf_addr_filters_adjust(vma);
8578         perf_event_mmap_event(&mmap_event);
8579 }
8580
8581 void perf_event_aux_event(struct perf_event *event, unsigned long head,
8582                           unsigned long size, u64 flags)
8583 {
8584         struct perf_output_handle handle;
8585         struct perf_sample_data sample;
8586         struct perf_aux_event {
8587                 struct perf_event_header        header;
8588                 u64                             offset;
8589                 u64                             size;
8590                 u64                             flags;
8591         } rec = {
8592                 .header = {
8593                         .type = PERF_RECORD_AUX,
8594                         .misc = 0,
8595                         .size = sizeof(rec),
8596                 },
8597                 .offset         = head,
8598                 .size           = size,
8599                 .flags          = flags,
8600         };
8601         int ret;
8602
8603         perf_event_header__init_id(&rec.header, &sample, event);
8604         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
8605
8606         if (ret)
8607                 return;
8608
8609         perf_output_put(&handle, rec);
8610         perf_event__output_id_sample(event, &handle, &sample);
8611
8612         perf_output_end(&handle);
8613 }
8614
8615 /*
8616  * Lost/dropped samples logging
8617  */
8618 void perf_log_lost_samples(struct perf_event *event, u64 lost)
8619 {
8620         struct perf_output_handle handle;
8621         struct perf_sample_data sample;
8622         int ret;
8623
8624         struct {
8625                 struct perf_event_header        header;
8626                 u64                             lost;
8627         } lost_samples_event = {
8628                 .header = {
8629                         .type = PERF_RECORD_LOST_SAMPLES,
8630                         .misc = 0,
8631                         .size = sizeof(lost_samples_event),
8632                 },
8633                 .lost           = lost,
8634         };
8635
8636         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
8637
8638         ret = perf_output_begin(&handle, &sample, event,
8639                                 lost_samples_event.header.size);
8640         if (ret)
8641                 return;
8642
8643         perf_output_put(&handle, lost_samples_event);
8644         perf_event__output_id_sample(event, &handle, &sample);
8645         perf_output_end(&handle);
8646 }
8647
8648 /*
8649  * context_switch tracking
8650  */
8651
8652 struct perf_switch_event {
8653         struct task_struct      *task;
8654         struct task_struct      *next_prev;
8655
8656         struct {
8657                 struct perf_event_header        header;
8658                 u32                             next_prev_pid;
8659                 u32                             next_prev_tid;
8660         } event_id;
8661 };
8662
8663 static int perf_event_switch_match(struct perf_event *event)
8664 {
8665         return event->attr.context_switch;
8666 }
8667
8668 static void perf_event_switch_output(struct perf_event *event, void *data)
8669 {
8670         struct perf_switch_event *se = data;
8671         struct perf_output_handle handle;
8672         struct perf_sample_data sample;
8673         int ret;
8674
8675         if (!perf_event_switch_match(event))
8676                 return;
8677
8678         /* Only CPU-wide events are allowed to see next/prev pid/tid */
8679         if (event->ctx->task) {
8680                 se->event_id.header.type = PERF_RECORD_SWITCH;
8681                 se->event_id.header.size = sizeof(se->event_id.header);
8682         } else {
8683                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
8684                 se->event_id.header.size = sizeof(se->event_id);
8685                 se->event_id.next_prev_pid =
8686                                         perf_event_pid(event, se->next_prev);
8687                 se->event_id.next_prev_tid =
8688                                         perf_event_tid(event, se->next_prev);
8689         }
8690
8691         perf_event_header__init_id(&se->event_id.header, &sample, event);
8692
8693         ret = perf_output_begin(&handle, &sample, event, se->event_id.header.size);
8694         if (ret)
8695                 return;
8696
8697         if (event->ctx->task)
8698                 perf_output_put(&handle, se->event_id.header);
8699         else
8700                 perf_output_put(&handle, se->event_id);
8701
8702         perf_event__output_id_sample(event, &handle, &sample);
8703
8704         perf_output_end(&handle);
8705 }
8706
8707 static void perf_event_switch(struct task_struct *task,
8708                               struct task_struct *next_prev, bool sched_in)
8709 {
8710         struct perf_switch_event switch_event;
8711
8712         /* N.B. caller checks nr_switch_events != 0 */
8713
8714         switch_event = (struct perf_switch_event){
8715                 .task           = task,
8716                 .next_prev      = next_prev,
8717                 .event_id       = {
8718                         .header = {
8719                                 /* .type */
8720                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
8721                                 /* .size */
8722                         },
8723                         /* .next_prev_pid */
8724                         /* .next_prev_tid */
8725                 },
8726         };
8727
8728         if (!sched_in && task->on_rq) {
8729                 switch_event.event_id.header.misc |=
8730                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
8731         }
8732
8733         perf_iterate_sb(perf_event_switch_output, &switch_event, NULL);
8734 }
8735
8736 /*
8737  * IRQ throttle logging
8738  */
8739
8740 static void perf_log_throttle(struct perf_event *event, int enable)
8741 {
8742         struct perf_output_handle handle;
8743         struct perf_sample_data sample;
8744         int ret;
8745
8746         struct {
8747                 struct perf_event_header        header;
8748                 u64                             time;
8749                 u64                             id;
8750                 u64                             stream_id;
8751         } throttle_event = {
8752                 .header = {
8753                         .type = PERF_RECORD_THROTTLE,
8754                         .misc = 0,
8755                         .size = sizeof(throttle_event),
8756                 },
8757                 .time           = perf_event_clock(event),
8758                 .id             = primary_event_id(event),
8759                 .stream_id      = event->id,
8760         };
8761
8762         if (enable)
8763                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
8764
8765         perf_event_header__init_id(&throttle_event.header, &sample, event);
8766
8767         ret = perf_output_begin(&handle, &sample, event,
8768                                 throttle_event.header.size);
8769         if (ret)
8770                 return;
8771
8772         perf_output_put(&handle, throttle_event);
8773         perf_event__output_id_sample(event, &handle, &sample);
8774         perf_output_end(&handle);
8775 }
8776
8777 /*
8778  * ksymbol register/unregister tracking
8779  */
8780
8781 struct perf_ksymbol_event {
8782         const char      *name;
8783         int             name_len;
8784         struct {
8785                 struct perf_event_header        header;
8786                 u64                             addr;
8787                 u32                             len;
8788                 u16                             ksym_type;
8789                 u16                             flags;
8790         } event_id;
8791 };
8792
8793 static int perf_event_ksymbol_match(struct perf_event *event)
8794 {
8795         return event->attr.ksymbol;
8796 }
8797
8798 static void perf_event_ksymbol_output(struct perf_event *event, void *data)
8799 {
8800         struct perf_ksymbol_event *ksymbol_event = data;
8801         struct perf_output_handle handle;
8802         struct perf_sample_data sample;
8803         int ret;
8804
8805         if (!perf_event_ksymbol_match(event))
8806                 return;
8807
8808         perf_event_header__init_id(&ksymbol_event->event_id.header,
8809                                    &sample, event);
8810         ret = perf_output_begin(&handle, &sample, event,
8811                                 ksymbol_event->event_id.header.size);
8812         if (ret)
8813                 return;
8814
8815         perf_output_put(&handle, ksymbol_event->event_id);
8816         __output_copy(&handle, ksymbol_event->name, ksymbol_event->name_len);
8817         perf_event__output_id_sample(event, &handle, &sample);
8818
8819         perf_output_end(&handle);
8820 }
8821
8822 void perf_event_ksymbol(u16 ksym_type, u64 addr, u32 len, bool unregister,
8823                         const char *sym)
8824 {
8825         struct perf_ksymbol_event ksymbol_event;
8826         char name[KSYM_NAME_LEN];
8827         u16 flags = 0;
8828         int name_len;
8829
8830         if (!atomic_read(&nr_ksymbol_events))
8831                 return;
8832
8833         if (ksym_type >= PERF_RECORD_KSYMBOL_TYPE_MAX ||
8834             ksym_type == PERF_RECORD_KSYMBOL_TYPE_UNKNOWN)
8835                 goto err;
8836
8837         strlcpy(name, sym, KSYM_NAME_LEN);
8838         name_len = strlen(name) + 1;
8839         while (!IS_ALIGNED(name_len, sizeof(u64)))
8840                 name[name_len++] = '\0';
8841         BUILD_BUG_ON(KSYM_NAME_LEN % sizeof(u64));
8842
8843         if (unregister)
8844                 flags |= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER;
8845
8846         ksymbol_event = (struct perf_ksymbol_event){
8847                 .name = name,
8848                 .name_len = name_len,
8849                 .event_id = {
8850                         .header = {
8851                                 .type = PERF_RECORD_KSYMBOL,
8852                                 .size = sizeof(ksymbol_event.event_id) +
8853                                         name_len,
8854                         },
8855                         .addr = addr,
8856                         .len = len,
8857                         .ksym_type = ksym_type,
8858                         .flags = flags,
8859                 },
8860         };
8861
8862         perf_iterate_sb(perf_event_ksymbol_output, &ksymbol_event, NULL);
8863         return;
8864 err:
8865         WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__, ksym_type);
8866 }
8867
8868 /*
8869  * bpf program load/unload tracking
8870  */
8871
8872 struct perf_bpf_event {
8873         struct bpf_prog *prog;
8874         struct {
8875                 struct perf_event_header        header;
8876                 u16                             type;
8877                 u16                             flags;
8878                 u32                             id;
8879                 u8                              tag[BPF_TAG_SIZE];
8880         } event_id;
8881 };
8882
8883 static int perf_event_bpf_match(struct perf_event *event)
8884 {
8885         return event->attr.bpf_event;
8886 }
8887
8888 static void perf_event_bpf_output(struct perf_event *event, void *data)
8889 {
8890         struct perf_bpf_event *bpf_event = data;
8891         struct perf_output_handle handle;
8892         struct perf_sample_data sample;
8893         int ret;
8894
8895         if (!perf_event_bpf_match(event))
8896                 return;
8897
8898         perf_event_header__init_id(&bpf_event->event_id.header,
8899                                    &sample, event);
8900         ret = perf_output_begin(&handle, data, event,
8901                                 bpf_event->event_id.header.size);
8902         if (ret)
8903                 return;
8904
8905         perf_output_put(&handle, bpf_event->event_id);
8906         perf_event__output_id_sample(event, &handle, &sample);
8907
8908         perf_output_end(&handle);
8909 }
8910
8911 static void perf_event_bpf_emit_ksymbols(struct bpf_prog *prog,
8912                                          enum perf_bpf_event_type type)
8913 {
8914         bool unregister = type == PERF_BPF_EVENT_PROG_UNLOAD;
8915         int i;
8916
8917         if (prog->aux->func_cnt == 0) {
8918                 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF,
8919                                    (u64)(unsigned long)prog->bpf_func,
8920                                    prog->jited_len, unregister,
8921                                    prog->aux->ksym.name);
8922         } else {
8923                 for (i = 0; i < prog->aux->func_cnt; i++) {
8924                         struct bpf_prog *subprog = prog->aux->func[i];
8925
8926                         perf_event_ksymbol(
8927                                 PERF_RECORD_KSYMBOL_TYPE_BPF,
8928                                 (u64)(unsigned long)subprog->bpf_func,
8929                                 subprog->jited_len, unregister,
8930                                 prog->aux->ksym.name);
8931                 }
8932         }
8933 }
8934
8935 void perf_event_bpf_event(struct bpf_prog *prog,
8936                           enum perf_bpf_event_type type,
8937                           u16 flags)
8938 {
8939         struct perf_bpf_event bpf_event;
8940
8941         if (type <= PERF_BPF_EVENT_UNKNOWN ||
8942             type >= PERF_BPF_EVENT_MAX)
8943                 return;
8944
8945         switch (type) {
8946         case PERF_BPF_EVENT_PROG_LOAD:
8947         case PERF_BPF_EVENT_PROG_UNLOAD:
8948                 if (atomic_read(&nr_ksymbol_events))
8949                         perf_event_bpf_emit_ksymbols(prog, type);
8950                 break;
8951         default:
8952                 break;
8953         }
8954
8955         if (!atomic_read(&nr_bpf_events))
8956                 return;
8957
8958         bpf_event = (struct perf_bpf_event){
8959                 .prog = prog,
8960                 .event_id = {
8961                         .header = {
8962                                 .type = PERF_RECORD_BPF_EVENT,
8963                                 .size = sizeof(bpf_event.event_id),
8964                         },
8965                         .type = type,
8966                         .flags = flags,
8967                         .id = prog->aux->id,
8968                 },
8969         };
8970
8971         BUILD_BUG_ON(BPF_TAG_SIZE % sizeof(u64));
8972
8973         memcpy(bpf_event.event_id.tag, prog->tag, BPF_TAG_SIZE);
8974         perf_iterate_sb(perf_event_bpf_output, &bpf_event, NULL);
8975 }
8976
8977 struct perf_text_poke_event {
8978         const void              *old_bytes;
8979         const void              *new_bytes;
8980         size_t                  pad;
8981         u16                     old_len;
8982         u16                     new_len;
8983
8984         struct {
8985                 struct perf_event_header        header;
8986
8987                 u64                             addr;
8988         } event_id;
8989 };
8990
8991 static int perf_event_text_poke_match(struct perf_event *event)
8992 {
8993         return event->attr.text_poke;
8994 }
8995
8996 static void perf_event_text_poke_output(struct perf_event *event, void *data)
8997 {
8998         struct perf_text_poke_event *text_poke_event = data;
8999         struct perf_output_handle handle;
9000         struct perf_sample_data sample;
9001         u64 padding = 0;
9002         int ret;
9003
9004         if (!perf_event_text_poke_match(event))
9005                 return;
9006
9007         perf_event_header__init_id(&text_poke_event->event_id.header, &sample, event);
9008
9009         ret = perf_output_begin(&handle, &sample, event,
9010                                 text_poke_event->event_id.header.size);
9011         if (ret)
9012                 return;
9013
9014         perf_output_put(&handle, text_poke_event->event_id);
9015         perf_output_put(&handle, text_poke_event->old_len);
9016         perf_output_put(&handle, text_poke_event->new_len);
9017
9018         __output_copy(&handle, text_poke_event->old_bytes, text_poke_event->old_len);
9019         __output_copy(&handle, text_poke_event->new_bytes, text_poke_event->new_len);
9020
9021         if (text_poke_event->pad)
9022                 __output_copy(&handle, &padding, text_poke_event->pad);
9023
9024         perf_event__output_id_sample(event, &handle, &sample);
9025
9026         perf_output_end(&handle);
9027 }
9028
9029 void perf_event_text_poke(const void *addr, const void *old_bytes,
9030                           size_t old_len, const void *new_bytes, size_t new_len)
9031 {
9032         struct perf_text_poke_event text_poke_event;
9033         size_t tot, pad;
9034
9035         if (!atomic_read(&nr_text_poke_events))
9036                 return;
9037
9038         tot  = sizeof(text_poke_event.old_len) + old_len;
9039         tot += sizeof(text_poke_event.new_len) + new_len;
9040         pad  = ALIGN(tot, sizeof(u64)) - tot;
9041
9042         text_poke_event = (struct perf_text_poke_event){
9043                 .old_bytes    = old_bytes,
9044                 .new_bytes    = new_bytes,
9045                 .pad          = pad,
9046                 .old_len      = old_len,
9047                 .new_len      = new_len,
9048                 .event_id  = {
9049                         .header = {
9050                                 .type = PERF_RECORD_TEXT_POKE,
9051                                 .misc = PERF_RECORD_MISC_KERNEL,
9052                                 .size = sizeof(text_poke_event.event_id) + tot + pad,
9053                         },
9054                         .addr = (unsigned long)addr,
9055                 },
9056         };
9057
9058         perf_iterate_sb(perf_event_text_poke_output, &text_poke_event, NULL);
9059 }
9060
9061 void perf_event_itrace_started(struct perf_event *event)
9062 {
9063         event->attach_state |= PERF_ATTACH_ITRACE;
9064 }
9065
9066 static void perf_log_itrace_start(struct perf_event *event)
9067 {
9068         struct perf_output_handle handle;
9069         struct perf_sample_data sample;
9070         struct perf_aux_event {
9071                 struct perf_event_header        header;
9072                 u32                             pid;
9073                 u32                             tid;
9074         } rec;
9075         int ret;
9076
9077         if (event->parent)
9078                 event = event->parent;
9079
9080         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
9081             event->attach_state & PERF_ATTACH_ITRACE)
9082                 return;
9083
9084         rec.header.type = PERF_RECORD_ITRACE_START;
9085         rec.header.misc = 0;
9086         rec.header.size = sizeof(rec);
9087         rec.pid = perf_event_pid(event, current);
9088         rec.tid = perf_event_tid(event, current);
9089
9090         perf_event_header__init_id(&rec.header, &sample, event);
9091         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9092
9093         if (ret)
9094                 return;
9095
9096         perf_output_put(&handle, rec);
9097         perf_event__output_id_sample(event, &handle, &sample);
9098
9099         perf_output_end(&handle);
9100 }
9101
9102 void perf_report_aux_output_id(struct perf_event *event, u64 hw_id)
9103 {
9104         struct perf_output_handle handle;
9105         struct perf_sample_data sample;
9106         struct perf_aux_event {
9107                 struct perf_event_header        header;
9108                 u64                             hw_id;
9109         } rec;
9110         int ret;
9111
9112         if (event->parent)
9113                 event = event->parent;
9114
9115         rec.header.type = PERF_RECORD_AUX_OUTPUT_HW_ID;
9116         rec.header.misc = 0;
9117         rec.header.size = sizeof(rec);
9118         rec.hw_id       = hw_id;
9119
9120         perf_event_header__init_id(&rec.header, &sample, event);
9121         ret = perf_output_begin(&handle, &sample, event, rec.header.size);
9122
9123         if (ret)
9124                 return;
9125
9126         perf_output_put(&handle, rec);
9127         perf_event__output_id_sample(event, &handle, &sample);
9128
9129         perf_output_end(&handle);
9130 }
9131
9132 static int
9133 __perf_event_account_interrupt(struct perf_event *event, int throttle)
9134 {
9135         struct hw_perf_event *hwc = &event->hw;
9136         int ret = 0;
9137         u64 seq;
9138
9139         seq = __this_cpu_read(perf_throttled_seq);
9140         if (seq != hwc->interrupts_seq) {
9141                 hwc->interrupts_seq = seq;
9142                 hwc->interrupts = 1;
9143         } else {
9144                 hwc->interrupts++;
9145                 if (unlikely(throttle
9146                              && hwc->interrupts >= max_samples_per_tick)) {
9147                         __this_cpu_inc(perf_throttled_count);
9148                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
9149                         hwc->interrupts = MAX_INTERRUPTS;
9150                         perf_log_throttle(event, 0);
9151                         ret = 1;
9152                 }
9153         }
9154
9155         if (event->attr.freq) {
9156                 u64 now = perf_clock();
9157                 s64 delta = now - hwc->freq_time_stamp;
9158
9159                 hwc->freq_time_stamp = now;
9160
9161                 if (delta > 0 && delta < 2*TICK_NSEC)
9162                         perf_adjust_period(event, delta, hwc->last_period, true);
9163         }
9164
9165         return ret;
9166 }
9167
9168 int perf_event_account_interrupt(struct perf_event *event)
9169 {
9170         return __perf_event_account_interrupt(event, 1);
9171 }
9172
9173 /*
9174  * Generic event overflow handling, sampling.
9175  */
9176
9177 static int __perf_event_overflow(struct perf_event *event,
9178                                    int throttle, struct perf_sample_data *data,
9179                                    struct pt_regs *regs)
9180 {
9181         int events = atomic_read(&event->event_limit);
9182         int ret = 0;
9183
9184         /*
9185          * Non-sampling counters might still use the PMI to fold short
9186          * hardware counters, ignore those.
9187          */
9188         if (unlikely(!is_sampling_event(event)))
9189                 return 0;
9190
9191         ret = __perf_event_account_interrupt(event, throttle);
9192
9193         /*
9194          * XXX event_limit might not quite work as expected on inherited
9195          * events
9196          */
9197
9198         event->pending_kill = POLL_IN;
9199         if (events && atomic_dec_and_test(&event->event_limit)) {
9200                 ret = 1;
9201                 event->pending_kill = POLL_HUP;
9202                 event->pending_addr = data->addr;
9203
9204                 perf_event_disable_inatomic(event);
9205         }
9206
9207         READ_ONCE(event->overflow_handler)(event, data, regs);
9208
9209         if (*perf_event_fasync(event) && event->pending_kill) {
9210                 event->pending_wakeup = 1;
9211                 irq_work_queue(&event->pending);
9212         }
9213
9214         return ret;
9215 }
9216
9217 int perf_event_overflow(struct perf_event *event,
9218                           struct perf_sample_data *data,
9219                           struct pt_regs *regs)
9220 {
9221         return __perf_event_overflow(event, 1, data, regs);
9222 }
9223
9224 /*
9225  * Generic software event infrastructure
9226  */
9227
9228 struct swevent_htable {
9229         struct swevent_hlist            *swevent_hlist;
9230         struct mutex                    hlist_mutex;
9231         int                             hlist_refcount;
9232
9233         /* Recursion avoidance in each contexts */
9234         int                             recursion[PERF_NR_CONTEXTS];
9235 };
9236
9237 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
9238
9239 /*
9240  * We directly increment event->count and keep a second value in
9241  * event->hw.period_left to count intervals. This period event
9242  * is kept in the range [-sample_period, 0] so that we can use the
9243  * sign as trigger.
9244  */
9245
9246 u64 perf_swevent_set_period(struct perf_event *event)
9247 {
9248         struct hw_perf_event *hwc = &event->hw;
9249         u64 period = hwc->last_period;
9250         u64 nr, offset;
9251         s64 old, val;
9252
9253         hwc->last_period = hwc->sample_period;
9254
9255 again:
9256         old = val = local64_read(&hwc->period_left);
9257         if (val < 0)
9258                 return 0;
9259
9260         nr = div64_u64(period + val, period);
9261         offset = nr * period;
9262         val -= offset;
9263         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
9264                 goto again;
9265
9266         return nr;
9267 }
9268
9269 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
9270                                     struct perf_sample_data *data,
9271                                     struct pt_regs *regs)
9272 {
9273         struct hw_perf_event *hwc = &event->hw;
9274         int throttle = 0;
9275
9276         if (!overflow)
9277                 overflow = perf_swevent_set_period(event);
9278
9279         if (hwc->interrupts == MAX_INTERRUPTS)
9280                 return;
9281
9282         for (; overflow; overflow--) {
9283                 if (__perf_event_overflow(event, throttle,
9284                                             data, regs)) {
9285                         /*
9286                          * We inhibit the overflow from happening when
9287                          * hwc->interrupts == MAX_INTERRUPTS.
9288                          */
9289                         break;
9290                 }
9291                 throttle = 1;
9292         }
9293 }
9294
9295 static void perf_swevent_event(struct perf_event *event, u64 nr,
9296                                struct perf_sample_data *data,
9297                                struct pt_regs *regs)
9298 {
9299         struct hw_perf_event *hwc = &event->hw;
9300
9301         local64_add(nr, &event->count);
9302
9303         if (!regs)
9304                 return;
9305
9306         if (!is_sampling_event(event))
9307                 return;
9308
9309         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
9310                 data->period = nr;
9311                 return perf_swevent_overflow(event, 1, data, regs);
9312         } else
9313                 data->period = event->hw.last_period;
9314
9315         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
9316                 return perf_swevent_overflow(event, 1, data, regs);
9317
9318         if (local64_add_negative(nr, &hwc->period_left))
9319                 return;
9320
9321         perf_swevent_overflow(event, 0, data, regs);
9322 }
9323
9324 static int perf_exclude_event(struct perf_event *event,
9325                               struct pt_regs *regs)
9326 {
9327         if (event->hw.state & PERF_HES_STOPPED)
9328                 return 1;
9329
9330         if (regs) {
9331                 if (event->attr.exclude_user && user_mode(regs))
9332                         return 1;
9333
9334                 if (event->attr.exclude_kernel && !user_mode(regs))
9335                         return 1;
9336         }
9337
9338         return 0;
9339 }
9340
9341 static int perf_swevent_match(struct perf_event *event,
9342                                 enum perf_type_id type,
9343                                 u32 event_id,
9344                                 struct perf_sample_data *data,
9345                                 struct pt_regs *regs)
9346 {
9347         if (event->attr.type != type)
9348                 return 0;
9349
9350         if (event->attr.config != event_id)
9351                 return 0;
9352
9353         if (perf_exclude_event(event, regs))
9354                 return 0;
9355
9356         return 1;
9357 }
9358
9359 static inline u64 swevent_hash(u64 type, u32 event_id)
9360 {
9361         u64 val = event_id | (type << 32);
9362
9363         return hash_64(val, SWEVENT_HLIST_BITS);
9364 }
9365
9366 static inline struct hlist_head *
9367 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
9368 {
9369         u64 hash = swevent_hash(type, event_id);
9370
9371         return &hlist->heads[hash];
9372 }
9373
9374 /* For the read side: events when they trigger */
9375 static inline struct hlist_head *
9376 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
9377 {
9378         struct swevent_hlist *hlist;
9379
9380         hlist = rcu_dereference(swhash->swevent_hlist);
9381         if (!hlist)
9382                 return NULL;
9383
9384         return __find_swevent_head(hlist, type, event_id);
9385 }
9386
9387 /* For the event head insertion and removal in the hlist */
9388 static inline struct hlist_head *
9389 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
9390 {
9391         struct swevent_hlist *hlist;
9392         u32 event_id = event->attr.config;
9393         u64 type = event->attr.type;
9394
9395         /*
9396          * Event scheduling is always serialized against hlist allocation
9397          * and release. Which makes the protected version suitable here.
9398          * The context lock guarantees that.
9399          */
9400         hlist = rcu_dereference_protected(swhash->swevent_hlist,
9401                                           lockdep_is_held(&event->ctx->lock));
9402         if (!hlist)
9403                 return NULL;
9404
9405         return __find_swevent_head(hlist, type, event_id);
9406 }
9407
9408 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
9409                                     u64 nr,
9410                                     struct perf_sample_data *data,
9411                                     struct pt_regs *regs)
9412 {
9413         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9414         struct perf_event *event;
9415         struct hlist_head *head;
9416
9417         rcu_read_lock();
9418         head = find_swevent_head_rcu(swhash, type, event_id);
9419         if (!head)
9420                 goto end;
9421
9422         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9423                 if (perf_swevent_match(event, type, event_id, data, regs))
9424                         perf_swevent_event(event, nr, data, regs);
9425         }
9426 end:
9427         rcu_read_unlock();
9428 }
9429
9430 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
9431
9432 int perf_swevent_get_recursion_context(void)
9433 {
9434         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9435
9436         return get_recursion_context(swhash->recursion);
9437 }
9438 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
9439
9440 void perf_swevent_put_recursion_context(int rctx)
9441 {
9442         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9443
9444         put_recursion_context(swhash->recursion, rctx);
9445 }
9446
9447 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9448 {
9449         struct perf_sample_data data;
9450
9451         if (WARN_ON_ONCE(!regs))
9452                 return;
9453
9454         perf_sample_data_init(&data, addr, 0);
9455         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
9456 }
9457
9458 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
9459 {
9460         int rctx;
9461
9462         preempt_disable_notrace();
9463         rctx = perf_swevent_get_recursion_context();
9464         if (unlikely(rctx < 0))
9465                 goto fail;
9466
9467         ___perf_sw_event(event_id, nr, regs, addr);
9468
9469         perf_swevent_put_recursion_context(rctx);
9470 fail:
9471         preempt_enable_notrace();
9472 }
9473
9474 static void perf_swevent_read(struct perf_event *event)
9475 {
9476 }
9477
9478 static int perf_swevent_add(struct perf_event *event, int flags)
9479 {
9480         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
9481         struct hw_perf_event *hwc = &event->hw;
9482         struct hlist_head *head;
9483
9484         if (is_sampling_event(event)) {
9485                 hwc->last_period = hwc->sample_period;
9486                 perf_swevent_set_period(event);
9487         }
9488
9489         hwc->state = !(flags & PERF_EF_START);
9490
9491         head = find_swevent_head(swhash, event);
9492         if (WARN_ON_ONCE(!head))
9493                 return -EINVAL;
9494
9495         hlist_add_head_rcu(&event->hlist_entry, head);
9496         perf_event_update_userpage(event);
9497
9498         return 0;
9499 }
9500
9501 static void perf_swevent_del(struct perf_event *event, int flags)
9502 {
9503         hlist_del_rcu(&event->hlist_entry);
9504 }
9505
9506 static void perf_swevent_start(struct perf_event *event, int flags)
9507 {
9508         event->hw.state = 0;
9509 }
9510
9511 static void perf_swevent_stop(struct perf_event *event, int flags)
9512 {
9513         event->hw.state = PERF_HES_STOPPED;
9514 }
9515
9516 /* Deref the hlist from the update side */
9517 static inline struct swevent_hlist *
9518 swevent_hlist_deref(struct swevent_htable *swhash)
9519 {
9520         return rcu_dereference_protected(swhash->swevent_hlist,
9521                                          lockdep_is_held(&swhash->hlist_mutex));
9522 }
9523
9524 static void swevent_hlist_release(struct swevent_htable *swhash)
9525 {
9526         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
9527
9528         if (!hlist)
9529                 return;
9530
9531         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
9532         kfree_rcu(hlist, rcu_head);
9533 }
9534
9535 static void swevent_hlist_put_cpu(int cpu)
9536 {
9537         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9538
9539         mutex_lock(&swhash->hlist_mutex);
9540
9541         if (!--swhash->hlist_refcount)
9542                 swevent_hlist_release(swhash);
9543
9544         mutex_unlock(&swhash->hlist_mutex);
9545 }
9546
9547 static void swevent_hlist_put(void)
9548 {
9549         int cpu;
9550
9551         for_each_possible_cpu(cpu)
9552                 swevent_hlist_put_cpu(cpu);
9553 }
9554
9555 static int swevent_hlist_get_cpu(int cpu)
9556 {
9557         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
9558         int err = 0;
9559
9560         mutex_lock(&swhash->hlist_mutex);
9561         if (!swevent_hlist_deref(swhash) &&
9562             cpumask_test_cpu(cpu, perf_online_mask)) {
9563                 struct swevent_hlist *hlist;
9564
9565                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
9566                 if (!hlist) {
9567                         err = -ENOMEM;
9568                         goto exit;
9569                 }
9570                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
9571         }
9572         swhash->hlist_refcount++;
9573 exit:
9574         mutex_unlock(&swhash->hlist_mutex);
9575
9576         return err;
9577 }
9578
9579 static int swevent_hlist_get(void)
9580 {
9581         int err, cpu, failed_cpu;
9582
9583         mutex_lock(&pmus_lock);
9584         for_each_possible_cpu(cpu) {
9585                 err = swevent_hlist_get_cpu(cpu);
9586                 if (err) {
9587                         failed_cpu = cpu;
9588                         goto fail;
9589                 }
9590         }
9591         mutex_unlock(&pmus_lock);
9592         return 0;
9593 fail:
9594         for_each_possible_cpu(cpu) {
9595                 if (cpu == failed_cpu)
9596                         break;
9597                 swevent_hlist_put_cpu(cpu);
9598         }
9599         mutex_unlock(&pmus_lock);
9600         return err;
9601 }
9602
9603 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
9604
9605 static void sw_perf_event_destroy(struct perf_event *event)
9606 {
9607         u64 event_id = event->attr.config;
9608
9609         WARN_ON(event->parent);
9610
9611         static_key_slow_dec(&perf_swevent_enabled[event_id]);
9612         swevent_hlist_put();
9613 }
9614
9615 static int perf_swevent_init(struct perf_event *event)
9616 {
9617         u64 event_id = event->attr.config;
9618
9619         if (event->attr.type != PERF_TYPE_SOFTWARE)
9620                 return -ENOENT;
9621
9622         /*
9623          * no branch sampling for software events
9624          */
9625         if (has_branch_stack(event))
9626                 return -EOPNOTSUPP;
9627
9628         switch (event_id) {
9629         case PERF_COUNT_SW_CPU_CLOCK:
9630         case PERF_COUNT_SW_TASK_CLOCK:
9631                 return -ENOENT;
9632
9633         default:
9634                 break;
9635         }
9636
9637         if (event_id >= PERF_COUNT_SW_MAX)
9638                 return -ENOENT;
9639
9640         if (!event->parent) {
9641                 int err;
9642
9643                 err = swevent_hlist_get();
9644                 if (err)
9645                         return err;
9646
9647                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
9648                 event->destroy = sw_perf_event_destroy;
9649         }
9650
9651         return 0;
9652 }
9653
9654 static struct pmu perf_swevent = {
9655         .task_ctx_nr    = perf_sw_context,
9656
9657         .capabilities   = PERF_PMU_CAP_NO_NMI,
9658
9659         .event_init     = perf_swevent_init,
9660         .add            = perf_swevent_add,
9661         .del            = perf_swevent_del,
9662         .start          = perf_swevent_start,
9663         .stop           = perf_swevent_stop,
9664         .read           = perf_swevent_read,
9665 };
9666
9667 #ifdef CONFIG_EVENT_TRACING
9668
9669 static int perf_tp_filter_match(struct perf_event *event,
9670                                 struct perf_sample_data *data)
9671 {
9672         void *record = data->raw->frag.data;
9673
9674         /* only top level events have filters set */
9675         if (event->parent)
9676                 event = event->parent;
9677
9678         if (likely(!event->filter) || filter_match_preds(event->filter, record))
9679                 return 1;
9680         return 0;
9681 }
9682
9683 static int perf_tp_event_match(struct perf_event *event,
9684                                 struct perf_sample_data *data,
9685                                 struct pt_regs *regs)
9686 {
9687         if (event->hw.state & PERF_HES_STOPPED)
9688                 return 0;
9689         /*
9690          * If exclude_kernel, only trace user-space tracepoints (uprobes)
9691          */
9692         if (event->attr.exclude_kernel && !user_mode(regs))
9693                 return 0;
9694
9695         if (!perf_tp_filter_match(event, data))
9696                 return 0;
9697
9698         return 1;
9699 }
9700
9701 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
9702                                struct trace_event_call *call, u64 count,
9703                                struct pt_regs *regs, struct hlist_head *head,
9704                                struct task_struct *task)
9705 {
9706         if (bpf_prog_array_valid(call)) {
9707                 *(struct pt_regs **)raw_data = regs;
9708                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
9709                         perf_swevent_put_recursion_context(rctx);
9710                         return;
9711                 }
9712         }
9713         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
9714                       rctx, task);
9715 }
9716 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
9717
9718 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
9719                    struct pt_regs *regs, struct hlist_head *head, int rctx,
9720                    struct task_struct *task)
9721 {
9722         struct perf_sample_data data;
9723         struct perf_event *event;
9724
9725         struct perf_raw_record raw = {
9726                 .frag = {
9727                         .size = entry_size,
9728                         .data = record,
9729                 },
9730         };
9731
9732         perf_sample_data_init(&data, 0, 0);
9733         data.raw = &raw;
9734
9735         perf_trace_buf_update(record, event_type);
9736
9737         hlist_for_each_entry_rcu(event, head, hlist_entry) {
9738                 if (perf_tp_event_match(event, &data, regs))
9739                         perf_swevent_event(event, count, &data, regs);
9740         }
9741
9742         /*
9743          * If we got specified a target task, also iterate its context and
9744          * deliver this event there too.
9745          */
9746         if (task && task != current) {
9747                 struct perf_event_context *ctx;
9748                 struct trace_entry *entry = record;
9749
9750                 rcu_read_lock();
9751                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
9752                 if (!ctx)
9753                         goto unlock;
9754
9755                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
9756                         if (event->cpu != smp_processor_id())
9757                                 continue;
9758                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9759                                 continue;
9760                         if (event->attr.config != entry->type)
9761                                 continue;
9762                         if (perf_tp_event_match(event, &data, regs))
9763                                 perf_swevent_event(event, count, &data, regs);
9764                 }
9765 unlock:
9766                 rcu_read_unlock();
9767         }
9768
9769         perf_swevent_put_recursion_context(rctx);
9770 }
9771 EXPORT_SYMBOL_GPL(perf_tp_event);
9772
9773 static void tp_perf_event_destroy(struct perf_event *event)
9774 {
9775         perf_trace_destroy(event);
9776 }
9777
9778 static int perf_tp_event_init(struct perf_event *event)
9779 {
9780         int err;
9781
9782         if (event->attr.type != PERF_TYPE_TRACEPOINT)
9783                 return -ENOENT;
9784
9785         /*
9786          * no branch sampling for tracepoint events
9787          */
9788         if (has_branch_stack(event))
9789                 return -EOPNOTSUPP;
9790
9791         err = perf_trace_init(event);
9792         if (err)
9793                 return err;
9794
9795         event->destroy = tp_perf_event_destroy;
9796
9797         return 0;
9798 }
9799
9800 static struct pmu perf_tracepoint = {
9801         .task_ctx_nr    = perf_sw_context,
9802
9803         .event_init     = perf_tp_event_init,
9804         .add            = perf_trace_add,
9805         .del            = perf_trace_del,
9806         .start          = perf_swevent_start,
9807         .stop           = perf_swevent_stop,
9808         .read           = perf_swevent_read,
9809 };
9810
9811 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9812 /*
9813  * Flags in config, used by dynamic PMU kprobe and uprobe
9814  * The flags should match following PMU_FORMAT_ATTR().
9815  *
9816  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9817  *                               if not set, create kprobe/uprobe
9818  *
9819  * The following values specify a reference counter (or semaphore in the
9820  * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9821  * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9822  *
9823  * PERF_UPROBE_REF_CTR_OFFSET_BITS      # of bits in config as th offset
9824  * PERF_UPROBE_REF_CTR_OFFSET_SHIFT     # of bits to shift left
9825  */
9826 enum perf_probe_config {
9827         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
9828         PERF_UPROBE_REF_CTR_OFFSET_BITS = 32,
9829         PERF_UPROBE_REF_CTR_OFFSET_SHIFT = 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS,
9830 };
9831
9832 PMU_FORMAT_ATTR(retprobe, "config:0");
9833 #endif
9834
9835 #ifdef CONFIG_KPROBE_EVENTS
9836 static struct attribute *kprobe_attrs[] = {
9837         &format_attr_retprobe.attr,
9838         NULL,
9839 };
9840
9841 static struct attribute_group kprobe_format_group = {
9842         .name = "format",
9843         .attrs = kprobe_attrs,
9844 };
9845
9846 static const struct attribute_group *kprobe_attr_groups[] = {
9847         &kprobe_format_group,
9848         NULL,
9849 };
9850
9851 static int perf_kprobe_event_init(struct perf_event *event);
9852 static struct pmu perf_kprobe = {
9853         .task_ctx_nr    = perf_sw_context,
9854         .event_init     = perf_kprobe_event_init,
9855         .add            = perf_trace_add,
9856         .del            = perf_trace_del,
9857         .start          = perf_swevent_start,
9858         .stop           = perf_swevent_stop,
9859         .read           = perf_swevent_read,
9860         .attr_groups    = kprobe_attr_groups,
9861 };
9862
9863 static int perf_kprobe_event_init(struct perf_event *event)
9864 {
9865         int err;
9866         bool is_retprobe;
9867
9868         if (event->attr.type != perf_kprobe.type)
9869                 return -ENOENT;
9870
9871         if (!perfmon_capable())
9872                 return -EACCES;
9873
9874         /*
9875          * no branch sampling for probe events
9876          */
9877         if (has_branch_stack(event))
9878                 return -EOPNOTSUPP;
9879
9880         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9881         err = perf_kprobe_init(event, is_retprobe);
9882         if (err)
9883                 return err;
9884
9885         event->destroy = perf_kprobe_destroy;
9886
9887         return 0;
9888 }
9889 #endif /* CONFIG_KPROBE_EVENTS */
9890
9891 #ifdef CONFIG_UPROBE_EVENTS
9892 PMU_FORMAT_ATTR(ref_ctr_offset, "config:32-63");
9893
9894 static struct attribute *uprobe_attrs[] = {
9895         &format_attr_retprobe.attr,
9896         &format_attr_ref_ctr_offset.attr,
9897         NULL,
9898 };
9899
9900 static struct attribute_group uprobe_format_group = {
9901         .name = "format",
9902         .attrs = uprobe_attrs,
9903 };
9904
9905 static const struct attribute_group *uprobe_attr_groups[] = {
9906         &uprobe_format_group,
9907         NULL,
9908 };
9909
9910 static int perf_uprobe_event_init(struct perf_event *event);
9911 static struct pmu perf_uprobe = {
9912         .task_ctx_nr    = perf_sw_context,
9913         .event_init     = perf_uprobe_event_init,
9914         .add            = perf_trace_add,
9915         .del            = perf_trace_del,
9916         .start          = perf_swevent_start,
9917         .stop           = perf_swevent_stop,
9918         .read           = perf_swevent_read,
9919         .attr_groups    = uprobe_attr_groups,
9920 };
9921
9922 static int perf_uprobe_event_init(struct perf_event *event)
9923 {
9924         int err;
9925         unsigned long ref_ctr_offset;
9926         bool is_retprobe;
9927
9928         if (event->attr.type != perf_uprobe.type)
9929                 return -ENOENT;
9930
9931         if (!perfmon_capable())
9932                 return -EACCES;
9933
9934         /*
9935          * no branch sampling for probe events
9936          */
9937         if (has_branch_stack(event))
9938                 return -EOPNOTSUPP;
9939
9940         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
9941         ref_ctr_offset = event->attr.config >> PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
9942         err = perf_uprobe_init(event, ref_ctr_offset, is_retprobe);
9943         if (err)
9944                 return err;
9945
9946         event->destroy = perf_uprobe_destroy;
9947
9948         return 0;
9949 }
9950 #endif /* CONFIG_UPROBE_EVENTS */
9951
9952 static inline void perf_tp_register(void)
9953 {
9954         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
9955 #ifdef CONFIG_KPROBE_EVENTS
9956         perf_pmu_register(&perf_kprobe, "kprobe", -1);
9957 #endif
9958 #ifdef CONFIG_UPROBE_EVENTS
9959         perf_pmu_register(&perf_uprobe, "uprobe", -1);
9960 #endif
9961 }
9962
9963 static void perf_event_free_filter(struct perf_event *event)
9964 {
9965         ftrace_profile_free_filter(event);
9966 }
9967
9968 #ifdef CONFIG_BPF_SYSCALL
9969 static void bpf_overflow_handler(struct perf_event *event,
9970                                  struct perf_sample_data *data,
9971                                  struct pt_regs *regs)
9972 {
9973         struct bpf_perf_event_data_kern ctx = {
9974                 .data = data,
9975                 .event = event,
9976         };
9977         struct bpf_prog *prog;
9978         int ret = 0;
9979
9980         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
9981         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
9982                 goto out;
9983         rcu_read_lock();
9984         prog = READ_ONCE(event->prog);
9985         if (prog)
9986                 ret = bpf_prog_run(prog, &ctx);
9987         rcu_read_unlock();
9988 out:
9989         __this_cpu_dec(bpf_prog_active);
9990         if (!ret)
9991                 return;
9992
9993         event->orig_overflow_handler(event, data, regs);
9994 }
9995
9996 static int perf_event_set_bpf_handler(struct perf_event *event,
9997                                       struct bpf_prog *prog,
9998                                       u64 bpf_cookie)
9999 {
10000         if (event->overflow_handler_context)
10001                 /* hw breakpoint or kernel counter */
10002                 return -EINVAL;
10003
10004         if (event->prog)
10005                 return -EEXIST;
10006
10007         if (prog->type != BPF_PROG_TYPE_PERF_EVENT)
10008                 return -EINVAL;
10009
10010         if (event->attr.precise_ip &&
10011             prog->call_get_stack &&
10012             (!(event->attr.sample_type & __PERF_SAMPLE_CALLCHAIN_EARLY) ||
10013              event->attr.exclude_callchain_kernel ||
10014              event->attr.exclude_callchain_user)) {
10015                 /*
10016                  * On perf_event with precise_ip, calling bpf_get_stack()
10017                  * may trigger unwinder warnings and occasional crashes.
10018                  * bpf_get_[stack|stackid] works around this issue by using
10019                  * callchain attached to perf_sample_data. If the
10020                  * perf_event does not full (kernel and user) callchain
10021                  * attached to perf_sample_data, do not allow attaching BPF
10022                  * program that calls bpf_get_[stack|stackid].
10023                  */
10024                 return -EPROTO;
10025         }
10026
10027         event->prog = prog;
10028         event->bpf_cookie = bpf_cookie;
10029         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
10030         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
10031         return 0;
10032 }
10033
10034 static void perf_event_free_bpf_handler(struct perf_event *event)
10035 {
10036         struct bpf_prog *prog = event->prog;
10037
10038         if (!prog)
10039                 return;
10040
10041         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
10042         event->prog = NULL;
10043         bpf_prog_put(prog);
10044 }
10045 #else
10046 static int perf_event_set_bpf_handler(struct perf_event *event,
10047                                       struct bpf_prog *prog,
10048                                       u64 bpf_cookie)
10049 {
10050         return -EOPNOTSUPP;
10051 }
10052 static void perf_event_free_bpf_handler(struct perf_event *event)
10053 {
10054 }
10055 #endif
10056
10057 /*
10058  * returns true if the event is a tracepoint, or a kprobe/upprobe created
10059  * with perf_event_open()
10060  */
10061 static inline bool perf_event_is_tracing(struct perf_event *event)
10062 {
10063         if (event->pmu == &perf_tracepoint)
10064                 return true;
10065 #ifdef CONFIG_KPROBE_EVENTS
10066         if (event->pmu == &perf_kprobe)
10067                 return true;
10068 #endif
10069 #ifdef CONFIG_UPROBE_EVENTS
10070         if (event->pmu == &perf_uprobe)
10071                 return true;
10072 #endif
10073         return false;
10074 }
10075
10076 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10077                             u64 bpf_cookie)
10078 {
10079         bool is_kprobe, is_tracepoint, is_syscall_tp;
10080
10081         if (!perf_event_is_tracing(event))
10082                 return perf_event_set_bpf_handler(event, prog, bpf_cookie);
10083
10084         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
10085         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
10086         is_syscall_tp = is_syscall_trace_event(event->tp_event);
10087         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
10088                 /* bpf programs can only be attached to u/kprobe or tracepoint */
10089                 return -EINVAL;
10090
10091         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
10092             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
10093             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT))
10094                 return -EINVAL;
10095
10096         /* Kprobe override only works for kprobes, not uprobes. */
10097         if (prog->kprobe_override &&
10098             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE))
10099                 return -EINVAL;
10100
10101         if (is_tracepoint || is_syscall_tp) {
10102                 int off = trace_event_get_offsets(event->tp_event);
10103
10104                 if (prog->aux->max_ctx_offset > off)
10105                         return -EACCES;
10106         }
10107
10108         return perf_event_attach_bpf_prog(event, prog, bpf_cookie);
10109 }
10110
10111 void perf_event_free_bpf_prog(struct perf_event *event)
10112 {
10113         if (!perf_event_is_tracing(event)) {
10114                 perf_event_free_bpf_handler(event);
10115                 return;
10116         }
10117         perf_event_detach_bpf_prog(event);
10118 }
10119
10120 #else
10121
10122 static inline void perf_tp_register(void)
10123 {
10124 }
10125
10126 static void perf_event_free_filter(struct perf_event *event)
10127 {
10128 }
10129
10130 int perf_event_set_bpf_prog(struct perf_event *event, struct bpf_prog *prog,
10131                             u64 bpf_cookie)
10132 {
10133         return -ENOENT;
10134 }
10135
10136 void perf_event_free_bpf_prog(struct perf_event *event)
10137 {
10138 }
10139 #endif /* CONFIG_EVENT_TRACING */
10140
10141 #ifdef CONFIG_HAVE_HW_BREAKPOINT
10142 void perf_bp_event(struct perf_event *bp, void *data)
10143 {
10144         struct perf_sample_data sample;
10145         struct pt_regs *regs = data;
10146
10147         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
10148
10149         if (!bp->hw.state && !perf_exclude_event(bp, regs))
10150                 perf_swevent_event(bp, 1, &sample, regs);
10151 }
10152 #endif
10153
10154 /*
10155  * Allocate a new address filter
10156  */
10157 static struct perf_addr_filter *
10158 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
10159 {
10160         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
10161         struct perf_addr_filter *filter;
10162
10163         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
10164         if (!filter)
10165                 return NULL;
10166
10167         INIT_LIST_HEAD(&filter->entry);
10168         list_add_tail(&filter->entry, filters);
10169
10170         return filter;
10171 }
10172
10173 static void free_filters_list(struct list_head *filters)
10174 {
10175         struct perf_addr_filter *filter, *iter;
10176
10177         list_for_each_entry_safe(filter, iter, filters, entry) {
10178                 path_put(&filter->path);
10179                 list_del(&filter->entry);
10180                 kfree(filter);
10181         }
10182 }
10183
10184 /*
10185  * Free existing address filters and optionally install new ones
10186  */
10187 static void perf_addr_filters_splice(struct perf_event *event,
10188                                      struct list_head *head)
10189 {
10190         unsigned long flags;
10191         LIST_HEAD(list);
10192
10193         if (!has_addr_filter(event))
10194                 return;
10195
10196         /* don't bother with children, they don't have their own filters */
10197         if (event->parent)
10198                 return;
10199
10200         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
10201
10202         list_splice_init(&event->addr_filters.list, &list);
10203         if (head)
10204                 list_splice(head, &event->addr_filters.list);
10205
10206         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
10207
10208         free_filters_list(&list);
10209 }
10210
10211 /*
10212  * Scan through mm's vmas and see if one of them matches the
10213  * @filter; if so, adjust filter's address range.
10214  * Called with mm::mmap_lock down for reading.
10215  */
10216 static void perf_addr_filter_apply(struct perf_addr_filter *filter,
10217                                    struct mm_struct *mm,
10218                                    struct perf_addr_filter_range *fr)
10219 {
10220         struct vm_area_struct *vma;
10221
10222         for (vma = mm->mmap; vma; vma = vma->vm_next) {
10223                 if (!vma->vm_file)
10224                         continue;
10225
10226                 if (perf_addr_filter_vma_adjust(filter, vma, fr))
10227                         return;
10228         }
10229 }
10230
10231 /*
10232  * Update event's address range filters based on the
10233  * task's existing mappings, if any.
10234  */
10235 static void perf_event_addr_filters_apply(struct perf_event *event)
10236 {
10237         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
10238         struct task_struct *task = READ_ONCE(event->ctx->task);
10239         struct perf_addr_filter *filter;
10240         struct mm_struct *mm = NULL;
10241         unsigned int count = 0;
10242         unsigned long flags;
10243
10244         /*
10245          * We may observe TASK_TOMBSTONE, which means that the event tear-down
10246          * will stop on the parent's child_mutex that our caller is also holding
10247          */
10248         if (task == TASK_TOMBSTONE)
10249                 return;
10250
10251         if (ifh->nr_file_filters) {
10252                 mm = get_task_mm(task);
10253                 if (!mm)
10254                         goto restart;
10255
10256                 mmap_read_lock(mm);
10257         }
10258
10259         raw_spin_lock_irqsave(&ifh->lock, flags);
10260         list_for_each_entry(filter, &ifh->list, entry) {
10261                 if (filter->path.dentry) {
10262                         /*
10263                          * Adjust base offset if the filter is associated to a
10264                          * binary that needs to be mapped:
10265                          */
10266                         event->addr_filter_ranges[count].start = 0;
10267                         event->addr_filter_ranges[count].size = 0;
10268
10269                         perf_addr_filter_apply(filter, mm, &event->addr_filter_ranges[count]);
10270                 } else {
10271                         event->addr_filter_ranges[count].start = filter->offset;
10272                         event->addr_filter_ranges[count].size  = filter->size;
10273                 }
10274
10275                 count++;
10276         }
10277
10278         event->addr_filters_gen++;
10279         raw_spin_unlock_irqrestore(&ifh->lock, flags);
10280
10281         if (ifh->nr_file_filters) {
10282                 mmap_read_unlock(mm);
10283
10284                 mmput(mm);
10285         }
10286
10287 restart:
10288         perf_event_stop(event, 1);
10289 }
10290
10291 /*
10292  * Address range filtering: limiting the data to certain
10293  * instruction address ranges. Filters are ioctl()ed to us from
10294  * userspace as ascii strings.
10295  *
10296  * Filter string format:
10297  *
10298  * ACTION RANGE_SPEC
10299  * where ACTION is one of the
10300  *  * "filter": limit the trace to this region
10301  *  * "start": start tracing from this address
10302  *  * "stop": stop tracing at this address/region;
10303  * RANGE_SPEC is
10304  *  * for kernel addresses: <start address>[/<size>]
10305  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
10306  *
10307  * if <size> is not specified or is zero, the range is treated as a single
10308  * address; not valid for ACTION=="filter".
10309  */
10310 enum {
10311         IF_ACT_NONE = -1,
10312         IF_ACT_FILTER,
10313         IF_ACT_START,
10314         IF_ACT_STOP,
10315         IF_SRC_FILE,
10316         IF_SRC_KERNEL,
10317         IF_SRC_FILEADDR,
10318         IF_SRC_KERNELADDR,
10319 };
10320
10321 enum {
10322         IF_STATE_ACTION = 0,
10323         IF_STATE_SOURCE,
10324         IF_STATE_END,
10325 };
10326
10327 static const match_table_t if_tokens = {
10328         { IF_ACT_FILTER,        "filter" },
10329         { IF_ACT_START,         "start" },
10330         { IF_ACT_STOP,          "stop" },
10331         { IF_SRC_FILE,          "%u/%u@%s" },
10332         { IF_SRC_KERNEL,        "%u/%u" },
10333         { IF_SRC_FILEADDR,      "%u@%s" },
10334         { IF_SRC_KERNELADDR,    "%u" },
10335         { IF_ACT_NONE,          NULL },
10336 };
10337
10338 /*
10339  * Address filter string parser
10340  */
10341 static int
10342 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
10343                              struct list_head *filters)
10344 {
10345         struct perf_addr_filter *filter = NULL;
10346         char *start, *orig, *filename = NULL;
10347         substring_t args[MAX_OPT_ARGS];
10348         int state = IF_STATE_ACTION, token;
10349         unsigned int kernel = 0;
10350         int ret = -EINVAL;
10351
10352         orig = fstr = kstrdup(fstr, GFP_KERNEL);
10353         if (!fstr)
10354                 return -ENOMEM;
10355
10356         while ((start = strsep(&fstr, " ,\n")) != NULL) {
10357                 static const enum perf_addr_filter_action_t actions[] = {
10358                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
10359                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
10360                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
10361                 };
10362                 ret = -EINVAL;
10363
10364                 if (!*start)
10365                         continue;
10366
10367                 /* filter definition begins */
10368                 if (state == IF_STATE_ACTION) {
10369                         filter = perf_addr_filter_new(event, filters);
10370                         if (!filter)
10371                                 goto fail;
10372                 }
10373
10374                 token = match_token(start, if_tokens, args);
10375                 switch (token) {
10376                 case IF_ACT_FILTER:
10377                 case IF_ACT_START:
10378                 case IF_ACT_STOP:
10379                         if (state != IF_STATE_ACTION)
10380                                 goto fail;
10381
10382                         filter->action = actions[token];
10383                         state = IF_STATE_SOURCE;
10384                         break;
10385
10386                 case IF_SRC_KERNELADDR:
10387                 case IF_SRC_KERNEL:
10388                         kernel = 1;
10389                         fallthrough;
10390
10391                 case IF_SRC_FILEADDR:
10392                 case IF_SRC_FILE:
10393                         if (state != IF_STATE_SOURCE)
10394                                 goto fail;
10395
10396                         *args[0].to = 0;
10397                         ret = kstrtoul(args[0].from, 0, &filter->offset);
10398                         if (ret)
10399                                 goto fail;
10400
10401                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
10402                                 *args[1].to = 0;
10403                                 ret = kstrtoul(args[1].from, 0, &filter->size);
10404                                 if (ret)
10405                                         goto fail;
10406                         }
10407
10408                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
10409                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
10410
10411                                 kfree(filename);
10412                                 filename = match_strdup(&args[fpos]);
10413                                 if (!filename) {
10414                                         ret = -ENOMEM;
10415                                         goto fail;
10416                                 }
10417                         }
10418
10419                         state = IF_STATE_END;
10420                         break;
10421
10422                 default:
10423                         goto fail;
10424                 }
10425
10426                 /*
10427                  * Filter definition is fully parsed, validate and install it.
10428                  * Make sure that it doesn't contradict itself or the event's
10429                  * attribute.
10430                  */
10431                 if (state == IF_STATE_END) {
10432                         ret = -EINVAL;
10433                         if (kernel && event->attr.exclude_kernel)
10434                                 goto fail;
10435
10436                         /*
10437                          * ACTION "filter" must have a non-zero length region
10438                          * specified.
10439                          */
10440                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
10441                             !filter->size)
10442                                 goto fail;
10443
10444                         if (!kernel) {
10445                                 if (!filename)
10446                                         goto fail;
10447
10448                                 /*
10449                                  * For now, we only support file-based filters
10450                                  * in per-task events; doing so for CPU-wide
10451                                  * events requires additional context switching
10452                                  * trickery, since same object code will be
10453                                  * mapped at different virtual addresses in
10454                                  * different processes.
10455                                  */
10456                                 ret = -EOPNOTSUPP;
10457                                 if (!event->ctx->task)
10458                                         goto fail;
10459
10460                                 /* look up the path and grab its inode */
10461                                 ret = kern_path(filename, LOOKUP_FOLLOW,
10462                                                 &filter->path);
10463                                 if (ret)
10464                                         goto fail;
10465
10466                                 ret = -EINVAL;
10467                                 if (!filter->path.dentry ||
10468                                     !S_ISREG(d_inode(filter->path.dentry)
10469                                              ->i_mode))
10470                                         goto fail;
10471
10472                                 event->addr_filters.nr_file_filters++;
10473                         }
10474
10475                         /* ready to consume more filters */
10476                         state = IF_STATE_ACTION;
10477                         filter = NULL;
10478                 }
10479         }
10480
10481         if (state != IF_STATE_ACTION)
10482                 goto fail;
10483
10484         kfree(filename);
10485         kfree(orig);
10486
10487         return 0;
10488
10489 fail:
10490         kfree(filename);
10491         free_filters_list(filters);
10492         kfree(orig);
10493
10494         return ret;
10495 }
10496
10497 static int
10498 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
10499 {
10500         LIST_HEAD(filters);
10501         int ret;
10502
10503         /*
10504          * Since this is called in perf_ioctl() path, we're already holding
10505          * ctx::mutex.
10506          */
10507         lockdep_assert_held(&event->ctx->mutex);
10508
10509         if (WARN_ON_ONCE(event->parent))
10510                 return -EINVAL;
10511
10512         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
10513         if (ret)
10514                 goto fail_clear_files;
10515
10516         ret = event->pmu->addr_filters_validate(&filters);
10517         if (ret)
10518                 goto fail_free_filters;
10519
10520         /* remove existing filters, if any */
10521         perf_addr_filters_splice(event, &filters);
10522
10523         /* install new filters */
10524         perf_event_for_each_child(event, perf_event_addr_filters_apply);
10525
10526         return ret;
10527
10528 fail_free_filters:
10529         free_filters_list(&filters);
10530
10531 fail_clear_files:
10532         event->addr_filters.nr_file_filters = 0;
10533
10534         return ret;
10535 }
10536
10537 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
10538 {
10539         int ret = -EINVAL;
10540         char *filter_str;
10541
10542         filter_str = strndup_user(arg, PAGE_SIZE);
10543         if (IS_ERR(filter_str))
10544                 return PTR_ERR(filter_str);
10545
10546 #ifdef CONFIG_EVENT_TRACING
10547         if (perf_event_is_tracing(event)) {
10548                 struct perf_event_context *ctx = event->ctx;
10549
10550                 /*
10551                  * Beware, here be dragons!!
10552                  *
10553                  * the tracepoint muck will deadlock against ctx->mutex, but
10554                  * the tracepoint stuff does not actually need it. So
10555                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10556                  * already have a reference on ctx.
10557                  *
10558                  * This can result in event getting moved to a different ctx,
10559                  * but that does not affect the tracepoint state.
10560                  */
10561                 mutex_unlock(&ctx->mutex);
10562                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
10563                 mutex_lock(&ctx->mutex);
10564         } else
10565 #endif
10566         if (has_addr_filter(event))
10567                 ret = perf_event_set_addr_filter(event, filter_str);
10568
10569         kfree(filter_str);
10570         return ret;
10571 }
10572
10573 /*
10574  * hrtimer based swevent callback
10575  */
10576
10577 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
10578 {
10579         enum hrtimer_restart ret = HRTIMER_RESTART;
10580         struct perf_sample_data data;
10581         struct pt_regs *regs;
10582         struct perf_event *event;
10583         u64 period;
10584
10585         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
10586
10587         if (event->state != PERF_EVENT_STATE_ACTIVE)
10588                 return HRTIMER_NORESTART;
10589
10590         event->pmu->read(event);
10591
10592         perf_sample_data_init(&data, 0, event->hw.last_period);
10593         regs = get_irq_regs();
10594
10595         if (regs && !perf_exclude_event(event, regs)) {
10596                 if (!(event->attr.exclude_idle && is_idle_task(current)))
10597                         if (__perf_event_overflow(event, 1, &data, regs))
10598                                 ret = HRTIMER_NORESTART;
10599         }
10600
10601         period = max_t(u64, 10000, event->hw.sample_period);
10602         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
10603
10604         return ret;
10605 }
10606
10607 static void perf_swevent_start_hrtimer(struct perf_event *event)
10608 {
10609         struct hw_perf_event *hwc = &event->hw;
10610         s64 period;
10611
10612         if (!is_sampling_event(event))
10613                 return;
10614
10615         period = local64_read(&hwc->period_left);
10616         if (period) {
10617                 if (period < 0)
10618                         period = 10000;
10619
10620                 local64_set(&hwc->period_left, 0);
10621         } else {
10622                 period = max_t(u64, 10000, hwc->sample_period);
10623         }
10624         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
10625                       HRTIMER_MODE_REL_PINNED_HARD);
10626 }
10627
10628 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
10629 {
10630         struct hw_perf_event *hwc = &event->hw;
10631
10632         if (is_sampling_event(event)) {
10633                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
10634                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
10635
10636                 hrtimer_cancel(&hwc->hrtimer);
10637         }
10638 }
10639
10640 static void perf_swevent_init_hrtimer(struct perf_event *event)
10641 {
10642         struct hw_perf_event *hwc = &event->hw;
10643
10644         if (!is_sampling_event(event))
10645                 return;
10646
10647         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
10648         hwc->hrtimer.function = perf_swevent_hrtimer;
10649
10650         /*
10651          * Since hrtimers have a fixed rate, we can do a static freq->period
10652          * mapping and avoid the whole period adjust feedback stuff.
10653          */
10654         if (event->attr.freq) {
10655                 long freq = event->attr.sample_freq;
10656
10657                 event->attr.sample_period = NSEC_PER_SEC / freq;
10658                 hwc->sample_period = event->attr.sample_period;
10659                 local64_set(&hwc->period_left, hwc->sample_period);
10660                 hwc->last_period = hwc->sample_period;
10661                 event->attr.freq = 0;
10662         }
10663 }
10664
10665 /*
10666  * Software event: cpu wall time clock
10667  */
10668
10669 static void cpu_clock_event_update(struct perf_event *event)
10670 {
10671         s64 prev;
10672         u64 now;
10673
10674         now = local_clock();
10675         prev = local64_xchg(&event->hw.prev_count, now);
10676         local64_add(now - prev, &event->count);
10677 }
10678
10679 static void cpu_clock_event_start(struct perf_event *event, int flags)
10680 {
10681         local64_set(&event->hw.prev_count, local_clock());
10682         perf_swevent_start_hrtimer(event);
10683 }
10684
10685 static void cpu_clock_event_stop(struct perf_event *event, int flags)
10686 {
10687         perf_swevent_cancel_hrtimer(event);
10688         cpu_clock_event_update(event);
10689 }
10690
10691 static int cpu_clock_event_add(struct perf_event *event, int flags)
10692 {
10693         if (flags & PERF_EF_START)
10694                 cpu_clock_event_start(event, flags);
10695         perf_event_update_userpage(event);
10696
10697         return 0;
10698 }
10699
10700 static void cpu_clock_event_del(struct perf_event *event, int flags)
10701 {
10702         cpu_clock_event_stop(event, flags);
10703 }
10704
10705 static void cpu_clock_event_read(struct perf_event *event)
10706 {
10707         cpu_clock_event_update(event);
10708 }
10709
10710 static int cpu_clock_event_init(struct perf_event *event)
10711 {
10712         if (event->attr.type != PERF_TYPE_SOFTWARE)
10713                 return -ENOENT;
10714
10715         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
10716                 return -ENOENT;
10717
10718         /*
10719          * no branch sampling for software events
10720          */
10721         if (has_branch_stack(event))
10722                 return -EOPNOTSUPP;
10723
10724         perf_swevent_init_hrtimer(event);
10725
10726         return 0;
10727 }
10728
10729 static struct pmu perf_cpu_clock = {
10730         .task_ctx_nr    = perf_sw_context,
10731
10732         .capabilities   = PERF_PMU_CAP_NO_NMI,
10733
10734         .event_init     = cpu_clock_event_init,
10735         .add            = cpu_clock_event_add,
10736         .del            = cpu_clock_event_del,
10737         .start          = cpu_clock_event_start,
10738         .stop           = cpu_clock_event_stop,
10739         .read           = cpu_clock_event_read,
10740 };
10741
10742 /*
10743  * Software event: task time clock
10744  */
10745
10746 static void task_clock_event_update(struct perf_event *event, u64 now)
10747 {
10748         u64 prev;
10749         s64 delta;
10750
10751         prev = local64_xchg(&event->hw.prev_count, now);
10752         delta = now - prev;
10753         local64_add(delta, &event->count);
10754 }
10755
10756 static void task_clock_event_start(struct perf_event *event, int flags)
10757 {
10758         local64_set(&event->hw.prev_count, event->ctx->time);
10759         perf_swevent_start_hrtimer(event);
10760 }
10761
10762 static void task_clock_event_stop(struct perf_event *event, int flags)
10763 {
10764         perf_swevent_cancel_hrtimer(event);
10765         task_clock_event_update(event, event->ctx->time);
10766 }
10767
10768 static int task_clock_event_add(struct perf_event *event, int flags)
10769 {
10770         if (flags & PERF_EF_START)
10771                 task_clock_event_start(event, flags);
10772         perf_event_update_userpage(event);
10773
10774         return 0;
10775 }
10776
10777 static void task_clock_event_del(struct perf_event *event, int flags)
10778 {
10779         task_clock_event_stop(event, PERF_EF_UPDATE);
10780 }
10781
10782 static void task_clock_event_read(struct perf_event *event)
10783 {
10784         u64 now = perf_clock();
10785         u64 delta = now - event->ctx->timestamp;
10786         u64 time = event->ctx->time + delta;
10787
10788         task_clock_event_update(event, time);
10789 }
10790
10791 static int task_clock_event_init(struct perf_event *event)
10792 {
10793         if (event->attr.type != PERF_TYPE_SOFTWARE)
10794                 return -ENOENT;
10795
10796         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
10797                 return -ENOENT;
10798
10799         /*
10800          * no branch sampling for software events
10801          */
10802         if (has_branch_stack(event))
10803                 return -EOPNOTSUPP;
10804
10805         perf_swevent_init_hrtimer(event);
10806
10807         return 0;
10808 }
10809
10810 static struct pmu perf_task_clock = {
10811         .task_ctx_nr    = perf_sw_context,
10812
10813         .capabilities   = PERF_PMU_CAP_NO_NMI,
10814
10815         .event_init     = task_clock_event_init,
10816         .add            = task_clock_event_add,
10817         .del            = task_clock_event_del,
10818         .start          = task_clock_event_start,
10819         .stop           = task_clock_event_stop,
10820         .read           = task_clock_event_read,
10821 };
10822
10823 static void perf_pmu_nop_void(struct pmu *pmu)
10824 {
10825 }
10826
10827 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
10828 {
10829 }
10830
10831 static int perf_pmu_nop_int(struct pmu *pmu)
10832 {
10833         return 0;
10834 }
10835
10836 static int perf_event_nop_int(struct perf_event *event, u64 value)
10837 {
10838         return 0;
10839 }
10840
10841 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
10842
10843 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
10844 {
10845         __this_cpu_write(nop_txn_flags, flags);
10846
10847         if (flags & ~PERF_PMU_TXN_ADD)
10848                 return;
10849
10850         perf_pmu_disable(pmu);
10851 }
10852
10853 static int perf_pmu_commit_txn(struct pmu *pmu)
10854 {
10855         unsigned int flags = __this_cpu_read(nop_txn_flags);
10856
10857         __this_cpu_write(nop_txn_flags, 0);
10858
10859         if (flags & ~PERF_PMU_TXN_ADD)
10860                 return 0;
10861
10862         perf_pmu_enable(pmu);
10863         return 0;
10864 }
10865
10866 static void perf_pmu_cancel_txn(struct pmu *pmu)
10867 {
10868         unsigned int flags =  __this_cpu_read(nop_txn_flags);
10869
10870         __this_cpu_write(nop_txn_flags, 0);
10871
10872         if (flags & ~PERF_PMU_TXN_ADD)
10873                 return;
10874
10875         perf_pmu_enable(pmu);
10876 }
10877
10878 static int perf_event_idx_default(struct perf_event *event)
10879 {
10880         return 0;
10881 }
10882
10883 /*
10884  * Ensures all contexts with the same task_ctx_nr have the same
10885  * pmu_cpu_context too.
10886  */
10887 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
10888 {
10889         struct pmu *pmu;
10890
10891         if (ctxn < 0)
10892                 return NULL;
10893
10894         list_for_each_entry(pmu, &pmus, entry) {
10895                 if (pmu->task_ctx_nr == ctxn)
10896                         return pmu->pmu_cpu_context;
10897         }
10898
10899         return NULL;
10900 }
10901
10902 static void free_pmu_context(struct pmu *pmu)
10903 {
10904         /*
10905          * Static contexts such as perf_sw_context have a global lifetime
10906          * and may be shared between different PMUs. Avoid freeing them
10907          * when a single PMU is going away.
10908          */
10909         if (pmu->task_ctx_nr > perf_invalid_context)
10910                 return;
10911
10912         free_percpu(pmu->pmu_cpu_context);
10913 }
10914
10915 /*
10916  * Let userspace know that this PMU supports address range filtering:
10917  */
10918 static ssize_t nr_addr_filters_show(struct device *dev,
10919                                     struct device_attribute *attr,
10920                                     char *page)
10921 {
10922         struct pmu *pmu = dev_get_drvdata(dev);
10923
10924         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
10925 }
10926 DEVICE_ATTR_RO(nr_addr_filters);
10927
10928 static struct idr pmu_idr;
10929
10930 static ssize_t
10931 type_show(struct device *dev, struct device_attribute *attr, char *page)
10932 {
10933         struct pmu *pmu = dev_get_drvdata(dev);
10934
10935         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
10936 }
10937 static DEVICE_ATTR_RO(type);
10938
10939 static ssize_t
10940 perf_event_mux_interval_ms_show(struct device *dev,
10941                                 struct device_attribute *attr,
10942                                 char *page)
10943 {
10944         struct pmu *pmu = dev_get_drvdata(dev);
10945
10946         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
10947 }
10948
10949 static DEFINE_MUTEX(mux_interval_mutex);
10950
10951 static ssize_t
10952 perf_event_mux_interval_ms_store(struct device *dev,
10953                                  struct device_attribute *attr,
10954                                  const char *buf, size_t count)
10955 {
10956         struct pmu *pmu = dev_get_drvdata(dev);
10957         int timer, cpu, ret;
10958
10959         ret = kstrtoint(buf, 0, &timer);
10960         if (ret)
10961                 return ret;
10962
10963         if (timer < 1)
10964                 return -EINVAL;
10965
10966         /* same value, noting to do */
10967         if (timer == pmu->hrtimer_interval_ms)
10968                 return count;
10969
10970         mutex_lock(&mux_interval_mutex);
10971         pmu->hrtimer_interval_ms = timer;
10972
10973         /* update all cpuctx for this PMU */
10974         cpus_read_lock();
10975         for_each_online_cpu(cpu) {
10976                 struct perf_cpu_context *cpuctx;
10977                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
10978                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
10979
10980                 cpu_function_call(cpu,
10981                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
10982         }
10983         cpus_read_unlock();
10984         mutex_unlock(&mux_interval_mutex);
10985
10986         return count;
10987 }
10988 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
10989
10990 static struct attribute *pmu_dev_attrs[] = {
10991         &dev_attr_type.attr,
10992         &dev_attr_perf_event_mux_interval_ms.attr,
10993         NULL,
10994 };
10995 ATTRIBUTE_GROUPS(pmu_dev);
10996
10997 static int pmu_bus_running;
10998 static struct bus_type pmu_bus = {
10999         .name           = "event_source",
11000         .dev_groups     = pmu_dev_groups,
11001 };
11002
11003 static void pmu_dev_release(struct device *dev)
11004 {
11005         kfree(dev);
11006 }
11007
11008 static int pmu_dev_alloc(struct pmu *pmu)
11009 {
11010         int ret = -ENOMEM;
11011
11012         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
11013         if (!pmu->dev)
11014                 goto out;
11015
11016         pmu->dev->groups = pmu->attr_groups;
11017         device_initialize(pmu->dev);
11018         ret = dev_set_name(pmu->dev, "%s", pmu->name);
11019         if (ret)
11020                 goto free_dev;
11021
11022         dev_set_drvdata(pmu->dev, pmu);
11023         pmu->dev->bus = &pmu_bus;
11024         pmu->dev->release = pmu_dev_release;
11025         ret = device_add(pmu->dev);
11026         if (ret)
11027                 goto free_dev;
11028
11029         /* For PMUs with address filters, throw in an extra attribute: */
11030         if (pmu->nr_addr_filters)
11031                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
11032
11033         if (ret)
11034                 goto del_dev;
11035
11036         if (pmu->attr_update)
11037                 ret = sysfs_update_groups(&pmu->dev->kobj, pmu->attr_update);
11038
11039         if (ret)
11040                 goto del_dev;
11041
11042 out:
11043         return ret;
11044
11045 del_dev:
11046         device_del(pmu->dev);
11047
11048 free_dev:
11049         put_device(pmu->dev);
11050         goto out;
11051 }
11052
11053 static struct lock_class_key cpuctx_mutex;
11054 static struct lock_class_key cpuctx_lock;
11055
11056 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
11057 {
11058         int cpu, ret, max = PERF_TYPE_MAX;
11059
11060         mutex_lock(&pmus_lock);
11061         ret = -ENOMEM;
11062         pmu->pmu_disable_count = alloc_percpu(int);
11063         if (!pmu->pmu_disable_count)
11064                 goto unlock;
11065
11066         pmu->type = -1;
11067         if (!name)
11068                 goto skip_type;
11069         pmu->name = name;
11070
11071         if (type != PERF_TYPE_SOFTWARE) {
11072                 if (type >= 0)
11073                         max = type;
11074
11075                 ret = idr_alloc(&pmu_idr, pmu, max, 0, GFP_KERNEL);
11076                 if (ret < 0)
11077                         goto free_pdc;
11078
11079                 WARN_ON(type >= 0 && ret != type);
11080
11081                 type = ret;
11082         }
11083         pmu->type = type;
11084
11085         if (pmu_bus_running) {
11086                 ret = pmu_dev_alloc(pmu);
11087                 if (ret)
11088                         goto free_idr;
11089         }
11090
11091 skip_type:
11092         if (pmu->task_ctx_nr == perf_hw_context) {
11093                 static int hw_context_taken = 0;
11094
11095                 /*
11096                  * Other than systems with heterogeneous CPUs, it never makes
11097                  * sense for two PMUs to share perf_hw_context. PMUs which are
11098                  * uncore must use perf_invalid_context.
11099                  */
11100                 if (WARN_ON_ONCE(hw_context_taken &&
11101                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
11102                         pmu->task_ctx_nr = perf_invalid_context;
11103
11104                 hw_context_taken = 1;
11105         }
11106
11107         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
11108         if (pmu->pmu_cpu_context)
11109                 goto got_cpu_context;
11110
11111         ret = -ENOMEM;
11112         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
11113         if (!pmu->pmu_cpu_context)
11114                 goto free_dev;
11115
11116         for_each_possible_cpu(cpu) {
11117                 struct perf_cpu_context *cpuctx;
11118
11119                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11120                 __perf_event_init_context(&cpuctx->ctx);
11121                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
11122                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
11123                 cpuctx->ctx.pmu = pmu;
11124                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
11125
11126                 __perf_mux_hrtimer_init(cpuctx, cpu);
11127
11128                 cpuctx->heap_size = ARRAY_SIZE(cpuctx->heap_default);
11129                 cpuctx->heap = cpuctx->heap_default;
11130         }
11131
11132 got_cpu_context:
11133         if (!pmu->start_txn) {
11134                 if (pmu->pmu_enable) {
11135                         /*
11136                          * If we have pmu_enable/pmu_disable calls, install
11137                          * transaction stubs that use that to try and batch
11138                          * hardware accesses.
11139                          */
11140                         pmu->start_txn  = perf_pmu_start_txn;
11141                         pmu->commit_txn = perf_pmu_commit_txn;
11142                         pmu->cancel_txn = perf_pmu_cancel_txn;
11143                 } else {
11144                         pmu->start_txn  = perf_pmu_nop_txn;
11145                         pmu->commit_txn = perf_pmu_nop_int;
11146                         pmu->cancel_txn = perf_pmu_nop_void;
11147                 }
11148         }
11149
11150         if (!pmu->pmu_enable) {
11151                 pmu->pmu_enable  = perf_pmu_nop_void;
11152                 pmu->pmu_disable = perf_pmu_nop_void;
11153         }
11154
11155         if (!pmu->check_period)
11156                 pmu->check_period = perf_event_nop_int;
11157
11158         if (!pmu->event_idx)
11159                 pmu->event_idx = perf_event_idx_default;
11160
11161         /*
11162          * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
11163          * since these cannot be in the IDR. This way the linear search
11164          * is fast, provided a valid software event is provided.
11165          */
11166         if (type == PERF_TYPE_SOFTWARE || !name)
11167                 list_add_rcu(&pmu->entry, &pmus);
11168         else
11169                 list_add_tail_rcu(&pmu->entry, &pmus);
11170
11171         atomic_set(&pmu->exclusive_cnt, 0);
11172         ret = 0;
11173 unlock:
11174         mutex_unlock(&pmus_lock);
11175
11176         return ret;
11177
11178 free_dev:
11179         device_del(pmu->dev);
11180         put_device(pmu->dev);
11181
11182 free_idr:
11183         if (pmu->type != PERF_TYPE_SOFTWARE)
11184                 idr_remove(&pmu_idr, pmu->type);
11185
11186 free_pdc:
11187         free_percpu(pmu->pmu_disable_count);
11188         goto unlock;
11189 }
11190 EXPORT_SYMBOL_GPL(perf_pmu_register);
11191
11192 void perf_pmu_unregister(struct pmu *pmu)
11193 {
11194         mutex_lock(&pmus_lock);
11195         list_del_rcu(&pmu->entry);
11196
11197         /*
11198          * We dereference the pmu list under both SRCU and regular RCU, so
11199          * synchronize against both of those.
11200          */
11201         synchronize_srcu(&pmus_srcu);
11202         synchronize_rcu();
11203
11204         free_percpu(pmu->pmu_disable_count);
11205         if (pmu->type != PERF_TYPE_SOFTWARE)
11206                 idr_remove(&pmu_idr, pmu->type);
11207         if (pmu_bus_running) {
11208                 if (pmu->nr_addr_filters)
11209                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
11210                 device_del(pmu->dev);
11211                 put_device(pmu->dev);
11212         }
11213         free_pmu_context(pmu);
11214         mutex_unlock(&pmus_lock);
11215 }
11216 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
11217
11218 static inline bool has_extended_regs(struct perf_event *event)
11219 {
11220         return (event->attr.sample_regs_user & PERF_REG_EXTENDED_MASK) ||
11221                (event->attr.sample_regs_intr & PERF_REG_EXTENDED_MASK);
11222 }
11223
11224 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
11225 {
11226         struct perf_event_context *ctx = NULL;
11227         int ret;
11228
11229         if (!try_module_get(pmu->module))
11230                 return -ENODEV;
11231
11232         /*
11233          * A number of pmu->event_init() methods iterate the sibling_list to,
11234          * for example, validate if the group fits on the PMU. Therefore,
11235          * if this is a sibling event, acquire the ctx->mutex to protect
11236          * the sibling_list.
11237          */
11238         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
11239                 /*
11240                  * This ctx->mutex can nest when we're called through
11241                  * inheritance. See the perf_event_ctx_lock_nested() comment.
11242                  */
11243                 ctx = perf_event_ctx_lock_nested(event->group_leader,
11244                                                  SINGLE_DEPTH_NESTING);
11245                 BUG_ON(!ctx);
11246         }
11247
11248         event->pmu = pmu;
11249         ret = pmu->event_init(event);
11250
11251         if (ctx)
11252                 perf_event_ctx_unlock(event->group_leader, ctx);
11253
11254         if (!ret) {
11255                 if (!(pmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS) &&
11256                     has_extended_regs(event))
11257                         ret = -EOPNOTSUPP;
11258
11259                 if (pmu->capabilities & PERF_PMU_CAP_NO_EXCLUDE &&
11260                     event_has_any_exclude_flag(event))
11261                         ret = -EINVAL;
11262
11263                 if (ret && event->destroy)
11264                         event->destroy(event);
11265         }
11266
11267         if (ret)
11268                 module_put(pmu->module);
11269
11270         return ret;
11271 }
11272
11273 static struct pmu *perf_init_event(struct perf_event *event)
11274 {
11275         bool extended_type = false;
11276         int idx, type, ret;
11277         struct pmu *pmu;
11278
11279         idx = srcu_read_lock(&pmus_srcu);
11280
11281         /* Try parent's PMU first: */
11282         if (event->parent && event->parent->pmu) {
11283                 pmu = event->parent->pmu;
11284                 ret = perf_try_init_event(pmu, event);
11285                 if (!ret)
11286                         goto unlock;
11287         }
11288
11289         /*
11290          * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
11291          * are often aliases for PERF_TYPE_RAW.
11292          */
11293         type = event->attr.type;
11294         if (type == PERF_TYPE_HARDWARE || type == PERF_TYPE_HW_CACHE) {
11295                 type = event->attr.config >> PERF_PMU_TYPE_SHIFT;
11296                 if (!type) {
11297                         type = PERF_TYPE_RAW;
11298                 } else {
11299                         extended_type = true;
11300                         event->attr.config &= PERF_HW_EVENT_MASK;
11301                 }
11302         }
11303
11304 again:
11305         rcu_read_lock();
11306         pmu = idr_find(&pmu_idr, type);
11307         rcu_read_unlock();
11308         if (pmu) {
11309                 if (event->attr.type != type && type != PERF_TYPE_RAW &&
11310                     !(pmu->capabilities & PERF_PMU_CAP_EXTENDED_HW_TYPE))
11311                         goto fail;
11312
11313                 ret = perf_try_init_event(pmu, event);
11314                 if (ret == -ENOENT && event->attr.type != type && !extended_type) {
11315                         type = event->attr.type;
11316                         goto again;
11317                 }
11318
11319                 if (ret)
11320                         pmu = ERR_PTR(ret);
11321
11322                 goto unlock;
11323         }
11324
11325         list_for_each_entry_rcu(pmu, &pmus, entry, lockdep_is_held(&pmus_srcu)) {
11326                 ret = perf_try_init_event(pmu, event);
11327                 if (!ret)
11328                         goto unlock;
11329
11330                 if (ret != -ENOENT) {
11331                         pmu = ERR_PTR(ret);
11332                         goto unlock;
11333                 }
11334         }
11335 fail:
11336         pmu = ERR_PTR(-ENOENT);
11337 unlock:
11338         srcu_read_unlock(&pmus_srcu, idx);
11339
11340         return pmu;
11341 }
11342
11343 static void attach_sb_event(struct perf_event *event)
11344 {
11345         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
11346
11347         raw_spin_lock(&pel->lock);
11348         list_add_rcu(&event->sb_list, &pel->list);
11349         raw_spin_unlock(&pel->lock);
11350 }
11351
11352 /*
11353  * We keep a list of all !task (and therefore per-cpu) events
11354  * that need to receive side-band records.
11355  *
11356  * This avoids having to scan all the various PMU per-cpu contexts
11357  * looking for them.
11358  */
11359 static void account_pmu_sb_event(struct perf_event *event)
11360 {
11361         if (is_sb_event(event))
11362                 attach_sb_event(event);
11363 }
11364
11365 static void account_event_cpu(struct perf_event *event, int cpu)
11366 {
11367         if (event->parent)
11368                 return;
11369
11370         if (is_cgroup_event(event))
11371                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
11372 }
11373
11374 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11375 static void account_freq_event_nohz(void)
11376 {
11377 #ifdef CONFIG_NO_HZ_FULL
11378         /* Lock so we don't race with concurrent unaccount */
11379         spin_lock(&nr_freq_lock);
11380         if (atomic_inc_return(&nr_freq_events) == 1)
11381                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
11382         spin_unlock(&nr_freq_lock);
11383 #endif
11384 }
11385
11386 static void account_freq_event(void)
11387 {
11388         if (tick_nohz_full_enabled())
11389                 account_freq_event_nohz();
11390         else
11391                 atomic_inc(&nr_freq_events);
11392 }
11393
11394
11395 static void account_event(struct perf_event *event)
11396 {
11397         bool inc = false;
11398
11399         if (event->parent)
11400                 return;
11401
11402         if (event->attach_state & (PERF_ATTACH_TASK | PERF_ATTACH_SCHED_CB))
11403                 inc = true;
11404         if (event->attr.mmap || event->attr.mmap_data)
11405                 atomic_inc(&nr_mmap_events);
11406         if (event->attr.build_id)
11407                 atomic_inc(&nr_build_id_events);
11408         if (event->attr.comm)
11409                 atomic_inc(&nr_comm_events);
11410         if (event->attr.namespaces)
11411                 atomic_inc(&nr_namespaces_events);
11412         if (event->attr.cgroup)
11413                 atomic_inc(&nr_cgroup_events);
11414         if (event->attr.task)
11415                 atomic_inc(&nr_task_events);
11416         if (event->attr.freq)
11417                 account_freq_event();
11418         if (event->attr.context_switch) {
11419                 atomic_inc(&nr_switch_events);
11420                 inc = true;
11421         }
11422         if (has_branch_stack(event))
11423                 inc = true;
11424         if (is_cgroup_event(event))
11425                 inc = true;
11426         if (event->attr.ksymbol)
11427                 atomic_inc(&nr_ksymbol_events);
11428         if (event->attr.bpf_event)
11429                 atomic_inc(&nr_bpf_events);
11430         if (event->attr.text_poke)
11431                 atomic_inc(&nr_text_poke_events);
11432
11433         if (inc) {
11434                 /*
11435                  * We need the mutex here because static_branch_enable()
11436                  * must complete *before* the perf_sched_count increment
11437                  * becomes visible.
11438                  */
11439                 if (atomic_inc_not_zero(&perf_sched_count))
11440                         goto enabled;
11441
11442                 mutex_lock(&perf_sched_mutex);
11443                 if (!atomic_read(&perf_sched_count)) {
11444                         static_branch_enable(&perf_sched_events);
11445                         /*
11446                          * Guarantee that all CPUs observe they key change and
11447                          * call the perf scheduling hooks before proceeding to
11448                          * install events that need them.
11449                          */
11450                         synchronize_rcu();
11451                 }
11452                 /*
11453                  * Now that we have waited for the sync_sched(), allow further
11454                  * increments to by-pass the mutex.
11455                  */
11456                 atomic_inc(&perf_sched_count);
11457                 mutex_unlock(&perf_sched_mutex);
11458         }
11459 enabled:
11460
11461         account_event_cpu(event, event->cpu);
11462
11463         account_pmu_sb_event(event);
11464 }
11465
11466 /*
11467  * Allocate and initialize an event structure
11468  */
11469 static struct perf_event *
11470 perf_event_alloc(struct perf_event_attr *attr, int cpu,
11471                  struct task_struct *task,
11472                  struct perf_event *group_leader,
11473                  struct perf_event *parent_event,
11474                  perf_overflow_handler_t overflow_handler,
11475                  void *context, int cgroup_fd)
11476 {
11477         struct pmu *pmu;
11478         struct perf_event *event;
11479         struct hw_perf_event *hwc;
11480         long err = -EINVAL;
11481         int node;
11482
11483         if ((unsigned)cpu >= nr_cpu_ids) {
11484                 if (!task || cpu != -1)
11485                         return ERR_PTR(-EINVAL);
11486         }
11487         if (attr->sigtrap && !task) {
11488                 /* Requires a task: avoid signalling random tasks. */
11489                 return ERR_PTR(-EINVAL);
11490         }
11491
11492         node = (cpu >= 0) ? cpu_to_node(cpu) : -1;
11493         event = kmem_cache_alloc_node(perf_event_cache, GFP_KERNEL | __GFP_ZERO,
11494                                       node);
11495         if (!event)
11496                 return ERR_PTR(-ENOMEM);
11497
11498         /*
11499          * Single events are their own group leaders, with an
11500          * empty sibling list:
11501          */
11502         if (!group_leader)
11503                 group_leader = event;
11504
11505         mutex_init(&event->child_mutex);
11506         INIT_LIST_HEAD(&event->child_list);
11507
11508         INIT_LIST_HEAD(&event->event_entry);
11509         INIT_LIST_HEAD(&event->sibling_list);
11510         INIT_LIST_HEAD(&event->active_list);
11511         init_event_group(event);
11512         INIT_LIST_HEAD(&event->rb_entry);
11513         INIT_LIST_HEAD(&event->active_entry);
11514         INIT_LIST_HEAD(&event->addr_filters.list);
11515         INIT_HLIST_NODE(&event->hlist_entry);
11516
11517
11518         init_waitqueue_head(&event->waitq);
11519         event->pending_disable = -1;
11520         init_irq_work(&event->pending, perf_pending_event);
11521
11522         mutex_init(&event->mmap_mutex);
11523         raw_spin_lock_init(&event->addr_filters.lock);
11524
11525         atomic_long_set(&event->refcount, 1);
11526         event->cpu              = cpu;
11527         event->attr             = *attr;
11528         event->group_leader     = group_leader;
11529         event->pmu              = NULL;
11530         event->oncpu            = -1;
11531
11532         event->parent           = parent_event;
11533
11534         event->ns               = get_pid_ns(task_active_pid_ns(current));
11535         event->id               = atomic64_inc_return(&perf_event_id);
11536
11537         event->state            = PERF_EVENT_STATE_INACTIVE;
11538
11539         if (event->attr.sigtrap)
11540                 atomic_set(&event->event_limit, 1);
11541
11542         if (task) {
11543                 event->attach_state = PERF_ATTACH_TASK;
11544                 /*
11545                  * XXX pmu::event_init needs to know what task to account to
11546                  * and we cannot use the ctx information because we need the
11547                  * pmu before we get a ctx.
11548                  */
11549                 event->hw.target = get_task_struct(task);
11550         }
11551
11552         event->clock = &local_clock;
11553         if (parent_event)
11554                 event->clock = parent_event->clock;
11555
11556         if (!overflow_handler && parent_event) {
11557                 overflow_handler = parent_event->overflow_handler;
11558                 context = parent_event->overflow_handler_context;
11559 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11560                 if (overflow_handler == bpf_overflow_handler) {
11561                         struct bpf_prog *prog = parent_event->prog;
11562
11563                         bpf_prog_inc(prog);
11564                         event->prog = prog;
11565                         event->orig_overflow_handler =
11566                                 parent_event->orig_overflow_handler;
11567                 }
11568 #endif
11569         }
11570
11571         if (overflow_handler) {
11572                 event->overflow_handler = overflow_handler;
11573                 event->overflow_handler_context = context;
11574         } else if (is_write_backward(event)){
11575                 event->overflow_handler = perf_event_output_backward;
11576                 event->overflow_handler_context = NULL;
11577         } else {
11578                 event->overflow_handler = perf_event_output_forward;
11579                 event->overflow_handler_context = NULL;
11580         }
11581
11582         perf_event__state_init(event);
11583
11584         pmu = NULL;
11585
11586         hwc = &event->hw;
11587         hwc->sample_period = attr->sample_period;
11588         if (attr->freq && attr->sample_freq)
11589                 hwc->sample_period = 1;
11590         hwc->last_period = hwc->sample_period;
11591
11592         local64_set(&hwc->period_left, hwc->sample_period);
11593
11594         /*
11595          * We currently do not support PERF_SAMPLE_READ on inherited events.
11596          * See perf_output_read().
11597          */
11598         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
11599                 goto err_ns;
11600
11601         if (!has_branch_stack(event))
11602                 event->attr.branch_sample_type = 0;
11603
11604         pmu = perf_init_event(event);
11605         if (IS_ERR(pmu)) {
11606                 err = PTR_ERR(pmu);
11607                 goto err_ns;
11608         }
11609
11610         /*
11611          * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11612          * be different on other CPUs in the uncore mask.
11613          */
11614         if (pmu->task_ctx_nr == perf_invalid_context && cgroup_fd != -1) {
11615                 err = -EINVAL;
11616                 goto err_pmu;
11617         }
11618
11619         if (event->attr.aux_output &&
11620             !(pmu->capabilities & PERF_PMU_CAP_AUX_OUTPUT)) {
11621                 err = -EOPNOTSUPP;
11622                 goto err_pmu;
11623         }
11624
11625         if (cgroup_fd != -1) {
11626                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
11627                 if (err)
11628                         goto err_pmu;
11629         }
11630
11631         err = exclusive_event_init(event);
11632         if (err)
11633                 goto err_pmu;
11634
11635         if (has_addr_filter(event)) {
11636                 event->addr_filter_ranges = kcalloc(pmu->nr_addr_filters,
11637                                                     sizeof(struct perf_addr_filter_range),
11638                                                     GFP_KERNEL);
11639                 if (!event->addr_filter_ranges) {
11640                         err = -ENOMEM;
11641                         goto err_per_task;
11642                 }
11643
11644                 /*
11645                  * Clone the parent's vma offsets: they are valid until exec()
11646                  * even if the mm is not shared with the parent.
11647                  */
11648                 if (event->parent) {
11649                         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
11650
11651                         raw_spin_lock_irq(&ifh->lock);
11652                         memcpy(event->addr_filter_ranges,
11653                                event->parent->addr_filter_ranges,
11654                                pmu->nr_addr_filters * sizeof(struct perf_addr_filter_range));
11655                         raw_spin_unlock_irq(&ifh->lock);
11656                 }
11657
11658                 /* force hw sync on the address filters */
11659                 event->addr_filters_gen = 1;
11660         }
11661
11662         if (!event->parent) {
11663                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
11664                         err = get_callchain_buffers(attr->sample_max_stack);
11665                         if (err)
11666                                 goto err_addr_filters;
11667                 }
11668         }
11669
11670         err = security_perf_event_alloc(event);
11671         if (err)
11672                 goto err_callchain_buffer;
11673
11674         /* symmetric to unaccount_event() in _free_event() */
11675         account_event(event);
11676
11677         return event;
11678
11679 err_callchain_buffer:
11680         if (!event->parent) {
11681                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
11682                         put_callchain_buffers();
11683         }
11684 err_addr_filters:
11685         kfree(event->addr_filter_ranges);
11686
11687 err_per_task:
11688         exclusive_event_destroy(event);
11689
11690 err_pmu:
11691         if (is_cgroup_event(event))
11692                 perf_detach_cgroup(event);
11693         if (event->destroy)
11694                 event->destroy(event);
11695         module_put(pmu->module);
11696 err_ns:
11697         if (event->ns)
11698                 put_pid_ns(event->ns);
11699         if (event->hw.target)
11700                 put_task_struct(event->hw.target);
11701         kmem_cache_free(perf_event_cache, event);
11702
11703         return ERR_PTR(err);
11704 }
11705
11706 static int perf_copy_attr(struct perf_event_attr __user *uattr,
11707                           struct perf_event_attr *attr)
11708 {
11709         u32 size;
11710         int ret;
11711
11712         /* Zero the full structure, so that a short copy will be nice. */
11713         memset(attr, 0, sizeof(*attr));
11714
11715         ret = get_user(size, &uattr->size);
11716         if (ret)
11717                 return ret;
11718
11719         /* ABI compatibility quirk: */
11720         if (!size)
11721                 size = PERF_ATTR_SIZE_VER0;
11722         if (size < PERF_ATTR_SIZE_VER0 || size > PAGE_SIZE)
11723                 goto err_size;
11724
11725         ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
11726         if (ret) {
11727                 if (ret == -E2BIG)
11728                         goto err_size;
11729                 return ret;
11730         }
11731
11732         attr->size = size;
11733
11734         if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3)
11735                 return -EINVAL;
11736
11737         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
11738                 return -EINVAL;
11739
11740         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
11741                 return -EINVAL;
11742
11743         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
11744                 u64 mask = attr->branch_sample_type;
11745
11746                 /* only using defined bits */
11747                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
11748                         return -EINVAL;
11749
11750                 /* at least one branch bit must be set */
11751                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
11752                         return -EINVAL;
11753
11754                 /* propagate priv level, when not set for branch */
11755                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
11756
11757                         /* exclude_kernel checked on syscall entry */
11758                         if (!attr->exclude_kernel)
11759                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
11760
11761                         if (!attr->exclude_user)
11762                                 mask |= PERF_SAMPLE_BRANCH_USER;
11763
11764                         if (!attr->exclude_hv)
11765                                 mask |= PERF_SAMPLE_BRANCH_HV;
11766                         /*
11767                          * adjust user setting (for HW filter setup)
11768                          */
11769                         attr->branch_sample_type = mask;
11770                 }
11771                 /* privileged levels capture (kernel, hv): check permissions */
11772                 if (mask & PERF_SAMPLE_BRANCH_PERM_PLM) {
11773                         ret = perf_allow_kernel(attr);
11774                         if (ret)
11775                                 return ret;
11776                 }
11777         }
11778
11779         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
11780                 ret = perf_reg_validate(attr->sample_regs_user);
11781                 if (ret)
11782                         return ret;
11783         }
11784
11785         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
11786                 if (!arch_perf_have_user_stack_dump())
11787                         return -ENOSYS;
11788
11789                 /*
11790                  * We have __u32 type for the size, but so far
11791                  * we can only use __u16 as maximum due to the
11792                  * __u16 sample size limit.
11793                  */
11794                 if (attr->sample_stack_user >= USHRT_MAX)
11795                         return -EINVAL;
11796                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
11797                         return -EINVAL;
11798         }
11799
11800         if (!attr->sample_max_stack)
11801                 attr->sample_max_stack = sysctl_perf_event_max_stack;
11802
11803         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
11804                 ret = perf_reg_validate(attr->sample_regs_intr);
11805
11806 #ifndef CONFIG_CGROUP_PERF
11807         if (attr->sample_type & PERF_SAMPLE_CGROUP)
11808                 return -EINVAL;
11809 #endif
11810         if ((attr->sample_type & PERF_SAMPLE_WEIGHT) &&
11811             (attr->sample_type & PERF_SAMPLE_WEIGHT_STRUCT))
11812                 return -EINVAL;
11813
11814         if (!attr->inherit && attr->inherit_thread)
11815                 return -EINVAL;
11816
11817         if (attr->remove_on_exec && attr->enable_on_exec)
11818                 return -EINVAL;
11819
11820         if (attr->sigtrap && !attr->remove_on_exec)
11821                 return -EINVAL;
11822
11823 out:
11824         return ret;
11825
11826 err_size:
11827         put_user(sizeof(*attr), &uattr->size);
11828         ret = -E2BIG;
11829         goto out;
11830 }
11831
11832 static int
11833 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
11834 {
11835         struct perf_buffer *rb = NULL;
11836         int ret = -EINVAL;
11837
11838         if (!output_event)
11839                 goto set;
11840
11841         /* don't allow circular references */
11842         if (event == output_event)
11843                 goto out;
11844
11845         /*
11846          * Don't allow cross-cpu buffers
11847          */
11848         if (output_event->cpu != event->cpu)
11849                 goto out;
11850
11851         /*
11852          * If its not a per-cpu rb, it must be the same task.
11853          */
11854         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
11855                 goto out;
11856
11857         /*
11858          * Mixing clocks in the same buffer is trouble you don't need.
11859          */
11860         if (output_event->clock != event->clock)
11861                 goto out;
11862
11863         /*
11864          * Either writing ring buffer from beginning or from end.
11865          * Mixing is not allowed.
11866          */
11867         if (is_write_backward(output_event) != is_write_backward(event))
11868                 goto out;
11869
11870         /*
11871          * If both events generate aux data, they must be on the same PMU
11872          */
11873         if (has_aux(event) && has_aux(output_event) &&
11874             event->pmu != output_event->pmu)
11875                 goto out;
11876
11877 set:
11878         mutex_lock(&event->mmap_mutex);
11879         /* Can't redirect output if we've got an active mmap() */
11880         if (atomic_read(&event->mmap_count))
11881                 goto unlock;
11882
11883         if (output_event) {
11884                 /* get the rb we want to redirect to */
11885                 rb = ring_buffer_get(output_event);
11886                 if (!rb)
11887                         goto unlock;
11888         }
11889
11890         ring_buffer_attach(event, rb);
11891
11892         ret = 0;
11893 unlock:
11894         mutex_unlock(&event->mmap_mutex);
11895
11896 out:
11897         return ret;
11898 }
11899
11900 static void mutex_lock_double(struct mutex *a, struct mutex *b)
11901 {
11902         if (b < a)
11903                 swap(a, b);
11904
11905         mutex_lock(a);
11906         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
11907 }
11908
11909 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
11910 {
11911         bool nmi_safe = false;
11912
11913         switch (clk_id) {
11914         case CLOCK_MONOTONIC:
11915                 event->clock = &ktime_get_mono_fast_ns;
11916                 nmi_safe = true;
11917                 break;
11918
11919         case CLOCK_MONOTONIC_RAW:
11920                 event->clock = &ktime_get_raw_fast_ns;
11921                 nmi_safe = true;
11922                 break;
11923
11924         case CLOCK_REALTIME:
11925                 event->clock = &ktime_get_real_ns;
11926                 break;
11927
11928         case CLOCK_BOOTTIME:
11929                 event->clock = &ktime_get_boottime_ns;
11930                 break;
11931
11932         case CLOCK_TAI:
11933                 event->clock = &ktime_get_clocktai_ns;
11934                 break;
11935
11936         default:
11937                 return -EINVAL;
11938         }
11939
11940         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
11941                 return -EINVAL;
11942
11943         return 0;
11944 }
11945
11946 /*
11947  * Variation on perf_event_ctx_lock_nested(), except we take two context
11948  * mutexes.
11949  */
11950 static struct perf_event_context *
11951 __perf_event_ctx_lock_double(struct perf_event *group_leader,
11952                              struct perf_event_context *ctx)
11953 {
11954         struct perf_event_context *gctx;
11955
11956 again:
11957         rcu_read_lock();
11958         gctx = READ_ONCE(group_leader->ctx);
11959         if (!refcount_inc_not_zero(&gctx->refcount)) {
11960                 rcu_read_unlock();
11961                 goto again;
11962         }
11963         rcu_read_unlock();
11964
11965         mutex_lock_double(&gctx->mutex, &ctx->mutex);
11966
11967         if (group_leader->ctx != gctx) {
11968                 mutex_unlock(&ctx->mutex);
11969                 mutex_unlock(&gctx->mutex);
11970                 put_ctx(gctx);
11971                 goto again;
11972         }
11973
11974         return gctx;
11975 }
11976
11977 static bool
11978 perf_check_permission(struct perf_event_attr *attr, struct task_struct *task)
11979 {
11980         unsigned int ptrace_mode = PTRACE_MODE_READ_REALCREDS;
11981         bool is_capable = perfmon_capable();
11982
11983         if (attr->sigtrap) {
11984                 /*
11985                  * perf_event_attr::sigtrap sends signals to the other task.
11986                  * Require the current task to also have CAP_KILL.
11987                  */
11988                 rcu_read_lock();
11989                 is_capable &= ns_capable(__task_cred(task)->user_ns, CAP_KILL);
11990                 rcu_read_unlock();
11991
11992                 /*
11993                  * If the required capabilities aren't available, checks for
11994                  * ptrace permissions: upgrade to ATTACH, since sending signals
11995                  * can effectively change the target task.
11996                  */
11997                 ptrace_mode = PTRACE_MODE_ATTACH_REALCREDS;
11998         }
11999
12000         /*
12001          * Preserve ptrace permission check for backwards compatibility. The
12002          * ptrace check also includes checks that the current task and other
12003          * task have matching uids, and is therefore not done here explicitly.
12004          */
12005         return is_capable || ptrace_may_access(task, ptrace_mode);
12006 }
12007
12008 /**
12009  * sys_perf_event_open - open a performance event, associate it to a task/cpu
12010  *
12011  * @attr_uptr:  event_id type attributes for monitoring/sampling
12012  * @pid:                target pid
12013  * @cpu:                target cpu
12014  * @group_fd:           group leader event fd
12015  * @flags:              perf event open flags
12016  */
12017 SYSCALL_DEFINE5(perf_event_open,
12018                 struct perf_event_attr __user *, attr_uptr,
12019                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
12020 {
12021         struct perf_event *group_leader = NULL, *output_event = NULL;
12022         struct perf_event *event, *sibling;
12023         struct perf_event_attr attr;
12024         struct perf_event_context *ctx, *gctx;
12025         struct file *event_file = NULL;
12026         struct fd group = {NULL, 0};
12027         struct task_struct *task = NULL;
12028         struct pmu *pmu;
12029         int event_fd;
12030         int move_group = 0;
12031         int err;
12032         int f_flags = O_RDWR;
12033         int cgroup_fd = -1;
12034
12035         /* for future expandability... */
12036         if (flags & ~PERF_FLAG_ALL)
12037                 return -EINVAL;
12038
12039         /* Do we allow access to perf_event_open(2) ? */
12040         err = security_perf_event_open(&attr, PERF_SECURITY_OPEN);
12041         if (err)
12042                 return err;
12043
12044         err = perf_copy_attr(attr_uptr, &attr);
12045         if (err)
12046                 return err;
12047
12048         if (!attr.exclude_kernel) {
12049                 err = perf_allow_kernel(&attr);
12050                 if (err)
12051                         return err;
12052         }
12053
12054         if (attr.namespaces) {
12055                 if (!perfmon_capable())
12056                         return -EACCES;
12057         }
12058
12059         if (attr.freq) {
12060                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
12061                         return -EINVAL;
12062         } else {
12063                 if (attr.sample_period & (1ULL << 63))
12064                         return -EINVAL;
12065         }
12066
12067         /* Only privileged users can get physical addresses */
12068         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR)) {
12069                 err = perf_allow_kernel(&attr);
12070                 if (err)
12071                         return err;
12072         }
12073
12074         /* REGS_INTR can leak data, lockdown must prevent this */
12075         if (attr.sample_type & PERF_SAMPLE_REGS_INTR) {
12076                 err = security_locked_down(LOCKDOWN_PERF);
12077                 if (err)
12078                         return err;
12079         }
12080
12081         /*
12082          * In cgroup mode, the pid argument is used to pass the fd
12083          * opened to the cgroup directory in cgroupfs. The cpu argument
12084          * designates the cpu on which to monitor threads from that
12085          * cgroup.
12086          */
12087         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
12088                 return -EINVAL;
12089
12090         if (flags & PERF_FLAG_FD_CLOEXEC)
12091                 f_flags |= O_CLOEXEC;
12092
12093         event_fd = get_unused_fd_flags(f_flags);
12094         if (event_fd < 0)
12095                 return event_fd;
12096
12097         if (group_fd != -1) {
12098                 err = perf_fget_light(group_fd, &group);
12099                 if (err)
12100                         goto err_fd;
12101                 group_leader = group.file->private_data;
12102                 if (flags & PERF_FLAG_FD_OUTPUT)
12103                         output_event = group_leader;
12104                 if (flags & PERF_FLAG_FD_NO_GROUP)
12105                         group_leader = NULL;
12106         }
12107
12108         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
12109                 task = find_lively_task_by_vpid(pid);
12110                 if (IS_ERR(task)) {
12111                         err = PTR_ERR(task);
12112                         goto err_group_fd;
12113                 }
12114         }
12115
12116         if (task && group_leader &&
12117             group_leader->attr.inherit != attr.inherit) {
12118                 err = -EINVAL;
12119                 goto err_task;
12120         }
12121
12122         if (flags & PERF_FLAG_PID_CGROUP)
12123                 cgroup_fd = pid;
12124
12125         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
12126                                  NULL, NULL, cgroup_fd);
12127         if (IS_ERR(event)) {
12128                 err = PTR_ERR(event);
12129                 goto err_task;
12130         }
12131
12132         if (is_sampling_event(event)) {
12133                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
12134                         err = -EOPNOTSUPP;
12135                         goto err_alloc;
12136                 }
12137         }
12138
12139         /*
12140          * Special case software events and allow them to be part of
12141          * any hardware group.
12142          */
12143         pmu = event->pmu;
12144
12145         if (attr.use_clockid) {
12146                 err = perf_event_set_clock(event, attr.clockid);
12147                 if (err)
12148                         goto err_alloc;
12149         }
12150
12151         if (pmu->task_ctx_nr == perf_sw_context)
12152                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
12153
12154         if (group_leader) {
12155                 if (is_software_event(event) &&
12156                     !in_software_context(group_leader)) {
12157                         /*
12158                          * If the event is a sw event, but the group_leader
12159                          * is on hw context.
12160                          *
12161                          * Allow the addition of software events to hw
12162                          * groups, this is safe because software events
12163                          * never fail to schedule.
12164                          */
12165                         pmu = group_leader->ctx->pmu;
12166                 } else if (!is_software_event(event) &&
12167                            is_software_event(group_leader) &&
12168                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12169                         /*
12170                          * In case the group is a pure software group, and we
12171                          * try to add a hardware event, move the whole group to
12172                          * the hardware context.
12173                          */
12174                         move_group = 1;
12175                 }
12176         }
12177
12178         /*
12179          * Get the target context (task or percpu):
12180          */
12181         ctx = find_get_context(pmu, task, event);
12182         if (IS_ERR(ctx)) {
12183                 err = PTR_ERR(ctx);
12184                 goto err_alloc;
12185         }
12186
12187         /*
12188          * Look up the group leader (we will attach this event to it):
12189          */
12190         if (group_leader) {
12191                 err = -EINVAL;
12192
12193                 /*
12194                  * Do not allow a recursive hierarchy (this new sibling
12195                  * becoming part of another group-sibling):
12196                  */
12197                 if (group_leader->group_leader != group_leader)
12198                         goto err_context;
12199
12200                 /* All events in a group should have the same clock */
12201                 if (group_leader->clock != event->clock)
12202                         goto err_context;
12203
12204                 /*
12205                  * Make sure we're both events for the same CPU;
12206                  * grouping events for different CPUs is broken; since
12207                  * you can never concurrently schedule them anyhow.
12208                  */
12209                 if (group_leader->cpu != event->cpu)
12210                         goto err_context;
12211
12212                 /*
12213                  * Make sure we're both on the same task, or both
12214                  * per-CPU events.
12215                  */
12216                 if (group_leader->ctx->task != ctx->task)
12217                         goto err_context;
12218
12219                 /*
12220                  * Do not allow to attach to a group in a different task
12221                  * or CPU context. If we're moving SW events, we'll fix
12222                  * this up later, so allow that.
12223                  */
12224                 if (!move_group && group_leader->ctx != ctx)
12225                         goto err_context;
12226
12227                 /*
12228                  * Only a group leader can be exclusive or pinned
12229                  */
12230                 if (attr.exclusive || attr.pinned)
12231                         goto err_context;
12232         }
12233
12234         if (output_event) {
12235                 err = perf_event_set_output(event, output_event);
12236                 if (err)
12237                         goto err_context;
12238         }
12239
12240         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
12241                                         f_flags);
12242         if (IS_ERR(event_file)) {
12243                 err = PTR_ERR(event_file);
12244                 event_file = NULL;
12245                 goto err_context;
12246         }
12247
12248         if (task) {
12249                 err = down_read_interruptible(&task->signal->exec_update_lock);
12250                 if (err)
12251                         goto err_file;
12252
12253                 /*
12254                  * We must hold exec_update_lock across this and any potential
12255                  * perf_install_in_context() call for this new event to
12256                  * serialize against exec() altering our credentials (and the
12257                  * perf_event_exit_task() that could imply).
12258                  */
12259                 err = -EACCES;
12260                 if (!perf_check_permission(&attr, task))
12261                         goto err_cred;
12262         }
12263
12264         if (move_group) {
12265                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
12266
12267                 if (gctx->task == TASK_TOMBSTONE) {
12268                         err = -ESRCH;
12269                         goto err_locked;
12270                 }
12271
12272                 /*
12273                  * Check if we raced against another sys_perf_event_open() call
12274                  * moving the software group underneath us.
12275                  */
12276                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
12277                         /*
12278                          * If someone moved the group out from under us, check
12279                          * if this new event wound up on the same ctx, if so
12280                          * its the regular !move_group case, otherwise fail.
12281                          */
12282                         if (gctx != ctx) {
12283                                 err = -EINVAL;
12284                                 goto err_locked;
12285                         } else {
12286                                 perf_event_ctx_unlock(group_leader, gctx);
12287                                 move_group = 0;
12288                         }
12289                 }
12290
12291                 /*
12292                  * Failure to create exclusive events returns -EBUSY.
12293                  */
12294                 err = -EBUSY;
12295                 if (!exclusive_event_installable(group_leader, ctx))
12296                         goto err_locked;
12297
12298                 for_each_sibling_event(sibling, group_leader) {
12299                         if (!exclusive_event_installable(sibling, ctx))
12300                                 goto err_locked;
12301                 }
12302         } else {
12303                 mutex_lock(&ctx->mutex);
12304         }
12305
12306         if (ctx->task == TASK_TOMBSTONE) {
12307                 err = -ESRCH;
12308                 goto err_locked;
12309         }
12310
12311         if (!perf_event_validate_size(event)) {
12312                 err = -E2BIG;
12313                 goto err_locked;
12314         }
12315
12316         if (!task) {
12317                 /*
12318                  * Check if the @cpu we're creating an event for is online.
12319                  *
12320                  * We use the perf_cpu_context::ctx::mutex to serialize against
12321                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12322                  */
12323                 struct perf_cpu_context *cpuctx =
12324                         container_of(ctx, struct perf_cpu_context, ctx);
12325
12326                 if (!cpuctx->online) {
12327                         err = -ENODEV;
12328                         goto err_locked;
12329                 }
12330         }
12331
12332         if (perf_need_aux_event(event) && !perf_get_aux_event(event, group_leader)) {
12333                 err = -EINVAL;
12334                 goto err_locked;
12335         }
12336
12337         /*
12338          * Must be under the same ctx::mutex as perf_install_in_context(),
12339          * because we need to serialize with concurrent event creation.
12340          */
12341         if (!exclusive_event_installable(event, ctx)) {
12342                 err = -EBUSY;
12343                 goto err_locked;
12344         }
12345
12346         WARN_ON_ONCE(ctx->parent_ctx);
12347
12348         /*
12349          * This is the point on no return; we cannot fail hereafter. This is
12350          * where we start modifying current state.
12351          */
12352
12353         if (move_group) {
12354                 /*
12355                  * See perf_event_ctx_lock() for comments on the details
12356                  * of swizzling perf_event::ctx.
12357                  */
12358                 perf_remove_from_context(group_leader, 0);
12359                 put_ctx(gctx);
12360
12361                 for_each_sibling_event(sibling, group_leader) {
12362                         perf_remove_from_context(sibling, 0);
12363                         put_ctx(gctx);
12364                 }
12365
12366                 /*
12367                  * Wait for everybody to stop referencing the events through
12368                  * the old lists, before installing it on new lists.
12369                  */
12370                 synchronize_rcu();
12371
12372                 /*
12373                  * Install the group siblings before the group leader.
12374                  *
12375                  * Because a group leader will try and install the entire group
12376                  * (through the sibling list, which is still in-tact), we can
12377                  * end up with siblings installed in the wrong context.
12378                  *
12379                  * By installing siblings first we NO-OP because they're not
12380                  * reachable through the group lists.
12381                  */
12382                 for_each_sibling_event(sibling, group_leader) {
12383                         perf_event__state_init(sibling);
12384                         perf_install_in_context(ctx, sibling, sibling->cpu);
12385                         get_ctx(ctx);
12386                 }
12387
12388                 /*
12389                  * Removing from the context ends up with disabled
12390                  * event. What we want here is event in the initial
12391                  * startup state, ready to be add into new context.
12392                  */
12393                 perf_event__state_init(group_leader);
12394                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
12395                 get_ctx(ctx);
12396         }
12397
12398         /*
12399          * Precalculate sample_data sizes; do while holding ctx::mutex such
12400          * that we're serialized against further additions and before
12401          * perf_install_in_context() which is the point the event is active and
12402          * can use these values.
12403          */
12404         perf_event__header_size(event);
12405         perf_event__id_header_size(event);
12406
12407         event->owner = current;
12408
12409         perf_install_in_context(ctx, event, event->cpu);
12410         perf_unpin_context(ctx);
12411
12412         if (move_group)
12413                 perf_event_ctx_unlock(group_leader, gctx);
12414         mutex_unlock(&ctx->mutex);
12415
12416         if (task) {
12417                 up_read(&task->signal->exec_update_lock);
12418                 put_task_struct(task);
12419         }
12420
12421         mutex_lock(&current->perf_event_mutex);
12422         list_add_tail(&event->owner_entry, &current->perf_event_list);
12423         mutex_unlock(&current->perf_event_mutex);
12424
12425         /*
12426          * Drop the reference on the group_event after placing the
12427          * new event on the sibling_list. This ensures destruction
12428          * of the group leader will find the pointer to itself in
12429          * perf_group_detach().
12430          */
12431         fdput(group);
12432         fd_install(event_fd, event_file);
12433         return event_fd;
12434
12435 err_locked:
12436         if (move_group)
12437                 perf_event_ctx_unlock(group_leader, gctx);
12438         mutex_unlock(&ctx->mutex);
12439 err_cred:
12440         if (task)
12441                 up_read(&task->signal->exec_update_lock);
12442 err_file:
12443         fput(event_file);
12444 err_context:
12445         perf_unpin_context(ctx);
12446         put_ctx(ctx);
12447 err_alloc:
12448         /*
12449          * If event_file is set, the fput() above will have called ->release()
12450          * and that will take care of freeing the event.
12451          */
12452         if (!event_file)
12453                 free_event(event);
12454 err_task:
12455         if (task)
12456                 put_task_struct(task);
12457 err_group_fd:
12458         fdput(group);
12459 err_fd:
12460         put_unused_fd(event_fd);
12461         return err;
12462 }
12463
12464 /**
12465  * perf_event_create_kernel_counter
12466  *
12467  * @attr: attributes of the counter to create
12468  * @cpu: cpu in which the counter is bound
12469  * @task: task to profile (NULL for percpu)
12470  * @overflow_handler: callback to trigger when we hit the event
12471  * @context: context data could be used in overflow_handler callback
12472  */
12473 struct perf_event *
12474 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
12475                                  struct task_struct *task,
12476                                  perf_overflow_handler_t overflow_handler,
12477                                  void *context)
12478 {
12479         struct perf_event_context *ctx;
12480         struct perf_event *event;
12481         int err;
12482
12483         /*
12484          * Grouping is not supported for kernel events, neither is 'AUX',
12485          * make sure the caller's intentions are adjusted.
12486          */
12487         if (attr->aux_output)
12488                 return ERR_PTR(-EINVAL);
12489
12490         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
12491                                  overflow_handler, context, -1);
12492         if (IS_ERR(event)) {
12493                 err = PTR_ERR(event);
12494                 goto err;
12495         }
12496
12497         /* Mark owner so we could distinguish it from user events. */
12498         event->owner = TASK_TOMBSTONE;
12499
12500         /*
12501          * Get the target context (task or percpu):
12502          */
12503         ctx = find_get_context(event->pmu, task, event);
12504         if (IS_ERR(ctx)) {
12505                 err = PTR_ERR(ctx);
12506                 goto err_free;
12507         }
12508
12509         WARN_ON_ONCE(ctx->parent_ctx);
12510         mutex_lock(&ctx->mutex);
12511         if (ctx->task == TASK_TOMBSTONE) {
12512                 err = -ESRCH;
12513                 goto err_unlock;
12514         }
12515
12516         if (!task) {
12517                 /*
12518                  * Check if the @cpu we're creating an event for is online.
12519                  *
12520                  * We use the perf_cpu_context::ctx::mutex to serialize against
12521                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12522                  */
12523                 struct perf_cpu_context *cpuctx =
12524                         container_of(ctx, struct perf_cpu_context, ctx);
12525                 if (!cpuctx->online) {
12526                         err = -ENODEV;
12527                         goto err_unlock;
12528                 }
12529         }
12530
12531         if (!exclusive_event_installable(event, ctx)) {
12532                 err = -EBUSY;
12533                 goto err_unlock;
12534         }
12535
12536         perf_install_in_context(ctx, event, event->cpu);
12537         perf_unpin_context(ctx);
12538         mutex_unlock(&ctx->mutex);
12539
12540         return event;
12541
12542 err_unlock:
12543         mutex_unlock(&ctx->mutex);
12544         perf_unpin_context(ctx);
12545         put_ctx(ctx);
12546 err_free:
12547         free_event(event);
12548 err:
12549         return ERR_PTR(err);
12550 }
12551 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
12552
12553 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
12554 {
12555         struct perf_event_context *src_ctx;
12556         struct perf_event_context *dst_ctx;
12557         struct perf_event *event, *tmp;
12558         LIST_HEAD(events);
12559
12560         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
12561         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
12562
12563         /*
12564          * See perf_event_ctx_lock() for comments on the details
12565          * of swizzling perf_event::ctx.
12566          */
12567         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
12568         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
12569                                  event_entry) {
12570                 perf_remove_from_context(event, 0);
12571                 unaccount_event_cpu(event, src_cpu);
12572                 put_ctx(src_ctx);
12573                 list_add(&event->migrate_entry, &events);
12574         }
12575
12576         /*
12577          * Wait for the events to quiesce before re-instating them.
12578          */
12579         synchronize_rcu();
12580
12581         /*
12582          * Re-instate events in 2 passes.
12583          *
12584          * Skip over group leaders and only install siblings on this first
12585          * pass, siblings will not get enabled without a leader, however a
12586          * leader will enable its siblings, even if those are still on the old
12587          * context.
12588          */
12589         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12590                 if (event->group_leader == event)
12591                         continue;
12592
12593                 list_del(&event->migrate_entry);
12594                 if (event->state >= PERF_EVENT_STATE_OFF)
12595                         event->state = PERF_EVENT_STATE_INACTIVE;
12596                 account_event_cpu(event, dst_cpu);
12597                 perf_install_in_context(dst_ctx, event, dst_cpu);
12598                 get_ctx(dst_ctx);
12599         }
12600
12601         /*
12602          * Once all the siblings are setup properly, install the group leaders
12603          * to make it go.
12604          */
12605         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
12606                 list_del(&event->migrate_entry);
12607                 if (event->state >= PERF_EVENT_STATE_OFF)
12608                         event->state = PERF_EVENT_STATE_INACTIVE;
12609                 account_event_cpu(event, dst_cpu);
12610                 perf_install_in_context(dst_ctx, event, dst_cpu);
12611                 get_ctx(dst_ctx);
12612         }
12613         mutex_unlock(&dst_ctx->mutex);
12614         mutex_unlock(&src_ctx->mutex);
12615 }
12616 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
12617
12618 static void sync_child_event(struct perf_event *child_event)
12619 {
12620         struct perf_event *parent_event = child_event->parent;
12621         u64 child_val;
12622
12623         if (child_event->attr.inherit_stat) {
12624                 struct task_struct *task = child_event->ctx->task;
12625
12626                 if (task && task != TASK_TOMBSTONE)
12627                         perf_event_read_event(child_event, task);
12628         }
12629
12630         child_val = perf_event_count(child_event);
12631
12632         /*
12633          * Add back the child's count to the parent's count:
12634          */
12635         atomic64_add(child_val, &parent_event->child_count);
12636         atomic64_add(child_event->total_time_enabled,
12637                      &parent_event->child_total_time_enabled);
12638         atomic64_add(child_event->total_time_running,
12639                      &parent_event->child_total_time_running);
12640 }
12641
12642 static void
12643 perf_event_exit_event(struct perf_event *event, struct perf_event_context *ctx)
12644 {
12645         struct perf_event *parent_event = event->parent;
12646         unsigned long detach_flags = 0;
12647
12648         if (parent_event) {
12649                 /*
12650                  * Do not destroy the 'original' grouping; because of the
12651                  * context switch optimization the original events could've
12652                  * ended up in a random child task.
12653                  *
12654                  * If we were to destroy the original group, all group related
12655                  * operations would cease to function properly after this
12656                  * random child dies.
12657                  *
12658                  * Do destroy all inherited groups, we don't care about those
12659                  * and being thorough is better.
12660                  */
12661                 detach_flags = DETACH_GROUP | DETACH_CHILD;
12662                 mutex_lock(&parent_event->child_mutex);
12663         }
12664
12665         perf_remove_from_context(event, detach_flags);
12666
12667         raw_spin_lock_irq(&ctx->lock);
12668         if (event->state > PERF_EVENT_STATE_EXIT)
12669                 perf_event_set_state(event, PERF_EVENT_STATE_EXIT);
12670         raw_spin_unlock_irq(&ctx->lock);
12671
12672         /*
12673          * Child events can be freed.
12674          */
12675         if (parent_event) {
12676                 mutex_unlock(&parent_event->child_mutex);
12677                 /*
12678                  * Kick perf_poll() for is_event_hup();
12679                  */
12680                 perf_event_wakeup(parent_event);
12681                 free_event(event);
12682                 put_event(parent_event);
12683                 return;
12684         }
12685
12686         /*
12687          * Parent events are governed by their filedesc, retain them.
12688          */
12689         perf_event_wakeup(event);
12690 }
12691
12692 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
12693 {
12694         struct perf_event_context *child_ctx, *clone_ctx = NULL;
12695         struct perf_event *child_event, *next;
12696
12697         WARN_ON_ONCE(child != current);
12698
12699         child_ctx = perf_pin_task_context(child, ctxn);
12700         if (!child_ctx)
12701                 return;
12702
12703         /*
12704          * In order to reduce the amount of tricky in ctx tear-down, we hold
12705          * ctx::mutex over the entire thing. This serializes against almost
12706          * everything that wants to access the ctx.
12707          *
12708          * The exception is sys_perf_event_open() /
12709          * perf_event_create_kernel_count() which does find_get_context()
12710          * without ctx::mutex (it cannot because of the move_group double mutex
12711          * lock thing). See the comments in perf_install_in_context().
12712          */
12713         mutex_lock(&child_ctx->mutex);
12714
12715         /*
12716          * In a single ctx::lock section, de-schedule the events and detach the
12717          * context from the task such that we cannot ever get it scheduled back
12718          * in.
12719          */
12720         raw_spin_lock_irq(&child_ctx->lock);
12721         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
12722
12723         /*
12724          * Now that the context is inactive, destroy the task <-> ctx relation
12725          * and mark the context dead.
12726          */
12727         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
12728         put_ctx(child_ctx); /* cannot be last */
12729         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
12730         put_task_struct(current); /* cannot be last */
12731
12732         clone_ctx = unclone_ctx(child_ctx);
12733         raw_spin_unlock_irq(&child_ctx->lock);
12734
12735         if (clone_ctx)
12736                 put_ctx(clone_ctx);
12737
12738         /*
12739          * Report the task dead after unscheduling the events so that we
12740          * won't get any samples after PERF_RECORD_EXIT. We can however still
12741          * get a few PERF_RECORD_READ events.
12742          */
12743         perf_event_task(child, child_ctx, 0);
12744
12745         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
12746                 perf_event_exit_event(child_event, child_ctx);
12747
12748         mutex_unlock(&child_ctx->mutex);
12749
12750         put_ctx(child_ctx);
12751 }
12752
12753 /*
12754  * When a child task exits, feed back event values to parent events.
12755  *
12756  * Can be called with exec_update_lock held when called from
12757  * setup_new_exec().
12758  */
12759 void perf_event_exit_task(struct task_struct *child)
12760 {
12761         struct perf_event *event, *tmp;
12762         int ctxn;
12763
12764         mutex_lock(&child->perf_event_mutex);
12765         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
12766                                  owner_entry) {
12767                 list_del_init(&event->owner_entry);
12768
12769                 /*
12770                  * Ensure the list deletion is visible before we clear
12771                  * the owner, closes a race against perf_release() where
12772                  * we need to serialize on the owner->perf_event_mutex.
12773                  */
12774                 smp_store_release(&event->owner, NULL);
12775         }
12776         mutex_unlock(&child->perf_event_mutex);
12777
12778         for_each_task_context_nr(ctxn)
12779                 perf_event_exit_task_context(child, ctxn);
12780
12781         /*
12782          * The perf_event_exit_task_context calls perf_event_task
12783          * with child's task_ctx, which generates EXIT events for
12784          * child contexts and sets child->perf_event_ctxp[] to NULL.
12785          * At this point we need to send EXIT events to cpu contexts.
12786          */
12787         perf_event_task(child, NULL, 0);
12788 }
12789
12790 static void perf_free_event(struct perf_event *event,
12791                             struct perf_event_context *ctx)
12792 {
12793         struct perf_event *parent = event->parent;
12794
12795         if (WARN_ON_ONCE(!parent))
12796                 return;
12797
12798         mutex_lock(&parent->child_mutex);
12799         list_del_init(&event->child_list);
12800         mutex_unlock(&parent->child_mutex);
12801
12802         put_event(parent);
12803
12804         raw_spin_lock_irq(&ctx->lock);
12805         perf_group_detach(event);
12806         list_del_event(event, ctx);
12807         raw_spin_unlock_irq(&ctx->lock);
12808         free_event(event);
12809 }
12810
12811 /*
12812  * Free a context as created by inheritance by perf_event_init_task() below,
12813  * used by fork() in case of fail.
12814  *
12815  * Even though the task has never lived, the context and events have been
12816  * exposed through the child_list, so we must take care tearing it all down.
12817  */
12818 void perf_event_free_task(struct task_struct *task)
12819 {
12820         struct perf_event_context *ctx;
12821         struct perf_event *event, *tmp;
12822         int ctxn;
12823
12824         for_each_task_context_nr(ctxn) {
12825                 ctx = task->perf_event_ctxp[ctxn];
12826                 if (!ctx)
12827                         continue;
12828
12829                 mutex_lock(&ctx->mutex);
12830                 raw_spin_lock_irq(&ctx->lock);
12831                 /*
12832                  * Destroy the task <-> ctx relation and mark the context dead.
12833                  *
12834                  * This is important because even though the task hasn't been
12835                  * exposed yet the context has been (through child_list).
12836                  */
12837                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
12838                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
12839                 put_task_struct(task); /* cannot be last */
12840                 raw_spin_unlock_irq(&ctx->lock);
12841
12842                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
12843                         perf_free_event(event, ctx);
12844
12845                 mutex_unlock(&ctx->mutex);
12846
12847                 /*
12848                  * perf_event_release_kernel() could've stolen some of our
12849                  * child events and still have them on its free_list. In that
12850                  * case we must wait for these events to have been freed (in
12851                  * particular all their references to this task must've been
12852                  * dropped).
12853                  *
12854                  * Without this copy_process() will unconditionally free this
12855                  * task (irrespective of its reference count) and
12856                  * _free_event()'s put_task_struct(event->hw.target) will be a
12857                  * use-after-free.
12858                  *
12859                  * Wait for all events to drop their context reference.
12860                  */
12861                 wait_var_event(&ctx->refcount, refcount_read(&ctx->refcount) == 1);
12862                 put_ctx(ctx); /* must be last */
12863         }
12864 }
12865
12866 void perf_event_delayed_put(struct task_struct *task)
12867 {
12868         int ctxn;
12869
12870         for_each_task_context_nr(ctxn)
12871                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
12872 }
12873
12874 struct file *perf_event_get(unsigned int fd)
12875 {
12876         struct file *file = fget(fd);
12877         if (!file)
12878                 return ERR_PTR(-EBADF);
12879
12880         if (file->f_op != &perf_fops) {
12881                 fput(file);
12882                 return ERR_PTR(-EBADF);
12883         }
12884
12885         return file;
12886 }
12887
12888 const struct perf_event *perf_get_event(struct file *file)
12889 {
12890         if (file->f_op != &perf_fops)
12891                 return ERR_PTR(-EINVAL);
12892
12893         return file->private_data;
12894 }
12895
12896 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
12897 {
12898         if (!event)
12899                 return ERR_PTR(-EINVAL);
12900
12901         return &event->attr;
12902 }
12903
12904 /*
12905  * Inherit an event from parent task to child task.
12906  *
12907  * Returns:
12908  *  - valid pointer on success
12909  *  - NULL for orphaned events
12910  *  - IS_ERR() on error
12911  */
12912 static struct perf_event *
12913 inherit_event(struct perf_event *parent_event,
12914               struct task_struct *parent,
12915               struct perf_event_context *parent_ctx,
12916               struct task_struct *child,
12917               struct perf_event *group_leader,
12918               struct perf_event_context *child_ctx)
12919 {
12920         enum perf_event_state parent_state = parent_event->state;
12921         struct perf_event *child_event;
12922         unsigned long flags;
12923
12924         /*
12925          * Instead of creating recursive hierarchies of events,
12926          * we link inherited events back to the original parent,
12927          * which has a filp for sure, which we use as the reference
12928          * count:
12929          */
12930         if (parent_event->parent)
12931                 parent_event = parent_event->parent;
12932
12933         child_event = perf_event_alloc(&parent_event->attr,
12934                                            parent_event->cpu,
12935                                            child,
12936                                            group_leader, parent_event,
12937                                            NULL, NULL, -1);
12938         if (IS_ERR(child_event))
12939                 return child_event;
12940
12941
12942         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
12943             !child_ctx->task_ctx_data) {
12944                 struct pmu *pmu = child_event->pmu;
12945
12946                 child_ctx->task_ctx_data = alloc_task_ctx_data(pmu);
12947                 if (!child_ctx->task_ctx_data) {
12948                         free_event(child_event);
12949                         return ERR_PTR(-ENOMEM);
12950                 }
12951         }
12952
12953         /*
12954          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12955          * must be under the same lock in order to serialize against
12956          * perf_event_release_kernel(), such that either we must observe
12957          * is_orphaned_event() or they will observe us on the child_list.
12958          */
12959         mutex_lock(&parent_event->child_mutex);
12960         if (is_orphaned_event(parent_event) ||
12961             !atomic_long_inc_not_zero(&parent_event->refcount)) {
12962                 mutex_unlock(&parent_event->child_mutex);
12963                 /* task_ctx_data is freed with child_ctx */
12964                 free_event(child_event);
12965                 return NULL;
12966         }
12967
12968         get_ctx(child_ctx);
12969
12970         /*
12971          * Make the child state follow the state of the parent event,
12972          * not its attr.disabled bit.  We hold the parent's mutex,
12973          * so we won't race with perf_event_{en, dis}able_family.
12974          */
12975         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
12976                 child_event->state = PERF_EVENT_STATE_INACTIVE;
12977         else
12978                 child_event->state = PERF_EVENT_STATE_OFF;
12979
12980         if (parent_event->attr.freq) {
12981                 u64 sample_period = parent_event->hw.sample_period;
12982                 struct hw_perf_event *hwc = &child_event->hw;
12983
12984                 hwc->sample_period = sample_period;
12985                 hwc->last_period   = sample_period;
12986
12987                 local64_set(&hwc->period_left, sample_period);
12988         }
12989
12990         child_event->ctx = child_ctx;
12991         child_event->overflow_handler = parent_event->overflow_handler;
12992         child_event->overflow_handler_context
12993                 = parent_event->overflow_handler_context;
12994
12995         /*
12996          * Precalculate sample_data sizes
12997          */
12998         perf_event__header_size(child_event);
12999         perf_event__id_header_size(child_event);
13000
13001         /*
13002          * Link it up in the child's context:
13003          */
13004         raw_spin_lock_irqsave(&child_ctx->lock, flags);
13005         add_event_to_ctx(child_event, child_ctx);
13006         child_event->attach_state |= PERF_ATTACH_CHILD;
13007         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
13008
13009         /*
13010          * Link this into the parent event's child list
13011          */
13012         list_add_tail(&child_event->child_list, &parent_event->child_list);
13013         mutex_unlock(&parent_event->child_mutex);
13014
13015         return child_event;
13016 }
13017
13018 /*
13019  * Inherits an event group.
13020  *
13021  * This will quietly suppress orphaned events; !inherit_event() is not an error.
13022  * This matches with perf_event_release_kernel() removing all child events.
13023  *
13024  * Returns:
13025  *  - 0 on success
13026  *  - <0 on error
13027  */
13028 static int inherit_group(struct perf_event *parent_event,
13029               struct task_struct *parent,
13030               struct perf_event_context *parent_ctx,
13031               struct task_struct *child,
13032               struct perf_event_context *child_ctx)
13033 {
13034         struct perf_event *leader;
13035         struct perf_event *sub;
13036         struct perf_event *child_ctr;
13037
13038         leader = inherit_event(parent_event, parent, parent_ctx,
13039                                  child, NULL, child_ctx);
13040         if (IS_ERR(leader))
13041                 return PTR_ERR(leader);
13042         /*
13043          * @leader can be NULL here because of is_orphaned_event(). In this
13044          * case inherit_event() will create individual events, similar to what
13045          * perf_group_detach() would do anyway.
13046          */
13047         for_each_sibling_event(sub, parent_event) {
13048                 child_ctr = inherit_event(sub, parent, parent_ctx,
13049                                             child, leader, child_ctx);
13050                 if (IS_ERR(child_ctr))
13051                         return PTR_ERR(child_ctr);
13052
13053                 if (sub->aux_event == parent_event && child_ctr &&
13054                     !perf_get_aux_event(child_ctr, leader))
13055                         return -EINVAL;
13056         }
13057         return 0;
13058 }
13059
13060 /*
13061  * Creates the child task context and tries to inherit the event-group.
13062  *
13063  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
13064  * inherited_all set when we 'fail' to inherit an orphaned event; this is
13065  * consistent with perf_event_release_kernel() removing all child events.
13066  *
13067  * Returns:
13068  *  - 0 on success
13069  *  - <0 on error
13070  */
13071 static int
13072 inherit_task_group(struct perf_event *event, struct task_struct *parent,
13073                    struct perf_event_context *parent_ctx,
13074                    struct task_struct *child, int ctxn,
13075                    u64 clone_flags, int *inherited_all)
13076 {
13077         int ret;
13078         struct perf_event_context *child_ctx;
13079
13080         if (!event->attr.inherit ||
13081             (event->attr.inherit_thread && !(clone_flags & CLONE_THREAD)) ||
13082             /* Do not inherit if sigtrap and signal handlers were cleared. */
13083             (event->attr.sigtrap && (clone_flags & CLONE_CLEAR_SIGHAND))) {
13084                 *inherited_all = 0;
13085                 return 0;
13086         }
13087
13088         child_ctx = child->perf_event_ctxp[ctxn];
13089         if (!child_ctx) {
13090                 /*
13091                  * This is executed from the parent task context, so
13092                  * inherit events that have been marked for cloning.
13093                  * First allocate and initialize a context for the
13094                  * child.
13095                  */
13096                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
13097                 if (!child_ctx)
13098                         return -ENOMEM;
13099
13100                 child->perf_event_ctxp[ctxn] = child_ctx;
13101         }
13102
13103         ret = inherit_group(event, parent, parent_ctx,
13104                             child, child_ctx);
13105
13106         if (ret)
13107                 *inherited_all = 0;
13108
13109         return ret;
13110 }
13111
13112 /*
13113  * Initialize the perf_event context in task_struct
13114  */
13115 static int perf_event_init_context(struct task_struct *child, int ctxn,
13116                                    u64 clone_flags)
13117 {
13118         struct perf_event_context *child_ctx, *parent_ctx;
13119         struct perf_event_context *cloned_ctx;
13120         struct perf_event *event;
13121         struct task_struct *parent = current;
13122         int inherited_all = 1;
13123         unsigned long flags;
13124         int ret = 0;
13125
13126         if (likely(!parent->perf_event_ctxp[ctxn]))
13127                 return 0;
13128
13129         /*
13130          * If the parent's context is a clone, pin it so it won't get
13131          * swapped under us.
13132          */
13133         parent_ctx = perf_pin_task_context(parent, ctxn);
13134         if (!parent_ctx)
13135                 return 0;
13136
13137         /*
13138          * No need to check if parent_ctx != NULL here; since we saw
13139          * it non-NULL earlier, the only reason for it to become NULL
13140          * is if we exit, and since we're currently in the middle of
13141          * a fork we can't be exiting at the same time.
13142          */
13143
13144         /*
13145          * Lock the parent list. No need to lock the child - not PID
13146          * hashed yet and not running, so nobody can access it.
13147          */
13148         mutex_lock(&parent_ctx->mutex);
13149
13150         /*
13151          * We dont have to disable NMIs - we are only looking at
13152          * the list, not manipulating it:
13153          */
13154         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
13155                 ret = inherit_task_group(event, parent, parent_ctx,
13156                                          child, ctxn, clone_flags,
13157                                          &inherited_all);
13158                 if (ret)
13159                         goto out_unlock;
13160         }
13161
13162         /*
13163          * We can't hold ctx->lock when iterating the ->flexible_group list due
13164          * to allocations, but we need to prevent rotation because
13165          * rotate_ctx() will change the list from interrupt context.
13166          */
13167         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13168         parent_ctx->rotate_disable = 1;
13169         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13170
13171         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
13172                 ret = inherit_task_group(event, parent, parent_ctx,
13173                                          child, ctxn, clone_flags,
13174                                          &inherited_all);
13175                 if (ret)
13176                         goto out_unlock;
13177         }
13178
13179         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
13180         parent_ctx->rotate_disable = 0;
13181
13182         child_ctx = child->perf_event_ctxp[ctxn];
13183
13184         if (child_ctx && inherited_all) {
13185                 /*
13186                  * Mark the child context as a clone of the parent
13187                  * context, or of whatever the parent is a clone of.
13188                  *
13189                  * Note that if the parent is a clone, the holding of
13190                  * parent_ctx->lock avoids it from being uncloned.
13191                  */
13192                 cloned_ctx = parent_ctx->parent_ctx;
13193                 if (cloned_ctx) {
13194                         child_ctx->parent_ctx = cloned_ctx;
13195                         child_ctx->parent_gen = parent_ctx->parent_gen;
13196                 } else {
13197                         child_ctx->parent_ctx = parent_ctx;
13198                         child_ctx->parent_gen = parent_ctx->generation;
13199                 }
13200                 get_ctx(child_ctx->parent_ctx);
13201         }
13202
13203         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
13204 out_unlock:
13205         mutex_unlock(&parent_ctx->mutex);
13206
13207         perf_unpin_context(parent_ctx);
13208         put_ctx(parent_ctx);
13209
13210         return ret;
13211 }
13212
13213 /*
13214  * Initialize the perf_event context in task_struct
13215  */
13216 int perf_event_init_task(struct task_struct *child, u64 clone_flags)
13217 {
13218         int ctxn, ret;
13219
13220         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
13221         mutex_init(&child->perf_event_mutex);
13222         INIT_LIST_HEAD(&child->perf_event_list);
13223
13224         for_each_task_context_nr(ctxn) {
13225                 ret = perf_event_init_context(child, ctxn, clone_flags);
13226                 if (ret) {
13227                         perf_event_free_task(child);
13228                         return ret;
13229                 }
13230         }
13231
13232         return 0;
13233 }
13234
13235 static void __init perf_event_init_all_cpus(void)
13236 {
13237         struct swevent_htable *swhash;
13238         int cpu;
13239
13240         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
13241
13242         for_each_possible_cpu(cpu) {
13243                 swhash = &per_cpu(swevent_htable, cpu);
13244                 mutex_init(&swhash->hlist_mutex);
13245                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
13246
13247                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
13248                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
13249
13250 #ifdef CONFIG_CGROUP_PERF
13251                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
13252 #endif
13253                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
13254         }
13255 }
13256
13257 static void perf_swevent_init_cpu(unsigned int cpu)
13258 {
13259         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
13260
13261         mutex_lock(&swhash->hlist_mutex);
13262         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
13263                 struct swevent_hlist *hlist;
13264
13265                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
13266                 WARN_ON(!hlist);
13267                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
13268         }
13269         mutex_unlock(&swhash->hlist_mutex);
13270 }
13271
13272 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
13273 static void __perf_event_exit_context(void *__info)
13274 {
13275         struct perf_event_context *ctx = __info;
13276         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
13277         struct perf_event *event;
13278
13279         raw_spin_lock(&ctx->lock);
13280         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
13281         list_for_each_entry(event, &ctx->event_list, event_entry)
13282                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
13283         raw_spin_unlock(&ctx->lock);
13284 }
13285
13286 static void perf_event_exit_cpu_context(int cpu)
13287 {
13288         struct perf_cpu_context *cpuctx;
13289         struct perf_event_context *ctx;
13290         struct pmu *pmu;
13291
13292         mutex_lock(&pmus_lock);
13293         list_for_each_entry(pmu, &pmus, entry) {
13294                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13295                 ctx = &cpuctx->ctx;
13296
13297                 mutex_lock(&ctx->mutex);
13298                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
13299                 cpuctx->online = 0;
13300                 mutex_unlock(&ctx->mutex);
13301         }
13302         cpumask_clear_cpu(cpu, perf_online_mask);
13303         mutex_unlock(&pmus_lock);
13304 }
13305 #else
13306
13307 static void perf_event_exit_cpu_context(int cpu) { }
13308
13309 #endif
13310
13311 int perf_event_init_cpu(unsigned int cpu)
13312 {
13313         struct perf_cpu_context *cpuctx;
13314         struct perf_event_context *ctx;
13315         struct pmu *pmu;
13316
13317         perf_swevent_init_cpu(cpu);
13318
13319         mutex_lock(&pmus_lock);
13320         cpumask_set_cpu(cpu, perf_online_mask);
13321         list_for_each_entry(pmu, &pmus, entry) {
13322                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
13323                 ctx = &cpuctx->ctx;
13324
13325                 mutex_lock(&ctx->mutex);
13326                 cpuctx->online = 1;
13327                 mutex_unlock(&ctx->mutex);
13328         }
13329         mutex_unlock(&pmus_lock);
13330
13331         return 0;
13332 }
13333
13334 int perf_event_exit_cpu(unsigned int cpu)
13335 {
13336         perf_event_exit_cpu_context(cpu);
13337         return 0;
13338 }
13339
13340 static int
13341 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
13342 {
13343         int cpu;
13344
13345         for_each_online_cpu(cpu)
13346                 perf_event_exit_cpu(cpu);
13347
13348         return NOTIFY_OK;
13349 }
13350
13351 /*
13352  * Run the perf reboot notifier at the very last possible moment so that
13353  * the generic watchdog code runs as long as possible.
13354  */
13355 static struct notifier_block perf_reboot_notifier = {
13356         .notifier_call = perf_reboot,
13357         .priority = INT_MIN,
13358 };
13359
13360 void __init perf_event_init(void)
13361 {
13362         int ret;
13363
13364         idr_init(&pmu_idr);
13365
13366         perf_event_init_all_cpus();
13367         init_srcu_struct(&pmus_srcu);
13368         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
13369         perf_pmu_register(&perf_cpu_clock, NULL, -1);
13370         perf_pmu_register(&perf_task_clock, NULL, -1);
13371         perf_tp_register();
13372         perf_event_init_cpu(smp_processor_id());
13373         register_reboot_notifier(&perf_reboot_notifier);
13374
13375         ret = init_hw_breakpoint();
13376         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
13377
13378         perf_event_cache = KMEM_CACHE(perf_event, SLAB_PANIC);
13379
13380         /*
13381          * Build time assertion that we keep the data_head at the intended
13382          * location.  IOW, validation we got the __reserved[] size right.
13383          */
13384         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
13385                      != 1024);
13386 }
13387
13388 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
13389                               char *page)
13390 {
13391         struct perf_pmu_events_attr *pmu_attr =
13392                 container_of(attr, struct perf_pmu_events_attr, attr);
13393
13394         if (pmu_attr->event_str)
13395                 return sprintf(page, "%s\n", pmu_attr->event_str);
13396
13397         return 0;
13398 }
13399 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
13400
13401 static int __init perf_event_sysfs_init(void)
13402 {
13403         struct pmu *pmu;
13404         int ret;
13405
13406         mutex_lock(&pmus_lock);
13407
13408         ret = bus_register(&pmu_bus);
13409         if (ret)
13410                 goto unlock;
13411
13412         list_for_each_entry(pmu, &pmus, entry) {
13413                 if (!pmu->name || pmu->type < 0)
13414                         continue;
13415
13416                 ret = pmu_dev_alloc(pmu);
13417                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
13418         }
13419         pmu_bus_running = 1;
13420         ret = 0;
13421
13422 unlock:
13423         mutex_unlock(&pmus_lock);
13424
13425         return ret;
13426 }
13427 device_initcall(perf_event_sysfs_init);
13428
13429 #ifdef CONFIG_CGROUP_PERF
13430 static struct cgroup_subsys_state *
13431 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
13432 {
13433         struct perf_cgroup *jc;
13434
13435         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
13436         if (!jc)
13437                 return ERR_PTR(-ENOMEM);
13438
13439         jc->info = alloc_percpu(struct perf_cgroup_info);
13440         if (!jc->info) {
13441                 kfree(jc);
13442                 return ERR_PTR(-ENOMEM);
13443         }
13444
13445         return &jc->css;
13446 }
13447
13448 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
13449 {
13450         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
13451
13452         free_percpu(jc->info);
13453         kfree(jc);
13454 }
13455
13456 static int perf_cgroup_css_online(struct cgroup_subsys_state *css)
13457 {
13458         perf_event_cgroup(css->cgroup);
13459         return 0;
13460 }
13461
13462 static int __perf_cgroup_move(void *info)
13463 {
13464         struct task_struct *task = info;
13465         rcu_read_lock();
13466         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
13467         rcu_read_unlock();
13468         return 0;
13469 }
13470
13471 static void perf_cgroup_attach(struct cgroup_taskset *tset)
13472 {
13473         struct task_struct *task;
13474         struct cgroup_subsys_state *css;
13475
13476         cgroup_taskset_for_each(task, css, tset)
13477                 task_function_call(task, __perf_cgroup_move, task);
13478 }
13479
13480 struct cgroup_subsys perf_event_cgrp_subsys = {
13481         .css_alloc      = perf_cgroup_css_alloc,
13482         .css_free       = perf_cgroup_css_free,
13483         .css_online     = perf_cgroup_css_online,
13484         .attach         = perf_cgroup_attach,
13485         /*
13486          * Implicitly enable on dfl hierarchy so that perf events can
13487          * always be filtered by cgroup2 path as long as perf_event
13488          * controller is not mounted on a legacy hierarchy.
13489          */
13490         .implicit_on_dfl = true,
13491         .threaded       = true,
13492 };
13493 #endif /* CONFIG_CGROUP_PERF */