MAINTAINERS: Add Naveen N. Rao as kprobes co-maintainer
[linux-2.6-microblaze.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly
98  *
99  * returns: @func return value, or
100  *          -ESRCH  - when the process isn't running
101  *          -EAGAIN - when the process moved away
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         do {
115                 ret = smp_call_function_single(task_cpu(p), remote_function, &data, 1);
116                 if (!ret)
117                         ret = data.ret;
118         } while (ret == -EAGAIN);
119
120         return ret;
121 }
122
123 /**
124  * cpu_function_call - call a function on the cpu
125  * @func:       the function to be called
126  * @info:       the function call argument
127  *
128  * Calls the function @func on the remote cpu.
129  *
130  * returns: @func return value or -ENXIO when the cpu is offline
131  */
132 static int cpu_function_call(int cpu, remote_function_f func, void *info)
133 {
134         struct remote_function_call data = {
135                 .p      = NULL,
136                 .func   = func,
137                 .info   = info,
138                 .ret    = -ENXIO, /* No such CPU */
139         };
140
141         smp_call_function_single(cpu, remote_function, &data, 1);
142
143         return data.ret;
144 }
145
146 static inline struct perf_cpu_context *
147 __get_cpu_context(struct perf_event_context *ctx)
148 {
149         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
150 }
151
152 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
153                           struct perf_event_context *ctx)
154 {
155         raw_spin_lock(&cpuctx->ctx.lock);
156         if (ctx)
157                 raw_spin_lock(&ctx->lock);
158 }
159
160 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
161                             struct perf_event_context *ctx)
162 {
163         if (ctx)
164                 raw_spin_unlock(&ctx->lock);
165         raw_spin_unlock(&cpuctx->ctx.lock);
166 }
167
168 #define TASK_TOMBSTONE ((void *)-1L)
169
170 static bool is_kernel_event(struct perf_event *event)
171 {
172         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
173 }
174
175 /*
176  * On task ctx scheduling...
177  *
178  * When !ctx->nr_events a task context will not be scheduled. This means
179  * we can disable the scheduler hooks (for performance) without leaving
180  * pending task ctx state.
181  *
182  * This however results in two special cases:
183  *
184  *  - removing the last event from a task ctx; this is relatively straight
185  *    forward and is done in __perf_remove_from_context.
186  *
187  *  - adding the first event to a task ctx; this is tricky because we cannot
188  *    rely on ctx->is_active and therefore cannot use event_function_call().
189  *    See perf_install_in_context().
190  *
191  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
192  */
193
194 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
195                         struct perf_event_context *, void *);
196
197 struct event_function_struct {
198         struct perf_event *event;
199         event_f func;
200         void *data;
201 };
202
203 static int event_function(void *info)
204 {
205         struct event_function_struct *efs = info;
206         struct perf_event *event = efs->event;
207         struct perf_event_context *ctx = event->ctx;
208         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
209         struct perf_event_context *task_ctx = cpuctx->task_ctx;
210         int ret = 0;
211
212         lockdep_assert_irqs_disabled();
213
214         perf_ctx_lock(cpuctx, task_ctx);
215         /*
216          * Since we do the IPI call without holding ctx->lock things can have
217          * changed, double check we hit the task we set out to hit.
218          */
219         if (ctx->task) {
220                 if (ctx->task != current) {
221                         ret = -ESRCH;
222                         goto unlock;
223                 }
224
225                 /*
226                  * We only use event_function_call() on established contexts,
227                  * and event_function() is only ever called when active (or
228                  * rather, we'll have bailed in task_function_call() or the
229                  * above ctx->task != current test), therefore we must have
230                  * ctx->is_active here.
231                  */
232                 WARN_ON_ONCE(!ctx->is_active);
233                 /*
234                  * And since we have ctx->is_active, cpuctx->task_ctx must
235                  * match.
236                  */
237                 WARN_ON_ONCE(task_ctx != ctx);
238         } else {
239                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
240         }
241
242         efs->func(event, cpuctx, ctx, efs->data);
243 unlock:
244         perf_ctx_unlock(cpuctx, task_ctx);
245
246         return ret;
247 }
248
249 static void event_function_call(struct perf_event *event, event_f func, void *data)
250 {
251         struct perf_event_context *ctx = event->ctx;
252         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
253         struct event_function_struct efs = {
254                 .event = event,
255                 .func = func,
256                 .data = data,
257         };
258
259         if (!event->parent) {
260                 /*
261                  * If this is a !child event, we must hold ctx::mutex to
262                  * stabilize the the event->ctx relation. See
263                  * perf_event_ctx_lock().
264                  */
265                 lockdep_assert_held(&ctx->mutex);
266         }
267
268         if (!task) {
269                 cpu_function_call(event->cpu, event_function, &efs);
270                 return;
271         }
272
273         if (task == TASK_TOMBSTONE)
274                 return;
275
276 again:
277         if (!task_function_call(task, event_function, &efs))
278                 return;
279
280         raw_spin_lock_irq(&ctx->lock);
281         /*
282          * Reload the task pointer, it might have been changed by
283          * a concurrent perf_event_context_sched_out().
284          */
285         task = ctx->task;
286         if (task == TASK_TOMBSTONE) {
287                 raw_spin_unlock_irq(&ctx->lock);
288                 return;
289         }
290         if (ctx->is_active) {
291                 raw_spin_unlock_irq(&ctx->lock);
292                 goto again;
293         }
294         func(event, NULL, ctx, data);
295         raw_spin_unlock_irq(&ctx->lock);
296 }
297
298 /*
299  * Similar to event_function_call() + event_function(), but hard assumes IRQs
300  * are already disabled and we're on the right CPU.
301  */
302 static void event_function_local(struct perf_event *event, event_f func, void *data)
303 {
304         struct perf_event_context *ctx = event->ctx;
305         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
306         struct task_struct *task = READ_ONCE(ctx->task);
307         struct perf_event_context *task_ctx = NULL;
308
309         lockdep_assert_irqs_disabled();
310
311         if (task) {
312                 if (task == TASK_TOMBSTONE)
313                         return;
314
315                 task_ctx = ctx;
316         }
317
318         perf_ctx_lock(cpuctx, task_ctx);
319
320         task = ctx->task;
321         if (task == TASK_TOMBSTONE)
322                 goto unlock;
323
324         if (task) {
325                 /*
326                  * We must be either inactive or active and the right task,
327                  * otherwise we're screwed, since we cannot IPI to somewhere
328                  * else.
329                  */
330                 if (ctx->is_active) {
331                         if (WARN_ON_ONCE(task != current))
332                                 goto unlock;
333
334                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
335                                 goto unlock;
336                 }
337         } else {
338                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
339         }
340
341         func(event, cpuctx, ctx, data);
342 unlock:
343         perf_ctx_unlock(cpuctx, task_ctx);
344 }
345
346 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
347                        PERF_FLAG_FD_OUTPUT  |\
348                        PERF_FLAG_PID_CGROUP |\
349                        PERF_FLAG_FD_CLOEXEC)
350
351 /*
352  * branch priv levels that need permission checks
353  */
354 #define PERF_SAMPLE_BRANCH_PERM_PLM \
355         (PERF_SAMPLE_BRANCH_KERNEL |\
356          PERF_SAMPLE_BRANCH_HV)
357
358 enum event_type_t {
359         EVENT_FLEXIBLE = 0x1,
360         EVENT_PINNED = 0x2,
361         EVENT_TIME = 0x4,
362         /* see ctx_resched() for details */
363         EVENT_CPU = 0x8,
364         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
365 };
366
367 /*
368  * perf_sched_events : >0 events exist
369  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
370  */
371
372 static void perf_sched_delayed(struct work_struct *work);
373 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
374 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
375 static DEFINE_MUTEX(perf_sched_mutex);
376 static atomic_t perf_sched_count;
377
378 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
379 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
380 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
381
382 static atomic_t nr_mmap_events __read_mostly;
383 static atomic_t nr_comm_events __read_mostly;
384 static atomic_t nr_namespaces_events __read_mostly;
385 static atomic_t nr_task_events __read_mostly;
386 static atomic_t nr_freq_events __read_mostly;
387 static atomic_t nr_switch_events __read_mostly;
388
389 static LIST_HEAD(pmus);
390 static DEFINE_MUTEX(pmus_lock);
391 static struct srcu_struct pmus_srcu;
392 static cpumask_var_t perf_online_mask;
393
394 /*
395  * perf event paranoia level:
396  *  -1 - not paranoid at all
397  *   0 - disallow raw tracepoint access for unpriv
398  *   1 - disallow cpu events for unpriv
399  *   2 - disallow kernel profiling for unpriv
400  */
401 int sysctl_perf_event_paranoid __read_mostly = 2;
402
403 /* Minimum for 512 kiB + 1 user control page */
404 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
405
406 /*
407  * max perf event sample rate
408  */
409 #define DEFAULT_MAX_SAMPLE_RATE         100000
410 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
411 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
412
413 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
414
415 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
416 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
417
418 static int perf_sample_allowed_ns __read_mostly =
419         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
420
421 static void update_perf_cpu_limits(void)
422 {
423         u64 tmp = perf_sample_period_ns;
424
425         tmp *= sysctl_perf_cpu_time_max_percent;
426         tmp = div_u64(tmp, 100);
427         if (!tmp)
428                 tmp = 1;
429
430         WRITE_ONCE(perf_sample_allowed_ns, tmp);
431 }
432
433 static bool perf_rotate_context(struct perf_cpu_context *cpuctx);
434
435 int perf_proc_update_handler(struct ctl_table *table, int write,
436                 void __user *buffer, size_t *lenp,
437                 loff_t *ppos)
438 {
439         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
440
441         if (ret || !write)
442                 return ret;
443
444         /*
445          * If throttling is disabled don't allow the write:
446          */
447         if (sysctl_perf_cpu_time_max_percent == 100 ||
448             sysctl_perf_cpu_time_max_percent == 0)
449                 return -EINVAL;
450
451         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
452         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
453         update_perf_cpu_limits();
454
455         return 0;
456 }
457
458 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
459
460 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
461                                 void __user *buffer, size_t *lenp,
462                                 loff_t *ppos)
463 {
464         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
465
466         if (ret || !write)
467                 return ret;
468
469         if (sysctl_perf_cpu_time_max_percent == 100 ||
470             sysctl_perf_cpu_time_max_percent == 0) {
471                 printk(KERN_WARNING
472                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
473                 WRITE_ONCE(perf_sample_allowed_ns, 0);
474         } else {
475                 update_perf_cpu_limits();
476         }
477
478         return 0;
479 }
480
481 /*
482  * perf samples are done in some very critical code paths (NMIs).
483  * If they take too much CPU time, the system can lock up and not
484  * get any real work done.  This will drop the sample rate when
485  * we detect that events are taking too long.
486  */
487 #define NR_ACCUMULATED_SAMPLES 128
488 static DEFINE_PER_CPU(u64, running_sample_length);
489
490 static u64 __report_avg;
491 static u64 __report_allowed;
492
493 static void perf_duration_warn(struct irq_work *w)
494 {
495         printk_ratelimited(KERN_INFO
496                 "perf: interrupt took too long (%lld > %lld), lowering "
497                 "kernel.perf_event_max_sample_rate to %d\n",
498                 __report_avg, __report_allowed,
499                 sysctl_perf_event_sample_rate);
500 }
501
502 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
503
504 void perf_sample_event_took(u64 sample_len_ns)
505 {
506         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
507         u64 running_len;
508         u64 avg_len;
509         u32 max;
510
511         if (max_len == 0)
512                 return;
513
514         /* Decay the counter by 1 average sample. */
515         running_len = __this_cpu_read(running_sample_length);
516         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
517         running_len += sample_len_ns;
518         __this_cpu_write(running_sample_length, running_len);
519
520         /*
521          * Note: this will be biased artifically low until we have
522          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
523          * from having to maintain a count.
524          */
525         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
526         if (avg_len <= max_len)
527                 return;
528
529         __report_avg = avg_len;
530         __report_allowed = max_len;
531
532         /*
533          * Compute a throttle threshold 25% below the current duration.
534          */
535         avg_len += avg_len / 4;
536         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
537         if (avg_len < max)
538                 max /= (u32)avg_len;
539         else
540                 max = 1;
541
542         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
543         WRITE_ONCE(max_samples_per_tick, max);
544
545         sysctl_perf_event_sample_rate = max * HZ;
546         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
547
548         if (!irq_work_queue(&perf_duration_work)) {
549                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
550                              "kernel.perf_event_max_sample_rate to %d\n",
551                              __report_avg, __report_allowed,
552                              sysctl_perf_event_sample_rate);
553         }
554 }
555
556 static atomic64_t perf_event_id;
557
558 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
559                               enum event_type_t event_type);
560
561 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
562                              enum event_type_t event_type,
563                              struct task_struct *task);
564
565 static void update_context_time(struct perf_event_context *ctx);
566 static u64 perf_event_time(struct perf_event *event);
567
568 void __weak perf_event_print_debug(void)        { }
569
570 extern __weak const char *perf_pmu_name(void)
571 {
572         return "pmu";
573 }
574
575 static inline u64 perf_clock(void)
576 {
577         return local_clock();
578 }
579
580 static inline u64 perf_event_clock(struct perf_event *event)
581 {
582         return event->clock();
583 }
584
585 /*
586  * State based event timekeeping...
587  *
588  * The basic idea is to use event->state to determine which (if any) time
589  * fields to increment with the current delta. This means we only need to
590  * update timestamps when we change state or when they are explicitly requested
591  * (read).
592  *
593  * Event groups make things a little more complicated, but not terribly so. The
594  * rules for a group are that if the group leader is OFF the entire group is
595  * OFF, irrespecive of what the group member states are. This results in
596  * __perf_effective_state().
597  *
598  * A futher ramification is that when a group leader flips between OFF and
599  * !OFF, we need to update all group member times.
600  *
601  *
602  * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
603  * need to make sure the relevant context time is updated before we try and
604  * update our timestamps.
605  */
606
607 static __always_inline enum perf_event_state
608 __perf_effective_state(struct perf_event *event)
609 {
610         struct perf_event *leader = event->group_leader;
611
612         if (leader->state <= PERF_EVENT_STATE_OFF)
613                 return leader->state;
614
615         return event->state;
616 }
617
618 static __always_inline void
619 __perf_update_times(struct perf_event *event, u64 now, u64 *enabled, u64 *running)
620 {
621         enum perf_event_state state = __perf_effective_state(event);
622         u64 delta = now - event->tstamp;
623
624         *enabled = event->total_time_enabled;
625         if (state >= PERF_EVENT_STATE_INACTIVE)
626                 *enabled += delta;
627
628         *running = event->total_time_running;
629         if (state >= PERF_EVENT_STATE_ACTIVE)
630                 *running += delta;
631 }
632
633 static void perf_event_update_time(struct perf_event *event)
634 {
635         u64 now = perf_event_time(event);
636
637         __perf_update_times(event, now, &event->total_time_enabled,
638                                         &event->total_time_running);
639         event->tstamp = now;
640 }
641
642 static void perf_event_update_sibling_time(struct perf_event *leader)
643 {
644         struct perf_event *sibling;
645
646         for_each_sibling_event(sibling, leader)
647                 perf_event_update_time(sibling);
648 }
649
650 static void
651 perf_event_set_state(struct perf_event *event, enum perf_event_state state)
652 {
653         if (event->state == state)
654                 return;
655
656         perf_event_update_time(event);
657         /*
658          * If a group leader gets enabled/disabled all its siblings
659          * are affected too.
660          */
661         if ((event->state < 0) ^ (state < 0))
662                 perf_event_update_sibling_time(event);
663
664         WRITE_ONCE(event->state, state);
665 }
666
667 #ifdef CONFIG_CGROUP_PERF
668
669 static inline bool
670 perf_cgroup_match(struct perf_event *event)
671 {
672         struct perf_event_context *ctx = event->ctx;
673         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
674
675         /* @event doesn't care about cgroup */
676         if (!event->cgrp)
677                 return true;
678
679         /* wants specific cgroup scope but @cpuctx isn't associated with any */
680         if (!cpuctx->cgrp)
681                 return false;
682
683         /*
684          * Cgroup scoping is recursive.  An event enabled for a cgroup is
685          * also enabled for all its descendant cgroups.  If @cpuctx's
686          * cgroup is a descendant of @event's (the test covers identity
687          * case), it's a match.
688          */
689         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
690                                     event->cgrp->css.cgroup);
691 }
692
693 static inline void perf_detach_cgroup(struct perf_event *event)
694 {
695         css_put(&event->cgrp->css);
696         event->cgrp = NULL;
697 }
698
699 static inline int is_cgroup_event(struct perf_event *event)
700 {
701         return event->cgrp != NULL;
702 }
703
704 static inline u64 perf_cgroup_event_time(struct perf_event *event)
705 {
706         struct perf_cgroup_info *t;
707
708         t = per_cpu_ptr(event->cgrp->info, event->cpu);
709         return t->time;
710 }
711
712 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
713 {
714         struct perf_cgroup_info *info;
715         u64 now;
716
717         now = perf_clock();
718
719         info = this_cpu_ptr(cgrp->info);
720
721         info->time += now - info->timestamp;
722         info->timestamp = now;
723 }
724
725 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
726 {
727         struct perf_cgroup *cgrp = cpuctx->cgrp;
728         struct cgroup_subsys_state *css;
729
730         if (cgrp) {
731                 for (css = &cgrp->css; css; css = css->parent) {
732                         cgrp = container_of(css, struct perf_cgroup, css);
733                         __update_cgrp_time(cgrp);
734                 }
735         }
736 }
737
738 static inline void update_cgrp_time_from_event(struct perf_event *event)
739 {
740         struct perf_cgroup *cgrp;
741
742         /*
743          * ensure we access cgroup data only when needed and
744          * when we know the cgroup is pinned (css_get)
745          */
746         if (!is_cgroup_event(event))
747                 return;
748
749         cgrp = perf_cgroup_from_task(current, event->ctx);
750         /*
751          * Do not update time when cgroup is not active
752          */
753        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
754                 __update_cgrp_time(event->cgrp);
755 }
756
757 static inline void
758 perf_cgroup_set_timestamp(struct task_struct *task,
759                           struct perf_event_context *ctx)
760 {
761         struct perf_cgroup *cgrp;
762         struct perf_cgroup_info *info;
763         struct cgroup_subsys_state *css;
764
765         /*
766          * ctx->lock held by caller
767          * ensure we do not access cgroup data
768          * unless we have the cgroup pinned (css_get)
769          */
770         if (!task || !ctx->nr_cgroups)
771                 return;
772
773         cgrp = perf_cgroup_from_task(task, ctx);
774
775         for (css = &cgrp->css; css; css = css->parent) {
776                 cgrp = container_of(css, struct perf_cgroup, css);
777                 info = this_cpu_ptr(cgrp->info);
778                 info->timestamp = ctx->timestamp;
779         }
780 }
781
782 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
783
784 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
785 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
786
787 /*
788  * reschedule events based on the cgroup constraint of task.
789  *
790  * mode SWOUT : schedule out everything
791  * mode SWIN : schedule in based on cgroup for next
792  */
793 static void perf_cgroup_switch(struct task_struct *task, int mode)
794 {
795         struct perf_cpu_context *cpuctx;
796         struct list_head *list;
797         unsigned long flags;
798
799         /*
800          * Disable interrupts and preemption to avoid this CPU's
801          * cgrp_cpuctx_entry to change under us.
802          */
803         local_irq_save(flags);
804
805         list = this_cpu_ptr(&cgrp_cpuctx_list);
806         list_for_each_entry(cpuctx, list, cgrp_cpuctx_entry) {
807                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
808
809                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
810                 perf_pmu_disable(cpuctx->ctx.pmu);
811
812                 if (mode & PERF_CGROUP_SWOUT) {
813                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
814                         /*
815                          * must not be done before ctxswout due
816                          * to event_filter_match() in event_sched_out()
817                          */
818                         cpuctx->cgrp = NULL;
819                 }
820
821                 if (mode & PERF_CGROUP_SWIN) {
822                         WARN_ON_ONCE(cpuctx->cgrp);
823                         /*
824                          * set cgrp before ctxsw in to allow
825                          * event_filter_match() to not have to pass
826                          * task around
827                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
828                          * because cgorup events are only per-cpu
829                          */
830                         cpuctx->cgrp = perf_cgroup_from_task(task,
831                                                              &cpuctx->ctx);
832                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
833                 }
834                 perf_pmu_enable(cpuctx->ctx.pmu);
835                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
836         }
837
838         local_irq_restore(flags);
839 }
840
841 static inline void perf_cgroup_sched_out(struct task_struct *task,
842                                          struct task_struct *next)
843 {
844         struct perf_cgroup *cgrp1;
845         struct perf_cgroup *cgrp2 = NULL;
846
847         rcu_read_lock();
848         /*
849          * we come here when we know perf_cgroup_events > 0
850          * we do not need to pass the ctx here because we know
851          * we are holding the rcu lock
852          */
853         cgrp1 = perf_cgroup_from_task(task, NULL);
854         cgrp2 = perf_cgroup_from_task(next, NULL);
855
856         /*
857          * only schedule out current cgroup events if we know
858          * that we are switching to a different cgroup. Otherwise,
859          * do no touch the cgroup events.
860          */
861         if (cgrp1 != cgrp2)
862                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
863
864         rcu_read_unlock();
865 }
866
867 static inline void perf_cgroup_sched_in(struct task_struct *prev,
868                                         struct task_struct *task)
869 {
870         struct perf_cgroup *cgrp1;
871         struct perf_cgroup *cgrp2 = NULL;
872
873         rcu_read_lock();
874         /*
875          * we come here when we know perf_cgroup_events > 0
876          * we do not need to pass the ctx here because we know
877          * we are holding the rcu lock
878          */
879         cgrp1 = perf_cgroup_from_task(task, NULL);
880         cgrp2 = perf_cgroup_from_task(prev, NULL);
881
882         /*
883          * only need to schedule in cgroup events if we are changing
884          * cgroup during ctxsw. Cgroup events were not scheduled
885          * out of ctxsw out if that was not the case.
886          */
887         if (cgrp1 != cgrp2)
888                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
889
890         rcu_read_unlock();
891 }
892
893 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
894                                       struct perf_event_attr *attr,
895                                       struct perf_event *group_leader)
896 {
897         struct perf_cgroup *cgrp;
898         struct cgroup_subsys_state *css;
899         struct fd f = fdget(fd);
900         int ret = 0;
901
902         if (!f.file)
903                 return -EBADF;
904
905         css = css_tryget_online_from_dir(f.file->f_path.dentry,
906                                          &perf_event_cgrp_subsys);
907         if (IS_ERR(css)) {
908                 ret = PTR_ERR(css);
909                 goto out;
910         }
911
912         cgrp = container_of(css, struct perf_cgroup, css);
913         event->cgrp = cgrp;
914
915         /*
916          * all events in a group must monitor
917          * the same cgroup because a task belongs
918          * to only one perf cgroup at a time
919          */
920         if (group_leader && group_leader->cgrp != cgrp) {
921                 perf_detach_cgroup(event);
922                 ret = -EINVAL;
923         }
924 out:
925         fdput(f);
926         return ret;
927 }
928
929 static inline void
930 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
931 {
932         struct perf_cgroup_info *t;
933         t = per_cpu_ptr(event->cgrp->info, event->cpu);
934         event->shadow_ctx_time = now - t->timestamp;
935 }
936
937 /*
938  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
939  * cleared when last cgroup event is removed.
940  */
941 static inline void
942 list_update_cgroup_event(struct perf_event *event,
943                          struct perf_event_context *ctx, bool add)
944 {
945         struct perf_cpu_context *cpuctx;
946         struct list_head *cpuctx_entry;
947
948         if (!is_cgroup_event(event))
949                 return;
950
951         /*
952          * Because cgroup events are always per-cpu events,
953          * this will always be called from the right CPU.
954          */
955         cpuctx = __get_cpu_context(ctx);
956
957         /*
958          * Since setting cpuctx->cgrp is conditional on the current @cgrp
959          * matching the event's cgroup, we must do this for every new event,
960          * because if the first would mismatch, the second would not try again
961          * and we would leave cpuctx->cgrp unset.
962          */
963         if (add && !cpuctx->cgrp) {
964                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
965
966                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
967                         cpuctx->cgrp = cgrp;
968         }
969
970         if (add && ctx->nr_cgroups++)
971                 return;
972         else if (!add && --ctx->nr_cgroups)
973                 return;
974
975         /* no cgroup running */
976         if (!add)
977                 cpuctx->cgrp = NULL;
978
979         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
980         if (add)
981                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
982         else
983                 list_del(cpuctx_entry);
984 }
985
986 #else /* !CONFIG_CGROUP_PERF */
987
988 static inline bool
989 perf_cgroup_match(struct perf_event *event)
990 {
991         return true;
992 }
993
994 static inline void perf_detach_cgroup(struct perf_event *event)
995 {}
996
997 static inline int is_cgroup_event(struct perf_event *event)
998 {
999         return 0;
1000 }
1001
1002 static inline void update_cgrp_time_from_event(struct perf_event *event)
1003 {
1004 }
1005
1006 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
1007 {
1008 }
1009
1010 static inline void perf_cgroup_sched_out(struct task_struct *task,
1011                                          struct task_struct *next)
1012 {
1013 }
1014
1015 static inline void perf_cgroup_sched_in(struct task_struct *prev,
1016                                         struct task_struct *task)
1017 {
1018 }
1019
1020 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
1021                                       struct perf_event_attr *attr,
1022                                       struct perf_event *group_leader)
1023 {
1024         return -EINVAL;
1025 }
1026
1027 static inline void
1028 perf_cgroup_set_timestamp(struct task_struct *task,
1029                           struct perf_event_context *ctx)
1030 {
1031 }
1032
1033 void
1034 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
1035 {
1036 }
1037
1038 static inline void
1039 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
1040 {
1041 }
1042
1043 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1044 {
1045         return 0;
1046 }
1047
1048 static inline void
1049 list_update_cgroup_event(struct perf_event *event,
1050                          struct perf_event_context *ctx, bool add)
1051 {
1052 }
1053
1054 #endif
1055
1056 /*
1057  * set default to be dependent on timer tick just
1058  * like original code
1059  */
1060 #define PERF_CPU_HRTIMER (1000 / HZ)
1061 /*
1062  * function must be called with interrupts disabled
1063  */
1064 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1065 {
1066         struct perf_cpu_context *cpuctx;
1067         bool rotations;
1068
1069         lockdep_assert_irqs_disabled();
1070
1071         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1072         rotations = perf_rotate_context(cpuctx);
1073
1074         raw_spin_lock(&cpuctx->hrtimer_lock);
1075         if (rotations)
1076                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1077         else
1078                 cpuctx->hrtimer_active = 0;
1079         raw_spin_unlock(&cpuctx->hrtimer_lock);
1080
1081         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1082 }
1083
1084 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1085 {
1086         struct hrtimer *timer = &cpuctx->hrtimer;
1087         struct pmu *pmu = cpuctx->ctx.pmu;
1088         u64 interval;
1089
1090         /* no multiplexing needed for SW PMU */
1091         if (pmu->task_ctx_nr == perf_sw_context)
1092                 return;
1093
1094         /*
1095          * check default is sane, if not set then force to
1096          * default interval (1/tick)
1097          */
1098         interval = pmu->hrtimer_interval_ms;
1099         if (interval < 1)
1100                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1101
1102         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1103
1104         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1105         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1106         timer->function = perf_mux_hrtimer_handler;
1107 }
1108
1109 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1110 {
1111         struct hrtimer *timer = &cpuctx->hrtimer;
1112         struct pmu *pmu = cpuctx->ctx.pmu;
1113         unsigned long flags;
1114
1115         /* not for SW PMU */
1116         if (pmu->task_ctx_nr == perf_sw_context)
1117                 return 0;
1118
1119         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1120         if (!cpuctx->hrtimer_active) {
1121                 cpuctx->hrtimer_active = 1;
1122                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1123                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1124         }
1125         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1126
1127         return 0;
1128 }
1129
1130 void perf_pmu_disable(struct pmu *pmu)
1131 {
1132         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1133         if (!(*count)++)
1134                 pmu->pmu_disable(pmu);
1135 }
1136
1137 void perf_pmu_enable(struct pmu *pmu)
1138 {
1139         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1140         if (!--(*count))
1141                 pmu->pmu_enable(pmu);
1142 }
1143
1144 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1145
1146 /*
1147  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1148  * perf_event_task_tick() are fully serialized because they're strictly cpu
1149  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1150  * disabled, while perf_event_task_tick is called from IRQ context.
1151  */
1152 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1153 {
1154         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1155
1156         lockdep_assert_irqs_disabled();
1157
1158         WARN_ON(!list_empty(&ctx->active_ctx_list));
1159
1160         list_add(&ctx->active_ctx_list, head);
1161 }
1162
1163 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1164 {
1165         lockdep_assert_irqs_disabled();
1166
1167         WARN_ON(list_empty(&ctx->active_ctx_list));
1168
1169         list_del_init(&ctx->active_ctx_list);
1170 }
1171
1172 static void get_ctx(struct perf_event_context *ctx)
1173 {
1174         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1175 }
1176
1177 static void free_ctx(struct rcu_head *head)
1178 {
1179         struct perf_event_context *ctx;
1180
1181         ctx = container_of(head, struct perf_event_context, rcu_head);
1182         kfree(ctx->task_ctx_data);
1183         kfree(ctx);
1184 }
1185
1186 static void put_ctx(struct perf_event_context *ctx)
1187 {
1188         if (atomic_dec_and_test(&ctx->refcount)) {
1189                 if (ctx->parent_ctx)
1190                         put_ctx(ctx->parent_ctx);
1191                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1192                         put_task_struct(ctx->task);
1193                 call_rcu(&ctx->rcu_head, free_ctx);
1194         }
1195 }
1196
1197 /*
1198  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1199  * perf_pmu_migrate_context() we need some magic.
1200  *
1201  * Those places that change perf_event::ctx will hold both
1202  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1203  *
1204  * Lock ordering is by mutex address. There are two other sites where
1205  * perf_event_context::mutex nests and those are:
1206  *
1207  *  - perf_event_exit_task_context()    [ child , 0 ]
1208  *      perf_event_exit_event()
1209  *        put_event()                   [ parent, 1 ]
1210  *
1211  *  - perf_event_init_context()         [ parent, 0 ]
1212  *      inherit_task_group()
1213  *        inherit_group()
1214  *          inherit_event()
1215  *            perf_event_alloc()
1216  *              perf_init_event()
1217  *                perf_try_init_event() [ child , 1 ]
1218  *
1219  * While it appears there is an obvious deadlock here -- the parent and child
1220  * nesting levels are inverted between the two. This is in fact safe because
1221  * life-time rules separate them. That is an exiting task cannot fork, and a
1222  * spawning task cannot (yet) exit.
1223  *
1224  * But remember that that these are parent<->child context relations, and
1225  * migration does not affect children, therefore these two orderings should not
1226  * interact.
1227  *
1228  * The change in perf_event::ctx does not affect children (as claimed above)
1229  * because the sys_perf_event_open() case will install a new event and break
1230  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1231  * concerned with cpuctx and that doesn't have children.
1232  *
1233  * The places that change perf_event::ctx will issue:
1234  *
1235  *   perf_remove_from_context();
1236  *   synchronize_rcu();
1237  *   perf_install_in_context();
1238  *
1239  * to affect the change. The remove_from_context() + synchronize_rcu() should
1240  * quiesce the event, after which we can install it in the new location. This
1241  * means that only external vectors (perf_fops, prctl) can perturb the event
1242  * while in transit. Therefore all such accessors should also acquire
1243  * perf_event_context::mutex to serialize against this.
1244  *
1245  * However; because event->ctx can change while we're waiting to acquire
1246  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1247  * function.
1248  *
1249  * Lock order:
1250  *    cred_guard_mutex
1251  *      task_struct::perf_event_mutex
1252  *        perf_event_context::mutex
1253  *          perf_event::child_mutex;
1254  *            perf_event_context::lock
1255  *          perf_event::mmap_mutex
1256  *          mmap_sem
1257  *
1258  *    cpu_hotplug_lock
1259  *      pmus_lock
1260  *        cpuctx->mutex / perf_event_context::mutex
1261  */
1262 static struct perf_event_context *
1263 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1264 {
1265         struct perf_event_context *ctx;
1266
1267 again:
1268         rcu_read_lock();
1269         ctx = READ_ONCE(event->ctx);
1270         if (!atomic_inc_not_zero(&ctx->refcount)) {
1271                 rcu_read_unlock();
1272                 goto again;
1273         }
1274         rcu_read_unlock();
1275
1276         mutex_lock_nested(&ctx->mutex, nesting);
1277         if (event->ctx != ctx) {
1278                 mutex_unlock(&ctx->mutex);
1279                 put_ctx(ctx);
1280                 goto again;
1281         }
1282
1283         return ctx;
1284 }
1285
1286 static inline struct perf_event_context *
1287 perf_event_ctx_lock(struct perf_event *event)
1288 {
1289         return perf_event_ctx_lock_nested(event, 0);
1290 }
1291
1292 static void perf_event_ctx_unlock(struct perf_event *event,
1293                                   struct perf_event_context *ctx)
1294 {
1295         mutex_unlock(&ctx->mutex);
1296         put_ctx(ctx);
1297 }
1298
1299 /*
1300  * This must be done under the ctx->lock, such as to serialize against
1301  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1302  * calling scheduler related locks and ctx->lock nests inside those.
1303  */
1304 static __must_check struct perf_event_context *
1305 unclone_ctx(struct perf_event_context *ctx)
1306 {
1307         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1308
1309         lockdep_assert_held(&ctx->lock);
1310
1311         if (parent_ctx)
1312                 ctx->parent_ctx = NULL;
1313         ctx->generation++;
1314
1315         return parent_ctx;
1316 }
1317
1318 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1319                                 enum pid_type type)
1320 {
1321         u32 nr;
1322         /*
1323          * only top level events have the pid namespace they were created in
1324          */
1325         if (event->parent)
1326                 event = event->parent;
1327
1328         nr = __task_pid_nr_ns(p, type, event->ns);
1329         /* avoid -1 if it is idle thread or runs in another ns */
1330         if (!nr && !pid_alive(p))
1331                 nr = -1;
1332         return nr;
1333 }
1334
1335 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1336 {
1337         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1338 }
1339
1340 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1341 {
1342         return perf_event_pid_type(event, p, PIDTYPE_PID);
1343 }
1344
1345 /*
1346  * If we inherit events we want to return the parent event id
1347  * to userspace.
1348  */
1349 static u64 primary_event_id(struct perf_event *event)
1350 {
1351         u64 id = event->id;
1352
1353         if (event->parent)
1354                 id = event->parent->id;
1355
1356         return id;
1357 }
1358
1359 /*
1360  * Get the perf_event_context for a task and lock it.
1361  *
1362  * This has to cope with with the fact that until it is locked,
1363  * the context could get moved to another task.
1364  */
1365 static struct perf_event_context *
1366 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1367 {
1368         struct perf_event_context *ctx;
1369
1370 retry:
1371         /*
1372          * One of the few rules of preemptible RCU is that one cannot do
1373          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1374          * part of the read side critical section was irqs-enabled -- see
1375          * rcu_read_unlock_special().
1376          *
1377          * Since ctx->lock nests under rq->lock we must ensure the entire read
1378          * side critical section has interrupts disabled.
1379          */
1380         local_irq_save(*flags);
1381         rcu_read_lock();
1382         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1383         if (ctx) {
1384                 /*
1385                  * If this context is a clone of another, it might
1386                  * get swapped for another underneath us by
1387                  * perf_event_task_sched_out, though the
1388                  * rcu_read_lock() protects us from any context
1389                  * getting freed.  Lock the context and check if it
1390                  * got swapped before we could get the lock, and retry
1391                  * if so.  If we locked the right context, then it
1392                  * can't get swapped on us any more.
1393                  */
1394                 raw_spin_lock(&ctx->lock);
1395                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1396                         raw_spin_unlock(&ctx->lock);
1397                         rcu_read_unlock();
1398                         local_irq_restore(*flags);
1399                         goto retry;
1400                 }
1401
1402                 if (ctx->task == TASK_TOMBSTONE ||
1403                     !atomic_inc_not_zero(&ctx->refcount)) {
1404                         raw_spin_unlock(&ctx->lock);
1405                         ctx = NULL;
1406                 } else {
1407                         WARN_ON_ONCE(ctx->task != task);
1408                 }
1409         }
1410         rcu_read_unlock();
1411         if (!ctx)
1412                 local_irq_restore(*flags);
1413         return ctx;
1414 }
1415
1416 /*
1417  * Get the context for a task and increment its pin_count so it
1418  * can't get swapped to another task.  This also increments its
1419  * reference count so that the context can't get freed.
1420  */
1421 static struct perf_event_context *
1422 perf_pin_task_context(struct task_struct *task, int ctxn)
1423 {
1424         struct perf_event_context *ctx;
1425         unsigned long flags;
1426
1427         ctx = perf_lock_task_context(task, ctxn, &flags);
1428         if (ctx) {
1429                 ++ctx->pin_count;
1430                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1431         }
1432         return ctx;
1433 }
1434
1435 static void perf_unpin_context(struct perf_event_context *ctx)
1436 {
1437         unsigned long flags;
1438
1439         raw_spin_lock_irqsave(&ctx->lock, flags);
1440         --ctx->pin_count;
1441         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1442 }
1443
1444 /*
1445  * Update the record of the current time in a context.
1446  */
1447 static void update_context_time(struct perf_event_context *ctx)
1448 {
1449         u64 now = perf_clock();
1450
1451         ctx->time += now - ctx->timestamp;
1452         ctx->timestamp = now;
1453 }
1454
1455 static u64 perf_event_time(struct perf_event *event)
1456 {
1457         struct perf_event_context *ctx = event->ctx;
1458
1459         if (is_cgroup_event(event))
1460                 return perf_cgroup_event_time(event);
1461
1462         return ctx ? ctx->time : 0;
1463 }
1464
1465 static enum event_type_t get_event_type(struct perf_event *event)
1466 {
1467         struct perf_event_context *ctx = event->ctx;
1468         enum event_type_t event_type;
1469
1470         lockdep_assert_held(&ctx->lock);
1471
1472         /*
1473          * It's 'group type', really, because if our group leader is
1474          * pinned, so are we.
1475          */
1476         if (event->group_leader != event)
1477                 event = event->group_leader;
1478
1479         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1480         if (!ctx->task)
1481                 event_type |= EVENT_CPU;
1482
1483         return event_type;
1484 }
1485
1486 /*
1487  * Helper function to initialize event group nodes.
1488  */
1489 static void init_event_group(struct perf_event *event)
1490 {
1491         RB_CLEAR_NODE(&event->group_node);
1492         event->group_index = 0;
1493 }
1494
1495 /*
1496  * Extract pinned or flexible groups from the context
1497  * based on event attrs bits.
1498  */
1499 static struct perf_event_groups *
1500 get_event_groups(struct perf_event *event, struct perf_event_context *ctx)
1501 {
1502         if (event->attr.pinned)
1503                 return &ctx->pinned_groups;
1504         else
1505                 return &ctx->flexible_groups;
1506 }
1507
1508 /*
1509  * Helper function to initializes perf_event_group trees.
1510  */
1511 static void perf_event_groups_init(struct perf_event_groups *groups)
1512 {
1513         groups->tree = RB_ROOT;
1514         groups->index = 0;
1515 }
1516
1517 /*
1518  * Compare function for event groups;
1519  *
1520  * Implements complex key that first sorts by CPU and then by virtual index
1521  * which provides ordering when rotating groups for the same CPU.
1522  */
1523 static bool
1524 perf_event_groups_less(struct perf_event *left, struct perf_event *right)
1525 {
1526         if (left->cpu < right->cpu)
1527                 return true;
1528         if (left->cpu > right->cpu)
1529                 return false;
1530
1531         if (left->group_index < right->group_index)
1532                 return true;
1533         if (left->group_index > right->group_index)
1534                 return false;
1535
1536         return false;
1537 }
1538
1539 /*
1540  * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1541  * key (see perf_event_groups_less). This places it last inside the CPU
1542  * subtree.
1543  */
1544 static void
1545 perf_event_groups_insert(struct perf_event_groups *groups,
1546                          struct perf_event *event)
1547 {
1548         struct perf_event *node_event;
1549         struct rb_node *parent;
1550         struct rb_node **node;
1551
1552         event->group_index = ++groups->index;
1553
1554         node = &groups->tree.rb_node;
1555         parent = *node;
1556
1557         while (*node) {
1558                 parent = *node;
1559                 node_event = container_of(*node, struct perf_event, group_node);
1560
1561                 if (perf_event_groups_less(event, node_event))
1562                         node = &parent->rb_left;
1563                 else
1564                         node = &parent->rb_right;
1565         }
1566
1567         rb_link_node(&event->group_node, parent, node);
1568         rb_insert_color(&event->group_node, &groups->tree);
1569 }
1570
1571 /*
1572  * Helper function to insert event into the pinned or flexible groups.
1573  */
1574 static void
1575 add_event_to_groups(struct perf_event *event, struct perf_event_context *ctx)
1576 {
1577         struct perf_event_groups *groups;
1578
1579         groups = get_event_groups(event, ctx);
1580         perf_event_groups_insert(groups, event);
1581 }
1582
1583 /*
1584  * Delete a group from a tree.
1585  */
1586 static void
1587 perf_event_groups_delete(struct perf_event_groups *groups,
1588                          struct perf_event *event)
1589 {
1590         WARN_ON_ONCE(RB_EMPTY_NODE(&event->group_node) ||
1591                      RB_EMPTY_ROOT(&groups->tree));
1592
1593         rb_erase(&event->group_node, &groups->tree);
1594         init_event_group(event);
1595 }
1596
1597 /*
1598  * Helper function to delete event from its groups.
1599  */
1600 static void
1601 del_event_from_groups(struct perf_event *event, struct perf_event_context *ctx)
1602 {
1603         struct perf_event_groups *groups;
1604
1605         groups = get_event_groups(event, ctx);
1606         perf_event_groups_delete(groups, event);
1607 }
1608
1609 /*
1610  * Get the leftmost event in the @cpu subtree.
1611  */
1612 static struct perf_event *
1613 perf_event_groups_first(struct perf_event_groups *groups, int cpu)
1614 {
1615         struct perf_event *node_event = NULL, *match = NULL;
1616         struct rb_node *node = groups->tree.rb_node;
1617
1618         while (node) {
1619                 node_event = container_of(node, struct perf_event, group_node);
1620
1621                 if (cpu < node_event->cpu) {
1622                         node = node->rb_left;
1623                 } else if (cpu > node_event->cpu) {
1624                         node = node->rb_right;
1625                 } else {
1626                         match = node_event;
1627                         node = node->rb_left;
1628                 }
1629         }
1630
1631         return match;
1632 }
1633
1634 /*
1635  * Like rb_entry_next_safe() for the @cpu subtree.
1636  */
1637 static struct perf_event *
1638 perf_event_groups_next(struct perf_event *event)
1639 {
1640         struct perf_event *next;
1641
1642         next = rb_entry_safe(rb_next(&event->group_node), typeof(*event), group_node);
1643         if (next && next->cpu == event->cpu)
1644                 return next;
1645
1646         return NULL;
1647 }
1648
1649 /*
1650  * Iterate through the whole groups tree.
1651  */
1652 #define perf_event_groups_for_each(event, groups)                       \
1653         for (event = rb_entry_safe(rb_first(&((groups)->tree)),         \
1654                                 typeof(*event), group_node); event;     \
1655                 event = rb_entry_safe(rb_next(&event->group_node),      \
1656                                 typeof(*event), group_node))
1657
1658 /*
1659  * Add a event from the lists for its context.
1660  * Must be called with ctx->mutex and ctx->lock held.
1661  */
1662 static void
1663 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1664 {
1665         lockdep_assert_held(&ctx->lock);
1666
1667         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1668         event->attach_state |= PERF_ATTACH_CONTEXT;
1669
1670         event->tstamp = perf_event_time(event);
1671
1672         /*
1673          * If we're a stand alone event or group leader, we go to the context
1674          * list, group events are kept attached to the group so that
1675          * perf_group_detach can, at all times, locate all siblings.
1676          */
1677         if (event->group_leader == event) {
1678                 event->group_caps = event->event_caps;
1679                 add_event_to_groups(event, ctx);
1680         }
1681
1682         list_update_cgroup_event(event, ctx, true);
1683
1684         list_add_rcu(&event->event_entry, &ctx->event_list);
1685         ctx->nr_events++;
1686         if (event->attr.inherit_stat)
1687                 ctx->nr_stat++;
1688
1689         ctx->generation++;
1690 }
1691
1692 /*
1693  * Initialize event state based on the perf_event_attr::disabled.
1694  */
1695 static inline void perf_event__state_init(struct perf_event *event)
1696 {
1697         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1698                                               PERF_EVENT_STATE_INACTIVE;
1699 }
1700
1701 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1702 {
1703         int entry = sizeof(u64); /* value */
1704         int size = 0;
1705         int nr = 1;
1706
1707         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1708                 size += sizeof(u64);
1709
1710         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1711                 size += sizeof(u64);
1712
1713         if (event->attr.read_format & PERF_FORMAT_ID)
1714                 entry += sizeof(u64);
1715
1716         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1717                 nr += nr_siblings;
1718                 size += sizeof(u64);
1719         }
1720
1721         size += entry * nr;
1722         event->read_size = size;
1723 }
1724
1725 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1726 {
1727         struct perf_sample_data *data;
1728         u16 size = 0;
1729
1730         if (sample_type & PERF_SAMPLE_IP)
1731                 size += sizeof(data->ip);
1732
1733         if (sample_type & PERF_SAMPLE_ADDR)
1734                 size += sizeof(data->addr);
1735
1736         if (sample_type & PERF_SAMPLE_PERIOD)
1737                 size += sizeof(data->period);
1738
1739         if (sample_type & PERF_SAMPLE_WEIGHT)
1740                 size += sizeof(data->weight);
1741
1742         if (sample_type & PERF_SAMPLE_READ)
1743                 size += event->read_size;
1744
1745         if (sample_type & PERF_SAMPLE_DATA_SRC)
1746                 size += sizeof(data->data_src.val);
1747
1748         if (sample_type & PERF_SAMPLE_TRANSACTION)
1749                 size += sizeof(data->txn);
1750
1751         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1752                 size += sizeof(data->phys_addr);
1753
1754         event->header_size = size;
1755 }
1756
1757 /*
1758  * Called at perf_event creation and when events are attached/detached from a
1759  * group.
1760  */
1761 static void perf_event__header_size(struct perf_event *event)
1762 {
1763         __perf_event_read_size(event,
1764                                event->group_leader->nr_siblings);
1765         __perf_event_header_size(event, event->attr.sample_type);
1766 }
1767
1768 static void perf_event__id_header_size(struct perf_event *event)
1769 {
1770         struct perf_sample_data *data;
1771         u64 sample_type = event->attr.sample_type;
1772         u16 size = 0;
1773
1774         if (sample_type & PERF_SAMPLE_TID)
1775                 size += sizeof(data->tid_entry);
1776
1777         if (sample_type & PERF_SAMPLE_TIME)
1778                 size += sizeof(data->time);
1779
1780         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1781                 size += sizeof(data->id);
1782
1783         if (sample_type & PERF_SAMPLE_ID)
1784                 size += sizeof(data->id);
1785
1786         if (sample_type & PERF_SAMPLE_STREAM_ID)
1787                 size += sizeof(data->stream_id);
1788
1789         if (sample_type & PERF_SAMPLE_CPU)
1790                 size += sizeof(data->cpu_entry);
1791
1792         event->id_header_size = size;
1793 }
1794
1795 static bool perf_event_validate_size(struct perf_event *event)
1796 {
1797         /*
1798          * The values computed here will be over-written when we actually
1799          * attach the event.
1800          */
1801         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1802         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1803         perf_event__id_header_size(event);
1804
1805         /*
1806          * Sum the lot; should not exceed the 64k limit we have on records.
1807          * Conservative limit to allow for callchains and other variable fields.
1808          */
1809         if (event->read_size + event->header_size +
1810             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1811                 return false;
1812
1813         return true;
1814 }
1815
1816 static void perf_group_attach(struct perf_event *event)
1817 {
1818         struct perf_event *group_leader = event->group_leader, *pos;
1819
1820         lockdep_assert_held(&event->ctx->lock);
1821
1822         /*
1823          * We can have double attach due to group movement in perf_event_open.
1824          */
1825         if (event->attach_state & PERF_ATTACH_GROUP)
1826                 return;
1827
1828         event->attach_state |= PERF_ATTACH_GROUP;
1829
1830         if (group_leader == event)
1831                 return;
1832
1833         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1834
1835         group_leader->group_caps &= event->event_caps;
1836
1837         list_add_tail(&event->sibling_list, &group_leader->sibling_list);
1838         group_leader->nr_siblings++;
1839
1840         perf_event__header_size(group_leader);
1841
1842         for_each_sibling_event(pos, group_leader)
1843                 perf_event__header_size(pos);
1844 }
1845
1846 /*
1847  * Remove a event from the lists for its context.
1848  * Must be called with ctx->mutex and ctx->lock held.
1849  */
1850 static void
1851 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1852 {
1853         WARN_ON_ONCE(event->ctx != ctx);
1854         lockdep_assert_held(&ctx->lock);
1855
1856         /*
1857          * We can have double detach due to exit/hot-unplug + close.
1858          */
1859         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1860                 return;
1861
1862         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1863
1864         list_update_cgroup_event(event, ctx, false);
1865
1866         ctx->nr_events--;
1867         if (event->attr.inherit_stat)
1868                 ctx->nr_stat--;
1869
1870         list_del_rcu(&event->event_entry);
1871
1872         if (event->group_leader == event)
1873                 del_event_from_groups(event, ctx);
1874
1875         /*
1876          * If event was in error state, then keep it
1877          * that way, otherwise bogus counts will be
1878          * returned on read(). The only way to get out
1879          * of error state is by explicit re-enabling
1880          * of the event
1881          */
1882         if (event->state > PERF_EVENT_STATE_OFF)
1883                 perf_event_set_state(event, PERF_EVENT_STATE_OFF);
1884
1885         ctx->generation++;
1886 }
1887
1888 static void perf_group_detach(struct perf_event *event)
1889 {
1890         struct perf_event *sibling, *tmp;
1891         struct perf_event_context *ctx = event->ctx;
1892
1893         lockdep_assert_held(&ctx->lock);
1894
1895         /*
1896          * We can have double detach due to exit/hot-unplug + close.
1897          */
1898         if (!(event->attach_state & PERF_ATTACH_GROUP))
1899                 return;
1900
1901         event->attach_state &= ~PERF_ATTACH_GROUP;
1902
1903         /*
1904          * If this is a sibling, remove it from its group.
1905          */
1906         if (event->group_leader != event) {
1907                 list_del_init(&event->sibling_list);
1908                 event->group_leader->nr_siblings--;
1909                 goto out;
1910         }
1911
1912         /*
1913          * If this was a group event with sibling events then
1914          * upgrade the siblings to singleton events by adding them
1915          * to whatever list we are on.
1916          */
1917         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, sibling_list) {
1918
1919                 sibling->group_leader = sibling;
1920                 list_del_init(&sibling->sibling_list);
1921
1922                 /* Inherit group flags from the previous leader */
1923                 sibling->group_caps = event->group_caps;
1924
1925                 if (!RB_EMPTY_NODE(&event->group_node)) {
1926                         add_event_to_groups(sibling, event->ctx);
1927
1928                         if (sibling->state == PERF_EVENT_STATE_ACTIVE) {
1929                                 struct list_head *list = sibling->attr.pinned ?
1930                                         &ctx->pinned_active : &ctx->flexible_active;
1931
1932                                 list_add_tail(&sibling->active_list, list);
1933                         }
1934                 }
1935
1936                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1937         }
1938
1939 out:
1940         perf_event__header_size(event->group_leader);
1941
1942         for_each_sibling_event(tmp, event->group_leader)
1943                 perf_event__header_size(tmp);
1944 }
1945
1946 static bool is_orphaned_event(struct perf_event *event)
1947 {
1948         return event->state == PERF_EVENT_STATE_DEAD;
1949 }
1950
1951 static inline int __pmu_filter_match(struct perf_event *event)
1952 {
1953         struct pmu *pmu = event->pmu;
1954         return pmu->filter_match ? pmu->filter_match(event) : 1;
1955 }
1956
1957 /*
1958  * Check whether we should attempt to schedule an event group based on
1959  * PMU-specific filtering. An event group can consist of HW and SW events,
1960  * potentially with a SW leader, so we must check all the filters, to
1961  * determine whether a group is schedulable:
1962  */
1963 static inline int pmu_filter_match(struct perf_event *event)
1964 {
1965         struct perf_event *sibling;
1966
1967         if (!__pmu_filter_match(event))
1968                 return 0;
1969
1970         for_each_sibling_event(sibling, event) {
1971                 if (!__pmu_filter_match(sibling))
1972                         return 0;
1973         }
1974
1975         return 1;
1976 }
1977
1978 static inline int
1979 event_filter_match(struct perf_event *event)
1980 {
1981         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1982                perf_cgroup_match(event) && pmu_filter_match(event);
1983 }
1984
1985 static void
1986 event_sched_out(struct perf_event *event,
1987                   struct perf_cpu_context *cpuctx,
1988                   struct perf_event_context *ctx)
1989 {
1990         enum perf_event_state state = PERF_EVENT_STATE_INACTIVE;
1991
1992         WARN_ON_ONCE(event->ctx != ctx);
1993         lockdep_assert_held(&ctx->lock);
1994
1995         if (event->state != PERF_EVENT_STATE_ACTIVE)
1996                 return;
1997
1998         /*
1999          * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2000          * we can schedule events _OUT_ individually through things like
2001          * __perf_remove_from_context().
2002          */
2003         list_del_init(&event->active_list);
2004
2005         perf_pmu_disable(event->pmu);
2006
2007         event->pmu->del(event, 0);
2008         event->oncpu = -1;
2009
2010         if (event->pending_disable) {
2011                 event->pending_disable = 0;
2012                 state = PERF_EVENT_STATE_OFF;
2013         }
2014         perf_event_set_state(event, state);
2015
2016         if (!is_software_event(event))
2017                 cpuctx->active_oncpu--;
2018         if (!--ctx->nr_active)
2019                 perf_event_ctx_deactivate(ctx);
2020         if (event->attr.freq && event->attr.sample_freq)
2021                 ctx->nr_freq--;
2022         if (event->attr.exclusive || !cpuctx->active_oncpu)
2023                 cpuctx->exclusive = 0;
2024
2025         perf_pmu_enable(event->pmu);
2026 }
2027
2028 static void
2029 group_sched_out(struct perf_event *group_event,
2030                 struct perf_cpu_context *cpuctx,
2031                 struct perf_event_context *ctx)
2032 {
2033         struct perf_event *event;
2034
2035         if (group_event->state != PERF_EVENT_STATE_ACTIVE)
2036                 return;
2037
2038         perf_pmu_disable(ctx->pmu);
2039
2040         event_sched_out(group_event, cpuctx, ctx);
2041
2042         /*
2043          * Schedule out siblings (if any):
2044          */
2045         for_each_sibling_event(event, group_event)
2046                 event_sched_out(event, cpuctx, ctx);
2047
2048         perf_pmu_enable(ctx->pmu);
2049
2050         if (group_event->attr.exclusive)
2051                 cpuctx->exclusive = 0;
2052 }
2053
2054 #define DETACH_GROUP    0x01UL
2055
2056 /*
2057  * Cross CPU call to remove a performance event
2058  *
2059  * We disable the event on the hardware level first. After that we
2060  * remove it from the context list.
2061  */
2062 static void
2063 __perf_remove_from_context(struct perf_event *event,
2064                            struct perf_cpu_context *cpuctx,
2065                            struct perf_event_context *ctx,
2066                            void *info)
2067 {
2068         unsigned long flags = (unsigned long)info;
2069
2070         if (ctx->is_active & EVENT_TIME) {
2071                 update_context_time(ctx);
2072                 update_cgrp_time_from_cpuctx(cpuctx);
2073         }
2074
2075         event_sched_out(event, cpuctx, ctx);
2076         if (flags & DETACH_GROUP)
2077                 perf_group_detach(event);
2078         list_del_event(event, ctx);
2079
2080         if (!ctx->nr_events && ctx->is_active) {
2081                 ctx->is_active = 0;
2082                 if (ctx->task) {
2083                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2084                         cpuctx->task_ctx = NULL;
2085                 }
2086         }
2087 }
2088
2089 /*
2090  * Remove the event from a task's (or a CPU's) list of events.
2091  *
2092  * If event->ctx is a cloned context, callers must make sure that
2093  * every task struct that event->ctx->task could possibly point to
2094  * remains valid.  This is OK when called from perf_release since
2095  * that only calls us on the top-level context, which can't be a clone.
2096  * When called from perf_event_exit_task, it's OK because the
2097  * context has been detached from its task.
2098  */
2099 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
2100 {
2101         struct perf_event_context *ctx = event->ctx;
2102
2103         lockdep_assert_held(&ctx->mutex);
2104
2105         event_function_call(event, __perf_remove_from_context, (void *)flags);
2106
2107         /*
2108          * The above event_function_call() can NO-OP when it hits
2109          * TASK_TOMBSTONE. In that case we must already have been detached
2110          * from the context (by perf_event_exit_event()) but the grouping
2111          * might still be in-tact.
2112          */
2113         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
2114         if ((flags & DETACH_GROUP) &&
2115             (event->attach_state & PERF_ATTACH_GROUP)) {
2116                 /*
2117                  * Since in that case we cannot possibly be scheduled, simply
2118                  * detach now.
2119                  */
2120                 raw_spin_lock_irq(&ctx->lock);
2121                 perf_group_detach(event);
2122                 raw_spin_unlock_irq(&ctx->lock);
2123         }
2124 }
2125
2126 /*
2127  * Cross CPU call to disable a performance event
2128  */
2129 static void __perf_event_disable(struct perf_event *event,
2130                                  struct perf_cpu_context *cpuctx,
2131                                  struct perf_event_context *ctx,
2132                                  void *info)
2133 {
2134         if (event->state < PERF_EVENT_STATE_INACTIVE)
2135                 return;
2136
2137         if (ctx->is_active & EVENT_TIME) {
2138                 update_context_time(ctx);
2139                 update_cgrp_time_from_event(event);
2140         }
2141
2142         if (event == event->group_leader)
2143                 group_sched_out(event, cpuctx, ctx);
2144         else
2145                 event_sched_out(event, cpuctx, ctx);
2146
2147         perf_event_set_state(event, PERF_EVENT_STATE_OFF);
2148 }
2149
2150 /*
2151  * Disable a event.
2152  *
2153  * If event->ctx is a cloned context, callers must make sure that
2154  * every task struct that event->ctx->task could possibly point to
2155  * remains valid.  This condition is satisifed when called through
2156  * perf_event_for_each_child or perf_event_for_each because they
2157  * hold the top-level event's child_mutex, so any descendant that
2158  * goes to exit will block in perf_event_exit_event().
2159  *
2160  * When called from perf_pending_event it's OK because event->ctx
2161  * is the current context on this CPU and preemption is disabled,
2162  * hence we can't get into perf_event_task_sched_out for this context.
2163  */
2164 static void _perf_event_disable(struct perf_event *event)
2165 {
2166         struct perf_event_context *ctx = event->ctx;
2167
2168         raw_spin_lock_irq(&ctx->lock);
2169         if (event->state <= PERF_EVENT_STATE_OFF) {
2170                 raw_spin_unlock_irq(&ctx->lock);
2171                 return;
2172         }
2173         raw_spin_unlock_irq(&ctx->lock);
2174
2175         event_function_call(event, __perf_event_disable, NULL);
2176 }
2177
2178 void perf_event_disable_local(struct perf_event *event)
2179 {
2180         event_function_local(event, __perf_event_disable, NULL);
2181 }
2182
2183 /*
2184  * Strictly speaking kernel users cannot create groups and therefore this
2185  * interface does not need the perf_event_ctx_lock() magic.
2186  */
2187 void perf_event_disable(struct perf_event *event)
2188 {
2189         struct perf_event_context *ctx;
2190
2191         ctx = perf_event_ctx_lock(event);
2192         _perf_event_disable(event);
2193         perf_event_ctx_unlock(event, ctx);
2194 }
2195 EXPORT_SYMBOL_GPL(perf_event_disable);
2196
2197 void perf_event_disable_inatomic(struct perf_event *event)
2198 {
2199         event->pending_disable = 1;
2200         irq_work_queue(&event->pending);
2201 }
2202
2203 static void perf_set_shadow_time(struct perf_event *event,
2204                                  struct perf_event_context *ctx)
2205 {
2206         /*
2207          * use the correct time source for the time snapshot
2208          *
2209          * We could get by without this by leveraging the
2210          * fact that to get to this function, the caller
2211          * has most likely already called update_context_time()
2212          * and update_cgrp_time_xx() and thus both timestamp
2213          * are identical (or very close). Given that tstamp is,
2214          * already adjusted for cgroup, we could say that:
2215          *    tstamp - ctx->timestamp
2216          * is equivalent to
2217          *    tstamp - cgrp->timestamp.
2218          *
2219          * Then, in perf_output_read(), the calculation would
2220          * work with no changes because:
2221          * - event is guaranteed scheduled in
2222          * - no scheduled out in between
2223          * - thus the timestamp would be the same
2224          *
2225          * But this is a bit hairy.
2226          *
2227          * So instead, we have an explicit cgroup call to remain
2228          * within the time time source all along. We believe it
2229          * is cleaner and simpler to understand.
2230          */
2231         if (is_cgroup_event(event))
2232                 perf_cgroup_set_shadow_time(event, event->tstamp);
2233         else
2234                 event->shadow_ctx_time = event->tstamp - ctx->timestamp;
2235 }
2236
2237 #define MAX_INTERRUPTS (~0ULL)
2238
2239 static void perf_log_throttle(struct perf_event *event, int enable);
2240 static void perf_log_itrace_start(struct perf_event *event);
2241
2242 static int
2243 event_sched_in(struct perf_event *event,
2244                  struct perf_cpu_context *cpuctx,
2245                  struct perf_event_context *ctx)
2246 {
2247         int ret = 0;
2248
2249         lockdep_assert_held(&ctx->lock);
2250
2251         if (event->state <= PERF_EVENT_STATE_OFF)
2252                 return 0;
2253
2254         WRITE_ONCE(event->oncpu, smp_processor_id());
2255         /*
2256          * Order event::oncpu write to happen before the ACTIVE state is
2257          * visible. This allows perf_event_{stop,read}() to observe the correct
2258          * ->oncpu if it sees ACTIVE.
2259          */
2260         smp_wmb();
2261         perf_event_set_state(event, PERF_EVENT_STATE_ACTIVE);
2262
2263         /*
2264          * Unthrottle events, since we scheduled we might have missed several
2265          * ticks already, also for a heavily scheduling task there is little
2266          * guarantee it'll get a tick in a timely manner.
2267          */
2268         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2269                 perf_log_throttle(event, 1);
2270                 event->hw.interrupts = 0;
2271         }
2272
2273         perf_pmu_disable(event->pmu);
2274
2275         perf_set_shadow_time(event, ctx);
2276
2277         perf_log_itrace_start(event);
2278
2279         if (event->pmu->add(event, PERF_EF_START)) {
2280                 perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2281                 event->oncpu = -1;
2282                 ret = -EAGAIN;
2283                 goto out;
2284         }
2285
2286         if (!is_software_event(event))
2287                 cpuctx->active_oncpu++;
2288         if (!ctx->nr_active++)
2289                 perf_event_ctx_activate(ctx);
2290         if (event->attr.freq && event->attr.sample_freq)
2291                 ctx->nr_freq++;
2292
2293         if (event->attr.exclusive)
2294                 cpuctx->exclusive = 1;
2295
2296 out:
2297         perf_pmu_enable(event->pmu);
2298
2299         return ret;
2300 }
2301
2302 static int
2303 group_sched_in(struct perf_event *group_event,
2304                struct perf_cpu_context *cpuctx,
2305                struct perf_event_context *ctx)
2306 {
2307         struct perf_event *event, *partial_group = NULL;
2308         struct pmu *pmu = ctx->pmu;
2309
2310         if (group_event->state == PERF_EVENT_STATE_OFF)
2311                 return 0;
2312
2313         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2314
2315         if (event_sched_in(group_event, cpuctx, ctx)) {
2316                 pmu->cancel_txn(pmu);
2317                 perf_mux_hrtimer_restart(cpuctx);
2318                 return -EAGAIN;
2319         }
2320
2321         /*
2322          * Schedule in siblings as one group (if any):
2323          */
2324         for_each_sibling_event(event, group_event) {
2325                 if (event_sched_in(event, cpuctx, ctx)) {
2326                         partial_group = event;
2327                         goto group_error;
2328                 }
2329         }
2330
2331         if (!pmu->commit_txn(pmu))
2332                 return 0;
2333
2334 group_error:
2335         /*
2336          * Groups can be scheduled in as one unit only, so undo any
2337          * partial group before returning:
2338          * The events up to the failed event are scheduled out normally.
2339          */
2340         for_each_sibling_event(event, group_event) {
2341                 if (event == partial_group)
2342                         break;
2343
2344                 event_sched_out(event, cpuctx, ctx);
2345         }
2346         event_sched_out(group_event, cpuctx, ctx);
2347
2348         pmu->cancel_txn(pmu);
2349
2350         perf_mux_hrtimer_restart(cpuctx);
2351
2352         return -EAGAIN;
2353 }
2354
2355 /*
2356  * Work out whether we can put this event group on the CPU now.
2357  */
2358 static int group_can_go_on(struct perf_event *event,
2359                            struct perf_cpu_context *cpuctx,
2360                            int can_add_hw)
2361 {
2362         /*
2363          * Groups consisting entirely of software events can always go on.
2364          */
2365         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2366                 return 1;
2367         /*
2368          * If an exclusive group is already on, no other hardware
2369          * events can go on.
2370          */
2371         if (cpuctx->exclusive)
2372                 return 0;
2373         /*
2374          * If this group is exclusive and there are already
2375          * events on the CPU, it can't go on.
2376          */
2377         if (event->attr.exclusive && cpuctx->active_oncpu)
2378                 return 0;
2379         /*
2380          * Otherwise, try to add it if all previous groups were able
2381          * to go on.
2382          */
2383         return can_add_hw;
2384 }
2385
2386 static void add_event_to_ctx(struct perf_event *event,
2387                                struct perf_event_context *ctx)
2388 {
2389         list_add_event(event, ctx);
2390         perf_group_attach(event);
2391 }
2392
2393 static void ctx_sched_out(struct perf_event_context *ctx,
2394                           struct perf_cpu_context *cpuctx,
2395                           enum event_type_t event_type);
2396 static void
2397 ctx_sched_in(struct perf_event_context *ctx,
2398              struct perf_cpu_context *cpuctx,
2399              enum event_type_t event_type,
2400              struct task_struct *task);
2401
2402 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2403                                struct perf_event_context *ctx,
2404                                enum event_type_t event_type)
2405 {
2406         if (!cpuctx->task_ctx)
2407                 return;
2408
2409         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2410                 return;
2411
2412         ctx_sched_out(ctx, cpuctx, event_type);
2413 }
2414
2415 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2416                                 struct perf_event_context *ctx,
2417                                 struct task_struct *task)
2418 {
2419         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2420         if (ctx)
2421                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2422         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2423         if (ctx)
2424                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2425 }
2426
2427 /*
2428  * We want to maintain the following priority of scheduling:
2429  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2430  *  - task pinned (EVENT_PINNED)
2431  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2432  *  - task flexible (EVENT_FLEXIBLE).
2433  *
2434  * In order to avoid unscheduling and scheduling back in everything every
2435  * time an event is added, only do it for the groups of equal priority and
2436  * below.
2437  *
2438  * This can be called after a batch operation on task events, in which case
2439  * event_type is a bit mask of the types of events involved. For CPU events,
2440  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2441  */
2442 static void ctx_resched(struct perf_cpu_context *cpuctx,
2443                         struct perf_event_context *task_ctx,
2444                         enum event_type_t event_type)
2445 {
2446         enum event_type_t ctx_event_type;
2447         bool cpu_event = !!(event_type & EVENT_CPU);
2448
2449         /*
2450          * If pinned groups are involved, flexible groups also need to be
2451          * scheduled out.
2452          */
2453         if (event_type & EVENT_PINNED)
2454                 event_type |= EVENT_FLEXIBLE;
2455
2456         ctx_event_type = event_type & EVENT_ALL;
2457
2458         perf_pmu_disable(cpuctx->ctx.pmu);
2459         if (task_ctx)
2460                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2461
2462         /*
2463          * Decide which cpu ctx groups to schedule out based on the types
2464          * of events that caused rescheduling:
2465          *  - EVENT_CPU: schedule out corresponding groups;
2466          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2467          *  - otherwise, do nothing more.
2468          */
2469         if (cpu_event)
2470                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2471         else if (ctx_event_type & EVENT_PINNED)
2472                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2473
2474         perf_event_sched_in(cpuctx, task_ctx, current);
2475         perf_pmu_enable(cpuctx->ctx.pmu);
2476 }
2477
2478 /*
2479  * Cross CPU call to install and enable a performance event
2480  *
2481  * Very similar to remote_function() + event_function() but cannot assume that
2482  * things like ctx->is_active and cpuctx->task_ctx are set.
2483  */
2484 static int  __perf_install_in_context(void *info)
2485 {
2486         struct perf_event *event = info;
2487         struct perf_event_context *ctx = event->ctx;
2488         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2489         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2490         bool reprogram = true;
2491         int ret = 0;
2492
2493         raw_spin_lock(&cpuctx->ctx.lock);
2494         if (ctx->task) {
2495                 raw_spin_lock(&ctx->lock);
2496                 task_ctx = ctx;
2497
2498                 reprogram = (ctx->task == current);
2499
2500                 /*
2501                  * If the task is running, it must be running on this CPU,
2502                  * otherwise we cannot reprogram things.
2503                  *
2504                  * If its not running, we don't care, ctx->lock will
2505                  * serialize against it becoming runnable.
2506                  */
2507                 if (task_curr(ctx->task) && !reprogram) {
2508                         ret = -ESRCH;
2509                         goto unlock;
2510                 }
2511
2512                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2513         } else if (task_ctx) {
2514                 raw_spin_lock(&task_ctx->lock);
2515         }
2516
2517 #ifdef CONFIG_CGROUP_PERF
2518         if (is_cgroup_event(event)) {
2519                 /*
2520                  * If the current cgroup doesn't match the event's
2521                  * cgroup, we should not try to schedule it.
2522                  */
2523                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2524                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2525                                         event->cgrp->css.cgroup);
2526         }
2527 #endif
2528
2529         if (reprogram) {
2530                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2531                 add_event_to_ctx(event, ctx);
2532                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2533         } else {
2534                 add_event_to_ctx(event, ctx);
2535         }
2536
2537 unlock:
2538         perf_ctx_unlock(cpuctx, task_ctx);
2539
2540         return ret;
2541 }
2542
2543 /*
2544  * Attach a performance event to a context.
2545  *
2546  * Very similar to event_function_call, see comment there.
2547  */
2548 static void
2549 perf_install_in_context(struct perf_event_context *ctx,
2550                         struct perf_event *event,
2551                         int cpu)
2552 {
2553         struct task_struct *task = READ_ONCE(ctx->task);
2554
2555         lockdep_assert_held(&ctx->mutex);
2556
2557         if (event->cpu != -1)
2558                 event->cpu = cpu;
2559
2560         /*
2561          * Ensures that if we can observe event->ctx, both the event and ctx
2562          * will be 'complete'. See perf_iterate_sb_cpu().
2563          */
2564         smp_store_release(&event->ctx, ctx);
2565
2566         if (!task) {
2567                 cpu_function_call(cpu, __perf_install_in_context, event);
2568                 return;
2569         }
2570
2571         /*
2572          * Should not happen, we validate the ctx is still alive before calling.
2573          */
2574         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2575                 return;
2576
2577         /*
2578          * Installing events is tricky because we cannot rely on ctx->is_active
2579          * to be set in case this is the nr_events 0 -> 1 transition.
2580          *
2581          * Instead we use task_curr(), which tells us if the task is running.
2582          * However, since we use task_curr() outside of rq::lock, we can race
2583          * against the actual state. This means the result can be wrong.
2584          *
2585          * If we get a false positive, we retry, this is harmless.
2586          *
2587          * If we get a false negative, things are complicated. If we are after
2588          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2589          * value must be correct. If we're before, it doesn't matter since
2590          * perf_event_context_sched_in() will program the counter.
2591          *
2592          * However, this hinges on the remote context switch having observed
2593          * our task->perf_event_ctxp[] store, such that it will in fact take
2594          * ctx::lock in perf_event_context_sched_in().
2595          *
2596          * We do this by task_function_call(), if the IPI fails to hit the task
2597          * we know any future context switch of task must see the
2598          * perf_event_ctpx[] store.
2599          */
2600
2601         /*
2602          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2603          * task_cpu() load, such that if the IPI then does not find the task
2604          * running, a future context switch of that task must observe the
2605          * store.
2606          */
2607         smp_mb();
2608 again:
2609         if (!task_function_call(task, __perf_install_in_context, event))
2610                 return;
2611
2612         raw_spin_lock_irq(&ctx->lock);
2613         task = ctx->task;
2614         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2615                 /*
2616                  * Cannot happen because we already checked above (which also
2617                  * cannot happen), and we hold ctx->mutex, which serializes us
2618                  * against perf_event_exit_task_context().
2619                  */
2620                 raw_spin_unlock_irq(&ctx->lock);
2621                 return;
2622         }
2623         /*
2624          * If the task is not running, ctx->lock will avoid it becoming so,
2625          * thus we can safely install the event.
2626          */
2627         if (task_curr(task)) {
2628                 raw_spin_unlock_irq(&ctx->lock);
2629                 goto again;
2630         }
2631         add_event_to_ctx(event, ctx);
2632         raw_spin_unlock_irq(&ctx->lock);
2633 }
2634
2635 /*
2636  * Cross CPU call to enable a performance event
2637  */
2638 static void __perf_event_enable(struct perf_event *event,
2639                                 struct perf_cpu_context *cpuctx,
2640                                 struct perf_event_context *ctx,
2641                                 void *info)
2642 {
2643         struct perf_event *leader = event->group_leader;
2644         struct perf_event_context *task_ctx;
2645
2646         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2647             event->state <= PERF_EVENT_STATE_ERROR)
2648                 return;
2649
2650         if (ctx->is_active)
2651                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2652
2653         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
2654
2655         if (!ctx->is_active)
2656                 return;
2657
2658         if (!event_filter_match(event)) {
2659                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2660                 return;
2661         }
2662
2663         /*
2664          * If the event is in a group and isn't the group leader,
2665          * then don't put it on unless the group is on.
2666          */
2667         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2668                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2669                 return;
2670         }
2671
2672         task_ctx = cpuctx->task_ctx;
2673         if (ctx->task)
2674                 WARN_ON_ONCE(task_ctx != ctx);
2675
2676         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2677 }
2678
2679 /*
2680  * Enable a event.
2681  *
2682  * If event->ctx is a cloned context, callers must make sure that
2683  * every task struct that event->ctx->task could possibly point to
2684  * remains valid.  This condition is satisfied when called through
2685  * perf_event_for_each_child or perf_event_for_each as described
2686  * for perf_event_disable.
2687  */
2688 static void _perf_event_enable(struct perf_event *event)
2689 {
2690         struct perf_event_context *ctx = event->ctx;
2691
2692         raw_spin_lock_irq(&ctx->lock);
2693         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2694             event->state <  PERF_EVENT_STATE_ERROR) {
2695                 raw_spin_unlock_irq(&ctx->lock);
2696                 return;
2697         }
2698
2699         /*
2700          * If the event is in error state, clear that first.
2701          *
2702          * That way, if we see the event in error state below, we know that it
2703          * has gone back into error state, as distinct from the task having
2704          * been scheduled away before the cross-call arrived.
2705          */
2706         if (event->state == PERF_EVENT_STATE_ERROR)
2707                 event->state = PERF_EVENT_STATE_OFF;
2708         raw_spin_unlock_irq(&ctx->lock);
2709
2710         event_function_call(event, __perf_event_enable, NULL);
2711 }
2712
2713 /*
2714  * See perf_event_disable();
2715  */
2716 void perf_event_enable(struct perf_event *event)
2717 {
2718         struct perf_event_context *ctx;
2719
2720         ctx = perf_event_ctx_lock(event);
2721         _perf_event_enable(event);
2722         perf_event_ctx_unlock(event, ctx);
2723 }
2724 EXPORT_SYMBOL_GPL(perf_event_enable);
2725
2726 struct stop_event_data {
2727         struct perf_event       *event;
2728         unsigned int            restart;
2729 };
2730
2731 static int __perf_event_stop(void *info)
2732 {
2733         struct stop_event_data *sd = info;
2734         struct perf_event *event = sd->event;
2735
2736         /* if it's already INACTIVE, do nothing */
2737         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2738                 return 0;
2739
2740         /* matches smp_wmb() in event_sched_in() */
2741         smp_rmb();
2742
2743         /*
2744          * There is a window with interrupts enabled before we get here,
2745          * so we need to check again lest we try to stop another CPU's event.
2746          */
2747         if (READ_ONCE(event->oncpu) != smp_processor_id())
2748                 return -EAGAIN;
2749
2750         event->pmu->stop(event, PERF_EF_UPDATE);
2751
2752         /*
2753          * May race with the actual stop (through perf_pmu_output_stop()),
2754          * but it is only used for events with AUX ring buffer, and such
2755          * events will refuse to restart because of rb::aux_mmap_count==0,
2756          * see comments in perf_aux_output_begin().
2757          *
2758          * Since this is happening on a event-local CPU, no trace is lost
2759          * while restarting.
2760          */
2761         if (sd->restart)
2762                 event->pmu->start(event, 0);
2763
2764         return 0;
2765 }
2766
2767 static int perf_event_stop(struct perf_event *event, int restart)
2768 {
2769         struct stop_event_data sd = {
2770                 .event          = event,
2771                 .restart        = restart,
2772         };
2773         int ret = 0;
2774
2775         do {
2776                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2777                         return 0;
2778
2779                 /* matches smp_wmb() in event_sched_in() */
2780                 smp_rmb();
2781
2782                 /*
2783                  * We only want to restart ACTIVE events, so if the event goes
2784                  * inactive here (event->oncpu==-1), there's nothing more to do;
2785                  * fall through with ret==-ENXIO.
2786                  */
2787                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2788                                         __perf_event_stop, &sd);
2789         } while (ret == -EAGAIN);
2790
2791         return ret;
2792 }
2793
2794 /*
2795  * In order to contain the amount of racy and tricky in the address filter
2796  * configuration management, it is a two part process:
2797  *
2798  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2799  *      we update the addresses of corresponding vmas in
2800  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2801  * (p2) when an event is scheduled in (pmu::add), it calls
2802  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2803  *      if the generation has changed since the previous call.
2804  *
2805  * If (p1) happens while the event is active, we restart it to force (p2).
2806  *
2807  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2808  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2809  *     ioctl;
2810  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2811  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2812  *     for reading;
2813  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2814  *     of exec.
2815  */
2816 void perf_event_addr_filters_sync(struct perf_event *event)
2817 {
2818         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2819
2820         if (!has_addr_filter(event))
2821                 return;
2822
2823         raw_spin_lock(&ifh->lock);
2824         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2825                 event->pmu->addr_filters_sync(event);
2826                 event->hw.addr_filters_gen = event->addr_filters_gen;
2827         }
2828         raw_spin_unlock(&ifh->lock);
2829 }
2830 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2831
2832 static int _perf_event_refresh(struct perf_event *event, int refresh)
2833 {
2834         /*
2835          * not supported on inherited events
2836          */
2837         if (event->attr.inherit || !is_sampling_event(event))
2838                 return -EINVAL;
2839
2840         atomic_add(refresh, &event->event_limit);
2841         _perf_event_enable(event);
2842
2843         return 0;
2844 }
2845
2846 /*
2847  * See perf_event_disable()
2848  */
2849 int perf_event_refresh(struct perf_event *event, int refresh)
2850 {
2851         struct perf_event_context *ctx;
2852         int ret;
2853
2854         ctx = perf_event_ctx_lock(event);
2855         ret = _perf_event_refresh(event, refresh);
2856         perf_event_ctx_unlock(event, ctx);
2857
2858         return ret;
2859 }
2860 EXPORT_SYMBOL_GPL(perf_event_refresh);
2861
2862 static int perf_event_modify_breakpoint(struct perf_event *bp,
2863                                          struct perf_event_attr *attr)
2864 {
2865         int err;
2866
2867         _perf_event_disable(bp);
2868
2869         err = modify_user_hw_breakpoint_check(bp, attr, true);
2870         if (err) {
2871                 if (!bp->attr.disabled)
2872                         _perf_event_enable(bp);
2873
2874                 return err;
2875         }
2876
2877         if (!attr->disabled)
2878                 _perf_event_enable(bp);
2879         return 0;
2880 }
2881
2882 static int perf_event_modify_attr(struct perf_event *event,
2883                                   struct perf_event_attr *attr)
2884 {
2885         if (event->attr.type != attr->type)
2886                 return -EINVAL;
2887
2888         switch (event->attr.type) {
2889         case PERF_TYPE_BREAKPOINT:
2890                 return perf_event_modify_breakpoint(event, attr);
2891         default:
2892                 /* Place holder for future additions. */
2893                 return -EOPNOTSUPP;
2894         }
2895 }
2896
2897 static void ctx_sched_out(struct perf_event_context *ctx,
2898                           struct perf_cpu_context *cpuctx,
2899                           enum event_type_t event_type)
2900 {
2901         struct perf_event *event, *tmp;
2902         int is_active = ctx->is_active;
2903
2904         lockdep_assert_held(&ctx->lock);
2905
2906         if (likely(!ctx->nr_events)) {
2907                 /*
2908                  * See __perf_remove_from_context().
2909                  */
2910                 WARN_ON_ONCE(ctx->is_active);
2911                 if (ctx->task)
2912                         WARN_ON_ONCE(cpuctx->task_ctx);
2913                 return;
2914         }
2915
2916         ctx->is_active &= ~event_type;
2917         if (!(ctx->is_active & EVENT_ALL))
2918                 ctx->is_active = 0;
2919
2920         if (ctx->task) {
2921                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2922                 if (!ctx->is_active)
2923                         cpuctx->task_ctx = NULL;
2924         }
2925
2926         /*
2927          * Always update time if it was set; not only when it changes.
2928          * Otherwise we can 'forget' to update time for any but the last
2929          * context we sched out. For example:
2930          *
2931          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2932          *   ctx_sched_out(.event_type = EVENT_PINNED)
2933          *
2934          * would only update time for the pinned events.
2935          */
2936         if (is_active & EVENT_TIME) {
2937                 /* update (and stop) ctx time */
2938                 update_context_time(ctx);
2939                 update_cgrp_time_from_cpuctx(cpuctx);
2940         }
2941
2942         is_active ^= ctx->is_active; /* changed bits */
2943
2944         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2945                 return;
2946
2947         perf_pmu_disable(ctx->pmu);
2948         if (is_active & EVENT_PINNED) {
2949                 list_for_each_entry_safe(event, tmp, &ctx->pinned_active, active_list)
2950                         group_sched_out(event, cpuctx, ctx);
2951         }
2952
2953         if (is_active & EVENT_FLEXIBLE) {
2954                 list_for_each_entry_safe(event, tmp, &ctx->flexible_active, active_list)
2955                         group_sched_out(event, cpuctx, ctx);
2956         }
2957         perf_pmu_enable(ctx->pmu);
2958 }
2959
2960 /*
2961  * Test whether two contexts are equivalent, i.e. whether they have both been
2962  * cloned from the same version of the same context.
2963  *
2964  * Equivalence is measured using a generation number in the context that is
2965  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2966  * and list_del_event().
2967  */
2968 static int context_equiv(struct perf_event_context *ctx1,
2969                          struct perf_event_context *ctx2)
2970 {
2971         lockdep_assert_held(&ctx1->lock);
2972         lockdep_assert_held(&ctx2->lock);
2973
2974         /* Pinning disables the swap optimization */
2975         if (ctx1->pin_count || ctx2->pin_count)
2976                 return 0;
2977
2978         /* If ctx1 is the parent of ctx2 */
2979         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2980                 return 1;
2981
2982         /* If ctx2 is the parent of ctx1 */
2983         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2984                 return 1;
2985
2986         /*
2987          * If ctx1 and ctx2 have the same parent; we flatten the parent
2988          * hierarchy, see perf_event_init_context().
2989          */
2990         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2991                         ctx1->parent_gen == ctx2->parent_gen)
2992                 return 1;
2993
2994         /* Unmatched */
2995         return 0;
2996 }
2997
2998 static void __perf_event_sync_stat(struct perf_event *event,
2999                                      struct perf_event *next_event)
3000 {
3001         u64 value;
3002
3003         if (!event->attr.inherit_stat)
3004                 return;
3005
3006         /*
3007          * Update the event value, we cannot use perf_event_read()
3008          * because we're in the middle of a context switch and have IRQs
3009          * disabled, which upsets smp_call_function_single(), however
3010          * we know the event must be on the current CPU, therefore we
3011          * don't need to use it.
3012          */
3013         if (event->state == PERF_EVENT_STATE_ACTIVE)
3014                 event->pmu->read(event);
3015
3016         perf_event_update_time(event);
3017
3018         /*
3019          * In order to keep per-task stats reliable we need to flip the event
3020          * values when we flip the contexts.
3021          */
3022         value = local64_read(&next_event->count);
3023         value = local64_xchg(&event->count, value);
3024         local64_set(&next_event->count, value);
3025
3026         swap(event->total_time_enabled, next_event->total_time_enabled);
3027         swap(event->total_time_running, next_event->total_time_running);
3028
3029         /*
3030          * Since we swizzled the values, update the user visible data too.
3031          */
3032         perf_event_update_userpage(event);
3033         perf_event_update_userpage(next_event);
3034 }
3035
3036 static void perf_event_sync_stat(struct perf_event_context *ctx,
3037                                    struct perf_event_context *next_ctx)
3038 {
3039         struct perf_event *event, *next_event;
3040
3041         if (!ctx->nr_stat)
3042                 return;
3043
3044         update_context_time(ctx);
3045
3046         event = list_first_entry(&ctx->event_list,
3047                                    struct perf_event, event_entry);
3048
3049         next_event = list_first_entry(&next_ctx->event_list,
3050                                         struct perf_event, event_entry);
3051
3052         while (&event->event_entry != &ctx->event_list &&
3053                &next_event->event_entry != &next_ctx->event_list) {
3054
3055                 __perf_event_sync_stat(event, next_event);
3056
3057                 event = list_next_entry(event, event_entry);
3058                 next_event = list_next_entry(next_event, event_entry);
3059         }
3060 }
3061
3062 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
3063                                          struct task_struct *next)
3064 {
3065         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
3066         struct perf_event_context *next_ctx;
3067         struct perf_event_context *parent, *next_parent;
3068         struct perf_cpu_context *cpuctx;
3069         int do_switch = 1;
3070
3071         if (likely(!ctx))
3072                 return;
3073
3074         cpuctx = __get_cpu_context(ctx);
3075         if (!cpuctx->task_ctx)
3076                 return;
3077
3078         rcu_read_lock();
3079         next_ctx = next->perf_event_ctxp[ctxn];
3080         if (!next_ctx)
3081                 goto unlock;
3082
3083         parent = rcu_dereference(ctx->parent_ctx);
3084         next_parent = rcu_dereference(next_ctx->parent_ctx);
3085
3086         /* If neither context have a parent context; they cannot be clones. */
3087         if (!parent && !next_parent)
3088                 goto unlock;
3089
3090         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
3091                 /*
3092                  * Looks like the two contexts are clones, so we might be
3093                  * able to optimize the context switch.  We lock both
3094                  * contexts and check that they are clones under the
3095                  * lock (including re-checking that neither has been
3096                  * uncloned in the meantime).  It doesn't matter which
3097                  * order we take the locks because no other cpu could
3098                  * be trying to lock both of these tasks.
3099                  */
3100                 raw_spin_lock(&ctx->lock);
3101                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3102                 if (context_equiv(ctx, next_ctx)) {
3103                         WRITE_ONCE(ctx->task, next);
3104                         WRITE_ONCE(next_ctx->task, task);
3105
3106                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3107
3108                         /*
3109                          * RCU_INIT_POINTER here is safe because we've not
3110                          * modified the ctx and the above modification of
3111                          * ctx->task and ctx->task_ctx_data are immaterial
3112                          * since those values are always verified under
3113                          * ctx->lock which we're now holding.
3114                          */
3115                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3116                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3117
3118                         do_switch = 0;
3119
3120                         perf_event_sync_stat(ctx, next_ctx);
3121                 }
3122                 raw_spin_unlock(&next_ctx->lock);
3123                 raw_spin_unlock(&ctx->lock);
3124         }
3125 unlock:
3126         rcu_read_unlock();
3127
3128         if (do_switch) {
3129                 raw_spin_lock(&ctx->lock);
3130                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3131                 raw_spin_unlock(&ctx->lock);
3132         }
3133 }
3134
3135 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3136
3137 void perf_sched_cb_dec(struct pmu *pmu)
3138 {
3139         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3140
3141         this_cpu_dec(perf_sched_cb_usages);
3142
3143         if (!--cpuctx->sched_cb_usage)
3144                 list_del(&cpuctx->sched_cb_entry);
3145 }
3146
3147
3148 void perf_sched_cb_inc(struct pmu *pmu)
3149 {
3150         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3151
3152         if (!cpuctx->sched_cb_usage++)
3153                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3154
3155         this_cpu_inc(perf_sched_cb_usages);
3156 }
3157
3158 /*
3159  * This function provides the context switch callback to the lower code
3160  * layer. It is invoked ONLY when the context switch callback is enabled.
3161  *
3162  * This callback is relevant even to per-cpu events; for example multi event
3163  * PEBS requires this to provide PID/TID information. This requires we flush
3164  * all queued PEBS records before we context switch to a new task.
3165  */
3166 static void perf_pmu_sched_task(struct task_struct *prev,
3167                                 struct task_struct *next,
3168                                 bool sched_in)
3169 {
3170         struct perf_cpu_context *cpuctx;
3171         struct pmu *pmu;
3172
3173         if (prev == next)
3174                 return;
3175
3176         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3177                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3178
3179                 if (WARN_ON_ONCE(!pmu->sched_task))
3180                         continue;
3181
3182                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3183                 perf_pmu_disable(pmu);
3184
3185                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3186
3187                 perf_pmu_enable(pmu);
3188                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3189         }
3190 }
3191
3192 static void perf_event_switch(struct task_struct *task,
3193                               struct task_struct *next_prev, bool sched_in);
3194
3195 #define for_each_task_context_nr(ctxn)                                  \
3196         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3197
3198 /*
3199  * Called from scheduler to remove the events of the current task,
3200  * with interrupts disabled.
3201  *
3202  * We stop each event and update the event value in event->count.
3203  *
3204  * This does not protect us against NMI, but disable()
3205  * sets the disabled bit in the control field of event _before_
3206  * accessing the event control register. If a NMI hits, then it will
3207  * not restart the event.
3208  */
3209 void __perf_event_task_sched_out(struct task_struct *task,
3210                                  struct task_struct *next)
3211 {
3212         int ctxn;
3213
3214         if (__this_cpu_read(perf_sched_cb_usages))
3215                 perf_pmu_sched_task(task, next, false);
3216
3217         if (atomic_read(&nr_switch_events))
3218                 perf_event_switch(task, next, false);
3219
3220         for_each_task_context_nr(ctxn)
3221                 perf_event_context_sched_out(task, ctxn, next);
3222
3223         /*
3224          * if cgroup events exist on this CPU, then we need
3225          * to check if we have to switch out PMU state.
3226          * cgroup event are system-wide mode only
3227          */
3228         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3229                 perf_cgroup_sched_out(task, next);
3230 }
3231
3232 /*
3233  * Called with IRQs disabled
3234  */
3235 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3236                               enum event_type_t event_type)
3237 {
3238         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3239 }
3240
3241 static int visit_groups_merge(struct perf_event_groups *groups, int cpu,
3242                               int (*func)(struct perf_event *, void *), void *data)
3243 {
3244         struct perf_event **evt, *evt1, *evt2;
3245         int ret;
3246
3247         evt1 = perf_event_groups_first(groups, -1);
3248         evt2 = perf_event_groups_first(groups, cpu);
3249
3250         while (evt1 || evt2) {
3251                 if (evt1 && evt2) {
3252                         if (evt1->group_index < evt2->group_index)
3253                                 evt = &evt1;
3254                         else
3255                                 evt = &evt2;
3256                 } else if (evt1) {
3257                         evt = &evt1;
3258                 } else {
3259                         evt = &evt2;
3260                 }
3261
3262                 ret = func(*evt, data);
3263                 if (ret)
3264                         return ret;
3265
3266                 *evt = perf_event_groups_next(*evt);
3267         }
3268
3269         return 0;
3270 }
3271
3272 struct sched_in_data {
3273         struct perf_event_context *ctx;
3274         struct perf_cpu_context *cpuctx;
3275         int can_add_hw;
3276 };
3277
3278 static int pinned_sched_in(struct perf_event *event, void *data)
3279 {
3280         struct sched_in_data *sid = data;
3281
3282         if (event->state <= PERF_EVENT_STATE_OFF)
3283                 return 0;
3284
3285         if (!event_filter_match(event))
3286                 return 0;
3287
3288         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3289                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3290                         list_add_tail(&event->active_list, &sid->ctx->pinned_active);
3291         }
3292
3293         /*
3294          * If this pinned group hasn't been scheduled,
3295          * put it in error state.
3296          */
3297         if (event->state == PERF_EVENT_STATE_INACTIVE)
3298                 perf_event_set_state(event, PERF_EVENT_STATE_ERROR);
3299
3300         return 0;
3301 }
3302
3303 static int flexible_sched_in(struct perf_event *event, void *data)
3304 {
3305         struct sched_in_data *sid = data;
3306
3307         if (event->state <= PERF_EVENT_STATE_OFF)
3308                 return 0;
3309
3310         if (!event_filter_match(event))
3311                 return 0;
3312
3313         if (group_can_go_on(event, sid->cpuctx, sid->can_add_hw)) {
3314                 if (!group_sched_in(event, sid->cpuctx, sid->ctx))
3315                         list_add_tail(&event->active_list, &sid->ctx->flexible_active);
3316                 else
3317                         sid->can_add_hw = 0;
3318         }
3319
3320         return 0;
3321 }
3322
3323 static void
3324 ctx_pinned_sched_in(struct perf_event_context *ctx,
3325                     struct perf_cpu_context *cpuctx)
3326 {
3327         struct sched_in_data sid = {
3328                 .ctx = ctx,
3329                 .cpuctx = cpuctx,
3330                 .can_add_hw = 1,
3331         };
3332
3333         visit_groups_merge(&ctx->pinned_groups,
3334                            smp_processor_id(),
3335                            pinned_sched_in, &sid);
3336 }
3337
3338 static void
3339 ctx_flexible_sched_in(struct perf_event_context *ctx,
3340                       struct perf_cpu_context *cpuctx)
3341 {
3342         struct sched_in_data sid = {
3343                 .ctx = ctx,
3344                 .cpuctx = cpuctx,
3345                 .can_add_hw = 1,
3346         };
3347
3348         visit_groups_merge(&ctx->flexible_groups,
3349                            smp_processor_id(),
3350                            flexible_sched_in, &sid);
3351 }
3352
3353 static void
3354 ctx_sched_in(struct perf_event_context *ctx,
3355              struct perf_cpu_context *cpuctx,
3356              enum event_type_t event_type,
3357              struct task_struct *task)
3358 {
3359         int is_active = ctx->is_active;
3360         u64 now;
3361
3362         lockdep_assert_held(&ctx->lock);
3363
3364         if (likely(!ctx->nr_events))
3365                 return;
3366
3367         ctx->is_active |= (event_type | EVENT_TIME);
3368         if (ctx->task) {
3369                 if (!is_active)
3370                         cpuctx->task_ctx = ctx;
3371                 else
3372                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3373         }
3374
3375         is_active ^= ctx->is_active; /* changed bits */
3376
3377         if (is_active & EVENT_TIME) {
3378                 /* start ctx time */
3379                 now = perf_clock();
3380                 ctx->timestamp = now;
3381                 perf_cgroup_set_timestamp(task, ctx);
3382         }
3383
3384         /*
3385          * First go through the list and put on any pinned groups
3386          * in order to give them the best chance of going on.
3387          */
3388         if (is_active & EVENT_PINNED)
3389                 ctx_pinned_sched_in(ctx, cpuctx);
3390
3391         /* Then walk through the lower prio flexible groups */
3392         if (is_active & EVENT_FLEXIBLE)
3393                 ctx_flexible_sched_in(ctx, cpuctx);
3394 }
3395
3396 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3397                              enum event_type_t event_type,
3398                              struct task_struct *task)
3399 {
3400         struct perf_event_context *ctx = &cpuctx->ctx;
3401
3402         ctx_sched_in(ctx, cpuctx, event_type, task);
3403 }
3404
3405 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3406                                         struct task_struct *task)
3407 {
3408         struct perf_cpu_context *cpuctx;
3409
3410         cpuctx = __get_cpu_context(ctx);
3411         if (cpuctx->task_ctx == ctx)
3412                 return;
3413
3414         perf_ctx_lock(cpuctx, ctx);
3415         /*
3416          * We must check ctx->nr_events while holding ctx->lock, such
3417          * that we serialize against perf_install_in_context().
3418          */
3419         if (!ctx->nr_events)
3420                 goto unlock;
3421
3422         perf_pmu_disable(ctx->pmu);
3423         /*
3424          * We want to keep the following priority order:
3425          * cpu pinned (that don't need to move), task pinned,
3426          * cpu flexible, task flexible.
3427          *
3428          * However, if task's ctx is not carrying any pinned
3429          * events, no need to flip the cpuctx's events around.
3430          */
3431         if (!RB_EMPTY_ROOT(&ctx->pinned_groups.tree))
3432                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3433         perf_event_sched_in(cpuctx, ctx, task);
3434         perf_pmu_enable(ctx->pmu);
3435
3436 unlock:
3437         perf_ctx_unlock(cpuctx, ctx);
3438 }
3439
3440 /*
3441  * Called from scheduler to add the events of the current task
3442  * with interrupts disabled.
3443  *
3444  * We restore the event value and then enable it.
3445  *
3446  * This does not protect us against NMI, but enable()
3447  * sets the enabled bit in the control field of event _before_
3448  * accessing the event control register. If a NMI hits, then it will
3449  * keep the event running.
3450  */
3451 void __perf_event_task_sched_in(struct task_struct *prev,
3452                                 struct task_struct *task)
3453 {
3454         struct perf_event_context *ctx;
3455         int ctxn;
3456
3457         /*
3458          * If cgroup events exist on this CPU, then we need to check if we have
3459          * to switch in PMU state; cgroup event are system-wide mode only.
3460          *
3461          * Since cgroup events are CPU events, we must schedule these in before
3462          * we schedule in the task events.
3463          */
3464         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3465                 perf_cgroup_sched_in(prev, task);
3466
3467         for_each_task_context_nr(ctxn) {
3468                 ctx = task->perf_event_ctxp[ctxn];
3469                 if (likely(!ctx))
3470                         continue;
3471
3472                 perf_event_context_sched_in(ctx, task);
3473         }
3474
3475         if (atomic_read(&nr_switch_events))
3476                 perf_event_switch(task, prev, true);
3477
3478         if (__this_cpu_read(perf_sched_cb_usages))
3479                 perf_pmu_sched_task(prev, task, true);
3480 }
3481
3482 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3483 {
3484         u64 frequency = event->attr.sample_freq;
3485         u64 sec = NSEC_PER_SEC;
3486         u64 divisor, dividend;
3487
3488         int count_fls, nsec_fls, frequency_fls, sec_fls;
3489
3490         count_fls = fls64(count);
3491         nsec_fls = fls64(nsec);
3492         frequency_fls = fls64(frequency);
3493         sec_fls = 30;
3494
3495         /*
3496          * We got @count in @nsec, with a target of sample_freq HZ
3497          * the target period becomes:
3498          *
3499          *             @count * 10^9
3500          * period = -------------------
3501          *          @nsec * sample_freq
3502          *
3503          */
3504
3505         /*
3506          * Reduce accuracy by one bit such that @a and @b converge
3507          * to a similar magnitude.
3508          */
3509 #define REDUCE_FLS(a, b)                \
3510 do {                                    \
3511         if (a##_fls > b##_fls) {        \
3512                 a >>= 1;                \
3513                 a##_fls--;              \
3514         } else {                        \
3515                 b >>= 1;                \
3516                 b##_fls--;              \
3517         }                               \
3518 } while (0)
3519
3520         /*
3521          * Reduce accuracy until either term fits in a u64, then proceed with
3522          * the other, so that finally we can do a u64/u64 division.
3523          */
3524         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3525                 REDUCE_FLS(nsec, frequency);
3526                 REDUCE_FLS(sec, count);
3527         }
3528
3529         if (count_fls + sec_fls > 64) {
3530                 divisor = nsec * frequency;
3531
3532                 while (count_fls + sec_fls > 64) {
3533                         REDUCE_FLS(count, sec);
3534                         divisor >>= 1;
3535                 }
3536
3537                 dividend = count * sec;
3538         } else {
3539                 dividend = count * sec;
3540
3541                 while (nsec_fls + frequency_fls > 64) {
3542                         REDUCE_FLS(nsec, frequency);
3543                         dividend >>= 1;
3544                 }
3545
3546                 divisor = nsec * frequency;
3547         }
3548
3549         if (!divisor)
3550                 return dividend;
3551
3552         return div64_u64(dividend, divisor);
3553 }
3554
3555 static DEFINE_PER_CPU(int, perf_throttled_count);
3556 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3557
3558 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3559 {
3560         struct hw_perf_event *hwc = &event->hw;
3561         s64 period, sample_period;
3562         s64 delta;
3563
3564         period = perf_calculate_period(event, nsec, count);
3565
3566         delta = (s64)(period - hwc->sample_period);
3567         delta = (delta + 7) / 8; /* low pass filter */
3568
3569         sample_period = hwc->sample_period + delta;
3570
3571         if (!sample_period)
3572                 sample_period = 1;
3573
3574         hwc->sample_period = sample_period;
3575
3576         if (local64_read(&hwc->period_left) > 8*sample_period) {
3577                 if (disable)
3578                         event->pmu->stop(event, PERF_EF_UPDATE);
3579
3580                 local64_set(&hwc->period_left, 0);
3581
3582                 if (disable)
3583                         event->pmu->start(event, PERF_EF_RELOAD);
3584         }
3585 }
3586
3587 /*
3588  * combine freq adjustment with unthrottling to avoid two passes over the
3589  * events. At the same time, make sure, having freq events does not change
3590  * the rate of unthrottling as that would introduce bias.
3591  */
3592 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3593                                            int needs_unthr)
3594 {
3595         struct perf_event *event;
3596         struct hw_perf_event *hwc;
3597         u64 now, period = TICK_NSEC;
3598         s64 delta;
3599
3600         /*
3601          * only need to iterate over all events iff:
3602          * - context have events in frequency mode (needs freq adjust)
3603          * - there are events to unthrottle on this cpu
3604          */
3605         if (!(ctx->nr_freq || needs_unthr))
3606                 return;
3607
3608         raw_spin_lock(&ctx->lock);
3609         perf_pmu_disable(ctx->pmu);
3610
3611         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3612                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3613                         continue;
3614
3615                 if (!event_filter_match(event))
3616                         continue;
3617
3618                 perf_pmu_disable(event->pmu);
3619
3620                 hwc = &event->hw;
3621
3622                 if (hwc->interrupts == MAX_INTERRUPTS) {
3623                         hwc->interrupts = 0;
3624                         perf_log_throttle(event, 1);
3625                         event->pmu->start(event, 0);
3626                 }
3627
3628                 if (!event->attr.freq || !event->attr.sample_freq)
3629                         goto next;
3630
3631                 /*
3632                  * stop the event and update event->count
3633                  */
3634                 event->pmu->stop(event, PERF_EF_UPDATE);
3635
3636                 now = local64_read(&event->count);
3637                 delta = now - hwc->freq_count_stamp;
3638                 hwc->freq_count_stamp = now;
3639
3640                 /*
3641                  * restart the event
3642                  * reload only if value has changed
3643                  * we have stopped the event so tell that
3644                  * to perf_adjust_period() to avoid stopping it
3645                  * twice.
3646                  */
3647                 if (delta > 0)
3648                         perf_adjust_period(event, period, delta, false);
3649
3650                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3651         next:
3652                 perf_pmu_enable(event->pmu);
3653         }
3654
3655         perf_pmu_enable(ctx->pmu);
3656         raw_spin_unlock(&ctx->lock);
3657 }
3658
3659 /*
3660  * Move @event to the tail of the @ctx's elegible events.
3661  */
3662 static void rotate_ctx(struct perf_event_context *ctx, struct perf_event *event)
3663 {
3664         /*
3665          * Rotate the first entry last of non-pinned groups. Rotation might be
3666          * disabled by the inheritance code.
3667          */
3668         if (ctx->rotate_disable)
3669                 return;
3670
3671         perf_event_groups_delete(&ctx->flexible_groups, event);
3672         perf_event_groups_insert(&ctx->flexible_groups, event);
3673 }
3674
3675 static inline struct perf_event *
3676 ctx_first_active(struct perf_event_context *ctx)
3677 {
3678         return list_first_entry_or_null(&ctx->flexible_active,
3679                                         struct perf_event, active_list);
3680 }
3681
3682 static bool perf_rotate_context(struct perf_cpu_context *cpuctx)
3683 {
3684         struct perf_event *cpu_event = NULL, *task_event = NULL;
3685         bool cpu_rotate = false, task_rotate = false;
3686         struct perf_event_context *ctx = NULL;
3687
3688         /*
3689          * Since we run this from IRQ context, nobody can install new
3690          * events, thus the event count values are stable.
3691          */
3692
3693         if (cpuctx->ctx.nr_events) {
3694                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3695                         cpu_rotate = true;
3696         }
3697
3698         ctx = cpuctx->task_ctx;
3699         if (ctx && ctx->nr_events) {
3700                 if (ctx->nr_events != ctx->nr_active)
3701                         task_rotate = true;
3702         }
3703
3704         if (!(cpu_rotate || task_rotate))
3705                 return false;
3706
3707         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3708         perf_pmu_disable(cpuctx->ctx.pmu);
3709
3710         if (task_rotate)
3711                 task_event = ctx_first_active(ctx);
3712         if (cpu_rotate)
3713                 cpu_event = ctx_first_active(&cpuctx->ctx);
3714
3715         /*
3716          * As per the order given at ctx_resched() first 'pop' task flexible
3717          * and then, if needed CPU flexible.
3718          */
3719         if (task_event || (ctx && cpu_event))
3720                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3721         if (cpu_event)
3722                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3723
3724         if (task_event)
3725                 rotate_ctx(ctx, task_event);
3726         if (cpu_event)
3727                 rotate_ctx(&cpuctx->ctx, cpu_event);
3728
3729         perf_event_sched_in(cpuctx, ctx, current);
3730
3731         perf_pmu_enable(cpuctx->ctx.pmu);
3732         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3733
3734         return true;
3735 }
3736
3737 void perf_event_task_tick(void)
3738 {
3739         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3740         struct perf_event_context *ctx, *tmp;
3741         int throttled;
3742
3743         lockdep_assert_irqs_disabled();
3744
3745         __this_cpu_inc(perf_throttled_seq);
3746         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3747         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3748
3749         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3750                 perf_adjust_freq_unthr_context(ctx, throttled);
3751 }
3752
3753 static int event_enable_on_exec(struct perf_event *event,
3754                                 struct perf_event_context *ctx)
3755 {
3756         if (!event->attr.enable_on_exec)
3757                 return 0;
3758
3759         event->attr.enable_on_exec = 0;
3760         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3761                 return 0;
3762
3763         perf_event_set_state(event, PERF_EVENT_STATE_INACTIVE);
3764
3765         return 1;
3766 }
3767
3768 /*
3769  * Enable all of a task's events that have been marked enable-on-exec.
3770  * This expects task == current.
3771  */
3772 static void perf_event_enable_on_exec(int ctxn)
3773 {
3774         struct perf_event_context *ctx, *clone_ctx = NULL;
3775         enum event_type_t event_type = 0;
3776         struct perf_cpu_context *cpuctx;
3777         struct perf_event *event;
3778         unsigned long flags;
3779         int enabled = 0;
3780
3781         local_irq_save(flags);
3782         ctx = current->perf_event_ctxp[ctxn];
3783         if (!ctx || !ctx->nr_events)
3784                 goto out;
3785
3786         cpuctx = __get_cpu_context(ctx);
3787         perf_ctx_lock(cpuctx, ctx);
3788         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3789         list_for_each_entry(event, &ctx->event_list, event_entry) {
3790                 enabled |= event_enable_on_exec(event, ctx);
3791                 event_type |= get_event_type(event);
3792         }
3793
3794         /*
3795          * Unclone and reschedule this context if we enabled any event.
3796          */
3797         if (enabled) {
3798                 clone_ctx = unclone_ctx(ctx);
3799                 ctx_resched(cpuctx, ctx, event_type);
3800         } else {
3801                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3802         }
3803         perf_ctx_unlock(cpuctx, ctx);
3804
3805 out:
3806         local_irq_restore(flags);
3807
3808         if (clone_ctx)
3809                 put_ctx(clone_ctx);
3810 }
3811
3812 struct perf_read_data {
3813         struct perf_event *event;
3814         bool group;
3815         int ret;
3816 };
3817
3818 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3819 {
3820         u16 local_pkg, event_pkg;
3821
3822         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3823                 int local_cpu = smp_processor_id();
3824
3825                 event_pkg = topology_physical_package_id(event_cpu);
3826                 local_pkg = topology_physical_package_id(local_cpu);
3827
3828                 if (event_pkg == local_pkg)
3829                         return local_cpu;
3830         }
3831
3832         return event_cpu;
3833 }
3834
3835 /*
3836  * Cross CPU call to read the hardware event
3837  */
3838 static void __perf_event_read(void *info)
3839 {
3840         struct perf_read_data *data = info;
3841         struct perf_event *sub, *event = data->event;
3842         struct perf_event_context *ctx = event->ctx;
3843         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3844         struct pmu *pmu = event->pmu;
3845
3846         /*
3847          * If this is a task context, we need to check whether it is
3848          * the current task context of this cpu.  If not it has been
3849          * scheduled out before the smp call arrived.  In that case
3850          * event->count would have been updated to a recent sample
3851          * when the event was scheduled out.
3852          */
3853         if (ctx->task && cpuctx->task_ctx != ctx)
3854                 return;
3855
3856         raw_spin_lock(&ctx->lock);
3857         if (ctx->is_active & EVENT_TIME) {
3858                 update_context_time(ctx);
3859                 update_cgrp_time_from_event(event);
3860         }
3861
3862         perf_event_update_time(event);
3863         if (data->group)
3864                 perf_event_update_sibling_time(event);
3865
3866         if (event->state != PERF_EVENT_STATE_ACTIVE)
3867                 goto unlock;
3868
3869         if (!data->group) {
3870                 pmu->read(event);
3871                 data->ret = 0;
3872                 goto unlock;
3873         }
3874
3875         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3876
3877         pmu->read(event);
3878
3879         for_each_sibling_event(sub, event) {
3880                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3881                         /*
3882                          * Use sibling's PMU rather than @event's since
3883                          * sibling could be on different (eg: software) PMU.
3884                          */
3885                         sub->pmu->read(sub);
3886                 }
3887         }
3888
3889         data->ret = pmu->commit_txn(pmu);
3890
3891 unlock:
3892         raw_spin_unlock(&ctx->lock);
3893 }
3894
3895 static inline u64 perf_event_count(struct perf_event *event)
3896 {
3897         return local64_read(&event->count) + atomic64_read(&event->child_count);
3898 }
3899
3900 /*
3901  * NMI-safe method to read a local event, that is an event that
3902  * is:
3903  *   - either for the current task, or for this CPU
3904  *   - does not have inherit set, for inherited task events
3905  *     will not be local and we cannot read them atomically
3906  *   - must not have a pmu::count method
3907  */
3908 int perf_event_read_local(struct perf_event *event, u64 *value,
3909                           u64 *enabled, u64 *running)
3910 {
3911         unsigned long flags;
3912         int ret = 0;
3913
3914         /*
3915          * Disabling interrupts avoids all counter scheduling (context
3916          * switches, timer based rotation and IPIs).
3917          */
3918         local_irq_save(flags);
3919
3920         /*
3921          * It must not be an event with inherit set, we cannot read
3922          * all child counters from atomic context.
3923          */
3924         if (event->attr.inherit) {
3925                 ret = -EOPNOTSUPP;
3926                 goto out;
3927         }
3928
3929         /* If this is a per-task event, it must be for current */
3930         if ((event->attach_state & PERF_ATTACH_TASK) &&
3931             event->hw.target != current) {
3932                 ret = -EINVAL;
3933                 goto out;
3934         }
3935
3936         /* If this is a per-CPU event, it must be for this CPU */
3937         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3938             event->cpu != smp_processor_id()) {
3939                 ret = -EINVAL;
3940                 goto out;
3941         }
3942
3943         /*
3944          * If the event is currently on this CPU, its either a per-task event,
3945          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3946          * oncpu == -1).
3947          */
3948         if (event->oncpu == smp_processor_id())
3949                 event->pmu->read(event);
3950
3951         *value = local64_read(&event->count);
3952         if (enabled || running) {
3953                 u64 now = event->shadow_ctx_time + perf_clock();
3954                 u64 __enabled, __running;
3955
3956                 __perf_update_times(event, now, &__enabled, &__running);
3957                 if (enabled)
3958                         *enabled = __enabled;
3959                 if (running)
3960                         *running = __running;
3961         }
3962 out:
3963         local_irq_restore(flags);
3964
3965         return ret;
3966 }
3967
3968 static int perf_event_read(struct perf_event *event, bool group)
3969 {
3970         enum perf_event_state state = READ_ONCE(event->state);
3971         int event_cpu, ret = 0;
3972
3973         /*
3974          * If event is enabled and currently active on a CPU, update the
3975          * value in the event structure:
3976          */
3977 again:
3978         if (state == PERF_EVENT_STATE_ACTIVE) {
3979                 struct perf_read_data data;
3980
3981                 /*
3982                  * Orders the ->state and ->oncpu loads such that if we see
3983                  * ACTIVE we must also see the right ->oncpu.
3984                  *
3985                  * Matches the smp_wmb() from event_sched_in().
3986                  */
3987                 smp_rmb();
3988
3989                 event_cpu = READ_ONCE(event->oncpu);
3990                 if ((unsigned)event_cpu >= nr_cpu_ids)
3991                         return 0;
3992
3993                 data = (struct perf_read_data){
3994                         .event = event,
3995                         .group = group,
3996                         .ret = 0,
3997                 };
3998
3999                 preempt_disable();
4000                 event_cpu = __perf_event_read_cpu(event, event_cpu);
4001
4002                 /*
4003                  * Purposely ignore the smp_call_function_single() return
4004                  * value.
4005                  *
4006                  * If event_cpu isn't a valid CPU it means the event got
4007                  * scheduled out and that will have updated the event count.
4008                  *
4009                  * Therefore, either way, we'll have an up-to-date event count
4010                  * after this.
4011                  */
4012                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
4013                 preempt_enable();
4014                 ret = data.ret;
4015
4016         } else if (state == PERF_EVENT_STATE_INACTIVE) {
4017                 struct perf_event_context *ctx = event->ctx;
4018                 unsigned long flags;
4019
4020                 raw_spin_lock_irqsave(&ctx->lock, flags);
4021                 state = event->state;
4022                 if (state != PERF_EVENT_STATE_INACTIVE) {
4023                         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4024                         goto again;
4025                 }
4026
4027                 /*
4028                  * May read while context is not active (e.g., thread is
4029                  * blocked), in that case we cannot update context time
4030                  */
4031                 if (ctx->is_active & EVENT_TIME) {
4032                         update_context_time(ctx);
4033                         update_cgrp_time_from_event(event);
4034                 }
4035
4036                 perf_event_update_time(event);
4037                 if (group)
4038                         perf_event_update_sibling_time(event);
4039                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4040         }
4041
4042         return ret;
4043 }
4044
4045 /*
4046  * Initialize the perf_event context in a task_struct:
4047  */
4048 static void __perf_event_init_context(struct perf_event_context *ctx)
4049 {
4050         raw_spin_lock_init(&ctx->lock);
4051         mutex_init(&ctx->mutex);
4052         INIT_LIST_HEAD(&ctx->active_ctx_list);
4053         perf_event_groups_init(&ctx->pinned_groups);
4054         perf_event_groups_init(&ctx->flexible_groups);
4055         INIT_LIST_HEAD(&ctx->event_list);
4056         INIT_LIST_HEAD(&ctx->pinned_active);
4057         INIT_LIST_HEAD(&ctx->flexible_active);
4058         atomic_set(&ctx->refcount, 1);
4059 }
4060
4061 static struct perf_event_context *
4062 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
4063 {
4064         struct perf_event_context *ctx;
4065
4066         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
4067         if (!ctx)
4068                 return NULL;
4069
4070         __perf_event_init_context(ctx);
4071         if (task) {
4072                 ctx->task = task;
4073                 get_task_struct(task);
4074         }
4075         ctx->pmu = pmu;
4076
4077         return ctx;
4078 }
4079
4080 static struct task_struct *
4081 find_lively_task_by_vpid(pid_t vpid)
4082 {
4083         struct task_struct *task;
4084
4085         rcu_read_lock();
4086         if (!vpid)
4087                 task = current;
4088         else
4089                 task = find_task_by_vpid(vpid);
4090         if (task)
4091                 get_task_struct(task);
4092         rcu_read_unlock();
4093
4094         if (!task)
4095                 return ERR_PTR(-ESRCH);
4096
4097         return task;
4098 }
4099
4100 /*
4101  * Returns a matching context with refcount and pincount.
4102  */
4103 static struct perf_event_context *
4104 find_get_context(struct pmu *pmu, struct task_struct *task,
4105                 struct perf_event *event)
4106 {
4107         struct perf_event_context *ctx, *clone_ctx = NULL;
4108         struct perf_cpu_context *cpuctx;
4109         void *task_ctx_data = NULL;
4110         unsigned long flags;
4111         int ctxn, err;
4112         int cpu = event->cpu;
4113
4114         if (!task) {
4115                 /* Must be root to operate on a CPU event: */
4116                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
4117                         return ERR_PTR(-EACCES);
4118
4119                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
4120                 ctx = &cpuctx->ctx;
4121                 get_ctx(ctx);
4122                 ++ctx->pin_count;
4123
4124                 return ctx;
4125         }
4126
4127         err = -EINVAL;
4128         ctxn = pmu->task_ctx_nr;
4129         if (ctxn < 0)
4130                 goto errout;
4131
4132         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
4133                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
4134                 if (!task_ctx_data) {
4135                         err = -ENOMEM;
4136                         goto errout;
4137                 }
4138         }
4139
4140 retry:
4141         ctx = perf_lock_task_context(task, ctxn, &flags);
4142         if (ctx) {
4143                 clone_ctx = unclone_ctx(ctx);
4144                 ++ctx->pin_count;
4145
4146                 if (task_ctx_data && !ctx->task_ctx_data) {
4147                         ctx->task_ctx_data = task_ctx_data;
4148                         task_ctx_data = NULL;
4149                 }
4150                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
4151
4152                 if (clone_ctx)
4153                         put_ctx(clone_ctx);
4154         } else {
4155                 ctx = alloc_perf_context(pmu, task);
4156                 err = -ENOMEM;
4157                 if (!ctx)
4158                         goto errout;
4159
4160                 if (task_ctx_data) {
4161                         ctx->task_ctx_data = task_ctx_data;
4162                         task_ctx_data = NULL;
4163                 }
4164
4165                 err = 0;
4166                 mutex_lock(&task->perf_event_mutex);
4167                 /*
4168                  * If it has already passed perf_event_exit_task().
4169                  * we must see PF_EXITING, it takes this mutex too.
4170                  */
4171                 if (task->flags & PF_EXITING)
4172                         err = -ESRCH;
4173                 else if (task->perf_event_ctxp[ctxn])
4174                         err = -EAGAIN;
4175                 else {
4176                         get_ctx(ctx);
4177                         ++ctx->pin_count;
4178                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
4179                 }
4180                 mutex_unlock(&task->perf_event_mutex);
4181
4182                 if (unlikely(err)) {
4183                         put_ctx(ctx);
4184
4185                         if (err == -EAGAIN)
4186                                 goto retry;
4187                         goto errout;
4188                 }
4189         }
4190
4191         kfree(task_ctx_data);
4192         return ctx;
4193
4194 errout:
4195         kfree(task_ctx_data);
4196         return ERR_PTR(err);
4197 }
4198
4199 static void perf_event_free_filter(struct perf_event *event);
4200 static void perf_event_free_bpf_prog(struct perf_event *event);
4201
4202 static void free_event_rcu(struct rcu_head *head)
4203 {
4204         struct perf_event *event;
4205
4206         event = container_of(head, struct perf_event, rcu_head);
4207         if (event->ns)
4208                 put_pid_ns(event->ns);
4209         perf_event_free_filter(event);
4210         kfree(event);
4211 }
4212
4213 static void ring_buffer_attach(struct perf_event *event,
4214                                struct ring_buffer *rb);
4215
4216 static void detach_sb_event(struct perf_event *event)
4217 {
4218         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4219
4220         raw_spin_lock(&pel->lock);
4221         list_del_rcu(&event->sb_list);
4222         raw_spin_unlock(&pel->lock);
4223 }
4224
4225 static bool is_sb_event(struct perf_event *event)
4226 {
4227         struct perf_event_attr *attr = &event->attr;
4228
4229         if (event->parent)
4230                 return false;
4231
4232         if (event->attach_state & PERF_ATTACH_TASK)
4233                 return false;
4234
4235         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4236             attr->comm || attr->comm_exec ||
4237             attr->task ||
4238             attr->context_switch)
4239                 return true;
4240         return false;
4241 }
4242
4243 static void unaccount_pmu_sb_event(struct perf_event *event)
4244 {
4245         if (is_sb_event(event))
4246                 detach_sb_event(event);
4247 }
4248
4249 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4250 {
4251         if (event->parent)
4252                 return;
4253
4254         if (is_cgroup_event(event))
4255                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4256 }
4257
4258 #ifdef CONFIG_NO_HZ_FULL
4259 static DEFINE_SPINLOCK(nr_freq_lock);
4260 #endif
4261
4262 static void unaccount_freq_event_nohz(void)
4263 {
4264 #ifdef CONFIG_NO_HZ_FULL
4265         spin_lock(&nr_freq_lock);
4266         if (atomic_dec_and_test(&nr_freq_events))
4267                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4268         spin_unlock(&nr_freq_lock);
4269 #endif
4270 }
4271
4272 static void unaccount_freq_event(void)
4273 {
4274         if (tick_nohz_full_enabled())
4275                 unaccount_freq_event_nohz();
4276         else
4277                 atomic_dec(&nr_freq_events);
4278 }
4279
4280 static void unaccount_event(struct perf_event *event)
4281 {
4282         bool dec = false;
4283
4284         if (event->parent)
4285                 return;
4286
4287         if (event->attach_state & PERF_ATTACH_TASK)
4288                 dec = true;
4289         if (event->attr.mmap || event->attr.mmap_data)
4290                 atomic_dec(&nr_mmap_events);
4291         if (event->attr.comm)
4292                 atomic_dec(&nr_comm_events);
4293         if (event->attr.namespaces)
4294                 atomic_dec(&nr_namespaces_events);
4295         if (event->attr.task)
4296                 atomic_dec(&nr_task_events);
4297         if (event->attr.freq)
4298                 unaccount_freq_event();
4299         if (event->attr.context_switch) {
4300                 dec = true;
4301                 atomic_dec(&nr_switch_events);
4302         }
4303         if (is_cgroup_event(event))
4304                 dec = true;
4305         if (has_branch_stack(event))
4306                 dec = true;
4307
4308         if (dec) {
4309                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4310                         schedule_delayed_work(&perf_sched_work, HZ);
4311         }
4312
4313         unaccount_event_cpu(event, event->cpu);
4314
4315         unaccount_pmu_sb_event(event);
4316 }
4317
4318 static void perf_sched_delayed(struct work_struct *work)
4319 {
4320         mutex_lock(&perf_sched_mutex);
4321         if (atomic_dec_and_test(&perf_sched_count))
4322                 static_branch_disable(&perf_sched_events);
4323         mutex_unlock(&perf_sched_mutex);
4324 }
4325
4326 /*
4327  * The following implement mutual exclusion of events on "exclusive" pmus
4328  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4329  * at a time, so we disallow creating events that might conflict, namely:
4330  *
4331  *  1) cpu-wide events in the presence of per-task events,
4332  *  2) per-task events in the presence of cpu-wide events,
4333  *  3) two matching events on the same context.
4334  *
4335  * The former two cases are handled in the allocation path (perf_event_alloc(),
4336  * _free_event()), the latter -- before the first perf_install_in_context().
4337  */
4338 static int exclusive_event_init(struct perf_event *event)
4339 {
4340         struct pmu *pmu = event->pmu;
4341
4342         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4343                 return 0;
4344
4345         /*
4346          * Prevent co-existence of per-task and cpu-wide events on the
4347          * same exclusive pmu.
4348          *
4349          * Negative pmu::exclusive_cnt means there are cpu-wide
4350          * events on this "exclusive" pmu, positive means there are
4351          * per-task events.
4352          *
4353          * Since this is called in perf_event_alloc() path, event::ctx
4354          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4355          * to mean "per-task event", because unlike other attach states it
4356          * never gets cleared.
4357          */
4358         if (event->attach_state & PERF_ATTACH_TASK) {
4359                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4360                         return -EBUSY;
4361         } else {
4362                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4363                         return -EBUSY;
4364         }
4365
4366         return 0;
4367 }
4368
4369 static void exclusive_event_destroy(struct perf_event *event)
4370 {
4371         struct pmu *pmu = event->pmu;
4372
4373         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4374                 return;
4375
4376         /* see comment in exclusive_event_init() */
4377         if (event->attach_state & PERF_ATTACH_TASK)
4378                 atomic_dec(&pmu->exclusive_cnt);
4379         else
4380                 atomic_inc(&pmu->exclusive_cnt);
4381 }
4382
4383 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4384 {
4385         if ((e1->pmu == e2->pmu) &&
4386             (e1->cpu == e2->cpu ||
4387              e1->cpu == -1 ||
4388              e2->cpu == -1))
4389                 return true;
4390         return false;
4391 }
4392
4393 /* Called under the same ctx::mutex as perf_install_in_context() */
4394 static bool exclusive_event_installable(struct perf_event *event,
4395                                         struct perf_event_context *ctx)
4396 {
4397         struct perf_event *iter_event;
4398         struct pmu *pmu = event->pmu;
4399
4400         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4401                 return true;
4402
4403         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4404                 if (exclusive_event_match(iter_event, event))
4405                         return false;
4406         }
4407
4408         return true;
4409 }
4410
4411 static void perf_addr_filters_splice(struct perf_event *event,
4412                                        struct list_head *head);
4413
4414 static void _free_event(struct perf_event *event)
4415 {
4416         irq_work_sync(&event->pending);
4417
4418         unaccount_event(event);
4419
4420         if (event->rb) {
4421                 /*
4422                  * Can happen when we close an event with re-directed output.
4423                  *
4424                  * Since we have a 0 refcount, perf_mmap_close() will skip
4425                  * over us; possibly making our ring_buffer_put() the last.
4426                  */
4427                 mutex_lock(&event->mmap_mutex);
4428                 ring_buffer_attach(event, NULL);
4429                 mutex_unlock(&event->mmap_mutex);
4430         }
4431
4432         if (is_cgroup_event(event))
4433                 perf_detach_cgroup(event);
4434
4435         if (!event->parent) {
4436                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4437                         put_callchain_buffers();
4438         }
4439
4440         perf_event_free_bpf_prog(event);
4441         perf_addr_filters_splice(event, NULL);
4442         kfree(event->addr_filters_offs);
4443
4444         if (event->destroy)
4445                 event->destroy(event);
4446
4447         if (event->ctx)
4448                 put_ctx(event->ctx);
4449
4450         if (event->hw.target)
4451                 put_task_struct(event->hw.target);
4452
4453         exclusive_event_destroy(event);
4454         module_put(event->pmu->module);
4455
4456         call_rcu(&event->rcu_head, free_event_rcu);
4457 }
4458
4459 /*
4460  * Used to free events which have a known refcount of 1, such as in error paths
4461  * where the event isn't exposed yet and inherited events.
4462  */
4463 static void free_event(struct perf_event *event)
4464 {
4465         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4466                                 "unexpected event refcount: %ld; ptr=%p\n",
4467                                 atomic_long_read(&event->refcount), event)) {
4468                 /* leak to avoid use-after-free */
4469                 return;
4470         }
4471
4472         _free_event(event);
4473 }
4474
4475 /*
4476  * Remove user event from the owner task.
4477  */
4478 static void perf_remove_from_owner(struct perf_event *event)
4479 {
4480         struct task_struct *owner;
4481
4482         rcu_read_lock();
4483         /*
4484          * Matches the smp_store_release() in perf_event_exit_task(). If we
4485          * observe !owner it means the list deletion is complete and we can
4486          * indeed free this event, otherwise we need to serialize on
4487          * owner->perf_event_mutex.
4488          */
4489         owner = READ_ONCE(event->owner);
4490         if (owner) {
4491                 /*
4492                  * Since delayed_put_task_struct() also drops the last
4493                  * task reference we can safely take a new reference
4494                  * while holding the rcu_read_lock().
4495                  */
4496                 get_task_struct(owner);
4497         }
4498         rcu_read_unlock();
4499
4500         if (owner) {
4501                 /*
4502                  * If we're here through perf_event_exit_task() we're already
4503                  * holding ctx->mutex which would be an inversion wrt. the
4504                  * normal lock order.
4505                  *
4506                  * However we can safely take this lock because its the child
4507                  * ctx->mutex.
4508                  */
4509                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4510
4511                 /*
4512                  * We have to re-check the event->owner field, if it is cleared
4513                  * we raced with perf_event_exit_task(), acquiring the mutex
4514                  * ensured they're done, and we can proceed with freeing the
4515                  * event.
4516                  */
4517                 if (event->owner) {
4518                         list_del_init(&event->owner_entry);
4519                         smp_store_release(&event->owner, NULL);
4520                 }
4521                 mutex_unlock(&owner->perf_event_mutex);
4522                 put_task_struct(owner);
4523         }
4524 }
4525
4526 static void put_event(struct perf_event *event)
4527 {
4528         if (!atomic_long_dec_and_test(&event->refcount))
4529                 return;
4530
4531         _free_event(event);
4532 }
4533
4534 /*
4535  * Kill an event dead; while event:refcount will preserve the event
4536  * object, it will not preserve its functionality. Once the last 'user'
4537  * gives up the object, we'll destroy the thing.
4538  */
4539 int perf_event_release_kernel(struct perf_event *event)
4540 {
4541         struct perf_event_context *ctx = event->ctx;
4542         struct perf_event *child, *tmp;
4543         LIST_HEAD(free_list);
4544
4545         /*
4546          * If we got here through err_file: fput(event_file); we will not have
4547          * attached to a context yet.
4548          */
4549         if (!ctx) {
4550                 WARN_ON_ONCE(event->attach_state &
4551                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4552                 goto no_ctx;
4553         }
4554
4555         if (!is_kernel_event(event))
4556                 perf_remove_from_owner(event);
4557
4558         ctx = perf_event_ctx_lock(event);
4559         WARN_ON_ONCE(ctx->parent_ctx);
4560         perf_remove_from_context(event, DETACH_GROUP);
4561
4562         raw_spin_lock_irq(&ctx->lock);
4563         /*
4564          * Mark this event as STATE_DEAD, there is no external reference to it
4565          * anymore.
4566          *
4567          * Anybody acquiring event->child_mutex after the below loop _must_
4568          * also see this, most importantly inherit_event() which will avoid
4569          * placing more children on the list.
4570          *
4571          * Thus this guarantees that we will in fact observe and kill _ALL_
4572          * child events.
4573          */
4574         event->state = PERF_EVENT_STATE_DEAD;
4575         raw_spin_unlock_irq(&ctx->lock);
4576
4577         perf_event_ctx_unlock(event, ctx);
4578
4579 again:
4580         mutex_lock(&event->child_mutex);
4581         list_for_each_entry(child, &event->child_list, child_list) {
4582
4583                 /*
4584                  * Cannot change, child events are not migrated, see the
4585                  * comment with perf_event_ctx_lock_nested().
4586                  */
4587                 ctx = READ_ONCE(child->ctx);
4588                 /*
4589                  * Since child_mutex nests inside ctx::mutex, we must jump
4590                  * through hoops. We start by grabbing a reference on the ctx.
4591                  *
4592                  * Since the event cannot get freed while we hold the
4593                  * child_mutex, the context must also exist and have a !0
4594                  * reference count.
4595                  */
4596                 get_ctx(ctx);
4597
4598                 /*
4599                  * Now that we have a ctx ref, we can drop child_mutex, and
4600                  * acquire ctx::mutex without fear of it going away. Then we
4601                  * can re-acquire child_mutex.
4602                  */
4603                 mutex_unlock(&event->child_mutex);
4604                 mutex_lock(&ctx->mutex);
4605                 mutex_lock(&event->child_mutex);
4606
4607                 /*
4608                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4609                  * state, if child is still the first entry, it didn't get freed
4610                  * and we can continue doing so.
4611                  */
4612                 tmp = list_first_entry_or_null(&event->child_list,
4613                                                struct perf_event, child_list);
4614                 if (tmp == child) {
4615                         perf_remove_from_context(child, DETACH_GROUP);
4616                         list_move(&child->child_list, &free_list);
4617                         /*
4618                          * This matches the refcount bump in inherit_event();
4619                          * this can't be the last reference.
4620                          */
4621                         put_event(event);
4622                 }
4623
4624                 mutex_unlock(&event->child_mutex);
4625                 mutex_unlock(&ctx->mutex);
4626                 put_ctx(ctx);
4627                 goto again;
4628         }
4629         mutex_unlock(&event->child_mutex);
4630
4631         list_for_each_entry_safe(child, tmp, &free_list, child_list) {
4632                 list_del(&child->child_list);
4633                 free_event(child);
4634         }
4635
4636 no_ctx:
4637         put_event(event); /* Must be the 'last' reference */
4638         return 0;
4639 }
4640 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4641
4642 /*
4643  * Called when the last reference to the file is gone.
4644  */
4645 static int perf_release(struct inode *inode, struct file *file)
4646 {
4647         perf_event_release_kernel(file->private_data);
4648         return 0;
4649 }
4650
4651 static u64 __perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4652 {
4653         struct perf_event *child;
4654         u64 total = 0;
4655
4656         *enabled = 0;
4657         *running = 0;
4658
4659         mutex_lock(&event->child_mutex);
4660
4661         (void)perf_event_read(event, false);
4662         total += perf_event_count(event);
4663
4664         *enabled += event->total_time_enabled +
4665                         atomic64_read(&event->child_total_time_enabled);
4666         *running += event->total_time_running +
4667                         atomic64_read(&event->child_total_time_running);
4668
4669         list_for_each_entry(child, &event->child_list, child_list) {
4670                 (void)perf_event_read(child, false);
4671                 total += perf_event_count(child);
4672                 *enabled += child->total_time_enabled;
4673                 *running += child->total_time_running;
4674         }
4675         mutex_unlock(&event->child_mutex);
4676
4677         return total;
4678 }
4679
4680 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4681 {
4682         struct perf_event_context *ctx;
4683         u64 count;
4684
4685         ctx = perf_event_ctx_lock(event);
4686         count = __perf_event_read_value(event, enabled, running);
4687         perf_event_ctx_unlock(event, ctx);
4688
4689         return count;
4690 }
4691 EXPORT_SYMBOL_GPL(perf_event_read_value);
4692
4693 static int __perf_read_group_add(struct perf_event *leader,
4694                                         u64 read_format, u64 *values)
4695 {
4696         struct perf_event_context *ctx = leader->ctx;
4697         struct perf_event *sub;
4698         unsigned long flags;
4699         int n = 1; /* skip @nr */
4700         int ret;
4701
4702         ret = perf_event_read(leader, true);
4703         if (ret)
4704                 return ret;
4705
4706         raw_spin_lock_irqsave(&ctx->lock, flags);
4707
4708         /*
4709          * Since we co-schedule groups, {enabled,running} times of siblings
4710          * will be identical to those of the leader, so we only publish one
4711          * set.
4712          */
4713         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4714                 values[n++] += leader->total_time_enabled +
4715                         atomic64_read(&leader->child_total_time_enabled);
4716         }
4717
4718         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4719                 values[n++] += leader->total_time_running +
4720                         atomic64_read(&leader->child_total_time_running);
4721         }
4722
4723         /*
4724          * Write {count,id} tuples for every sibling.
4725          */
4726         values[n++] += perf_event_count(leader);
4727         if (read_format & PERF_FORMAT_ID)
4728                 values[n++] = primary_event_id(leader);
4729
4730         for_each_sibling_event(sub, leader) {
4731                 values[n++] += perf_event_count(sub);
4732                 if (read_format & PERF_FORMAT_ID)
4733                         values[n++] = primary_event_id(sub);
4734         }
4735
4736         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4737         return 0;
4738 }
4739
4740 static int perf_read_group(struct perf_event *event,
4741                                    u64 read_format, char __user *buf)
4742 {
4743         struct perf_event *leader = event->group_leader, *child;
4744         struct perf_event_context *ctx = leader->ctx;
4745         int ret;
4746         u64 *values;
4747
4748         lockdep_assert_held(&ctx->mutex);
4749
4750         values = kzalloc(event->read_size, GFP_KERNEL);
4751         if (!values)
4752                 return -ENOMEM;
4753
4754         values[0] = 1 + leader->nr_siblings;
4755
4756         /*
4757          * By locking the child_mutex of the leader we effectively
4758          * lock the child list of all siblings.. XXX explain how.
4759          */
4760         mutex_lock(&leader->child_mutex);
4761
4762         ret = __perf_read_group_add(leader, read_format, values);
4763         if (ret)
4764                 goto unlock;
4765
4766         list_for_each_entry(child, &leader->child_list, child_list) {
4767                 ret = __perf_read_group_add(child, read_format, values);
4768                 if (ret)
4769                         goto unlock;
4770         }
4771
4772         mutex_unlock(&leader->child_mutex);
4773
4774         ret = event->read_size;
4775         if (copy_to_user(buf, values, event->read_size))
4776                 ret = -EFAULT;
4777         goto out;
4778
4779 unlock:
4780         mutex_unlock(&leader->child_mutex);
4781 out:
4782         kfree(values);
4783         return ret;
4784 }
4785
4786 static int perf_read_one(struct perf_event *event,
4787                                  u64 read_format, char __user *buf)
4788 {
4789         u64 enabled, running;
4790         u64 values[4];
4791         int n = 0;
4792
4793         values[n++] = __perf_event_read_value(event, &enabled, &running);
4794         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4795                 values[n++] = enabled;
4796         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4797                 values[n++] = running;
4798         if (read_format & PERF_FORMAT_ID)
4799                 values[n++] = primary_event_id(event);
4800
4801         if (copy_to_user(buf, values, n * sizeof(u64)))
4802                 return -EFAULT;
4803
4804         return n * sizeof(u64);
4805 }
4806
4807 static bool is_event_hup(struct perf_event *event)
4808 {
4809         bool no_children;
4810
4811         if (event->state > PERF_EVENT_STATE_EXIT)
4812                 return false;
4813
4814         mutex_lock(&event->child_mutex);
4815         no_children = list_empty(&event->child_list);
4816         mutex_unlock(&event->child_mutex);
4817         return no_children;
4818 }
4819
4820 /*
4821  * Read the performance event - simple non blocking version for now
4822  */
4823 static ssize_t
4824 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4825 {
4826         u64 read_format = event->attr.read_format;
4827         int ret;
4828
4829         /*
4830          * Return end-of-file for a read on a event that is in
4831          * error state (i.e. because it was pinned but it couldn't be
4832          * scheduled on to the CPU at some point).
4833          */
4834         if (event->state == PERF_EVENT_STATE_ERROR)
4835                 return 0;
4836
4837         if (count < event->read_size)
4838                 return -ENOSPC;
4839
4840         WARN_ON_ONCE(event->ctx->parent_ctx);
4841         if (read_format & PERF_FORMAT_GROUP)
4842                 ret = perf_read_group(event, read_format, buf);
4843         else
4844                 ret = perf_read_one(event, read_format, buf);
4845
4846         return ret;
4847 }
4848
4849 static ssize_t
4850 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4851 {
4852         struct perf_event *event = file->private_data;
4853         struct perf_event_context *ctx;
4854         int ret;
4855
4856         ctx = perf_event_ctx_lock(event);
4857         ret = __perf_read(event, buf, count);
4858         perf_event_ctx_unlock(event, ctx);
4859
4860         return ret;
4861 }
4862
4863 static __poll_t perf_poll(struct file *file, poll_table *wait)
4864 {
4865         struct perf_event *event = file->private_data;
4866         struct ring_buffer *rb;
4867         __poll_t events = EPOLLHUP;
4868
4869         poll_wait(file, &event->waitq, wait);
4870
4871         if (is_event_hup(event))
4872                 return events;
4873
4874         /*
4875          * Pin the event->rb by taking event->mmap_mutex; otherwise
4876          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4877          */
4878         mutex_lock(&event->mmap_mutex);
4879         rb = event->rb;
4880         if (rb)
4881                 events = atomic_xchg(&rb->poll, 0);
4882         mutex_unlock(&event->mmap_mutex);
4883         return events;
4884 }
4885
4886 static void _perf_event_reset(struct perf_event *event)
4887 {
4888         (void)perf_event_read(event, false);
4889         local64_set(&event->count, 0);
4890         perf_event_update_userpage(event);
4891 }
4892
4893 /*
4894  * Holding the top-level event's child_mutex means that any
4895  * descendant process that has inherited this event will block
4896  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4897  * task existence requirements of perf_event_enable/disable.
4898  */
4899 static void perf_event_for_each_child(struct perf_event *event,
4900                                         void (*func)(struct perf_event *))
4901 {
4902         struct perf_event *child;
4903
4904         WARN_ON_ONCE(event->ctx->parent_ctx);
4905
4906         mutex_lock(&event->child_mutex);
4907         func(event);
4908         list_for_each_entry(child, &event->child_list, child_list)
4909                 func(child);
4910         mutex_unlock(&event->child_mutex);
4911 }
4912
4913 static void perf_event_for_each(struct perf_event *event,
4914                                   void (*func)(struct perf_event *))
4915 {
4916         struct perf_event_context *ctx = event->ctx;
4917         struct perf_event *sibling;
4918
4919         lockdep_assert_held(&ctx->mutex);
4920
4921         event = event->group_leader;
4922
4923         perf_event_for_each_child(event, func);
4924         for_each_sibling_event(sibling, event)
4925                 perf_event_for_each_child(sibling, func);
4926 }
4927
4928 static void __perf_event_period(struct perf_event *event,
4929                                 struct perf_cpu_context *cpuctx,
4930                                 struct perf_event_context *ctx,
4931                                 void *info)
4932 {
4933         u64 value = *((u64 *)info);
4934         bool active;
4935
4936         if (event->attr.freq) {
4937                 event->attr.sample_freq = value;
4938         } else {
4939                 event->attr.sample_period = value;
4940                 event->hw.sample_period = value;
4941         }
4942
4943         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4944         if (active) {
4945                 perf_pmu_disable(ctx->pmu);
4946                 /*
4947                  * We could be throttled; unthrottle now to avoid the tick
4948                  * trying to unthrottle while we already re-started the event.
4949                  */
4950                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4951                         event->hw.interrupts = 0;
4952                         perf_log_throttle(event, 1);
4953                 }
4954                 event->pmu->stop(event, PERF_EF_UPDATE);
4955         }
4956
4957         local64_set(&event->hw.period_left, 0);
4958
4959         if (active) {
4960                 event->pmu->start(event, PERF_EF_RELOAD);
4961                 perf_pmu_enable(ctx->pmu);
4962         }
4963 }
4964
4965 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4966 {
4967         u64 value;
4968
4969         if (!is_sampling_event(event))
4970                 return -EINVAL;
4971
4972         if (copy_from_user(&value, arg, sizeof(value)))
4973                 return -EFAULT;
4974
4975         if (!value)
4976                 return -EINVAL;
4977
4978         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4979                 return -EINVAL;
4980
4981         event_function_call(event, __perf_event_period, &value);
4982
4983         return 0;
4984 }
4985
4986 static const struct file_operations perf_fops;
4987
4988 static inline int perf_fget_light(int fd, struct fd *p)
4989 {
4990         struct fd f = fdget(fd);
4991         if (!f.file)
4992                 return -EBADF;
4993
4994         if (f.file->f_op != &perf_fops) {
4995                 fdput(f);
4996                 return -EBADF;
4997         }
4998         *p = f;
4999         return 0;
5000 }
5001
5002 static int perf_event_set_output(struct perf_event *event,
5003                                  struct perf_event *output_event);
5004 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
5005 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
5006 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5007                           struct perf_event_attr *attr);
5008
5009 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
5010 {
5011         void (*func)(struct perf_event *);
5012         u32 flags = arg;
5013
5014         switch (cmd) {
5015         case PERF_EVENT_IOC_ENABLE:
5016                 func = _perf_event_enable;
5017                 break;
5018         case PERF_EVENT_IOC_DISABLE:
5019                 func = _perf_event_disable;
5020                 break;
5021         case PERF_EVENT_IOC_RESET:
5022                 func = _perf_event_reset;
5023                 break;
5024
5025         case PERF_EVENT_IOC_REFRESH:
5026                 return _perf_event_refresh(event, arg);
5027
5028         case PERF_EVENT_IOC_PERIOD:
5029                 return perf_event_period(event, (u64 __user *)arg);
5030
5031         case PERF_EVENT_IOC_ID:
5032         {
5033                 u64 id = primary_event_id(event);
5034
5035                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
5036                         return -EFAULT;
5037                 return 0;
5038         }
5039
5040         case PERF_EVENT_IOC_SET_OUTPUT:
5041         {
5042                 int ret;
5043                 if (arg != -1) {
5044                         struct perf_event *output_event;
5045                         struct fd output;
5046                         ret = perf_fget_light(arg, &output);
5047                         if (ret)
5048                                 return ret;
5049                         output_event = output.file->private_data;
5050                         ret = perf_event_set_output(event, output_event);
5051                         fdput(output);
5052                 } else {
5053                         ret = perf_event_set_output(event, NULL);
5054                 }
5055                 return ret;
5056         }
5057
5058         case PERF_EVENT_IOC_SET_FILTER:
5059                 return perf_event_set_filter(event, (void __user *)arg);
5060
5061         case PERF_EVENT_IOC_SET_BPF:
5062                 return perf_event_set_bpf_prog(event, arg);
5063
5064         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
5065                 struct ring_buffer *rb;
5066
5067                 rcu_read_lock();
5068                 rb = rcu_dereference(event->rb);
5069                 if (!rb || !rb->nr_pages) {
5070                         rcu_read_unlock();
5071                         return -EINVAL;
5072                 }
5073                 rb_toggle_paused(rb, !!arg);
5074                 rcu_read_unlock();
5075                 return 0;
5076         }
5077
5078         case PERF_EVENT_IOC_QUERY_BPF:
5079                 return perf_event_query_prog_array(event, (void __user *)arg);
5080
5081         case PERF_EVENT_IOC_MODIFY_ATTRIBUTES: {
5082                 struct perf_event_attr new_attr;
5083                 int err = perf_copy_attr((struct perf_event_attr __user *)arg,
5084                                          &new_attr);
5085
5086                 if (err)
5087                         return err;
5088
5089                 return perf_event_modify_attr(event,  &new_attr);
5090         }
5091         default:
5092                 return -ENOTTY;
5093         }
5094
5095         if (flags & PERF_IOC_FLAG_GROUP)
5096                 perf_event_for_each(event, func);
5097         else
5098                 perf_event_for_each_child(event, func);
5099
5100         return 0;
5101 }
5102
5103 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5104 {
5105         struct perf_event *event = file->private_data;
5106         struct perf_event_context *ctx;
5107         long ret;
5108
5109         ctx = perf_event_ctx_lock(event);
5110         ret = _perf_ioctl(event, cmd, arg);
5111         perf_event_ctx_unlock(event, ctx);
5112
5113         return ret;
5114 }
5115
5116 #ifdef CONFIG_COMPAT
5117 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
5118                                 unsigned long arg)
5119 {
5120         switch (_IOC_NR(cmd)) {
5121         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
5122         case _IOC_NR(PERF_EVENT_IOC_ID):
5123         case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF):
5124         case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES):
5125                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5126                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
5127                         cmd &= ~IOCSIZE_MASK;
5128                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
5129                 }
5130                 break;
5131         }
5132         return perf_ioctl(file, cmd, arg);
5133 }
5134 #else
5135 # define perf_compat_ioctl NULL
5136 #endif
5137
5138 int perf_event_task_enable(void)
5139 {
5140         struct perf_event_context *ctx;
5141         struct perf_event *event;
5142
5143         mutex_lock(&current->perf_event_mutex);
5144         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5145                 ctx = perf_event_ctx_lock(event);
5146                 perf_event_for_each_child(event, _perf_event_enable);
5147                 perf_event_ctx_unlock(event, ctx);
5148         }
5149         mutex_unlock(&current->perf_event_mutex);
5150
5151         return 0;
5152 }
5153
5154 int perf_event_task_disable(void)
5155 {
5156         struct perf_event_context *ctx;
5157         struct perf_event *event;
5158
5159         mutex_lock(&current->perf_event_mutex);
5160         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
5161                 ctx = perf_event_ctx_lock(event);
5162                 perf_event_for_each_child(event, _perf_event_disable);
5163                 perf_event_ctx_unlock(event, ctx);
5164         }
5165         mutex_unlock(&current->perf_event_mutex);
5166
5167         return 0;
5168 }
5169
5170 static int perf_event_index(struct perf_event *event)
5171 {
5172         if (event->hw.state & PERF_HES_STOPPED)
5173                 return 0;
5174
5175         if (event->state != PERF_EVENT_STATE_ACTIVE)
5176                 return 0;
5177
5178         return event->pmu->event_idx(event);
5179 }
5180
5181 static void calc_timer_values(struct perf_event *event,
5182                                 u64 *now,
5183                                 u64 *enabled,
5184                                 u64 *running)
5185 {
5186         u64 ctx_time;
5187
5188         *now = perf_clock();
5189         ctx_time = event->shadow_ctx_time + *now;
5190         __perf_update_times(event, ctx_time, enabled, running);
5191 }
5192
5193 static void perf_event_init_userpage(struct perf_event *event)
5194 {
5195         struct perf_event_mmap_page *userpg;
5196         struct ring_buffer *rb;
5197
5198         rcu_read_lock();
5199         rb = rcu_dereference(event->rb);
5200         if (!rb)
5201                 goto unlock;
5202
5203         userpg = rb->user_page;
5204
5205         /* Allow new userspace to detect that bit 0 is deprecated */
5206         userpg->cap_bit0_is_deprecated = 1;
5207         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
5208         userpg->data_offset = PAGE_SIZE;
5209         userpg->data_size = perf_data_size(rb);
5210
5211 unlock:
5212         rcu_read_unlock();
5213 }
5214
5215 void __weak arch_perf_update_userpage(
5216         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
5217 {
5218 }
5219
5220 /*
5221  * Callers need to ensure there can be no nesting of this function, otherwise
5222  * the seqlock logic goes bad. We can not serialize this because the arch
5223  * code calls this from NMI context.
5224  */
5225 void perf_event_update_userpage(struct perf_event *event)
5226 {
5227         struct perf_event_mmap_page *userpg;
5228         struct ring_buffer *rb;
5229         u64 enabled, running, now;
5230
5231         rcu_read_lock();
5232         rb = rcu_dereference(event->rb);
5233         if (!rb)
5234                 goto unlock;
5235
5236         /*
5237          * compute total_time_enabled, total_time_running
5238          * based on snapshot values taken when the event
5239          * was last scheduled in.
5240          *
5241          * we cannot simply called update_context_time()
5242          * because of locking issue as we can be called in
5243          * NMI context
5244          */
5245         calc_timer_values(event, &now, &enabled, &running);
5246
5247         userpg = rb->user_page;
5248         /*
5249          * Disable preemption so as to not let the corresponding user-space
5250          * spin too long if we get preempted.
5251          */
5252         preempt_disable();
5253         ++userpg->lock;
5254         barrier();
5255         userpg->index = perf_event_index(event);
5256         userpg->offset = perf_event_count(event);
5257         if (userpg->index)
5258                 userpg->offset -= local64_read(&event->hw.prev_count);
5259
5260         userpg->time_enabled = enabled +
5261                         atomic64_read(&event->child_total_time_enabled);
5262
5263         userpg->time_running = running +
5264                         atomic64_read(&event->child_total_time_running);
5265
5266         arch_perf_update_userpage(event, userpg, now);
5267
5268         barrier();
5269         ++userpg->lock;
5270         preempt_enable();
5271 unlock:
5272         rcu_read_unlock();
5273 }
5274 EXPORT_SYMBOL_GPL(perf_event_update_userpage);
5275
5276 static int perf_mmap_fault(struct vm_fault *vmf)
5277 {
5278         struct perf_event *event = vmf->vma->vm_file->private_data;
5279         struct ring_buffer *rb;
5280         int ret = VM_FAULT_SIGBUS;
5281
5282         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5283                 if (vmf->pgoff == 0)
5284                         ret = 0;
5285                 return ret;
5286         }
5287
5288         rcu_read_lock();
5289         rb = rcu_dereference(event->rb);
5290         if (!rb)
5291                 goto unlock;
5292
5293         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5294                 goto unlock;
5295
5296         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5297         if (!vmf->page)
5298                 goto unlock;
5299
5300         get_page(vmf->page);
5301         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5302         vmf->page->index   = vmf->pgoff;
5303
5304         ret = 0;
5305 unlock:
5306         rcu_read_unlock();
5307
5308         return ret;
5309 }
5310
5311 static void ring_buffer_attach(struct perf_event *event,
5312                                struct ring_buffer *rb)
5313 {
5314         struct ring_buffer *old_rb = NULL;
5315         unsigned long flags;
5316
5317         if (event->rb) {
5318                 /*
5319                  * Should be impossible, we set this when removing
5320                  * event->rb_entry and wait/clear when adding event->rb_entry.
5321                  */
5322                 WARN_ON_ONCE(event->rcu_pending);
5323
5324                 old_rb = event->rb;
5325                 spin_lock_irqsave(&old_rb->event_lock, flags);
5326                 list_del_rcu(&event->rb_entry);
5327                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5328
5329                 event->rcu_batches = get_state_synchronize_rcu();
5330                 event->rcu_pending = 1;
5331         }
5332
5333         if (rb) {
5334                 if (event->rcu_pending) {
5335                         cond_synchronize_rcu(event->rcu_batches);
5336                         event->rcu_pending = 0;
5337                 }
5338
5339                 spin_lock_irqsave(&rb->event_lock, flags);
5340                 list_add_rcu(&event->rb_entry, &rb->event_list);
5341                 spin_unlock_irqrestore(&rb->event_lock, flags);
5342         }
5343
5344         /*
5345          * Avoid racing with perf_mmap_close(AUX): stop the event
5346          * before swizzling the event::rb pointer; if it's getting
5347          * unmapped, its aux_mmap_count will be 0 and it won't
5348          * restart. See the comment in __perf_pmu_output_stop().
5349          *
5350          * Data will inevitably be lost when set_output is done in
5351          * mid-air, but then again, whoever does it like this is
5352          * not in for the data anyway.
5353          */
5354         if (has_aux(event))
5355                 perf_event_stop(event, 0);
5356
5357         rcu_assign_pointer(event->rb, rb);
5358
5359         if (old_rb) {
5360                 ring_buffer_put(old_rb);
5361                 /*
5362                  * Since we detached before setting the new rb, so that we
5363                  * could attach the new rb, we could have missed a wakeup.
5364                  * Provide it now.
5365                  */
5366                 wake_up_all(&event->waitq);
5367         }
5368 }
5369
5370 static void ring_buffer_wakeup(struct perf_event *event)
5371 {
5372         struct ring_buffer *rb;
5373
5374         rcu_read_lock();
5375         rb = rcu_dereference(event->rb);
5376         if (rb) {
5377                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5378                         wake_up_all(&event->waitq);
5379         }
5380         rcu_read_unlock();
5381 }
5382
5383 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5384 {
5385         struct ring_buffer *rb;
5386
5387         rcu_read_lock();
5388         rb = rcu_dereference(event->rb);
5389         if (rb) {
5390                 if (!atomic_inc_not_zero(&rb->refcount))
5391                         rb = NULL;
5392         }
5393         rcu_read_unlock();
5394
5395         return rb;
5396 }
5397
5398 void ring_buffer_put(struct ring_buffer *rb)
5399 {
5400         if (!atomic_dec_and_test(&rb->refcount))
5401                 return;
5402
5403         WARN_ON_ONCE(!list_empty(&rb->event_list));
5404
5405         call_rcu(&rb->rcu_head, rb_free_rcu);
5406 }
5407
5408 static void perf_mmap_open(struct vm_area_struct *vma)
5409 {
5410         struct perf_event *event = vma->vm_file->private_data;
5411
5412         atomic_inc(&event->mmap_count);
5413         atomic_inc(&event->rb->mmap_count);
5414
5415         if (vma->vm_pgoff)
5416                 atomic_inc(&event->rb->aux_mmap_count);
5417
5418         if (event->pmu->event_mapped)
5419                 event->pmu->event_mapped(event, vma->vm_mm);
5420 }
5421
5422 static void perf_pmu_output_stop(struct perf_event *event);
5423
5424 /*
5425  * A buffer can be mmap()ed multiple times; either directly through the same
5426  * event, or through other events by use of perf_event_set_output().
5427  *
5428  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5429  * the buffer here, where we still have a VM context. This means we need
5430  * to detach all events redirecting to us.
5431  */
5432 static void perf_mmap_close(struct vm_area_struct *vma)
5433 {
5434         struct perf_event *event = vma->vm_file->private_data;
5435
5436         struct ring_buffer *rb = ring_buffer_get(event);
5437         struct user_struct *mmap_user = rb->mmap_user;
5438         int mmap_locked = rb->mmap_locked;
5439         unsigned long size = perf_data_size(rb);
5440
5441         if (event->pmu->event_unmapped)
5442                 event->pmu->event_unmapped(event, vma->vm_mm);
5443
5444         /*
5445          * rb->aux_mmap_count will always drop before rb->mmap_count and
5446          * event->mmap_count, so it is ok to use event->mmap_mutex to
5447          * serialize with perf_mmap here.
5448          */
5449         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5450             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5451                 /*
5452                  * Stop all AUX events that are writing to this buffer,
5453                  * so that we can free its AUX pages and corresponding PMU
5454                  * data. Note that after rb::aux_mmap_count dropped to zero,
5455                  * they won't start any more (see perf_aux_output_begin()).
5456                  */
5457                 perf_pmu_output_stop(event);
5458
5459                 /* now it's safe to free the pages */
5460                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5461                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5462
5463                 /* this has to be the last one */
5464                 rb_free_aux(rb);
5465                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5466
5467                 mutex_unlock(&event->mmap_mutex);
5468         }
5469
5470         atomic_dec(&rb->mmap_count);
5471
5472         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5473                 goto out_put;
5474
5475         ring_buffer_attach(event, NULL);
5476         mutex_unlock(&event->mmap_mutex);
5477
5478         /* If there's still other mmap()s of this buffer, we're done. */
5479         if (atomic_read(&rb->mmap_count))
5480                 goto out_put;
5481
5482         /*
5483          * No other mmap()s, detach from all other events that might redirect
5484          * into the now unreachable buffer. Somewhat complicated by the
5485          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5486          */
5487 again:
5488         rcu_read_lock();
5489         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5490                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5491                         /*
5492                          * This event is en-route to free_event() which will
5493                          * detach it and remove it from the list.
5494                          */
5495                         continue;
5496                 }
5497                 rcu_read_unlock();
5498
5499                 mutex_lock(&event->mmap_mutex);
5500                 /*
5501                  * Check we didn't race with perf_event_set_output() which can
5502                  * swizzle the rb from under us while we were waiting to
5503                  * acquire mmap_mutex.
5504                  *
5505                  * If we find a different rb; ignore this event, a next
5506                  * iteration will no longer find it on the list. We have to
5507                  * still restart the iteration to make sure we're not now
5508                  * iterating the wrong list.
5509                  */
5510                 if (event->rb == rb)
5511                         ring_buffer_attach(event, NULL);
5512
5513                 mutex_unlock(&event->mmap_mutex);
5514                 put_event(event);
5515
5516                 /*
5517                  * Restart the iteration; either we're on the wrong list or
5518                  * destroyed its integrity by doing a deletion.
5519                  */
5520                 goto again;
5521         }
5522         rcu_read_unlock();
5523
5524         /*
5525          * It could be there's still a few 0-ref events on the list; they'll
5526          * get cleaned up by free_event() -- they'll also still have their
5527          * ref on the rb and will free it whenever they are done with it.
5528          *
5529          * Aside from that, this buffer is 'fully' detached and unmapped,
5530          * undo the VM accounting.
5531          */
5532
5533         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5534         vma->vm_mm->pinned_vm -= mmap_locked;
5535         free_uid(mmap_user);
5536
5537 out_put:
5538         ring_buffer_put(rb); /* could be last */
5539 }
5540
5541 static const struct vm_operations_struct perf_mmap_vmops = {
5542         .open           = perf_mmap_open,
5543         .close          = perf_mmap_close, /* non mergable */
5544         .fault          = perf_mmap_fault,
5545         .page_mkwrite   = perf_mmap_fault,
5546 };
5547
5548 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5549 {
5550         struct perf_event *event = file->private_data;
5551         unsigned long user_locked, user_lock_limit;
5552         struct user_struct *user = current_user();
5553         unsigned long locked, lock_limit;
5554         struct ring_buffer *rb = NULL;
5555         unsigned long vma_size;
5556         unsigned long nr_pages;
5557         long user_extra = 0, extra = 0;
5558         int ret = 0, flags = 0;
5559
5560         /*
5561          * Don't allow mmap() of inherited per-task counters. This would
5562          * create a performance issue due to all children writing to the
5563          * same rb.
5564          */
5565         if (event->cpu == -1 && event->attr.inherit)
5566                 return -EINVAL;
5567
5568         if (!(vma->vm_flags & VM_SHARED))
5569                 return -EINVAL;
5570
5571         vma_size = vma->vm_end - vma->vm_start;
5572
5573         if (vma->vm_pgoff == 0) {
5574                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5575         } else {
5576                 /*
5577                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5578                  * mapped, all subsequent mappings should have the same size
5579                  * and offset. Must be above the normal perf buffer.
5580                  */
5581                 u64 aux_offset, aux_size;
5582
5583                 if (!event->rb)
5584                         return -EINVAL;
5585
5586                 nr_pages = vma_size / PAGE_SIZE;
5587
5588                 mutex_lock(&event->mmap_mutex);
5589                 ret = -EINVAL;
5590
5591                 rb = event->rb;
5592                 if (!rb)
5593                         goto aux_unlock;
5594
5595                 aux_offset = READ_ONCE(rb->user_page->aux_offset);
5596                 aux_size = READ_ONCE(rb->user_page->aux_size);
5597
5598                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5599                         goto aux_unlock;
5600
5601                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5602                         goto aux_unlock;
5603
5604                 /* already mapped with a different offset */
5605                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5606                         goto aux_unlock;
5607
5608                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5609                         goto aux_unlock;
5610
5611                 /* already mapped with a different size */
5612                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5613                         goto aux_unlock;
5614
5615                 if (!is_power_of_2(nr_pages))
5616                         goto aux_unlock;
5617
5618                 if (!atomic_inc_not_zero(&rb->mmap_count))
5619                         goto aux_unlock;
5620
5621                 if (rb_has_aux(rb)) {
5622                         atomic_inc(&rb->aux_mmap_count);
5623                         ret = 0;
5624                         goto unlock;
5625                 }
5626
5627                 atomic_set(&rb->aux_mmap_count, 1);
5628                 user_extra = nr_pages;
5629
5630                 goto accounting;
5631         }
5632
5633         /*
5634          * If we have rb pages ensure they're a power-of-two number, so we
5635          * can do bitmasks instead of modulo.
5636          */
5637         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5638                 return -EINVAL;
5639
5640         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5641                 return -EINVAL;
5642
5643         WARN_ON_ONCE(event->ctx->parent_ctx);
5644 again:
5645         mutex_lock(&event->mmap_mutex);
5646         if (event->rb) {
5647                 if (event->rb->nr_pages != nr_pages) {
5648                         ret = -EINVAL;
5649                         goto unlock;
5650                 }
5651
5652                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5653                         /*
5654                          * Raced against perf_mmap_close() through
5655                          * perf_event_set_output(). Try again, hope for better
5656                          * luck.
5657                          */
5658                         mutex_unlock(&event->mmap_mutex);
5659                         goto again;
5660                 }
5661
5662                 goto unlock;
5663         }
5664
5665         user_extra = nr_pages + 1;
5666
5667 accounting:
5668         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5669
5670         /*
5671          * Increase the limit linearly with more CPUs:
5672          */
5673         user_lock_limit *= num_online_cpus();
5674
5675         user_locked = atomic_long_read(&user->locked_vm) + user_extra;
5676
5677         if (user_locked > user_lock_limit)
5678                 extra = user_locked - user_lock_limit;
5679
5680         lock_limit = rlimit(RLIMIT_MEMLOCK);
5681         lock_limit >>= PAGE_SHIFT;
5682         locked = vma->vm_mm->pinned_vm + extra;
5683
5684         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5685                 !capable(CAP_IPC_LOCK)) {
5686                 ret = -EPERM;
5687                 goto unlock;
5688         }
5689
5690         WARN_ON(!rb && event->rb);
5691
5692         if (vma->vm_flags & VM_WRITE)
5693                 flags |= RING_BUFFER_WRITABLE;
5694
5695         if (!rb) {
5696                 rb = rb_alloc(nr_pages,
5697                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5698                               event->cpu, flags);
5699
5700                 if (!rb) {
5701                         ret = -ENOMEM;
5702                         goto unlock;
5703                 }
5704
5705                 atomic_set(&rb->mmap_count, 1);
5706                 rb->mmap_user = get_current_user();
5707                 rb->mmap_locked = extra;
5708
5709                 ring_buffer_attach(event, rb);
5710
5711                 perf_event_init_userpage(event);
5712                 perf_event_update_userpage(event);
5713         } else {
5714                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5715                                    event->attr.aux_watermark, flags);
5716                 if (!ret)
5717                         rb->aux_mmap_locked = extra;
5718         }
5719
5720 unlock:
5721         if (!ret) {
5722                 atomic_long_add(user_extra, &user->locked_vm);
5723                 vma->vm_mm->pinned_vm += extra;
5724
5725                 atomic_inc(&event->mmap_count);
5726         } else if (rb) {
5727                 atomic_dec(&rb->mmap_count);
5728         }
5729 aux_unlock:
5730         mutex_unlock(&event->mmap_mutex);
5731
5732         /*
5733          * Since pinned accounting is per vm we cannot allow fork() to copy our
5734          * vma.
5735          */
5736         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5737         vma->vm_ops = &perf_mmap_vmops;
5738
5739         if (event->pmu->event_mapped)
5740                 event->pmu->event_mapped(event, vma->vm_mm);
5741
5742         return ret;
5743 }
5744
5745 static int perf_fasync(int fd, struct file *filp, int on)
5746 {
5747         struct inode *inode = file_inode(filp);
5748         struct perf_event *event = filp->private_data;
5749         int retval;
5750
5751         inode_lock(inode);
5752         retval = fasync_helper(fd, filp, on, &event->fasync);
5753         inode_unlock(inode);
5754
5755         if (retval < 0)
5756                 return retval;
5757
5758         return 0;
5759 }
5760
5761 static const struct file_operations perf_fops = {
5762         .llseek                 = no_llseek,
5763         .release                = perf_release,
5764         .read                   = perf_read,
5765         .poll                   = perf_poll,
5766         .unlocked_ioctl         = perf_ioctl,
5767         .compat_ioctl           = perf_compat_ioctl,
5768         .mmap                   = perf_mmap,
5769         .fasync                 = perf_fasync,
5770 };
5771
5772 /*
5773  * Perf event wakeup
5774  *
5775  * If there's data, ensure we set the poll() state and publish everything
5776  * to user-space before waking everybody up.
5777  */
5778
5779 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5780 {
5781         /* only the parent has fasync state */
5782         if (event->parent)
5783                 event = event->parent;
5784         return &event->fasync;
5785 }
5786
5787 void perf_event_wakeup(struct perf_event *event)
5788 {
5789         ring_buffer_wakeup(event);
5790
5791         if (event->pending_kill) {
5792                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5793                 event->pending_kill = 0;
5794         }
5795 }
5796
5797 static void perf_pending_event(struct irq_work *entry)
5798 {
5799         struct perf_event *event = container_of(entry,
5800                         struct perf_event, pending);
5801         int rctx;
5802
5803         rctx = perf_swevent_get_recursion_context();
5804         /*
5805          * If we 'fail' here, that's OK, it means recursion is already disabled
5806          * and we won't recurse 'further'.
5807          */
5808
5809         if (event->pending_disable) {
5810                 event->pending_disable = 0;
5811                 perf_event_disable_local(event);
5812         }
5813
5814         if (event->pending_wakeup) {
5815                 event->pending_wakeup = 0;
5816                 perf_event_wakeup(event);
5817         }
5818
5819         if (rctx >= 0)
5820                 perf_swevent_put_recursion_context(rctx);
5821 }
5822
5823 /*
5824  * We assume there is only KVM supporting the callbacks.
5825  * Later on, we might change it to a list if there is
5826  * another virtualization implementation supporting the callbacks.
5827  */
5828 struct perf_guest_info_callbacks *perf_guest_cbs;
5829
5830 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5831 {
5832         perf_guest_cbs = cbs;
5833         return 0;
5834 }
5835 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5836
5837 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5838 {
5839         perf_guest_cbs = NULL;
5840         return 0;
5841 }
5842 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5843
5844 static void
5845 perf_output_sample_regs(struct perf_output_handle *handle,
5846                         struct pt_regs *regs, u64 mask)
5847 {
5848         int bit;
5849         DECLARE_BITMAP(_mask, 64);
5850
5851         bitmap_from_u64(_mask, mask);
5852         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5853                 u64 val;
5854
5855                 val = perf_reg_value(regs, bit);
5856                 perf_output_put(handle, val);
5857         }
5858 }
5859
5860 static void perf_sample_regs_user(struct perf_regs *regs_user,
5861                                   struct pt_regs *regs,
5862                                   struct pt_regs *regs_user_copy)
5863 {
5864         if (user_mode(regs)) {
5865                 regs_user->abi = perf_reg_abi(current);
5866                 regs_user->regs = regs;
5867         } else if (current->mm) {
5868                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5869         } else {
5870                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5871                 regs_user->regs = NULL;
5872         }
5873 }
5874
5875 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5876                                   struct pt_regs *regs)
5877 {
5878         regs_intr->regs = regs;
5879         regs_intr->abi  = perf_reg_abi(current);
5880 }
5881
5882
5883 /*
5884  * Get remaining task size from user stack pointer.
5885  *
5886  * It'd be better to take stack vma map and limit this more
5887  * precisly, but there's no way to get it safely under interrupt,
5888  * so using TASK_SIZE as limit.
5889  */
5890 static u64 perf_ustack_task_size(struct pt_regs *regs)
5891 {
5892         unsigned long addr = perf_user_stack_pointer(regs);
5893
5894         if (!addr || addr >= TASK_SIZE)
5895                 return 0;
5896
5897         return TASK_SIZE - addr;
5898 }
5899
5900 static u16
5901 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5902                         struct pt_regs *regs)
5903 {
5904         u64 task_size;
5905
5906         /* No regs, no stack pointer, no dump. */
5907         if (!regs)
5908                 return 0;
5909
5910         /*
5911          * Check if we fit in with the requested stack size into the:
5912          * - TASK_SIZE
5913          *   If we don't, we limit the size to the TASK_SIZE.
5914          *
5915          * - remaining sample size
5916          *   If we don't, we customize the stack size to
5917          *   fit in to the remaining sample size.
5918          */
5919
5920         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5921         stack_size = min(stack_size, (u16) task_size);
5922
5923         /* Current header size plus static size and dynamic size. */
5924         header_size += 2 * sizeof(u64);
5925
5926         /* Do we fit in with the current stack dump size? */
5927         if ((u16) (header_size + stack_size) < header_size) {
5928                 /*
5929                  * If we overflow the maximum size for the sample,
5930                  * we customize the stack dump size to fit in.
5931                  */
5932                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5933                 stack_size = round_up(stack_size, sizeof(u64));
5934         }
5935
5936         return stack_size;
5937 }
5938
5939 static void
5940 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5941                           struct pt_regs *regs)
5942 {
5943         /* Case of a kernel thread, nothing to dump */
5944         if (!regs) {
5945                 u64 size = 0;
5946                 perf_output_put(handle, size);
5947         } else {
5948                 unsigned long sp;
5949                 unsigned int rem;
5950                 u64 dyn_size;
5951
5952                 /*
5953                  * We dump:
5954                  * static size
5955                  *   - the size requested by user or the best one we can fit
5956                  *     in to the sample max size
5957                  * data
5958                  *   - user stack dump data
5959                  * dynamic size
5960                  *   - the actual dumped size
5961                  */
5962
5963                 /* Static size. */
5964                 perf_output_put(handle, dump_size);
5965
5966                 /* Data. */
5967                 sp = perf_user_stack_pointer(regs);
5968                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5969                 dyn_size = dump_size - rem;
5970
5971                 perf_output_skip(handle, rem);
5972
5973                 /* Dynamic size. */
5974                 perf_output_put(handle, dyn_size);
5975         }
5976 }
5977
5978 static void __perf_event_header__init_id(struct perf_event_header *header,
5979                                          struct perf_sample_data *data,
5980                                          struct perf_event *event)
5981 {
5982         u64 sample_type = event->attr.sample_type;
5983
5984         data->type = sample_type;
5985         header->size += event->id_header_size;
5986
5987         if (sample_type & PERF_SAMPLE_TID) {
5988                 /* namespace issues */
5989                 data->tid_entry.pid = perf_event_pid(event, current);
5990                 data->tid_entry.tid = perf_event_tid(event, current);
5991         }
5992
5993         if (sample_type & PERF_SAMPLE_TIME)
5994                 data->time = perf_event_clock(event);
5995
5996         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5997                 data->id = primary_event_id(event);
5998
5999         if (sample_type & PERF_SAMPLE_STREAM_ID)
6000                 data->stream_id = event->id;
6001
6002         if (sample_type & PERF_SAMPLE_CPU) {
6003                 data->cpu_entry.cpu      = raw_smp_processor_id();
6004                 data->cpu_entry.reserved = 0;
6005         }
6006 }
6007
6008 void perf_event_header__init_id(struct perf_event_header *header,
6009                                 struct perf_sample_data *data,
6010                                 struct perf_event *event)
6011 {
6012         if (event->attr.sample_id_all)
6013                 __perf_event_header__init_id(header, data, event);
6014 }
6015
6016 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
6017                                            struct perf_sample_data *data)
6018 {
6019         u64 sample_type = data->type;
6020
6021         if (sample_type & PERF_SAMPLE_TID)
6022                 perf_output_put(handle, data->tid_entry);
6023
6024         if (sample_type & PERF_SAMPLE_TIME)
6025                 perf_output_put(handle, data->time);
6026
6027         if (sample_type & PERF_SAMPLE_ID)
6028                 perf_output_put(handle, data->id);
6029
6030         if (sample_type & PERF_SAMPLE_STREAM_ID)
6031                 perf_output_put(handle, data->stream_id);
6032
6033         if (sample_type & PERF_SAMPLE_CPU)
6034                 perf_output_put(handle, data->cpu_entry);
6035
6036         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6037                 perf_output_put(handle, data->id);
6038 }
6039
6040 void perf_event__output_id_sample(struct perf_event *event,
6041                                   struct perf_output_handle *handle,
6042                                   struct perf_sample_data *sample)
6043 {
6044         if (event->attr.sample_id_all)
6045                 __perf_event__output_id_sample(handle, sample);
6046 }
6047
6048 static void perf_output_read_one(struct perf_output_handle *handle,
6049                                  struct perf_event *event,
6050                                  u64 enabled, u64 running)
6051 {
6052         u64 read_format = event->attr.read_format;
6053         u64 values[4];
6054         int n = 0;
6055
6056         values[n++] = perf_event_count(event);
6057         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
6058                 values[n++] = enabled +
6059                         atomic64_read(&event->child_total_time_enabled);
6060         }
6061         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
6062                 values[n++] = running +
6063                         atomic64_read(&event->child_total_time_running);
6064         }
6065         if (read_format & PERF_FORMAT_ID)
6066                 values[n++] = primary_event_id(event);
6067
6068         __output_copy(handle, values, n * sizeof(u64));
6069 }
6070
6071 static void perf_output_read_group(struct perf_output_handle *handle,
6072                             struct perf_event *event,
6073                             u64 enabled, u64 running)
6074 {
6075         struct perf_event *leader = event->group_leader, *sub;
6076         u64 read_format = event->attr.read_format;
6077         u64 values[5];
6078         int n = 0;
6079
6080         values[n++] = 1 + leader->nr_siblings;
6081
6082         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
6083                 values[n++] = enabled;
6084
6085         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
6086                 values[n++] = running;
6087
6088         if ((leader != event) &&
6089             (leader->state == PERF_EVENT_STATE_ACTIVE))
6090                 leader->pmu->read(leader);
6091
6092         values[n++] = perf_event_count(leader);
6093         if (read_format & PERF_FORMAT_ID)
6094                 values[n++] = primary_event_id(leader);
6095
6096         __output_copy(handle, values, n * sizeof(u64));
6097
6098         for_each_sibling_event(sub, leader) {
6099                 n = 0;
6100
6101                 if ((sub != event) &&
6102                     (sub->state == PERF_EVENT_STATE_ACTIVE))
6103                         sub->pmu->read(sub);
6104
6105                 values[n++] = perf_event_count(sub);
6106                 if (read_format & PERF_FORMAT_ID)
6107                         values[n++] = primary_event_id(sub);
6108
6109                 __output_copy(handle, values, n * sizeof(u64));
6110         }
6111 }
6112
6113 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6114                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
6115
6116 /*
6117  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6118  *
6119  * The problem is that its both hard and excessively expensive to iterate the
6120  * child list, not to mention that its impossible to IPI the children running
6121  * on another CPU, from interrupt/NMI context.
6122  */
6123 static void perf_output_read(struct perf_output_handle *handle,
6124                              struct perf_event *event)
6125 {
6126         u64 enabled = 0, running = 0, now;
6127         u64 read_format = event->attr.read_format;
6128
6129         /*
6130          * compute total_time_enabled, total_time_running
6131          * based on snapshot values taken when the event
6132          * was last scheduled in.
6133          *
6134          * we cannot simply called update_context_time()
6135          * because of locking issue as we are called in
6136          * NMI context
6137          */
6138         if (read_format & PERF_FORMAT_TOTAL_TIMES)
6139                 calc_timer_values(event, &now, &enabled, &running);
6140
6141         if (event->attr.read_format & PERF_FORMAT_GROUP)
6142                 perf_output_read_group(handle, event, enabled, running);
6143         else
6144                 perf_output_read_one(handle, event, enabled, running);
6145 }
6146
6147 void perf_output_sample(struct perf_output_handle *handle,
6148                         struct perf_event_header *header,
6149                         struct perf_sample_data *data,
6150                         struct perf_event *event)
6151 {
6152         u64 sample_type = data->type;
6153
6154         perf_output_put(handle, *header);
6155
6156         if (sample_type & PERF_SAMPLE_IDENTIFIER)
6157                 perf_output_put(handle, data->id);
6158
6159         if (sample_type & PERF_SAMPLE_IP)
6160                 perf_output_put(handle, data->ip);
6161
6162         if (sample_type & PERF_SAMPLE_TID)
6163                 perf_output_put(handle, data->tid_entry);
6164
6165         if (sample_type & PERF_SAMPLE_TIME)
6166                 perf_output_put(handle, data->time);
6167
6168         if (sample_type & PERF_SAMPLE_ADDR)
6169                 perf_output_put(handle, data->addr);
6170
6171         if (sample_type & PERF_SAMPLE_ID)
6172                 perf_output_put(handle, data->id);
6173
6174         if (sample_type & PERF_SAMPLE_STREAM_ID)
6175                 perf_output_put(handle, data->stream_id);
6176
6177         if (sample_type & PERF_SAMPLE_CPU)
6178                 perf_output_put(handle, data->cpu_entry);
6179
6180         if (sample_type & PERF_SAMPLE_PERIOD)
6181                 perf_output_put(handle, data->period);
6182
6183         if (sample_type & PERF_SAMPLE_READ)
6184                 perf_output_read(handle, event);
6185
6186         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6187                 int size = 1;
6188
6189                 size += data->callchain->nr;
6190                 size *= sizeof(u64);
6191                 __output_copy(handle, data->callchain, size);
6192         }
6193
6194         if (sample_type & PERF_SAMPLE_RAW) {
6195                 struct perf_raw_record *raw = data->raw;
6196
6197                 if (raw) {
6198                         struct perf_raw_frag *frag = &raw->frag;
6199
6200                         perf_output_put(handle, raw->size);
6201                         do {
6202                                 if (frag->copy) {
6203                                         __output_custom(handle, frag->copy,
6204                                                         frag->data, frag->size);
6205                                 } else {
6206                                         __output_copy(handle, frag->data,
6207                                                       frag->size);
6208                                 }
6209                                 if (perf_raw_frag_last(frag))
6210                                         break;
6211                                 frag = frag->next;
6212                         } while (1);
6213                         if (frag->pad)
6214                                 __output_skip(handle, NULL, frag->pad);
6215                 } else {
6216                         struct {
6217                                 u32     size;
6218                                 u32     data;
6219                         } raw = {
6220                                 .size = sizeof(u32),
6221                                 .data = 0,
6222                         };
6223                         perf_output_put(handle, raw);
6224                 }
6225         }
6226
6227         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6228                 if (data->br_stack) {
6229                         size_t size;
6230
6231                         size = data->br_stack->nr
6232                              * sizeof(struct perf_branch_entry);
6233
6234                         perf_output_put(handle, data->br_stack->nr);
6235                         perf_output_copy(handle, data->br_stack->entries, size);
6236                 } else {
6237                         /*
6238                          * we always store at least the value of nr
6239                          */
6240                         u64 nr = 0;
6241                         perf_output_put(handle, nr);
6242                 }
6243         }
6244
6245         if (sample_type & PERF_SAMPLE_REGS_USER) {
6246                 u64 abi = data->regs_user.abi;
6247
6248                 /*
6249                  * If there are no regs to dump, notice it through
6250                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6251                  */
6252                 perf_output_put(handle, abi);
6253
6254                 if (abi) {
6255                         u64 mask = event->attr.sample_regs_user;
6256                         perf_output_sample_regs(handle,
6257                                                 data->regs_user.regs,
6258                                                 mask);
6259                 }
6260         }
6261
6262         if (sample_type & PERF_SAMPLE_STACK_USER) {
6263                 perf_output_sample_ustack(handle,
6264                                           data->stack_user_size,
6265                                           data->regs_user.regs);
6266         }
6267
6268         if (sample_type & PERF_SAMPLE_WEIGHT)
6269                 perf_output_put(handle, data->weight);
6270
6271         if (sample_type & PERF_SAMPLE_DATA_SRC)
6272                 perf_output_put(handle, data->data_src.val);
6273
6274         if (sample_type & PERF_SAMPLE_TRANSACTION)
6275                 perf_output_put(handle, data->txn);
6276
6277         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6278                 u64 abi = data->regs_intr.abi;
6279                 /*
6280                  * If there are no regs to dump, notice it through
6281                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6282                  */
6283                 perf_output_put(handle, abi);
6284
6285                 if (abi) {
6286                         u64 mask = event->attr.sample_regs_intr;
6287
6288                         perf_output_sample_regs(handle,
6289                                                 data->regs_intr.regs,
6290                                                 mask);
6291                 }
6292         }
6293
6294         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6295                 perf_output_put(handle, data->phys_addr);
6296
6297         if (!event->attr.watermark) {
6298                 int wakeup_events = event->attr.wakeup_events;
6299
6300                 if (wakeup_events) {
6301                         struct ring_buffer *rb = handle->rb;
6302                         int events = local_inc_return(&rb->events);
6303
6304                         if (events >= wakeup_events) {
6305                                 local_sub(wakeup_events, &rb->events);
6306                                 local_inc(&rb->wakeup);
6307                         }
6308                 }
6309         }
6310 }
6311
6312 static u64 perf_virt_to_phys(u64 virt)
6313 {
6314         u64 phys_addr = 0;
6315         struct page *p = NULL;
6316
6317         if (!virt)
6318                 return 0;
6319
6320         if (virt >= TASK_SIZE) {
6321                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6322                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6323                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6324                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6325         } else {
6326                 /*
6327                  * Walking the pages tables for user address.
6328                  * Interrupts are disabled, so it prevents any tear down
6329                  * of the page tables.
6330                  * Try IRQ-safe __get_user_pages_fast first.
6331                  * If failed, leave phys_addr as 0.
6332                  */
6333                 if ((current->mm != NULL) &&
6334                     (__get_user_pages_fast(virt, 1, 0, &p) == 1))
6335                         phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6336
6337                 if (p)
6338                         put_page(p);
6339         }
6340
6341         return phys_addr;
6342 }
6343
6344 static struct perf_callchain_entry __empty_callchain = { .nr = 0, };
6345
6346 static struct perf_callchain_entry *
6347 perf_callchain(struct perf_event *event, struct pt_regs *regs)
6348 {
6349         bool kernel = !event->attr.exclude_callchain_kernel;
6350         bool user   = !event->attr.exclude_callchain_user;
6351         /* Disallow cross-task user callchains. */
6352         bool crosstask = event->ctx->task && event->ctx->task != current;
6353         const u32 max_stack = event->attr.sample_max_stack;
6354         struct perf_callchain_entry *callchain;
6355
6356         if (!kernel && !user)
6357                 return &__empty_callchain;
6358
6359         callchain = get_perf_callchain(regs, 0, kernel, user,
6360                                        max_stack, crosstask, true);
6361         return callchain ?: &__empty_callchain;
6362 }
6363
6364 void perf_prepare_sample(struct perf_event_header *header,
6365                          struct perf_sample_data *data,
6366                          struct perf_event *event,
6367                          struct pt_regs *regs)
6368 {
6369         u64 sample_type = event->attr.sample_type;
6370
6371         header->type = PERF_RECORD_SAMPLE;
6372         header->size = sizeof(*header) + event->header_size;
6373
6374         header->misc = 0;
6375         header->misc |= perf_misc_flags(regs);
6376
6377         __perf_event_header__init_id(header, data, event);
6378
6379         if (sample_type & PERF_SAMPLE_IP)
6380                 data->ip = perf_instruction_pointer(regs);
6381
6382         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6383                 int size = 1;
6384
6385                 data->callchain = perf_callchain(event, regs);
6386                 size += data->callchain->nr;
6387
6388                 header->size += size * sizeof(u64);
6389         }
6390
6391         if (sample_type & PERF_SAMPLE_RAW) {
6392                 struct perf_raw_record *raw = data->raw;
6393                 int size;
6394
6395                 if (raw) {
6396                         struct perf_raw_frag *frag = &raw->frag;
6397                         u32 sum = 0;
6398
6399                         do {
6400                                 sum += frag->size;
6401                                 if (perf_raw_frag_last(frag))
6402                                         break;
6403                                 frag = frag->next;
6404                         } while (1);
6405
6406                         size = round_up(sum + sizeof(u32), sizeof(u64));
6407                         raw->size = size - sizeof(u32);
6408                         frag->pad = raw->size - sum;
6409                 } else {
6410                         size = sizeof(u64);
6411                 }
6412
6413                 header->size += size;
6414         }
6415
6416         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6417                 int size = sizeof(u64); /* nr */
6418                 if (data->br_stack) {
6419                         size += data->br_stack->nr
6420                               * sizeof(struct perf_branch_entry);
6421                 }
6422                 header->size += size;
6423         }
6424
6425         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6426                 perf_sample_regs_user(&data->regs_user, regs,
6427                                       &data->regs_user_copy);
6428
6429         if (sample_type & PERF_SAMPLE_REGS_USER) {
6430                 /* regs dump ABI info */
6431                 int size = sizeof(u64);
6432
6433                 if (data->regs_user.regs) {
6434                         u64 mask = event->attr.sample_regs_user;
6435                         size += hweight64(mask) * sizeof(u64);
6436                 }
6437
6438                 header->size += size;
6439         }
6440
6441         if (sample_type & PERF_SAMPLE_STACK_USER) {
6442                 /*
6443                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6444                  * processed as the last one or have additional check added
6445                  * in case new sample type is added, because we could eat
6446                  * up the rest of the sample size.
6447                  */
6448                 u16 stack_size = event->attr.sample_stack_user;
6449                 u16 size = sizeof(u64);
6450
6451                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6452                                                      data->regs_user.regs);
6453
6454                 /*
6455                  * If there is something to dump, add space for the dump
6456                  * itself and for the field that tells the dynamic size,
6457                  * which is how many have been actually dumped.
6458                  */
6459                 if (stack_size)
6460                         size += sizeof(u64) + stack_size;
6461
6462                 data->stack_user_size = stack_size;
6463                 header->size += size;
6464         }
6465
6466         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6467                 /* regs dump ABI info */
6468                 int size = sizeof(u64);
6469
6470                 perf_sample_regs_intr(&data->regs_intr, regs);
6471
6472                 if (data->regs_intr.regs) {
6473                         u64 mask = event->attr.sample_regs_intr;
6474
6475                         size += hweight64(mask) * sizeof(u64);
6476                 }
6477
6478                 header->size += size;
6479         }
6480
6481         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6482                 data->phys_addr = perf_virt_to_phys(data->addr);
6483 }
6484
6485 static __always_inline void
6486 __perf_event_output(struct perf_event *event,
6487                     struct perf_sample_data *data,
6488                     struct pt_regs *regs,
6489                     int (*output_begin)(struct perf_output_handle *,
6490                                         struct perf_event *,
6491                                         unsigned int))
6492 {
6493         struct perf_output_handle handle;
6494         struct perf_event_header header;
6495
6496         /* protect the callchain buffers */
6497         rcu_read_lock();
6498
6499         perf_prepare_sample(&header, data, event, regs);
6500
6501         if (output_begin(&handle, event, header.size))
6502                 goto exit;
6503
6504         perf_output_sample(&handle, &header, data, event);
6505
6506         perf_output_end(&handle);
6507
6508 exit:
6509         rcu_read_unlock();
6510 }
6511
6512 void
6513 perf_event_output_forward(struct perf_event *event,
6514                          struct perf_sample_data *data,
6515                          struct pt_regs *regs)
6516 {
6517         __perf_event_output(event, data, regs, perf_output_begin_forward);
6518 }
6519
6520 void
6521 perf_event_output_backward(struct perf_event *event,
6522                            struct perf_sample_data *data,
6523                            struct pt_regs *regs)
6524 {
6525         __perf_event_output(event, data, regs, perf_output_begin_backward);
6526 }
6527
6528 void
6529 perf_event_output(struct perf_event *event,
6530                   struct perf_sample_data *data,
6531                   struct pt_regs *regs)
6532 {
6533         __perf_event_output(event, data, regs, perf_output_begin);
6534 }
6535
6536 /*
6537  * read event_id
6538  */
6539
6540 struct perf_read_event {
6541         struct perf_event_header        header;
6542
6543         u32                             pid;
6544         u32                             tid;
6545 };
6546
6547 static void
6548 perf_event_read_event(struct perf_event *event,
6549                         struct task_struct *task)
6550 {
6551         struct perf_output_handle handle;
6552         struct perf_sample_data sample;
6553         struct perf_read_event read_event = {
6554                 .header = {
6555                         .type = PERF_RECORD_READ,
6556                         .misc = 0,
6557                         .size = sizeof(read_event) + event->read_size,
6558                 },
6559                 .pid = perf_event_pid(event, task),
6560                 .tid = perf_event_tid(event, task),
6561         };
6562         int ret;
6563
6564         perf_event_header__init_id(&read_event.header, &sample, event);
6565         ret = perf_output_begin(&handle, event, read_event.header.size);
6566         if (ret)
6567                 return;
6568
6569         perf_output_put(&handle, read_event);
6570         perf_output_read(&handle, event);
6571         perf_event__output_id_sample(event, &handle, &sample);
6572
6573         perf_output_end(&handle);
6574 }
6575
6576 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6577
6578 static void
6579 perf_iterate_ctx(struct perf_event_context *ctx,
6580                    perf_iterate_f output,
6581                    void *data, bool all)
6582 {
6583         struct perf_event *event;
6584
6585         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6586                 if (!all) {
6587                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6588                                 continue;
6589                         if (!event_filter_match(event))
6590                                 continue;
6591                 }
6592
6593                 output(event, data);
6594         }
6595 }
6596
6597 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6598 {
6599         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6600         struct perf_event *event;
6601
6602         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6603                 /*
6604                  * Skip events that are not fully formed yet; ensure that
6605                  * if we observe event->ctx, both event and ctx will be
6606                  * complete enough. See perf_install_in_context().
6607                  */
6608                 if (!smp_load_acquire(&event->ctx))
6609                         continue;
6610
6611                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6612                         continue;
6613                 if (!event_filter_match(event))
6614                         continue;
6615                 output(event, data);
6616         }
6617 }
6618
6619 /*
6620  * Iterate all events that need to receive side-band events.
6621  *
6622  * For new callers; ensure that account_pmu_sb_event() includes
6623  * your event, otherwise it might not get delivered.
6624  */
6625 static void
6626 perf_iterate_sb(perf_iterate_f output, void *data,
6627                struct perf_event_context *task_ctx)
6628 {
6629         struct perf_event_context *ctx;
6630         int ctxn;
6631
6632         rcu_read_lock();
6633         preempt_disable();
6634
6635         /*
6636          * If we have task_ctx != NULL we only notify the task context itself.
6637          * The task_ctx is set only for EXIT events before releasing task
6638          * context.
6639          */
6640         if (task_ctx) {
6641                 perf_iterate_ctx(task_ctx, output, data, false);
6642                 goto done;
6643         }
6644
6645         perf_iterate_sb_cpu(output, data);
6646
6647         for_each_task_context_nr(ctxn) {
6648                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6649                 if (ctx)
6650                         perf_iterate_ctx(ctx, output, data, false);
6651         }
6652 done:
6653         preempt_enable();
6654         rcu_read_unlock();
6655 }
6656
6657 /*
6658  * Clear all file-based filters at exec, they'll have to be
6659  * re-instated when/if these objects are mmapped again.
6660  */
6661 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6662 {
6663         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6664         struct perf_addr_filter *filter;
6665         unsigned int restart = 0, count = 0;
6666         unsigned long flags;
6667
6668         if (!has_addr_filter(event))
6669                 return;
6670
6671         raw_spin_lock_irqsave(&ifh->lock, flags);
6672         list_for_each_entry(filter, &ifh->list, entry) {
6673                 if (filter->path.dentry) {
6674                         event->addr_filters_offs[count] = 0;
6675                         restart++;
6676                 }
6677
6678                 count++;
6679         }
6680
6681         if (restart)
6682                 event->addr_filters_gen++;
6683         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6684
6685         if (restart)
6686                 perf_event_stop(event, 1);
6687 }
6688
6689 void perf_event_exec(void)
6690 {
6691         struct perf_event_context *ctx;
6692         int ctxn;
6693
6694         rcu_read_lock();
6695         for_each_task_context_nr(ctxn) {
6696                 ctx = current->perf_event_ctxp[ctxn];
6697                 if (!ctx)
6698                         continue;
6699
6700                 perf_event_enable_on_exec(ctxn);
6701
6702                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6703                                    true);
6704         }
6705         rcu_read_unlock();
6706 }
6707
6708 struct remote_output {
6709         struct ring_buffer      *rb;
6710         int                     err;
6711 };
6712
6713 static void __perf_event_output_stop(struct perf_event *event, void *data)
6714 {
6715         struct perf_event *parent = event->parent;
6716         struct remote_output *ro = data;
6717         struct ring_buffer *rb = ro->rb;
6718         struct stop_event_data sd = {
6719                 .event  = event,
6720         };
6721
6722         if (!has_aux(event))
6723                 return;
6724
6725         if (!parent)
6726                 parent = event;
6727
6728         /*
6729          * In case of inheritance, it will be the parent that links to the
6730          * ring-buffer, but it will be the child that's actually using it.
6731          *
6732          * We are using event::rb to determine if the event should be stopped,
6733          * however this may race with ring_buffer_attach() (through set_output),
6734          * which will make us skip the event that actually needs to be stopped.
6735          * So ring_buffer_attach() has to stop an aux event before re-assigning
6736          * its rb pointer.
6737          */
6738         if (rcu_dereference(parent->rb) == rb)
6739                 ro->err = __perf_event_stop(&sd);
6740 }
6741
6742 static int __perf_pmu_output_stop(void *info)
6743 {
6744         struct perf_event *event = info;
6745         struct pmu *pmu = event->pmu;
6746         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6747         struct remote_output ro = {
6748                 .rb     = event->rb,
6749         };
6750
6751         rcu_read_lock();
6752         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6753         if (cpuctx->task_ctx)
6754                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6755                                    &ro, false);
6756         rcu_read_unlock();
6757
6758         return ro.err;
6759 }
6760
6761 static void perf_pmu_output_stop(struct perf_event *event)
6762 {
6763         struct perf_event *iter;
6764         int err, cpu;
6765
6766 restart:
6767         rcu_read_lock();
6768         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6769                 /*
6770                  * For per-CPU events, we need to make sure that neither they
6771                  * nor their children are running; for cpu==-1 events it's
6772                  * sufficient to stop the event itself if it's active, since
6773                  * it can't have children.
6774                  */
6775                 cpu = iter->cpu;
6776                 if (cpu == -1)
6777                         cpu = READ_ONCE(iter->oncpu);
6778
6779                 if (cpu == -1)
6780                         continue;
6781
6782                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6783                 if (err == -EAGAIN) {
6784                         rcu_read_unlock();
6785                         goto restart;
6786                 }
6787         }
6788         rcu_read_unlock();
6789 }
6790
6791 /*
6792  * task tracking -- fork/exit
6793  *
6794  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6795  */
6796
6797 struct perf_task_event {
6798         struct task_struct              *task;
6799         struct perf_event_context       *task_ctx;
6800
6801         struct {
6802                 struct perf_event_header        header;
6803
6804                 u32                             pid;
6805                 u32                             ppid;
6806                 u32                             tid;
6807                 u32                             ptid;
6808                 u64                             time;
6809         } event_id;
6810 };
6811
6812 static int perf_event_task_match(struct perf_event *event)
6813 {
6814         return event->attr.comm  || event->attr.mmap ||
6815                event->attr.mmap2 || event->attr.mmap_data ||
6816                event->attr.task;
6817 }
6818
6819 static void perf_event_task_output(struct perf_event *event,
6820                                    void *data)
6821 {
6822         struct perf_task_event *task_event = data;
6823         struct perf_output_handle handle;
6824         struct perf_sample_data sample;
6825         struct task_struct *task = task_event->task;
6826         int ret, size = task_event->event_id.header.size;
6827
6828         if (!perf_event_task_match(event))
6829                 return;
6830
6831         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6832
6833         ret = perf_output_begin(&handle, event,
6834                                 task_event->event_id.header.size);
6835         if (ret)
6836                 goto out;
6837
6838         task_event->event_id.pid = perf_event_pid(event, task);
6839         task_event->event_id.ppid = perf_event_pid(event, current);
6840
6841         task_event->event_id.tid = perf_event_tid(event, task);
6842         task_event->event_id.ptid = perf_event_tid(event, current);
6843
6844         task_event->event_id.time = perf_event_clock(event);
6845
6846         perf_output_put(&handle, task_event->event_id);
6847
6848         perf_event__output_id_sample(event, &handle, &sample);
6849
6850         perf_output_end(&handle);
6851 out:
6852         task_event->event_id.header.size = size;
6853 }
6854
6855 static void perf_event_task(struct task_struct *task,
6856                               struct perf_event_context *task_ctx,
6857                               int new)
6858 {
6859         struct perf_task_event task_event;
6860
6861         if (!atomic_read(&nr_comm_events) &&
6862             !atomic_read(&nr_mmap_events) &&
6863             !atomic_read(&nr_task_events))
6864                 return;
6865
6866         task_event = (struct perf_task_event){
6867                 .task     = task,
6868                 .task_ctx = task_ctx,
6869                 .event_id    = {
6870                         .header = {
6871                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6872                                 .misc = 0,
6873                                 .size = sizeof(task_event.event_id),
6874                         },
6875                         /* .pid  */
6876                         /* .ppid */
6877                         /* .tid  */
6878                         /* .ptid */
6879                         /* .time */
6880                 },
6881         };
6882
6883         perf_iterate_sb(perf_event_task_output,
6884                        &task_event,
6885                        task_ctx);
6886 }
6887
6888 void perf_event_fork(struct task_struct *task)
6889 {
6890         perf_event_task(task, NULL, 1);
6891         perf_event_namespaces(task);
6892 }
6893
6894 /*
6895  * comm tracking
6896  */
6897
6898 struct perf_comm_event {
6899         struct task_struct      *task;
6900         char                    *comm;
6901         int                     comm_size;
6902
6903         struct {
6904                 struct perf_event_header        header;
6905
6906                 u32                             pid;
6907                 u32                             tid;
6908         } event_id;
6909 };
6910
6911 static int perf_event_comm_match(struct perf_event *event)
6912 {
6913         return event->attr.comm;
6914 }
6915
6916 static void perf_event_comm_output(struct perf_event *event,
6917                                    void *data)
6918 {
6919         struct perf_comm_event *comm_event = data;
6920         struct perf_output_handle handle;
6921         struct perf_sample_data sample;
6922         int size = comm_event->event_id.header.size;
6923         int ret;
6924
6925         if (!perf_event_comm_match(event))
6926                 return;
6927
6928         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6929         ret = perf_output_begin(&handle, event,
6930                                 comm_event->event_id.header.size);
6931
6932         if (ret)
6933                 goto out;
6934
6935         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6936         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6937
6938         perf_output_put(&handle, comm_event->event_id);
6939         __output_copy(&handle, comm_event->comm,
6940                                    comm_event->comm_size);
6941
6942         perf_event__output_id_sample(event, &handle, &sample);
6943
6944         perf_output_end(&handle);
6945 out:
6946         comm_event->event_id.header.size = size;
6947 }
6948
6949 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6950 {
6951         char comm[TASK_COMM_LEN];
6952         unsigned int size;
6953
6954         memset(comm, 0, sizeof(comm));
6955         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6956         size = ALIGN(strlen(comm)+1, sizeof(u64));
6957
6958         comm_event->comm = comm;
6959         comm_event->comm_size = size;
6960
6961         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6962
6963         perf_iterate_sb(perf_event_comm_output,
6964                        comm_event,
6965                        NULL);
6966 }
6967
6968 void perf_event_comm(struct task_struct *task, bool exec)
6969 {
6970         struct perf_comm_event comm_event;
6971
6972         if (!atomic_read(&nr_comm_events))
6973                 return;
6974
6975         comm_event = (struct perf_comm_event){
6976                 .task   = task,
6977                 /* .comm      */
6978                 /* .comm_size */
6979                 .event_id  = {
6980                         .header = {
6981                                 .type = PERF_RECORD_COMM,
6982                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6983                                 /* .size */
6984                         },
6985                         /* .pid */
6986                         /* .tid */
6987                 },
6988         };
6989
6990         perf_event_comm_event(&comm_event);
6991 }
6992
6993 /*
6994  * namespaces tracking
6995  */
6996
6997 struct perf_namespaces_event {
6998         struct task_struct              *task;
6999
7000         struct {
7001                 struct perf_event_header        header;
7002
7003                 u32                             pid;
7004                 u32                             tid;
7005                 u64                             nr_namespaces;
7006                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
7007         } event_id;
7008 };
7009
7010 static int perf_event_namespaces_match(struct perf_event *event)
7011 {
7012         return event->attr.namespaces;
7013 }
7014
7015 static void perf_event_namespaces_output(struct perf_event *event,
7016                                          void *data)
7017 {
7018         struct perf_namespaces_event *namespaces_event = data;
7019         struct perf_output_handle handle;
7020         struct perf_sample_data sample;
7021         u16 header_size = namespaces_event->event_id.header.size;
7022         int ret;
7023
7024         if (!perf_event_namespaces_match(event))
7025                 return;
7026
7027         perf_event_header__init_id(&namespaces_event->event_id.header,
7028                                    &sample, event);
7029         ret = perf_output_begin(&handle, event,
7030                                 namespaces_event->event_id.header.size);
7031         if (ret)
7032                 goto out;
7033
7034         namespaces_event->event_id.pid = perf_event_pid(event,
7035                                                         namespaces_event->task);
7036         namespaces_event->event_id.tid = perf_event_tid(event,
7037                                                         namespaces_event->task);
7038
7039         perf_output_put(&handle, namespaces_event->event_id);
7040
7041         perf_event__output_id_sample(event, &handle, &sample);
7042
7043         perf_output_end(&handle);
7044 out:
7045         namespaces_event->event_id.header.size = header_size;
7046 }
7047
7048 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
7049                                    struct task_struct *task,
7050                                    const struct proc_ns_operations *ns_ops)
7051 {
7052         struct path ns_path;
7053         struct inode *ns_inode;
7054         void *error;
7055
7056         error = ns_get_path(&ns_path, task, ns_ops);
7057         if (!error) {
7058                 ns_inode = ns_path.dentry->d_inode;
7059                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
7060                 ns_link_info->ino = ns_inode->i_ino;
7061                 path_put(&ns_path);
7062         }
7063 }
7064
7065 void perf_event_namespaces(struct task_struct *task)
7066 {
7067         struct perf_namespaces_event namespaces_event;
7068         struct perf_ns_link_info *ns_link_info;
7069
7070         if (!atomic_read(&nr_namespaces_events))
7071                 return;
7072
7073         namespaces_event = (struct perf_namespaces_event){
7074                 .task   = task,
7075                 .event_id  = {
7076                         .header = {
7077                                 .type = PERF_RECORD_NAMESPACES,
7078                                 .misc = 0,
7079                                 .size = sizeof(namespaces_event.event_id),
7080                         },
7081                         /* .pid */
7082                         /* .tid */
7083                         .nr_namespaces = NR_NAMESPACES,
7084                         /* .link_info[NR_NAMESPACES] */
7085                 },
7086         };
7087
7088         ns_link_info = namespaces_event.event_id.link_info;
7089
7090         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
7091                                task, &mntns_operations);
7092
7093 #ifdef CONFIG_USER_NS
7094         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
7095                                task, &userns_operations);
7096 #endif
7097 #ifdef CONFIG_NET_NS
7098         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
7099                                task, &netns_operations);
7100 #endif
7101 #ifdef CONFIG_UTS_NS
7102         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
7103                                task, &utsns_operations);
7104 #endif
7105 #ifdef CONFIG_IPC_NS
7106         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
7107                                task, &ipcns_operations);
7108 #endif
7109 #ifdef CONFIG_PID_NS
7110         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
7111                                task, &pidns_operations);
7112 #endif
7113 #ifdef CONFIG_CGROUPS
7114         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
7115                                task, &cgroupns_operations);
7116 #endif
7117
7118         perf_iterate_sb(perf_event_namespaces_output,
7119                         &namespaces_event,
7120                         NULL);
7121 }
7122
7123 /*
7124  * mmap tracking
7125  */
7126
7127 struct perf_mmap_event {
7128         struct vm_area_struct   *vma;
7129
7130         const char              *file_name;
7131         int                     file_size;
7132         int                     maj, min;
7133         u64                     ino;
7134         u64                     ino_generation;
7135         u32                     prot, flags;
7136
7137         struct {
7138                 struct perf_event_header        header;
7139
7140                 u32                             pid;
7141                 u32                             tid;
7142                 u64                             start;
7143                 u64                             len;
7144                 u64                             pgoff;
7145         } event_id;
7146 };
7147
7148 static int perf_event_mmap_match(struct perf_event *event,
7149                                  void *data)
7150 {
7151         struct perf_mmap_event *mmap_event = data;
7152         struct vm_area_struct *vma = mmap_event->vma;
7153         int executable = vma->vm_flags & VM_EXEC;
7154
7155         return (!executable && event->attr.mmap_data) ||
7156                (executable && (event->attr.mmap || event->attr.mmap2));
7157 }
7158
7159 static void perf_event_mmap_output(struct perf_event *event,
7160                                    void *data)
7161 {
7162         struct perf_mmap_event *mmap_event = data;
7163         struct perf_output_handle handle;
7164         struct perf_sample_data sample;
7165         int size = mmap_event->event_id.header.size;
7166         int ret;
7167
7168         if (!perf_event_mmap_match(event, data))
7169                 return;
7170
7171         if (event->attr.mmap2) {
7172                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
7173                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
7174                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
7175                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
7176                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
7177                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
7178                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
7179         }
7180
7181         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
7182         ret = perf_output_begin(&handle, event,
7183                                 mmap_event->event_id.header.size);
7184         if (ret)
7185                 goto out;
7186
7187         mmap_event->event_id.pid = perf_event_pid(event, current);
7188         mmap_event->event_id.tid = perf_event_tid(event, current);
7189
7190         perf_output_put(&handle, mmap_event->event_id);
7191
7192         if (event->attr.mmap2) {
7193                 perf_output_put(&handle, mmap_event->maj);
7194                 perf_output_put(&handle, mmap_event->min);
7195                 perf_output_put(&handle, mmap_event->ino);
7196                 perf_output_put(&handle, mmap_event->ino_generation);
7197                 perf_output_put(&handle, mmap_event->prot);
7198                 perf_output_put(&handle, mmap_event->flags);
7199         }
7200
7201         __output_copy(&handle, mmap_event->file_name,
7202                                    mmap_event->file_size);
7203
7204         perf_event__output_id_sample(event, &handle, &sample);
7205
7206         perf_output_end(&handle);
7207 out:
7208         mmap_event->event_id.header.size = size;
7209 }
7210
7211 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7212 {
7213         struct vm_area_struct *vma = mmap_event->vma;
7214         struct file *file = vma->vm_file;
7215         int maj = 0, min = 0;
7216         u64 ino = 0, gen = 0;
7217         u32 prot = 0, flags = 0;
7218         unsigned int size;
7219         char tmp[16];
7220         char *buf = NULL;
7221         char *name;
7222
7223         if (vma->vm_flags & VM_READ)
7224                 prot |= PROT_READ;
7225         if (vma->vm_flags & VM_WRITE)
7226                 prot |= PROT_WRITE;
7227         if (vma->vm_flags & VM_EXEC)
7228                 prot |= PROT_EXEC;
7229
7230         if (vma->vm_flags & VM_MAYSHARE)
7231                 flags = MAP_SHARED;
7232         else
7233                 flags = MAP_PRIVATE;
7234
7235         if (vma->vm_flags & VM_DENYWRITE)
7236                 flags |= MAP_DENYWRITE;
7237         if (vma->vm_flags & VM_MAYEXEC)
7238                 flags |= MAP_EXECUTABLE;
7239         if (vma->vm_flags & VM_LOCKED)
7240                 flags |= MAP_LOCKED;
7241         if (vma->vm_flags & VM_HUGETLB)
7242                 flags |= MAP_HUGETLB;
7243
7244         if (file) {
7245                 struct inode *inode;
7246                 dev_t dev;
7247
7248                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7249                 if (!buf) {
7250                         name = "//enomem";
7251                         goto cpy_name;
7252                 }
7253                 /*
7254                  * d_path() works from the end of the rb backwards, so we
7255                  * need to add enough zero bytes after the string to handle
7256                  * the 64bit alignment we do later.
7257                  */
7258                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7259                 if (IS_ERR(name)) {
7260                         name = "//toolong";
7261                         goto cpy_name;
7262                 }
7263                 inode = file_inode(vma->vm_file);
7264                 dev = inode->i_sb->s_dev;
7265                 ino = inode->i_ino;
7266                 gen = inode->i_generation;
7267                 maj = MAJOR(dev);
7268                 min = MINOR(dev);
7269
7270                 goto got_name;
7271         } else {
7272                 if (vma->vm_ops && vma->vm_ops->name) {
7273                         name = (char *) vma->vm_ops->name(vma);
7274                         if (name)
7275                                 goto cpy_name;
7276                 }
7277
7278                 name = (char *)arch_vma_name(vma);
7279                 if (name)
7280                         goto cpy_name;
7281
7282                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7283                                 vma->vm_end >= vma->vm_mm->brk) {
7284                         name = "[heap]";
7285                         goto cpy_name;
7286                 }
7287                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7288                                 vma->vm_end >= vma->vm_mm->start_stack) {
7289                         name = "[stack]";
7290                         goto cpy_name;
7291                 }
7292
7293                 name = "//anon";
7294                 goto cpy_name;
7295         }
7296
7297 cpy_name:
7298         strlcpy(tmp, name, sizeof(tmp));
7299         name = tmp;
7300 got_name:
7301         /*
7302          * Since our buffer works in 8 byte units we need to align our string
7303          * size to a multiple of 8. However, we must guarantee the tail end is
7304          * zero'd out to avoid leaking random bits to userspace.
7305          */
7306         size = strlen(name)+1;
7307         while (!IS_ALIGNED(size, sizeof(u64)))
7308                 name[size++] = '\0';
7309
7310         mmap_event->file_name = name;
7311         mmap_event->file_size = size;
7312         mmap_event->maj = maj;
7313         mmap_event->min = min;
7314         mmap_event->ino = ino;
7315         mmap_event->ino_generation = gen;
7316         mmap_event->prot = prot;
7317         mmap_event->flags = flags;
7318
7319         if (!(vma->vm_flags & VM_EXEC))
7320                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7321
7322         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7323
7324         perf_iterate_sb(perf_event_mmap_output,
7325                        mmap_event,
7326                        NULL);
7327
7328         kfree(buf);
7329 }
7330
7331 /*
7332  * Check whether inode and address range match filter criteria.
7333  */
7334 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7335                                      struct file *file, unsigned long offset,
7336                                      unsigned long size)
7337 {
7338         if (d_inode(filter->path.dentry) != file_inode(file))
7339                 return false;
7340
7341         if (filter->offset > offset + size)
7342                 return false;
7343
7344         if (filter->offset + filter->size < offset)
7345                 return false;
7346
7347         return true;
7348 }
7349
7350 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7351 {
7352         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7353         struct vm_area_struct *vma = data;
7354         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7355         struct file *file = vma->vm_file;
7356         struct perf_addr_filter *filter;
7357         unsigned int restart = 0, count = 0;
7358
7359         if (!has_addr_filter(event))
7360                 return;
7361
7362         if (!file)
7363                 return;
7364
7365         raw_spin_lock_irqsave(&ifh->lock, flags);
7366         list_for_each_entry(filter, &ifh->list, entry) {
7367                 if (perf_addr_filter_match(filter, file, off,
7368                                              vma->vm_end - vma->vm_start)) {
7369                         event->addr_filters_offs[count] = vma->vm_start;
7370                         restart++;
7371                 }
7372
7373                 count++;
7374         }
7375
7376         if (restart)
7377                 event->addr_filters_gen++;
7378         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7379
7380         if (restart)
7381                 perf_event_stop(event, 1);
7382 }
7383
7384 /*
7385  * Adjust all task's events' filters to the new vma
7386  */
7387 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7388 {
7389         struct perf_event_context *ctx;
7390         int ctxn;
7391
7392         /*
7393          * Data tracing isn't supported yet and as such there is no need
7394          * to keep track of anything that isn't related to executable code:
7395          */
7396         if (!(vma->vm_flags & VM_EXEC))
7397                 return;
7398
7399         rcu_read_lock();
7400         for_each_task_context_nr(ctxn) {
7401                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7402                 if (!ctx)
7403                         continue;
7404
7405                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7406         }
7407         rcu_read_unlock();
7408 }
7409
7410 void perf_event_mmap(struct vm_area_struct *vma)
7411 {
7412         struct perf_mmap_event mmap_event;
7413
7414         if (!atomic_read(&nr_mmap_events))
7415                 return;
7416
7417         mmap_event = (struct perf_mmap_event){
7418                 .vma    = vma,
7419                 /* .file_name */
7420                 /* .file_size */
7421                 .event_id  = {
7422                         .header = {
7423                                 .type = PERF_RECORD_MMAP,
7424                                 .misc = PERF_RECORD_MISC_USER,
7425                                 /* .size */
7426                         },
7427                         /* .pid */
7428                         /* .tid */
7429                         .start  = vma->vm_start,
7430                         .len    = vma->vm_end - vma->vm_start,
7431                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7432                 },
7433                 /* .maj (attr_mmap2 only) */
7434                 /* .min (attr_mmap2 only) */
7435                 /* .ino (attr_mmap2 only) */
7436                 /* .ino_generation (attr_mmap2 only) */
7437                 /* .prot (attr_mmap2 only) */
7438                 /* .flags (attr_mmap2 only) */
7439         };
7440
7441         perf_addr_filters_adjust(vma);
7442         perf_event_mmap_event(&mmap_event);
7443 }
7444
7445 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7446                           unsigned long size, u64 flags)
7447 {
7448         struct perf_output_handle handle;
7449         struct perf_sample_data sample;
7450         struct perf_aux_event {
7451                 struct perf_event_header        header;
7452                 u64                             offset;
7453                 u64                             size;
7454                 u64                             flags;
7455         } rec = {
7456                 .header = {
7457                         .type = PERF_RECORD_AUX,
7458                         .misc = 0,
7459                         .size = sizeof(rec),
7460                 },
7461                 .offset         = head,
7462                 .size           = size,
7463                 .flags          = flags,
7464         };
7465         int ret;
7466
7467         perf_event_header__init_id(&rec.header, &sample, event);
7468         ret = perf_output_begin(&handle, event, rec.header.size);
7469
7470         if (ret)
7471                 return;
7472
7473         perf_output_put(&handle, rec);
7474         perf_event__output_id_sample(event, &handle, &sample);
7475
7476         perf_output_end(&handle);
7477 }
7478
7479 /*
7480  * Lost/dropped samples logging
7481  */
7482 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7483 {
7484         struct perf_output_handle handle;
7485         struct perf_sample_data sample;
7486         int ret;
7487
7488         struct {
7489                 struct perf_event_header        header;
7490                 u64                             lost;
7491         } lost_samples_event = {
7492                 .header = {
7493                         .type = PERF_RECORD_LOST_SAMPLES,
7494                         .misc = 0,
7495                         .size = sizeof(lost_samples_event),
7496                 },
7497                 .lost           = lost,
7498         };
7499
7500         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7501
7502         ret = perf_output_begin(&handle, event,
7503                                 lost_samples_event.header.size);
7504         if (ret)
7505                 return;
7506
7507         perf_output_put(&handle, lost_samples_event);
7508         perf_event__output_id_sample(event, &handle, &sample);
7509         perf_output_end(&handle);
7510 }
7511
7512 /*
7513  * context_switch tracking
7514  */
7515
7516 struct perf_switch_event {
7517         struct task_struct      *task;
7518         struct task_struct      *next_prev;
7519
7520         struct {
7521                 struct perf_event_header        header;
7522                 u32                             next_prev_pid;
7523                 u32                             next_prev_tid;
7524         } event_id;
7525 };
7526
7527 static int perf_event_switch_match(struct perf_event *event)
7528 {
7529         return event->attr.context_switch;
7530 }
7531
7532 static void perf_event_switch_output(struct perf_event *event, void *data)
7533 {
7534         struct perf_switch_event *se = data;
7535         struct perf_output_handle handle;
7536         struct perf_sample_data sample;
7537         int ret;
7538
7539         if (!perf_event_switch_match(event))
7540                 return;
7541
7542         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7543         if (event->ctx->task) {
7544                 se->event_id.header.type = PERF_RECORD_SWITCH;
7545                 se->event_id.header.size = sizeof(se->event_id.header);
7546         } else {
7547                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7548                 se->event_id.header.size = sizeof(se->event_id);
7549                 se->event_id.next_prev_pid =
7550                                         perf_event_pid(event, se->next_prev);
7551                 se->event_id.next_prev_tid =
7552                                         perf_event_tid(event, se->next_prev);
7553         }
7554
7555         perf_event_header__init_id(&se->event_id.header, &sample, event);
7556
7557         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7558         if (ret)
7559                 return;
7560
7561         if (event->ctx->task)
7562                 perf_output_put(&handle, se->event_id.header);
7563         else
7564                 perf_output_put(&handle, se->event_id);
7565
7566         perf_event__output_id_sample(event, &handle, &sample);
7567
7568         perf_output_end(&handle);
7569 }
7570
7571 static void perf_event_switch(struct task_struct *task,
7572                               struct task_struct *next_prev, bool sched_in)
7573 {
7574         struct perf_switch_event switch_event;
7575
7576         /* N.B. caller checks nr_switch_events != 0 */
7577
7578         switch_event = (struct perf_switch_event){
7579                 .task           = task,
7580                 .next_prev      = next_prev,
7581                 .event_id       = {
7582                         .header = {
7583                                 /* .type */
7584                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7585                                 /* .size */
7586                         },
7587                         /* .next_prev_pid */
7588                         /* .next_prev_tid */
7589                 },
7590         };
7591
7592         if (!sched_in && task->state == TASK_RUNNING)
7593                 switch_event.event_id.header.misc |=
7594                                 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT;
7595
7596         perf_iterate_sb(perf_event_switch_output,
7597                        &switch_event,
7598                        NULL);
7599 }
7600
7601 /*
7602  * IRQ throttle logging
7603  */
7604
7605 static void perf_log_throttle(struct perf_event *event, int enable)
7606 {
7607         struct perf_output_handle handle;
7608         struct perf_sample_data sample;
7609         int ret;
7610
7611         struct {
7612                 struct perf_event_header        header;
7613                 u64                             time;
7614                 u64                             id;
7615                 u64                             stream_id;
7616         } throttle_event = {
7617                 .header = {
7618                         .type = PERF_RECORD_THROTTLE,
7619                         .misc = 0,
7620                         .size = sizeof(throttle_event),
7621                 },
7622                 .time           = perf_event_clock(event),
7623                 .id             = primary_event_id(event),
7624                 .stream_id      = event->id,
7625         };
7626
7627         if (enable)
7628                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7629
7630         perf_event_header__init_id(&throttle_event.header, &sample, event);
7631
7632         ret = perf_output_begin(&handle, event,
7633                                 throttle_event.header.size);
7634         if (ret)
7635                 return;
7636
7637         perf_output_put(&handle, throttle_event);
7638         perf_event__output_id_sample(event, &handle, &sample);
7639         perf_output_end(&handle);
7640 }
7641
7642 void perf_event_itrace_started(struct perf_event *event)
7643 {
7644         event->attach_state |= PERF_ATTACH_ITRACE;
7645 }
7646
7647 static void perf_log_itrace_start(struct perf_event *event)
7648 {
7649         struct perf_output_handle handle;
7650         struct perf_sample_data sample;
7651         struct perf_aux_event {
7652                 struct perf_event_header        header;
7653                 u32                             pid;
7654                 u32                             tid;
7655         } rec;
7656         int ret;
7657
7658         if (event->parent)
7659                 event = event->parent;
7660
7661         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7662             event->attach_state & PERF_ATTACH_ITRACE)
7663                 return;
7664
7665         rec.header.type = PERF_RECORD_ITRACE_START;
7666         rec.header.misc = 0;
7667         rec.header.size = sizeof(rec);
7668         rec.pid = perf_event_pid(event, current);
7669         rec.tid = perf_event_tid(event, current);
7670
7671         perf_event_header__init_id(&rec.header, &sample, event);
7672         ret = perf_output_begin(&handle, event, rec.header.size);
7673
7674         if (ret)
7675                 return;
7676
7677         perf_output_put(&handle, rec);
7678         perf_event__output_id_sample(event, &handle, &sample);
7679
7680         perf_output_end(&handle);
7681 }
7682
7683 static int
7684 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7685 {
7686         struct hw_perf_event *hwc = &event->hw;
7687         int ret = 0;
7688         u64 seq;
7689
7690         seq = __this_cpu_read(perf_throttled_seq);
7691         if (seq != hwc->interrupts_seq) {
7692                 hwc->interrupts_seq = seq;
7693                 hwc->interrupts = 1;
7694         } else {
7695                 hwc->interrupts++;
7696                 if (unlikely(throttle
7697                              && hwc->interrupts >= max_samples_per_tick)) {
7698                         __this_cpu_inc(perf_throttled_count);
7699                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7700                         hwc->interrupts = MAX_INTERRUPTS;
7701                         perf_log_throttle(event, 0);
7702                         ret = 1;
7703                 }
7704         }
7705
7706         if (event->attr.freq) {
7707                 u64 now = perf_clock();
7708                 s64 delta = now - hwc->freq_time_stamp;
7709
7710                 hwc->freq_time_stamp = now;
7711
7712                 if (delta > 0 && delta < 2*TICK_NSEC)
7713                         perf_adjust_period(event, delta, hwc->last_period, true);
7714         }
7715
7716         return ret;
7717 }
7718
7719 int perf_event_account_interrupt(struct perf_event *event)
7720 {
7721         return __perf_event_account_interrupt(event, 1);
7722 }
7723
7724 /*
7725  * Generic event overflow handling, sampling.
7726  */
7727
7728 static int __perf_event_overflow(struct perf_event *event,
7729                                    int throttle, struct perf_sample_data *data,
7730                                    struct pt_regs *regs)
7731 {
7732         int events = atomic_read(&event->event_limit);
7733         int ret = 0;
7734
7735         /*
7736          * Non-sampling counters might still use the PMI to fold short
7737          * hardware counters, ignore those.
7738          */
7739         if (unlikely(!is_sampling_event(event)))
7740                 return 0;
7741
7742         ret = __perf_event_account_interrupt(event, throttle);
7743
7744         /*
7745          * XXX event_limit might not quite work as expected on inherited
7746          * events
7747          */
7748
7749         event->pending_kill = POLL_IN;
7750         if (events && atomic_dec_and_test(&event->event_limit)) {
7751                 ret = 1;
7752                 event->pending_kill = POLL_HUP;
7753
7754                 perf_event_disable_inatomic(event);
7755         }
7756
7757         READ_ONCE(event->overflow_handler)(event, data, regs);
7758
7759         if (*perf_event_fasync(event) && event->pending_kill) {
7760                 event->pending_wakeup = 1;
7761                 irq_work_queue(&event->pending);
7762         }
7763
7764         return ret;
7765 }
7766
7767 int perf_event_overflow(struct perf_event *event,
7768                           struct perf_sample_data *data,
7769                           struct pt_regs *regs)
7770 {
7771         return __perf_event_overflow(event, 1, data, regs);
7772 }
7773
7774 /*
7775  * Generic software event infrastructure
7776  */
7777
7778 struct swevent_htable {
7779         struct swevent_hlist            *swevent_hlist;
7780         struct mutex                    hlist_mutex;
7781         int                             hlist_refcount;
7782
7783         /* Recursion avoidance in each contexts */
7784         int                             recursion[PERF_NR_CONTEXTS];
7785 };
7786
7787 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7788
7789 /*
7790  * We directly increment event->count and keep a second value in
7791  * event->hw.period_left to count intervals. This period event
7792  * is kept in the range [-sample_period, 0] so that we can use the
7793  * sign as trigger.
7794  */
7795
7796 u64 perf_swevent_set_period(struct perf_event *event)
7797 {
7798         struct hw_perf_event *hwc = &event->hw;
7799         u64 period = hwc->last_period;
7800         u64 nr, offset;
7801         s64 old, val;
7802
7803         hwc->last_period = hwc->sample_period;
7804
7805 again:
7806         old = val = local64_read(&hwc->period_left);
7807         if (val < 0)
7808                 return 0;
7809
7810         nr = div64_u64(period + val, period);
7811         offset = nr * period;
7812         val -= offset;
7813         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7814                 goto again;
7815
7816         return nr;
7817 }
7818
7819 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7820                                     struct perf_sample_data *data,
7821                                     struct pt_regs *regs)
7822 {
7823         struct hw_perf_event *hwc = &event->hw;
7824         int throttle = 0;
7825
7826         if (!overflow)
7827                 overflow = perf_swevent_set_period(event);
7828
7829         if (hwc->interrupts == MAX_INTERRUPTS)
7830                 return;
7831
7832         for (; overflow; overflow--) {
7833                 if (__perf_event_overflow(event, throttle,
7834                                             data, regs)) {
7835                         /*
7836                          * We inhibit the overflow from happening when
7837                          * hwc->interrupts == MAX_INTERRUPTS.
7838                          */
7839                         break;
7840                 }
7841                 throttle = 1;
7842         }
7843 }
7844
7845 static void perf_swevent_event(struct perf_event *event, u64 nr,
7846                                struct perf_sample_data *data,
7847                                struct pt_regs *regs)
7848 {
7849         struct hw_perf_event *hwc = &event->hw;
7850
7851         local64_add(nr, &event->count);
7852
7853         if (!regs)
7854                 return;
7855
7856         if (!is_sampling_event(event))
7857                 return;
7858
7859         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7860                 data->period = nr;
7861                 return perf_swevent_overflow(event, 1, data, regs);
7862         } else
7863                 data->period = event->hw.last_period;
7864
7865         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7866                 return perf_swevent_overflow(event, 1, data, regs);
7867
7868         if (local64_add_negative(nr, &hwc->period_left))
7869                 return;
7870
7871         perf_swevent_overflow(event, 0, data, regs);
7872 }
7873
7874 static int perf_exclude_event(struct perf_event *event,
7875                               struct pt_regs *regs)
7876 {
7877         if (event->hw.state & PERF_HES_STOPPED)
7878                 return 1;
7879
7880         if (regs) {
7881                 if (event->attr.exclude_user && user_mode(regs))
7882                         return 1;
7883
7884                 if (event->attr.exclude_kernel && !user_mode(regs))
7885                         return 1;
7886         }
7887
7888         return 0;
7889 }
7890
7891 static int perf_swevent_match(struct perf_event *event,
7892                                 enum perf_type_id type,
7893                                 u32 event_id,
7894                                 struct perf_sample_data *data,
7895                                 struct pt_regs *regs)
7896 {
7897         if (event->attr.type != type)
7898                 return 0;
7899
7900         if (event->attr.config != event_id)
7901                 return 0;
7902
7903         if (perf_exclude_event(event, regs))
7904                 return 0;
7905
7906         return 1;
7907 }
7908
7909 static inline u64 swevent_hash(u64 type, u32 event_id)
7910 {
7911         u64 val = event_id | (type << 32);
7912
7913         return hash_64(val, SWEVENT_HLIST_BITS);
7914 }
7915
7916 static inline struct hlist_head *
7917 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7918 {
7919         u64 hash = swevent_hash(type, event_id);
7920
7921         return &hlist->heads[hash];
7922 }
7923
7924 /* For the read side: events when they trigger */
7925 static inline struct hlist_head *
7926 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7927 {
7928         struct swevent_hlist *hlist;
7929
7930         hlist = rcu_dereference(swhash->swevent_hlist);
7931         if (!hlist)
7932                 return NULL;
7933
7934         return __find_swevent_head(hlist, type, event_id);
7935 }
7936
7937 /* For the event head insertion and removal in the hlist */
7938 static inline struct hlist_head *
7939 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7940 {
7941         struct swevent_hlist *hlist;
7942         u32 event_id = event->attr.config;
7943         u64 type = event->attr.type;
7944
7945         /*
7946          * Event scheduling is always serialized against hlist allocation
7947          * and release. Which makes the protected version suitable here.
7948          * The context lock guarantees that.
7949          */
7950         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7951                                           lockdep_is_held(&event->ctx->lock));
7952         if (!hlist)
7953                 return NULL;
7954
7955         return __find_swevent_head(hlist, type, event_id);
7956 }
7957
7958 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7959                                     u64 nr,
7960                                     struct perf_sample_data *data,
7961                                     struct pt_regs *regs)
7962 {
7963         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7964         struct perf_event *event;
7965         struct hlist_head *head;
7966
7967         rcu_read_lock();
7968         head = find_swevent_head_rcu(swhash, type, event_id);
7969         if (!head)
7970                 goto end;
7971
7972         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7973                 if (perf_swevent_match(event, type, event_id, data, regs))
7974                         perf_swevent_event(event, nr, data, regs);
7975         }
7976 end:
7977         rcu_read_unlock();
7978 }
7979
7980 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7981
7982 int perf_swevent_get_recursion_context(void)
7983 {
7984         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7985
7986         return get_recursion_context(swhash->recursion);
7987 }
7988 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7989
7990 void perf_swevent_put_recursion_context(int rctx)
7991 {
7992         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7993
7994         put_recursion_context(swhash->recursion, rctx);
7995 }
7996
7997 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7998 {
7999         struct perf_sample_data data;
8000
8001         if (WARN_ON_ONCE(!regs))
8002                 return;
8003
8004         perf_sample_data_init(&data, addr, 0);
8005         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
8006 }
8007
8008 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
8009 {
8010         int rctx;
8011
8012         preempt_disable_notrace();
8013         rctx = perf_swevent_get_recursion_context();
8014         if (unlikely(rctx < 0))
8015                 goto fail;
8016
8017         ___perf_sw_event(event_id, nr, regs, addr);
8018
8019         perf_swevent_put_recursion_context(rctx);
8020 fail:
8021         preempt_enable_notrace();
8022 }
8023
8024 static void perf_swevent_read(struct perf_event *event)
8025 {
8026 }
8027
8028 static int perf_swevent_add(struct perf_event *event, int flags)
8029 {
8030         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
8031         struct hw_perf_event *hwc = &event->hw;
8032         struct hlist_head *head;
8033
8034         if (is_sampling_event(event)) {
8035                 hwc->last_period = hwc->sample_period;
8036                 perf_swevent_set_period(event);
8037         }
8038
8039         hwc->state = !(flags & PERF_EF_START);
8040
8041         head = find_swevent_head(swhash, event);
8042         if (WARN_ON_ONCE(!head))
8043                 return -EINVAL;
8044
8045         hlist_add_head_rcu(&event->hlist_entry, head);
8046         perf_event_update_userpage(event);
8047
8048         return 0;
8049 }
8050
8051 static void perf_swevent_del(struct perf_event *event, int flags)
8052 {
8053         hlist_del_rcu(&event->hlist_entry);
8054 }
8055
8056 static void perf_swevent_start(struct perf_event *event, int flags)
8057 {
8058         event->hw.state = 0;
8059 }
8060
8061 static void perf_swevent_stop(struct perf_event *event, int flags)
8062 {
8063         event->hw.state = PERF_HES_STOPPED;
8064 }
8065
8066 /* Deref the hlist from the update side */
8067 static inline struct swevent_hlist *
8068 swevent_hlist_deref(struct swevent_htable *swhash)
8069 {
8070         return rcu_dereference_protected(swhash->swevent_hlist,
8071                                          lockdep_is_held(&swhash->hlist_mutex));
8072 }
8073
8074 static void swevent_hlist_release(struct swevent_htable *swhash)
8075 {
8076         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
8077
8078         if (!hlist)
8079                 return;
8080
8081         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
8082         kfree_rcu(hlist, rcu_head);
8083 }
8084
8085 static void swevent_hlist_put_cpu(int cpu)
8086 {
8087         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8088
8089         mutex_lock(&swhash->hlist_mutex);
8090
8091         if (!--swhash->hlist_refcount)
8092                 swevent_hlist_release(swhash);
8093
8094         mutex_unlock(&swhash->hlist_mutex);
8095 }
8096
8097 static void swevent_hlist_put(void)
8098 {
8099         int cpu;
8100
8101         for_each_possible_cpu(cpu)
8102                 swevent_hlist_put_cpu(cpu);
8103 }
8104
8105 static int swevent_hlist_get_cpu(int cpu)
8106 {
8107         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
8108         int err = 0;
8109
8110         mutex_lock(&swhash->hlist_mutex);
8111         if (!swevent_hlist_deref(swhash) &&
8112             cpumask_test_cpu(cpu, perf_online_mask)) {
8113                 struct swevent_hlist *hlist;
8114
8115                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
8116                 if (!hlist) {
8117                         err = -ENOMEM;
8118                         goto exit;
8119                 }
8120                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
8121         }
8122         swhash->hlist_refcount++;
8123 exit:
8124         mutex_unlock(&swhash->hlist_mutex);
8125
8126         return err;
8127 }
8128
8129 static int swevent_hlist_get(void)
8130 {
8131         int err, cpu, failed_cpu;
8132
8133         mutex_lock(&pmus_lock);
8134         for_each_possible_cpu(cpu) {
8135                 err = swevent_hlist_get_cpu(cpu);
8136                 if (err) {
8137                         failed_cpu = cpu;
8138                         goto fail;
8139                 }
8140         }
8141         mutex_unlock(&pmus_lock);
8142         return 0;
8143 fail:
8144         for_each_possible_cpu(cpu) {
8145                 if (cpu == failed_cpu)
8146                         break;
8147                 swevent_hlist_put_cpu(cpu);
8148         }
8149         mutex_unlock(&pmus_lock);
8150         return err;
8151 }
8152
8153 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
8154
8155 static void sw_perf_event_destroy(struct perf_event *event)
8156 {
8157         u64 event_id = event->attr.config;
8158
8159         WARN_ON(event->parent);
8160
8161         static_key_slow_dec(&perf_swevent_enabled[event_id]);
8162         swevent_hlist_put();
8163 }
8164
8165 static int perf_swevent_init(struct perf_event *event)
8166 {
8167         u64 event_id = event->attr.config;
8168
8169         if (event->attr.type != PERF_TYPE_SOFTWARE)
8170                 return -ENOENT;
8171
8172         /*
8173          * no branch sampling for software events
8174          */
8175         if (has_branch_stack(event))
8176                 return -EOPNOTSUPP;
8177
8178         switch (event_id) {
8179         case PERF_COUNT_SW_CPU_CLOCK:
8180         case PERF_COUNT_SW_TASK_CLOCK:
8181                 return -ENOENT;
8182
8183         default:
8184                 break;
8185         }
8186
8187         if (event_id >= PERF_COUNT_SW_MAX)
8188                 return -ENOENT;
8189
8190         if (!event->parent) {
8191                 int err;
8192
8193                 err = swevent_hlist_get();
8194                 if (err)
8195                         return err;
8196
8197                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
8198                 event->destroy = sw_perf_event_destroy;
8199         }
8200
8201         return 0;
8202 }
8203
8204 static struct pmu perf_swevent = {
8205         .task_ctx_nr    = perf_sw_context,
8206
8207         .capabilities   = PERF_PMU_CAP_NO_NMI,
8208
8209         .event_init     = perf_swevent_init,
8210         .add            = perf_swevent_add,
8211         .del            = perf_swevent_del,
8212         .start          = perf_swevent_start,
8213         .stop           = perf_swevent_stop,
8214         .read           = perf_swevent_read,
8215 };
8216
8217 #ifdef CONFIG_EVENT_TRACING
8218
8219 static int perf_tp_filter_match(struct perf_event *event,
8220                                 struct perf_sample_data *data)
8221 {
8222         void *record = data->raw->frag.data;
8223
8224         /* only top level events have filters set */
8225         if (event->parent)
8226                 event = event->parent;
8227
8228         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8229                 return 1;
8230         return 0;
8231 }
8232
8233 static int perf_tp_event_match(struct perf_event *event,
8234                                 struct perf_sample_data *data,
8235                                 struct pt_regs *regs)
8236 {
8237         if (event->hw.state & PERF_HES_STOPPED)
8238                 return 0;
8239         /*
8240          * All tracepoints are from kernel-space.
8241          */
8242         if (event->attr.exclude_kernel)
8243                 return 0;
8244
8245         if (!perf_tp_filter_match(event, data))
8246                 return 0;
8247
8248         return 1;
8249 }
8250
8251 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8252                                struct trace_event_call *call, u64 count,
8253                                struct pt_regs *regs, struct hlist_head *head,
8254                                struct task_struct *task)
8255 {
8256         if (bpf_prog_array_valid(call)) {
8257                 *(struct pt_regs **)raw_data = regs;
8258                 if (!trace_call_bpf(call, raw_data) || hlist_empty(head)) {
8259                         perf_swevent_put_recursion_context(rctx);
8260                         return;
8261                 }
8262         }
8263         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8264                       rctx, task);
8265 }
8266 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8267
8268 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8269                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8270                    struct task_struct *task)
8271 {
8272         struct perf_sample_data data;
8273         struct perf_event *event;
8274
8275         struct perf_raw_record raw = {
8276                 .frag = {
8277                         .size = entry_size,
8278                         .data = record,
8279                 },
8280         };
8281
8282         perf_sample_data_init(&data, 0, 0);
8283         data.raw = &raw;
8284
8285         perf_trace_buf_update(record, event_type);
8286
8287         hlist_for_each_entry_rcu(event, head, hlist_entry) {
8288                 if (perf_tp_event_match(event, &data, regs))
8289                         perf_swevent_event(event, count, &data, regs);
8290         }
8291
8292         /*
8293          * If we got specified a target task, also iterate its context and
8294          * deliver this event there too.
8295          */
8296         if (task && task != current) {
8297                 struct perf_event_context *ctx;
8298                 struct trace_entry *entry = record;
8299
8300                 rcu_read_lock();
8301                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8302                 if (!ctx)
8303                         goto unlock;
8304
8305                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8306                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8307                                 continue;
8308                         if (event->attr.config != entry->type)
8309                                 continue;
8310                         if (perf_tp_event_match(event, &data, regs))
8311                                 perf_swevent_event(event, count, &data, regs);
8312                 }
8313 unlock:
8314                 rcu_read_unlock();
8315         }
8316
8317         perf_swevent_put_recursion_context(rctx);
8318 }
8319 EXPORT_SYMBOL_GPL(perf_tp_event);
8320
8321 static void tp_perf_event_destroy(struct perf_event *event)
8322 {
8323         perf_trace_destroy(event);
8324 }
8325
8326 static int perf_tp_event_init(struct perf_event *event)
8327 {
8328         int err;
8329
8330         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8331                 return -ENOENT;
8332
8333         /*
8334          * no branch sampling for tracepoint events
8335          */
8336         if (has_branch_stack(event))
8337                 return -EOPNOTSUPP;
8338
8339         err = perf_trace_init(event);
8340         if (err)
8341                 return err;
8342
8343         event->destroy = tp_perf_event_destroy;
8344
8345         return 0;
8346 }
8347
8348 static struct pmu perf_tracepoint = {
8349         .task_ctx_nr    = perf_sw_context,
8350
8351         .event_init     = perf_tp_event_init,
8352         .add            = perf_trace_add,
8353         .del            = perf_trace_del,
8354         .start          = perf_swevent_start,
8355         .stop           = perf_swevent_stop,
8356         .read           = perf_swevent_read,
8357 };
8358
8359 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
8360 /*
8361  * Flags in config, used by dynamic PMU kprobe and uprobe
8362  * The flags should match following PMU_FORMAT_ATTR().
8363  *
8364  * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
8365  *                               if not set, create kprobe/uprobe
8366  */
8367 enum perf_probe_config {
8368         PERF_PROBE_CONFIG_IS_RETPROBE = 1U << 0,  /* [k,u]retprobe */
8369 };
8370
8371 PMU_FORMAT_ATTR(retprobe, "config:0");
8372
8373 static struct attribute *probe_attrs[] = {
8374         &format_attr_retprobe.attr,
8375         NULL,
8376 };
8377
8378 static struct attribute_group probe_format_group = {
8379         .name = "format",
8380         .attrs = probe_attrs,
8381 };
8382
8383 static const struct attribute_group *probe_attr_groups[] = {
8384         &probe_format_group,
8385         NULL,
8386 };
8387 #endif
8388
8389 #ifdef CONFIG_KPROBE_EVENTS
8390 static int perf_kprobe_event_init(struct perf_event *event);
8391 static struct pmu perf_kprobe = {
8392         .task_ctx_nr    = perf_sw_context,
8393         .event_init     = perf_kprobe_event_init,
8394         .add            = perf_trace_add,
8395         .del            = perf_trace_del,
8396         .start          = perf_swevent_start,
8397         .stop           = perf_swevent_stop,
8398         .read           = perf_swevent_read,
8399         .attr_groups    = probe_attr_groups,
8400 };
8401
8402 static int perf_kprobe_event_init(struct perf_event *event)
8403 {
8404         int err;
8405         bool is_retprobe;
8406
8407         if (event->attr.type != perf_kprobe.type)
8408                 return -ENOENT;
8409
8410         if (!capable(CAP_SYS_ADMIN))
8411                 return -EACCES;
8412
8413         /*
8414          * no branch sampling for probe events
8415          */
8416         if (has_branch_stack(event))
8417                 return -EOPNOTSUPP;
8418
8419         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8420         err = perf_kprobe_init(event, is_retprobe);
8421         if (err)
8422                 return err;
8423
8424         event->destroy = perf_kprobe_destroy;
8425
8426         return 0;
8427 }
8428 #endif /* CONFIG_KPROBE_EVENTS */
8429
8430 #ifdef CONFIG_UPROBE_EVENTS
8431 static int perf_uprobe_event_init(struct perf_event *event);
8432 static struct pmu perf_uprobe = {
8433         .task_ctx_nr    = perf_sw_context,
8434         .event_init     = perf_uprobe_event_init,
8435         .add            = perf_trace_add,
8436         .del            = perf_trace_del,
8437         .start          = perf_swevent_start,
8438         .stop           = perf_swevent_stop,
8439         .read           = perf_swevent_read,
8440         .attr_groups    = probe_attr_groups,
8441 };
8442
8443 static int perf_uprobe_event_init(struct perf_event *event)
8444 {
8445         int err;
8446         bool is_retprobe;
8447
8448         if (event->attr.type != perf_uprobe.type)
8449                 return -ENOENT;
8450
8451         if (!capable(CAP_SYS_ADMIN))
8452                 return -EACCES;
8453
8454         /*
8455          * no branch sampling for probe events
8456          */
8457         if (has_branch_stack(event))
8458                 return -EOPNOTSUPP;
8459
8460         is_retprobe = event->attr.config & PERF_PROBE_CONFIG_IS_RETPROBE;
8461         err = perf_uprobe_init(event, is_retprobe);
8462         if (err)
8463                 return err;
8464
8465         event->destroy = perf_uprobe_destroy;
8466
8467         return 0;
8468 }
8469 #endif /* CONFIG_UPROBE_EVENTS */
8470
8471 static inline void perf_tp_register(void)
8472 {
8473         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8474 #ifdef CONFIG_KPROBE_EVENTS
8475         perf_pmu_register(&perf_kprobe, "kprobe", -1);
8476 #endif
8477 #ifdef CONFIG_UPROBE_EVENTS
8478         perf_pmu_register(&perf_uprobe, "uprobe", -1);
8479 #endif
8480 }
8481
8482 static void perf_event_free_filter(struct perf_event *event)
8483 {
8484         ftrace_profile_free_filter(event);
8485 }
8486
8487 #ifdef CONFIG_BPF_SYSCALL
8488 static void bpf_overflow_handler(struct perf_event *event,
8489                                  struct perf_sample_data *data,
8490                                  struct pt_regs *regs)
8491 {
8492         struct bpf_perf_event_data_kern ctx = {
8493                 .data = data,
8494                 .event = event,
8495         };
8496         int ret = 0;
8497
8498         ctx.regs = perf_arch_bpf_user_pt_regs(regs);
8499         preempt_disable();
8500         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8501                 goto out;
8502         rcu_read_lock();
8503         ret = BPF_PROG_RUN(event->prog, &ctx);
8504         rcu_read_unlock();
8505 out:
8506         __this_cpu_dec(bpf_prog_active);
8507         preempt_enable();
8508         if (!ret)
8509                 return;
8510
8511         event->orig_overflow_handler(event, data, regs);
8512 }
8513
8514 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8515 {
8516         struct bpf_prog *prog;
8517
8518         if (event->overflow_handler_context)
8519                 /* hw breakpoint or kernel counter */
8520                 return -EINVAL;
8521
8522         if (event->prog)
8523                 return -EEXIST;
8524
8525         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8526         if (IS_ERR(prog))
8527                 return PTR_ERR(prog);
8528
8529         event->prog = prog;
8530         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8531         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8532         return 0;
8533 }
8534
8535 static void perf_event_free_bpf_handler(struct perf_event *event)
8536 {
8537         struct bpf_prog *prog = event->prog;
8538
8539         if (!prog)
8540                 return;
8541
8542         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8543         event->prog = NULL;
8544         bpf_prog_put(prog);
8545 }
8546 #else
8547 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8548 {
8549         return -EOPNOTSUPP;
8550 }
8551 static void perf_event_free_bpf_handler(struct perf_event *event)
8552 {
8553 }
8554 #endif
8555
8556 /*
8557  * returns true if the event is a tracepoint, or a kprobe/upprobe created
8558  * with perf_event_open()
8559  */
8560 static inline bool perf_event_is_tracing(struct perf_event *event)
8561 {
8562         if (event->pmu == &perf_tracepoint)
8563                 return true;
8564 #ifdef CONFIG_KPROBE_EVENTS
8565         if (event->pmu == &perf_kprobe)
8566                 return true;
8567 #endif
8568 #ifdef CONFIG_UPROBE_EVENTS
8569         if (event->pmu == &perf_uprobe)
8570                 return true;
8571 #endif
8572         return false;
8573 }
8574
8575 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8576 {
8577         bool is_kprobe, is_tracepoint, is_syscall_tp;
8578         struct bpf_prog *prog;
8579         int ret;
8580
8581         if (!perf_event_is_tracing(event))
8582                 return perf_event_set_bpf_handler(event, prog_fd);
8583
8584         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8585         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8586         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8587         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8588                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8589                 return -EINVAL;
8590
8591         prog = bpf_prog_get(prog_fd);
8592         if (IS_ERR(prog))
8593                 return PTR_ERR(prog);
8594
8595         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8596             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8597             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8598                 /* valid fd, but invalid bpf program type */
8599                 bpf_prog_put(prog);
8600                 return -EINVAL;
8601         }
8602
8603         /* Kprobe override only works for kprobes, not uprobes. */
8604         if (prog->kprobe_override &&
8605             !(event->tp_event->flags & TRACE_EVENT_FL_KPROBE)) {
8606                 bpf_prog_put(prog);
8607                 return -EINVAL;
8608         }
8609
8610         if (is_tracepoint || is_syscall_tp) {
8611                 int off = trace_event_get_offsets(event->tp_event);
8612
8613                 if (prog->aux->max_ctx_offset > off) {
8614                         bpf_prog_put(prog);
8615                         return -EACCES;
8616                 }
8617         }
8618
8619         ret = perf_event_attach_bpf_prog(event, prog);
8620         if (ret)
8621                 bpf_prog_put(prog);
8622         return ret;
8623 }
8624
8625 static void perf_event_free_bpf_prog(struct perf_event *event)
8626 {
8627         if (!perf_event_is_tracing(event)) {
8628                 perf_event_free_bpf_handler(event);
8629                 return;
8630         }
8631         perf_event_detach_bpf_prog(event);
8632 }
8633
8634 #else
8635
8636 static inline void perf_tp_register(void)
8637 {
8638 }
8639
8640 static void perf_event_free_filter(struct perf_event *event)
8641 {
8642 }
8643
8644 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8645 {
8646         return -ENOENT;
8647 }
8648
8649 static void perf_event_free_bpf_prog(struct perf_event *event)
8650 {
8651 }
8652 #endif /* CONFIG_EVENT_TRACING */
8653
8654 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8655 void perf_bp_event(struct perf_event *bp, void *data)
8656 {
8657         struct perf_sample_data sample;
8658         struct pt_regs *regs = data;
8659
8660         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8661
8662         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8663                 perf_swevent_event(bp, 1, &sample, regs);
8664 }
8665 #endif
8666
8667 /*
8668  * Allocate a new address filter
8669  */
8670 static struct perf_addr_filter *
8671 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8672 {
8673         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8674         struct perf_addr_filter *filter;
8675
8676         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8677         if (!filter)
8678                 return NULL;
8679
8680         INIT_LIST_HEAD(&filter->entry);
8681         list_add_tail(&filter->entry, filters);
8682
8683         return filter;
8684 }
8685
8686 static void free_filters_list(struct list_head *filters)
8687 {
8688         struct perf_addr_filter *filter, *iter;
8689
8690         list_for_each_entry_safe(filter, iter, filters, entry) {
8691                 path_put(&filter->path);
8692                 list_del(&filter->entry);
8693                 kfree(filter);
8694         }
8695 }
8696
8697 /*
8698  * Free existing address filters and optionally install new ones
8699  */
8700 static void perf_addr_filters_splice(struct perf_event *event,
8701                                      struct list_head *head)
8702 {
8703         unsigned long flags;
8704         LIST_HEAD(list);
8705
8706         if (!has_addr_filter(event))
8707                 return;
8708
8709         /* don't bother with children, they don't have their own filters */
8710         if (event->parent)
8711                 return;
8712
8713         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8714
8715         list_splice_init(&event->addr_filters.list, &list);
8716         if (head)
8717                 list_splice(head, &event->addr_filters.list);
8718
8719         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8720
8721         free_filters_list(&list);
8722 }
8723
8724 /*
8725  * Scan through mm's vmas and see if one of them matches the
8726  * @filter; if so, adjust filter's address range.
8727  * Called with mm::mmap_sem down for reading.
8728  */
8729 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8730                                             struct mm_struct *mm)
8731 {
8732         struct vm_area_struct *vma;
8733
8734         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8735                 struct file *file = vma->vm_file;
8736                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8737                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8738
8739                 if (!file)
8740                         continue;
8741
8742                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8743                         continue;
8744
8745                 return vma->vm_start;
8746         }
8747
8748         return 0;
8749 }
8750
8751 /*
8752  * Update event's address range filters based on the
8753  * task's existing mappings, if any.
8754  */
8755 static void perf_event_addr_filters_apply(struct perf_event *event)
8756 {
8757         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8758         struct task_struct *task = READ_ONCE(event->ctx->task);
8759         struct perf_addr_filter *filter;
8760         struct mm_struct *mm = NULL;
8761         unsigned int count = 0;
8762         unsigned long flags;
8763
8764         /*
8765          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8766          * will stop on the parent's child_mutex that our caller is also holding
8767          */
8768         if (task == TASK_TOMBSTONE)
8769                 return;
8770
8771         if (!ifh->nr_file_filters)
8772                 return;
8773
8774         mm = get_task_mm(event->ctx->task);
8775         if (!mm)
8776                 goto restart;
8777
8778         down_read(&mm->mmap_sem);
8779
8780         raw_spin_lock_irqsave(&ifh->lock, flags);
8781         list_for_each_entry(filter, &ifh->list, entry) {
8782                 event->addr_filters_offs[count] = 0;
8783
8784                 /*
8785                  * Adjust base offset if the filter is associated to a binary
8786                  * that needs to be mapped:
8787                  */
8788                 if (filter->path.dentry)
8789                         event->addr_filters_offs[count] =
8790                                 perf_addr_filter_apply(filter, mm);
8791
8792                 count++;
8793         }
8794
8795         event->addr_filters_gen++;
8796         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8797
8798         up_read(&mm->mmap_sem);
8799
8800         mmput(mm);
8801
8802 restart:
8803         perf_event_stop(event, 1);
8804 }
8805
8806 /*
8807  * Address range filtering: limiting the data to certain
8808  * instruction address ranges. Filters are ioctl()ed to us from
8809  * userspace as ascii strings.
8810  *
8811  * Filter string format:
8812  *
8813  * ACTION RANGE_SPEC
8814  * where ACTION is one of the
8815  *  * "filter": limit the trace to this region
8816  *  * "start": start tracing from this address
8817  *  * "stop": stop tracing at this address/region;
8818  * RANGE_SPEC is
8819  *  * for kernel addresses: <start address>[/<size>]
8820  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8821  *
8822  * if <size> is not specified or is zero, the range is treated as a single
8823  * address; not valid for ACTION=="filter".
8824  */
8825 enum {
8826         IF_ACT_NONE = -1,
8827         IF_ACT_FILTER,
8828         IF_ACT_START,
8829         IF_ACT_STOP,
8830         IF_SRC_FILE,
8831         IF_SRC_KERNEL,
8832         IF_SRC_FILEADDR,
8833         IF_SRC_KERNELADDR,
8834 };
8835
8836 enum {
8837         IF_STATE_ACTION = 0,
8838         IF_STATE_SOURCE,
8839         IF_STATE_END,
8840 };
8841
8842 static const match_table_t if_tokens = {
8843         { IF_ACT_FILTER,        "filter" },
8844         { IF_ACT_START,         "start" },
8845         { IF_ACT_STOP,          "stop" },
8846         { IF_SRC_FILE,          "%u/%u@%s" },
8847         { IF_SRC_KERNEL,        "%u/%u" },
8848         { IF_SRC_FILEADDR,      "%u@%s" },
8849         { IF_SRC_KERNELADDR,    "%u" },
8850         { IF_ACT_NONE,          NULL },
8851 };
8852
8853 /*
8854  * Address filter string parser
8855  */
8856 static int
8857 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8858                              struct list_head *filters)
8859 {
8860         struct perf_addr_filter *filter = NULL;
8861         char *start, *orig, *filename = NULL;
8862         substring_t args[MAX_OPT_ARGS];
8863         int state = IF_STATE_ACTION, token;
8864         unsigned int kernel = 0;
8865         int ret = -EINVAL;
8866
8867         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8868         if (!fstr)
8869                 return -ENOMEM;
8870
8871         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8872                 static const enum perf_addr_filter_action_t actions[] = {
8873                         [IF_ACT_FILTER] = PERF_ADDR_FILTER_ACTION_FILTER,
8874                         [IF_ACT_START]  = PERF_ADDR_FILTER_ACTION_START,
8875                         [IF_ACT_STOP]   = PERF_ADDR_FILTER_ACTION_STOP,
8876                 };
8877                 ret = -EINVAL;
8878
8879                 if (!*start)
8880                         continue;
8881
8882                 /* filter definition begins */
8883                 if (state == IF_STATE_ACTION) {
8884                         filter = perf_addr_filter_new(event, filters);
8885                         if (!filter)
8886                                 goto fail;
8887                 }
8888
8889                 token = match_token(start, if_tokens, args);
8890                 switch (token) {
8891                 case IF_ACT_FILTER:
8892                 case IF_ACT_START:
8893                 case IF_ACT_STOP:
8894                         if (state != IF_STATE_ACTION)
8895                                 goto fail;
8896
8897                         filter->action = actions[token];
8898                         state = IF_STATE_SOURCE;
8899                         break;
8900
8901                 case IF_SRC_KERNELADDR:
8902                 case IF_SRC_KERNEL:
8903                         kernel = 1;
8904
8905                 case IF_SRC_FILEADDR:
8906                 case IF_SRC_FILE:
8907                         if (state != IF_STATE_SOURCE)
8908                                 goto fail;
8909
8910                         *args[0].to = 0;
8911                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8912                         if (ret)
8913                                 goto fail;
8914
8915                         if (token == IF_SRC_KERNEL || token == IF_SRC_FILE) {
8916                                 *args[1].to = 0;
8917                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8918                                 if (ret)
8919                                         goto fail;
8920                         }
8921
8922                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8923                                 int fpos = token == IF_SRC_FILE ? 2 : 1;
8924
8925                                 filename = match_strdup(&args[fpos]);
8926                                 if (!filename) {
8927                                         ret = -ENOMEM;
8928                                         goto fail;
8929                                 }
8930                         }
8931
8932                         state = IF_STATE_END;
8933                         break;
8934
8935                 default:
8936                         goto fail;
8937                 }
8938
8939                 /*
8940                  * Filter definition is fully parsed, validate and install it.
8941                  * Make sure that it doesn't contradict itself or the event's
8942                  * attribute.
8943                  */
8944                 if (state == IF_STATE_END) {
8945                         ret = -EINVAL;
8946                         if (kernel && event->attr.exclude_kernel)
8947                                 goto fail;
8948
8949                         /*
8950                          * ACTION "filter" must have a non-zero length region
8951                          * specified.
8952                          */
8953                         if (filter->action == PERF_ADDR_FILTER_ACTION_FILTER &&
8954                             !filter->size)
8955                                 goto fail;
8956
8957                         if (!kernel) {
8958                                 if (!filename)
8959                                         goto fail;
8960
8961                                 /*
8962                                  * For now, we only support file-based filters
8963                                  * in per-task events; doing so for CPU-wide
8964                                  * events requires additional context switching
8965                                  * trickery, since same object code will be
8966                                  * mapped at different virtual addresses in
8967                                  * different processes.
8968                                  */
8969                                 ret = -EOPNOTSUPP;
8970                                 if (!event->ctx->task)
8971                                         goto fail_free_name;
8972
8973                                 /* look up the path and grab its inode */
8974                                 ret = kern_path(filename, LOOKUP_FOLLOW,
8975                                                 &filter->path);
8976                                 if (ret)
8977                                         goto fail_free_name;
8978
8979                                 kfree(filename);
8980                                 filename = NULL;
8981
8982                                 ret = -EINVAL;
8983                                 if (!filter->path.dentry ||
8984                                     !S_ISREG(d_inode(filter->path.dentry)
8985                                              ->i_mode))
8986                                         goto fail;
8987
8988                                 event->addr_filters.nr_file_filters++;
8989                         }
8990
8991                         /* ready to consume more filters */
8992                         state = IF_STATE_ACTION;
8993                         filter = NULL;
8994                 }
8995         }
8996
8997         if (state != IF_STATE_ACTION)
8998                 goto fail;
8999
9000         kfree(orig);
9001
9002         return 0;
9003
9004 fail_free_name:
9005         kfree(filename);
9006 fail:
9007         free_filters_list(filters);
9008         kfree(orig);
9009
9010         return ret;
9011 }
9012
9013 static int
9014 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
9015 {
9016         LIST_HEAD(filters);
9017         int ret;
9018
9019         /*
9020          * Since this is called in perf_ioctl() path, we're already holding
9021          * ctx::mutex.
9022          */
9023         lockdep_assert_held(&event->ctx->mutex);
9024
9025         if (WARN_ON_ONCE(event->parent))
9026                 return -EINVAL;
9027
9028         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
9029         if (ret)
9030                 goto fail_clear_files;
9031
9032         ret = event->pmu->addr_filters_validate(&filters);
9033         if (ret)
9034                 goto fail_free_filters;
9035
9036         /* remove existing filters, if any */
9037         perf_addr_filters_splice(event, &filters);
9038
9039         /* install new filters */
9040         perf_event_for_each_child(event, perf_event_addr_filters_apply);
9041
9042         return ret;
9043
9044 fail_free_filters:
9045         free_filters_list(&filters);
9046
9047 fail_clear_files:
9048         event->addr_filters.nr_file_filters = 0;
9049
9050         return ret;
9051 }
9052
9053 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
9054 {
9055         int ret = -EINVAL;
9056         char *filter_str;
9057
9058         filter_str = strndup_user(arg, PAGE_SIZE);
9059         if (IS_ERR(filter_str))
9060                 return PTR_ERR(filter_str);
9061
9062 #ifdef CONFIG_EVENT_TRACING
9063         if (perf_event_is_tracing(event)) {
9064                 struct perf_event_context *ctx = event->ctx;
9065
9066                 /*
9067                  * Beware, here be dragons!!
9068                  *
9069                  * the tracepoint muck will deadlock against ctx->mutex, but
9070                  * the tracepoint stuff does not actually need it. So
9071                  * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
9072                  * already have a reference on ctx.
9073                  *
9074                  * This can result in event getting moved to a different ctx,
9075                  * but that does not affect the tracepoint state.
9076                  */
9077                 mutex_unlock(&ctx->mutex);
9078                 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
9079                 mutex_lock(&ctx->mutex);
9080         } else
9081 #endif
9082         if (has_addr_filter(event))
9083                 ret = perf_event_set_addr_filter(event, filter_str);
9084
9085         kfree(filter_str);
9086         return ret;
9087 }
9088
9089 /*
9090  * hrtimer based swevent callback
9091  */
9092
9093 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
9094 {
9095         enum hrtimer_restart ret = HRTIMER_RESTART;
9096         struct perf_sample_data data;
9097         struct pt_regs *regs;
9098         struct perf_event *event;
9099         u64 period;
9100
9101         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
9102
9103         if (event->state != PERF_EVENT_STATE_ACTIVE)
9104                 return HRTIMER_NORESTART;
9105
9106         event->pmu->read(event);
9107
9108         perf_sample_data_init(&data, 0, event->hw.last_period);
9109         regs = get_irq_regs();
9110
9111         if (regs && !perf_exclude_event(event, regs)) {
9112                 if (!(event->attr.exclude_idle && is_idle_task(current)))
9113                         if (__perf_event_overflow(event, 1, &data, regs))
9114                                 ret = HRTIMER_NORESTART;
9115         }
9116
9117         period = max_t(u64, 10000, event->hw.sample_period);
9118         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
9119
9120         return ret;
9121 }
9122
9123 static void perf_swevent_start_hrtimer(struct perf_event *event)
9124 {
9125         struct hw_perf_event *hwc = &event->hw;
9126         s64 period;
9127
9128         if (!is_sampling_event(event))
9129                 return;
9130
9131         period = local64_read(&hwc->period_left);
9132         if (period) {
9133                 if (period < 0)
9134                         period = 10000;
9135
9136                 local64_set(&hwc->period_left, 0);
9137         } else {
9138                 period = max_t(u64, 10000, hwc->sample_period);
9139         }
9140         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
9141                       HRTIMER_MODE_REL_PINNED);
9142 }
9143
9144 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
9145 {
9146         struct hw_perf_event *hwc = &event->hw;
9147
9148         if (is_sampling_event(event)) {
9149                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
9150                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
9151
9152                 hrtimer_cancel(&hwc->hrtimer);
9153         }
9154 }
9155
9156 static void perf_swevent_init_hrtimer(struct perf_event *event)
9157 {
9158         struct hw_perf_event *hwc = &event->hw;
9159
9160         if (!is_sampling_event(event))
9161                 return;
9162
9163         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
9164         hwc->hrtimer.function = perf_swevent_hrtimer;
9165
9166         /*
9167          * Since hrtimers have a fixed rate, we can do a static freq->period
9168          * mapping and avoid the whole period adjust feedback stuff.
9169          */
9170         if (event->attr.freq) {
9171                 long freq = event->attr.sample_freq;
9172
9173                 event->attr.sample_period = NSEC_PER_SEC / freq;
9174                 hwc->sample_period = event->attr.sample_period;
9175                 local64_set(&hwc->period_left, hwc->sample_period);
9176                 hwc->last_period = hwc->sample_period;
9177                 event->attr.freq = 0;
9178         }
9179 }
9180
9181 /*
9182  * Software event: cpu wall time clock
9183  */
9184
9185 static void cpu_clock_event_update(struct perf_event *event)
9186 {
9187         s64 prev;
9188         u64 now;
9189
9190         now = local_clock();
9191         prev = local64_xchg(&event->hw.prev_count, now);
9192         local64_add(now - prev, &event->count);
9193 }
9194
9195 static void cpu_clock_event_start(struct perf_event *event, int flags)
9196 {
9197         local64_set(&event->hw.prev_count, local_clock());
9198         perf_swevent_start_hrtimer(event);
9199 }
9200
9201 static void cpu_clock_event_stop(struct perf_event *event, int flags)
9202 {
9203         perf_swevent_cancel_hrtimer(event);
9204         cpu_clock_event_update(event);
9205 }
9206
9207 static int cpu_clock_event_add(struct perf_event *event, int flags)
9208 {
9209         if (flags & PERF_EF_START)
9210                 cpu_clock_event_start(event, flags);
9211         perf_event_update_userpage(event);
9212
9213         return 0;
9214 }
9215
9216 static void cpu_clock_event_del(struct perf_event *event, int flags)
9217 {
9218         cpu_clock_event_stop(event, flags);
9219 }
9220
9221 static void cpu_clock_event_read(struct perf_event *event)
9222 {
9223         cpu_clock_event_update(event);
9224 }
9225
9226 static int cpu_clock_event_init(struct perf_event *event)
9227 {
9228         if (event->attr.type != PERF_TYPE_SOFTWARE)
9229                 return -ENOENT;
9230
9231         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
9232                 return -ENOENT;
9233
9234         /*
9235          * no branch sampling for software events
9236          */
9237         if (has_branch_stack(event))
9238                 return -EOPNOTSUPP;
9239
9240         perf_swevent_init_hrtimer(event);
9241
9242         return 0;
9243 }
9244
9245 static struct pmu perf_cpu_clock = {
9246         .task_ctx_nr    = perf_sw_context,
9247
9248         .capabilities   = PERF_PMU_CAP_NO_NMI,
9249
9250         .event_init     = cpu_clock_event_init,
9251         .add            = cpu_clock_event_add,
9252         .del            = cpu_clock_event_del,
9253         .start          = cpu_clock_event_start,
9254         .stop           = cpu_clock_event_stop,
9255         .read           = cpu_clock_event_read,
9256 };
9257
9258 /*
9259  * Software event: task time clock
9260  */
9261
9262 static void task_clock_event_update(struct perf_event *event, u64 now)
9263 {
9264         u64 prev;
9265         s64 delta;
9266
9267         prev = local64_xchg(&event->hw.prev_count, now);
9268         delta = now - prev;
9269         local64_add(delta, &event->count);
9270 }
9271
9272 static void task_clock_event_start(struct perf_event *event, int flags)
9273 {
9274         local64_set(&event->hw.prev_count, event->ctx->time);
9275         perf_swevent_start_hrtimer(event);
9276 }
9277
9278 static void task_clock_event_stop(struct perf_event *event, int flags)
9279 {
9280         perf_swevent_cancel_hrtimer(event);
9281         task_clock_event_update(event, event->ctx->time);
9282 }
9283
9284 static int task_clock_event_add(struct perf_event *event, int flags)
9285 {
9286         if (flags & PERF_EF_START)
9287                 task_clock_event_start(event, flags);
9288         perf_event_update_userpage(event);
9289
9290         return 0;
9291 }
9292
9293 static void task_clock_event_del(struct perf_event *event, int flags)
9294 {
9295         task_clock_event_stop(event, PERF_EF_UPDATE);
9296 }
9297
9298 static void task_clock_event_read(struct perf_event *event)
9299 {
9300         u64 now = perf_clock();
9301         u64 delta = now - event->ctx->timestamp;
9302         u64 time = event->ctx->time + delta;
9303
9304         task_clock_event_update(event, time);
9305 }
9306
9307 static int task_clock_event_init(struct perf_event *event)
9308 {
9309         if (event->attr.type != PERF_TYPE_SOFTWARE)
9310                 return -ENOENT;
9311
9312         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
9313                 return -ENOENT;
9314
9315         /*
9316          * no branch sampling for software events
9317          */
9318         if (has_branch_stack(event))
9319                 return -EOPNOTSUPP;
9320
9321         perf_swevent_init_hrtimer(event);
9322
9323         return 0;
9324 }
9325
9326 static struct pmu perf_task_clock = {
9327         .task_ctx_nr    = perf_sw_context,
9328
9329         .capabilities   = PERF_PMU_CAP_NO_NMI,
9330
9331         .event_init     = task_clock_event_init,
9332         .add            = task_clock_event_add,
9333         .del            = task_clock_event_del,
9334         .start          = task_clock_event_start,
9335         .stop           = task_clock_event_stop,
9336         .read           = task_clock_event_read,
9337 };
9338
9339 static void perf_pmu_nop_void(struct pmu *pmu)
9340 {
9341 }
9342
9343 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
9344 {
9345 }
9346
9347 static int perf_pmu_nop_int(struct pmu *pmu)
9348 {
9349         return 0;
9350 }
9351
9352 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9353
9354 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9355 {
9356         __this_cpu_write(nop_txn_flags, flags);
9357
9358         if (flags & ~PERF_PMU_TXN_ADD)
9359                 return;
9360
9361         perf_pmu_disable(pmu);
9362 }
9363
9364 static int perf_pmu_commit_txn(struct pmu *pmu)
9365 {
9366         unsigned int flags = __this_cpu_read(nop_txn_flags);
9367
9368         __this_cpu_write(nop_txn_flags, 0);
9369
9370         if (flags & ~PERF_PMU_TXN_ADD)
9371                 return 0;
9372
9373         perf_pmu_enable(pmu);
9374         return 0;
9375 }
9376
9377 static void perf_pmu_cancel_txn(struct pmu *pmu)
9378 {
9379         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9380
9381         __this_cpu_write(nop_txn_flags, 0);
9382
9383         if (flags & ~PERF_PMU_TXN_ADD)
9384                 return;
9385
9386         perf_pmu_enable(pmu);
9387 }
9388
9389 static int perf_event_idx_default(struct perf_event *event)
9390 {
9391         return 0;
9392 }
9393
9394 /*
9395  * Ensures all contexts with the same task_ctx_nr have the same
9396  * pmu_cpu_context too.
9397  */
9398 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9399 {
9400         struct pmu *pmu;
9401
9402         if (ctxn < 0)
9403                 return NULL;
9404
9405         list_for_each_entry(pmu, &pmus, entry) {
9406                 if (pmu->task_ctx_nr == ctxn)
9407                         return pmu->pmu_cpu_context;
9408         }
9409
9410         return NULL;
9411 }
9412
9413 static void free_pmu_context(struct pmu *pmu)
9414 {
9415         /*
9416          * Static contexts such as perf_sw_context have a global lifetime
9417          * and may be shared between different PMUs. Avoid freeing them
9418          * when a single PMU is going away.
9419          */
9420         if (pmu->task_ctx_nr > perf_invalid_context)
9421                 return;
9422
9423         mutex_lock(&pmus_lock);
9424         free_percpu(pmu->pmu_cpu_context);
9425         mutex_unlock(&pmus_lock);
9426 }
9427
9428 /*
9429  * Let userspace know that this PMU supports address range filtering:
9430  */
9431 static ssize_t nr_addr_filters_show(struct device *dev,
9432                                     struct device_attribute *attr,
9433                                     char *page)
9434 {
9435         struct pmu *pmu = dev_get_drvdata(dev);
9436
9437         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9438 }
9439 DEVICE_ATTR_RO(nr_addr_filters);
9440
9441 static struct idr pmu_idr;
9442
9443 static ssize_t
9444 type_show(struct device *dev, struct device_attribute *attr, char *page)
9445 {
9446         struct pmu *pmu = dev_get_drvdata(dev);
9447
9448         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9449 }
9450 static DEVICE_ATTR_RO(type);
9451
9452 static ssize_t
9453 perf_event_mux_interval_ms_show(struct device *dev,
9454                                 struct device_attribute *attr,
9455                                 char *page)
9456 {
9457         struct pmu *pmu = dev_get_drvdata(dev);
9458
9459         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9460 }
9461
9462 static DEFINE_MUTEX(mux_interval_mutex);
9463
9464 static ssize_t
9465 perf_event_mux_interval_ms_store(struct device *dev,
9466                                  struct device_attribute *attr,
9467                                  const char *buf, size_t count)
9468 {
9469         struct pmu *pmu = dev_get_drvdata(dev);
9470         int timer, cpu, ret;
9471
9472         ret = kstrtoint(buf, 0, &timer);
9473         if (ret)
9474                 return ret;
9475
9476         if (timer < 1)
9477                 return -EINVAL;
9478
9479         /* same value, noting to do */
9480         if (timer == pmu->hrtimer_interval_ms)
9481                 return count;
9482
9483         mutex_lock(&mux_interval_mutex);
9484         pmu->hrtimer_interval_ms = timer;
9485
9486         /* update all cpuctx for this PMU */
9487         cpus_read_lock();
9488         for_each_online_cpu(cpu) {
9489                 struct perf_cpu_context *cpuctx;
9490                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9491                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9492
9493                 cpu_function_call(cpu,
9494                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9495         }
9496         cpus_read_unlock();
9497         mutex_unlock(&mux_interval_mutex);
9498
9499         return count;
9500 }
9501 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9502
9503 static struct attribute *pmu_dev_attrs[] = {
9504         &dev_attr_type.attr,
9505         &dev_attr_perf_event_mux_interval_ms.attr,
9506         NULL,
9507 };
9508 ATTRIBUTE_GROUPS(pmu_dev);
9509
9510 static int pmu_bus_running;
9511 static struct bus_type pmu_bus = {
9512         .name           = "event_source",
9513         .dev_groups     = pmu_dev_groups,
9514 };
9515
9516 static void pmu_dev_release(struct device *dev)
9517 {
9518         kfree(dev);
9519 }
9520
9521 static int pmu_dev_alloc(struct pmu *pmu)
9522 {
9523         int ret = -ENOMEM;
9524
9525         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9526         if (!pmu->dev)
9527                 goto out;
9528
9529         pmu->dev->groups = pmu->attr_groups;
9530         device_initialize(pmu->dev);
9531         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9532         if (ret)
9533                 goto free_dev;
9534
9535         dev_set_drvdata(pmu->dev, pmu);
9536         pmu->dev->bus = &pmu_bus;
9537         pmu->dev->release = pmu_dev_release;
9538         ret = device_add(pmu->dev);
9539         if (ret)
9540                 goto free_dev;
9541
9542         /* For PMUs with address filters, throw in an extra attribute: */
9543         if (pmu->nr_addr_filters)
9544                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9545
9546         if (ret)
9547                 goto del_dev;
9548
9549 out:
9550         return ret;
9551
9552 del_dev:
9553         device_del(pmu->dev);
9554
9555 free_dev:
9556         put_device(pmu->dev);
9557         goto out;
9558 }
9559
9560 static struct lock_class_key cpuctx_mutex;
9561 static struct lock_class_key cpuctx_lock;
9562
9563 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9564 {
9565         int cpu, ret;
9566
9567         mutex_lock(&pmus_lock);
9568         ret = -ENOMEM;
9569         pmu->pmu_disable_count = alloc_percpu(int);
9570         if (!pmu->pmu_disable_count)
9571                 goto unlock;
9572
9573         pmu->type = -1;
9574         if (!name)
9575                 goto skip_type;
9576         pmu->name = name;
9577
9578         if (type < 0) {
9579                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9580                 if (type < 0) {
9581                         ret = type;
9582                         goto free_pdc;
9583                 }
9584         }
9585         pmu->type = type;
9586
9587         if (pmu_bus_running) {
9588                 ret = pmu_dev_alloc(pmu);
9589                 if (ret)
9590                         goto free_idr;
9591         }
9592
9593 skip_type:
9594         if (pmu->task_ctx_nr == perf_hw_context) {
9595                 static int hw_context_taken = 0;
9596
9597                 /*
9598                  * Other than systems with heterogeneous CPUs, it never makes
9599                  * sense for two PMUs to share perf_hw_context. PMUs which are
9600                  * uncore must use perf_invalid_context.
9601                  */
9602                 if (WARN_ON_ONCE(hw_context_taken &&
9603                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9604                         pmu->task_ctx_nr = perf_invalid_context;
9605
9606                 hw_context_taken = 1;
9607         }
9608
9609         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9610         if (pmu->pmu_cpu_context)
9611                 goto got_cpu_context;
9612
9613         ret = -ENOMEM;
9614         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9615         if (!pmu->pmu_cpu_context)
9616                 goto free_dev;
9617
9618         for_each_possible_cpu(cpu) {
9619                 struct perf_cpu_context *cpuctx;
9620
9621                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9622                 __perf_event_init_context(&cpuctx->ctx);
9623                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9624                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9625                 cpuctx->ctx.pmu = pmu;
9626                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9627
9628                 __perf_mux_hrtimer_init(cpuctx, cpu);
9629         }
9630
9631 got_cpu_context:
9632         if (!pmu->start_txn) {
9633                 if (pmu->pmu_enable) {
9634                         /*
9635                          * If we have pmu_enable/pmu_disable calls, install
9636                          * transaction stubs that use that to try and batch
9637                          * hardware accesses.
9638                          */
9639                         pmu->start_txn  = perf_pmu_start_txn;
9640                         pmu->commit_txn = perf_pmu_commit_txn;
9641                         pmu->cancel_txn = perf_pmu_cancel_txn;
9642                 } else {
9643                         pmu->start_txn  = perf_pmu_nop_txn;
9644                         pmu->commit_txn = perf_pmu_nop_int;
9645                         pmu->cancel_txn = perf_pmu_nop_void;
9646                 }
9647         }
9648
9649         if (!pmu->pmu_enable) {
9650                 pmu->pmu_enable  = perf_pmu_nop_void;
9651                 pmu->pmu_disable = perf_pmu_nop_void;
9652         }
9653
9654         if (!pmu->event_idx)
9655                 pmu->event_idx = perf_event_idx_default;
9656
9657         list_add_rcu(&pmu->entry, &pmus);
9658         atomic_set(&pmu->exclusive_cnt, 0);
9659         ret = 0;
9660 unlock:
9661         mutex_unlock(&pmus_lock);
9662
9663         return ret;
9664
9665 free_dev:
9666         device_del(pmu->dev);
9667         put_device(pmu->dev);
9668
9669 free_idr:
9670         if (pmu->type >= PERF_TYPE_MAX)
9671                 idr_remove(&pmu_idr, pmu->type);
9672
9673 free_pdc:
9674         free_percpu(pmu->pmu_disable_count);
9675         goto unlock;
9676 }
9677 EXPORT_SYMBOL_GPL(perf_pmu_register);
9678
9679 void perf_pmu_unregister(struct pmu *pmu)
9680 {
9681         int remove_device;
9682
9683         mutex_lock(&pmus_lock);
9684         remove_device = pmu_bus_running;
9685         list_del_rcu(&pmu->entry);
9686         mutex_unlock(&pmus_lock);
9687
9688         /*
9689          * We dereference the pmu list under both SRCU and regular RCU, so
9690          * synchronize against both of those.
9691          */
9692         synchronize_srcu(&pmus_srcu);
9693         synchronize_rcu();
9694
9695         free_percpu(pmu->pmu_disable_count);
9696         if (pmu->type >= PERF_TYPE_MAX)
9697                 idr_remove(&pmu_idr, pmu->type);
9698         if (remove_device) {
9699                 if (pmu->nr_addr_filters)
9700                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9701                 device_del(pmu->dev);
9702                 put_device(pmu->dev);
9703         }
9704         free_pmu_context(pmu);
9705 }
9706 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9707
9708 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9709 {
9710         struct perf_event_context *ctx = NULL;
9711         int ret;
9712
9713         if (!try_module_get(pmu->module))
9714                 return -ENODEV;
9715
9716         /*
9717          * A number of pmu->event_init() methods iterate the sibling_list to,
9718          * for example, validate if the group fits on the PMU. Therefore,
9719          * if this is a sibling event, acquire the ctx->mutex to protect
9720          * the sibling_list.
9721          */
9722         if (event->group_leader != event && pmu->task_ctx_nr != perf_sw_context) {
9723                 /*
9724                  * This ctx->mutex can nest when we're called through
9725                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9726                  */
9727                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9728                                                  SINGLE_DEPTH_NESTING);
9729                 BUG_ON(!ctx);
9730         }
9731
9732         event->pmu = pmu;
9733         ret = pmu->event_init(event);
9734
9735         if (ctx)
9736                 perf_event_ctx_unlock(event->group_leader, ctx);
9737
9738         if (ret)
9739                 module_put(pmu->module);
9740
9741         return ret;
9742 }
9743
9744 static struct pmu *perf_init_event(struct perf_event *event)
9745 {
9746         struct pmu *pmu;
9747         int idx;
9748         int ret;
9749
9750         idx = srcu_read_lock(&pmus_srcu);
9751
9752         /* Try parent's PMU first: */
9753         if (event->parent && event->parent->pmu) {
9754                 pmu = event->parent->pmu;
9755                 ret = perf_try_init_event(pmu, event);
9756                 if (!ret)
9757                         goto unlock;
9758         }
9759
9760         rcu_read_lock();
9761         pmu = idr_find(&pmu_idr, event->attr.type);
9762         rcu_read_unlock();
9763         if (pmu) {
9764                 ret = perf_try_init_event(pmu, event);
9765                 if (ret)
9766                         pmu = ERR_PTR(ret);
9767                 goto unlock;
9768         }
9769
9770         list_for_each_entry_rcu(pmu, &pmus, entry) {
9771                 ret = perf_try_init_event(pmu, event);
9772                 if (!ret)
9773                         goto unlock;
9774
9775                 if (ret != -ENOENT) {
9776                         pmu = ERR_PTR(ret);
9777                         goto unlock;
9778                 }
9779         }
9780         pmu = ERR_PTR(-ENOENT);
9781 unlock:
9782         srcu_read_unlock(&pmus_srcu, idx);
9783
9784         return pmu;
9785 }
9786
9787 static void attach_sb_event(struct perf_event *event)
9788 {
9789         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9790
9791         raw_spin_lock(&pel->lock);
9792         list_add_rcu(&event->sb_list, &pel->list);
9793         raw_spin_unlock(&pel->lock);
9794 }
9795
9796 /*
9797  * We keep a list of all !task (and therefore per-cpu) events
9798  * that need to receive side-band records.
9799  *
9800  * This avoids having to scan all the various PMU per-cpu contexts
9801  * looking for them.
9802  */
9803 static void account_pmu_sb_event(struct perf_event *event)
9804 {
9805         if (is_sb_event(event))
9806                 attach_sb_event(event);
9807 }
9808
9809 static void account_event_cpu(struct perf_event *event, int cpu)
9810 {
9811         if (event->parent)
9812                 return;
9813
9814         if (is_cgroup_event(event))
9815                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9816 }
9817
9818 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9819 static void account_freq_event_nohz(void)
9820 {
9821 #ifdef CONFIG_NO_HZ_FULL
9822         /* Lock so we don't race with concurrent unaccount */
9823         spin_lock(&nr_freq_lock);
9824         if (atomic_inc_return(&nr_freq_events) == 1)
9825                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9826         spin_unlock(&nr_freq_lock);
9827 #endif
9828 }
9829
9830 static void account_freq_event(void)
9831 {
9832         if (tick_nohz_full_enabled())
9833                 account_freq_event_nohz();
9834         else
9835                 atomic_inc(&nr_freq_events);
9836 }
9837
9838
9839 static void account_event(struct perf_event *event)
9840 {
9841         bool inc = false;
9842
9843         if (event->parent)
9844                 return;
9845
9846         if (event->attach_state & PERF_ATTACH_TASK)
9847                 inc = true;
9848         if (event->attr.mmap || event->attr.mmap_data)
9849                 atomic_inc(&nr_mmap_events);
9850         if (event->attr.comm)
9851                 atomic_inc(&nr_comm_events);
9852         if (event->attr.namespaces)
9853                 atomic_inc(&nr_namespaces_events);
9854         if (event->attr.task)
9855                 atomic_inc(&nr_task_events);
9856         if (event->attr.freq)
9857                 account_freq_event();
9858         if (event->attr.context_switch) {
9859                 atomic_inc(&nr_switch_events);
9860                 inc = true;
9861         }
9862         if (has_branch_stack(event))
9863                 inc = true;
9864         if (is_cgroup_event(event))
9865                 inc = true;
9866
9867         if (inc) {
9868                 /*
9869                  * We need the mutex here because static_branch_enable()
9870                  * must complete *before* the perf_sched_count increment
9871                  * becomes visible.
9872                  */
9873                 if (atomic_inc_not_zero(&perf_sched_count))
9874                         goto enabled;
9875
9876                 mutex_lock(&perf_sched_mutex);
9877                 if (!atomic_read(&perf_sched_count)) {
9878                         static_branch_enable(&perf_sched_events);
9879                         /*
9880                          * Guarantee that all CPUs observe they key change and
9881                          * call the perf scheduling hooks before proceeding to
9882                          * install events that need them.
9883                          */
9884                         synchronize_sched();
9885                 }
9886                 /*
9887                  * Now that we have waited for the sync_sched(), allow further
9888                  * increments to by-pass the mutex.
9889                  */
9890                 atomic_inc(&perf_sched_count);
9891                 mutex_unlock(&perf_sched_mutex);
9892         }
9893 enabled:
9894
9895         account_event_cpu(event, event->cpu);
9896
9897         account_pmu_sb_event(event);
9898 }
9899
9900 /*
9901  * Allocate and initialize a event structure
9902  */
9903 static struct perf_event *
9904 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9905                  struct task_struct *task,
9906                  struct perf_event *group_leader,
9907                  struct perf_event *parent_event,
9908                  perf_overflow_handler_t overflow_handler,
9909                  void *context, int cgroup_fd)
9910 {
9911         struct pmu *pmu;
9912         struct perf_event *event;
9913         struct hw_perf_event *hwc;
9914         long err = -EINVAL;
9915
9916         if ((unsigned)cpu >= nr_cpu_ids) {
9917                 if (!task || cpu != -1)
9918                         return ERR_PTR(-EINVAL);
9919         }
9920
9921         event = kzalloc(sizeof(*event), GFP_KERNEL);
9922         if (!event)
9923                 return ERR_PTR(-ENOMEM);
9924
9925         /*
9926          * Single events are their own group leaders, with an
9927          * empty sibling list:
9928          */
9929         if (!group_leader)
9930                 group_leader = event;
9931
9932         mutex_init(&event->child_mutex);
9933         INIT_LIST_HEAD(&event->child_list);
9934
9935         INIT_LIST_HEAD(&event->event_entry);
9936         INIT_LIST_HEAD(&event->sibling_list);
9937         INIT_LIST_HEAD(&event->active_list);
9938         init_event_group(event);
9939         INIT_LIST_HEAD(&event->rb_entry);
9940         INIT_LIST_HEAD(&event->active_entry);
9941         INIT_LIST_HEAD(&event->addr_filters.list);
9942         INIT_HLIST_NODE(&event->hlist_entry);
9943
9944
9945         init_waitqueue_head(&event->waitq);
9946         init_irq_work(&event->pending, perf_pending_event);
9947
9948         mutex_init(&event->mmap_mutex);
9949         raw_spin_lock_init(&event->addr_filters.lock);
9950
9951         atomic_long_set(&event->refcount, 1);
9952         event->cpu              = cpu;
9953         event->attr             = *attr;
9954         event->group_leader     = group_leader;
9955         event->pmu              = NULL;
9956         event->oncpu            = -1;
9957
9958         event->parent           = parent_event;
9959
9960         event->ns               = get_pid_ns(task_active_pid_ns(current));
9961         event->id               = atomic64_inc_return(&perf_event_id);
9962
9963         event->state            = PERF_EVENT_STATE_INACTIVE;
9964
9965         if (task) {
9966                 event->attach_state = PERF_ATTACH_TASK;
9967                 /*
9968                  * XXX pmu::event_init needs to know what task to account to
9969                  * and we cannot use the ctx information because we need the
9970                  * pmu before we get a ctx.
9971                  */
9972                 get_task_struct(task);
9973                 event->hw.target = task;
9974         }
9975
9976         event->clock = &local_clock;
9977         if (parent_event)
9978                 event->clock = parent_event->clock;
9979
9980         if (!overflow_handler && parent_event) {
9981                 overflow_handler = parent_event->overflow_handler;
9982                 context = parent_event->overflow_handler_context;
9983 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9984                 if (overflow_handler == bpf_overflow_handler) {
9985                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9986
9987                         if (IS_ERR(prog)) {
9988                                 err = PTR_ERR(prog);
9989                                 goto err_ns;
9990                         }
9991                         event->prog = prog;
9992                         event->orig_overflow_handler =
9993                                 parent_event->orig_overflow_handler;
9994                 }
9995 #endif
9996         }
9997
9998         if (overflow_handler) {
9999                 event->overflow_handler = overflow_handler;
10000                 event->overflow_handler_context = context;
10001         } else if (is_write_backward(event)){
10002                 event->overflow_handler = perf_event_output_backward;
10003                 event->overflow_handler_context = NULL;
10004         } else {
10005                 event->overflow_handler = perf_event_output_forward;
10006                 event->overflow_handler_context = NULL;
10007         }
10008
10009         perf_event__state_init(event);
10010
10011         pmu = NULL;
10012
10013         hwc = &event->hw;
10014         hwc->sample_period = attr->sample_period;
10015         if (attr->freq && attr->sample_freq)
10016                 hwc->sample_period = 1;
10017         hwc->last_period = hwc->sample_period;
10018
10019         local64_set(&hwc->period_left, hwc->sample_period);
10020
10021         /*
10022          * We currently do not support PERF_SAMPLE_READ on inherited events.
10023          * See perf_output_read().
10024          */
10025         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
10026                 goto err_ns;
10027
10028         if (!has_branch_stack(event))
10029                 event->attr.branch_sample_type = 0;
10030
10031         if (cgroup_fd != -1) {
10032                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
10033                 if (err)
10034                         goto err_ns;
10035         }
10036
10037         pmu = perf_init_event(event);
10038         if (IS_ERR(pmu)) {
10039                 err = PTR_ERR(pmu);
10040                 goto err_ns;
10041         }
10042
10043         err = exclusive_event_init(event);
10044         if (err)
10045                 goto err_pmu;
10046
10047         if (has_addr_filter(event)) {
10048                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
10049                                                    sizeof(unsigned long),
10050                                                    GFP_KERNEL);
10051                 if (!event->addr_filters_offs) {
10052                         err = -ENOMEM;
10053                         goto err_per_task;
10054                 }
10055
10056                 /* force hw sync on the address filters */
10057                 event->addr_filters_gen = 1;
10058         }
10059
10060         if (!event->parent) {
10061                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
10062                         err = get_callchain_buffers(attr->sample_max_stack);
10063                         if (err)
10064                                 goto err_addr_filters;
10065                 }
10066         }
10067
10068         /* symmetric to unaccount_event() in _free_event() */
10069         account_event(event);
10070
10071         return event;
10072
10073 err_addr_filters:
10074         kfree(event->addr_filters_offs);
10075
10076 err_per_task:
10077         exclusive_event_destroy(event);
10078
10079 err_pmu:
10080         if (event->destroy)
10081                 event->destroy(event);
10082         module_put(pmu->module);
10083 err_ns:
10084         if (is_cgroup_event(event))
10085                 perf_detach_cgroup(event);
10086         if (event->ns)
10087                 put_pid_ns(event->ns);
10088         if (event->hw.target)
10089                 put_task_struct(event->hw.target);
10090         kfree(event);
10091
10092         return ERR_PTR(err);
10093 }
10094
10095 static int perf_copy_attr(struct perf_event_attr __user *uattr,
10096                           struct perf_event_attr *attr)
10097 {
10098         u32 size;
10099         int ret;
10100
10101         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
10102                 return -EFAULT;
10103
10104         /*
10105          * zero the full structure, so that a short copy will be nice.
10106          */
10107         memset(attr, 0, sizeof(*attr));
10108
10109         ret = get_user(size, &uattr->size);
10110         if (ret)
10111                 return ret;
10112
10113         if (size > PAGE_SIZE)   /* silly large */
10114                 goto err_size;
10115
10116         if (!size)              /* abi compat */
10117                 size = PERF_ATTR_SIZE_VER0;
10118
10119         if (size < PERF_ATTR_SIZE_VER0)
10120                 goto err_size;
10121
10122         /*
10123          * If we're handed a bigger struct than we know of,
10124          * ensure all the unknown bits are 0 - i.e. new
10125          * user-space does not rely on any kernel feature
10126          * extensions we dont know about yet.
10127          */
10128         if (size > sizeof(*attr)) {
10129                 unsigned char __user *addr;
10130                 unsigned char __user *end;
10131                 unsigned char val;
10132
10133                 addr = (void __user *)uattr + sizeof(*attr);
10134                 end  = (void __user *)uattr + size;
10135
10136                 for (; addr < end; addr++) {
10137                         ret = get_user(val, addr);
10138                         if (ret)
10139                                 return ret;
10140                         if (val)
10141                                 goto err_size;
10142                 }
10143                 size = sizeof(*attr);
10144         }
10145
10146         ret = copy_from_user(attr, uattr, size);
10147         if (ret)
10148                 return -EFAULT;
10149
10150         attr->size = size;
10151
10152         if (attr->__reserved_1)
10153                 return -EINVAL;
10154
10155         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
10156                 return -EINVAL;
10157
10158         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
10159                 return -EINVAL;
10160
10161         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
10162                 u64 mask = attr->branch_sample_type;
10163
10164                 /* only using defined bits */
10165                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
10166                         return -EINVAL;
10167
10168                 /* at least one branch bit must be set */
10169                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
10170                         return -EINVAL;
10171
10172                 /* propagate priv level, when not set for branch */
10173                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
10174
10175                         /* exclude_kernel checked on syscall entry */
10176                         if (!attr->exclude_kernel)
10177                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
10178
10179                         if (!attr->exclude_user)
10180                                 mask |= PERF_SAMPLE_BRANCH_USER;
10181
10182                         if (!attr->exclude_hv)
10183                                 mask |= PERF_SAMPLE_BRANCH_HV;
10184                         /*
10185                          * adjust user setting (for HW filter setup)
10186                          */
10187                         attr->branch_sample_type = mask;
10188                 }
10189                 /* privileged levels capture (kernel, hv): check permissions */
10190                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
10191                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10192                         return -EACCES;
10193         }
10194
10195         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
10196                 ret = perf_reg_validate(attr->sample_regs_user);
10197                 if (ret)
10198                         return ret;
10199         }
10200
10201         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
10202                 if (!arch_perf_have_user_stack_dump())
10203                         return -ENOSYS;
10204
10205                 /*
10206                  * We have __u32 type for the size, but so far
10207                  * we can only use __u16 as maximum due to the
10208                  * __u16 sample size limit.
10209                  */
10210                 if (attr->sample_stack_user >= USHRT_MAX)
10211                         return -EINVAL;
10212                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
10213                         return -EINVAL;
10214         }
10215
10216         if (!attr->sample_max_stack)
10217                 attr->sample_max_stack = sysctl_perf_event_max_stack;
10218
10219         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
10220                 ret = perf_reg_validate(attr->sample_regs_intr);
10221 out:
10222         return ret;
10223
10224 err_size:
10225         put_user(sizeof(*attr), &uattr->size);
10226         ret = -E2BIG;
10227         goto out;
10228 }
10229
10230 static int
10231 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
10232 {
10233         struct ring_buffer *rb = NULL;
10234         int ret = -EINVAL;
10235
10236         if (!output_event)
10237                 goto set;
10238
10239         /* don't allow circular references */
10240         if (event == output_event)
10241                 goto out;
10242
10243         /*
10244          * Don't allow cross-cpu buffers
10245          */
10246         if (output_event->cpu != event->cpu)
10247                 goto out;
10248
10249         /*
10250          * If its not a per-cpu rb, it must be the same task.
10251          */
10252         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
10253                 goto out;
10254
10255         /*
10256          * Mixing clocks in the same buffer is trouble you don't need.
10257          */
10258         if (output_event->clock != event->clock)
10259                 goto out;
10260
10261         /*
10262          * Either writing ring buffer from beginning or from end.
10263          * Mixing is not allowed.
10264          */
10265         if (is_write_backward(output_event) != is_write_backward(event))
10266                 goto out;
10267
10268         /*
10269          * If both events generate aux data, they must be on the same PMU
10270          */
10271         if (has_aux(event) && has_aux(output_event) &&
10272             event->pmu != output_event->pmu)
10273                 goto out;
10274
10275 set:
10276         mutex_lock(&event->mmap_mutex);
10277         /* Can't redirect output if we've got an active mmap() */
10278         if (atomic_read(&event->mmap_count))
10279                 goto unlock;
10280
10281         if (output_event) {
10282                 /* get the rb we want to redirect to */
10283                 rb = ring_buffer_get(output_event);
10284                 if (!rb)
10285                         goto unlock;
10286         }
10287
10288         ring_buffer_attach(event, rb);
10289
10290         ret = 0;
10291 unlock:
10292         mutex_unlock(&event->mmap_mutex);
10293
10294 out:
10295         return ret;
10296 }
10297
10298 static void mutex_lock_double(struct mutex *a, struct mutex *b)
10299 {
10300         if (b < a)
10301                 swap(a, b);
10302
10303         mutex_lock(a);
10304         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
10305 }
10306
10307 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
10308 {
10309         bool nmi_safe = false;
10310
10311         switch (clk_id) {
10312         case CLOCK_MONOTONIC:
10313                 event->clock = &ktime_get_mono_fast_ns;
10314                 nmi_safe = true;
10315                 break;
10316
10317         case CLOCK_MONOTONIC_RAW:
10318                 event->clock = &ktime_get_raw_fast_ns;
10319                 nmi_safe = true;
10320                 break;
10321
10322         case CLOCK_REALTIME:
10323                 event->clock = &ktime_get_real_ns;
10324                 break;
10325
10326         case CLOCK_BOOTTIME:
10327                 event->clock = &ktime_get_boot_ns;
10328                 break;
10329
10330         case CLOCK_TAI:
10331                 event->clock = &ktime_get_tai_ns;
10332                 break;
10333
10334         default:
10335                 return -EINVAL;
10336         }
10337
10338         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
10339                 return -EINVAL;
10340
10341         return 0;
10342 }
10343
10344 /*
10345  * Variation on perf_event_ctx_lock_nested(), except we take two context
10346  * mutexes.
10347  */
10348 static struct perf_event_context *
10349 __perf_event_ctx_lock_double(struct perf_event *group_leader,
10350                              struct perf_event_context *ctx)
10351 {
10352         struct perf_event_context *gctx;
10353
10354 again:
10355         rcu_read_lock();
10356         gctx = READ_ONCE(group_leader->ctx);
10357         if (!atomic_inc_not_zero(&gctx->refcount)) {
10358                 rcu_read_unlock();
10359                 goto again;
10360         }
10361         rcu_read_unlock();
10362
10363         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10364
10365         if (group_leader->ctx != gctx) {
10366                 mutex_unlock(&ctx->mutex);
10367                 mutex_unlock(&gctx->mutex);
10368                 put_ctx(gctx);
10369                 goto again;
10370         }
10371
10372         return gctx;
10373 }
10374
10375 /**
10376  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10377  *
10378  * @attr_uptr:  event_id type attributes for monitoring/sampling
10379  * @pid:                target pid
10380  * @cpu:                target cpu
10381  * @group_fd:           group leader event fd
10382  */
10383 SYSCALL_DEFINE5(perf_event_open,
10384                 struct perf_event_attr __user *, attr_uptr,
10385                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10386 {
10387         struct perf_event *group_leader = NULL, *output_event = NULL;
10388         struct perf_event *event, *sibling;
10389         struct perf_event_attr attr;
10390         struct perf_event_context *ctx, *uninitialized_var(gctx);
10391         struct file *event_file = NULL;
10392         struct fd group = {NULL, 0};
10393         struct task_struct *task = NULL;
10394         struct pmu *pmu;
10395         int event_fd;
10396         int move_group = 0;
10397         int err;
10398         int f_flags = O_RDWR;
10399         int cgroup_fd = -1;
10400
10401         /* for future expandability... */
10402         if (flags & ~PERF_FLAG_ALL)
10403                 return -EINVAL;
10404
10405         err = perf_copy_attr(attr_uptr, &attr);
10406         if (err)
10407                 return err;
10408
10409         if (!attr.exclude_kernel) {
10410                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10411                         return -EACCES;
10412         }
10413
10414         if (attr.namespaces) {
10415                 if (!capable(CAP_SYS_ADMIN))
10416                         return -EACCES;
10417         }
10418
10419         if (attr.freq) {
10420                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10421                         return -EINVAL;
10422         } else {
10423                 if (attr.sample_period & (1ULL << 63))
10424                         return -EINVAL;
10425         }
10426
10427         /* Only privileged users can get physical addresses */
10428         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10429             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10430                 return -EACCES;
10431
10432         /*
10433          * In cgroup mode, the pid argument is used to pass the fd
10434          * opened to the cgroup directory in cgroupfs. The cpu argument
10435          * designates the cpu on which to monitor threads from that
10436          * cgroup.
10437          */
10438         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10439                 return -EINVAL;
10440
10441         if (flags & PERF_FLAG_FD_CLOEXEC)
10442                 f_flags |= O_CLOEXEC;
10443
10444         event_fd = get_unused_fd_flags(f_flags);
10445         if (event_fd < 0)
10446                 return event_fd;
10447
10448         if (group_fd != -1) {
10449                 err = perf_fget_light(group_fd, &group);
10450                 if (err)
10451                         goto err_fd;
10452                 group_leader = group.file->private_data;
10453                 if (flags & PERF_FLAG_FD_OUTPUT)
10454                         output_event = group_leader;
10455                 if (flags & PERF_FLAG_FD_NO_GROUP)
10456                         group_leader = NULL;
10457         }
10458
10459         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10460                 task = find_lively_task_by_vpid(pid);
10461                 if (IS_ERR(task)) {
10462                         err = PTR_ERR(task);
10463                         goto err_group_fd;
10464                 }
10465         }
10466
10467         if (task && group_leader &&
10468             group_leader->attr.inherit != attr.inherit) {
10469                 err = -EINVAL;
10470                 goto err_task;
10471         }
10472
10473         if (task) {
10474                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10475                 if (err)
10476                         goto err_task;
10477
10478                 /*
10479                  * Reuse ptrace permission checks for now.
10480                  *
10481                  * We must hold cred_guard_mutex across this and any potential
10482                  * perf_install_in_context() call for this new event to
10483                  * serialize against exec() altering our credentials (and the
10484                  * perf_event_exit_task() that could imply).
10485                  */
10486                 err = -EACCES;
10487                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10488                         goto err_cred;
10489         }
10490
10491         if (flags & PERF_FLAG_PID_CGROUP)
10492                 cgroup_fd = pid;
10493
10494         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10495                                  NULL, NULL, cgroup_fd);
10496         if (IS_ERR(event)) {
10497                 err = PTR_ERR(event);
10498                 goto err_cred;
10499         }
10500
10501         if (is_sampling_event(event)) {
10502                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10503                         err = -EOPNOTSUPP;
10504                         goto err_alloc;
10505                 }
10506         }
10507
10508         /*
10509          * Special case software events and allow them to be part of
10510          * any hardware group.
10511          */
10512         pmu = event->pmu;
10513
10514         if (attr.use_clockid) {
10515                 err = perf_event_set_clock(event, attr.clockid);
10516                 if (err)
10517                         goto err_alloc;
10518         }
10519
10520         if (pmu->task_ctx_nr == perf_sw_context)
10521                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10522
10523         if (group_leader) {
10524                 if (is_software_event(event) &&
10525                     !in_software_context(group_leader)) {
10526                         /*
10527                          * If the event is a sw event, but the group_leader
10528                          * is on hw context.
10529                          *
10530                          * Allow the addition of software events to hw
10531                          * groups, this is safe because software events
10532                          * never fail to schedule.
10533                          */
10534                         pmu = group_leader->ctx->pmu;
10535                 } else if (!is_software_event(event) &&
10536                            is_software_event(group_leader) &&
10537                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10538                         /*
10539                          * In case the group is a pure software group, and we
10540                          * try to add a hardware event, move the whole group to
10541                          * the hardware context.
10542                          */
10543                         move_group = 1;
10544                 }
10545         }
10546
10547         /*
10548          * Get the target context (task or percpu):
10549          */
10550         ctx = find_get_context(pmu, task, event);
10551         if (IS_ERR(ctx)) {
10552                 err = PTR_ERR(ctx);
10553                 goto err_alloc;
10554         }
10555
10556         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10557                 err = -EBUSY;
10558                 goto err_context;
10559         }
10560
10561         /*
10562          * Look up the group leader (we will attach this event to it):
10563          */
10564         if (group_leader) {
10565                 err = -EINVAL;
10566
10567                 /*
10568                  * Do not allow a recursive hierarchy (this new sibling
10569                  * becoming part of another group-sibling):
10570                  */
10571                 if (group_leader->group_leader != group_leader)
10572                         goto err_context;
10573
10574                 /* All events in a group should have the same clock */
10575                 if (group_leader->clock != event->clock)
10576                         goto err_context;
10577
10578                 /*
10579                  * Make sure we're both events for the same CPU;
10580                  * grouping events for different CPUs is broken; since
10581                  * you can never concurrently schedule them anyhow.
10582                  */
10583                 if (group_leader->cpu != event->cpu)
10584                         goto err_context;
10585
10586                 /*
10587                  * Make sure we're both on the same task, or both
10588                  * per-CPU events.
10589                  */
10590                 if (group_leader->ctx->task != ctx->task)
10591                         goto err_context;
10592
10593                 /*
10594                  * Do not allow to attach to a group in a different task
10595                  * or CPU context. If we're moving SW events, we'll fix
10596                  * this up later, so allow that.
10597                  */
10598                 if (!move_group && group_leader->ctx != ctx)
10599                         goto err_context;
10600
10601                 /*
10602                  * Only a group leader can be exclusive or pinned
10603                  */
10604                 if (attr.exclusive || attr.pinned)
10605                         goto err_context;
10606         }
10607
10608         if (output_event) {
10609                 err = perf_event_set_output(event, output_event);
10610                 if (err)
10611                         goto err_context;
10612         }
10613
10614         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10615                                         f_flags);
10616         if (IS_ERR(event_file)) {
10617                 err = PTR_ERR(event_file);
10618                 event_file = NULL;
10619                 goto err_context;
10620         }
10621
10622         if (move_group) {
10623                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10624
10625                 if (gctx->task == TASK_TOMBSTONE) {
10626                         err = -ESRCH;
10627                         goto err_locked;
10628                 }
10629
10630                 /*
10631                  * Check if we raced against another sys_perf_event_open() call
10632                  * moving the software group underneath us.
10633                  */
10634                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10635                         /*
10636                          * If someone moved the group out from under us, check
10637                          * if this new event wound up on the same ctx, if so
10638                          * its the regular !move_group case, otherwise fail.
10639                          */
10640                         if (gctx != ctx) {
10641                                 err = -EINVAL;
10642                                 goto err_locked;
10643                         } else {
10644                                 perf_event_ctx_unlock(group_leader, gctx);
10645                                 move_group = 0;
10646                         }
10647                 }
10648         } else {
10649                 mutex_lock(&ctx->mutex);
10650         }
10651
10652         if (ctx->task == TASK_TOMBSTONE) {
10653                 err = -ESRCH;
10654                 goto err_locked;
10655         }
10656
10657         if (!perf_event_validate_size(event)) {
10658                 err = -E2BIG;
10659                 goto err_locked;
10660         }
10661
10662         if (!task) {
10663                 /*
10664                  * Check if the @cpu we're creating an event for is online.
10665                  *
10666                  * We use the perf_cpu_context::ctx::mutex to serialize against
10667                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10668                  */
10669                 struct perf_cpu_context *cpuctx =
10670                         container_of(ctx, struct perf_cpu_context, ctx);
10671
10672                 if (!cpuctx->online) {
10673                         err = -ENODEV;
10674                         goto err_locked;
10675                 }
10676         }
10677
10678
10679         /*
10680          * Must be under the same ctx::mutex as perf_install_in_context(),
10681          * because we need to serialize with concurrent event creation.
10682          */
10683         if (!exclusive_event_installable(event, ctx)) {
10684                 /* exclusive and group stuff are assumed mutually exclusive */
10685                 WARN_ON_ONCE(move_group);
10686
10687                 err = -EBUSY;
10688                 goto err_locked;
10689         }
10690
10691         WARN_ON_ONCE(ctx->parent_ctx);
10692
10693         /*
10694          * This is the point on no return; we cannot fail hereafter. This is
10695          * where we start modifying current state.
10696          */
10697
10698         if (move_group) {
10699                 /*
10700                  * See perf_event_ctx_lock() for comments on the details
10701                  * of swizzling perf_event::ctx.
10702                  */
10703                 perf_remove_from_context(group_leader, 0);
10704                 put_ctx(gctx);
10705
10706                 for_each_sibling_event(sibling, group_leader) {
10707                         perf_remove_from_context(sibling, 0);
10708                         put_ctx(gctx);
10709                 }
10710
10711                 /*
10712                  * Wait for everybody to stop referencing the events through
10713                  * the old lists, before installing it on new lists.
10714                  */
10715                 synchronize_rcu();
10716
10717                 /*
10718                  * Install the group siblings before the group leader.
10719                  *
10720                  * Because a group leader will try and install the entire group
10721                  * (through the sibling list, which is still in-tact), we can
10722                  * end up with siblings installed in the wrong context.
10723                  *
10724                  * By installing siblings first we NO-OP because they're not
10725                  * reachable through the group lists.
10726                  */
10727                 for_each_sibling_event(sibling, group_leader) {
10728                         perf_event__state_init(sibling);
10729                         perf_install_in_context(ctx, sibling, sibling->cpu);
10730                         get_ctx(ctx);
10731                 }
10732
10733                 /*
10734                  * Removing from the context ends up with disabled
10735                  * event. What we want here is event in the initial
10736                  * startup state, ready to be add into new context.
10737                  */
10738                 perf_event__state_init(group_leader);
10739                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10740                 get_ctx(ctx);
10741         }
10742
10743         /*
10744          * Precalculate sample_data sizes; do while holding ctx::mutex such
10745          * that we're serialized against further additions and before
10746          * perf_install_in_context() which is the point the event is active and
10747          * can use these values.
10748          */
10749         perf_event__header_size(event);
10750         perf_event__id_header_size(event);
10751
10752         event->owner = current;
10753
10754         perf_install_in_context(ctx, event, event->cpu);
10755         perf_unpin_context(ctx);
10756
10757         if (move_group)
10758                 perf_event_ctx_unlock(group_leader, gctx);
10759         mutex_unlock(&ctx->mutex);
10760
10761         if (task) {
10762                 mutex_unlock(&task->signal->cred_guard_mutex);
10763                 put_task_struct(task);
10764         }
10765
10766         mutex_lock(&current->perf_event_mutex);
10767         list_add_tail(&event->owner_entry, &current->perf_event_list);
10768         mutex_unlock(&current->perf_event_mutex);
10769
10770         /*
10771          * Drop the reference on the group_event after placing the
10772          * new event on the sibling_list. This ensures destruction
10773          * of the group leader will find the pointer to itself in
10774          * perf_group_detach().
10775          */
10776         fdput(group);
10777         fd_install(event_fd, event_file);
10778         return event_fd;
10779
10780 err_locked:
10781         if (move_group)
10782                 perf_event_ctx_unlock(group_leader, gctx);
10783         mutex_unlock(&ctx->mutex);
10784 /* err_file: */
10785         fput(event_file);
10786 err_context:
10787         perf_unpin_context(ctx);
10788         put_ctx(ctx);
10789 err_alloc:
10790         /*
10791          * If event_file is set, the fput() above will have called ->release()
10792          * and that will take care of freeing the event.
10793          */
10794         if (!event_file)
10795                 free_event(event);
10796 err_cred:
10797         if (task)
10798                 mutex_unlock(&task->signal->cred_guard_mutex);
10799 err_task:
10800         if (task)
10801                 put_task_struct(task);
10802 err_group_fd:
10803         fdput(group);
10804 err_fd:
10805         put_unused_fd(event_fd);
10806         return err;
10807 }
10808
10809 /**
10810  * perf_event_create_kernel_counter
10811  *
10812  * @attr: attributes of the counter to create
10813  * @cpu: cpu in which the counter is bound
10814  * @task: task to profile (NULL for percpu)
10815  */
10816 struct perf_event *
10817 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10818                                  struct task_struct *task,
10819                                  perf_overflow_handler_t overflow_handler,
10820                                  void *context)
10821 {
10822         struct perf_event_context *ctx;
10823         struct perf_event *event;
10824         int err;
10825
10826         /*
10827          * Get the target context (task or percpu):
10828          */
10829
10830         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10831                                  overflow_handler, context, -1);
10832         if (IS_ERR(event)) {
10833                 err = PTR_ERR(event);
10834                 goto err;
10835         }
10836
10837         /* Mark owner so we could distinguish it from user events. */
10838         event->owner = TASK_TOMBSTONE;
10839
10840         ctx = find_get_context(event->pmu, task, event);
10841         if (IS_ERR(ctx)) {
10842                 err = PTR_ERR(ctx);
10843                 goto err_free;
10844         }
10845
10846         WARN_ON_ONCE(ctx->parent_ctx);
10847         mutex_lock(&ctx->mutex);
10848         if (ctx->task == TASK_TOMBSTONE) {
10849                 err = -ESRCH;
10850                 goto err_unlock;
10851         }
10852
10853         if (!task) {
10854                 /*
10855                  * Check if the @cpu we're creating an event for is online.
10856                  *
10857                  * We use the perf_cpu_context::ctx::mutex to serialize against
10858                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10859                  */
10860                 struct perf_cpu_context *cpuctx =
10861                         container_of(ctx, struct perf_cpu_context, ctx);
10862                 if (!cpuctx->online) {
10863                         err = -ENODEV;
10864                         goto err_unlock;
10865                 }
10866         }
10867
10868         if (!exclusive_event_installable(event, ctx)) {
10869                 err = -EBUSY;
10870                 goto err_unlock;
10871         }
10872
10873         perf_install_in_context(ctx, event, cpu);
10874         perf_unpin_context(ctx);
10875         mutex_unlock(&ctx->mutex);
10876
10877         return event;
10878
10879 err_unlock:
10880         mutex_unlock(&ctx->mutex);
10881         perf_unpin_context(ctx);
10882         put_ctx(ctx);
10883 err_free:
10884         free_event(event);
10885 err:
10886         return ERR_PTR(err);
10887 }
10888 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10889
10890 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10891 {
10892         struct perf_event_context *src_ctx;
10893         struct perf_event_context *dst_ctx;
10894         struct perf_event *event, *tmp;
10895         LIST_HEAD(events);
10896
10897         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10898         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10899
10900         /*
10901          * See perf_event_ctx_lock() for comments on the details
10902          * of swizzling perf_event::ctx.
10903          */
10904         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10905         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10906                                  event_entry) {
10907                 perf_remove_from_context(event, 0);
10908                 unaccount_event_cpu(event, src_cpu);
10909                 put_ctx(src_ctx);
10910                 list_add(&event->migrate_entry, &events);
10911         }
10912
10913         /*
10914          * Wait for the events to quiesce before re-instating them.
10915          */
10916         synchronize_rcu();
10917
10918         /*
10919          * Re-instate events in 2 passes.
10920          *
10921          * Skip over group leaders and only install siblings on this first
10922          * pass, siblings will not get enabled without a leader, however a
10923          * leader will enable its siblings, even if those are still on the old
10924          * context.
10925          */
10926         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10927                 if (event->group_leader == event)
10928                         continue;
10929
10930                 list_del(&event->migrate_entry);
10931                 if (event->state >= PERF_EVENT_STATE_OFF)
10932                         event->state = PERF_EVENT_STATE_INACTIVE;
10933                 account_event_cpu(event, dst_cpu);
10934                 perf_install_in_context(dst_ctx, event, dst_cpu);
10935                 get_ctx(dst_ctx);
10936         }
10937
10938         /*
10939          * Once all the siblings are setup properly, install the group leaders
10940          * to make it go.
10941          */
10942         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10943                 list_del(&event->migrate_entry);
10944                 if (event->state >= PERF_EVENT_STATE_OFF)
10945                         event->state = PERF_EVENT_STATE_INACTIVE;
10946                 account_event_cpu(event, dst_cpu);
10947                 perf_install_in_context(dst_ctx, event, dst_cpu);
10948                 get_ctx(dst_ctx);
10949         }
10950         mutex_unlock(&dst_ctx->mutex);
10951         mutex_unlock(&src_ctx->mutex);
10952 }
10953 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10954
10955 static void sync_child_event(struct perf_event *child_event,
10956                                struct task_struct *child)
10957 {
10958         struct perf_event *parent_event = child_event->parent;
10959         u64 child_val;
10960
10961         if (child_event->attr.inherit_stat)
10962                 perf_event_read_event(child_event, child);
10963
10964         child_val = perf_event_count(child_event);
10965
10966         /*
10967          * Add back the child's count to the parent's count:
10968          */
10969         atomic64_add(child_val, &parent_event->child_count);
10970         atomic64_add(child_event->total_time_enabled,
10971                      &parent_event->child_total_time_enabled);
10972         atomic64_add(child_event->total_time_running,
10973                      &parent_event->child_total_time_running);
10974 }
10975
10976 static void
10977 perf_event_exit_event(struct perf_event *child_event,
10978                       struct perf_event_context *child_ctx,
10979                       struct task_struct *child)
10980 {
10981         struct perf_event *parent_event = child_event->parent;
10982
10983         /*
10984          * Do not destroy the 'original' grouping; because of the context
10985          * switch optimization the original events could've ended up in a
10986          * random child task.
10987          *
10988          * If we were to destroy the original group, all group related
10989          * operations would cease to function properly after this random
10990          * child dies.
10991          *
10992          * Do destroy all inherited groups, we don't care about those
10993          * and being thorough is better.
10994          */
10995         raw_spin_lock_irq(&child_ctx->lock);
10996         WARN_ON_ONCE(child_ctx->is_active);
10997
10998         if (parent_event)
10999                 perf_group_detach(child_event);
11000         list_del_event(child_event, child_ctx);
11001         perf_event_set_state(child_event, PERF_EVENT_STATE_EXIT); /* is_event_hup() */
11002         raw_spin_unlock_irq(&child_ctx->lock);
11003
11004         /*
11005          * Parent events are governed by their filedesc, retain them.
11006          */
11007         if (!parent_event) {
11008                 perf_event_wakeup(child_event);
11009                 return;
11010         }
11011         /*
11012          * Child events can be cleaned up.
11013          */
11014
11015         sync_child_event(child_event, child);
11016
11017         /*
11018          * Remove this event from the parent's list
11019          */
11020         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
11021         mutex_lock(&parent_event->child_mutex);
11022         list_del_init(&child_event->child_list);
11023         mutex_unlock(&parent_event->child_mutex);
11024
11025         /*
11026          * Kick perf_poll() for is_event_hup().
11027          */
11028         perf_event_wakeup(parent_event);
11029         free_event(child_event);
11030         put_event(parent_event);
11031 }
11032
11033 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
11034 {
11035         struct perf_event_context *child_ctx, *clone_ctx = NULL;
11036         struct perf_event *child_event, *next;
11037
11038         WARN_ON_ONCE(child != current);
11039
11040         child_ctx = perf_pin_task_context(child, ctxn);
11041         if (!child_ctx)
11042                 return;
11043
11044         /*
11045          * In order to reduce the amount of tricky in ctx tear-down, we hold
11046          * ctx::mutex over the entire thing. This serializes against almost
11047          * everything that wants to access the ctx.
11048          *
11049          * The exception is sys_perf_event_open() /
11050          * perf_event_create_kernel_count() which does find_get_context()
11051          * without ctx::mutex (it cannot because of the move_group double mutex
11052          * lock thing). See the comments in perf_install_in_context().
11053          */
11054         mutex_lock(&child_ctx->mutex);
11055
11056         /*
11057          * In a single ctx::lock section, de-schedule the events and detach the
11058          * context from the task such that we cannot ever get it scheduled back
11059          * in.
11060          */
11061         raw_spin_lock_irq(&child_ctx->lock);
11062         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
11063
11064         /*
11065          * Now that the context is inactive, destroy the task <-> ctx relation
11066          * and mark the context dead.
11067          */
11068         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
11069         put_ctx(child_ctx); /* cannot be last */
11070         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
11071         put_task_struct(current); /* cannot be last */
11072
11073         clone_ctx = unclone_ctx(child_ctx);
11074         raw_spin_unlock_irq(&child_ctx->lock);
11075
11076         if (clone_ctx)
11077                 put_ctx(clone_ctx);
11078
11079         /*
11080          * Report the task dead after unscheduling the events so that we
11081          * won't get any samples after PERF_RECORD_EXIT. We can however still
11082          * get a few PERF_RECORD_READ events.
11083          */
11084         perf_event_task(child, child_ctx, 0);
11085
11086         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
11087                 perf_event_exit_event(child_event, child_ctx, child);
11088
11089         mutex_unlock(&child_ctx->mutex);
11090
11091         put_ctx(child_ctx);
11092 }
11093
11094 /*
11095  * When a child task exits, feed back event values to parent events.
11096  *
11097  * Can be called with cred_guard_mutex held when called from
11098  * install_exec_creds().
11099  */
11100 void perf_event_exit_task(struct task_struct *child)
11101 {
11102         struct perf_event *event, *tmp;
11103         int ctxn;
11104
11105         mutex_lock(&child->perf_event_mutex);
11106         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
11107                                  owner_entry) {
11108                 list_del_init(&event->owner_entry);
11109
11110                 /*
11111                  * Ensure the list deletion is visible before we clear
11112                  * the owner, closes a race against perf_release() where
11113                  * we need to serialize on the owner->perf_event_mutex.
11114                  */
11115                 smp_store_release(&event->owner, NULL);
11116         }
11117         mutex_unlock(&child->perf_event_mutex);
11118
11119         for_each_task_context_nr(ctxn)
11120                 perf_event_exit_task_context(child, ctxn);
11121
11122         /*
11123          * The perf_event_exit_task_context calls perf_event_task
11124          * with child's task_ctx, which generates EXIT events for
11125          * child contexts and sets child->perf_event_ctxp[] to NULL.
11126          * At this point we need to send EXIT events to cpu contexts.
11127          */
11128         perf_event_task(child, NULL, 0);
11129 }
11130
11131 static void perf_free_event(struct perf_event *event,
11132                             struct perf_event_context *ctx)
11133 {
11134         struct perf_event *parent = event->parent;
11135
11136         if (WARN_ON_ONCE(!parent))
11137                 return;
11138
11139         mutex_lock(&parent->child_mutex);
11140         list_del_init(&event->child_list);
11141         mutex_unlock(&parent->child_mutex);
11142
11143         put_event(parent);
11144
11145         raw_spin_lock_irq(&ctx->lock);
11146         perf_group_detach(event);
11147         list_del_event(event, ctx);
11148         raw_spin_unlock_irq(&ctx->lock);
11149         free_event(event);
11150 }
11151
11152 /*
11153  * Free an unexposed, unused context as created by inheritance by
11154  * perf_event_init_task below, used by fork() in case of fail.
11155  *
11156  * Not all locks are strictly required, but take them anyway to be nice and
11157  * help out with the lockdep assertions.
11158  */
11159 void perf_event_free_task(struct task_struct *task)
11160 {
11161         struct perf_event_context *ctx;
11162         struct perf_event *event, *tmp;
11163         int ctxn;
11164
11165         for_each_task_context_nr(ctxn) {
11166                 ctx = task->perf_event_ctxp[ctxn];
11167                 if (!ctx)
11168                         continue;
11169
11170                 mutex_lock(&ctx->mutex);
11171                 raw_spin_lock_irq(&ctx->lock);
11172                 /*
11173                  * Destroy the task <-> ctx relation and mark the context dead.
11174                  *
11175                  * This is important because even though the task hasn't been
11176                  * exposed yet the context has been (through child_list).
11177                  */
11178                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
11179                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
11180                 put_task_struct(task); /* cannot be last */
11181                 raw_spin_unlock_irq(&ctx->lock);
11182
11183                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
11184                         perf_free_event(event, ctx);
11185
11186                 mutex_unlock(&ctx->mutex);
11187                 put_ctx(ctx);
11188         }
11189 }
11190
11191 void perf_event_delayed_put(struct task_struct *task)
11192 {
11193         int ctxn;
11194
11195         for_each_task_context_nr(ctxn)
11196                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
11197 }
11198
11199 struct file *perf_event_get(unsigned int fd)
11200 {
11201         struct file *file;
11202
11203         file = fget_raw(fd);
11204         if (!file)
11205                 return ERR_PTR(-EBADF);
11206
11207         if (file->f_op != &perf_fops) {
11208                 fput(file);
11209                 return ERR_PTR(-EBADF);
11210         }
11211
11212         return file;
11213 }
11214
11215 const struct perf_event *perf_get_event(struct file *file)
11216 {
11217         if (file->f_op != &perf_fops)
11218                 return ERR_PTR(-EINVAL);
11219
11220         return file->private_data;
11221 }
11222
11223 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
11224 {
11225         if (!event)
11226                 return ERR_PTR(-EINVAL);
11227
11228         return &event->attr;
11229 }
11230
11231 /*
11232  * Inherit a event from parent task to child task.
11233  *
11234  * Returns:
11235  *  - valid pointer on success
11236  *  - NULL for orphaned events
11237  *  - IS_ERR() on error
11238  */
11239 static struct perf_event *
11240 inherit_event(struct perf_event *parent_event,
11241               struct task_struct *parent,
11242               struct perf_event_context *parent_ctx,
11243               struct task_struct *child,
11244               struct perf_event *group_leader,
11245               struct perf_event_context *child_ctx)
11246 {
11247         enum perf_event_state parent_state = parent_event->state;
11248         struct perf_event *child_event;
11249         unsigned long flags;
11250
11251         /*
11252          * Instead of creating recursive hierarchies of events,
11253          * we link inherited events back to the original parent,
11254          * which has a filp for sure, which we use as the reference
11255          * count:
11256          */
11257         if (parent_event->parent)
11258                 parent_event = parent_event->parent;
11259
11260         child_event = perf_event_alloc(&parent_event->attr,
11261                                            parent_event->cpu,
11262                                            child,
11263                                            group_leader, parent_event,
11264                                            NULL, NULL, -1);
11265         if (IS_ERR(child_event))
11266                 return child_event;
11267
11268
11269         if ((child_event->attach_state & PERF_ATTACH_TASK_DATA) &&
11270             !child_ctx->task_ctx_data) {
11271                 struct pmu *pmu = child_event->pmu;
11272
11273                 child_ctx->task_ctx_data = kzalloc(pmu->task_ctx_size,
11274                                                    GFP_KERNEL);
11275                 if (!child_ctx->task_ctx_data) {
11276                         free_event(child_event);
11277                         return NULL;
11278                 }
11279         }
11280
11281         /*
11282          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
11283          * must be under the same lock in order to serialize against
11284          * perf_event_release_kernel(), such that either we must observe
11285          * is_orphaned_event() or they will observe us on the child_list.
11286          */
11287         mutex_lock(&parent_event->child_mutex);
11288         if (is_orphaned_event(parent_event) ||
11289             !atomic_long_inc_not_zero(&parent_event->refcount)) {
11290                 mutex_unlock(&parent_event->child_mutex);
11291                 /* task_ctx_data is freed with child_ctx */
11292                 free_event(child_event);
11293                 return NULL;
11294         }
11295
11296         get_ctx(child_ctx);
11297
11298         /*
11299          * Make the child state follow the state of the parent event,
11300          * not its attr.disabled bit.  We hold the parent's mutex,
11301          * so we won't race with perf_event_{en, dis}able_family.
11302          */
11303         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
11304                 child_event->state = PERF_EVENT_STATE_INACTIVE;
11305         else
11306                 child_event->state = PERF_EVENT_STATE_OFF;
11307
11308         if (parent_event->attr.freq) {
11309                 u64 sample_period = parent_event->hw.sample_period;
11310                 struct hw_perf_event *hwc = &child_event->hw;
11311
11312                 hwc->sample_period = sample_period;
11313                 hwc->last_period   = sample_period;
11314
11315                 local64_set(&hwc->period_left, sample_period);
11316         }
11317
11318         child_event->ctx = child_ctx;
11319         child_event->overflow_handler = parent_event->overflow_handler;
11320         child_event->overflow_handler_context
11321                 = parent_event->overflow_handler_context;
11322
11323         /*
11324          * Precalculate sample_data sizes
11325          */
11326         perf_event__header_size(child_event);
11327         perf_event__id_header_size(child_event);
11328
11329         /*
11330          * Link it up in the child's context:
11331          */
11332         raw_spin_lock_irqsave(&child_ctx->lock, flags);
11333         add_event_to_ctx(child_event, child_ctx);
11334         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
11335
11336         /*
11337          * Link this into the parent event's child list
11338          */
11339         list_add_tail(&child_event->child_list, &parent_event->child_list);
11340         mutex_unlock(&parent_event->child_mutex);
11341
11342         return child_event;
11343 }
11344
11345 /*
11346  * Inherits an event group.
11347  *
11348  * This will quietly suppress orphaned events; !inherit_event() is not an error.
11349  * This matches with perf_event_release_kernel() removing all child events.
11350  *
11351  * Returns:
11352  *  - 0 on success
11353  *  - <0 on error
11354  */
11355 static int inherit_group(struct perf_event *parent_event,
11356               struct task_struct *parent,
11357               struct perf_event_context *parent_ctx,
11358               struct task_struct *child,
11359               struct perf_event_context *child_ctx)
11360 {
11361         struct perf_event *leader;
11362         struct perf_event *sub;
11363         struct perf_event *child_ctr;
11364
11365         leader = inherit_event(parent_event, parent, parent_ctx,
11366                                  child, NULL, child_ctx);
11367         if (IS_ERR(leader))
11368                 return PTR_ERR(leader);
11369         /*
11370          * @leader can be NULL here because of is_orphaned_event(). In this
11371          * case inherit_event() will create individual events, similar to what
11372          * perf_group_detach() would do anyway.
11373          */
11374         for_each_sibling_event(sub, parent_event) {
11375                 child_ctr = inherit_event(sub, parent, parent_ctx,
11376                                             child, leader, child_ctx);
11377                 if (IS_ERR(child_ctr))
11378                         return PTR_ERR(child_ctr);
11379         }
11380         return 0;
11381 }
11382
11383 /*
11384  * Creates the child task context and tries to inherit the event-group.
11385  *
11386  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11387  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11388  * consistent with perf_event_release_kernel() removing all child events.
11389  *
11390  * Returns:
11391  *  - 0 on success
11392  *  - <0 on error
11393  */
11394 static int
11395 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11396                    struct perf_event_context *parent_ctx,
11397                    struct task_struct *child, int ctxn,
11398                    int *inherited_all)
11399 {
11400         int ret;
11401         struct perf_event_context *child_ctx;
11402
11403         if (!event->attr.inherit) {
11404                 *inherited_all = 0;
11405                 return 0;
11406         }
11407
11408         child_ctx = child->perf_event_ctxp[ctxn];
11409         if (!child_ctx) {
11410                 /*
11411                  * This is executed from the parent task context, so
11412                  * inherit events that have been marked for cloning.
11413                  * First allocate and initialize a context for the
11414                  * child.
11415                  */
11416                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11417                 if (!child_ctx)
11418                         return -ENOMEM;
11419
11420                 child->perf_event_ctxp[ctxn] = child_ctx;
11421         }
11422
11423         ret = inherit_group(event, parent, parent_ctx,
11424                             child, child_ctx);
11425
11426         if (ret)
11427                 *inherited_all = 0;
11428
11429         return ret;
11430 }
11431
11432 /*
11433  * Initialize the perf_event context in task_struct
11434  */
11435 static int perf_event_init_context(struct task_struct *child, int ctxn)
11436 {
11437         struct perf_event_context *child_ctx, *parent_ctx;
11438         struct perf_event_context *cloned_ctx;
11439         struct perf_event *event;
11440         struct task_struct *parent = current;
11441         int inherited_all = 1;
11442         unsigned long flags;
11443         int ret = 0;
11444
11445         if (likely(!parent->perf_event_ctxp[ctxn]))
11446                 return 0;
11447
11448         /*
11449          * If the parent's context is a clone, pin it so it won't get
11450          * swapped under us.
11451          */
11452         parent_ctx = perf_pin_task_context(parent, ctxn);
11453         if (!parent_ctx)
11454                 return 0;
11455
11456         /*
11457          * No need to check if parent_ctx != NULL here; since we saw
11458          * it non-NULL earlier, the only reason for it to become NULL
11459          * is if we exit, and since we're currently in the middle of
11460          * a fork we can't be exiting at the same time.
11461          */
11462
11463         /*
11464          * Lock the parent list. No need to lock the child - not PID
11465          * hashed yet and not running, so nobody can access it.
11466          */
11467         mutex_lock(&parent_ctx->mutex);
11468
11469         /*
11470          * We dont have to disable NMIs - we are only looking at
11471          * the list, not manipulating it:
11472          */
11473         perf_event_groups_for_each(event, &parent_ctx->pinned_groups) {
11474                 ret = inherit_task_group(event, parent, parent_ctx,
11475                                          child, ctxn, &inherited_all);
11476                 if (ret)
11477                         goto out_unlock;
11478         }
11479
11480         /*
11481          * We can't hold ctx->lock when iterating the ->flexible_group list due
11482          * to allocations, but we need to prevent rotation because
11483          * rotate_ctx() will change the list from interrupt context.
11484          */
11485         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11486         parent_ctx->rotate_disable = 1;
11487         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11488
11489         perf_event_groups_for_each(event, &parent_ctx->flexible_groups) {
11490                 ret = inherit_task_group(event, parent, parent_ctx,
11491                                          child, ctxn, &inherited_all);
11492                 if (ret)
11493                         goto out_unlock;
11494         }
11495
11496         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11497         parent_ctx->rotate_disable = 0;
11498
11499         child_ctx = child->perf_event_ctxp[ctxn];
11500
11501         if (child_ctx && inherited_all) {
11502                 /*
11503                  * Mark the child context as a clone of the parent
11504                  * context, or of whatever the parent is a clone of.
11505                  *
11506                  * Note that if the parent is a clone, the holding of
11507                  * parent_ctx->lock avoids it from being uncloned.
11508                  */
11509                 cloned_ctx = parent_ctx->parent_ctx;
11510                 if (cloned_ctx) {
11511                         child_ctx->parent_ctx = cloned_ctx;
11512                         child_ctx->parent_gen = parent_ctx->parent_gen;
11513                 } else {
11514                         child_ctx->parent_ctx = parent_ctx;
11515                         child_ctx->parent_gen = parent_ctx->generation;
11516                 }
11517                 get_ctx(child_ctx->parent_ctx);
11518         }
11519
11520         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11521 out_unlock:
11522         mutex_unlock(&parent_ctx->mutex);
11523
11524         perf_unpin_context(parent_ctx);
11525         put_ctx(parent_ctx);
11526
11527         return ret;
11528 }
11529
11530 /*
11531  * Initialize the perf_event context in task_struct
11532  */
11533 int perf_event_init_task(struct task_struct *child)
11534 {
11535         int ctxn, ret;
11536
11537         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11538         mutex_init(&child->perf_event_mutex);
11539         INIT_LIST_HEAD(&child->perf_event_list);
11540
11541         for_each_task_context_nr(ctxn) {
11542                 ret = perf_event_init_context(child, ctxn);
11543                 if (ret) {
11544                         perf_event_free_task(child);
11545                         return ret;
11546                 }
11547         }
11548
11549         return 0;
11550 }
11551
11552 static void __init perf_event_init_all_cpus(void)
11553 {
11554         struct swevent_htable *swhash;
11555         int cpu;
11556
11557         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11558
11559         for_each_possible_cpu(cpu) {
11560                 swhash = &per_cpu(swevent_htable, cpu);
11561                 mutex_init(&swhash->hlist_mutex);
11562                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11563
11564                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11565                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11566
11567 #ifdef CONFIG_CGROUP_PERF
11568                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11569 #endif
11570                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11571         }
11572 }
11573
11574 void perf_swevent_init_cpu(unsigned int cpu)
11575 {
11576         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11577
11578         mutex_lock(&swhash->hlist_mutex);
11579         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11580                 struct swevent_hlist *hlist;
11581
11582                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11583                 WARN_ON(!hlist);
11584                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11585         }
11586         mutex_unlock(&swhash->hlist_mutex);
11587 }
11588
11589 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11590 static void __perf_event_exit_context(void *__info)
11591 {
11592         struct perf_event_context *ctx = __info;
11593         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11594         struct perf_event *event;
11595
11596         raw_spin_lock(&ctx->lock);
11597         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
11598         list_for_each_entry(event, &ctx->event_list, event_entry)
11599                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11600         raw_spin_unlock(&ctx->lock);
11601 }
11602
11603 static void perf_event_exit_cpu_context(int cpu)
11604 {
11605         struct perf_cpu_context *cpuctx;
11606         struct perf_event_context *ctx;
11607         struct pmu *pmu;
11608
11609         mutex_lock(&pmus_lock);
11610         list_for_each_entry(pmu, &pmus, entry) {
11611                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11612                 ctx = &cpuctx->ctx;
11613
11614                 mutex_lock(&ctx->mutex);
11615                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11616                 cpuctx->online = 0;
11617                 mutex_unlock(&ctx->mutex);
11618         }
11619         cpumask_clear_cpu(cpu, perf_online_mask);
11620         mutex_unlock(&pmus_lock);
11621 }
11622 #else
11623
11624 static void perf_event_exit_cpu_context(int cpu) { }
11625
11626 #endif
11627
11628 int perf_event_init_cpu(unsigned int cpu)
11629 {
11630         struct perf_cpu_context *cpuctx;
11631         struct perf_event_context *ctx;
11632         struct pmu *pmu;
11633
11634         perf_swevent_init_cpu(cpu);
11635
11636         mutex_lock(&pmus_lock);
11637         cpumask_set_cpu(cpu, perf_online_mask);
11638         list_for_each_entry(pmu, &pmus, entry) {
11639                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11640                 ctx = &cpuctx->ctx;
11641
11642                 mutex_lock(&ctx->mutex);
11643                 cpuctx->online = 1;
11644                 mutex_unlock(&ctx->mutex);
11645         }
11646         mutex_unlock(&pmus_lock);
11647
11648         return 0;
11649 }
11650
11651 int perf_event_exit_cpu(unsigned int cpu)
11652 {
11653         perf_event_exit_cpu_context(cpu);
11654         return 0;
11655 }
11656
11657 static int
11658 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11659 {
11660         int cpu;
11661
11662         for_each_online_cpu(cpu)
11663                 perf_event_exit_cpu(cpu);
11664
11665         return NOTIFY_OK;
11666 }
11667
11668 /*
11669  * Run the perf reboot notifier at the very last possible moment so that
11670  * the generic watchdog code runs as long as possible.
11671  */
11672 static struct notifier_block perf_reboot_notifier = {
11673         .notifier_call = perf_reboot,
11674         .priority = INT_MIN,
11675 };
11676
11677 void __init perf_event_init(void)
11678 {
11679         int ret;
11680
11681         idr_init(&pmu_idr);
11682
11683         perf_event_init_all_cpus();
11684         init_srcu_struct(&pmus_srcu);
11685         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11686         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11687         perf_pmu_register(&perf_task_clock, NULL, -1);
11688         perf_tp_register();
11689         perf_event_init_cpu(smp_processor_id());
11690         register_reboot_notifier(&perf_reboot_notifier);
11691
11692         ret = init_hw_breakpoint();
11693         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11694
11695         /*
11696          * Build time assertion that we keep the data_head at the intended
11697          * location.  IOW, validation we got the __reserved[] size right.
11698          */
11699         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11700                      != 1024);
11701 }
11702
11703 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11704                               char *page)
11705 {
11706         struct perf_pmu_events_attr *pmu_attr =
11707                 container_of(attr, struct perf_pmu_events_attr, attr);
11708
11709         if (pmu_attr->event_str)
11710                 return sprintf(page, "%s\n", pmu_attr->event_str);
11711
11712         return 0;
11713 }
11714 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11715
11716 static int __init perf_event_sysfs_init(void)
11717 {
11718         struct pmu *pmu;
11719         int ret;
11720
11721         mutex_lock(&pmus_lock);
11722
11723         ret = bus_register(&pmu_bus);
11724         if (ret)
11725                 goto unlock;
11726
11727         list_for_each_entry(pmu, &pmus, entry) {
11728                 if (!pmu->name || pmu->type < 0)
11729                         continue;
11730
11731                 ret = pmu_dev_alloc(pmu);
11732                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11733         }
11734         pmu_bus_running = 1;
11735         ret = 0;
11736
11737 unlock:
11738         mutex_unlock(&pmus_lock);
11739
11740         return ret;
11741 }
11742 device_initcall(perf_event_sysfs_init);
11743
11744 #ifdef CONFIG_CGROUP_PERF
11745 static struct cgroup_subsys_state *
11746 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11747 {
11748         struct perf_cgroup *jc;
11749
11750         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11751         if (!jc)
11752                 return ERR_PTR(-ENOMEM);
11753
11754         jc->info = alloc_percpu(struct perf_cgroup_info);
11755         if (!jc->info) {
11756                 kfree(jc);
11757                 return ERR_PTR(-ENOMEM);
11758         }
11759
11760         return &jc->css;
11761 }
11762
11763 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11764 {
11765         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11766
11767         free_percpu(jc->info);
11768         kfree(jc);
11769 }
11770
11771 static int __perf_cgroup_move(void *info)
11772 {
11773         struct task_struct *task = info;
11774         rcu_read_lock();
11775         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11776         rcu_read_unlock();
11777         return 0;
11778 }
11779
11780 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11781 {
11782         struct task_struct *task;
11783         struct cgroup_subsys_state *css;
11784
11785         cgroup_taskset_for_each(task, css, tset)
11786                 task_function_call(task, __perf_cgroup_move, task);
11787 }
11788
11789 struct cgroup_subsys perf_event_cgrp_subsys = {
11790         .css_alloc      = perf_cgroup_css_alloc,
11791         .css_free       = perf_cgroup_css_free,
11792         .attach         = perf_cgroup_attach,
11793         /*
11794          * Implicitly enable on dfl hierarchy so that perf events can
11795          * always be filtered by cgroup2 path as long as perf_event
11796          * controller is not mounted on a legacy hierarchy.
11797          */
11798         .implicit_on_dfl = true,
11799         .threaded       = true,
11800 };
11801 #endif /* CONFIG_CGROUP_PERF */